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Abstract

Agribusiness is one of Brazil’s primary sources of wealth and employment,

representing a significant portion of the national Gross Domestic Product

(GDP). In 2021, the agribusiness sector reached 27.4% of the Brazilian GDP,

the highest share since 2004, when it reached 27.53%. The forest-based in-

dustry is an important segment of agribusiness, as it provides vital inputs

for various industrial sectors, such as wood products, furniture, and paper.

Planted forests play an essential role in carbon capture and other ecosystem

services, with eucalyptus being the most used tree, with 7.3 million hectares

of eucalyptus forests in 2021. Tree mapping is vital for the economy and envi-

ronment, and artificial intelligence-based solutions are valuable decision sup-

port tools in agriculture and tree mapping. Consequently, there is a strong

incentive to look for more comprehensive solutions that use advanced deep

learning technologies for this area. Thus, this work aims to evaluate efficient

deep learning convolutional neural networks for image segmentation of eu-

calyptus trunks and present a specific segmentation proposal for eucalyptus

trunks that can benefit agricultural applications or decision support tools for

tree mapping. This work was divided into two main steps to evaluate the seg-

mentation networks and create a post-processing technique. The first stage of

this study evaluated the efficiency of deep learning networks in the semantic

segmentation of eucalyptus trunks in panoramic images in RGB colors cap-

tured at ground level. The deep learning networks FCN, GCNet, ANN, and

PointRend were evaluated in this step for image segmentation of eucalyptus

trunks. Training and evaluation of the networks were performed using a five-

step cross-validation approach, using a dataset composed of manually anno-

tated images of a eucalyptus forest. The initial dataset was created using a

spherical field of view camera. It included a variety of eucalyptus trees with

distinct characteristics, such as variations in distances between trunks and

changes in curvature, sizes, and diameters of trunks, which pose significant

challenges for deep learning methods in semantic segmentation tasks. For
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the first stage of this study, the FCN model presented the best performance,

with pixel precision of 78.87% and mIoU of 70.06%, in addition to obtaining

a good inference time. The GCNet and ANN networks also performed simi-

larly to the FCN but with negative impacts on their ability to generalize tasks

in specific contexts. The study concludes that the FCN was the most robust,

among the evaluated methods, for semantic segmentation of images of trees in

panoramic images. This assessment of segmentation networks can be a cru-

cial step toward developing other relevant tools in forest management, such

as estimating trunk height and diameter. The second step of this work was to

create and evaluate a post-processing technique for RGB-D images to improve

the results of current semantic networks for segmentation in eucalyptus im-

ages. We created a new dataset image using images obtained from a stereo

camera, which captured not only the color information (RGB) but also the

depth information, which allowed an even more complete view of the euca-

lyptus forest. After the construction of the new image bank, its annotation

was carried out by specialists. The next stage of this study was the evalua-

tion of six image semantic segmentation networks and the comparison with

results before and after applying the post-processing technique. We trained,

evaluated, and tested the FCN, ANN, GCNet, SETR, SegFormer, and DPT net-

works on the annotated images. The post-processing technique significantly

improved the results of the tested image segmentation networks, with a sig-

nificant gain of 24.13% in IoU and 13.11% in F1-score for convolution-based

networks and 12.49% for IoU and 6.56% in F1-score for transformer-based

networks. The SegFormer network obtained the best results in all tests be-

fore and after applying the technique. The technique also effectively corrected

segmentation flaws, erosion, and dilation errors, resulting in more accurate

edges and better-delimited trunks. The average computational cost of the

technique was 0.019 seconds, indicating that it can be applied in segmenta-

tion networks without compromising performance. The results obtained by

applying the post-processing technique propose an innovative approach with

low computational cost and significant improvements to existing segmentation

networks.

Keywords: Deep Learning, Segmentation, Eucalyptus tree
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Resumo

O agronegócio é uma das principais fontes de riqueza e emprego do Brasil,

representando uma parcela significativa do Produto Interno Bruto (PIB) na-

cional. Em 2021, o setor do agronegócio atingiu 27,4% do PIB brasileiro, a

maior participação desde 2004, quando atingiu 27,53%. A indústria de base

florestal é um importante segmento do agronegócio, pois fornece insumos vi-

tais para diversos setores industriais, como produtos de madeira, móveis e

papel. As florestas plantadas desempenham um papel essencial na captura

de carbono e outros serviços ecossistêmicos, sendo o eucalipto a árvore mais

utilizada, com 7,3 milhões de hectares de florestas de eucalipto em 2021.

O mapeamento de árvores é vital para a economia e o meio ambiente, e as

soluções baseadas em inteligência artificial são valiosas ferramentas de apoio

à decisão em agricultura e mapeamento de árvores. Consequentemente, há

um forte incentivo para buscar soluções mais abrangentes que utilizem tec-

nologias avançadas de aprendizado profundo para essa área. Assim, este

trabalho tem como objetivo avaliar redes neurais convolucionais de apren-

dizado profundo eficientes para segmentação de imagens de troncos de eu-

calipto e apresentar uma proposta de segmentação específica para troncos de

eucalipto que pode beneficiar aplicações agrícolas ou ferramentas de apoio

à decisão para mapeamento de árvores. Este trabalho foi dividido em duas

etapas principais para avaliar as redes de segmentação e criar uma técnica

de pós-processamento. A primeira etapa deste estudo avaliou a eficiência de

redes de aprendizado profundo na segmentação semântica de troncos de eu-

calipto em imagens panorâmicas em cores RGB capturadas no nível do solo.

As redes de aprendizado profundo FCN, GCNet, ANN e PointRend foram avali-

adas nesta etapa para segmentação de imagens de troncos de eucalipto. O

treinamento e a avaliação das redes foram realizados usando uma abordagem

de validação cruzada de cinco etapas, usando um conjunto de dados composto

por imagens anotadas manualmente de uma floresta de eucalipto. O conjunto

de dados inicial foi criado usando um campo de visão esférico da câmera. Ele
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incluiu uma variedade de eucaliptos com características distintas, como vari-

ações nas distâncias entre os troncos e mudanças na curvatura, tamanhos

e diâmetros dos troncos, que representam desafios significativos para méto-

dos de aprendizado profundo em tarefas de segmentação semântica. Para

a primeira etapa deste estudo, o modelo FCN apresentou o melhor desem-

penho, com precisão de pixel de 78,87% e mIoU de 70,06%, além de obter

um bom tempo de inferência. As redes GCNet e ANN também tiveram desem-

penho semelhante ao FCN, mas com impactos negativos em sua capacidade

de generalizar tarefas em contextos específicos. O estudo conclui que o FCN

foi o mais robusto, dentre os métodos avaliados, para segmentação semântica

de imagens de árvores em imagens panorâmicas. Essa avaliação das redes

de segmentação pode ser um passo crucial para o desenvolvimento de out-

ras ferramentas relevantes no manejo florestal, como a estimativa de altura e

diâmetro do tronco. A segunda etapa deste trabalho foi criar e avaliar uma

técnica de pós-processamento de imagens RGB-D para melhorar os resulta-

dos das redes semânticas atuais para segmentação em imagens de eucalipto.

Criamos uma nova imagem de conjunto de dados a partir de imagens obti-

das de uma câmera estéreo, que capturou não apenas as informações de cor

(RGB), mas também as informações de profundidade, o que permitiu uma

visão ainda mais completa da floresta de eucalipto. Após a construção do

novo banco de imagens, sua anotação foi realizada por especialistas. A próx-

ima etapa deste estudo foi a avaliação de seis redes de segmentação semântica

de imagens e a comparação com os resultados antes e depois da aplicação da

técnica de pós-processamento. Treinamos, avaliamos e testamos as redes

FCN, ANN, GCNet, SETR, SegFormer e DPT nas imagens anotadas. A técnica

de pós-processamento melhorou significativamente os resultados das redes de

segmentação de imagens testadas, com um ganho significativo de 24,13% em

IoU e 13,11% em F1-score para redes baseadas em convolução e 12,49% para

IoU e 6,56% em F1-score para redes baseadas em transformadores. A rede

SegFormer obteve os melhores resultados em todos os testes antes e após a

aplicação da técnica. A técnica também corrigiu com eficácia falhas de seg-

mentação, erosão e erros de dilatação, resultando em bordas mais precisas e

troncos mais bem delimitados. O custo computacional médio da técnica foi

de 0,019 segundos, indicando que ela pode ser aplicada em redes de segmen-

tação sem comprometer o desempenho. Os resultados obtidos pela aplicação

da técnica de pós-processamento propõem uma abordagem inovadora com

baixo custo computacional e melhorias significativas para as redes de seg-

mentação existentes.

Palavras-chave: Aprendizado Profundo, Segmentação, Eucalipto
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CHAPTER

1
Introduction

1.1 Contextualization

Agribusiness is one of the most critical sectors of Brazil’s economy, con-

tributing significantly to the national Gross Domestic Product (GDP). In 2021,

agribusiness reached its highest peak since 2004, reaching 27.4% of Brazilian

GDP, surpassing the previous result of 27.53%[CEPEA, 2021]. In 2018, the

forestry sector contributed 1.3% of the Brazilian GDP and had an estimated

export value of US$ 11.3 billion in 2019, making it a significant economic ac-

tivity [Daniel Feffer, 2019]. In addition, planted forests play an essential role

in carbon capture and other ecosystem services, with Eucalyptus being the

most commonly used tree in this sector [Daniel Feffer, 2019]. In 2021, Brazil

had 9.5 million hectares of planted forests, 7.3 million hectares of Eucalyp-
tus, and 1.8 million hectares of pine [IBGE, 2021]. Maintaining the quality

and productivity of this sector requires constant monitoring of planted areas,

which is an operational challenge. In addition, there is a need for accurate

measurements and quantification of production for better resource manage-

ment and maximization. In the past, models that related climate variables

and production were standard in the literature [Santana et al., 2008; Porter

and Semenov, 2005; White et al., 2011]. However, they needed more robust

methods to support this economic sector.

Researchers have increasingly explored machine learning (ML) techniques

to extract valuable information from the forest. According to Rodrigues de

Oliveira et al. [2021], vegetation indices and spectral bands are two valuable

data sources that can extract essential forest characteristics. This data can
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be analyzed using machine learning algorithms, including supervised and un-

supervised techniques. Supervised machine learning can be instrumental in

forest segmentation, as these algorithms require specific information to learn

and predict correctly. Thus, combining machine learning techniques and veg-

etation and spectral data can provide valuable information about the forest,

including the estimation of volume and biomass per unit area, which is fun-

damental to assessing and managing forest resources efficiently.

Precise estimation of volume and biomass per unit area in Eucalyptus trees

is crucial in assessing forest resources and is essential for their proper man-

agement. Various mathematical models and image processing techniques

based on remote sensing data, such as satellite images or radar data, are

widely used to achieve this accuracy. However, data quality, spatial resolu-

tion, cloud cover, and the model’s capacity can significantly affect the accuracy

of [Mendes et al., 2020] estimates. To estimate the biomass and nutrients of

the Eucalyptus species, mathematical models use information such as diam-

eter at breast height, height, and age of the tree, resulting in a more accurate

and efficient estimate of these values. Some studies have explored the applica-

tion of mathematical models for this purpose, as described in [Valadão et al.,

2020].

New research has shown the combination of remote sensing and machine

learning as a solution for the agricultural sector [Yu et al., 2021; Ferreira et al.,

2020; Zhao et al., 2019]. Machine learning algorithms efficiently identify com-

plex patterns from data, providing valuable information for evaluations and

predictions [LeCun et al., 2015]. Remote sensing, in turn, allows the collec-

tion of large amounts of data at different scales, including orbit, air, and land.

Several studies have integrated remote sensing data and machine learning al-

gorithms in several areas, including agriculture [Liakos et al., 2018], urban

planning [Fathi et al., 2020; Chaturvedi and de Vries, 2021], soil and biomass

[Ali et al., 2015; Padarian et al., 2020; Torre-Tojal et al., 2022], and forest

[Singh et al., 2016; Maxwell et al., 2018].

Deep learning (DL) techniques have highlighted precision agriculture [Osco

et al., 2019, 2020, 2021]. In this context, deep learning models based on

convolution neural networks (CNN) for the semantic image segmentation (SIS)

of trees have gained prominence [Nogueira et al., 2019; Martins et al., 2019,

2021a]. Advances in deep learning have encouraged the emergence of sev-

eral methods, such as the Fully Convolutional Network (FCN) [Long et al.,

2015] and current methods that consider long-distance dependencies such as

Context Guided Network (GCNet) [Cao et al., 2020] and Asymmetric Non-local

Neural Network (ANN) [Zhu et al., 2019]. Furthermore, Point-based Rendering

(PointRend) [Kirillov et al., 2020] improves the segmentation quality around
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object edges by treating this problem as a rendering issue and adapting clas-

sic computer graphics ideas.

Several studies have mapped Eucalyptus trees using aerial images [Dias

et al., 2020; Firigato et al., 2021; Ferreira et al., 2012; Khan et al., 2021], but

few have used ground-level panoramic images. Although aerial images can

cover larger areas, they have the disadvantage of not showing a side view of

the tree. Various purposes, such as diameter estimation, height estimation,

biomass estimation, and disease detection, can be accomplished using this

side view of the trunk. Ground-level panoramic images can be used to pro-

vide a side view of the trunk and ground. Some studies have explored these

types of images for the segmentation of plantations and trees [Vepakomma

et al., 2011; Darwin et al., 2021], tree detection and segmentation [Li et al.,

2017], disease identification [Zhang et al., 2019; Syarief and Setiawan, 2020]

and agricultural production evaluation [Yalcin, 2019]. However, these images

still represent a gap in the context of mapping Eucalyptus trees. Ground-level

panoramic images can represent a powerful tool for monitoring Eucalyptus
forests. These images offer a large field of view compared to regular images,

allowing them to cover a large area. However, panoramic images exhibit strong

distortion, making the segmentation task more challenging. Hence, one way is

to evaluate the ability of new methods based on deep learning to segment tar-

gets in panoramic ground-level images. Methods that automatically segment

Eucalyptus trees into RGB images can represent a leading and low-cost tool in

forest inventory and management. In addition, remote sensing allows for col-

lecting a large amount of data at different scales, such as orbital, aerial, and

terrestrial. RGB images only have color information, while RGB-D images in-

clude depth information. The additional depth information of images could be

helpful in many contexts, including planted Eucalyptus forests. Using RGB-D

images can result in significantly improved segmentation of trees and greater

accuracy in detecting issues such as disease or insect infestations.

RGB-D imaging technology allows for obtaining three-dimensional infor-

mation, including depth, through image capture. These images are valuable

in different contexts, including the study of Eucalyptus-planted forests, where

they can be used to measure the physical characteristics of the trees, such

as height and diameter, to identify problems, such as diseases and infesta-

tions. The forest manager can use RGB-D images to assess the wood quality

and identify potential trees for high-quality wood production. They can also

help monitor forest conditions and identify areas vulnerable to external events

such as climate change or deforestation. Research around RGB-D images is

an area in constant evolution, with the creation of ever more precise and ef-

ficient algorithms for the analysis of three-dimensional images [Xing et al.,
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2020; Jianbo Jiao, 2019; Seichter et al., 2021].

The project aims to develop a new approach to the semantic segmentation

of images in the field of artificial intelligence. The approach proposes an image

post-processing process that aims to improve the results of existing networks,

using information about the depth of RGB-D images. As a test example, we will

use images of tree trunks with color (RGB) and depth (D) information. The ZED

stereo cameras [Tadic et al., 2022] can collect RGB-D images, as they capture

image data in 4 channels of information, including the depth. Research in

AI considers semantic segmentation of images crucial, as it demands high

precision in the results to ensure the dependability of technical systems based

on semantic segmentation.

