Use este identificador para citar ou linkar para este item:
https://repositorio.ufms.br/handle/123456789/9663
Tipo: | Dissertação |
Título: | Efeito do ambiente na estrutura do lenho de clones de Eucalyptus urophylla S.T. Blake e Eucalyptus grandis Hill ex Maiden x Eucalyptus urophylla plantados em distintas regiões microclimáticas |
Autor(es): | Maidana, Debora Porfiria Furtado de Lima |
Primeiro orientador: | Dias, Edna Scremin |
Primeiro coorientador: | da Silva, Jane Rodrigues |
Primeiro membro da banca: | Mori, Fábio Akira |
Segundo membro da banca: | dos Santos, Mauro Guida |
Terceiro membro da banca: | Groenendyk, Peter Stoltenborg |
Resumo: | ● Precipitação é um fator chave para a variabilidade intraespecífica nos traços funcionais das plantas. Entretanto, pouco se sabe acerca dos efeitos da precipitação no crescimento e nas características do lenho e foliares em árvores do mesmo clone. Neste trabalho, investigamos o efeito da precipitação no crescimento das árvores, nas características do lenho e foliares em clones de Eucalyptus urophylla e Eucalyptus grandis x Eucalyptus urophylla. ● Avaliamos o crescimento das árvores, as características do lenho e foliares em 20 árvores com seis anos de idade do mesmo clone de cada uma das espécies. Aplicamos modelos lineares para verificar a variabilidade nestas características para ambos os clones em dois plantios. ● Encontramos lenho com vasos mais largos, menos densos, com maior condutividade hidráulica potencial, raios mais altos e mais largos, maior fração de vasos e parênquima e menor fração de fibras no plantio com menor precipitação. Além disso, as árvores tiveram menor área foliar específica e maior teor de matéria seca foliar no plantio com menor precipitação. ● Nossos resultados mostram que as características do lenho e foliares em clones são plásticas, fator essencial para as plantas lidarem com a variabilidade na precipitação e garantir sua sobrevivência. |
Abstract: | • Precipitation is a key factor to intraspecific variability in plant functional traits. However, little is known about the effects of precipitation in the growth and wood and leaves features on trees of the same clone. In this study, we investigated the effect of precipitation in the tree growth and the wood and leaves features in clones of Eucalyptus urophylla and Eucalyptus grandis x Eucalyptus urophylla. • We evaluated the tree growth and the wood and leaves features in 20 trees with six years old from the same clone of each species. We applied linear models to verify the variability in these characteristics for both clones in two plantations. • Wood with wider vessels and in lower density, higher potential hydraulic conductivity, taller and wider rays, higher fraction of vessels and parenchyma and lower fraction of fibers were found in trees from site with lower precipitation. Moreover, the trees had lower specific leaf area and higher leaf dry matter content in site with lower precipitation. • Our results show that the wood and leaves features in clones are plastic, essential factor for plants to deal with variability in precipitation and ensure their survival. Keywords: Ecological anatomy; leaf dry matter content; phenotypic plasticity; secondary growth; specific leaf area. |
Palavras-chave: | Anatomia ecológica crescimento secundário plasticidade fenotípica área foliar específica teor de matéria seca foliar |
CNPq: | Botânica |
Idioma: | por |
País: | Brasil |
Editor: | Fundação Universidade Federal de Mato Grosso do Sul |
Sigla da Instituição: | UFMS |
Faculdade, Instituto ou Escola: | INBIO |
metadata.dc.publisher.program: | Programa de Pós-Graduação em Biologia Vegetal |
