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Abstract. The reliability of file systems depends on mechanisms capable of pre-
serving data consistency in the presence of abrupt failures. Among the main
approaches adopted are Journaling and Copy-on-Write (CoW), which follow
distinct strategies to achieve this goal. This work presents a comparative analy-
sis of these techniques, exploring their conceptual foundations and practical
implementations. Journaling is examined through the Ext4 file system, highligh-
ting the role of JBD2 in the organization of transactions, commits, and recovery
after failures. In contrast, Copy-on-Write is studied based on OpenZFS, where
immutable block writes and the use of atomic commits ensure structural con-
sistency. The comparison shows that journaling preserves the traditional file
system architecture by adding a protection log, whereas CoW redefines the sys-
tem’s internal design, enabling advanced functionalities such as snapshots and
clones.

Resumo. A confiabilidade de sistemas de arquivos depende de mecanismos ca-
pazes de preservar a consisténcia dos dados diante de falhas abruptas. Entre as
principais abordagens adotadas estdo o Journaling e o Copy-on-Write (CoW),
que seguem estratégias distintas para atingir esse objetivo. Este trabalho rea-
liza uma andlise comparativa entre essas técnicas, explorando seus fundamen-
tos conceituais e suas implementagées prdticas. O journaling é examinado a
partir do sistema de arquivos Ext4, destacando o papel do JBD2 na organizagdo
de transacoes, commits e recuperagdo apos falhas. Em contraste, o Copy-on-
Write é estudado com base no OpenZFS. A escrita imutdvel de blocos e o uso
de commits atomicos garantem consisténcia estrutural. A comparagdo eviden-
cia que o journaling preserva a arquitetura tradicional do sistema de arquivos
ao adicionar um log de protecdo, enquanto o CoW redefine o préprio desenho
interno do sistema, permitindo funcionalidades avangcadas como snapshots e
clones.

1. Introducao

Em ambiente computacionais, falhas inesperadas, como quedas de energia, travamentos
do sistema operacional ou interrup¢des durante operacdes de escrita, podem comprometer
tanto a estrutura interna do sistema de arquivos quanto os dados armazenados. Por esse
motivo, diferente estratégias de protecao foram desenvolvidas com o objetivo de garantir
que o sistema permaneca recuperavel e operacional mesmo ap0s falhas abruptas.



Entre essas estratégias, destacam-se duas abordagens predominantes: a técnica
de Journaling, amplamente adotada por sistemas tradicionais, € 0 mecanismo de Copy-
on-Write (CoW), caracteristico de sistemas mais recentes, como ZFS [GIIS 2010,
The FreeBSD Project 2024, Dusseau and Dusseau 2013] e Btrfs [Btrfs Developers 2025].
Este trabalho apresenta os conceitos necessarios para compreender essas abordagens, dis-
cutindo os principios de consisténcia, os desafios envolvidos e as solu¢des que motivaram
a adog¢do de técnicas como Journaling e CoW.

2. Comparacao Arquitetural

A implementacdo préitica de Copy-on-Write (CoW) varia muito mais entre sistemas de
arquivos do que o journaling, isso porque o CoW ndo é um mecanismo isolado, mas
sim um paradigma estrutural que define a arquitetura do sistema de arquivos. Embora o
principio de funcionamento seja comum, a forma como ele é implementado muda drasti-
camente entre sistemas de arquivos como ZFS, Btrfs, APFS, WAFL e F2FS, porque cada
um escolhe diferentes estruturas de arvores, politicas de aloca¢do, tamanhos de bloco, me-
canismos de transacdo, caches, controles de consisténcia e pipelines de escrita. O ZFS,
por exemplo, usa a DMU, uberblocks, o ZIL e um pipeline de escrita altamente estru-
turado, com checksums end-to-end; o Btrfs utiliza multiplas B-trees, delayed refs e um
log tree separado; o APFS combina varias arvores logicas, checkpoints e mecanismos de
clonagem de ranges; o F2FS mistura caracteristicas de log-structured com CoW parcial
por segmentos. Assim, o termo “Copy-on-Write” representa muito mais um conceito de
alto nivel do que um mecanismo padronizado.

