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Abstract—This work presents an experimental evaluation of the effects of quantizing embedding gene-
ration models when applied to face recognition. Two models - Facenet (based on Inception-ResNet)
and Transface (based on Vision Transformer) - are compared under different precision formats (FP32
and INT8) and inference backends (Torch and ONNX). Experiments were carried out on the LFW,
VGGFace2 and CelebA datasets, assessing Rank-1 accuracy and employing cosine distance as the me-
tric similarity metric. The results show that more established models, such as Facenet, are more robust
to quantization, maintaining accuracy even in reduced precision formats, where Transface suffers no-
ticeable degradation when quantized. Moreover, quantizing the embeddings vectors yielded up to an
80% reduction in storage requirements without significantly impacting performance. These findings
underscore the feasibility of quantization as a strategy of optimizing models in resource constrained
environments.
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I. Introduction

Facial recognition using metric-learning algorithms is present in a variety of everyday applications. Examples
include airports for authenticating check-in and boarding procedures [1], ticket sales and stadium entry systems for
football matches [2], commercial establishments for security purposes [11], among others. The growth in AI tools for
person recognition is expected to continue [16] [4] [9], raising two main challenges. First, systems that store records
of processed face embeddings - such as security applications - face a large volume of data to be maintained for each
individual, who enters a space. Second, there is the challenge of ensuring high accuracy in generating feature vectors
that reliably identify a person, especially in critical scenarios like airport check-in authentication, which demand very
high success rate.

The storage challenge can be mitigated by changing the data type used to save the face-feature vectors. The original
networks generate 32-bit floating-point representations; by converting these to 8-bit integers, a substantial reduction
in disk usage is anticipated. To address the accuracy challenge, newer model architectures—such as Transface, which
employs Vision Transformers—were evaluated alongside quantization and model conversion techniques.

The aim of this work is to assess performance degradation in metric-learning algorithms when quantization methods
are applied within the domain of face recognition. The primary contribution is an experimental evaluation showing
distinct impacts across different inference platforms and model architectures, as detailed in the conclusions of this
study.
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Figura I: Evaluation methodology

II. Proposed Methodology

The experiments were carried out following the execution flow shown in I, which outlines the sequence of operations
for preparing the data and verifying the model’s recognition accuracy.

1. Dataset Preparation

2. Model Conversion.

3. Quantization (for experiments with the quantized model)

4. Embedding Generation

5. Embedding Saving

6. Distance Calculation

7. Rank-1 Accuracy Verification

Dataset Preparation: Each dataset undergoes a preprocessing step in which faces are detected and aligned on
every image. The aligned faces are then saved as new files to ensure that all models receive inputs under the same
initial conditions.

Model Conversion: The original models, which are available for the Torch inference engine, are first exported
to the ONNX format. This adds variability in how different inference platformshandle the model and enable further
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cross-platform testing.

Quantization: For the quantized model experiments, a quantization step is inserted into the workflow o that
versions of each model in INT8 format can be tested alongside the original FP32 version.

Embedding Generation: With each variant of the model ready for inference, every image in the prepared dataset
is processed to produce a fixed length feature vector(embedding) representating the face.

Embedding Saving: All generated embedding vectors are written to disk, creating files that will be used for
batch analysis in subsequent steps.

Distance Calculation: For each embedding stored in disk, the cosine distance to all other embedding is computed.
The smallest distance indicates the closest matching face.

Rank-1 Accuracy Verification:Finally, for each dataset, it is checked whether the nearest-neighbor embedding
belongs to the same individual. The Rank-1 is calculated as the the proportion of correctly identified faces over the
total number of faces in the dataset.

III. Models

For de experimental evaluation, two network architectures were employed. For the Facenet [12] model we used a
PyTorch implementation available in the timesler/facenet-pytorch [15] GitHub repository, pre-trained on VGGFace2
dataset. For the Transface [5] model, we based our tests on the DanJun6737/Transface [6] implementation, also hosted
on GitHub.

