
Towards an Expertise-Related Metric for
Preprocessor-Based Configurable

Software Systems

Karolina Martins Milano

SERVIÇO DE PÓS-GRADUAÇÃO FACOM-
UFMS
Data de Depósito:

Assinatura:

Towards an Expertise-Related Metric
for Preprocessor-Based Configurable

Software Systems

Karolina Martins Milano

Advisor: Prof. Bruno Barbieri de Pontes Cafeo

Dissertation presented to the Programa de Pós-
Graduação em Ciência da Computação of the
Faculdade de Computação Universidade Federal
do Mato Grosso do SUL - UFMS as partial fulfill-
ment of the requirements for the degree of Mestre
em Ciência da Computação

UFMS - FACOM
May/2022

Acknowledgements

First and foremost, to Jesus for never abandoning me, even in the worst

and most painful moments of my life.

I would like to thank Professor Bruno Cafeo for giving me the opportunity

to advise me on my academic master’s degree and for all his patience during

this process.

I thank my husband, Pedro Henrique, for taking care of our family during

my absence.

To my daughter, Vitória, for all the absence endured during these two years.

To my mother, Raquel, for all her prayers and help throughout my life.

I also thank my nephews, Heloisa, Davi and Sarah, and siblings, Karina

and João Carlos, for praying and cheering for me during these years.

v

vi

Abstract

Context: Expertise-related metrics allow us to find the best developers for a

target task in a file. Configurable systems use variability as a unit of abstrac-

tion to generate different members of a program family. This misalignment

between files used by expertise-related metrics and variabilities used by con-

figurable systems may make it impossible to use them together.

Objective: The objective is twofold. The first is to explore how the work

on mandatory and variable code is divided among developers and whether

expertise-related metrics can indicate a developer with expertise for a task in-

volving variable code. The second is to propose a variability-aware expertise-

related metric to indicate developers with expertise in variable code.

Method: We investigate 49 preprocessor-based configurable systems. We an-

alyzed how variabilities changes are divided between developers and whether

these developers would be key developers indicated by expertise-related met-

rics. We use feature selection and multiple linear regression techniques to

propose a variability-aware expertise-related metric. We validate our metric

by comparing it with two well-known metrics.

Results: Few developers are specialists in variable code. We also identified

that only a few developers concentrate the majority of changes in variable

code. The results also suggested that expertise-related metrics are not a good

fit to indicate experts regarding variable code. We proposed a variability-aware

expertise-related metric and showed that our proposed metric outperformed

well-known expertise-related metrics.

Conclusion: Even though the results show that a considerable number of de-

velopers touched variable code during the development history, such changes

are only occasional. There is a concentration of work among a few developers

when it comes to variable code. This uneven division may cause an unnec-

essary maintenance effort. We also conclude that variability-aware expertise-

related metrics may better support the identification of experts in configurable

systems when compared to existing metrics.

vii

viii

Resumo

Contexto: Métricas relacionadas à experiência dos desenvolvedores nos per-

mitem encontrar os melhores desenvolvedores para uma tarefa específica em

um arquivo. Sistemas configuráveis usam a variabilidade de código como

unidade de abstração para gerar diferentes membros de uma família de pro-

gramas. Esse desalinhamento entre os arquivos usados pelas métricas rela-

cionadas à experiência e as variabilidades usadas pelos sistemas configuráveis

pode impossibilitar o uso conjunto delas.

Objetivo: O objetivo é duplo. O primeiro é explorar como o trabalho em código

mandatório e variável é dividido entre os desenvolvedores e se as métricas

relacionadas à expertise podem indicar um desenvolvedor com expertise para

uma tarefa envolvendo código variável. O segundo é propor uma métrica rela-

cionada à experiência com conhecimento em variabilidades para indicar de-

senvolvedores com experiência em código variável.