O journaling, por outro lado, tem um comportamento muito mais uniforme por-
que sua fungdo, registrar no journal as inten¢des de modificacdo, fazer flush do log, apli-
car alteragOes e marcar commit, é essencialmente a mesma em quase todos os sistemas
que o utilizam. Apesar de existirem modos diferentes, o modelo geral continua sendo o
de manter um log de redo/undo para garantir recuperagdo consistente apds falhas, sem
alterar profundamente a estrutura interna do filesystem. Por isso, comparativamente, o
Jjournaling varia pouco entre implementacdes, enquanto o CoW determina praticamente
todo o design interno de um sistema de arquivos e, consequentemente, apresenta enorme
diversidade técnica na pratica.

3. Journaling

O journal é um log de alteracdes que o sistema de arquivos usa para proteger metadados
(e dados) contra inconsisténcias. Antes de aplicar mudangas permanentes as estruturas do
sistema de arquivos, registra-se no journal o suficiente para poder reaplicar (ou descartar)
as mudancas depois do reboot, de forma que o sistema fique consistente.

Para estudar esse mecanismo na pratica, inclusive suas garantias, limites e
interacoes com o kernel e o hardware, este trabalho toma como exemplo o sistema de
arquivos Ext4 [Linux Kernel Documentation 2024], cujo subsistema de journaling cons-
titui um caso ainda relevante e bem documentado dentro do kernel Linux.

3.1. Ext4

O Ext4 (como Ext3) usa a camada de journaling JBD2 (Journaling Block Device v2)
[Oracle Linux 2020, LWN.net 2021, Linux FSDevel Mailing List 2019]. JBD2 € res-
ponsavel pelo formato em disco do journal, pela gestdo de transagdes, commits, revokes



e pelo replay do journal no boot. O driver do Ext4 no kernel usa a API do JBD2 para
agrupar alteracOes em transacOes e para forcar o sync do journal quando solicitado (por
exemplo em fsync).

3.2. Layout em disco

O journal é uma drea especial, interna a propria particdo Ext4 ou em um dispositivo ex-
terno, com um formato bem definido. No inicio fica o superbloco do journal, que contém
os metadados essenciais sobre o proprio journal, como tamanho, versao, nimero sequen-
cial das transacdes e diversas flags que indicam o estado atual. Cada transagao registrada
comega com um bloco descritor, que lista exatamente quais blocos do filesystem fazem
parte daquela operacao, apontando seus niumeros e quantidades. Em seguida vém os blo-
cos de dados, que s@o copias dos blocos reais (de metadados e, dependendo do modo de
journaling, também blocos de dados de arquivos) que estao sendo temporariamente pro-
tegidos. Depois que todos os blocos necessarios sdao gravados, o kernel escreve o bloco
de commit, um registro pequeno cuja presenca e validade marcam que a transacao foi
completada (checkpoint) com sucesso e pode ser reaplicada de forma segura durante a
recuperacdo. O journal também pode conter blocos de revogacao, usados quando um
bloco que ja havia sido registrado é modificado novamente antes do checkpoint. Esses
registros instruem o processo de recovery a ignorar blocos antigos para evitar aplicar da-
dos obsoletos. Quando habilitado, o0 mecanismo é refor¢cado por checksums, que cobrem
o conteudo do journal para detectar corrupcao e garantir que apenas transagoes integras
sejam consideradas durante a recuperacao.

3.3. Ciclo de vida de uma transacao

O ciclo de vida de uma transac¢do no JBD2 descreve como o sistema de arquivos organiza,
registra e aplica modificagdes de forma segura, desde sua criacdo no kernel até os pro-
cessos de commit, checkpoint e recuperacdo ap6s falhas, garantindo consisténcia mesmo
diante de interrup¢des abruptas.

3.3.1. Inicio da transacao

Uma transagdo no JBD2 comeca quando o kernel, por meio do Ext4, identifica que precisa
agrupar um conjunto de modificagdes relacionadas, por exemplo, criar um inode, alterar
bitmaps de blocos livres, atualizar entradas de diretério ou ajustar ponteiros de blocos.
Em vez de realizar essas alteracdes diretamente no disco, uma nova transacdo € iniciada,
que serve como uma fronteira légica garantindo que essas mudangas de metadados sejam
aplicadas de forma consistente.

3.3.2. Preparacao / coleta de blocos

Antes que qualquer dado seja gravado no journal, o Ext4 identifica e coleta todos os
blocos que serdo alterados (inodes, bitmaps, diretérios e blocos de indirecdo). Esses blo-
cos sdo copiados para buffers que servirdo como a versao “pré-escrita” no journal. No
modo data=journal, tanto dados quanto metadados entram no journal. Nos mo-
dos data=ordered e data=writeback, apenas metadados sdo registrados (com a



diferenca de que ordered garante que os dados sejam escritos no disco antes do com-
mit).