This work intends to evaluate and discuss the scientific challenge of im-

proving post-processing techniques for systems that work with RGB-D images

in computer vision (CV). Currently, image segmentation algorithms using only

RGB images may have some limitations and reduce the accuracy of the in-

ference results. Therefore, implementing a new post-processing approach can

increase the accuracy of these methods and, consequently, allow the advance-

ment of this area. Developing this new technique can also help produce wood,

paper, and cellulose, as it will improve image segmentation techniques. We

will only use images of Eucalyptus trunks in this work to evaluate the seg-

mentation models before and after applying the technique. However, there

is the possibility of exploring the technique’s performance in other species of

trees. Current SIS methods present unsatisfactory results to meet the needs

of the proposed application, as many of them do not consider the image depth

[Long et al., 2015; Cao et al., 2020; Zhu et al., 2019; Kirillov et al., 2020;

Ranftl et al., 2021; Zheng et al., 2021; Xie et al., 2021]. The development of

this work will advance scientific knowledge in artificial intelligence (AI) and

can be used to build new technologies for the agribusiness sector. In addition,

it presents new challenges for the semantic segmentation of images, enabling

the improvement and development of new techniques.

1.2 Hypothesis and Objectives

1.2.1 Hypothesis

In this work, we have the following hypotheses:

1. The current image segmentation algorithms based only on RGB images

suffer from flaws in the segmentation of objects, overlapping objects, and

holes in the segmented image, which impairs the final result and de-

creases the accuracy of the models.
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2. The implementation of the proposed approach can reduce investment

losses in sectors that use AI and image segmentation, increasing the ac-

curacy of current methods and allowing the advancement of new studies

in the area.

3. The availability of accurate depth sensors in modern cameras is an op-

portunity to advance classical segmentation approaches.

4. The development of post-processing techniques for semantic segmenta-

tion of images with depth will result in segmentation models with better

performance.

5. The development of this technique can help develop intelligent systems

for producing wood, pulp, and paper, expanding the potential productive

capacity of the sector.

6. The use of the technique in Eucalyptus trunks at ground level will allow

testing the proposed method, but we believe that in future works, it can

be explored in other tree species.

7. The development project for this technique will advance scientific knowl-

edge in AI and may also be used to build new technologies for the agribusi-

ness sector.

1.2.2 Objectives

The main objectives of this work are to evaluate segmentation methods

using deep learning applied to Eucalyptus RGB images and to create a post-

processing technique based on RGB-D images to improve the results of cur-

rent segmentation networks. The following specific objectives were defined to

achieve the general objective proposed by this dissertation:

1. Creation and annotation of a data set of Eucalyptus images: It will

be necessary to go to the field and collect a set of Eucalyptus images and

annotate each image with the Eucalyptus trees;

2. Definition of image segmentation algorithms: This set of deep learning

algorithms for image segmentation must be tested and validated empiri-

cally in the Eucalyptus image data set;

3. Training, validation, and testing of algorithms: Train each algorithm

using modern pre-processing techniques, analysis of Loss curves and

accuracy, cross-validation and variation of optimizers and parameters;
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4. Development of a post-processing technique to improve the results:

From the trained segmentation models, developing a technique to im-

prove the segmentation of the Eucalyptus images, to reduce errors such

as holes in divided trunks.

1.3 Dissertation Text Organization

This section presents the organization of this dissertation proposal. We

organized this dissertation into four main chapters. Chapters 2 and 3 are sci-

entific articles developed during the implementation of the objectives of this

work. Chapter 1 contains all the sub-sections that involve the initial parts of

the work, such as introduction 1, contextualization 1.1, hypothesis, and objec-

tives 1.2 of this work. Chapter 2 presents the parts of the texts related to the

evaluation process of semantic segmentation networks in RGB ground-level

paranoid images. In this chapter [2], it is possible to find all the methodol-

ogy of this evaluation process of the segmentation network, such as the study

area, data acquisition, image annotation process, segmentation methods, ex-

perimental protocol, and results obtained. Chapter 3 presents the parts of the

texts related to the creation, development, and testing of the post-processing

technique, as well as a comparison of the results obtained after the application

of the technique to the results of the segmentation networks. In this chapter

[3], we provide all the theoretical basis, methodology, description of the image

datasets used, description of the algorithm of the developed post-processing

technique, the final results of the experiments of this work, including perfor-

mance analysis of the methods compared to the technique, the computational

cost of the methods and technique, qualitative analysis and discussion of the

results. Finally, Chapter 4 presents the conclusions of this work, including a

parallel between the objectives of this dissertation and the results obtained,

some limitations of the proposed solutions, and future works.
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CHAPTER

2
Semantic Segmentation of

Eucalyptus Tree in Panoramic RGB
Ground-level Images

A mapping Eucalyptus trees is a demand in forest inventory and man-

agement sectors. Integrating remote sensing images and deep learning al-

gorithms may be a robust approach for it, but still little explored. This task

is particularly challenging when considering the Eucalyptus trees mapping in

panoramic imagery. Although they offer a great field of view, they have a high

geometric distortion. This work evaluates the performance of novel deep learn-

ing methods for semantic segmentation of Eucalyptus trees in panoramic RGB

ground-level images. Four (FCN, GCNet, ANN, and PointRend) deep learn-

ing methods were evaluated using a five-fold cross-validation approach. A

spherical field view camera recorded videos of a Eucalyptus tree forest. Videos

were captured from a Eucalyptus trees forest using a spherical field of view

camera. The video frames were converted to a panoramic image format, and

we manually annotated 100 images, separating the Eucalyptus trees from the

background. Additionally, we used data augmentation and generated images,

aiming to improve the training of networks. Our dataset comprises Euca-
lyptus trees with different characteristics, such as variation in distances be-

tween trunks, curvature alterations, sizes, and trunks of different diameters,

bringing more challenges for deep learning methods in semantic segmentation

tasks. The FCN model presented the highest performance (pixel accuracy of

78.87%, and mIoU of 70.06%) while a good inference time to deal with sev-

eral Eucalyptus tree characteristics. GCNet and ANN networks also presented
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similar performance to the FCN, but for specific contexts, negatively impacting

their ability to generalization in the task. We conclude that FCN is the most

robust of all the evaluated methods for the segmentation of trees in panoramic

imagery, being an initial step for developing other relevant tools in forest man-

agement, like height and trunk diameter estimations.

2.1 Introduction and Motivation

The forest sector is an important economic activity, representing 1.3% of

Brazil’s Gross Domestic Product in 2018 and an estimated exportation value of

US$ 11.3 billion in 2019 [Daniel Feffer, 2019]. Planted forest plays a relevant

role in carbon sequestration, among other ecosystem services, and Eucalyptus
is the most commonly used tree in this sector [Daniel Feffer, 2019]. In 2021,

the area of planted forests in Brazil reached 9.5 million hectares, especially Eu-
calyptus, with 7.3 million hectares, and pine, with 1.8 million hectares [IBGE,

2021]. Quality and productivity maintenance of the forest sector depends

on continuous monitoring of the planted areas, resulting in an operational

challenge. It comes imbued with the necessity for fine-scale measures and

quantification of the production because it impacts managing the resources

to maximize the production of planted areas. In the past, researchers often

found models working the relationship between climate variables and produc-

tion in the literature [Santana et al., 2008; Porter and Semenov, 2005; White

et al., 2011]. However, they required more robust methods to support this

sector of the economy.

Recent research has seen approaches proposed to attend the agricultural

sector that integrates remote sensing and machine learning (ML) [Yu et al.,

2021; Ferreira et al., 2020; Zhao et al., 2019]. The machine learning algo-

rithms can extract complex patterns of a dataset, providing a valuable source

of models for measurements and predictions [LeCun et al., 2015]. While re-

mote sensing allows the acquisition of a large volume of data in different scales

like orbital, aerial, and terrestrial levels. Several study cases in agriculture [Li-

akos et al., 2018], urban planning [Fathi et al., 2020; Chaturvedi and de Vries,

2021], soil and biomass [Ali et al., 2015; Padarian et al., 2020; Torre-Tojal

et al., 2022], forest [Singh et al., 2016; Maxwell et al., 2018] have integrated

remote sensing data and machine learning algorithms.

More recently, a sub-field of the ML named deep learning has gained at-

tention in the precision agriculture sector [Osco et al., 2019, 2020, 2021].

Researchers have highlighted deep learning models mainly based on convo-

lutional neural networks for semantic segmentation of trees in this context

[Nogueira et al., 2019; Martins et al., 2019, 2021a]. Advances in deep learn-
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ing have encouraged the emergence of several methods [Long et al., 2015;

Wang et al., 2018; Cao et al., 2020; Bowley et al., 2019]. Fully Convolutional

Network (FCN) [Long et al., 2015] is one of the first works with relevant results

using deep learning for segmentation. Recent studies [Wang et al., 2018; Cao

et al., 2020] have indicated that the accuracy can be improved if long-range

dependencies are considered. For example, features of distant pixels are con-

sidered when extracting features for a given pixel. Methods based purely on

convolution are limited in capturing these long-range dependencies due to the

local receptive field. Thus, methods that consider features of all positions in

an image have been proposed, such as GCNet [Cao et al., 2020] and ANN [Zhu

et al., 2019]. Additionally, to improve the quality of segmentation around the

edges of objects, PointRend [Kirillov et al., 2020] treat this task as a rendering

problem and adapts classic computer graphics ideas.

Several studies [Dias et al., 2020; Firigato et al., 2021; Ferreira et al., 2012;

Khan et al., 2021] mapped Eucalyptus trees, but most of them used aerial im-

ages instead of panoramic ground-level images. Although aerial images can

generally cover larger areas, they have the disadvantage of presenting a lateral

view of the tree. The trunk’s lateral view can achieve multiple purposes, such

as diameter, height and biomass estimation, and disease detection. Once they

provide a lateral view of the trunk and the ground, one may use panoramic

ground-level images. Some studies have explored these images for plantations

and tree segmentation [Vepakomma et al., 2011; Darwin et al., 2021]. How-

ever, in the context of Eucalyptus tree mapping, the use of these images still

represents a gap. Panoramic ground-level images can represent a powerful

tool for Eucalyptus tree forest monitoring. These images offer a great field of

view compared to regular images, allowing them to cover a large area with

these images. Nonetheless, panoramic images present a strong distortion,

making the segmentation task more challenging. Therefore, the capability of

novel deep learning based-methods should be evaluated to segment targets in

panoramic ground-level images. Methods that automatically segment Euca-
lyptus trees in RGB images can represent a leading and low-cost tool in forest

inventory and management.

This work assesses the performance of novel deep-learning methods for

Eucalyptus tree segmentation in panoramic RGB ground-level images. We

applied four state-of-the-art models: the FCN, GCNet, ANN, and PointRend,

using a challenging dataset composed of Eucalyptus trees with variation in

distances between trunks, curvature, sizes, and trunks of different diameters.

The four semantic segmentation methods were trained and evaluated in five-

fold cross-validation. A quantitative-qualitative analysis is presented, along

with a discussion about the advantages and limitations of each CNN applied.
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2.2 Methodology

2.2.1 Study Location Area

A case study was conducted in the municipality of Jaraguari, Mato Grosso

do Sul State, Brazil (Figure 2.1). The selected area is composed of a Eucalyptus
tree forest of 1,05 ha (70m× 150m) planted in 2000 (Figure 2.1). According

to the Köppen-Geiger climate classification [Beck et al., 2018], this region is

classified as a savanna climate (Aw/As), presenting a dry season in winter

(Aw) or summer (As), with monthly average temperatures above 18°C during

every month of the year.

Figure 2.1: Study area in (a) South America and Brazil, (b) Mato Grosso do
Sul, and (c) Orthoimage of the area.

2.2.2 Data Acquisition and Image Annotation

The dataset acquisition and data pre-processing consisted of 3 main steps.

Firstly, we produced a video recording of Eucalyptus trees forest on November

24, 2020, at an approximate height of 2 meters above ground level. We used

a spherical field of view camera with a resolution of 3k (3000x1504 pixels)

and 60 frames per second (fps). Secondly, the video was cut into frames at

five frames per second, totaling 2012 frames, and thirdly the frames were

transformed to a panoramic format to correct the fisheye effect. Figure 2.2

shows the image collection process.
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Figure 2.2: Overview of the workflow.

The captured images were manually annotated by specialists using the La-

belMe open annotation tool software1 [Wada, 2018]. In this process, the im-

ages of the trees were annotated with polygons around the trunk and labeled

as Eucalyptus. We decided to annotate only the trees closest to the camera, as

the trees in the background are small. After the image annotation process, the

images were exported to the segmentation CNNs input format, a binary mask.

Figure 2.3 shows an annotated image sample. As a result of this process cre-

ated a dataset with 100 annotated images, with an average of 6 polygons per

image, totaling around 600 annotations. The description of how this dataset

of images was partitioned for training, validation, and testing is described in

Section 2.2.4, including details of cross-validation and data augmentation.

Figure 2.3: Overview of the annotation process.

2.2.3 Semantic Segmentation Methods

This section briefly introduces segmentation methods used in our work

which are FCN [Long et al., 2015], Context Guided Network (GCNet)[Cao et al.,

2020], Asymmetric Non-local Neural Network (ANN) [Zhu et al., 2019], and

Point-based Rendering (PointRend) [Kirillov et al., 2020].

1http://labelme.csail.mit.edu/
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2.2.3.1 Fully Convolutional Network (FCN)

FCN [Long et al., 2015] is a semantic segmentation approach that proposes

a backbone to extract a low-resolution feature map from the input image.

A convolutional layer assigns a score to the classes at each pixel. As the

resolution is lower than the input image, an upsampling layer is employed

to increase the resolution of the output view. To refine the prediction pixel

by pixel, FCN combines the prediction with shallower layers by adding the

predictions and applying a softmax function.

2.2.3.2 Global Context Network (GCNet)

Convolution layers in convolutional neural networks learn a relationship

between pixels in a local neighborhood but do not effectively consider long-

range dependency. To overcome this issue, non-local networks (SNL) were

proposed to include global context via a self-attention mechanism. However,

these blocks are expensive in terms of time and space complexity. Thus GC-

Net [Cao et al., 2020] proposed a simpler version of non-local networks and

Squeeze Excitation (SE) to include global context. GCNet uses only one atten-

tion map for all pixels to model long-range dependency, while the SE block

has a light computational cost. Multiple layers build the GCNet architecture

using GC blocks.

2.2.3.3 Asymmetric Non-local Neural Network (ANN)

ANN [Zhu et al., 2019] is a non-local network incorporating pyramid sam-

pling and non-local blocks to extract semantic features at different scales.

This method proposes to include global context in a module called Asymmet-

ric Pyramid Non-local Block (APNB) to reduce the computational cost of stan-

dard non-local blocks. For this, this block incorporates a pyramid sampling

module in non-local blocks. Furthermore, ANN proposes an adaptation of the

APNB called Asymmetric Fusion Non-local Block (AFNB). AFNB combines the

features of different stages of the network under sufficient consideration of

long-range dependencies. Finally, ANN is an FCN that incorporates the APNB

and AFNB modules.

2.2.3.4 Point-based Rendering (PointRend)

PointRend [Kirillov et al., 2020] was proposed to improve the quality of seg-

mentation around the edges of objects, as it renders problems and adapts

classic computer graphics ideas. For this, are proposes a new module com-

posed of three stages in this network. The first step is to select a set of pixels

for label prediction, avoiding excessive computation for all pixels. Based on

12



the Adaptive Subdivision technique of computer graphics, pixels are selected

in regions with a high probability of the label being different from its neigh-

bors. This selection is iteratively performed from a coarse to fine output, thus

being able to refine the predicted regions. The second step extracts a fea-

ture vector for each pixel selected in the previous step. Finally, the third step

consists of training and predicting the label for each pixel.

