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Abstract. The reliability of file systems depends on mechanisms capable of pre-
serving data consistency in the presence of abrupt failures. Among the main
approaches adopted are Journaling and Copy-on-Write (CoW), which follow
distinct strategies to achieve this goal. This work presents a comparative analy-
sis of these techniques, exploring their conceptual foundations and practical
implementations. Journaling is examined through the Ext4 file system, highligh-
ting the role of JBD2 in the organization of transactions, commits, and recovery
after failures. In contrast, Copy-on-Write is studied based on OpenZFS, where
immutable block writes and the use of atomic commits ensure structural con-
sistency. The comparison shows that journaling preserves the traditional file
system architecture by adding a protection log, whereas CoW redefines the sys-
tem’s internal design, enabling advanced functionalities such as snapshots and
clones.

Resumo. A confiabilidade de sistemas de arquivos depende de mecanismos ca-
pazes de preservar a consistência dos dados diante de falhas abruptas. Entre as
principais abordagens adotadas estão o Journaling e o Copy-on-Write (CoW),
que seguem estratégias distintas para atingir esse objetivo. Este trabalho rea-
liza uma análise comparativa entre essas técnicas, explorando seus fundamen-
tos conceituais e suas implementações práticas. O journaling é examinado a
partir do sistema de arquivos Ext4, destacando o papel do JBD2 na organização
de transações, commits e recuperação após falhas. Em contraste, o Copy-on-
Write é estudado com base no OpenZFS. A escrita imutável de blocos e o uso
de commits atômicos garantem consistência estrutural. A comparação eviden-
cia que o journaling preserva a arquitetura tradicional do sistema de arquivos
ao adicionar um log de proteção, enquanto o CoW redefine o próprio desenho
interno do sistema, permitindo funcionalidades avançadas como snapshots e
clones.

1. Introdução

Em ambiente computacionais, falhas inesperadas, como quedas de energia, travamentos
do sistema operacional ou interrupções durante operações de escrita, podem comprometer
tanto a estrutura interna do sistema de arquivos quanto os dados armazenados. Por esse
motivo, diferente estratégias de proteção foram desenvolvidas com o objetivo de garantir
que o sistema permaneça recuperável e operacional mesmo após falhas abruptas.



Entre essas estratégias, destacam-se duas abordagens predominantes: a técnica
de Journaling, amplamente adotada por sistemas tradicionais, e o mecanismo de Copy-
on-Write (CoW), caracterı́stico de sistemas mais recentes, como ZFS [GIIS 2010,
The FreeBSD Project 2024, Dusseau and Dusseau 2013] e Btrfs [Btrfs Developers 2025].
Este trabalho apresenta os conceitos necessários para compreender essas abordagens, dis-
cutindo os princı́pios de consistência, os desafios envolvidos e as soluções que motivaram
a adoção de técnicas como Journaling e CoW.

2. Comparação Arquitetural
A implementação prática de Copy-on-Write (CoW) varia muito mais entre sistemas de
arquivos do que o journaling, isso porque o CoW não é um mecanismo isolado, mas
sim um paradigma estrutural que define a arquitetura do sistema de arquivos. Embora o
princı́pio de funcionamento seja comum, a forma como ele é implementado muda drasti-
camente entre sistemas de arquivos como ZFS, Btrfs, APFS, WAFL e F2FS, porque cada
um escolhe diferentes estruturas de árvores, polı́ticas de alocação, tamanhos de bloco, me-
canismos de transação, caches, controles de consistência e pipelines de escrita. O ZFS,
por exemplo, usa a DMU, uberblocks, o ZIL e um pipeline de escrita altamente estru-
turado, com checksums end-to-end; o Btrfs utiliza múltiplas B-trees, delayed refs e um
log tree separado; o APFS combina várias árvores lógicas, checkpoints e mecanismos de
clonagem de ranges; o F2FS mistura caracterı́sticas de log-structured com CoW parcial
por segmentos. Assim, o termo “Copy-on-Write” representa muito mais um conceito de
alto nı́vel do que um mecanismo padronizado.

