Use este identificador para citar ou linkar para este item:
https://repositorio.ufms.br/handle/123456789/3646
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Luciana Gomes Fazan | - |
dc.date.accessioned | 2021-04-30T14:12:06Z | - |
dc.date.available | 2021-09-30T19:55:24Z | - |
dc.date.issued | 2020 | pt_BR |
dc.identifier.uri | https://repositorio.ufms.br/handle/123456789/3646 | - |
dc.description.abstract | Brazil is one of the world's largest meat exporters due to the low cost of production and mainly to the predominant exploitation in pastures, a fact that makes the country competitive in the international market. It is estimated that in Brazil the total coverage area with cultivated pastures is 100 million hectares. Pastures are considered the cheapest and main source of food for cattle raising. The cultivars of two tropical genera are highlighted in the Brazilian seed market: Brachiaria and Panicum. Brachiaria is the most used, adapts to various soil and climate conditions and has great tolerance to weak and acidic soils. It shares space with Panicum, which, unlike Brachiaria, is recommended for more fertile soils. These two genera are the basis for studies of several Embrapa programs, which aim to launch more and more new cultivars. Other programs involve mapping pasture areas. Identify cultivars planted in different regions of Brazil. However, there are difficulties, even by specialized technicians, to identify the name, species and genus of the plant. During the dry and rainy seasons, the plants undergo morphological changes, which can make it even more difficult. The hierarchical classification of each forage follows standards of biotaxonomy, a technique responsible for naming plants. This hierarchy should classify the plant, first by name of the cultivar, then by species and, finally, by genus. In this context, this work aims to explore the architectural capacity of convolutional neural networks to identify sixteen forages per image, at the level of classification by Cultivar, Species and Gender. Considering the physical changes of plants, during the dry and rainy seasons. Another important issue was to contribute to forming an image bank of these two types of forage. The images were collected at Embrapa Gado de Corte, in Campo Grande - MS. Therefore, the images that were taken from june to november 2019 made up the drought period dataset, while the images that were taken between december 2019 and february 2020 made up the rainy season dataset. Convolutional neural networks are applied with great success in image recognition. Proof of this is the constant emergence of new state-of-the-art architectures. The project explores four convolutional network architectures, two state-of-the-art, MobileNet and ResNet50 and two others assembled according to the literature, called CNN I and CNN II. Cultivar classification accuracy was the lowest. As for species and genus, they were the best, demonstrating that convolutional networks have the potential to distinguish forages by species and genus. State-of-the-art architectures achieved the best results. The differences in the performance of the nets, in both periods, were small; not allowing to affirm that, classifying forages in the rainy season is easier than in the dry season and vice versa. | - |
dc.language.iso | pt_BR | pt_BR |
dc.publisher | Fundação Universidade Federal de Mato Grosso do Sul | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Inteligência Artificial, Deep Learning | - |
dc.title | Exploração de arquiteturas de redes neurais convolucionais para identificação de forrageiras do gênero Bachiaria e Panicum | pt_BR |
dc.type | Dissertação | pt_BR |
dc.contributor.advisor1 | Edson Takashi Matsubara | - |
dc.description.resumo | O Brasil é um dos maiores exportadores mundiais de carne devido ao baixo custo de produção e principalmente à exploração predominante em pastagens, fato este, que torna o país competitivo no mercado internacional. Estima-se que, no Brasil, a área total de cobertura com pastagens cultivadas seja de 100 milhões de hectares. No país, elas são consideradas a mais barata e principal fonte de alimentos na criação de bovinos. As cultivares de dois gêneros tropicais ganham destaque no mercado brasileiro de sementes: Brachiaria e Panicum. A Brachiaria é a mais utilizada, adapta-se às várias condições de solo e clima e possui grande tolerância aos solos fracos e ácidos. Ela divide espaço com a Panicum, que, ao contrário das Brachiaria, são recomendadas para solos de maior fertilidade. Esses dois gêneros são a base de estudos de vários programas da Embrapa, que têm o objetivo de lançar cada vez mais novas cultivares. Outros programas, envolvem mapear as áreas de pastagens. Identificar as cultivares plantadas em diversas regiões do Brasil. Porém, existem dificuldades, até mesmo por técnicos especializados, de identificar o nome, espécie e gênero da planta. Durante o período de seca e chuva, as plantas sofrem alterações morfológicas, que podem dificultar ainda mais. A classificação hierárquica de cada forrageira, segue normas da biotaxonomia, técnica responsável por dar nomes às plantas. Essa hierarquia, deve classificar a planta, primeiro por nome da cultivar, depois por espécie e, por último, por gênero. Neste contexto, este trabalho tem como objetivo explorar a capacidade de arquiteturas de redes neurais convolucionais de identificar dezesseis forrageiras por imagem, ao nível de classificação por Cultivar, Espécie e Gênero. Considerando as mudanças físicas das plantas, no período de seca e chuva. Outra questão importante, foi contribuir para formar um banco de imagens desses dois gêneros de forrageiras. A coleta das imagens foi realizada na Embrapa Gado de Corte, em Campo Grande - MS. Diante disso, as imagens que foram tiradas, de junho a novembro de 2019, compuseram o dataset do período de seca, enquanto as imagens que foram tiradas entre dezembro de 2019 e fevereiro de 2020, compuseram o dataset do período de chuva. As redes neurais convolucionais são aplicadas com muito sucesso no reconhecimento de imagens. Prova disso, é o surgimento constante, de novas arquiteturas do estado da arte. O projeto explora quatro arquiteturas de redes convolucionais, duas do estado da arte, MobileNet e ResNet50 e outras duas montadas de acordo com a literatura, chamadas de CNN I e CNN II. As acurácias de classificação por Cultivar, foram as mais baixas. Já as por Espécie e Gênero, foram as melhores, demonstrando que as redes convolucionais possuem potencial para distinguir as forrageiras por espécie e gênero. As arquiteturas do estado da arte, obtiveram as melhores resultados. Por fim, as diferenças de desempenhos das redes, em ambos os períodos, foram pequenas, não permitindo afirmar que, classificar as forrageiras no período de chuva é mais fácil do que no de seca e vice-versa. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.initials | UFMS | pt_BR |
Aparece nas coleções: | Programa de Pós-graduação em Computação Aplicada |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
_luciana_fazan_versao_final_corrigida.pdf | 5,07 MB | Adobe PDF | Visualizar/Abrir | |
luciana_fazan_versao_final_corrigida.pdf | 5,07 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.