2.2.4 Experimental Setup Environment

In our experiments, images manually annotated were randomly divided into

training (70%), validation (20%), and testing (10%), considering five-fold cross-

validation to conduct a robust analysis. Cross-validation is a statistical strat-

egy used to split the dataset into folds randomly. Thus, one fold is for testing,

and the remaining fold is for training the methods [Arlot and Celisse, 2010].

In a five-fold cross-validation process, this is repeated five times, using each

fold one time as the test set. All the methods were implemented using the

MMSegmentation [MMSegmentation, 2020].

Additionally, we used the data augmentation technique during the train-

ing to improve the generalization capability of tested models. As our data

augmentation strategy, we used random cropping, random flip, photometric

distortion, and normalization. We used the Stochastic Gradient Descent Op-

timizer [Ruder, 2016] to train the methods with a learning rate of 0.01, a

momentum of 0.9, and a weight decay of 0.0005 for 20k or 80k iterations. Ta-

ble 2.1 shows the settings of the methods, backbone, and iterations for each

network during training. Figure 2.4 shows loss of the methods decreased and

stabilized rapidly after a few iterations, indicating that the training procedure

was adequate.

Method Backbone Iterations
FCN ResNet50 20000

GCNet ResNet50 20000
ANN ResNet101 80000

PointRend ResNet101 80000

Table 2.1: Setup settings of the methods to semantic segmentation

A workstation computer equipped with an Intel®Xeon CPU E3-1270 @ 3.80

GHz, 250GB SSD with 64 GB of RAM, Titan V graphics card with 12 GB of

graphics memory, CUDA version 10.2, and Ubuntu 20.04 operating system,

conducted the training, evaluation, and tests of all CNNs methods available in

this work.
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Figure 2.4: Loss curves for (a) FCN, (b) GCNet, (c) ANN, and (d) PointRend. All
the curves decrease rapidly after a few iterations and stabilize, indicating the
converging of CNN methods.

2.2.5 Performance Metrics and Statistical Analysis

We evaluated the methods using pixel accuracy (Equation 2.1) and the In-

tersection over Union (IoU) (Equation 2.2). The IoU, also known as the Jac-

card Index, is the ratio between the intersection and the union between the

ground truth (GT) and the prediction masks. We calculated the average pixel

accuracy and IoU by averaging the five rounds after performing a five-fold

cross-validation.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.1)

IoU =
|GT ∩Prediction|
|GT ∪Prediction|

(2.2)

We also processed an ANOVA test [Box, 1953] with the five-fold cross-

validation results for the pixel accuracy to assess whether the mean accuracy

between the methods was statically different. We adopt a significance level of

5%. Finally, Tukey’s post hoc test was applied to identify the statistical differ-

ences between each pair of methods. The results were also analyzed using the

boxplot graphic to verify the convergence of model losses and accuracy.
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2.3 Results

This section presents the results of the experimental evaluation of the se-

mantic segmentation methods regarding pixel accuracy and IoU. In Sections

2.3.1, 2.3.2, and 2.3.3, we present a quantitative, computational, and quali-

tative analysis, respectively.

2.3.1 Performance Evaluation

We considered only the metrics of the target class (Eucalyptus tree) to ob-

tain a more precise analysis of the domain of the proposed problem when

analyzing these results. Therefore, the results of the background class were

disregarded, as it is a majority class and does not contribute to the objective

analysis of the results.

The pixel accuracy of the methods in each round of cross-validation (R1-

R5) and the result of the ANOVA test are presented in Table 2.2. The last

column presents the average of the rounds, with FCN providing the highest

pixel accuracy average. GCNet with 78.32% and ANN with 76.44% have the

second and third-best pixel accuracy averages, respectively. The PointRend

method had the lowest pixel accuracy among the other methods, with 75.34%.

The results of the ANOVA test indicated a p-value of 0.1366, suggesting that

the differences between the means are not statistically significant. Therefore,

the methods can be categorized into a single group (a).

Table 2.2: Pixel accuracy for Eucalyptus tree segmentation in five cross-
validation rounds (R1–R5).

Method R1 R2 R3 R4 R5 1Average Acc (std)

FCN 78.45 81.05 81.91 79.9 73.04 a78.87 (±3.51)
GCNet 79.51 79.28 79.52 77.58 75.72 a78.32 (±1.66)
ANN 75.34 78.63 77.56 75.42 75.26 a76.44 (±1.63)

PointRend 74.53 71.53 81.83 73.45 75.34 a75.34(±3.90)
1The same lowercase letter in this column indicates that there are no

significant differences by ANOVA test (p-value >0.05).

Table 2.3 presents the mean Intersection over Union (mIoU) in the five

cross-validation rounds (R1–R5) of the methods for Eucalyptus tree class. All

methods reached mIoU greater than 50%, thus demonstrating a good perfor-

mance for the problem. FCN had the highest mIoU of 70.06%, followed by

GCNet with 69.86%. ANN and PointRend had the lowest mIoU.

Figure 2.5 presents the confusion matrix of all segmentation methods used

in this work. The confusion matrix presents the results of the Eucalyptus tree

15



Table 2.3: Mean Intersection over Union for Eucalyptus tree segmentation in
five cross-validation rounds (R1–R5).

Method R1 R2 R3 R4 R5 Mean IoU (std)

FCN 71.61 72.44 72.61 69.59 64.07 70.06 (±3.56)
GCNet 71.05 70.05 70 69.5 68.68 69.86 (±0.86)
ANN 66.79 67.07 72.04 65.82 61.81 66.71 (±3.66)

PointRend 67.18 68.07 73.04 66.82 62.81 67.58(±3.65)

and the background classes. As expected, the background class is well delim-

ited, while the most significant confusion occurs for the Eucalyptus tree class.

Approximately 20-25% of Eucalyptus pixels are classified as background. We

believe these errors occur mainly near the edges, where labeling is complex.
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Figure 2.5: Confusion matrix for (a) FCN, (b) GCNet, (c) ANN, and (d)
PointRend.

Figure 2.6 shows a boxplot with the performance achieved by each method,

including the range of performance variation. When analyzing the distribu-

tion of the metric by the boxplot, it is observed that FCN has less dispersion

around the median and the presence of outliers. The GCNet and ANN showed

lower performance than FCN but with similar dispersion around the median.

PointRend presented the highest dispersion, including the presence of out-

liers.
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Figure 2.6: Boxplot comparing the performance of methods using Accuracy.

2.3.2 Computational complexity

Table 2.4 presents the mean inference time and standard deviation in sec-

onds and several parameters for each method. The number of parameters of

each network was obtained for an input image size of 1024x1024 pixels. Each

method’s complexity correlates with its inference time. For example, ANN is

more profound than the others and has a longer inference time. On the other

hand, PointRend is the minor complex, providing the lowest inference time.

Method Inference Time (std) Parameters

FCN 0.157 (0.043) 49.48 M
GCNet 0.157 (0.043) 49.62 M

PointRend 0.125 (0.039) 47.71 M
ANN 0.241 (0.040) 65.21 M

Table 2.4: Results regarding the inference time and the number of parameters
of the methods. The inference time represents the time spent by each method
to predict an image.

2.3.3 Visual Analysis

This section discusses the qualitative results of inferences made on the

test set. Figures 2.7 and 2.8 present segmentation examples of each method.

These images were chosen to represent the visual segmentation because they

present common situations that the methods can find when segmenting the

trunk of an Eucalyptus tree. The two images have different scenarios, such

as the Eucalyptus trees nearby, in the middle distance, and further away.

According to the results in Figure 2.7, FCN and GCNet could better segment

the edges and the interior of the trunks of the closest Eucalyptus trees. We can

also observe that ANN and PointRend contain many errors regarding closer

trees. These observations highlight that if the Diameter at Breast Height (DBH)
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of the Eucalyptus trees were calculated, the FCN and GCNet would be better

than the ANN and PointRend.

(a) RGB image (b) Ground truth

(c) FCN (d) GCNet

(e) ANN (f) PointRend

Figure 2.7: Visual results of the inference process. Areas in light red are true
positives (TP), areas in dark red are false negatives (FN), areas in light gray
are false positives (FP), and dark areas are true negatives (TN). Source: The
author, 2022.
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(a) Cropped image (b) Ground truth

(c) FCN (d) GCNet

(e) ANN (f) PointRend

Figure 2.8: Visual results of the inference process. Areas in light red are true
positives (TP), areas in dark red are false negatives (FN), areas in light gray
are false positives (FP), and dark areas are true negatives (TN). Source: The
author, 2022.

Figure 2.8 presents a challenging scenario with several trees, some of which

are curved. In this scenario, FCN and ANN give good tree segmentations.
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GCNet and PointRend showed errors at the edges of the trees, resulting in

the disconnection of areas. These disconnections could cause problems in

tree counting applications. In both scenarios, FCN performed better than the

other methods, demonstrating that the quantitative results in Section 2.3.1

are also valid for visual analysis.

2.4 Discussion

Few studies [Dias et al., 2020; Firigato et al., 2021; Ferreira et al., 2012;

Khan et al., 2021] related to the segmentation of Eucalyptus trees in images

have been carried out up to the writing moment, and most of them used aerial

imagery. Here, we contribute to fulfilling this gap by evaluating both visual

quality and quantitative performance of state-of-the-art deep learning meth-

ods to segment Eucalyptus trees in panoramic RGB images captured at ground

level. The results indicated that the investigated methods performed some-

what similarly in this task, returning an average accuracy between 78.87%

(FCN) and 78.32% (GCNet) and IoU between 70.06% (FCN) and 69.86% (GC-

Net). It is difficult to emphasize an overall better approach when evaluating

the segmentation of the trunk Eucalyptus tree obtained with each method.

Nonetheless, we have a quantitative advantage for the FCN. This method also

presented a satisfactory visual result with little noise and false-positives rates

regardless of tree segmentation.

The FCN and GCNet methods returned proximal inference time for both

tests. PointRend presented the lowest inference time, being the fastest method

among all for prediction. However, an estimate of this inference time per Eu-
calyptus trunk area demonstrates how quickly these methods can segment

Eucalyptus trees in a given dataset once they are trained. The average time

for the predictions of all tested methods was 0.17 seconds, with a standard

deviation of 0.05 seconds, showing that even the worst time can still be a con-

siderable time. This information is essential for precision image segmentation

tasks since this answer can be incorporated into decision-making strategies

during the development of applications in the area of counting Eucalyptus
trees, calculating Diameter at Breast Height (DBH) and Total Height (Ht), gen-

erating 3D models of Eucalyptus forests, and creating different masks to help

extract valuable features for involving the bark of Eucalyptus trees. It should

also be noted that the times informed here to consider the system used to

evaluate these methods (see Section 2.2.4).

Many of the problems the investigated methods face are related to distant,

isolated, and small trees, which has already been observed in the literature by

[Martins et al., 2021b]. To mitigate these issues, the dataset needs to be well
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annotated manually by more than one specialist and contain images that dif-

fer from each other, with variations in brightness, shape, height, and distance,

in addition to increasing the dataset using techniques of data augmentation,

as presented in the Section 2.2.4. Most segmentation methods had problems

segmenting the most distant or close to each other or curved trees. A possi-

ble approach to solving these problems would be using segmentation methods

based on Transformers [Ranftl et al., 2021; Xie et al., 2021; Zheng et al., 2021],

which are the most recent semantic segmentation methods in the literature.

This work contributes to the literature by evaluating the potential of segmen-

tation methods in the context of segmentation of Eucalyptus trees, which is a

tree that has a significant environmental and socioeconomic value, as it serves

as raw material in various sectors of the paper industry and used in silvopas-

toral system [Schettini et al., 2021; De Vechi and Júnior, 2021]. For future

work, we intend to evaluate the exploration of methods based on Transform-

ers [Ranftl et al., 2021; Xie et al., 2021; Zheng et al., 2021] in the mentioned

context since they are the most recent semantic segmentation methods.

2.5 Conclusion

This work demonstrated the ability of four novel deep learning methods

(FCN, GCNet, ANN, and PointRend) for Eucalyptus tree segmentation in panoramic

RGB ground-level images. The FCN network is the most robust model to deal

with several Eucalyptus tree characteristics, such as trees with variation in

distance between trunks or curvature and trees of different heights and sizes.

GCNet and ANN networks also presented similar performance to the FCN, but

for specific contexts. GCNet and FCN (Figure 2.7) were identical for tree seg-

mentation in a closed field of view, showing fewer errors on the edges and in-

side of the Eucalyptus trunks. While ANN and FCN networks (Figure 2.8) were

similar for tree segmentation at a medium field of view, curved and closer

to each other, providing results without disconnection in the segments. We

also noted that the FCN method presents a proper time for segmenting an im-

age, around 0.157 seconds, as tree segmentation is a complex problem that

needs optimization in its computational cost. Our approach contributes to the

development of applications in the area, such as Eucalyptus tree counting,

estimation of parameters like DBH and Ht, 3D models generating of Eucalyp-
tus forests, creation of masks to help extract valuable features for the bark

of Eucalyptus trees, and also forest inventory management. We recommend

exploring Transformers based-methods in the mentioned context.
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CHAPTER

3
Improving Semantic Segmentation of
Eucalyptus Trunk using RGB-D Images

Using new modern technologies is extremely important for the agribusi-

ness sector in Brazil. This sector represented 27% of the Brazilian Gross

Domestic Product in 2020. The forestry sector stood out with the advance

of agribusiness production. Developing new technological solutions can con-

tribute to increased productivity and ensure improvements in the planting

process, production, and management of wood. Using artificial intelligence

and deep learning technologies can be a possible path. In this sense, this

work’s objective was to develop and evaluate a post-processing technique to

improve the results of current semantic image segmentation (SIS) networks.

A stereo camera was used to assemble a robust, high-quality dataset of ver-

tical Eucalyptus tree trunks. Each image contains information about the vis-

ible color spectrum and its depth to the camera. After creating and anno-

tating the dataset, the SIS algorithms FCN, ANN, GCNet, SETR, SegFormer,

and DPT were trained, evaluated, and tested on the images that a specialist

duly annotated. The developed post-processing technique significantly im-

proved the results of image segmentation networks. For metrics analysis, IoU

and F1-score performance metrics were considered. Before applying the post-

processing technique, convolution-based networks (FCN, ANN, and GCNet) av-

eraged 78.89% IoU and 87.36% F1-score, while transformer-based networks

(SETR, SegFormer, and DPT ) averaged 86.96% IoU and 92.73% F1-score. Af-

ter applying the technique to the results of the networks, a significant gain

was observed in all networks. The gain in networks based on traditional con-

volution increased to 97.93% in IoU and 98.81% in F1-score, representing a
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significant gain of 24.13% in IoU and 13.11% in the F1-score. On the other

hand, transformer-based networks reached 97.82% IoU and 98.81% F1-score

after applying the technique, representing a significant gain of 12.49% for IoU

and 6.56% for F1-score. Transformer-based networks performed well before

the application of the technique. However, the technique still brought signif-

icant improvements in their results. The inference time was also analyzed.

Nevertheless, it was observed that the technique only added 0.019 seconds on

average to the final time of the networks, representing a low amount to pay

in favor of gains in performance. The SegFormer network achieved the best

results in all tests before and after applying the technique, obtaining the best

IoU, F1-score, and inference time values. In addition, a post-processing tech-

nique proved effective in correcting segmentation failure, erosion, and dilation

errors, resulting in more accurate edges and better-delimited trunks. The

work evaluated both the developed methods’ visual quality and quantitative

performance. It contributed to enriching the discussion on the segmentation

of Eucalyptus trees by proposing an innovative approach.