O journaling, por outro lado, tem um comportamento muito mais uniforme por-
que sua função, registrar no journal as intenções de modificação, fazer flush do log, apli-
car alterações e marcar commit, é essencialmente a mesma em quase todos os sistemas
que o utilizam. Apesar de existirem modos diferentes, o modelo geral continua sendo o
de manter um log de redo/undo para garantir recuperação consistente após falhas, sem
alterar profundamente a estrutura interna do filesystem. Por isso, comparativamente, o
journaling varia pouco entre implementações, enquanto o CoW determina praticamente
todo o design interno de um sistema de arquivos e, consequentemente, apresenta enorme
diversidade técnica na prática.

3. Journaling
O journal é um log de alterações que o sistema de arquivos usa para proteger metadados
(e dados) contra inconsistências. Antes de aplicar mudanças permanentes às estruturas do
sistema de arquivos, registra-se no journal o suficiente para poder reaplicar (ou descartar)
as mudanças depois do reboot, de forma que o sistema fique consistente.

Para estudar esse mecanismo na prática, inclusive suas garantias, limites e
interações com o kernel e o hardware, este trabalho toma como exemplo o sistema de
arquivos Ext4 [Linux Kernel Documentation 2024], cujo subsistema de journaling cons-
titui um caso ainda relevante e bem documentado dentro do kernel Linux.

3.1. Ext4
O Ext4 (como Ext3) usa a camada de journaling JBD2 (Journaling Block Device v2)
[Oracle Linux 2020, LWN.net 2021, Linux FSDevel Mailing List 2019]. JBD2 é res-
ponsável pelo formato em disco do journal, pela gestão de transações, commits, revokes



e pelo replay do journal no boot. O driver do Ext4 no kernel usa a API do JBD2 para
agrupar alterações em transações e para forçar o sync do journal quando solicitado (por
exemplo em fsync).

3.2. Layout em disco

O journal é uma área especial, interna à própria partição Ext4 ou em um dispositivo ex-
terno, com um formato bem definido. No inı́cio fica o superbloco do journal, que contém
os metadados essenciais sobre o próprio journal, como tamanho, versão, número sequen-
cial das transações e diversas flags que indicam o estado atual. Cada transação registrada
começa com um bloco descritor, que lista exatamente quais blocos do filesystem fazem
parte daquela operação, apontando seus números e quantidades. Em seguida vêm os blo-
cos de dados, que são cópias dos blocos reais (de metadados e, dependendo do modo de
journaling, também blocos de dados de arquivos) que estão sendo temporariamente pro-
tegidos. Depois que todos os blocos necessários são gravados, o kernel escreve o bloco
de commit, um registro pequeno cuja presença e validade marcam que a transação foi
completada (checkpoint) com sucesso e pode ser reaplicada de forma segura durante a
recuperação. O journal também pode conter blocos de revogação, usados quando um
bloco que já havia sido registrado é modificado novamente antes do checkpoint. Esses
registros instruem o processo de recovery a ignorar blocos antigos para evitar aplicar da-
dos obsoletos. Quando habilitado, o mecanismo é reforçado por checksums, que cobrem
o conteúdo do journal para detectar corrupção e garantir que apenas transações ı́ntegras
sejam consideradas durante a recuperação.

3.3. Ciclo de vida de uma transação

O ciclo de vida de uma transação no JBD2 descreve como o sistema de arquivos organiza,
registra e aplica modificações de forma segura, desde sua criação no kernel até os pro-
cessos de commit, checkpoint e recuperação após falhas, garantindo consistência mesmo
diante de interrupções abruptas.

3.3.1. Inı́cio da transação

Uma transação no JBD2 começa quando o kernel, por meio do Ext4, identifica que precisa
agrupar um conjunto de modificações relacionadas, por exemplo, criar um inode, alterar
bitmaps de blocos livres, atualizar entradas de diretório ou ajustar ponteiros de blocos.
Em vez de realizar essas alterações diretamente no disco, uma nova transação é iniciada,
que serve como uma fronteira lógica garantindo que essas mudanças de metadados sejam
aplicadas de forma consistente.

3.3.2. Preparação / coleta de blocos

Antes que qualquer dado seja gravado no journal, o Ext4 identifica e coleta todos os
blocos que serão alterados (inodes, bitmaps, diretórios e blocos de indireção). Esses blo-
cos são copiados para buffers que servirão como a versão “pré-escrita” no journal. No
modo data=journal, tanto dados quanto metadados entram no journal. Nos mo-
dos data=ordered e data=writeback, apenas metadados são registrados (com a



diferença de que ordered garante que os dados sejam escritos no disco antes do com-
mit).