A. Facenet

The Facenet [12] network used in our tests adopts an Inception-ResNet [14] backbone, which merges inception
modules with residual connections. We selected the NN3 variant for evaluation, which is architecturally identical
to NN2 but accepts a 160x160 aligned-face input and produces a 512-dimensional embedding vector. Detailed layer
configurations - including depth, filter sizes, parameter count, and floating-point operations - are presented in Table VI

B. Transface

The Transface [5] model is built upon the Vision Transformer(ViT) [7] architecture, with minor modifications that
include a Transformer Encoder Backbone followed by a Squeeze-and-Excitation [8] module. It processes a 112x112
aligned-face image and outputs a 512-dimensional feature vector. For our experiments, we used the "Small"(S) variant,
which comprises 12 transformer layers and 6 attention heads, and leverages weights pre-trained on the Glint360K
datset.

IV. Datasets

The datasets used in the experiments were LFW [13], VGGFace2 [3], and CelebA [10]. Each dataset underwent
face detection and alignment to stabilize the features collected by each model.

• LFW: Contains approximately 13 K images of 5750 individuals. It is the only dataset in which some identities
have only a single image, resulting in unpaired entries. Its folder structure organizes into one directory per
person.

• VGGFace2: follows the same per-person folder convention but differs in scale and distribution, comprising 170
K images across 480 individuals—yielding the highest images-per-person ratio.

• CelebA: uses a distinct layout: each image file has a unique name that is mapped to a person ID via an
annotation file.

Table I consolidates each dataset’s number of identities, total images, and average images per identity.

Tabela I: Datasets

Dataset Identities Images Img/Id
LFW 5750 13K 2.26

VGGFace2 480 170K 354.16
CelebA 10177 202K 19.84



V. Methods

The following methods were employed to convert and quantize the models, compare embeddings, and modify their
representation.

A. Platform and Libraries

Experiments were run on a system with the following hardware and software specifications:

• CPU: AMD Ryzen 2600X

• GPU: NVIDIA RTX 4070

• RAM: 32GB

• OS: Ubuntu 22.04

• Python 3.13.2

• Nvidia Driver 550.163.01

• CUDA 11.5

All Python libraries and their versions are listed in the Appendix A (e.g., pandas 2.2.3, numpy 1.26.4, scipy 1.15.3)

B. Conversion

Prior to quantization, each PyTorch model was exported to ONNX using torch.onnx.export. The key parameters
were:

• Model: The loaded PyTorch

• dummy_input: A tensor matching the model’s expected input shape

• "Transface.onnx": Output model filename.

• input_names=["input"]: Network input name as input.

• output_names=["embedding"]: Network output name as embedding.

• dynamic_axes to allow variable batch size.

• opset_version=13

C. Quantization

Two quantization strategies were applied:

1. ONNX Static Quantization

Using the ONNX Runtime Quantization API(onnxruntime.quantization.quantize_static), each ONNX model was
quantized to INT8. Calibration data was provided via a CalibrationDataReader (using VGGFace2 validation images),
and both activations and weights were quantized as QInt8

2. PyTorch Dynamic Quantization

The original PyTorch models were quantized dynamically at inference time with torch.quantization.quantize_dynamic,
targeting all torch.nn.Linear and torch.nn.LSTM layers and casting their parameters to torch.qint8

D. Distance Computation

To measure similarity between embeddings, cosine distance was used:

cosine_distance = 1−
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This yields 0 for identical vectors. Implementation utilized scipy.spatial.distance.cosine.

E. Accuracy Calculation

Rank-1 accuracy was computed as follows: for each embedding in the dataset, identify the other embedding with
the smallest cosine distance; if it belongs to the same person, count it as correct. Rank-1 accuracy is then as illustrated
in Equation (2).