3.1 Introduction

Agribusiness is an economic sector that encompasses all activities related

to the production, processing, storage, marketing, and distribution of agri-

cultural, livestock, forestry, and agro-industrial products. Agribusiness is a

sector of great importance in many countries, as it provides food and other

essential products for the population. In addition, agribusiness is vital for

a country’s economy, as it generates jobs and income for many people and

contributes to economic growth. Agribusiness also plays an essential role in

preserving the environment, as it promotes the conservation of natural re-

sources and the production of food sustainably. Due to its economic and

social importance, agribusiness is an area in constant evolution and develop-

ment, with the increasing use of advanced technologies to increase efficiency

and food production. The agricultural industry is one of the main segments

of the Brazilian economy, responsible for around 27% of Brazil’s Gross Do-

mestic Product (GDP) in 2020 [CNA, 2022]. According to a survey carried

out by the Brazilian Association of the Wood Industry (Ibá), the wood, cellu-

lose, and paper sectors stood out with the advance of agricultural production

[UOL, 2022]. Cellulose production in Brazil grew by 4.9% in the third quar-

ter of 2021, around 5.6 million tons of pulp, which showed that the apparent

pulp consumption increased by 16% compared to 2020 [UOL, 2022]. Planted

forests play an essential role in carbon sequestration, among other ecologi-

cal services, and Eucalyptus is the most commonly used tree in this sector
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[Daniel Feffer, 2019]. Eucalyptus is a species of tree of great economic impor-

tance for agribusiness in Brazil. Since it was introduced in the country in the

19th century, Eucalyptus has been widely planted throughout Brazil, mainly

in regions with temperate and tropical climates. Currently, Eucalyptus is one

of Brazil’s most important forest species, with a fundamental role in producing

wood, cellulose, and paper, in addition to other industrial applications.

Eucalyptus wood is used in several applications, such as construction, fur-

niture, and paper. In addition, Eucalyptus is a fast-growing tree that can

be planted in degraded areas and contributes to forest restoration in many

regions of the country. Due to its economic and environmental importance,

Eucalyptus continues to be a species of great value to Brazilian agribusiness.

In 2021, the national territory recorded an expansion of 9.5 million hectares

(ha) covered by cultivated forests [IBGE, 2021]. Eucalyptus species dominated

with 7.3 million hectares planted, followed by pine, with an area of 1.8 million

hectares [IBGE, 2021]. The wood, pulp, and paper sectors are exposed to vari-

ous challenges and factors that can reduce their productivity [ABIMCI, 2018].

Wood production is a fundamental process for the forest sector and is respon-

sible for providing the primary raw material for the wood, pulp, and paper

industries. However, this process is exposed to several challenges and factors

that can affect its efficiency and productivity. If the wood production process

is affected or poorly managed, it could result in possible economic losses for

the industry. This could be due to internal factors such as logistical issues,

poor management, or external factors such as adverse weather conditions or

changes in market demands. Therefore, the wood production process must

be carefully managed to minimize risks and maximize benefits for the forestry

sector. Quality and productivity maintenance of the forest sector depends

on continuous monitoring of the planted areas, resulting in an operational

challenge. It comes imbued with the necessity for fine-scale measures and

quantification of the production because it impacts managing the resources

to maximize the production of planted areas. Models that address the rela-

tionship between climatic variables and production are frequently found in

the literature [Santana et al., 2008; Porter and Semenov, 2005; White et al.,

2011], but it is demanded more robust methods to support this sector of the

economy.

SIS is a sub-area of image processing and artificial intelligence (AI). Image

processing is an area of AI dedicated to developing algorithms and techniques

to analyze and extract useful information from images. SIS is an analysis

process that tries to divide an image into different regions or segments and

assign a semantic tag to each one, allowing the classification of the parts of the

image according to their meaning. Bringing the application of this technique to
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the forest context, the semantic segmentation of an image of a forest can divide

the image into segments with tags such as a tree, soil, and sky. In Eucalyptus
plantations, semantic segmentation can be helpful to monitor the growth and

development of trees, identify problems such as diseases or insect attacks,

assess the wood quality, and identify trees with the potential to produce high-

quality wood. Furthermore, it can be helpful to identify forest areas potentially

affected by external factors such as climate change or deforestation. In short,

SIS can help manage Eucalyptus plantations, providing information on tree

growth, development, and health.

To increase productivity and ensure improvements in the process of wood

management is necessary to develop new technological solutions to support

the current management of production, for example, technologies for auto-

matic tree counting, the measurement from Diameter to Breast Height (DBH),

measurement of carbon sequestered in the trunk and automatic detection of

diseases in trunks or leaves. Several studies have applied the techniques of

convolutional neural networks (CNN) to work with the detection and segmen-

tation of trees [Li et al., 2017], disease detection [Zhang et al., 2019; Syarief

and Setiawan, 2020] and crop field yield estimation [Yalcin, 2019]. In recent

years, approaches based on the integration between remote sensing and ma-

chine learning (ML) have been proposed to attend the agricultural sector [Yu

et al., 2021; Ferreira et al., 2020; Zhao et al., 2019]. The machine learn-

ing algorithms can extract complex patterns of a dataset, providing a valu-

able source of models for measurements and predictions [LeCun et al., 2015].

While remote sensing allows the acquisition of a large volume of data in dif-

ferent scales like orbital, aerial, and terrestrial levels. Several study cases in

agriculture [Liakos et al., 2018], urban planning [Fathi et al., 2020; Chaturvedi

and de Vries, 2021], soil and biomass [Ali et al., 2015; Padarian et al., 2020;

Torre-Tojal et al., 2022], forest [Singh et al., 2016; Maxwell et al., 2018] have

integrated remote sensing data and machine learning algorithms. CNNs are a

class of machine learning models widely used in several areas of AI, includ-

ing SISs. CNNs can learn patterns and features from input data, such as

images, and use them to perform classification and prediction tasks. In SIS,

CNNs are trained to divide an image into different regions or segments and

assign a semantic label to each segment. CNNs can be used in both RGB

and RGB-D images. RGB images contain only color information, while RGB-D

images contain depth information. Adding depth information can be useful

in several contexts, including Eucalyptus-planted forests. For example, using

RGB-D images can allow for better segmentation of trees and greater precision

in identifying problems such as diseases or insect attacks.

RGB-D images allow measuring the distance of each point in the image to
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the sensor that captured it. These images are beneficial in many contexts, al-

lowing for more significant image analysis and interpretation accuracy. In the

context of Eucalyptus planted forests, RGB-D images can be used to measure

the height and diameter of trees, in addition to allowing the identification of

problems such as diseases or insect pests. In addition, RGB-D images can

also be used to assess the wood quality and identify trees with the potential

to produce high-quality wood. RGB-D images can also help identify forest

areas that can be affected by external factors such as climate change or de-

forestation. The use of RGB-D images is an active area of research in the

field of Artificial Intelligence, with the development of increasingly accurate

and efficient algorithms for analyzing these types of images [Xing et al., 2020;

Jianbo Jiao, 2019; Seichter et al., 2021].

This work proposes constructing, testing, and evaluating a new approach

for SIS. For this, it is intended to develop an image post-processing technique

that improves the results of current networks using depth information from

RGB-D images. Using as a test case images of tree trunks with a color aspect

(RGB) at ground level that considers the depth (D) of the images. With this, we

will use images with four dimensions of information, which will be collected

by a specific camera that captures the depth of the [Tadic et al., 2022] images.

These images have four dimensions of information (RBG-D), so they will be

indicated in this project as RGB-D images. It is understood that the semantic

segmentation of images is a vital area for AI, as it requires a high degree of

precision in its results. This precision will guarantee that developing modern

technological systems based on semantic segmentation will be more reliable.

The development and improvement of post-processing techniques for SISs,

which work with RGB-D images, are significant scientific challenges for the

computer vision (CV) area, mainly because the current image segmentation

algorithms, which use only RGB images, suffer from segmentation faults,

overlapping objects and holes in the segmented image of the same object,

which significantly degrades the expected final result, reducing the accuracy

of the models. Implementing the proposed approach can reduce investment

losses in several sectors that work with AI and image segmentation. The

proposed method can increase the accuracy of current image segmentation

methods and, consequently, allow the advancement of new studies in this

area. The materialization of precise depth sensors in modern cameras allows

the advancement of classic segmentation approaches. New post-processing

techniques for the semantic segmentation of images can bring good results

and better performances. The development of a post-processing technique in

RGB-D images results in an approach that can help in the development of

intelligent systems for forest management, as it brings improvements to mod-
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ern SIS techniques, expanding the potential productivity of the sector of this

vital agribusiness sector. For the proposed test case, a set of RGB-D images

will consist of Eucalyptus trunks at ground level. Only images of Eucalyptus
trees will be manipulated during this study, as it is the most planted tree in

Brazil and the most in several sub-sectors, such as the wood, cellulose, and

coal industry. Future work may explore the technique developed in other tree

species.

Although the areas of CV and SIS present methods with satisfactory re-

sults for image segmentation, such methods still do not produce satisfactory

results for the challenges imposed by the proposed application since most of

them do not consider the depth of the images [Long et al., 2015; Cao et al.,

2020; Zhu et al., 2019; Kirillov et al., 2020; Ranftl et al., 2021; Zheng et al.,

2021; Xie et al., 2021]. Through this development of this work, both areas

of semantic segmentation of images and agribusiness will benefit, as the ex-

pected results of the project advance scientific knowledge in AI. They can also

be used to construct new technologies for the agribusiness sector. In this

way, new challenges are presented to SIS methods, enabling the improvement

and development of new post-processing techniques and methods to meet the

needs and increase the success rate of current models.

3.2 Materials and Methods

3.2.1 Study area

The images will be captured in Jaraguari town (Zone 1) and Embrapa Gado

de Corte (Zone 2) in Campo Grande, Mato Grosso do Sul, Brazil. Based on

the Köppen-Geiger climate classification [Beck et al., 2018], this area is cat-

egorized as a savanna climate (Aw/As), characterized by a lack of precipita-

tion during either the winter (Aw) or summer (As) season and monthly mean

temperatures that stay above 18°C all year round. Zone 1 is composed of

a Eucalyptus tree forest of 1.05 ha (70m× 150m) planted in the 2000s (Figure

3.1 (a)). Zone 2 has trees planted following the Integrated Crop-Livestock-

Forestry Systems (ICLFS) [Embrapa, 2022] protocol, located at -20.4450317º,

-54.7256457º, with trees planted in the year 2012 (Figure 3.1 (b)). Both areas

are planted with Eucalyptus, and a camera with a depth capture sensor (more

details in the next subsection 3.2.2) will be used to collect the images.

3.2.2 Data acquisition

The acquisition and pre-processing of the dataset involved three main steps.

To begin with, we recorded videos in two Eucalyptus forests, Area 1 and Area

28



(a) Jaraguari (b) Embrapa Gado de Corte

Figure 3.1: Zones where captures will be taken: (a) Zone 1, (b) Zone 2. All
images will be taken using a camera with a depth sensor. Source: The author,
2022.

2, at a height of approximately 2 meters (m) above the ground, with the camera

at two different angles, 0º and 45º. For this, we used a ZED 2 Camera [Tadic

et al., 2022] with a depth capture sensor, with a resolution of 2k (2048x1080

pixels), 15 frames per second (fps), and a depth capture distance of 0.2m to

20m. We extracted the images from the captured video, sampling the video

frames at 30 fps. Each frame provided an image with two pieces: the visual

aspect information (RGB image) and the frame depth matrix (Depth). Finally,

the frames were used to generate training, validation, and test sets, each con-

taining the information of the RGB image, depth matrix, and its annotation

(more details on the annotation process were presented in the following sub-

section 3.2.3), as illustrated in Figure 3.2.

Figure 3.2: Overview of the workflow for data acquisition and data processing.
Source: The author, 2022.
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3.2.3 Image annotation

The captured images were manually annotated by specialists using the

open annotation software LabelMe1[Wada, 2018] and with the aid of the RGB-

D depth matrix. In this process, the tree images were annotated with polygons

around the trunk and labeled Eucalyptus. Only the trees closest to the cam-

era were annotated, as the trees in the background were too small to annotate

accurately. An illustration of the annotation pictures is presented in Figure

3.3. After the image annotation process, the images were exported to the input

format of the segmentation CNNs, which was a binary mask. As a result of

this process created a data set with three parts of information for each image,

namely the RGB image, the image annotation, and the depth matrix. The final

dataset has 2611 annotated images, averaging 1 to 3 polygons. The descrip-

tion of how this image dataset was partitioned for training, validation, and

testing are described in Section 3.2.7.

(a) Annotated image (b) Binary mask image

Figure 3.3: Representation of annotated images (a) and the corresponding
binary mask (b). The class of interest represents the red color, and the other
regions are considered background. Source: The author, 2022.

3.2.4 Semantic Image Segmentation Methods

This section presents the modern segmentation methods that perform im-

age segmentation and their paradigms for comparison with the method that

this work intends to develop. The segmentation methods that work only with

the RGB information of the images use different paradigms to perform seg-

mentation on images, such as the encoder-decoder paradigm [Ronneberger

et al., 2015], and atrous paradigm [Chen et al., 2016; Yu and Koltun, 2015].

The following subsections will present more details about each of these paradigms.

1http://labelme.csail.mit.edu/
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3.2.4.1 Paradigms of image segmentation methods

This sub-subsection briefly describes the image segmentation paradigms,

the encoder-decoder, and the atrous paradigms.

• Encoder-decoder paradigm: The models considering the encoder-decoder

paradigm [Ronneberger et al., 2015] are composed of two main modules:

the encoder and decoder. Each module plays a distinct role throughout

the learning process, but both are connected. In this paradigm, the en-

coder, called the backbone [He et al., 2016], extracts the features that will

be passed on to the decoder. The decoder uses this received information

to reconstruct the semantic segmentation map. This process is prevalent

in methods based on Transformers [Ranftl et al., 2021; Xie et al., 2021;

Zheng et al., 2021].

• Atrous paradigm: The atrous [Chen et al., 2016] paradigm is based on

the atrous convolution [Yu and Koltun, 2015] multiscale context. The

atrous convolution works similarly to modern convolutions. However,

it adds an extra parameter called the dilation map. This dilation map

determines the values in the convolution core to extract from gaps during

the convolution process. This paradigm maintains the high resolution of

the extracted features.

3.2.4.2 Semantic segmentation methods in RGB images

This sub-subsection briefly presents the semantic segmentation methods

of RGB images that will be tested in our work, which are Fully Convolu-

tional Networks for Semantic Segmentation (FCN) [Long et al., 2015], Context

Guided Network (GCNet)[Cao et al., 2020], Asymmetric Non-local Neural Net-

work (ANN) [Zhu et al., 2019], Vision Transformer for Dense Prediction (DPT)

[Ranftl et al., 2021], Rethinking Semantic Segmentation from a Sequence-to-

Sequence Perspective with Transformers (SETR) [Zheng et al., 2021], Sim-

ple and Efficient Design for Semantic Segmentation with Transformers (Seg-

Former) [Xie et al., 2021].

• FCN: Deep learning methods for image segmentation, such as the Fully

Convolutional Network [Long et al., 2015], have been widely used in the

literature. These networks consist of a series of layers of convolution op-

erations that allow the extraction of features from images, followed by

up-sampling layers that increase the resolution of the output to approxi-

mate the resolution of the input. The goal is to transform the input into

a segmented image that classifies each pixel in the image according to

the class it belongs. This approach has proven to be effective in many

31



segmentation tasks, but there are still challenges to be overcome, such

as preserving spatial resolution and segmentation accuracy.