Método: Foram investigados 49 sistemas configuráveis baseados em pré-pro-

cessadores, sendo analisadas como as mudanças nas variabilidades são dstribuí-

das entre os desenvolvedores, e se esses desenvolvedores seriam os principais

desenvolvedores indicados por métricas relacionadas a experiência do dosen-

volvedor em arquivos de código. Foram utilizadas técnicas de feature selection

e regressão linear múltipla para propor uma métrica relacionada a experiência

do desenvolvedor em relação ao conhecimento de variabilidades de código. A

métrica proposta foi validada comparando-a com duas métricas já conhecidas.

Resultados: Poucos desenvolvedores são especialistas em código variável. Foi

identificado que poucos desenvolvedores concentram a maioria das alterações

em código variável. Os resultados também sugerem que que a expertise rela-

cionada a métricas já conhecidas não são um bom ajuste para indicar experts

em relação ao código variável. Foi proposta uma métrica relacionada a expe-

riência dos desenvolvedores em relação as variabilidades e foi mostrado que

a métrica proposta superou métricas relacionadas a experiência em relação a

arquivos de código, já conhecidas.

ix

Conclusão: Embora os resultados mostrem que um número considerável de

desenvolvedores realizou alterações no código variável durante o histórico de

desenvolvimento, tais alterações são apenas ocasionais. Há uma concentração

de trabalho entre alguns desenvolvedores quando se trata de código variável.

Esta divisão desigual pode causar um esforço de manutenção desnecessário.

Também concluímos que as métricas relacionadas à experiência em relação

ao conhecimento das variabilidades podem apoiar melhor a identificação de

especialistas em sistemas configuráveis quando comparadas às métricas ex-

istentes.

x

Contents

List of Figures . xiii

List of Tables . xv

1 Introduction 1

2 Preliminaries 5

2.1 Configurable Software Systems . 5

2.2 Motivating Example . 7

3 Exploratory Study 9

3.1 Research Questions . 9

3.2 Subject Systems . 10

3.3 Degree of Authorship (DOA) . 11

3.4 Ownership . 12

3.5 The Data Collection Procedure . 13

3.6 The Data Evaluation Procedure . 14

3.6.1 Work specialization (RQ1) . 14

3.6.2 Distribution of work among developers (RQ2) 14

3.6.3 Association between file expertise and variable code (RQ3) 15

4 Results 17

4.1 Work specialization (RQ1) . 17

4.2 Distribution of work among developers (RQ2) 20

4.3 Association between file expertise and variable code (RQ3) 22

5 Implications 23

6 Proposed Approach 25

6.1 Feature Selection . 25

6.2 Linear Regression . 27

6.2.1 Mean Absolute Error (MAE) 29

xi

6.2.2 Mean Squared Error (MSE) 29

6.2.3 Root Mean Squared Error (RMSE) 29

7 Experiment 33
7.1 Experimental Data Set . 33

7.2 Performance Metrics . 34

7.3 Approach performance (RQ4) . 35

7.4 Approach comparison (RQ5) . 36

8 Related Work 39

9 Threats to Validity 41

10 Conclusions and Future Work 43

xii

List of Figures

2.1 Compilation process with a preprocessor. 6

2.2 Example of use of preprocessor directive in source code. 6

2.3 Illustration of key developers in a configurable system file. 8

3.1 Procedure used to collect data for the exploratory study. 13

4.1 Work specialization over time in four systems. 19

4.2 Variabilities per developer. 20

4.3 Lorenz curve of the four representative systems. 21

6.1 Illustration of the process of linear regression. 28

xiii

xiv

List of Tables

3.1 Overview of the subject systems. 11

4.1 Summary of results. 18

6.1 Features analyzed. 27

6.2 Results of the application of three feature selection methods. . . . 28

7.1 Accuracy of the approach with individual subject systems. 35

7.2 Comparison between expertise-related metrics and our approach. 36

xv

xvi

Lists of acronyms

DOA Degree of atuhorship

DOAV Degree-Of-Authorship-in-Variabilities

xvii

xviii

CHAPTER

1
Introduction

Software development teams exchange a large amount of information about

a project’s code base each day. Considering a professional software develop-

ment team, each developer, on average, received changes to over one thousand

different source-code elements and interacted with more than one hundred

and forty source-code elements per day [FMMH+14]. These impressive num-

bers make it challenging for a developer to know about the entire code of a

system. So, questions such as “Who is the most appropriate developer to per-

form this maintenance task?” or “Which developers would be able to review

this pull request?” become usual.