Accuracy =
CorrectMatches

FacesInDataset
(2)

F. Embedding Representation

To reduce on-disk storage, each 512-dimensional embedding (originally FP32 in [–1,1]) was converted to INT8 by
multiplying each component by 127, rounding to the nearest integer, and casting to np.int8

quantized_list = []
for x in embedding_list:

q = int(round(x * 127))
quantized_list.append(np.int8(q))

This simple cast preserves relative distances while reducing storage by up to 80%.

VI. Results

The experimental evaluation was designed to answer three research questions:

RQ1 : What is the reduction in recognition accuracy when quantization is applied?

RQ2 : Is there a difference between using Torch’s dynamic quantization and ONNX’s static quantization?

RQ3 : Between Transface and Facenet—which are popular face-recognition algorithms—which one is more sensitive
to quantization?

A. Torch vs. ONNX Conversion

Before quantization, in Table II and Table III, we compared the baseline (FP32) accuracy of each model under the
two inference engines.

• Facenet: Converting from Torch to ONNX boosts Rank-1 accuracy by 4 percentage points on LFW (Torch
61.41% to ONNX 65.47%) and VGGFace2 (92.62 to 96.66), and by 8 points on CelebA (80.06% to 88.65%), as
seen in Table II.

• Transface: In contrast, Table III shows that, ONNX conversion slightly reduces accuracy: –1 point on LFW
(68.49% to 67.15%) and –2 points on both VGGFace2 and CelebA (99.26% to 97.65%, 95.81% to 93.19%).

B. Impact of Quantization

Quantization effects were measured on both Torch (dynamic) and ONNX (static) engines, can be seen in Table II
and Table III, explicitly in columns FP32 and INT8:

• Facenet

– LFW Torch: FP32 61.41% to INT8 61.27% (–0.14 points)

– LFW ONNX: FP32 65.47% to INT8 65.54% (+0.07 points)

These minimal changes (<0.2 points) indicate that Facenet is highly robust to 8-bit quantization.

• Transface

– LFW Torch: FP32 68.49% to INT8 68.48% (–0.01 points)



– ONNX: FP32 67.15% to INT8 64.30% (–2.85 points on LFW), and larger drops on VGGFace2 (97.65% to
93.62%, –4.03 points) and CelebA (93.19% to 90.07%, –3.12 points).

Tabela II: Facenet test results

Dataset Engine FP32 INT8
1 LFW Torch 61.41% 61.27%
2 LFW ONNX 65.47% 65.54%
3 VGGFace2 Torch 92.62% 92.61%
4 VGGFace2 ONNX 96.66% 96.65%
5 CelebA Torch 80.06% 80.03%
6 CelebA ONNX 88.65% 88.59%

Tabela III: Transface test results

Dataset Engine FP32 INT8
1 LFW Torch 68.49% 68.48%
2 LFW ONNX 67.15% 64.3%
3 VGGFace2 Torch 99.26% 99.27%
4 VGGFace2 ONNX 97.65% 93.62%
5 CelebA Torch 95.81% 95.81%
6 CelebA ONNX 93.19% 90.07%

C. Facenet x Transface

When we place Facenet and Transface side by side across all experimental conditions, several important patterns
emerge from analysis of Table II and Table III:

1. Baseline Performance (FP32, Torch)

• On the LFW dataset, Transface achieves approximately 68.5% Rank-1 accuracy, outperforming Facenet’s
61.4% by over 7 percentage points as shown in Figure III. This gap reflects Transface’s stronger repre-
sentation power under full-precision inputs and the lighter preprocessing requirements of its transformer
backbone.

• A similar advantage holds on VGGFace2 (99.3% vs. 92.6%) and CelebA (95.8% vs. 80.1%) as shown in
Figure IV for VGGFace2 and Figure V for CelebA, demonstrating that Transface consistently extracts more
discriminative embeddings when quantization is not applied.