• GCNet: The Context Guided Network [Cao et al., 2020] is a deep network

architecture that focuses on leveraging the context of images to improve

targeting. It combines global image information with detailed local infor-

mation to produce accurate results. GCNet was designed to be able to

handle complex segmentation problems and has been successfully ap-

plied in a variety of image segmentation tasks. Compared to other ap-

proaches, GCNet has proven to be an effective and efficient solution for

segmentation, providing accurate and high-quality results.

• ANN: The Asymmetric Non-local Neural Network [Zhu et al., 2019] is

an image-processing neural network that uses non-local processing con-

cepts to improve image segmentation. This network combines two non-

local processing approaches, Asymmetric Pyramid Non-local Block (APNB)

and Asymmetric Fusion Non-local Block (AFNB), to achieve improved

results compared to conventional methods. The combination of these

non-local blocks allows ANN to analyze the relationship between different

parts of the image, generated in a more precise and detailed segmenta-

tion. In summary, the influence of APNB and AFNB on ANN is supported

to obtain superior results compared to conventional image segmentation

methods.

• DPT: Most non-transformer-based networks use CNNs as a backbone,

especially architectures that work with the encoder-decoder paradigm.

The DPT [Ranftl et al., 2021] is a dense convolution network that uses

transformers as the backbone. This dense convolution approach us-

ing transformers assembles tokens at various stages of the transformer

with different resolutions to generate more faithful representations of

the images. Then these representations are progressively combined into

full-resolution predictions. For this, a convolutional decoder is used.

The DPT backbone has a global field that receives information from the

stages, so this backbone constantly processes the representations. With

this, the predictions are more coherent globally, meaning a gain com-

pared to networks that use convolutional backbones. For a large amount

of training data, the DPT proves to be accurate and efficient, improving

performance by up to 28% compared to modern networks that work only

with convolutions.

• SETR: SETR [Zheng et al., 2021] is a powerful segmentation model that

uses a pure transformer approach to encode images. First, these images

are encoded in a sequence of patches and combined with a global context.
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Therefore, the encoder transformer passes the extracted information to a

simpler decoder. This approach has proved to be very accurate compared

to CNNs that work with the encoder-decoder format. Inserting a trans-

former in the encoder is the crucial point of SETR. The method SETR has

reached good results in the famous image bases ADE20K [Zhou et al.,

2017], where it obtained an average of 50.28% of the IoU (mIoU), Pascal

Context [Mottaghi et al., 2014], where it obtained an average of 55.83%

of the mIoU, in addition to good results in the Cityscapes [Cordts et al.,

2016] image set.

• SegFormer: The SegFormer semantic segmentation works with the uni-

fication of transformers with multilayer perception (MLP) decoders. In

this approach, the encoder is a hierarchically structured transformer

to produce multiscale features. SegFormer decoders are simple and

lightweight. This decoder carries the information from the layers to work

with local and global attention more efficiently. SegFormer has a simple

and lightweight design yet achieves robust results in image segmenta-

tion. The SegFormer framework contains a series of models with various

parameters. The SegFormer-B4 model achieved a state-of-the-art result

in the ADE20K image set, with 50.3% mIoU. SegFormer’s best model,

SegFormer-B5, achieved an excellent result in the validation set of the

Cityscapes-C dataset, with 84.0% mIoU.

3.2.5 Approach to Post-Processing Image RGB-D

Semantic segmentation of Eucalyptus trunk images using RGB-D images

is a challenging CV problem. This work proposes an image post-processing

approach to improve the output of current segmentation networks. This ap-

proach uses RGB-D images to increase segmentation accuracy. First, the

SIS networks are trained and evaluated. Next, segmentation networks are

run on the dataset of images, and each output image is refined using a post-

processing technique developed in this work. This technique consists of an

algorithm that uses each image’s depth map to improve the segmentation net-

work’s output. This image post-processing approach can significantly improve

the output of current segmentation networks, increasing segmentation accu-

racy. The technique’s main consequence is eliminating segmentation faults,

holes, dilatations, and erosions in the segmented images. Figure 3.4 contains

the workflow with the illustration of this process.
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Figure 3.4: Overview of the workflow of approach. Source: The author, 2022.

3.2.5.1 Finding Connected Components in the Depth Map

The first stage of the post-processing technique consists of creating an al-

gorithm capable of identifying all connected components in the depth map of

RGB-D images using region growth. The depth matrices contain information

on the distance of objects to the camera. The greater the value in the depth

matrix at a given coordinate, the closer the object is to the camera. The 3.2.5.1

algorithm presents the pseudo-code to find the connected components in the

depth map to create a new matrix filled with the values of the connected ob-

jects in the depth matrix, separated by class. This algorithm aims to group

all connected objects in the depth matrix and enumerate them with individual

classes by growing regions. The depth information will be used, as different

objects at the same depth are expected to belong to the same object. This

approach may be helpful, as it will provide a matrix filled with all objects con-

nected from the depth matrix, therefore allowing the possibility of assigning

a pixel-by-pixel vote on the pixels in the image segmented by the SIS net-

works. For this approach to work, we will need to consider some essential

points about depth maps, such as the acceptable tolerance limit for two ob-

jects to be of the same class when creating the new depth matrix filled with

the connected objects. For growing regions and defining classes of connected

objects, we start by assigning negative classes to all connected values of the

depth map. This approach to negative class values will be helpful in our work.

It will help the algorithm’s performance, as it prevents the same value from

being reclassified again, given that during the execution of the algorithm, only

positive values will be calculated. In the proposed algorithm to search for
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connected components in the depth matrix, we start by defining class -1 for

the background in the depth matrix. The other segments will be classified in

descending order from the value -2, as shown in the algorithm. The growing

regions were then cultivated using the flood_fill function from the Scikit-image
library [van der Walt et al., 2014]. The flood_fill function fills all values close to

the source value based on an acceptable tolerance. The new value filled in the

matrix differs from the origin point value, which is the negative class passed

as a parameter in our case. This process is repeated until all matrix points are

visited and enumerated with classes with negative values. The region’s growth

step ends when there are no more positive points to visit. At the end of the

algorithm, we multiply the final matrix values by -1 to make the class values

positive and return a new depth matrix filled with the values of the connected

components.

1: Algorithm 1: Growing Region of Post-Processing Approach

Require: DepthMatrix, Tolerance

Ensure: FillImage

2: if DepthMatrix there is no pixel != 0 then
3: return DepthMatrix

4: end if
5: Index ← -2

6: seed_point ← first point != -1 of DepthMatrix

7: Set the value -1 for a background in DepthMatrix

8: while there are pixels to grow do
9: # Grows current pixel based on tolerance

10: DepthMatrix ← f lood_ f ill(DepthMatrix,seed_point, Index,Tolerance)

11: if DepthMatrix there is no pixel > 0 then
12: break

13: end if
14: Index ← Index−1
15: seed_point ← next point > 0 of DepthMatrix

16: end while
17: FillImage = ← ((DepthMatrix)*(-1))

18: return FillImage

3.2.5.2 Algorithm for Improve Results

The last stage of our approach was the development of an algorithm to

improve the results of images segmented by SIS networks. In this method,

we combine the pixels of the image segmented by the SIS networks with the

values of a new matrix of connected components obtained from the algorithm
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of the previous subsection. This algorithm voted for each pixel of the image

segmented by the SIS network, validating them with the connected compo-

nents matrix. This poll compared the pixel values of the segmented image

with the neighboring pixels of the depth matrix to overcome problems such as

segmentation faults, holes, erosions, and segmentation errors in Eucalyptus
trunks. The Algorithm pseudo-code 3.2.5.2 presents how this process works.

First, we extracted the new array of components. This array provided a set of

components that belonged to the same class. Then, we loaded the segmented

image and extracted the objects with the value 255, as they represented the

segmented Eucalyptus trunks of interest. We use the x and y coordinates

of the segmented image to index the array of connected components, result-

ing in a list of objects that we use to calculate the labels and frequencies for

comparison. We calculated the frequency of each pixel in the image object to

determine how many times a given class appeared in the indexed image. This

returned us the unique objects and the number of times each object appeared

in the indexed array of objects. The next step was to find objects with a vol-

ume greater than 10% of the total volume of the image. For this, we divided

the number of times each object appeared in the depth matrix by the total

number of pixels in the image, resulting in a matrix with the percentage of

each object. Finally, we replaced the values of objects with a volume greater

than 10% of the total image volume with the value 255, representing the seg-

mented trunks. We expected this approach to improve the outputs of current

SIS networks significantly.

1: Algorithm 2: Improve Results of Networks Outputs

Require: ImageSegmeted, DepthMatrixImage, Tolerance

Ensure: NewImageSegmented

2: FillDepthImage ← grown regions of DepthMatrixImage

3: PointsXY ← new empty array of points

4: for each pixel in ImageSegmeted do
5: if pixel is equal to 255 then
6: add pixel in the PointsXY

7: end if
8: end for
9: Ob jects ← new empty array

10: for each pixel in FillDepthImage do
11: if PointsXY contains pixel then
12: add pixel in the Ob jects

13: end if
14: end for
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15: Find unique values in Ob jects and set bins to those values

16: Count the number of occurrences of each bin and set the counts to those

values

17: Divide counts by the sum of all values in counts

18: Find all bins with a count greater than 0.1 and set new_ob jects to those bins

19: for each ob j in new_ob jects do
20: if ob j is not equal to 1 then
21: Set FillDepthImage to 255 where FillDepthImage is equal to ob j

22: end if
23: end for
24: NewImageSegmented ← FillDepthImage

25: return NewImageSegmented

3.2.6 Performance Evaluation

The efficacy of the tested and developed methods was validated using the

pixel F1-score metrics (Equation 3.4) and the Intersection over Union (IoU)

(Equation 3.5). The results of the F1-score equation were used, as it repre-

sents the harmonized average between precision and sensitivity. Precision is

the proportion of correct predictions made, while sensitivity is the fraction of

true positives correctly identified. We did not use the results of the accuracy

equation (Equation 3.3) because, in image segmentation problems, accuracy is

not a good evaluation metric, as it is affected by class imbalance, which means

that if there are more instances of one class than another, the accuracy will

be higher. The IoU, also referred to as the Jaccard Index, was the ratio of the

intersection and union between the ground truth (GT) and predicted masks.

In the equations 3.1, 3.2, and 3.5, the true positivity (TP) are pixels correctly

classified as part of objects of interest, false positives (FP) are pixels incorrectly

classified as part of objects of interest, true negatives (TN) are pixels correctly

classified as not part of objects of interest, and false negatives (FN) are pixels

incorrectly classified as not part of the objects of interest.

Precision =
T P

(T P+FP)
(3.1)

Recall =
T P

(T P+FN)
(3.2)

Accuracy =
T P+T N

(T P+T N +FP+FN)
(3.3)

F1− score =
2∗ (Precision∗Recall)
(Precision+Recall)

(3.4)
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IoU =
T P

(T P+FP+FN)
(3.5)

3.2.7 Experimental Setup

In our experiments, the annotated images were randomly divided into train-

ing (60%), validation (20%), and testing (20%) sets. Table 3.1 presents the

information about the partitioned dataset. Due to the large number of im-

ages obtained and annotated, cross-validation techniques proposed by [Arlot

and Celisse, 2010] were not used, as the dataset was robust. All RGB image

segmentation methods were implemented using MMSegmentation2 [MMSeg-

mentation, 2020], which is an artificial intelligence algorithms benchmark that

uses PyTorch[Paszke et al., 2019] libraries, taking advantage of its strong GPU

acceleration for model training. Potential GPUs were used to train, evaluate

and test the models in all cases.

Split folder Number of imagens Size

Train 1.566 2,8 GB
Val 522 944,8 MB
Test 523 953,8 MB

Table 3.1: Dataset information about folders, including the folder name, the
number of images contained in it, and the total size.

The Table 3.2 presented shows the configuration of different SIS networks

used in this study, including the name of the method, the backbone used,

and the number of iterations during training and validation. The table’s first

column presents the segmentation method’s name, such as FCN, GCNet, ANN,

SETR, SegFormer, and DPT. Each of these methods is a different approach

to image segmentation. The second column of the table shows the type of

backbone used for each method. The backbone is the basic structure of a

neural network that can extract features and feature vectors from images. In

this case, all methods use CNNs as a backbone. The specific backbones used

are ResNet 50 [He et al., 2015], ResNet 101 [He et al., 2015], ViT-L [Dosovitskiy

et al., 2020], MIT-B0 [Xie et al., 2021] and ViT-B [Dosovitskiy et al., 2020]. The

third column shows the number of iterations performed during training and

validation for each method. The number of iterations is important because

it is directly related to the processing time to train the SIS networks. It can

be seen that SIS networks based on transformers, such as SETR, SegFormer,

and DPT, were trained for the longest time, with 160000 iterations, while the

other SIS networks, such as FCN, GCNet, and ANN, were trained with fewer
2https://github.com/open-mmlab/mmsegmentation
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iterations, with 20000 or 80000 iterations. This can be explained by the fact

that transformer-based networks contain more complex decoders [Xie et al.,

2021], which require longer training to adjust the weights correctly.

Method Backbone Number of Iterations

FCN ResNet 50 20000
GCNet ResNet 50 20000
ANN ResNet 101 80000
SETR ViT-L 160000

SegFormer MIT-B0 160000
DPT ViT-B 160000

Table 3.2: Table of SIS network configurations, including name, backbone,
and number of interactions during training and validation.

In addition, data augmentation strategies will be applied during training

to improve the generalization of the tested models. Specifically, we will apply

random clipping, random flipping, photometric distortion, and normalization.

The stochastic gradient descent optimizer [Ruder, 2016] was used to train the

methods with a learning rate of 0.01, a momentum of 0.9, and a decay weight

of 0.0005 for 20k, 80k, and 160k iterations. As is evident from Figure 3.5,

the loss of the methods dropped quickly after a few iterations and leveled off,

suggesting that the training process was successful. Figure 3.6 shows the

convergence progress of the IoU result during the training of SIS networks.

As seen in each graph, all SIS networks showed convergence, indicating that

the networks’ performance increased and stabilized throughout the training.

Convergence of the IoU result is a positive indication of the training process

and provides confidence in the model’s ability to perform well in future tasks.

Empirical experiments were conducted to validate the loss and to adjust the

previously determined thresholds to assess the performance of the methods.

The process of training, evaluating, and testing the CNN models was carried

out on a workstation with an Intel®Xeon E3-1270 CPU @ 3.80 GHz, 250 GB

SSD with 64 GB of RAM, an NVIDIA Titan V graphics card with 12 GB memory

dedicated graphics, CUDA 10.2 [NVIDIA et al., 2020] and open-source operat-

ing system GNU/Linux Ubuntu 22.04.

3.3 Results

In this session, the results of the experimental evaluation of the semantic

segmentation methods in terms of pixel precision and IoU will be presented,

as well as the comparison of the results obtained with the post-processing

technique developed during this study. In Sections 3.3.1, 3.3.2, and 3.3.3, we
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Figure 3.5: Loss curves during training for (a) FCN, (b) GCNet, (c) ANN, (d) Seg-
Former, (e) SETR, and (f) DPT. The curves quickly decline after a few iterations
and become steady, suggesting that the techniques were effectively trained.

provide quantitative analysis, computational complexity analysis, and quali-

tative analysis, respectively.

