Use este identificador para citar ou linkar para este item: https://repositorio.ufms.br/handle/123456789/9684
Registro completo de metadados
Campo DCValorIdioma
dc.creatorStritar, Caroline Ramires da Silva-
dc.date.accessioned2024-11-04T19:21:09Z-
dc.date.available2024-11-04T19:21:09Z-
dc.date.issued2019-06-10-
dc.identifier.citationAbreu AHM, Leles PSS, Melo LA, Ferreira DHAA, Monteiro FAS. 2014. Produção de mudas e crescimento inicial em campo de Enterolobium contortisiliquum produzidas em diferentes recipientes. Floresta 45:141-15 Atwater DZ, James JJ, Leger EA. 2015. Seedling root traits strongly influence field survival and performance of a common bunchgrass. Basic and Applied Ecology 16:128-140. Atwell BJ. 1988. Physiological responses of lupin roots to soil compaction. Plant and Soil 111:277- 281. Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R, Eva HD, Sano E, Achard F. 2015. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Applied Geography 58:116-127. Bloom AJ, Chapin FS, Mooney HÁ. 1985. Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics 16:363–392. Chirino E, Vilagrosa A, Hernández EI, Matos A, Vallejo VR. 2008. Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L seedlings for reforestation in Mediterranean climate. Forest Ecology and Management 256:779-785. Climent J, Chambel MR, Pardos M, Lario F, Villar-Salvador P. 2011. Biomass allocation and foliage heteroblasty in hard pine species respond differentially to reduction in rooting volume. European Journal of Forest Research 130:841–850. Coleman JS, McConnaughay KDM, David D. 1994. Ackerly Interpreting phenotypic variation in plants. TREE 9:187-191. De La Fuente LM, Ovalle JF, Arellano EC, Ginocchio R. 2017. Use of alternative containers for promoting deep rooting of native forest species used for dryland restoration: the case of Acacia caven. iForest-Biogeosciences and Forestry 10:776. De Melo LA, Abreu AHM, Leles PSS, de Oliveira RR, da Silva DT. 2018. Qualidade e crescimento inicial de mudas de Mimosa caesalpiniifolia Benth produzidas em diferentes volumes de recipientes. Ciência Florestal 28:47-55. Dominguez-Lerena S, Sierra NH, Manzano IC, Bueno LO, Rubira JP, Mexal JG. 2006. Container characteristics influence Pinus pinea seedling development in the nursery and field Forest Ecology and Management 221:63-71. Fascella G, Rouphael Y. 2017. Influence of container volume and irrigation system on photosynthesis, water productivity and growth of potted Euphorbia × lomi. Acta Sci Pol Hortorum Cultus 16:163–171. Gordon WS, Jackson RB. 2000. Nutrient concentrations in fine roots. Ecology 81:275–280. Grossnickle SC, MacDonald JE. 2018. Why seedlings grow: Influence of plant atributes. New Forests 49:1–34. Hérault B, Bachelot B, Poorter L, Rossi V, Bongers F, Chave J, ... & Baraloto, C. 2011. Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of ecology 99:1431- 1440. Hoagland DR, Arnon DI. 1950. The water culture method for growing plants without soils Berkeley. California Agricultural Experimental Station 347. Kharkina TG, Ottosen C-O, Rosenqvist E. 1999. Effects of root restriction on the growth and physiology of cucumber plants. Physiologia Plantarum 105:434 – 441. Lambers HANS, Poorter H. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. In Advances in ecological research, Academic Press, v.23, p.187-261. Lima Junior MJV. 2010. ed. Manual de Procedimentos para Análise de Sementes Florestais. UFAM - Manaus-Amazonas, Brasil.146p. Martínez-Gutiérrez GA, Morales I, Aquino-Bolaños T, Escamirosa-Tinoco C, Hernández-Tolentino M. 2016. Substrate volume and nursery times for earliness and yield of greenhouse tomato. Emirates Journal of Food and Agriculture 28:897-902. Mašková T, Herben T. 2018. Root:shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecology and Evolution 1–8. McConnaughay KDM, Bazzaz FA. 1992. The occupation and fragmentation of space: consequences of neighbouring roots. Functional Ecology 6:704-710. NeSmith DS, Duval JR. 1998. The effect of container size. HorTechnology 8:495-498. Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A. 2005. Deep root function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology 19:574-581. Origin 8.0 (OriginLab, Northampton, MA) Palma AC, Laurance SG. 2015. A review of the use of direct seeding and seedling plantings in restoration: what do we know and where should we go? Applied Vegetation Science 18:561-568. Pereira SR, Laura VA, de Souza ALT.2013. Establishment of Fabaceae Tree Species in a Tropical Pasture: Influence of Seed Size and Weeding Methods. Restoration Ecology 21:67–74. Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Urcelay C. 2016. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 64:715-716. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control. New Phytologist 193:30-50. Pywell RF, Bullock JM, Roy DB, Warman LIZ, Walker KJ, Rothery P. 2003. Plant traits as predictors of performance in ecological restoration. Journal of applied Ecology 40:65-77. Riikonen J, Luoranen J. 2018. Seedling Production and the Field Performance of Seedlings. Forests 9:740. Rymen B, Kawamura A, Schäfer S, Breuer C, Iwase A, ShibataM, Ikeda M, Mitsuda N, Koncz C, Ohme-Takagi M, Matsui M, Sugimoto K. 2017. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator .Plant Physiology 173:1750–1762. Semchenko M, Zobel K, Heinemeyer A, Hutchings MJ. 2008. Foraging for space and avoidance of physical obstructions by plant roots: a comparative study of grasses from contrasting habitats. New Phytologist 179:1162-1170. Silva JF, Fariñas MR, Felfili JM, Klink CA. 2006. Spatial heterogeneity, land use and conservation in the cerrado region of Brazil. Journal of Biogeography 33:536–548. Systat. 2012. Systat for Windows, Version 130 (BA Tangen, MG Bu, eds.). Systat Software Inc, Richmond, California. Ternesi M, Andrade AP, Jorrin J, Benlloch M. 1994. Root-shoot signalling in sunflower plants with confined root systems. Plant and Soi1 166:31-36. Tian N, Fang S, Yang W, Shang X, Fu X. 2017. Influence of Container Type and Growth Medium on Seedling Growth and Root Morphology of Cyclocarya paliurus during Nursery Culture. Forests 8:387. Vallone HS, Guimarães RJ, Mendes ANG, Souza CAS, da Cunha RL, Dias FP. 2010. Containers and substrates in seedlings production of coffee tree. Ciência agrotecnology 34:55-60. Yong JWH, Letham DS, Wong SC, Farquhar GD. 2010. Effects of root restriction on growth and associated cytokinin levels in cotton (Gossypium hirsutum). Functional Plant Biology 37:974–984.pt_BR
dc.identifier.urihttps://repositorio.ufms.br/handle/123456789/9684-
dc.description.abstractThe decrease in the woody component of the Cerrado Biome vegetation is a major threat to remaining natural areas. Factors such as the low availability of seedlings of native species in nurseries and the conditions in which they are grown can end up affecting the outcome of these projects. THE Container volume is often considered one of the most influential variables on morphology. of the seedlings. Therefore, the restriction imposed by small containers on seedling cultivation may have consequences on the performance of the species even after planting in the definitive location. Therefore, the objective was to experimentally evaluate the effect of limiting the volume of the cultivation container of seedlings in growth in height and in the allocation of resources between roots and aerial parts of plants four native forest species. An experiment was conducted in a greenhouse, at Embrapa Gado de Corte in Campo Grande, MS among the months of April 2018 and January 2019. The fully randomized experiment consisting of three levels treatment: 110 cm3 volume tube (A1), 290 cm3 tube (A2) and 7000 cm3 tube (CT). The height of the seedlings was recorded weekly and at the end of 112 and 224 days the heights were also recorded. following architectural measurements: Root dry mass (MSR), shoot dry mass (MSPA), fraction of root mass (FMR) and plant dry mass (MSP). The growth of seedlings of the four species over time differed between treatments, with the CT container being the one with the highest averages at the end of 224 evaluation days. The volume of the culture vessel influenced the MSR and MSPA in 112 and 224 days for A. peregrina, M. urundeuva and J. cuspidifolia, but H. stigonocarpa was influenced only by cultivation time and not by treatments at each time. For FMR in H. stigonocarpa and J. cuspidifolia the smaller volume containers allocated more resources to the roots at 112 days, whereas A. peregrina at 224 days showed the same relationship. As expected, the container with the largest volume, citropote with 7000 cm³, was the one with the highest average plant heights at the end of the season. experiment. The volume available for root growth directly influenced the development of the root system and aerial parts of these plants. The adjusted models suggest that throughout growth, young plants tended to allocate less biomass to the roots in in relation to the aerial parts, with the exception of H. stigonocarpa in both times and J. cuspidifolia in the time 112 days.pt_BR