3.3.3. Escrita no journal (fase de logging)

Após reunir os blocos relevantes, o kernel inicia a escrita no journal. Essa fase segue uma
ordem estrita: primeiro são gravados os blocos de descriptor, que listam quais blocos
pertencem à transação; em seguida vêm os blocos de dados propriamente ditos (metada-
dos ou dados completos, dependendo do modo). Essa sequência garante que, durante a
recuperação, o kernel saiba exatamente o que aplicar e em que ordem.

3.3.4. Commit

Finalmente, quando todos os blocos foram enviados ao journal, o sistema grava o bloco de
commit, que é a marcação final indicando que a transação foi registrada com sucesso. Se
checksums estiverem habilitados, eles são computados e incluı́dos para permitir validação
durante o replay. O commit é o ponto crı́tico no ciclo de vida da transação. Quando
o bloco de commit é escrito e confirmado no dispositivo de armazenamento, idealmente
com flushes que garantem persistência real, a transação passa a ser considerada consoli-
dada. Isso significa que, mesmo que ocorra uma falha logo em seguida, as informações
necessárias para restaurar o filesystem para esse ponto consistente já estão asseguradas
no journal. É apenas após essa etapa que o Ext4 pode planejar a atualização dos blocos
originais em seus locais definitivos.

3.3.5. Checkpoint / writeback para o filesystem

Após o commit, o kernel pode, de forma imediata ou adiada, iniciar o processo de check-
point. Esse procedimento aplica os blocos registrados no journal aos seus locais finais no
filesystem, substituindo os blocos antigos pelos novos. Por exemplo, o bitmap atualizado é
escrito no bloco correspondente do grupo, e o inode recém-modificado é colocado em sua
posição na inode table. Quando todos os blocos da transação atual foram devidamente
aplicados, o espaço correspondente no journal pode ser liberado para reutilização. Se
algum bloco tiver sido modificado repetidamente antes de ser submetido ao checkpoint,
os mecanismos de revogação e ordenação evitam que versões antigas sejam reaplicadas
durante o recovery.

3.3.6. Recovery (após crash)

Se ocorrer uma falha crı́tica antes que as transações sejam executadas e totalmente salvas,
o mount subsequente do filesystem ativa o processo de recovery. O kernel lê o journal do
Ext4 e reexecuta apenas as transações cujo commit foi encontrado e validado, ignorando
qualquer transação incompleta. O replay segue as listas de descriptor para saber quais
blocos aplicar e usa os registros de revogação para pular blocos que foram invalidados por
mudanças posteriores. Com isso, o filesystem é restaurado para o estado consistente mais



recente que havia sido totalmente registrado no journal, garantindo integridade mesmo
frente a falhas abruptas.

3.4. Modos de journaling

O Ext4 [Baeldung 2022] oferece três modos principais de journaling, cada um refletindo
uma estratégia para balancear integridade e desempenho. Esses modos determinam se
apenas metadados ou também dados de arquivos serão registrados no journal, bem como
a ordem em que os blocos são transferidos para o disco.

No modo data=journal, o mais seguro porém também o mais custoso, tanto
os metadados quanto os blocos de dados de arquivos são primeiro escritos integralmente
no journal antes de serem aplicados aos seus locais definitivos. Isso garante que, em caso
de crash, todo o conteúdo necessário para restaurar o estado mais recente do filesystem
está preservado no journal, reduzindo praticamente a zero o risco de perda ou incon-
sistência de dados. O lado negativo é o impacto significativo no desempenho, já que todo
bloco modificado é gravado duas vezes (no journal e depois no destino), e técnicas como
delayed allocation são desativadas. Assim, esse modo costuma ser recomendado
apenas em cenário de máxima exigência de integridade.

O modo data=ordered, que é o padrão do Ext4, fornece um equilı́brio entre
segurança e desempenho. Apenas os metadados são registrados no journal, mas o sistema
garante que todos os blocos de dados relacionados a esses metadados sejam gravados no
disco antes do commit da transação no journal. Isso evita situações em que um inode
atualizado aponta para blocos que ainda não foram devidamente escritos ou que contêm
dados antigos, garantindo certa proteção sem penalidades tão severas no throughput de
escrita.

