Use este identificador para citar ou linkar para este item: https://repositorio.ufms.br/handle/123456789/3101
Tipo: Dissertação
Título: Redes Neurais Convolucionais Profundas na Detecção de Plantas Daninhas em Lavoura de Soja
Autor(es): Ferreira, Alessandro dos Santos
Primeiro orientador: Pistori, Hemerson
Abstract: Ervas daninhas são plantas indesejadas que crescem em culturas agrícolas, como as de soja, competindo por diversos fatores como luz e água e causando prejuízos às lavouras. O objetivo deste trabalho foi utilizar Redes Neurais Convolucionais para realizar a detecção de ervas daninhas em imagens de lavouras de soja e classificar essas ervas daninhas entre gramíneas e folhas largas, visando direcionar o herbicida específico ao tipo de erva daninha detectado. Para esse objetivo foi realizada uma plantação de soja em Campo Grande, Mato Grosso do Sul, Brasil e com o uso do drone Phantom DJI 3 Professional foi capturado um grande número de imagens da cultura. Com essas fotografias foi construído um banco de imagens contendo mais de quinze mil imagens do solo, soja e ervas daninhas de folhas largas e gramíneas. As Redes Neurais Convolucionais utilizadas representam uma arquitetura de Aprendizado Profundo que vêm alcançando notável destaque no reconhecimento de imagens. Para o treinamento da Rede Neural foi utilizada a arquitetura CaffeNet, disponível no software Caffe, que consiste de uma replicação da conhecida rede AlexNet, que venceu a competição ImageNet LSRVC de 2012. Foi implementado também um software, Pynovisão, que através do uso do segmentador SLIC Superpixel, ajudou na construção de um banco de imagens robusto e na classificação das imagens utilizando o modelo treinado pelo software Caffe. Para comparar os resultados da Rede Neural Convolucional, foram utilizados os algoritmos Máquina de Vetores de Suporte, AdaBoost e Florestas Aleatórias em conjunto com uma coleção de extratores de atributos de forma, cor e textura. Como resultado, utilizando as Redes Neurais Convolucionais, este trabalho obteve precisão acima de 98% na detecção de ervas daninhas de folhas largas e gramíneas em relação ao solo e a soja, com média de precisão entre todas as imagens superior a 99%.
ABSTRACT - Weeds are undesirable plants that grow in agricultural crops, such as soybean crops, competing for elements such as sunlight and water, causing losses to crop yields. The objective of this work was to use Convolutional Neural Networks (ConvNets or CNNs) to perform weed detection in soybean crop images and classify these weeds among grass and broadleaf, aiming to apply the specific herbicide to weed detected. For this purpose, a soybean plantation was carried out in Campo Grande, Mato Grosso do Sul, Brazil, and the Phantom DJI 3 Professional drone was used to capture a large number of crop images. With these photographs, an image database was created containing over fifteen thousand images of the soil, soybean, broadleaf and grass weeds. The Convolutional Neural Networks used in this work represent a Deep Learning architecture that has achieved remarkable success in image recognition. For the training of Neural Network the CaffeNet architecture was used. Available in Caffe software, it consists of a replication of the well known AlexNet, network which won the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012). A software was also developed, Pynovisão, which through the use of the superpixel segmentation algorithm SLIC, was used to build a robust image dataset and classify images using the model trained by Caffe software. In order to compare the results of ConvNets, Support Vector Machines, AdaBoost and Random Forests were used in conjunction with a collection of shape, color and texture feature extraction techniques. As a result, this work achieved above 98% accuracy using ConvNets in the detection of broadleaf and grass weeds in relation to soil and soybean, with an accuracy average between all images above 99%.
Palavras-chave: Redes Neurais (Computação)
Inteligência Artificial
Arquitetura de Software
Neural Networks (Computer Science)
Artificial Intelligence
Software Architecture
Tipo de acesso: Acesso Aberto
URI: https://repositorio.ufms.br/handle/123456789/3101
Data do documento: 2017
Aparece nas coleções:Programa de Pós-graduação em Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Redes Neurais Convolucionais Profundas na Detecção de Plantas Daninhas em Lavoura de Soja.pdf1,9 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.