dc.languageporpt_BR
dc.publisherFundação Universidade Federal de Mato Grosso do Sulpt_BR
dc.rightsAcesso Restritopt_BR
dc.subjectMassa seca da raizpt_BR
dc.subjectFração de massa na raizpt_BR
dc.subjectVolume do recipientept_BR
dc.titleAvaliação da restrição do volume do recipiente de cultivo no crescimento e alocação de recursos em espécies arbóreas de Cerradopt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor1Laura, Valdemir Antônio-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0383400192313290pt_BR
dc.contributor.advisor-co1Pereira, Silvia Rahe-
dc.contributor.referee1de Lima, Liana Baptista-
dc.contributor.referee2Damasceno Jr, Geraldo Alves-
dc.contributor.referee3de Souza, Andréa Lúcia Teixeira-
dc.contributor.referee4Farias, Rogério Rodrigues-
dc.creator.Latteshttp://lattes.cnpq.br/7448662511830313pt_BR
dc.description.resumoA diminuição do componente lenhoso da vegetação do Bioma Cerrado é uma grande ameaça para as áreas naturais remanescentes. Fatores como a baixa disponibilidade de mudas de espécies nativas em viveiros e as condições em que são cultivadas podem acabar afetando o resultado destes projetos. O volume do recipiente é frequentemente considerado uma das variáveis mais influentes na morfologia das mudas. Portanto, a restrição imposta por pequenos recipientes no cultivo de mudas pode ter consequências no desempenho das espécies mesmo após o plantio no local definitivo. Portanto, tevese como objetivo avaliar experimentalmente o efeito da limitação do volume do recipiente de cultivo de mudas no crescimento em altura e na alocação de recursos entre raízes e partes aéreas de plantas de quatro espécies florestais nativas. Um experimento foi conduzido em casa de vegetação, na Embrapa Gado de Corte em Campo Grande, MS entre os meses de abril de 2018 e janeiro de 2019. O experimento totalmente aleatorizado constituído de três níveis de tratamento: tubetinho de 110 cm3 de volume (A1), tubetão de 290 cm3 (A2) e citropote de 7000 cm3 (CT). A altura das mudas foi registrada semanalmente e ao final de 112 e 224 dias foram também registradas as seguintes medidas de arquitetura: Massa seca da raiz (MSR), massa seca da parte aérea (MSPA), fração de massa na raiz (FMR) e massa seca da planta (MSP). O crescimento das mudas das quatro espécies ao longo do tempo diferiu entre os tratamentos, sendo o recipiente CT o que apresentou maiores médias ao final de 224 dias de avaliação. O volume do recipiente de cultivo influenciou a MSR e MSPA em 112 e 224 dias para A. peregrina, M. urundeuva e J. cuspidifolia, porém H. stigonocarpa foi influenciada apenas pelo tempo de cultivo e não pelos tratamentos em cada tempo. Para a FMR em H. stigonocarpa e J. cuspidifolia os recipientes de menor volume alocaram mais recursos para as raízes aos 112 dias, já A. peregrina aos 224 dias apresentou a mesma relação. Como esperado, o recipiente de maior volume, citropote com 7000 cm³, foi o que obteve as maiores médias de altura das plantas ao final do experimento. O volume disponível para o crescimento da raiz influenciou diretamente o desenvolvimento do sistema radicular e partes aéreas destas plantas. Os modelos ajustados sugerem que ao longo do crescimento, as plantas jovens tenderam a alocar menos biomassa para as raízes em relação às partes aéreas, com exceção de H. stigonocarpa em ambos os tempos e J. cuspidifolia no tempo 112 dias.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentINBIOpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biologia Vegetalpt_BR
dc.publisher.initialsUFMSpt_BR
dc.subject.cnpqBotânicapt_BR
Aparece nas coleções:Programa de Pós-graduação em Biologia Vegetal

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Caroline_Stritar_Dissertação_versãofinal.pdf1,23 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.