Por fim, o modo data=writeback mantém o journaling apenas para metada-
dos, porém sem impor qualquer relação de ordenação entre a escrita de dados e o commit.
Essa ausência de garantia significa que, após um crash, os metadados poderão estar cor-
retos, mas o conteúdo de arquivos pode não refletir a última modificação, o chamado stale
data. Apesar desse risco, o modo writeback oferece o melhor desempenho entre os três,
sendo útil em cenários em que a integridade dos dados em si não é crı́tica e a prioridade é
maximizar a velocidade de I/O.

Esses modos definem o comportamento de segurança do Ext4 e são o principal
mecanismo para ajustar o trade-off entre consistência e desempenho

3.5. Checksums do journal

O Ext4 tem suporte a checksums no journal. Cada bloco de journal pode ter checksum
associado, isso protege contra corrupções silenciosas (mı́dia danificada ou bugs). O kernel
e ferramentas como e2fsprogs entendem e usam esse mecanismo quando a funcionali-
dade está ativa (journal inum/journal checksum e flags relevantes). Checksums
são especialmente importantes porque o replay do journal confia que o log esteja ı́ntegro.

3.6. Delayed allocation e interações com journaling

O Ext4 emprega a técnica de delayed allocation (delalloc) para melhorar o desempe-
nho de escrita. Em vez de alocar imediatamente os blocos fı́sicos no disco, o kernel adia
essa decisão até o momento do flush. Isso permite escolher blocos contı́guos e reduzir



fragmentação. No entanto, esse comportamento interage diretamente com o mecanismo
de journaling e, portanto, precisa ser coordenado para garantir consistência.

No modo data=journal, o uso de delalloc é praticamente incompatı́vel.
Como todos os dados precisam ser registrados no journal imediatamente, não há como
adiar a alocação fı́sica: o kernel precisa saber onde os dados ficarão e copiá-los para
o journal sem atraso. Por isso, o Ext4 normalmente desativa delalloc nesse modo,
sacrificando otimizações em favor da integridade.

No modo data=ordered, que depende da garantia de que os blocos de dados
sejam gravados no disco antes do commit dos metadados, o delayed allocation pode in-
troduzir um risco aparente: quando chega o momento de realizar o commit da transação,
parte dos dados relacionados ainda pode não estar fisicamente escrita. Para resolver isso, o
Ext4 implementa mecanismos que rastreiam quais blocos de dados precisam ser forçados
ao disco antes do commit do journal. Quando as estruturas de metadados da transação
estão prestes a ser registradas, o kernel dispara um flush explı́cito dos dados associados,
garantindo a ordenação correta. Assim, delalloc continua habilitado, mas com salva-
guardas que preservam o princı́pio do modo ordered.

3.7. Replay e limites do recovery
Quando o kernel detecta, na montagem de um volume Ext4, que existe um journal com
entradas não resolvidas, a camada de journaling JBD2 entra em ação para reaplicar
transações que estão no commit (replay). A intenção do replay é restaurar as estruturas
do sistema de arquivos ao ponto consistente mais recente que foi totalmente registrado no
journal.

3.7.1. Varredura inicial e construção do replay

JBD2 percorre o log circular lendo headers de bloco de journal. Para cada entrada, dis-
tingue tipos (descriptor, data, commit, revoke). A camada valida: o tipo do bloco (header
magic/version), o sequence number associado à transação e o checksums do bloco (he-
ader e payload). Apenas transações cujo bloco de commit foi encontrado e cuja integri-
dade (checksums) está correta são candidatas ao replay. Entradas com checksum inválido,
header corrompido ou sem commit são tratadas como incompletas e ignoradas.

3.7.2. Tratamento de revokes

Antes de aplicar blocos, o JBD2 processa a área de revogation records associada à
transação (ou à sequência), que lista blocos que foram invalidados (revoked) posterior-
mente. Para cada bloco listado no revoke table, o JBD2 marca o respectivo buffer como
inválido/ignorável para replay. Isso evita que versões antigas sejam reaplicadas quando
uma versão mais nova já foi escrita no local definitivo antes do crash.

3.7.3. Ordem de replay e atomicidade lógica

O replay é aplicado por transação em ordem crescente de sequence number, respeitando a
ordem global do journal. Dentro de uma transação, os descriptors já impõem uma ordem



lógica; entretanto, o replay pode agrupar submissões de I/O para ganho de throughput,
desde que mantenha a semântica exigida (i.e., aplicar os blocos da transação antes de
considerar a transação “done”). O objetivo é reconstituir o mesmo efeito que o checkpoint
teria produzido se o sistema não tivesse falhado.