3.3.3. Escrita no journal (fase de logging)

Ap0s reunir os blocos relevantes, o kernel inicia a escrita no journal. Essa fase segue uma
ordem estrita: primeiro sao gravados os blocos de descriptor, que listam quais blocos
pertencem a transagdo; em seguida vém os blocos de dados propriamente ditos (metada-
dos ou dados completos, dependendo do modo). Essa sequéncia garante que, durante a
recuperagdo, o kernel saiba exatamente o que aplicar e em que ordem.

3.3.4. Commit

Finalmente, quando todos os blocos foram enviados ao journal, o sistema grava o bloco de
commit, que é a marcacao final indicando que a transagao foi registrada com sucesso. Se
checksums estiverem habilitados, eles sdo computados e incluidos para permitir valida¢ao
durante o replay. O commit é o ponto critico no ciclo de vida da transa¢do. Quando
o bloco de commit € escrito e confirmado no dispositivo de armazenamento, idealmente
com flushes que garantem persisténcia real, a transagcdo passa a ser considerada consoli-
dada. Isso significa que, mesmo que ocorra uma falha logo em seguida, as informacdes
necessdrias para restaurar o filesystem para esse ponto consistente ja estdo asseguradas
no journal. E apenas apGs essa etapa que o Ext4 pode planejar a atualizacdo dos blocos
originais em seus locais definitivos.

3.3.5. Checkpoint | writeback para o filesystem

ApOs o commit, o kernel pode, de forma imediata ou adiada, iniciar o processo de check-
point. Esse procedimento aplica os blocos registrados no journal aos seus locais finais no
filesystem, substituindo os blocos antigos pelos novos. Por exemplo, o bitmap atualizado é
escrito no bloco correspondente do grupo, € o inode recém-modificado € colocado em sua
posicdo na inode table. Quando todos os blocos da transacdo atual foram devidamente
aplicados, o espaco correspondente no journal pode ser liberado para reutilizagdo. Se
algum bloco tiver sido modificado repetidamente antes de ser submetido ao checkpoint,
os mecanismos de revogacao e ordenagdo evitam que versdes antigas sejam reaplicadas
durante o recovery.

3.3.6. Recovery (ap6és crash)

Se ocorrer uma falha critica antes que as transagdes sejam executadas e totalmente salvas,
o mount subsequente do filesystem ativa o processo de recovery. O kernel 1€ o journal do
Ext4 e reexecuta apenas as transacdes cujo commit foi encontrado e validado, ignorando
qualquer transacdo incompleta. O replay segue as listas de descriptor para saber quais
blocos aplicar e usa os registros de revogacao para pular blocos que foram invalidados por
mudancgas posteriores. Com isso, o filesystem € restaurado para o estado consistente mais



recente que havia sido totalmente registrado no journal, garantindo integridade mesmo
frente a falhas abruptas.

3.4. Modos de journaling

O Ext4 [Baeldung 2022] oferece trés modos principais de journaling, cada um refletindo
uma estratégia para balancear integridade e desempenho. Esses modos determinam se
apenas metadados ou também dados de arquivos serdo registrados no journal, bem como
a ordem em que os blocos sdo transferidos para o disco.

No modo data=journal, o mais seguro porém também o mais custoso, tanto
os metadados quanto os blocos de dados de arquivos sd@o primeiro escritos integralmente
no journal antes de serem aplicados aos seus locais definitivos. Isso garante que, em caso
de crash, todo o contetido necessario para restaurar o estado mais recente do filesystem
esta preservado no journal, reduzindo praticamente a zero o risco de perda ou incon-
sisténcia de dados. O lado negativo € o impacto significativo no desempenho, ja que todo
bloco modificado € gravado duas vezes (no journal e depois no destino), e técnicas como
delayed allocation sao desativadas. Assim, esse modo costuma ser recomendado
apenas em cendrio de mixima exigéncia de integridade.

O modo data=ordered, que € o padrao do Ext4, fornece um equilibrio entre
seguranca e desempenho. Apenas os metadados sdo registrados no journal, mas o sistema
garante que todos os blocos de dados relacionados a esses metadados sejam gravados no
disco antes do commit da transacdo no journal. Isso evita situacdes em que um inode
atualizado aponta para blocos que ainda ndo foram devidamente escritos ou que contém
dados antigos, garantindo certa protecdo sem penalidades tdo severas no throughput de
escrita.