Citação: | Alvares CA, Stape JL, Sentelhas PC, De Moraes Gonçalves JL, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711– 728. Alves ES, Angyalossy-Alfonso V. 2002. Ecological trends in the wood natomy of some brazilian species. 1. Growth rings and vessels. IAWA Journal 23: 391–418. Anderegg WRL. 2015. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytologist 205: 1008– 1014. Baas P. 1976. Some functional and adaptive aspects of vessel member morphology. Leiden Botanical Series: 157–181. Baas P, Ewers FW, Davis SD, Wheeler E. 2004. Evolution of xylem physiology. In: Hemley AR & Poole I (eds.).The evolution of plant physiology. Amsterdam, Elsevier Academic Press. Barajas-Morales J. 1985. Wood structural differences between trees of two tropical forests in Mexico. IAWA Journal 6: 355–364. Barbosa TL, Oliveira JT da S, Rocha SMG, Câmara AP, Vidaurre GB, Rosado AM, Leite FP. 2019. Influence of site in the wood quality of Eucalyptus in plantations in Brazil. Southern Forests 2620. Bates D, Machler M, Bolker BM, Walker SC. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67: 1–48. Bradshaw AD. 1965. Evolutionary Significance of Phenotypic Plasticity in Plants. Advances in Genetics 13: 115–155. Brodersen CR, McElrone AJ. 2013. Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Frontiers in Plant Science 4: 1–12. Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA. 2010. The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiology 154: 1088–1095. Bucci SJ, Goldstein G, Meinzer FC, Scholz FG, Franco AC, Bustamante M. 2004. Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiology 24: 891–899. Bukatsch F. 1972. Bemerkungen zur doppelfärbung astrablau-safranin. Mikrokosmos 61: 33–36. Campos ACM. 2008. Carvão de Eucalyptus: efeito dos parâmetros da pirólise sobre a madeira e seus componentes químicos e predição da qualidade pela espectroscopia NIR. Dissertação de Mestrado, Universidade Federal de Lavras, Lavras, Brasil. Cornelissen JHCA, Lavorel SB, Garnier EB, Díaz SC, Buchmann ND, Gurvich DEC, Reich PBE, Steege HF, Morgan HDG, A MGAVDH, et al. 2003. A handbook of protocols for standardised and easy measurement of functional traits worldwide. Australian Journal of Botany 51: 335–380. Coutinho LM. 2002. O bioma do cerrado. In: Klein AL. ed. Eugen Warming e o Cerrado Brasileiro. UNESP, Imprensa Oficial do Estado, 77-92. Dickison WC. 1975. The Bases of Angiosperm Phylogeny : Vegetative Anatomy. Annals of the Missouri Botanical Garden 62: 590–620. Dória LC, Podadera DS, Batalha MA, Lima RS, Marcati CR. 2016. Do woody plants of the Caatinga show a higher degree of xeromorphism than in the Cerrado? Flora 224: 244–251. Eilmann B, Sterck F, Wegner L, De Vries SMG, Von Arx G, Mohren GMJ, Den Ouden J, Sass-Klaassen U. 2014. Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiology 34: 882– 893. Fernandes DE, Gomide JL, Colodette JL, Ferreira MZ. 2011. Influência da produtividade de clones híbridos de eucalipto na densidade da madeira e na polpação Kraft. Tempo 39: 143–150. Foelkel C. 2007. Elementos de vaso e celuloses de eucalipto. Associação Brasileira Técnica de Celulose e Papel: 1–78. Fonseca CR, Overton JM, Collins B, Westoby M. 2000. Shifts in Trait-Combinations along Rainfall and Phosphorus Gradients. Journal of Ecology 88: 964–977. Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D. 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist 185: 42–53. Fox J, Weisberg S. 2019. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. URL https://socialsciences.mcmaster.ca/jfox/Books/Companion/ Franklin G. 1945. Preparation of thin sections of synthetic resins and wood-resins composites, and a new macerating method for wood. Nature 155: 51 – 55. Givnish TJ, Wong SC, Stuart-Williams H, Holloway-Phillips M, Farquhar GD. 2014. Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia. Ecology 95: 2991–3007. Hacke UG, Sperry JS. 2001. Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics 4: 97–115. Hacke UG, Sperry JS, Wheeler JK, Castro L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology 26: 689–701. Jardim JM, Gomes FJB, Colodette J luiz, Brahim BP. 2017. Avaliação da qualidade e desempenho de clones de eucalipto na produção de celulose. O Papel 78: 122–129. Jesus DS de, Borges RN, Silva JS. 2019. Densidade básica e dimensões de fibra de um clone de eucalipto cultivado em diferentes locais. Cadernos de Ciência & Tecnologia 36: 1–7. Johansen DA. 1940. Plant microtechnique. New York, McGraw-Hill Book Company. Kramer JP, Kozlowski T. 1972. Fisiologia das Árvores. Lisboa, Fundação Calouste Gulbenkian. Kraus JE & Arduin M. 1997. Manual básico de métodos em morfologia vegetal. Rio de Janeiro, EDUR, Seropédica. Leal S, Pereira H, Grabner M, Wimmer R. 2003. Clonal and site variation of vessels in 7- year-old Eucalyptus globulus. IAWA Journal 24: 185–195. Longui EL, De Lima IL, Andrade IM, Freitas MLM, Florsheim SMB, Zanatto ACS, da Silva FG. 2011. Seed provenance influences the wood structure of Gallesia integrifolia. IAWA Journal 32: 361–374. Magel E. 2001. Physiology of cambial growth, storage of reserves and heartwood formation. In: Huttunen S, Heikkilä H, Bucher J, Sundberg B, Jarvis P, Matyssek R, eds. Trends in European Forest Tree Physiology Research. Dordrecht: Springer, 19–32. Meng TT, Wang H, Harrison SP, Prentice IC, Ni J, Wang G. 2015. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12: 5339–5352. Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng J, Ziemińska K, et al. 2016. A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist 209: 1553–1565. Moya R, Tomazello Filho M. 2008. Radial variation of the wood anatomical structure of Gmelina arborea trees from different climatic and management conditions in Costa Rica. Revista de Biología Tropical 56: 689–704. Nisgoski S, de Muñiz GIB, Trianoski R, de Matos JLM, Venson I. 2012. Características anatômicas da madeira e índices de resistência do papel de Schizolobium parahyba (Vell.) Blake proveniente de plantio experimental. Scientia Forestalis 40: 203–211. Novoplansky A. 2002. Developmental plasticity in plants: Implications of non-cognitive behavior. Evolutionary Ecology 16: 177–188. Oliveira JGL de, Oliveira JT da S, Abad JIM, Silva AG da, Fiedler NC, Vidaure GB. 2012. Parâmetros quantitativos da anatomia da madeira de eucalipto que cresceu em diferentes locais. Revista Arvore 36: 559–567. Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M. 2014. Universal hydraulics of the flowering plants: Vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters 17: 988–997. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167–234. Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA. 2016. Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters 19: 240–248. Plavcová L, Hacke UG. 2012. Phenotypic and developmental plasticity of xylem in hybrid poplar saplings subjected to experimental drought, nitrogen fertilization, and shading. Journal of Experimental Botany 63: 6481–6491. Plavcová L, Jansen S. 2015. The role of xylem parenchyma in the storage and utilization of nonstructural carbohydrates. In: Hacke UG, ed. Functional and Ecological Xylem Anatomy. Switzerland: Springer, Cham, 209–234. Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U. 2010. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist 185: 481–492. Roeser K. 1972. Die nadel der schwarzkiefer. massenprodukt und kunstwerk der Natur. Mikrokosmos 61: 33–36. Scheiner SM. 1993. Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24: 35–68. Scholz A, Klepsch M, Karimi Z, Jansen S. 2013. How to quantify conduits in wood? Frontiers in Plant Science 4: 1–11. Schreiber SG, Hacke UG, Hamann A. 2015. Variation of xylem vessel diameters across a climate gradient: Insight from a reciprocal transplant experiment with a widespread boreal tree. Functional Ecology 29: 1392–1401. Spicer R. 2016. Variation in angiosperm wood structure and its physiological and evolutionary significance. In: Groover A, Cronk Q, eds. Comparative and Evolutionary Genomics of Angiosperm Trees. Springer, Cham, 19–60. Sultan SE. 2000. Phenotypic plasticity for plant development, function and life history. Trends in plant science 5: 537–542. Trugilho PF, Bianchi ML, Da Silva Rosado SC, Lima JT. 2007. Qualidade da madeira de clones de espécies e híbridos naturais de Eucalyptus. Scientia Forestalis/Forest Sciences: 55–62. Tyree MT, Zimmermann MH. 2002. Xylem structure and the ascent of sap. Heidelberg: Springer. Williamson GB, Wiemann MC. 2010. Measuring wood specific gravity...correctly. American Journal of Botany 97: 519–524. Wortemann R, Herbette S, Barigah TS, Fumanal B, Alia R, Ducousso A, Gomory D, Roeckel-Drevet P, Cochard H. 2011. Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiology 31: 1175–1182. |
Tipo de acesso: | Acesso Restrito |
URI: | https://repositorio.ufms.br/handle/123456789/9663 |
Data do documento: | 28-Mai-2020 |
Aparece nas coleções: | Programa de Pós-graduação em Biologia Vegetal |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Debora_Porfiria_Furtado_de_Lima_Maidana_Dissertação_2020_final.pdf | 1,06 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.