4. Copy-on-Write
Copy-on-write (CoW) em sistemas de arquivos é uma técnica na qual nenhuma
modificação é feita in-place nos blocos existentes. Em vez disso, qualquer alteração em
dados ou metadados provoca a alocação de novos blocos, seguida da gravação da versão
modificada nesses blocos recém-alocados, e somente depois uma atualização atômica de
ponteiros faz com que a árvore de metadados passe a referenciar a nova versão, garantindo
consistência estrutural mesmo em presença de falhas de energia, pois nenhuma estrutura
ancestral é sobrescrita até que todos os seus filhos atualizados estejam persistidos.

Para estudar este mecanismo em profundidade, incluindo alocação, encadeamento
de blocos, lógica de atualização transacional e interação com o mecanismo de escrita,
utilizaremos a implementação do OpenZFS [OpenZFS Project 2023] como referência
prática.

4.1. Fluxo de escrita

O fluxo de escrita no OpenZFS descreve a transformação de uma operação lógica de
escrita em atualizações fı́sicas persistentes, organizadas segundo o modelo de Copy-on-
Write e consolidadas por meio de Transaction Groups. As etapas a seguir detalham esse
processo desde a entrada no kernel até o commit atômico do estado do sistema.

4.1.1. Entrada da escrita

Quando um processo emite uma chamada de escrita via syscalls como write ou
pwrite, o fluxo desce pelo VFS (Virtual File System) até alcançar o ZFS POSIX Layer
(ZPL). O ZPL converte a operação POSIX em uma operação nativa da DMU (Data Ma-
nagement Unit), a camada lógica interna do OpenZFS responsável pela manipulação de
objetos, que incluem arquivos, diretórios, estruturas de metadados, árvores de indireção
e atributos estendidos. Ao receber a solicitação de escrita, a DMU realiza o mapeamento
do objeto lógico para um conjunto de dmu bufs. Cada dmu buf representa um bloco
lógico gerenciado pela DMU. Caso o bloco correspondente ainda não tenha sido carre-
gado, ele é lido do armazenamento ou inicializado como um bloco vazio no cache ARC
(Adaptive Replacement Cache).

Ao modificar um dmu buf, a DMU marca esse buffer como dirty (sujos), ou
seja, como parte de um conjunto de alterações pendentes. Esses buffers sujos não são
imediatamente escritos no disco: eles residem no ARC, ou no L2ARC caso a memória
principal seja insuficiente para acomodar todos os dados em cache (embora metadados
sujos permaneçam sempre no ARC). A DMU organiza essas alterações em estruturas co-
nhecidas como dirty records, cada uma associada a um bloco sujo, a um checksum futuro
e ao TXG ao qual a alteração pertencerá. A escrita é, portanto, inteiramente absorvida
pela memória no primeiro momento. Somente no ponto de sincronização os dados efeti-
vamente descem para o pipeline fı́sico.



4.1.2. Acúmulo por Transaction Group (TXG)

O ZFS organiza todas as atualizações em Transaction Groups (TXGs), que são intervalos
contı́nuos de mudanças agrupadas logicamente. Um TXG está sempre em um dentre três
estados: open, quiescing e syncing. Durante a fase open, todas as modificações vindas do
ZPL DMU são aceitas e registradas como dirty records vinculados àquele TXG. Quando
o TXG atinge limites de tempo (tipicamente 5 segundos), memória ou de quantidade
de dados sujos, ele migra para a fase quiescing. Nessa fase, o TXG deixa de aceitar
novas modificações, e todas as threads de escrita passam a contribuir para o próximo
TXG aberto. Já o TXG anterior é então entregue ao syncing thread, uma thread kernel
exclusiva do ZFS responsável por transformar as alterações lógicas (dirty records, listas
de atualização e modificações em árvores) em um conjunto final de blocos fı́sicos a serem
gravados.

Esse design garante atomicidade de larga escala: cada TXG é um commit indi-
visı́vel de todo o estado do pool. Nada dentro de um TXG se torna visı́vel até que o
uberblock correspondente ao TXG seja gravado com sucesso. Isso cria semântica similar
à de um ”epoch”de atomicidade, garantindo consistência sem exigir journaling tradicio-
nal.