Por fim, 0 modo data=writeback mantém o journaling apenas para metada-
dos, porém sem impor qualquer relacao de ordenacdo entre a escrita de dados e o commit.
Essa auséncia de garantia significa que, apds um crash, os metadados poderdo estar cor-
retos, mas o conteido de arquivos pode nao refletir a tltima modifica¢do, o chamado stale
data. Apesar desse risco, 0 modo writeback oferece o melhor desempenho entre os trés,
sendo util em cendrios em que a integridade dos dados em si ndo € critica e a prioridade é
maximizar a velocidade de I/O.

Esses modos definem o comportamento de seguranga do Ext4 e sdo o principal
mecanismo para ajustar o trade-off entre consisténcia e desempenho

3.5. Checksums do journal

O Ext4 tem suporte a checksums no journal. Cada bloco de journal pode ter checksum
associado, isso protege contra corrupgdes silenciosas (midia danificada ou bugs). O kernel
e ferramentas como e2 f sprogs entendem e usam esse mecanismo quando a funcionali-
dade estd ativa (journal_inum/journal_checksum e flags relevantes). Checksums
sdo especialmente importantes porque o replay do journal confia que o log esteja integro.

3.6. Delayed allocation e interacoes com journaling

O Ext4 emprega a técnica de delayed allocation (delalloc) para melhorar o desempe-
nho de escrita. Em vez de alocar imediatamente os blocos fisicos no disco, o kernel adia
essa decisdao até o momento do flush. Isso permite escolher blocos contiguos e reduzir



fragmentacdo. No entanto, esse comportamento interage diretamente com o mecanismo
de journaling e, portanto, precisa ser coordenado para garantir consisténcia.

No modo data=journal, o uso de delalloc € praticamente incompativel.
Como todos os dados precisam ser registrados no journal imediatamente, nao ha como
adiar a alocacdo fisica: o kernel precisa saber onde os dados ficardo e copia-los para
o journal sem atraso. Por isso, o Ext4 normalmente desativa delalloc nesse modo,
sacrificando otimizacdes em favor da integridade.

No modo data=ordered, que depende da garantia de que os blocos de dados
sejam gravados no disco antes do commit dos metadados, o delayed allocation pode in-
troduzir um risco aparente: quando chega o momento de realizar o commit da transagao,
parte dos dados relacionados ainda pode nao estar fisicamente escrita. Para resolver isso, o
Ext4 implementa mecanismos que rastreiam quais blocos de dados precisam ser for¢cados
ao disco antes do commit do journal. Quando as estruturas de metadados da transacao
estdo prestes a ser registradas, o kernel dispara um flush explicito dos dados associados,
garantindo a ordenacdo correta. Assim, delalloc continua habilitado, mas com salva-
guardas que preservam o principio do modo ordered.

3.7. Replay e limites do recovery

Quando o kernel detecta, na montagem de um volume Ext4, que existe um journal com
entradas ndo resolvidas, a camada de journaling JBD2 entra em acdo para reaplicar
transacdes que estdo no commit (replay). A intengdo do replay € restaurar as estruturas
do sistema de arquivos ao ponto consistente mais recente que foi totalmente registrado no
journal.

3.7.1. Varredura inicial e construcao do replay

JBD2 percorre o log circular lendo headers de bloco de journal. Para cada entrada, dis-
tingue tipos (descriptor, data, commit, revoke). A camada valida: o tipo do bloco (header
magic/version), o sequence number associado a transacdo e o checksums do bloco (he-
ader e payload). Apenas transacdes cujo bloco de commit foi encontrado e cuja integri-
dade (checksums) esta correta sao candidatas ao replay. Entradas com checksum invalido,
header corrompido ou sem commit sdo tratadas como incompletas e ignoradas.

3.7.2. Tratamento de revokes

Antes de aplicar blocos, o JBD2 processa a area de revogation records associada a
transacdo (ou a sequéncia), que lista blocos que foram invalidados (revoked) posterior-
mente. Para cada bloco listado no revoke table, o JBD2 marca o respectivo buffer como
invalido/ignoravel para replay. Isso evita que versoes antigas sejam reaplicadas quando
uma versao mais nova ja foi escrita no local definitivo antes do crash.

3.7.3. Ordem de replay e atomicidade logica

O replay € aplicado por transacdo em ordem crescente de sequence number, respeitando a
ordem global do journal. Dentro de uma transagao, os descriptors ja impdem uma ordem



l6gica; entretanto, o replay pode agrupar submissdes de 1/O para ganho de throughput,
desde que mantenha a semantica exigida (i.e., aplicar os blocos da transacdo antes de
considerar a transacao “done’). O objetivo € reconstituir o mesmo efeito que o checkpoint
teria produzido se o sistema nao tivesse falhado.