Expertise in source code is an important concept used to identify developers

responsible for making significant changes to the source code [FMMH+14]. In

large software systems with hundreds of modules, these metrics allow for co-

ordinating developer teams by planning the overall division of work, identifying

key collaborators, and finding the best developers for a target task [APHV19].

Essentially, measuring expertise aims to identify developers who made signifi-

cant changes to specific system modules. The problem is that system modules

are created by one developer but later changed by possibly hundreds of devel-

opers [FMMH+14].

Configurable systems use variability as the unit of abstraction to imple-

ment configuration options such as features [KCH+90]. In systems based on

preprocessors and conditional compilation, such as the Linux Kernel or GCC,

the limits of implementing variability often do not align with the system mod-

ules [AB11]. In other words, the source code of a single variability may be

scattered and tangled through the source code.

While conditional compilation is highly flexible and easy to use, it leads to

1

code that is hard to maintain. Preprocessors prepare the source code before it

is handed to the actual compiler. Developers use preprocessor directives, such

as #ifdef and #endif, to mark blocks of source code as optional or conditional,

with the purpose of tailoring software systems to different hardware platforms,

operating systems, and application scenarios. Therefore, these directives allow

excluding parts of a source code file from a compilation by the C/C++ compiler

if a condition is met.

Researchers and practitioners have criticized the C preprocessor because

of its negative effect on code understanding and maintainability and its error

proneness [LKA11, EBN02, GJ05, TOB11, MRB+17]. Compile-time conditions

add an entirely new layer of complexity as they are not part of the program-

ming language, e.g., C++, but part of the preprocessor language. So, run-time

and compile-time conditions are often intermixed; therefore, the reader of the

code always has to keep track of the two language layers. Hence, the mental

load for understanding code using preprocessor and conditional compilation

is high [LKA11].

Considering a common scenario in which there are several variabilities in

a single file, and several developers have modified that file throughout the de-

velopment history. There is considerable difficulty in, for example, assigning

a maintenance task that involves a variability for the developer who has the

slightest difficulty in understanding such variability. Another example would

be choosing a code reviewer to review a pull request that involves variability.

Assigning the maintenance task to the most suitable developer for under-

standing the code units or selecting an appropriate code reviewer is essential

for reducing maintenance effort and cost. Furthermore, in a scenario where

the unit of abstraction (commonly used in maintenance task assignments)

can be scattered and tangled in the source code, this closer to ideal selection

becomes essential to develop configurable systems in a collaborative setup.

In recent years, several studies approaching expertise-related metrics have

been conducted [MA00, BND+09, RD11, BNM+11, FMMH+14, APHV19]. Many

of these studies investigated the impact of expertise on software quality at-

tributes [YL05, RD11]. However, despite the growing interest in developer

expertise, to the best of our knowledge, little is known about developer exper-

tise in configurable software systems. In most literature, configurable systems

are not considered the subject of study. Moreover, these studies essentially

consider code authorship at the level of files and modules.

In this context, some questions are still open, such as: how many develop-

ers are responsible for implementing variabilities in a system? Are these de-

velopers responsible for implementing both mandatory and variable code? Is

a developer with a higher file level authorship likely to be associated with vari-

2

ability code? Are existing expertise-related metrics suitable for configurable

systems? By answering these questions, we can assess expertise-related met-

rics in the context of preprocessor-based configurable systems, better sup-

porting their use. In addition, if the existing expertise-related metrics are

unsuitable for application in configurable systems, it is important to propose

an approach that helps calculate the developer’s expertise regarding variable

codes.