2. Impact of Conversion to ONNX (FP32, ONNX)

• Converting Facenet to ONNX yields a notable boost (e.g., LFW: 61.4% → 65.5%), narrowing the gap
with Transface under ONNX (Transface LFW: 67.2%). Here, Facenet closes to within 2 percentage points,
suggesting that its Inception-ResNet architecture benefits more from ONNX’s graph optimizations and
runtime kernels.

• On larger datasets like VGGFace2 and CelebA, Facenet’s conversion gains (4–8 points) reduce the perfor-
mance differential, though Transface still leads by about 1–4 points in FP32 ONNX mode.

3. Quantization Sensitivity (INT8)

• Torch Dynamic Quantization: Both models show minimal changes under Torch’s on-the-fly quantiza-
tion: Facenet drops by only 0.14 points on LFW; Transface is essentially unchanged (–0.01 points). This
indicates that both networks tolerate weight quantization when activations remain in floating point.

• ONNX Static Quantization: Here the divergence is stark. Facenet actually gains a slight 0.07 points
on LFW (65.47% → 65.54%), while Transface suffers a 2.85 pt loss (67.15% → 64.30%). On VGGFace2
and CelebA, Transface’s accuracy falls by 3–4 points, whereas Facenet remains within a 0.2 pt band of its
FP32 ONNX results.

4. Operational Takeaway

• Although Transface consistently delivers higher absolute accuracy in FP32, its performance under INT8
static quantization degrades noticeably. This suggests that transformer-based face encoders—while power-
ful—are more brittle when activations and weights are jointly quantized without further calibration or
fine-tuning.

• Facenet’s convolutional-residual design proves far more robust: it not only maintains its accuracy but, in
some cases, benefits slightly from ONNX’s low-precision optimizations. For deployment scenarios where
memory footprint and inference speed are critical, Facenet in ONNX INT8 mode offers the best balance of
stability and efficiency.

In summary, if raw accuracy is the sole criterion and full-precision hardware is available, Transface is the superior
choice. However, for resource-constrained environments requiring aggressive quantization, Facenet emerges as the
more reliable and consistent performer.



D. On-Disk Storage Savings

Converting each 512-dimensional embedding from 32-bit floats to 8-bit integers yields substantial reductions in file
size, as shown in Table IV.

Tabela IV: Embedding file sizes

Dataset FP32(MB) INT8(MB)
LFW 136 26

VGGFace2 1369 338
CelebA 2073 401

Tabela V: Accuracy Values INT

Engine Model LFW VGGFace2 CelebA
Torch FacenetFP32 61.3% 92.6% 80.0%
Torch FacenetINT8 61.3% 92.6% 80.0%
ONNX FacenetFP32 65.4% 96.6% 88.5%
ONNX FacenetINT8 65.4% 96.6% 88.5%
Torch TransfaceFP32 68.4% 99.2% 95.8%
Torch TransfaceINT8 68.4% 99.2% 95.8%
ONNX TransfaceFP32 67.1% 97.6% 93.1%
ONNX TransfaceINT8 64.2% 93.3% 90.0%

• On LFW, storage drops from 136 MB to 26 MB—a savings of 110 MB (≈ 81%).

• On VGGFace2, the largest dataset, embeddings shrink by 1,031 MB (≈ 75%), going from 1.37 GB down to just
338 MB.

• On CelebA, files fall by 1,672 MB (≈ 81%), from about 2.07 GB to 401 MB.

These reductions translate directly into lower storage costs and faster disk I/O during large-scale batch processing,
without any detectable change in Rank-1 accuracy when using INT8 embeddings. In practical terms, a system storing
embeddings for millions of faces could save terabytes of space simply by adopting this quantization strategy—making
it highly attractive for cloud deployments or edge devices with limited memory.

E. Summary

RQ1 : Quantization causes negligible drops for Facenet (<0.2 points) but noticeable drops for Transface (up to 4
points).

RQ2 : Torch dynamic quantization is gentler than ONNX static quantization for Transface; for Facenet, both are
effectively equivalent.