4.1.3. DMU → ZIO pipeline

Com o TXG entrando em modo syncing, os dirty records são convertidos em operações
fı́sicas de I/O chamadas ZIOs (ZFS I/O requests). O subsistema ZIO funciona como
uma pipeline modular de transformação de blocos, onde cada estágio corresponde a
uma operação: primeira compressão (LZ4, ZSTD, GZIP, etc), depois checksumming
(Fletcher4, SHA256, etc), criptografia opcional se configurado, montagem de indireções
ou gang blocks caso um bloco grande precise ser subdividido, e seleção dos vdevs fı́sicos
onde cada bloco será alocado.

O ZIO pipeline estrutura cada I/O como um grafo de dependências assı́ncronas,
no qual cada etapa só dispara quando todas as etapas predecessoras completaram. Assim,
um ZIO de write pode gerar ZIOs filhos que representam compressão, checksum, cópia
de dados, escrita fı́sica e atualizações de metadados. Todas essas operações são agendadas
no taskq (conjunto de threads do ZFS), com paralelismo profundo e alta afinidade com
o hardware subjacente. Em caso de falha de um vdev (por exemplo, setor defeituoso
ou dispositivo morto), o ZIO tenta automaticamente caminhos alternativos ou recupera
réplicas já garantidas pelo RAID-Z ou espelhamento.

4.1.4. Alocação de blocos

Antes de enviar um bloco ao dispositivo fı́sico, o ZFS precisa alocar espaço para ele. Cada
vdev é dividido em dezenas ou centenas de metaslabs, pedaços lógicos do espaço
fı́sico com seus próprios space maps. Cada metaslab contém um histórico de alocações
representado como uma sequência de entradas log-estruturadas (alloc / free) que formam
o space map, complementado por um in-memory range tree construı́do durante a aber-
tura ou criação do pool. O alocador consulta esses range trees para encontrar regiões



livres adequadas, seguindo polı́ticas como first-fit, largest-free-range ou rotacionamento
heurı́stico entre metaslabs (metaslab groups), de forma a mitigar fragmentação a longo
prazo.

Por se tratar de um sistema CoW puro, o ZFS nunca sobrescreve blocos existen-
tes. Cada escrita aloca um bloco novo, e o antigo permanece válido até que nenhum
block pointer o referencie (momento no qual o sistema pode liberá-lo, usualmente du-
rante o processo de spa sync). Isso oferece segurança, atomicidade e facilita snapshots
e clones: como as versões antigas dos blocos continuam existindo sem modificação, os
snapshots são apenas uma imobilização de seus block pointers.

4.1.5. Checksums e block pointers

Quando um bloco é finalizado pelo pipeline ZIO, seu checksum é calculado e o valor
resultante é inserido no block pointer que faz referência a ele. O block pointer é uma
estrutura rica contendo múltiplos campos: endereços fı́sicos (DVA — Data Virtual Ad-
dress), tamanho do bloco, tamanho lógico, tipo de compressão usada, checksums, nı́vel
de indireção e flags adicionais (como birth txg, fill count e flags de criptografia). A árvore
de block pointers forma a estrutura hierárquica do arquivo: data blocks são referenciados
por indirect blocks, que são referenciados por nı́veis superiores, culminando no root block
pointer do dataset. Essa estrutura lembra uma B-tree, mas é otimizada para CoW e não
possui balanceamento dinâmico tradicional, em vez disso, substitui nós inteiros durante o
sync.

Cada alteração descendente (em um bloco de dados) naturalmente produz
alterações ascendentes (novos block pointers nos indirect blocks), pois cada bloco modifi-
cado tem um novo checksum e novo endereço fı́sico. Isso cria uma escalada de mudanças
até o rootbp, que é o ponto de entrada do dataset no uberblock.

4.1.6. Commit atômico: uberblocks e TXG sync

Quando todo o conjunto de blocos do TXG é escrito, incluindo os dados e seus metadados
derivados (indirect blocks, dnodes, metadados do dataset, MOS — Meta-Object Set), o
ZFS prepara o commit atômico final: a escrita do uberblock. Cada vdev contém um
conjunto circular de uberblocks gravados em sua label. Cada uberblock registra, entre
outros itens, o número do TXG (ub txg), timestamps, e principalmente o rootbp do
pool, que aponta para o topo da árvore de metadados do MOS. A escrita de um uberblock
é extremamente pequena (algumas centenas de bytes) e é feita somente após todo o resto
ter sido persistido.