3.3.1 Quantitative analysis

Only the metrics of the target class (Eucalyptus tree) were considered for

evaluating these outcomes. As the background class is a majority class and

does not contribute to the accurate analysis of the results, its data was disre-

garded.

Table 3.3 presents the F1-score results of six different networks (FCN,
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Figure 3.6: IoU curves during training for (a) FCN, (b) GCNet, (c) ANN, (d)
SegFormer, (e) SETR, and (f) DPT. The curves gradually increase after a few
iterations and become stable, suggesting that the techniques were effectively
trained.

ANN, GCNet, SETR, SegFormer, and DPT) and the results after applying the

post-processing technique. Regarding the actual results of the networks, Seg-

Former presented the best performance, with a 94.51% F1-score. On the other

hand, ANN presented the worst result, with 86.16% of the F1-score. The other

networks presented intermediate results, with an average value of F1-score of

90.04%. After applying the post-processing technique, all networks showed

significant improvements in the F1-score. ANN showed the most remarkable

improvement, with an increase of 14.37% in its result. The FCN and GCNet

networks also had powerful performances, with gains of 12.71% and 12.29%,

41



respectively. SegFormer, which already had the best results before the tech-

nique, also performed well, with a gain of 4.79%, which raised its F1-score to

99.04%, while DPT presented a gain of 4.71%, changing from 94.12% to 98.55

%. The other networks also significantly improved, with average gain values

of 9.74%.

Method F1-Score CNN F1-Score Post-process Gain

FCN 87.73% 98.88% 12.71%
ANN 86.16% 98.54% 14.37%

GCNet 88.18% 99.02% 12.29%
SETR 89.55% 98.84% 10.37%

SegFormer 94.51% 99.04% 4.79%
DPT 94.12% 98.55% 4.71%

Table 3.3: Percentage of Pixel Accuracy (F1-Score) results for Eucalyptus tree
segmentation.

The results demonstrate that the post-processing technique successfully

enhanced the performance of the F1-score metric for the evaluated networks,

particularly for the ANN, FCN, and GCNet networks, which experienced the

most significant gains, with an average improvement of 13.11%, compared to

the actual results. Transformers-based networks also had significant gains,

although smaller than the other networks. However, it is essential to remem-

ber that these results are contextual and were obtained from segmenting the

Eucalyptus trunks in RGB-D images at ground level.

Presented in Table 3.4 are the results of the IoU of evaluating the SIS net-

works and applying the developed post-processing technique. The table in-

cludes the name of the method, the result obtained by the machine learning

network, the result obtained by the network after applying the post-processing

technique, and the percentage gained from applying the technique. Regard-

ing the results for the IoU metric, the SegFormer network presented the best

result before applying the post-processing technique, with an IoU of 89.86%.

The FCN network presented the worst result before the technique, with an IoU

of 79.38%. The post-processing technique showed a significant gain in the

ANN network, increasing its initial result from 77.5% to 97.74%, equivalent

to an increase of 26.12%. This result indicates that the post-processing tech-

nique was very effective in improving the accuracy of the ANN network. The

more than 25% increase in accuracy represents a considerable improvement

and could significantly impact ANN network applications.

The SegFormer network presented an initial IoU of 89.86%, and after the

application of the post-processing technique, it presented an increase to 98.17%,

resulting in a gain of 9.25%. Compared to the other networks, SegFormer al-

ready had high results before the technique was applied, which may explain
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Method IoU CNN IoU Post-process Gain

FCN 79.38% 97.90% 23.33%
ANN 77.50% 97.74% 26.12%

GCNet 79.79% 98.14% 23.00%
SETR 81.82% 97.97% 19.74%

SegFormer 89.86% 98.17% 9.25%
DPT 89.19% 97.31% 9.10%

Table 3.4: Percentage of IoU results for segmentation of Eucalyptus trunks.

the lower gain compared to other networks. However, even with already high

results, the SegFormer still significantly improved after applying the post-

processing technique. It was observed that all networks showed significant

IoU gains, with gains ranging from 9.10% (DPT) to 26.12% (ANN). The general

average of the results after applying the technique was 97.87%, while the av-

erage before the technique was 82.92%. The developed post-processing tech-

nique showed an overall positive impact on the performance of SIS networks.

This can be observed by the significant gains in the FCN, GCNet, and ANN net-

works, which presented performance gains of 23.33%, 23.00%, and 26.12%,

respectively. Although all networks showed significant gains, the FCN, ANN,

and GCNet networks were the ones that most benefited from the technique.

The post-processing technique effectively improves the overall performance of

the IoU of image segmentation networks.

After applying the post-processing technique, the results show that convolution-

based networks (ANN, FCN, GCNet) had a superior gain over transformer-

based networks (SETR, SegFormer, DPT). Specifically, convolution-based net-

works achieved an average increase of 24.13% in IoU and 13.11% in the F1-

score, while networks based on transformers showed increases of 12.49% in

IoU and 6.56% in the F1-score. Although transformer-based networks are

already considered very good, based on the results before applying the post-

processing technique, it is essential to highlight that the application of the

technique still brought significant gains in its performance. This suggests

that the technique can be beneficial even for already highly optimized models

and can further improve the performance of the networks in question.

3.3.2 Computational Cost Analysis

The computational analysis evaluated the inference time of the CNN net-

works, the post-processing time, and the total time (CNN time + post-processing

time), presented in Table 3.5. The inference time analysis allowed identifying

the most suitable SIS networks for real-time applications to be quantified in

seconds using the post-processing technique. The table indicates the system’s
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overall performance and highlights methods with a good relationship between

processing time and result quality. SegFormer had the lowest network in-

ference time, with 0.062 seconds (standard deviation of 0.0302), followed by

GCNet with 0.216 seconds (standard deviation of 0.129). SETR, on the other

hand, presented the longest inference time, with 1.55 seconds (standard devi-

ation of 0.0586). The time spent by the post-processing technique was mini-

mal to the network inference time and did not significantly affect the total time.

In summary, SegFormer performed the best, followed by GCNet, while SETR

performed the worst. The results showed that applying the post-processing

technique did not harm the final performance of the networks.

Method CNN Time (std) Post-process (std) Time Total

FCN 0.444 (0.1290) 0.0195 (0.007) 0.4635
ANN 0.354 (0.0370) 0.0196 (0.007) 0.3736

GCNet 0.216 (0.0323) 0.0193 (0.007) 0.2353
SETR 1.550 (0.0586) 0.0194 (0.007) 1.5697

SegFormer 0.062 (0.0302) 0.0184 (0.006) 0.0804
DPT 0.408 (0.0425) 0.0186 (0.006) 0.4266

Table 3.5: The results include the inference time of the SIS networks, the pro-
cessing time of the post-processing technique, and the total processing time.
The total time represents the period required for each SIS network to complete
an inference, including the time spent in the post-processing technique.

After evaluating the mean network inference times before and after apply-

ing the post-processing technique, it is observed that the time spent by the

technique is relatively tiny. According to the data analyzed, the mean time

spent by the technique was around 0.019 seconds. The mean original time for

inferring the networks was 0.51 seconds (with a standard deviation of 0.05).

The mean time after applying the technique was 0.529 seconds, representing

an absolute error of only 0.019 seconds and a percentage error of 3.72%. Sug-

gesting that the post-processing technique did not negatively affect the perfor-

mance of the networks, the results indicate that its application did not harm

the final performance of the networks, hence highlighting its importance.

3.3.3 Qualitative Analysis and Visual Discussion

In this section, we will evaluate the visual results of the segmentation per-

formed before and after the post-processing technique on the test set. In our

analysis, we will highlight the technique’s improvements and limitations. To

illustrate the improvements, we will consider cases where the SIS network

presented segmentation failures, such as holes and erosions in the resulting

image. We will choose representative examples from different scenarios to dis-
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cuss and examine common issues faced by the SIS network during the final

segmentation process.

3.3.3.1 Improving Object Segmentation Edges

This subsection examined how the post-processing technique improved

segmentation faults in SIS networks. The presence of segmentation errors

at the edges of trees can cause disconnections in the segmentation of areas,

which can impair the accuracy of solutions that rely on accurate tree counts.

These disconnects can negatively affect the efficiency of applications requir-

ing accurate information about the number of trees in an image. Therefore,

it is essential to guarantee the precision of the segmentation of the edges of

the trees to avoid errors that could harm the final result. We selected images

that depict common mistakes made by the SIS networks evaluated during the

segmentation of Eucalyptus trunks in the test set. The application of the tech-

nique resulted in a notable improvement in segmentation accuracy and error

correction, as illustrated in Figure 3.7. After applying the technique, both FCN

and ANN had segmentation failures, as evidenced by the gray areas in images

(c) and (e) of Figure 3.7. However, after applying the technique, the accuracy

in identifying the trunks increased significantly, as seen in images (d) and (f)

of Figure 3.7, which resulted in more accurate results and closer to the true

position of the trunks (ground truth). The comparison between the images

before and after the application of the technique suggests that this can be a

valuable addition to the pipeline of current image segmentation networks. The

results suggest that the technique effectively corrected segmentation errors

and segmentation failures of the objects of interest, providing more accurate

and reliable visual results.

Fixing segmentation faults on objects is effective in improving segmenta-

tion accuracy. Specifically, about Eucalyptus trunks, a significant improve-

ment in segmentation accuracy was observed after applying the technique.

This improvement can be precious in evaluating the amount of wood, and the

quality of trees in a forest since the accuracy in measuring the diameter at

breast height (DBH) is fundamental for this evaluation. Correcting segmenta-

tion faults can also be helpful in applications that require precise information

about the position and size of objects in an image.

3.3.3.2 Improving Object Segmentation Erosions and Dilatations

This section will analyze how the post-processing technique improved ero-

sion and dilatation errors in SIS networks’ segmentation of Eucalyptus trunks.

We will verify the results before and after applying the technique and evalu-

ate its effectiveness in reducing these errors. The SIS networks faced a cru-
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(a) RGB image (b) Ground truth

(c) FCN (d) FCN Post-process

(e) ANN (f) ANN Post-process

Figure 3.7: Visual results of the inference process before and after applying
the technique. The white areas are the pixels where the network is segmented
correctly, while the gray areas are the image pixels where segmentation failure
occurred.
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cial challenge in accurately delimiting the Eucalyptus trunks in the evalu-

ated images. The images obtained by SIS network inference showed erosions

and dilatations at the edges of the trunks, resulting in partially disconnected,

eroded, or dilated segments. These erosions and dilatations can negatively af-

fect technological solutions in the forest area, such as estimating tree biomass

or calculating carbon stock, which depends on precise segmentation and de-

limitation of the edges of the trunks.

The post-processing technique effectively increased trunk boundaries’ ac-

curacy and minimized erosion errors, as shown in Figure 3.8 for the FCN. The

figure illustrates a challenging scenario for the FCN, where erosions on the

edges are significant, almost causing disconnection in the image, as we can

see in image (c). Applying the post-processing technique effectively corrected

these problems, greatly improving the accuracy of erosion errors.

(a) RGB image (b) Ground truth

(c) FCN (d) FCN Post-process

Figure 3.8: Visual results of the inference process before and after applying
the technique. The white areas are the pixels where the network is segmented
correctly, while the gray areas are the image pixels where segmentation failure
occurred.
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In addition to the segmentation faults involving erosions, the presence of

dilatations in the inferences of the SIS networks was noted, resulting in en-

larged and partially disconnected segments. These dilation errors can harm

applications that work with tree biomass estimation or carbon stock calcula-

tion. Figure 3.9 shows a challenging scenario for the FCN, with significant

dilatations at the edges to the point of creating a partial disconnection in the

image, as can be seen in image (c). In this scenario, the FCN network gen-

erated many false positives after the trunk boundary region, which caused

the emergence of a large misclassified region, resulting in enlarged, partially

disconnected trunks and new regions. The post-processing technique proved

effective in minimizing and correcting problems related to segmentation di-

lation, resulting in a significant improvement in dilation errors, as shown in

image (d).

(a) RGB image (b) Ground truth

(c) FCN (d) FCN Post-process

Figure 3.9: Visual results of the inference process before and after applying
the technique. The white areas are the pixels where the network is segmented
correctly, while the gray areas are the image pixels where segmentation failure
occurred.
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3.4 Discussion

The discussion about Eucalyptus segmentation is a current research topic,

with several studies exploring using CNNs as a [Dias et al., 2020; Firigato

et al., 2021; Ferreira et al., 2012; Khan et al., 2021] solution. However, these

studies have limitations, as they do not take into account the geographic in-

formation of the depth of the images, focusing on aerial images captured by

Unmanned Aerial Vehicles (UAV) or satellite images. This work complements

this discussion by designing, developing, and evaluating state-of-the-art deep

learning methods based on RGB-D images captured at ground level. In addi-

tion, we evaluated both the visual quality and the quantitative performance of

the methods, allowing us to assess their effectiveness in solving this problem

(see Section 3.3).

Our results indicate that including depth geographic information can greatly

value the segmentation of Eucalyptus trees. Furthermore, our approach pro-

vides a basis for future investigations on applying the developed technique

in other segmentation tasks since the technique is flexible and not limited

to Eucalyptus trees. It can be easily adapted for other problems, as it was

designed to be applied at the end of image segmentation networks (see Sub-

section 3.2.5). The post-processing technique developed proved to be effective

in correcting errors such as segmentation failures, erosion, and dilation, thus

confirming the surveys discussed in previous stages of this work. These er-

rors negatively affect forestry applications, such as tree biomass estimation

and carbon stock calculation, which depend on accurate segmentations and

correct delimitation. When comparing the results obtained before and after

the implementation of this technique in SIS networks, its significant value in

improving the results produced by SIS networks was evident. The technique

helped to produce more accurate edges, trunks without segment failures, and

well delimited, resulting in more accurate trunk segmentations.

It is essential to emphasize that, before applying the post-processing tech-

nique, the SIS networks faced significant challenges in precisely segmenting

the precise segmentation of Eucalyptus trunks, mainly networks based on

traditional convolution (FCN, ANN, GCNet). On the other hand, transformer-

based SIS networks (SETR, SegFormer, and DPT) performed better. However,

transformer-based networks also have challenges, such as the need for large

amounts of data for training, higher training time, and computational com-

plexity compared to convolution networks. After applying the technique, all

networks started to have an average performance of 97.87% in the IoU, and

98.81% in the F1-score metric, which represented a significant increase in

both metrics, thus suggesting the excellent functioning of the technique. The
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discussion of the results shows that the post-processing technique is a valu-

able tool to improve the accuracy of the segmentation of Eucalyptus trunks by

SIS networks and can be helpful in similar solutions in other areas of imaging

technology.

One of the main limitations of the technique is the dependence on a stereo

camera that captures depth information. The acquisition of three-dimensional

images can be a complex and expensive process, and using low-quality stereo

cameras can negatively affect the results’ accuracy. In addition, the technique

can also be affected by limitations related to the accuracy of the stereo camera

used, such as distortions, deviations, and uncertainties, which can affect the

quality of the captured information. However, these limitations can be circum-

vented as new depth capture technologies are developed, as new depth capture

technologies improve the quality of transmitted information, allowing greater

accuracy in the technique. This can result in more accurate results, which is

essential for applications where accuracy is critical. The advancement of new

stereo cameras is a positive aspect of the post-processing technique, as it can

make it more accessible and accurate, expanding its applicability and poten-

tial. It will be interesting to follow how these new technologies will impact the

technique’s evolution over time, paving the way for further studies on RGB-D

image segmentation.

