Use este identificador para citar ou linkar para este item:
https://repositorio.ufms.br/handle/123456789/3165
Tipo: | Dissertação |
Título: | BovChewing - Segmentação e classificação de eventos bioacústico do comportamento ingestivo de bovinos por meio de aprendizado de máquina |
Autor(es): | Devigo, Rodrigo Sanches |
Primeiro orientador: | Lucchesi, Cláudio Leonardo L |
Abstract: | O uso de m etodos da bioac ustica para an alises comportamentais t^em se desenvolvido
com intensidade nos ultimos anos, por se tratar de m etodos n~ao invasivos buscando uma
melhora no monitoramento de precis~ao de rebanhos. Entretanto, a an alise desses dados
geralmente requer especialistas e muito tempo tornando-se assim uma tarefa geralmente
dif cil, tendo a necessidade de construir maneiras de automatizar a fase da an alise dos dados.
Existem trabalhos que focam na automatiza c~ao da an alise dos dados com resultados
satisfat orios, mas utilizam de base dados com grava c~oes feitas em condi c~oes controladas
e poucos classi cam eventos de rumina c~ao. Essa disserta c~ao prop~oe o BovChewing, uma
ferramenta capaz de detectar e classi car eventos ingestivos, baseados em m etodos semisupervisionado
para a detec c~ao e supervisionado para a classi ca c~ao, realizando assim a
an alise dos dados. Experimentos mostraram resultados que a ferramenta e su ciente e
satisfat oria para com a tarefa obtendo uma acur acia de 63% na tarefa de segmenta c~ao
e 91% na tarefa de classi ca c~ao. Trabalhos futuros apontam para a melhora do segmentador,
integra c~ao com outras ferramentas de an alises de comportamentos bovinos e
processamento dos dados na nuvem como uma forma de construir um sistema completo. ABSTRACT - The use of bioacoustic methods for behavioral analysis has been developed in recent years, considering these are non-invasive methods for seeking an improvement in the cattle accuracy monitoring. However, the analysis of these data usually requires specialists and a lot of time, becoming a generally di cult task, in this way, it is necessary to construct ways to automate the phase of data analysis. There are studies that focus on the automation of data analysis with satisfactory results, but they use databases with recordings made under controlled conditions and some classify rumination events. This dissertation proposes the development of the BovChewing, a tool capable of detecting and classifying digestive events, based on semi-supervised methods for detection and supervised for classi cation, thus, performing data analysis. Experiments showed results that the tool is su cient and satisfactory for the task, obtaining an accuracy of 63% in the segmentation task and 91% in the classi cation task. Future work points the improvement of the segment, integration with other bovine behavior analysis tools, and data processing in the cloud as a way to build a complete system. |
Palavras-chave: | Bovinos - alimentação e rações Algorítmos Computacionais Aprendizado do Computador Cattle - feeding and feeds Computer Algorithms Machine Learning |
Tipo de acesso: | Acesso Aberto |
URI: | https://repositorio.ufms.br/handle/123456789/3165 |
Data do documento: | 2017 |
Aparece nas coleções: | Programa de Pós-graduação em Ciência da Computação |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
BovChewing - Segmentação e classificação de eventos bioacústico do comportamento ingestivo de bovinos por meio de aprendizado de máquina.pdf | 3,56 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.