This work provides a set of contributions to support the maintenance of

preprocessor-based configurable systems. In particular, this paper has three

major contributions:

1. To the best of our knowledge, this is the first work to assess expertise-

related metrics in variability in the context of configurable systems.

2. We provide an extensive empirical study about code authorship to un-

derstand the implications in the context of configurable systems.

3. We provide the Degree-Of-Authorship-in-Variabilities (DOAV). A formula

specifically created for preprocessor-based systems to indicate the devel-

oper’s expertise regarding variabilities.

We organize the remainder of the paper as follows. In Chapter 2, we in-

troduce the basic concepts of configurable systems and show a motivating ex-

ample. Chapter 3 presents the exploratory study, while Chapter 4 reports the

results. Chapter 5 discusses the implications of the exploratory study. Chap-

ter 6 details the definition of a formula to indicate expertise in variabilities in

the context of configurable software systems. Chapter 7 validate our proposed

approach. Chapter 8 discusses related work. Finally, Chapter 9 presents the

threats to validity, and Chapter 10 concludes the paper and describes future

work.

3

4

CHAPTER

2
Preliminaries

To lay a foundation for subsequent sections, we introduce the basic con-

cepts of configurable systems and code review. We also present a motivating

example to illustrate the use of code authorship in a configurable software

system.

2.1 Configurable Software Systems

Systems that share a common core but also have different functionalities

are referred to as configurable systems [AVRW+13]. The core implements the

basic functionality presented in any member of a program family, and the dif-

ferent selections of configurations define the set of program variants. These

commonalities and variabilities are often modeled as features, each represent-

ing additional functionality to the core software [PBvDL05].

When we consider configurable systems written in C, developers often use

the C preprocessor to annotate the implementation code of variabilities. The

preprocessor identifies the code that should be compiled or not based on pre-

processor directives (i.e., #ifdef directives) along with a macro expression.

Macro expressions might be composed of one or more macros, as a boolean

formula, which refer to specific variabilities. Figure 2.1 shows the steps to

generate an executable file with a preprocessor in the process.

Developers use preprocessor directives to wrap entire structures of code,

such as functions and even single variables. Therefore, variability is a set

of program elements surrounded by preprocessor directives. It is essential

to highlight that the flexible granularity level of variabilities provided by con-

ditional compilation causes a variability code to spread throughout the pro-

5

Figure 2.1: Compilation process with a preprocessor.

gram [Käs12].

We refer to the code snippet in Figure 2.2 extracted from c-format.c of the

GCC project to better explain this concept.

Figure 2.2: Example of use of preprocessor directive in source code.

In Figure 2.2, the code between the #ifdef and #endif directives will only be

compiled if the macro TARGET_FORMAT_TYPES is defined, making the code

use additional format types if provided. Otherwise, the code in the red frame

will not be compiled (hence, never executed).

In many systems, this mechanism expresses variations that cannot or

should not be handled at run-time in configurable systems. For example,

preprocessor directives and conditional compilation support specific features

by enabling/disabling them. Another example would be the support for differ-

ent hardware platforms when a part of the code needs to be written differently

for other hardware platforms.

6

2.2 Motivating Example

Preprocessor directives, such as ifdefs (#ifdef, #ifndef, #elif, and #if), are

long said to be undesirable in source code [MRB+17]. Since these directives

are often spread across the entire code base of configurable systems, they

clutter source code, hinder program comprehension, and, consequently, com-

plicate maintenance. Code surrounded by preprocessor directives with condi-

tional compilation relates code fragments to corresponding variabilities. When

maintaining the variabilities of the system, each related extension is a poten-

tial code fragment that has to be maintained.

Therefore, in this context, we can conclude that not all developers can keep

track of the two language layers to maintain variable code. In other words, de-

velopers that never touched variable code may have difficulty during a mainte-

nance or code review task understanding, for instance, how variable code may

interact with mandatory code in some configurations (combination of variabil-

ities). This mental load for understanding preprocessor-based configurable

systems can cause an increase in maintenance effort.