Despite adding a layer of complexity to the segmentation of Eucalyptus
trunks, the post-processing technique does not represent a high cost in terms

of time. According to the results, the average time to perform the technique

is approximately 0.019 seconds, which is considered low for the benefits this

technology can bring to segmenting the trunks. Thus, it is possible to conclude

that the technique is a viable addition and does not preclude using the tech-

nology in practice. Furthermore, it is essential to highlight that this average

time may be even lower with the advancement of technology and computer

processing capacity, making the technique even more attractive in terms of

execution time. In image (d) of Figure 3.8, we can observe slight noises and

dilatation at the edges of the trunks. These noises are caused by the inaccu-

racy of the cameras when capturing the depth at the edges of the Eucalyptus
trunks. This results in minor dilation errors or noise, which somewhat im-

pair the efficiency of the post-processing technique. However, it is essential to

highlight that the evolution of computer vision technologies can offer increas-

ingly accurate and reliable solutions to this problem.

This work contributes to the literature by evaluating the potential of com-

bining segmentation methods with post-processing techniques based on RGB-

D images of Eucalyptus. This tree has significant environmental and socioe-

conomic value since it serves as raw material in several sectors of the log-
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ging industry. New research can act by evaluating the use of more advanced

computer vision techniques, combined with the use of more precise stereo

cameras, to find possible ways to improve the results reported by this work.

Thus, it may be possible to exploit the potential of the developed algorithm

even more efficiently, maximizing its ability to accurately segment the edges

of Eucalyptus trunks. Another possibility for future research is the develop-

ment of new post-processing techniques based on the presented approach.

This can help correct dilation or noise errors and solve other issues, such as

optimizing processing time, reducing computational costs, and improving pre-

cision and accuracy. In addition, it is possible to explore the application of

the technique in other sectors, such as agriculture, botany, or urban sectors,

which work with solutions based on segmentation. We believe that in the fu-

ture many solutions will be able to take advantage of the results developed in

this work, such as technological solutions for measuring the height of trees,

calculating carbon stock, measuring diameter at breast height, detecting pests

in trunks, creating 3D models of forests or development of intelligent systems

in the forest sector. For future works, it is intended to evaluate, explore and

develop CNNs that work with the depth information of RGB-D images even

during the training and learning process in the convolution layers [Xing et al.,

2020; Jianbo Jiao, 2019; Seichter et al., 2021], bringing the concept trans-

former attention to these RGB-D segmentation networks [Ranftl et al., 2021;

Xie et al., 2021; Zheng et al., 2021]. Therefore, several future works can be

developed from the presented post-processing technique to expand its scope

and applicability and improve the precision and accuracy of RGB-D image

segmentation.

3.5 Conclusion

In this work, a post-processing technique for RGB-D images was devel-

oped and evaluated, which significantly improved the segmentation results of

Eucalyptus trunks for six different SIS networks (FCN, ANN, GCNet, SETR,

SegFormer, DPT). Average gains for all networks represented an 18.03% in-

crease for IoU and a 9.74% gain for the F-1 score. The technique was ap-

plied at the end of each network and only added 0.019 seconds of image in-

ference time, which suggests a low cost to pay for the significant gains ob-

tained. The SegFormer network was the most robust model to deal with the

segmentation of Eucalyptus trunks, as it obtained the best results in all eval-

uations, before and after applying the technique, with the best final results

for the IoU and F1-score metrics, in addition to the lowest average time of

inference. Convolution-based networks (FCN, GCNet, and ANN) performed
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worse than Transformers-based networks (SETR, SegFormer, and DPT) be-

fore applying the post-processing technique (Tables 3.3 and 3.4). However,

this difference in performance was mitigated by applying the post-processing

technique, which meant that all networks started to have similar performance

in the IoU and F1-score metrics. The results of the complexity analysis sug-

gest that the post-processing technique did not improve the complexity of the

networks in terms of inference time. However, it did not significative add time

to the existing inference time results (Table 3.5). These results suggest that

the developed technique effectively improved the performance of SIS networks

and had a low computational cost to be applied. Among the improvements

obtained, the post-processing technique proved to be effective in helping to

correct grotesque dilation errors, erosions in the trunks, and segment failures

in the segmentations, resulting in fewer errors on the edges and inside the

Eucalyptus trunks, and without disconnection. in segments (see Subsection

3.3.3). The limitations of the technique are directly related to the precision of

the stereo cameras, which capture information about the depth of the trees.

These limitations concern small noises at the edges of the segmentations after

their application (see Section 3.4). Because it is a limitation directly related

to the hardware used to capture the RGB-D images, we believe this limitation

will be eliminated with the advancement of stereo camera technology. Our

approach has the potential to contribute to the development of new techno-

logical applications in the forestry area. In the context of Eucalyptus trees,

our work can help in some sectors of forest inventory management that use

image-based technologies, such as tree counting systems, trunk biomass cal-

culation, DBH or tree height estimation, creation of models 3D of Eucalyptus
forests and more accurate extraction of tree bark images.
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CHAPTER

4
Conclusions and Future Work

This study was divided into two main phases. The first stage aimed to eval-

uate the efficiency of different semantic segmentation networks in segment-

ing Eucalyptus trunks from panoramic images acquired at ground level. This

analysis was fundamental to starting the second phase, which involved the

creation, development, and evaluation of a post-processing technique in im-

proving the performance of these networks. During the first phase, a rigorous

analysis was carried out to identify the potential of segmentation networks,

analyzing and discussing the values of the IoU and F1-score metrics. The

evaluation was performed using a cross-validation approach with five replica-

tions and four deep-learning methods (FCN, GCNet, ANN, and PointRend). The

dataset included Eucalyptus trees with varied characteristics, such as varia-

tions in the distance between trunks, changes in curvature, and different sizes

and diameters, making the task challenging for deep learning algorithms. The

results of the first phase showed that the FCN model presented the best per-

formance, with a pixel precision of 78.87% and mIoU of 70.06%. The GCNet

and ANN networks also showed promising results but with limitations in the

ability to generalize to different contexts. With the results of the first phase,

it was possible to take an essential step towards the development of other

tools in forest management, discussing and analyzing the results to seek cor-

rections in the next phase. In addition, the need to evaluate more complex

networks, such as networks based on transformers (SETR, SegFormer, and

DPT), and expand the image dataset to obtain better quality became evident.

The second stage of the work’s main objective was developing and eval-

uating a post-processing technique to improve the results of current image

semantic segmentation networks. A stereo camera was used to create a new

53



robust and high-quality dataset of Eucalyptus trunks. The newly captured

images had visible spectrum information and depth information. SIS algo-

rithms were trained, evaluated, and tested with RGB images that an expert

annotated. The developed post-processing technique significantly improved

the results of the image segmentation networks, with a gain of up to 24.13%

in IoU and 13.11% in the F1-score in the best cases, as discussed in the

section 3.4. The average processing time of the technique is speedy, adding

only 0.019 seconds to the final time of the networks. This represents a small

amount to pay in favor of performance gains. Although processing time may

be necessary in some applications, the results evaluated in the second stage

of this project indicated that the technique would not add a significant over-

head to the processing times of network inferences. The work evaluated both

the visual quality and the quantitative performance of the developed meth-

ods, and it was found that the SegFormer had the most favorable results

in all evaluations. In addition, the post-processing technique effectively cor-

rected flaws in segmentation, erosion, and dilation, providing sharper edges

and better-defined trunks. This study contributed to enriching the debate on

the segmentation of Eucalyptus trees by presenting an innovative approach

that considers the depth information of RGB-D images.

4.1 Contributions

Despite the challenges, the work presents contributions that can assist

both the scientific community and the agribusiness sector that works with

forestry management. As such, it is expected that the development of this

post-processing technique will assist future work involving more precise Eu-
calyptus tree segmentation. In this way, this work contributes to the following:

• Development of a post-processing technique: The work presented the

creation and evaluation of a post-processing technique to improve the

segmentation results of currently used images. The technique was de-

veloped to correct segmentation, erosion, and dilation errors, resulting in

more accurate edges and better-delimited trunks.

• Significant increase in accuracy: The application of the post-processing

technique resulted in a significant increase in the accuracy of image seg-

mentation networks, both in convolution-based and transformer-based

networks. The gain in accuracy was measured by the IoU and F1-score

metrics.

• Fast processing time: Although the technique significantly improved

accuracy, the average additional processing time was only 0.019 seconds,
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which is considered a low cost compared to the gains in performance.

• Contribution to the forest sector: This work contributed to the forest

sector, enriching the discussion on the segmentation of Eucalyptus trees

and proposing an innovative approach.

• Use of advanced technologies in the agricultural sector: The work

highlighted the importance of using advanced technologies, such as arti-

ficial intelligence and deep learning, in the agricultural sector, especially

in the forestry sector. The use of these technologies can contribute to in-

creasing productivity and improve the planting process, production, and

management of wood.

4.2 Limitations

Although the post-processing technique developed has shown significant

improvements in the quality of segmentation of Eucalyptus trunk images,

some limitations need to be considered:

• Accuracy of the camera stereo used: The quality of the images captured

by the camera is critical for the performance of the image segmentation

system. If the camera is not accurate enough, this can result in poor

images that impair the segmentation system’s ability to perform its task

accurately.

• Application to other cases use: The post-processing technique was de-

veloped and evaluated specifically for the segmentation of Eucalyptus tree

trunks. Therefore, it is possible that the application of the technique to

other types of images or objects may not have the same performance and

accuracy. New studies and tests with the technique in other domains

and problems would be necessary.

In summary, the post-processing technique presented in this work is an es-

sential contribution to the field of image segmentation of Eucalyptus trunks.

However, some limitations still need to be considered before its large-scale ap-

plication. More research and testing must address these limitations before the

technique is widely adopted.

4.3 Future works

The research carried out in this work represents the beginning of a journey

towards more efficient and precise solutions for the segmentation of eucalyp-
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tus trees. Some areas can be explored and benefited from this post-processing

approach. Some possibilities include the following:

• Application of the post-processing technique to other species of trees and

objects, in addition to eucalyptus trees.

• Improvements to detection performance in adverse conditions such as

shadows, reflections, and weather variations.

• Integration of computer vision methods to further automate the segmen-

tation process.

• Adding extra layers of artificial intelligence, such as deep neural net-

works, to improve segmentation accuracy and robustness.

• Large-scale testing of the post-processing technique on other objects of

interest and applying it to real test cases to validate the effectiveness of

the solution in production environments.

• Evaluation of image segmentation networks specialized in RGB-D images

[Xing et al., 2020; Jianbo Jiao, 2019; Seichter et al., 2021].

• Creation of new datasets of RGB-D images with other stereo cameras.

Future work aims to make the solution proposed in this work even more effi-

cient and accurate so that the agribusiness sector can use it on a large scale.

Thus, it can contribute to increased productivity and guarantee improvements

in the planting process, production, and management of wood.

56



Bibliography

ABIMCI (2018). Desafios para a indústria de madeira: aumentar consumo

interno e melhorar produtividade. http://bit.ly/3DT2gTt. Cited on

page 25.

Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., e Notarnicola, C.

(2015). Review of machine learning approaches for biomass and soil mois-

ture retrievals from remote sensing data. Remote Sensing, 7(12):16398–

16421. Cited on pages 2, 8, and 26.

Arlot, S. e Celisse, A. (2010). A survey of cross-validation procedures for model

selection. Statistics surveys, 4:40–79. Cited on pages 13 and 38.

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., e

Wood, E. F. (2018). Present and future Köppen-Geiger climate classification

maps at 1-km resolution. Scientific Data, 5(1):180214. Cited on pages 10

and 28.

Bowley, C., Mattingly, M., Barnas, A., Ellis-Felege, S., e Desell, T. (2019).

An analysis of altitude, citizen science and a convolutional neural network

feedback loop on object detection in unmanned aerial systems. Journal of
Computational Science, 34:102–116. Cited on page 9.

Box, G. E. P. (1953). Departures from Independence and Homoskedasticity in
the Analysis of Variance and Related Statistical Analysis (1953). PhD thesis,

University of London. Cited on page 14.

Cao, Y., Xu, J., Lin, S., Wei, F., e Hu, H. (2020). Global context networks.

IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1.

Cited on pages 2, 4, 9, 11, 12, 28, 31, and 32.

CEPEA, ESALQ, U. (2021). PIB do Agronegócio Brasileiro. https://cepea.

esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx. Cited on

page 1.

57

http://bit.ly/3DT2gTt
https://cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx
https://cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx


Chaturvedi, V. e de Vries, W. T. (2021). Machine learning algorithms for urban

land use planning: A review. Urban Science, 5(3):68. Cited on pages 2, 8,

and 26.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., e Yuille, A. L. (2016).

Deeplab: Semantic image segmentation with deep convolutional nets, atrous

convolution, and fully connected crfs. Cited on pages 30 and 31.

CNA, B. (2022). Panorama do Agro. https://cnabrasil.org.br/cna/

panorama-do-agro. Cited on page 24.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,

Franke, U., Roth, S., e Schiele, B. (2016). The cityscapes dataset for seman-

tic urban scene understanding. In Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Cited on page 33.

Daniel Feffer, Horacio Lafer Piva, P. H. (2019). Industria brasileira de arvores,

relatório 2019. Relatório técnico. Cited on pages 1, 8, and 25.

Darwin, B., Dharmaraj, P., Prince, S., Popescu, D. E., e Hemanth, D. J. (2021).

Recognition of bloom/yield in crop images using deep learning models for

smart agriculture: A review. Agronomy, 11(4). Cited on pages 3 and 9.

De Vechi, A. e Júnior, C. A. D. O. M. (2021). Avaliação dos aspectos ambientais

do cultivo do eucalipto, relato de caso em goioerê-paraná: Uma perspectiva

para a educação ambiental. UNICIÊNCIAS, 25(1):57–64. Cited on page 21.

Dias, D., Dias, U., Menini, N., Lamparelli, R., Le Maire, G., e Torres, R. d. S.

(2020). Image-based time series representations for pixelwise eucalyptus

region classification: A comparative study. IEEE Geoscience and Remote
Sensing Letters, 17(8):1450–1454. Cited on pages 3, 9, 20, and 49.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-

terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,

J., e Houlsby, N. (2020). An image is worth 16x16 words: Transformers for

image recognition at scale. CoRR, abs/2010.11929. Cited on page 38.

Embrapa (2022). Integração Lavoura Pecuária Flo-

resta - Portal Embrapa. https://www.embrapa.br/

tema-integracao-lavoura-pecuaria-floresta-ilpf. Cited on

page 28.

Fathi, S., Srinivasan, R., Fenner, A., e Fathi, S. (2020). Machine learning

applications in urban building energy performance forecasting: A systematic

review. Renewable and Sustainable Energy Reviews, 133:110287. Cited on

pages 2, 8, and 26.

58

https://cnabrasil.org.br/cna/panorama-do-agro
https://cnabrasil.org.br/cna/panorama-do-agro
https://www.embrapa.br/tema-integracao-lavoura-pecuaria-floresta-ilpf
https://www.embrapa.br/tema-integracao-lavoura-pecuaria-floresta-ilpf


Ferreira, M. P., de Almeida, D. R. A., de Almeida Papa, D., Minervino, J.

B. S., Veras, H. F. P., Formighieri, A., Santos, C. A. N., Ferreira, M. A. D.,

Figueiredo, E. O., e Ferreira, E. J. L. (2020). Individual tree detection and

species classification of amazonian palms using uav images and deep learn-

ing. Forest Ecology and Management, 475:118397. Cited on pages 2, 8,

and 26.

Ferreira, M. P., La Rosa, L. E. C., Happ, P. N., Theobald, R. B., e Queiroz, R.

(2012). Mapping eucalyptus plantations and natural forest areas in landsat-

tm images using deep learning. Remote sensing, page 4. Cited on pages 3,

9, 20, and 49.

