Use este identificador para citar ou linkar para este item: https://repositorio.ufms.br/handle/123456789/11015
Tipo: Tese
Título: ENHANCING HYDROLOGICAL MONITORING THROUGH DEEP LEARNING AND PHOTOGRAMMETRY
Autor(es): PEDRO ALBERTO PEREIRA ZAMBONI
Primeiro orientador: Jose Marcato Junior
Resumo: A observação dos componentes do ciclo hidrológico podem ser desafiadoras devido à escala em que ocorrem e ao custo dos sensores. Medir a formação de escoamento superficial e vazão são chave para a compreensão da dinâmica da água, uma vez que influencia também as atividades humanas, a fim de manter ecossistemas naturais equilibrados. O principal objetivo desta tese de doutorado é propor abordagens de aprendizagem profunda combinadas com fotogrametria para medir automaticamente a formação de escoamento superficial e vazão. Nossos resultados sugerem que considerar o desequilíbrio de classe e a incerteza do rótulo durante o treinamento de aprendizagem profunda para segmentar áreas de poças de água é mais importante do que a própria rede, bem como ensembles. Área, número e conectividade das poças de água e a sua foram comparados com medida da vazão, onde foram encontrados diferentes comportamentos em relação à geração de escoamento superficial. Em relação à vazão, nossos resultados mostraram que tanto STCN quanto SAM utilizando pontos fixos e SAM combinado com Dino alcançaram resultados satisfatórios para segmentação de água, mesmo com conjunto de dados de rótulo mínimo ou não anotado. As medidas dos níveis de água utilizando estas máscaras resultam num bom ajuste com os dados de referência, sendo capazes de capturar alterações no fluxo de água, especialmente para níveis de água mais elevados. Nas imagens dinâmicas, STCN e SAM Dino obtiveram resultados semelhantes, entretanto a escolha do primeiro frame influencia os resultados da STCN. Os resultados encontrados nesta tese de doutorado abrem uma nova fronteira para hidrólogos e tranquilizadores da ciência do solo com a possibilidade de medir diretamente a formação de escoamento superficial e uma solução mais barata e escalável para medição de vazão.
Abstract: Observing components of the hydrological cycle can be challenging due to the escalation that occurs and the cost of sensors. Measuring the formation of surface runoff and flow is fundamental to understanding water dynamics, as it also influences human activities in order to keep natural ecosystems balanced. The main objective of this doctoral thesis is to propose deep learning approaches combined with photogrammetry to automatically measure surface teaching formation and flow. Our results suggest that considering class imbalance and label uncertainty when training deep learning to segment water pocket areas is more important than the network itself as well as ensembles. Area, number and connectivity of water pools and their comparison with the flow measurement, where different behaviors were found in relation to the generation of surface runoff. Regarding flow rate, our results demonstrated that both STCN and SAM using fixed points and SAM combined with Dino achieved overwhelming results for water segmentation, even with minimal or unannotated label dataset. Measurements of water levels using these masks resulted in a good fit with reference data, being able to capture changes in water flow, especially at higher water levels. In dynamic images, STCN and SAM Dino obtained similar results, however the choice of the first frame influenced the STCN results. The results found in this doctoral thesis open a new frontier for hydrologists and soil science practitioners with the possibility of directly measuring surface runoff formation and a cheaper and more scalable solution for flow measurement.
Palavras-chave: DEEP LEARNING
País: Brasil
Editor: Fundação Universidade Federal de Mato Grosso do Sul
Sigla da Instituição: UFMS
Tipo de acesso: Acesso Aberto
URI: https://repositorio.ufms.br/handle/123456789/11015
Data do documento: 2024
Aparece nas coleções:Programa de Pós-graduação em Tecnologias Ambientais

Arquivos associados a este item:
Arquivo TamanhoFormato 
TESE_PZ_compressed.pdf2,38 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.