Existing expertise-related metrics such as DOA [FMMH+14] and Owner-

ship [RD11] are commonly used to indicate developers with expertise in code

elements. As aforementioned, these metrics are frequently used to plan divi-

sion of work and identify key collaborators. Thus, these metrics are natural

candidates to be used in configurable systems. The problem is that we do not

know whether the developers indicated by these metrics are the most recom-

mended developers when a maintenance or code review task involves variabil-

ities. We argue that existing expertise-related metrics that commonly use files

as the unit of abstraction may wrongly indicate key developers in the context

of configurable systems. Configurable systems use variability as the unit of

abstraction. This misalignment between files and variabilities may be the root

factor of the indication of a key developer who does not know about variable

code under maintenance or review.

Figure 2.3 illustrates a file XPTO.c with two variabilities (Transaction Man-

agement and Security) and the mandatory code. We also note that eight de-

velopers contributed to the file over time. Of these eight developers, expertise-

related metrics such as DOA and Ownership indicate three of them as key

developers of the file (the ones highlighted in red). However, we also note that

none contributed with variable code during the entire development history.

Expertise-related metrics consider some properties to indicate key develop-

ers, such as the number of commits and the first author of the file. However,

to the best of our knowledge, none of them consider properties related to vari-

abilities implemented with preprocessor directives. Therefore, one of our goals

7

Figure 2.3: Illustration of key developers in a configurable system file.

in this work is to explore whether this type of situation occurs. In the next

section, we present an exploratory study addressing this context.

8

CHAPTER

3
Exploratory Study

Communities working with preprocessor-based configurable systems lack

guidance on managing code expertise among their developers. We argue that

an empirical body of knowledge on how measures related to expertise behave

in pre-processed configurable systems could mitigate this lack. In this way,

we investigate the evolutionary history of 49 systems. Our main goal is to in-

terpret expertise-related parameters. Mainly, we are interested in parameters

linked to variable code. We also check whether well-known expertise metrics

(Degree of Authorship [FMMH+14] and Ownership [RD11]) based on file level

and from git-based version control systems are aligned to measures extracted

from variable code. It is important to highlight that although the selected

expertise-based metrics do not represent an exhaustive list of approaches to

recommend software maintainers and code reviewers, they cover the key con-

cepts adopted by most of them [TMHI16, BNM+11, HPSG16, JZM+17, RD11].

3.1 Research Questions

To achieve the primary goal of this study, we follow three research ques-

tions:

RQ1: How is the division of work between developers in terms of variable and
mandatory code?

Rationale: In a collaborative setup, a considerable number of developers must

know the system’s source code. In the context of configurable systems, devel-

opers must have expertise in mandatory and variable parts of the source code

since variable parts are tangled and scattered throughout the code. Other-

9

wise, the list of developers who are candidates to perform a maintenance task

or code review task may be reduced due to the developers’ lack of expertise in

essential parts of the source code, especially in parts of variable code.

RQ2: How is the distribution of variable code among developers?

Rationale: In configurable systems, it is essential that developers understand

the variable parts of source code, as their combinations will generate the final

products of a configurable system. So that there is no work overload on a

few developers when there are, for example, maintenance tasks or code review

tasks, there must be an equal distribution of variability among developers

who have expertise in variable parts of code. Otherwise, few developers will be

responsible for tasks involving variability, and consequently, the maintenance

effort of these systems tends to increase.

RQ3: Is a developer with a higher file level expertise more likely to be associated
with variable code?

Rationale: Expertise-related metrics use the file as the unit of abstraction to

indicate source code authorship and source code ownership. However, in

configurable systems, the unit of abstraction is not necessarily aligned with

the file(s) in which it is implemented. That is, variability can be tangled with

other variabilities as well as mandatory code in the same file. In addition,

such variability can be scattered across different files. As one of the resources

used to indicate developers to perform maintenance tasks and to suggest code

reviewers in pull requests is the use of expertise-related metrics (e.g., DOA

and Ownership), it is essential to understand whether developers indicated

by these metrics do have expertise in variable codes within the files they are

experts on. Otherwise, a developer’s recommendation may not be the best

when it comes to configurable systems.