4. Copy-on-Write

Copy-on-write (CoW) em sistemas de arquivos é uma técnica na qual nenhuma
modificacao é feita in-place nos blocos existentes. Em vez disso, qualquer alteragdo em
dados ou metadados provoca a alocagdo de novos blocos, seguida da gravacdo da versao
modificada nesses blocos recém-alocados, e somente depois uma atualizacdo atdmica de
ponteiros faz com que a arvore de metadados passe a referenciar a nova versao, garantindo
consisténcia estrutural mesmo em presenca de falhas de energia, pois nenhuma estrutura
ancestral € sobrescrita até que todos os seus filhos atualizados estejam persistidos.

Para estudar este mecanismo em profundidade, incluindo alocacdo, encadeamento
de blocos, légica de atualizacdo transacional e interacdo com o mecanismo de escrita,
utilizaremos a implementacdo do OpenZFS [OpenZFES Project 2023] como referéncia
pratica.

4.1. Fluxo de escrita

O fluxo de escrita no OpenZFS descreve a transformag¢do de uma operagdo ldgica de
escrita em atualizagdes fisicas persistentes, organizadas segundo o modelo de Copy-on-
Write e consolidadas por meio de Transaction Groups. As etapas a seguir detalham esse
processo desde a entrada no kernel até o commit atdbmico do estado do sistema.

4.1.1. Entrada da escrita

Quando um processo emite uma chamada de escrita via syscalls como write ou
pwrite, o fluxo desce pelo VFS (Virtual File System) até alcancar o ZFS POSIX Layer
(ZPL). O ZPL converte a operacdo POSIX em uma operacao nativa da DMU (Data Ma-
nagement Unit), a camada l6gica interna do OpenZFS responsdvel pela manipulacio de
objetos, que incluem arquivos, diretorios, estruturas de metadados, arvores de indire¢do
e atributos estendidos. Ao receber a solicitagdo de escrita, a DMU realiza 0 mapeamento
do objeto l6gico para um conjunto de dmu_bufs. Cada dmu_buf representa um bloco
16gico gerenciado pela DMU. Caso o bloco correspondente ainda ndo tenha sido carre-
gado, ele € lido do armazenamento ou inicializado como um bloco vazio no cache ARC
(Adaptive Replacement Cache).

Ao modificar um dmu_buf, a DMU marca esse buffer como dirty (sujos), ou
seja, como parte de um conjunto de alteracdes pendentes. Esses buffers sujos ndo sao
imediatamente escritos no disco: eles residem no ARC, ou no L2ARC caso a memoria
principal seja insuficiente para acomodar todos os dados em cache (embora metadados
sujos permanecam sempre no ARC). A DMU organiza essas alteragdes em estruturas co-
nhecidas como dirty records, cada uma associada a um bloco sujo, a um checksum futuro
e ao TXG ao qual a alteracdo pertencerd. A escrita €, portanto, inteiramente absorvida
pela memoria no primeiro momento. Somente no ponto de sincronizac¢do os dados efeti-
vamente descem para o pipeline fisico.



4.1.2. Acamulo por Transaction Group (TXG)

O ZFS organiza todas as atualizagdes em Transaction Groups (TXGs), que sdo intervalos
continuos de mudancas agrupadas logicamente. Um TXG estd sempre em um dentre trés
estados: open, quiescing e syncing. Durante a fase open, todas as modificacdes vindas do
ZPL DMU sio aceitas e registradas como dirty records vinculados aquele TXG. Quando
o TXG atinge limites de tempo (tipicamente 5 segundos), memoria ou de quantidade
de dados sujos, ele migra para a fase quiescing. Nessa fase, o TXG deixa de aceitar
novas modificagdes, e todas as threads de escrita passam a contribuir para o préximo
TXG aberto. Ja o TXG anterior € entdo entregue ao syncing thread, uma thread kernel
exclusiva do ZFS responsavel por transformar as alteragdes logicas (dirty records, listas
de atualizagdo e modificagdes em drvores) em um conjunto final de blocos fisicos a serem
gravados.

Esse design garante atomicidade de larga escala: cada TXG é um commit indi-
visivel de todo o estado do pool. Nada dentro de um TXG se torna visivel até que o
uberblock correspondente ao TXG seja gravado com sucesso. Isso cria semantica similar
a de um “epoch”’de atomicidade, garantindo consisténcia sem exigir journaling tradicio-
nal.