O mecanismo de atomicidade é brutalmente simples: apenas o uberblock com
maior TXG válido representa o estado mais recente do pool. Em caso de crash durante o
sync, o novo uberblock não será escrito ou estará inconsistente, e na montagem seguinte
o ZFS automaticamente escolherá o uberblock anterior, cujo TXG é menor mas válido.
Isso garante que todas as operações do TXG sejam aplicadas integralmente ou que ne-
nhuma delas seja efetivada. Esse modelo elimina a necessidade de journaling tradicional
e fornece uma consistência transacional intrı́nseca baseada na imutabilidade de blocos.



4.2. Como o COW produz snapshots e clones “instantâneos”

O mecanismo de snapshots e clones no OpenZFS é uma consequência direta e inevitável
do seu modelo de Copy-on-Write aplicado à árvore inteira de metadados, e não uma funci-
onalidade “extra” adicionada sobre o sistema de arquivos. Em ZFS, snapshots não exigem
cópia de dados nem reescrita de blocos existentes; eles emergem naturalmente do fato de
que block pointers são imutáveis após o commit de um TXG e que nenhuma escrita ocorre
in-place.

Quando um snapshot é criado, o ZFS executa uma operação puramente de meta-
dados: ele captura o root block pointer atual do dataset, isto é, o ponteiro que referencia
a raiz da árvore de metadados (dnodes, indirect blocks e data blocks) naquele exato TXG,
e o registra como pertencente a um snapshot. Internamente, isso ocorre no MOS, onde
existe uma lista ordenada de snapshots associada a cada dataset, cada um identificado
por um TXG especı́fico. O snapshot, portanto, é essencialmente um nome simbólico as-
sociado a um conjunto de block pointers já existentes, sem que nenhum bloco adicional
precise ser alocado.

A partir desse momento, os block pointers que pertencem à árvore capturada pas-
sam a ser considerados logicamente imutáveis no contexto daquele snapshot. Isso não
significa que o ZFS marque blocos fı́sicos como read-only no disco; em vez disso, a imu-
tabilidade é garantida estruturalmente pelo modelo COW: qualquer modificação futura
em qualquer arquivo ou metadado do dataset ativo jamais sobrescreverá esses blocos,
pois toda escrita aloca novos blocos e produz novos block pointers. Assim, o snapshot
continua apontando para os blocos antigos, enquanto o dataset ativo passa a apontar para
blocos novos. Essa separação ocorre automaticamente, sem necessidade de rastreamento
explı́cito de versões por bloco.

É por isso que snapshots recém-criados ocupam zero bytes adicionais: eles apenas
adicionam referências (block pointers) para blocos já existentes. O consumo de espaço
cresce apenas quando o dataset ativo começa a modificar dados que eram anteriormente
referenciados pelo snapshot. Cada modificação gera novos blocos via COW, enquanto
os blocos antigos permanecem vivos porque ainda são referenciados pelo snapshot. O
espaço “usado pelo snapshot” é, na realidade, o espaço dos blocos que deixaram de ser o
dataset ativo e passou a referenciar versões novas.

Do ponto de vista interno, isso é implementado por meio de contagem implı́cita
de referências. Um bloco fı́sico só pode ser liberado quando nenhum block pointer em
nenhuma árvore ativa (dataset ativo, snapshots ou clones) apontam para ele. O processo
de liberação ocorre durante o spa sync, quando o ZFS percorre as estruturas de meta-
dados e identifica blocos cuja última referência foi removida. Até lá, o bloco permanece
alocado no metaslab correspondente, mesmo que o dataset ativo já não o utilize mais.

Clones são uma extensão direta desse mesmo mecanismo. Um clone é criado a
partir de um snapshot e consiste em um novo dataset cujo root block pointer inicial é
exatamente o mesmo rootbp do snapshot de origem. Em outras palavras, o clone e o
snapshot começam apontando para a mesma árvore completa de metadados e dados. No
instante da criação, o clone não possui nenhum bloco exclusivo; todo o seu conteúdo é
compartilhado com o snapshot. A partir desse ponto, qualquer modificação feita no clone
segue exatamente o mesmo fluxo COW descrito anteriormente: novos blocos são aloca-



dos, novos block pointers são criados, e apenas o clone passa a referenciá-los, enquanto o
snapshot e outros clones continuam apontando para os blocos antigos.