3.2 Subject Systems

This study analyzes code expertise-related measures in real-world open-

source configurable systems. We collected 63 preprocessor-based systems

implemented in C, hosted on GitHub, and used in several studies in litera-

ture [KDP16, AMS+18, LAL+10, MRG13, MRG+17, RRM+16]. We restrict our

analysis to 49 systems with more than 10 developers and 50 variabilities to

filter out uninteresting systems to our scope.

Table 3.1 presents an overview of the analyzed systems in terms of number

of files (Files), number of developers (Developers), number of commits (Com-

mits), and number of variabilities (Variabilities). The most popular project

is Curl (25,900 stars), while the most forked is OpenSSL (8,300 forks). The

commits range from 1274 (Cherokee) to 107,049 (GCC), while contributors

10

range from 18 (Cherokee) to 1363 (GCC). The selected systems cover distinct

domains, such as graphics servers, antivirus, and utility tools.

Project Files (k) Developers Commits (k) Variabilities (k)
AMXModX 0.70 53 2.24 1.98
Angband 0.31 74 7.00 0.26
ASF 2.96 23 6.50 0.85
Bison 0.12 32 2.96 0.42
BusyBox 1.000 345 13.70 2.64
Cherokee 0.22 18 2.13 0.25
Clamav 3.36 71 7.90 4.05
Collectd 0.38 452 6.50 0.539
Curl 0.75 606 13.09 1.73
Dia 0.46 70 3.64 0.20
Emacs 0.48 334 32.81 3.22
Ethersex 0.66 95 3.33 1.29
FreeRADIUS 0.63 120 26.95 1.01
FVWM 0.23 27 3.73 0.46
GCC 48.78 1363 107.04 10.13
Glibc 7.16 249 16.37 3.53
Gnumeric 0.74 141 15.65 0.55
Gnuplot 0.14 114 6.05 0.99
Hexchat 0.16 131 1.86 0.16
Httpd 1.27 96 15.10 1.59
Irsii 0.24 88 3.85 0.09
Kerberos5 2.28 108 11.36 2.23
Libexpat 0.04 42 1.59 0.11
Libpng 0.08 31 2.85 0.78
LibSoup 0.18 138 1.82 0.08
Libssh 0.21 107 4.23 0.19
LibXML2 0.13 194 3.59 0.67
Lighttpd1.4 0.16 27 3.03 0.55
Machinekit 0.72 70 3.78 0.57
MapServer 0.31 113 7.93 0.54
Marlin 2.99 687 9.38 3.41
Mongo 0.720 495 37.90 3.21
OpenSC 0.32 181 6.26 0.38
OpenSSL 1.97 509 17.38 2.20
OpenTX 1.07 111 9.10 2.36
OpenVPN 0.14 114 1.97 0.48
OSSEC 0.34 85 2.46 0.40
Pacemaker 0.37 93 12.25 0.20
Parrot 0.32 126 12.70 0.54
Pidgin 1.00 315 25.61 0.60
RetroArch 2.76 401 41.79 3.84
SleuthKit 0.40 73 2.46 0.85
SQLite 0.38 27 16.29 1.34
syslog-ng 0.84 110 6.84 0.25
TauLabs 2.35 136 9.71 1.43
Totem 0.20 119 4.36 0.12
Uwsgi 0.24 273 5.06 0.36
WiredTiger 0.50 49 13.85 0.16
XServer 1.68 554 13.54 1.91
Average 2.75 199 11.96 1.34

Table 3.1: Overview of the subject systems.

3.3 Degree of Authorship (DOA)

One way to quantify developer expertise is to use the so-called degree-of-
authorship (DOA) [FMMH+14]. The DOA for a file is defined in absolute terms

as follows:

DOA(c,f) = 3.293+1.098∗FA+0.164∗DL−0.321∗ ln(1+AC) (3.1)

11

The DOA of a contributor c in a file f is calculated based on three parame-

ters. The first authorship (FA) is a binary parameter related to the creation of

f by c. If d creates f, FA is 1; otherwise, it is 0. The second parameter is the

number of deliveries (DL) which represents the number of changes in f made

by c. Finally, the number of acceptances (AC) is the number of changes in

f made by other contributors than c. It is worth mentioning that our study

relies on the analysis of each commit. Therefore, DL and AC values are based

on the number of changes in each commit analyzed.