4.1.3. DMU — Z10 pipeline

Com o TXG entrando em modo syncing, os dirty records sao convertidos em operacoes
fisicas de I/0O chamadas ZIOs (ZFS 1/O requests). O subsistema ZIO funciona como
uma pipeline modular de transformacdo de blocos, onde cada estagio corresponde a
uma operagdo: primeira compressao (LZ4, ZSTD, GZIP, etc), depois checksumming
(Fletcher4, SHA?256, etc), criptografia opcional se configurado, montagem de indirecoes
ou gang blocks caso um bloco grande precise ser subdividido, e sele¢dao dos vdevs fisicos
onde cada bloco sera alocado.

O ZIO pipeline estrutura cada I/O como um grafo de dependéncias assincronas,
no qual cada etapa sé dispara quando todas as etapas predecessoras completaram. Assim,
um ZJO de write pode gerar ZIOs filhos que representam compressao, checksum, copia
de dados, escrita fisica e atualizagdes de metadados. Todas essas operagdes sdo agendadas
no taskq (conjunto de threads do ZFS), com paralelismo profundo e alta afinidade com
o hardware subjacente. Em caso de falha de um vdev (por exemplo, setor defeituoso
ou dispositivo morto), o ZIO tenta automaticamente caminhos alternativos ou recupera
réplicas ja garantidas pelo RAID-Z ou espelhamento.

4.1.4. Alocacao de blocos

Antes de enviar um bloco ao dispositivo fisico, o ZFS precisa alocar espaco para ele. Cada
vdev € dividido em dezenas ou centenas de metaslabs, pedacos 16gicos do espago
fisico com seus proprios space maps. Cadametaslab contém um histérico de alocagdes
representado como uma sequéncia de entradas log-estruturadas (alloc / free) que formam
0 space map, complementado por um in-memory range tree construido durante a aber-
tura ou criacdo do pool. O alocador consulta esses range trees para encontrar regioes



livres adequadas, seguindo politicas como first-fit, largest-free-range ou rotacionamento
heuristico entre met aslabs (metaslab groups), de forma a mitigar fragmentacao a longo
prazo.

Por se tratar de um sistema CoW puro, o ZFS nunca sobrescreve blocos existen-
tes. Cada escrita aloca um bloco novo, e o0 antigo permanece véalido até que nenhum
block pointer o referencie (momento no qual o sistema pode libera-lo, usualmente du-
rante o processo de spa_sync). Isso oferece seguranga, atomicidade e facilita snapshots
e clones: como as versdes antigas dos blocos continuam existindo sem modifica¢ao, os
snapshots sdo apenas uma imobilizac¢ao de seus block pointers.

4.1.5. Checksums e block pointers

Quando um bloco € finalizado pelo pipeline ZIO, seu checksum é calculado e o valor
resultante € inserido no block pointer que faz referéncia a ele. O block pointer ¢ uma
estrutura rica contendo multiplos campos: enderecos fisicos (DVA — Data Virtual Ad-
dress), tamanho do bloco, tamanho 16gico, tipo de compressao usada, checksums, nivel
de indirecdo e flags adicionais (como birth txg, fill count e flags de criptografia). A drvore
de block pointers forma a estrutura hierarquica do arquivo: data blocks sdo referenciados
por indirect blocks, que sdo referenciados por niveis superiores, culminando no root block
pointer do dataset. Essa estrutura lembra uma B-free, mas € otimizada para CoW e ndo
possui balanceamento dindmico tradicional, em vez disso, substitui nds inteiros durante o
sync.

Cada alteracdo descendente (em um bloco de dados) naturalmente produz
alteracoes ascendentes (novos block pointers nos indirect blocks), pois cada bloco modifi-
cado tem um novo checksum e novo endereco fisico. Isso cria uma escalada de mudancas
até o rootbp, que € o ponto de entrada do dataset no uberblock.

4.1.6. Commit atomico: uberblocks e TXG sync

Quando todo o conjunto de blocos do TXG ¢€ escrito, incluindo os dados e seus metadados
derivados (indirect blocks, dnodes, metadados do dataset, MOS — Meta-Object Set), o
ZFS prepara o commit atdmico final: a escrita do uberblock. Cada vdev contém um
conjunto circular de uberblocks gravados em sua label. Cada uberblock registra, entre
outros itens, o nimero do TXG (ub_txg), timestamps, e principalmente o rootbp do
pool, que aponta para o topo da arvore de metadados do MOS. A escrita de um uberblock
¢ extremamente pequena (algumas centenas de bytes) e € feita somente apds todo o resto
ter sido persistido.