Essa arquitetura implica uma propriedade importante: clones e snapshots compar-
tilham dados de forma transitiva e estrutural, não por meio de um mecanismo explı́cito
de deduplicação. O compartilhamento existe porque os block pointers são idênticos, não
porque o sistema detecta igualdade de conteúdo. Isso torna o compartilhamento extre-
mamente barato em termos de metadados e elimina a necessidade de tabelas globais de
referência como ocorre em sistemas de dedup clássicos. Ao mesmo tempo, isso signi-
fica que o compartilhamento só ocorre em granularidade de bloco e apenas enquanto os
ponteiros forem compartilhados; uma vez que um bloco é modificado, a divergência é
permanente.

Um ponto crı́tico é que, diferentemente de sistemas como Btrfs ou XFS com re-
flinks, o OpenZFS não implementa Copy-on-Write por arquivo isolado (per-file reflink).
Não existe uma operação equivalente a cp --reflink que crie duas entradas de di-
retório apontando para os mesmos blocos de dados de forma independente. Em ZFS, o
COW opera no nı́vel de datasets inteiros, e o compartilhamento é viabilizado exclusiva-
mente via snapshots e clones. Isso não é uma limitação acidental, mas uma consequência
direta do design da DMU e da forma como dnodes e block pointers são organizados. In-
troduzir reflinks por arquivo exigiria mudanças profundas na semântica de referência de
blocos e na contabilidade de espaço, razão pela qual o tema aparece apenas como dis-
cussões e propostas experimentais, e não como funcionalidade estável.

Outro efeito importante desse modelo é que snapshots participam integralmente
da semântica de consistência do ZFS. Como o snapshot captura uma árvore inteira de
block pointers pertencente a um TXG especı́fico, ele representa um estado totalmente
consistente do sistema de arquivos, equivalente a um ponto de commit atômico. Não
existem snapshots “parciais” ou “inconsistentes”. Isso os torna ideais para backup in-
cremental, replicação (zfs send/receive) e rollback confiável, pois cada snapshot
corresponde exatamente a um estado que já foi confirmado via uberblock.

5. Conclusão
Ao longo deste trabalho, foi possı́vel analisar de forma detalhada e comparativa os dois
principais paradigmas de consistência empregados em sistemas de arquivos modernos: o
journaling e o Copy-on-Write. A partir do estudo do Ext4 e de sua camada de journaling
JBD2, observou-se que o journaling atua como um mecanismo de proteção acoplado a
um modelo tradicional de escrita in-place, oferecendo garantias de recuperabilidade por
meio do registro antecipado das intenções de modificação. Essa abordagem apresenta
comportamento relativamente uniforme entre diferentes implementações, com comple-
xidade delimitada e previsı́vel, permitindo ao administrador ajustar o compromisso entre
desempenho e integridade por meio de modos de operação. Em contrapartida, suas garan-
tias estão fortemente ligadas à correta ordenação de escritas e à confiabilidade do journal,
além de não eliminar completamente certas classes de inconsistência lógica nos dados.

Por outro lado, o estudo do Copy-on-Write a partir do OpenZFS evidenciou que
essa técnica não se limita a um mecanismo isolado, mas define a própria arquitetura do
sistema de arquivos. Ao evitar qualquer sobrescrita in-place e basear a persistência em
commits atômicos de grandes conjuntos de modificações, o ZFS fornece consistência es-



trutural intrı́nseca, verificação de integridade de ponta a ponta e recuperação automática
sem necessidade de replay de logs tradicionais. Esse modelo, embora mais complexo em
termos de implementação e com custos potenciais de fragmentação, viabiliza de forma
natural funcionalidades avançadas como snapshots e clones instantâneos, que emergem
diretamente da imutabilidade dos blocos e da organização da árvore de metadados.

Dessa forma, a comparação demonstra que journaling e Copy-on-Write represen-
tam filosofias distintas de projeto: enquanto o journaling busca adicionar confiabilidade
a um modelo clássico de sistemas de arquivos, o CoW reconstrói esse modelo a partir de
princı́pios transacionais.
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