RQ3 : Facenet is more resilient to quantization than Transface, despite Transface’s higher baseline accuracy.

VII. Discussion

From the results presented, we can assess the experimentally measured recognition performance against the figures
reported in the reference articles. For the Facenet model, we achieved a maximum accuracy of 92.62% on Torch and
96.66% on ONNX—both in FP32 on the VGGFace2 dataset—which exceeds the accuracy originally reported in the
Facenet paper. For Transface, the original article reports a peak accuracy of 99.85%; in our experiments we observed
maximum accuracies of 99.27% on VGGFace2 and 95.81% on CelebA, both using Torch. These findings suggest that,
to improve face-identification accuracy, the best approach is to employ a model based on the most advanced methods
(e.g., Vision Transformers). However, converting and quantizing such newer models proves less efficient than applying
the same techniques to more established architectures, which actually see slight increases in accuracy. This may be
related to the deeper understanding of the behavior and characteristics of layers in well-studied networks.

The results also demonstrate that changing the way embedding values are represented reducing from 32-bit floats
to 8-bit integers—very effectively lowers on-disk storage requirements without degrading recognition performance as
shown in Figure II. This outcome is expected, since each value’s bit-width is reduced from 32 bits to 8 bits, and the
network’s output range of –1 to 1 is simply rescaled to –127 to 127.



Figura II: Drive file size



Figura III: LFW Success rate

Figura IV: VGGFace2 Success rate



Figura V: CelebA Success rate

VIII. Conclusion

This work set out to evaluate face-feature-vector generation models for person recognition by comparing architec-
tures with different technologies, measuring the impact of quantization, and assessing disk usage when altering the
data representation. The experiments demonstrated that:

• Using the newer model yields better recognition results;

• Quantizing Facenet has little impact on accuracy;

• Quantizing Transface degrades accuracy;

• Changing the data format reduces disk usage.

These findings indicate that more established models are inherently more robust to quantization and that em-
beddings can be stored using significantly less disk space. Among the limitations are the application of only two
quantization strategies, a single conversion approach, and evaluation solely on x86 hardware; future work could ex-
plore dynamic quantization on NVIDIA/TensorRT GPUs or ARM platforms. In summary, quantization proves most
effective when applied to well-established models, and modifying the vector data type can reduce disk usage by up to
80%.



Tabela VI: Arquitetura Facenet NN2
type output depth #1× 1 #3× 3 #3× 3 #5× 5 #5× 5 pool params FLOPS

size reduce reduce proj (p)
conv1 (7x7x3, 2) 112×112×64 1 9K 119M
max pool + norm 56×56×64 0 m 3×3, 2
inception (2) 56×56×192 2 64 192 115K 360M
norm + max pool 28×28×192 0 m 3×3, 2
inception (3a) 28×28×256 2 64 96 128 16 32 m, 32p 164K 128M
inception (3b) 28×28×320 2 64 96 128 32 64 L2, 64p 228K 179M
inception (3c) 14×14×640 2 0 128 256,2 32 64,2 m 3×3,2 398K 108M
inception (4a) 14×14×640 2 256 96 192 32 64 L2, 128p 545K 107M
inception (4b) 14×14×640 2 224 112 224 32 64 L2, 128p 595K 117M
inception (4c) 14×14×640 2 192 128 256 32 64 L2, 128p 654K 128M
inception (4d) 14×14×640 2 160 144 288 32 64 L2, 128p 722K 142M
inception (4e) 7×7×1024 2 0 160 256,2 64 128,2 m 3×3,2 717K 56M
inception (5a) 7×7×1024 2 384 192 384 48 128 L2, 128p 1.6M 78M
inception (5b) 7×7×1024 2 384 192 384 48 128 m, 128p 1.6M 78M
avg pool 1×1×1024 0
fully conn 1×1×128 1 131K 0.1M
L2 normalization 1×1×128 0
total 7.5M 1.6B
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