O mecanismo de atomicidade é brutalmente simples: apenas o uberblock com
maior TXG valido representa o estado mais recente do pool. Em caso de crash durante o
sync, 0 novo uberblock nao sera escrito ou estard inconsistente, € na montagem seguinte
o ZFS automaticamente escolherd o uberblock anterior, cujo TXG é menor mas valido.
Isso garante que todas as operacdes do TXG sejam aplicadas integralmente ou que ne-
nhuma delas seja efetivada. Esse modelo elimina a necessidade de journaling tradicional
e fornece uma consisténcia transacional intrinseca baseada na imutabilidade de blocos.



4.2. Como o COW produz snapshots e clones “instantaneos”

O mecanismo de snapshots e clones no OpenZFS é uma consequéncia direta e inevitavel
do seu modelo de Copy-on-Write aplicado a arvore inteira de metadados, e nao uma funci-
onalidade “extra” adicionada sobre o sistema de arquivos. Em ZFS, snapshots ndao exigem
copia de dados nem reescrita de blocos existentes; eles emergem naturalmente do fato de
que block pointers sao imutdveis apds o commit de um TXG e que nenhuma escrita ocorre
in-place.

Quando um snapshot € criado, o ZFS executa uma operagdo puramente de meta-
dados: ele captura o root block pointer atual do dataset, isto é, o ponteiro que referencia
araiz da arvore de metadados (dnodes, indirect blocks e data blocks) naquele exato TXG,
e o registra como pertencente a um snapshot. Internamente, isso ocorre no MOS, onde
existe uma lista ordenada de snapshots associada a cada dataset, cada um identificado
por um TXG especifico. O snapshot, portanto, é essencialmente um nome simbolico as-
sociado a um conjunto de block pointers ja existentes, sem que nenhum bloco adicional
precise ser alocado.

A partir desse momento, os block pointers que pertencem a drvore capturada pas-
sam a ser considerados logicamente imutdveis no contexto daquele snapshot. Isso nao
significa que o ZFS marque blocos fisicos como read-only no disco; em vez disso, a imu-
tabilidade € garantida estruturalmente pelo modelo COW: qualquer modificacdo futura
em qualquer arquivo ou metadado do dataset ativo jamais sobrescreverd esses blocos,
pois toda escrita aloca novos blocos e produz novos block pointers. Assim, o snapshot
continua apontando para os blocos antigos, enquanto o dataset ativo passa a apontar para
blocos novos. Essa separa¢ido ocorre automaticamente, sem necessidade de rastreamento
explicito de versdes por bloco.

E por isso que snapshots recém-criados ocupam zero bytes adicionais: eles apenas
adicionam referéncias (block pointers) para blocos ja existentes. O consumo de espago
cresce apenas quando o dataset ativo comeca a modificar dados que eram anteriormente
referenciados pelo snapshot. Cada modificacdo gera novos blocos via COW, enquanto
os blocos antigos permanecem vivos porque ainda sdo referenciados pelo snapshot. O
espaco “usado pelo snapshot” é, na realidade, o espago dos blocos que deixaram de ser o
dataset ativo e passou a referenciar versoes novas.

Do ponto de vista interno, isso ¢ implementado por meio de contagem implicita
de referéncias. Um bloco fisico sé pode ser liberado quando nenhum block pointer em
nenhuma arvore ativa (dataset ativo, snapshots ou clones) apontam para ele. O processo
de liberacdo ocorre durante o spa_sync, quando o ZFS percorre as estruturas de meta-
dados e identifica blocos cuja ultima referéncia foi removida. Até 14, o bloco permanece
alocado no metaslab correspondente, mesmo que o dataset ativo ja ndo o utilize mais.

Clones sdao uma extensdo direta desse mesmo mecanismo. Um clone € criado a
partir de um snapshot e consiste em um novo dataset cujo root block pointer inicial é
exatamente o mesmo rootbp do snapshot de origem. Em outras palavras, o clone e o
snapshot comecam apontando para a mesma arvore completa de metadados e dados. No
instante da criacdo, o clone ndo possui nenhum bloco exclusivo; todo o seu contetido é
compartilhado com o snapshot. A partir desse ponto, qualquer modificacao feita no clone
segue exatamente o mesmo fluxo COW descrito anteriormente: novos blocos sdo aloca-



dos, novos block pointers sao criados, e apenas o clone passa a referencia-los, enquanto o
snapshot e outros clones continuam apontando para os blocos antigos.