Firigato, J. O. N., Junior, J. M., Gonçalves, W. N., e Bacani, V. M. (2021). Deep

learning and google earth engine applied to mapping eucalyptus. In 2021
IEEE International Geoscience and Remote Sensing Symposium IGARSS,

pages 4696–4699. IEEE. Cited on pages 3, 9, 20, and 49.

He, K., Zhang, X., Ren, S., e Sun, J. (2015). Deep residual learning for image

recognition. CoRR, abs/1512.03385. Cited on page 38.

He, K., Zhang, X., Ren, S., e Sun, J. (2016). Deep residual learning for im-

age recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778. Cited on page 31.

IBGE (2021). Produção da Extração Vegetal e da

Silvicultura | IBGE. https://www.ibge.gov.br/

estatisticas/economicas/agricultura-e-pecuaria/

9105-producao-da-extracao-vegetal-e-da-silvicultura.html?

=&t=resultados. Cited on pages 1, 8, and 25.

Jianbo Jiao, Yunchao Wei, Z. J. H. S. R. L. T. S. H. (2019). Geometry-aware

distillation for indoor semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Cited on pages 4,

27, 51, and 56.

Khan, A., Asim, W., Ulhaq, A., Ghazi, B., e Robinson, R. W. (2021). Health

assessment of eucalyptus trees using siamese network from google street

and ground truth images. Remote Sensing, 13(11):2194. Cited on pages 3,

9, 20, and 49.

Kirillov, A., Wu, Y., He, K., e Girshick, R. (2020). Pointrend: Image segmen-

tation as rendering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9799–9808. Cited on pages 2, 4, 9, 11,

12, and 28.

59

https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=resultados
https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=resultados
https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=resultados
https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9105-producao-da-extracao-vegetal-e-da-silvicultura.html?=&t=resultados


LeCun, Y., Bengio, Y., e Hinton, G. (2015). Deep learning. Nature, 521:436–44.

Cited on pages 2, 8, and 26.

Li, W., Fu, H., Yu, L., e Cracknell, A. (2017). Deep learning based oil palm tree

detection and counting for high-resolution remote sensing images. Remote
Sensing, 9(1). Cited on pages 3 and 26.

Liakos, K. G., Busato, P., Moshou, D., Pearson, S., e Bochtis, D. (2018). Ma-

chine learning in agriculture: A review. Sensors, 18(8):2674. Cited on pages

2, 8, and 26.

Long, J., Shelhamer, E., e Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. Cited on pages 2, 4, 9, 11, 12, 28, and 31.

Martins, J., Junior, J. M., Menezes, G., Pistori, H., Sant´Ana, D., e Gonçalves,

W. (2019). Image segmentation and classification with slic superpixel and

convolutional neural network in forest context. In IGARSS 2019 - 2019 IEEE
International Geoscience and Remote Sensing Symposium, pages 6543–6546.

Cited on pages 2 and 8.

Martins, J. A. C., Nogueira, K., Osco, L. P., Gomes, F. D. G., Furuya, D. E. G.,

Gonçalves, W. N., Sant’Ana, D. A., Ramos, A. P. M., Liesenberg, V., dos San-

tos, J. A., de Oliveira, P. T. S., e Junior, J. M. (2021a). Semantic segmen-

tation of tree-canopy in urban environment with pixel-wise deep learning.

Remote Sensing, 13(16). Cited on pages 2 and 8.

Martins, J. A. C., Nogueira, K., Osco, L. P., Gomes, F. D. G., Furuya, D.

E. G., Gonçalves, W. N., Sant’Ana, D. A., Ramos, A. P. M., Liesenberg, V.,

dos Santos, J. A., de Oliveira, P. T. S., e Junior, J. M. (2021b). Seman-

tic segmentation of tree-canopy in urban environment with pixel-wise deep

learning. Remote Sensing, 13(16). Cited on page 20.

Maxwell, A. E., Warner, T. A., e Fang, F. (2018). Implementation of machine-

learning classification in remote sensing: An applied review. International
Journal of Remote Sensing, 39(9):2784–2817. Cited on pages 2, 8, and 26.

Mendes, T. R., Miguel, E. P., Vasconcelos, P. G., Valadao, M. B., Rezende, A. V.,

Matricardi, E. A., Angelo, H., Gatto, A., e Nappo, M. E. (2020). Australian
Journal of Crop Science, 14(2):286–294. Cited on page 2.

MMSegmentation (2020). MMSegmentation: Openmmlab semantic seg-

mentation toolbox and benchmark. https://github.com/open-mmlab/

mmsegmentation. Cited on pages 13 and 38.

60

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


Mottaghi, R., Chen, X., Liu, X., Cho, N.-G., Lee, S.-W., Fidler, S., Urtasun,

R., e Yuille, A. (2014). The role of context for object detection and semantic

segmentation in the wild. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Cited on page 33.

Nogueira, K., Dalla Mura, M., Chanussot, J., Schwartz, W. R., e Dos Santos,

J. A. (2019). Dynamic multicontext segmentation of remote sensing images

based on convolutional networks. IEEE Transactions on Geoscience and Re-
mote Sensing. Cited on pages 2 and 8.

NVIDIA, Vingelmann, P., e Fitzek, F. H. (2020). Cuda, release: 10.2.89. Cited

on page 39.

Osco, L. P., de Arruda, M. d. S., Marcato Junior, J., da Silva, N. B., Ramos,

A. P. M., Moryia, É. A. S., Imai, N. N., Pereira, D. R., Creste, J. E., Matsub-

ara, E. T., Li, J., e Gonçalves, W. N. (2020). A convolutional neural network

approach for counting and geolocating citrus-trees in UAV multispectral im-

agery. ISPRS Journal of Photogrammetry and Remote Sensing. Cited on

pages 2 and 8.

Osco, L. P., dos Santos de Arruda, M., Gonçalves, D. N., Dias, A., Batistoti, J.,

de Souza, M., Gomes, F. D. G., Ramos, A. P. M., Jorge, L. A. C., Liesenberg,

V., Li, J., Ma, L., Junior, J. M., e Gonçalves, W. N. (2021). A cnn approach to

simultaneously count plants and detect plantation-rows from uav imagery.

ISPRS Journal of Photogrammetry and Remote Sensing, 174:1–17. Cited on

pages 2 and 8.

Osco, L. P., Ramos, A. P. M., Pereira, D. R., Moriya, é. A. S., Imai, N. N.,

Matsubara, E. T., Estrabis, N., de Souza, M., Junior, J. M., Gonçalves, W. N.,

Li, J., Liesenberg, V., e Creste, J. E. (2019). Predicting canopy nitrogen

content in citrus-trees using random forest algorithm associated to spectral

vegetation indices from UAV-imagery. Remote Sensing. Cited on pages 2

and 8.

Padarian, J., Minasny, B., e McBratney, A. B. (2020). Machine learning and

soil sciences: A review aided by machine learning tools. Soil, 6(1):35–52.

Cited on pages 2, 8, and 26.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-

Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,

J., e Chintala, S. (2019). Pytorch: An imperative style, high-performance

deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc. Cited on page 38.

61



Porter, J. R. e Semenov, M. A. (2005). Crop responses to climatic varia-

tion. Philosophical Transactions of the Royal Society B: Biological Sciences,

360(1463):2021–2035. Cited on pages 1, 8, and 25.

Ranftl, R., Bochkovskiy, A., e Koltun, V. (2021). Vision transformers for dense

prediction. CoRR, abs/2103.13413. Cited on pages 4, 21, 28, 31, 32,

and 51.

Rodrigues de Oliveira, B., Pereira da Silva, A., Ribeiro, L., Azevedo, G.,

Azevedo, G., Baio, F., Sobrinho, R., Silva Junior, C. A., e Teodoro, P. (2021).

Eucalyptus growth recognition using machine learning methods and spec-

tral variables. Forest Ecology and Management, 497:119496. Cited on

page 1.

Ronneberger, O., Fischer, P., e Brox, T. (2015). U-net: Convolutional networks

for biomedical image segmentation. In Navab, N., Hornegger, J., Wells,

W. M., e Frangi, A. F., editors, Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, pages 234–241, Cham. Springer Inter-

national Publishing. Cited on pages 30 and 31.

Ruder, S. (2016). An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747. Cited on pages 13 and 39.

Santana, R. C., Barros, N. F. d., Leite, H. G., Comerford, N. B., e Novais,

R. F. d. (2008). Estimativa de biomassa de plantios de eucalipto no brasil.

Revista Árvore, 32(4):697–706. Cited on pages 1, 8, and 25.

Schettini, B. L. S., Jacovine, L. A. G., Torres, C. M. M. E., de Oliveira Neto,

S. N., da Rocha, S. J. S. S., Villanova, P. H., Alves, E. B. B. M., e Rufino, M.

P. M. X. (2021). Sistemas silvipastoris com eucalipto: estocagem de carbono

em diferentes espaçamentos e clones. Ciencia Florestal, 31(3):1047–1062.

Cited on page 21.

Seichter, D., Köhler, M., Lewandowski, B., Wengefeld, T., e Gross, H.-M.

(2021). Efficient rgb-d semantic segmentation for indoor scene analysis.

In IEEE International Conference on Robotics and Automation (ICRA), pages

13525–13531. Cited on pages 4, 27, 51, and 56.

Singh, A., Thakur, N., e Sharma, A. (2016). A review of supervised machine

learning algorithms. In 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom), pages 1310–1315. Ieee. Cited

on pages 2, 8, and 26.

62



Syarief, M. e Setiawan, W. (2020). Convolutional neural network for maize leaf

disease image classification. Telkomnika, 18:1376–1381. Cited on pages 3

and 26.

Tadic, V., Toth, A., Vizvari, Z., Klincsik, M., Sari, Z., Sarcevic, P., Sarosi, J., e

Biro, I. (2022). Perspectives of realsense and zed depth sensors for robotic

vision applications. Machines, 10(3). Cited on pages 4, 27, and 29.

Torre-Tojal, L., Bastarrika, A., Boyano, A., Lopez-Guede, J. M., e Graña, M.

(2022). Above-ground biomass estimation from lidar data using random

forest algorithms. Journal of Computational Science, 58:101517. Cited on

pages 2, 8, and 26.

UOL, E. (2022). Produção de celulose no Brasil cresce 4,9% no 3º tri, mostra

Ibá. https://economia.uol.com.br/noticias/reuters/2021/11/23/

producao-de-celulose-no-brasil-cresce-49-no-3-tri-mostra-iba.

htm. Cited on page 24.

Valadão, M. B. X., Carneiro, K. M. S., Ribeiro, F. P., Inkotte, J., Rodrigues,

M. I., Mendes, T. R. S., Vieira, D. A., Matias, R. A. M., Lima, M. B. O., Miguel,

E. P., e Gatto, A. (2020). Modeling Biomass and Nutrients in a Eucalyptus

Stand in the Cerrado. Forests, 11(10):1097. Cited on page 2.

van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner,

J. D., Yager, N., Gouillart, E., Yu, T., e the scikit-image contributors (2014).

scikit-image: image processing in Python. PeerJ, 2:e453. Cited on page 35.

Vepakomma, U., St-Onge, B., e Kneeshaw, D. (2011). Response of a boreal

forest to canopy opening: assessing vertical and lateral tree growth with

multi-temporal lidar data. Ecological Applications, 21(1):99–121. Cited on

pages 3 and 9.

Wada, K. (2018). Labelme: Image polygonal annotation with python. https:

//github.com/wkentaro/labelme. Cited on pages 11 and 30.

Wang, X., Girshick, R., Gupta, A., e He, K. (2018). Non-local neural networks.

In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 7794–7803. Cited on page 9.

White, J. W., Hoogenboom, G., Kimball, B. A., e Wall, G. W. (2011). Method-

ologies for simulating impacts of climate change on crop production. Field
Crops Research, 124(3):357–368. Cited on pages 1, 8, and 25.

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., e Luo, P. (2021).

Segformer: Simple and efficient design for semantic segmentation with

63

https://economia.uol.com.br/noticias/reuters/2021/11/23/producao-de-celulose-no-brasil-cresce-49-no-3-tri-mostra-iba.htm
https://economia.uol.com.br/noticias/reuters/2021/11/23/producao-de-celulose-no-brasil-cresce-49-no-3-tri-mostra-iba.htm
https://economia.uol.com.br/noticias/reuters/2021/11/23/producao-de-celulose-no-brasil-cresce-49-no-3-tri-mostra-iba.htm
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme


transformers. CoRR, abs/2105.15203. Cited on pages 4, 21, 28, 31, 38,

39, and 51.

Xing, Y., Wang, J., e Zeng, G. (2020). Malleable 2.5d convolution: Learn-

ing receptive fields along the depth-axis for RGB-D scene parsing. CoRR,

abs/2007.09365. Cited on pages 3, 27, 51, and 56.

Yalcin, H. (2019). An approximation for a relative crop yield estimate from

field images using deep learning. 2019 8th International Conference on Agro-
Geoinformatics (Agro-Geoinformatics), pages 1–6. Cited on pages 3 and 26.

Yu, F. e Koltun, V. (2015). Multi-scale context aggregation by dilated convolu-

tions. Cited on pages 30 and 31.

Yu, R., Luo, Y., Zhou, Q., Zhang, X., Wu, D., e Ren, L. (2021). Early detection

of pine wilt disease using deep learning algorithms and uav-based multi-

spectral imagery. Forest Ecology and Management, 497:119493. Cited on

pages 2, 8, and 26.

Zhang, S., Zhang, S., Zhang, C., Wang, X., e Shi, Y. (2019). Cucumber leaf dis-

ease identification with global pooling dilated convolutional neural network.

Computers and Electronics in Agriculture, 162:422–430. Cited on pages 3

and 26.

Zhao, Q., Yu, S., Zhao, F., Tian, L., e Zhao, Z. (2019). Comparison of ma-

chine learning algorithms for forest parameter estimations and application

for forest quality assessments. Forest Ecology and Management, 434:224–

234. Cited on pages 2, 8, and 26.

Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang,

T., Torr, P. H., e Zhang, L. (2021). Rethinking semantic segmentation from

a sequence-to-sequence perspective with transformers. In CVPR. Cited on

pages 4, 21, 28, 31, 32, and 51.

Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., e Torralba, A. (2017).

Scene parsing through ade20k dataset. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 5122–5130. Cited on

page 33.

Zhu, Z., Xu, M., Bai, S., Huang, T., e Bai, X. (2019). Asymmetric non-local

neural networks for semantic segmentation. Cited on pages 2, 4, 9, 11, 12,

28, 31, and 32.

64


	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Contextualization
	Hypothesis and Objectives
	Hypothesis
	Objectives

	Dissertation Text Organization

	Semantic Segmentation of Eucalyptus Tree in Panoramic RGB Ground-level Images
	Introduction and Motivation
	Methodology
	Study Location Area
	Data Acquisition and Image Annotation
	Semantic Segmentation Methods
	Experimental Setup Environment
	Performance Metrics and Statistical Analysis

	Results
	Performance Evaluation
	Computational complexity
	Visual Analysis

	Discussion
	Conclusion

	Improving Semantic Segmentation of Eucalyptus Trunk using RGB-D Images
	Introduction
	Materials and Methods
	Study area
	Data acquisition
	Image annotation
	Semantic Image Segmentation Methods
	Approach to Post-Processing Image RGB-D
	Performance Evaluation
	Experimental Setup

	Results
	Quantitative analysis
	Computational Cost Analysis
	Qualitative Analysis and Visual Discussion

	Discussion
	Conclusion

	Conclusions and Future Work
	Contributions
	Limitations
	Future works

	References