Essa arquitetura implica uma propriedade importante: clones e snapshots compar-
tilham dados de forma transitiva e estrutural, ndo por meio de um mecanismo explicito
de deduplicacdo. O compartilhamento existe porque os block pointers sao idénticos, nao
porque o sistema detecta igualdade de contetdo. Isso torna o compartilhamento extre-
mamente barato em termos de metadados e elimina a necessidade de tabelas globais de
referéncia como ocorre em sistemas de dedup classicos. Ao mesmo tempo, 1SSo signi-
fica que o compartilhamento s6 ocorre em granularidade de bloco e apenas enquanto os
ponteiros forem compartilhados; uma vez que um bloco é modificado, a divergéncia é
permanente.

Um ponto critico € que, diferentemente de sistemas como Btrfs ou XFS com re-
flinks, o OpenZFS nao implementa Copy-on-Write por arquivo isolado (per-file reflink).
N3ao existe uma operagdo equivalente a cp ——-reflink que crie duas entradas de di-
retorio apontando para os mesmos blocos de dados de forma independente. Em ZFS, o
COW opera no nivel de datasets inteiros, e o compartilhamento € viabilizado exclusiva-
mente via snapshots e clones. Isso ndo € uma limitacao acidental, mas uma consequéncia
direta do design da DMU e da forma como dnodes e block pointers sao organizados. In-
troduzir reflinks por arquivo exigiria mudancas profundas na semantica de referéncia de
blocos e na contabilidade de espaco, razdo pela qual o tema aparece apenas como dis-
cussOes e propostas experimentais, € nao como funcionalidade estavel.

Outro efeito importante desse modelo € que snapshots participam integralmente
da semantica de consisténcia do ZFS. Como o snapshot captura uma arvore inteira de
block pointers pertencente a um TXG especifico, ele representa um estado totalmente
consistente do sistema de arquivos, equivalente a um ponto de commit atdmico. Nao
existem snapshots “parciais” ou “inconsistentes”. Isso os torna ideais para backup in-
cremental, replicacio (zfs send/receive) e rollback confiavel, pois cada snapshot
corresponde exatamente a um estado que ja foi confirmado via uberblock.

5. Conclusao

Ao longo deste trabalho, foi possivel analisar de forma detalhada e comparativa os dois
principais paradigmas de consisténcia empregados em sistemas de arquivos modernos: o
journaling e o Copy-on-Write. A partir do estudo do Ext4 e de sua camada de journaling
JBD2, observou-se que o journaling atua como um mecanismo de prote¢do acoplado a
um modelo tradicional de escrita in-place, oferecendo garantias de recuperabilidade por
meio do registro antecipado das inten¢gdes de modificacdo. Essa abordagem apresenta
comportamento relativamente uniforme entre diferentes implementagdes, com comple-
xidade delimitada e previsivel, permitindo ao administrador ajustar o compromisso entre
desempenho e integridade por meio de modos de operacdo. Em contrapartida, suas garan-
tias estdo fortemente ligadas a correta ordenacao de escritas e a confiabilidade do journal,
além de nao eliminar completamente certas classes de inconsisténcia légica nos dados.

Por outro lado, o estudo do Copy-on-Write a partir do OpenZFS evidenciou que
essa técnica ndo se limita a um mecanismo isolado, mas define a propria arquitetura do
sistema de arquivos. Ao evitar qualquer sobrescrita in-place e basear a persisténcia em
commits atdmicos de grandes conjuntos de modifica¢des, o ZFS fornece consisténcia es-



trutural intrinseca, verificacdo de integridade de ponta a ponta e recuperacao automatica
sem necessidade de replay de logs tradicionais. Esse modelo, embora mais complexo em
termos de implementagcdo e com custos potenciais de fragmentacao, viabiliza de forma
natural funcionalidades avancadas como snapshots e clones instantaneos, que emergem
diretamente da imutabilidade dos blocos e da organizacdo da arvore de metadados.

Dessa forma, a comparagdo demonstra que journaling e Copy-on-Write represen-
tam filosofias distintas de projeto: enquanto o journaling busca adicionar confiabilidade
a um modelo cldssico de sistemas de arquivos, o CoW reconstréi esse modelo a partir de
principios transacionais.
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