For the sake of simplicity, we calculate and use hereafter in this work the

normalized DOA as given in Avelino et al. [APHV19]:

DOAN(c,f) = DOA(c,f)/max({DOA(c’,f) | c’ ∈ changed(f)}) (3.2)

In the normalized DOA, changed(f) denotes the contributors who created or

edited a file f up to a commit of interest. Therefore, DOAN ∈ [0..1], and values

close to 1 are granted to the contributors with the highest absolute DOAs

among the contributors of a file.

Based on the normalized DOA, the set of authors of a file f is calculated as

given in Avelino et al. [APHV19]:

authors(f) = {c | c ∈ changed(f) ∧ DOAN(c,f)> 0.75 ∧ DOA(c,f) ≥ 3.293} (3.3)

The interpretation of DOA results depends on specific thresholds. This

work uses 0.75 and 3.293 as thresholds to normalized DOA and DOA, re-

spectively. In other words, a developer who achieves a value higher than the

aforementioned is considered an author of the file. Otherwise, this developer

is viewed as a contributor. We stem those thresholds from previous work that

used DOA [APHV19].

3.4 Ownership

Ownership is an expertise metric used to describe whether one person has

responsibility for a software component or if there is no one responsible devel-

oper. To calculate the ownership of a developer for a particular file, one should

consider the ratio of the number of commits a developer has made relative to

the total number of commits for that file [RD11].

The interpretation of ownership results also depends on specific thresholds.

In this work, following the threshold suggested by Bird et al. [BNM+11], a

developer who has made changes to a file and whose ownership value is below

5% is considered a minor contributor to that file. A developer who has made

12

changes to a file and whose ownership is at or above 5% is a major contributor

to the file.

3.5 The Data Collection Procedure

Figure 3.1: Procedure used to collect data for the exploratory study.

In this section, we describe the four main steps to collect the data used to

answer the research questions in Section 3.1. Figure 3.1 illustrates the steps

described below and the data evaluation procedure is presented in Section 3.6.

Our source code, data, and supplementary material are available online1.

1. Development history extraction. We extracted the development history

from the repositories using a script built using pydriller [SAB18], which is

a Python framework that helps developers in analyzing Git repositories. We

processed each commit, extracting three pieces of information: (i) the file

path; (ii) the developer who performed the change; and (iii) the type of the

change—addition, modification, or deletion. Additionally, we discarded files

that did not contain source code (e.g., images, documentation).

2. Variability-related information extraction. After having the development

history and source code files, we modified a version of the tool pypreprocessor

(a c-style macro preprocessor written in Python) to extract program elements

and lines that were variable code. In other words, we identified parts of the

source code that compose variabilities. We must note that we discarded files

that did not contain variable code.

1https://www.facom.ufms.br/~cafeo/ist2022/

13

https://www.facom.ufms.br/~cafeo/ist2022/

3. Association between variability-related information and development
history. With all relevant information about development history, including

lines of code changed by each developer and information about variabilities,

it was possible to associate developers with variable code. Our goal was that,

instead of having only an association between a developer and files changed

(committed) by that developer, we also have another unit of abstraction (vari-

ability) associated with developers. In this case, we could identify developers

who added, changed, and removed variabilities during the development his-

tory.

4. DOA and Ownership extraction. This step consisted in calculating the

expertise-related metrics DOA and Ownership. To do so, we developed scripts

that processed all files considering the entire development history of all subject

systems. After processing the source code files, we generated a file containing

the expertise-related value for every developer in every source code file.

3.6 The Data Evaluation Procedure

This section describes our evaluation procedures to answer the research

questions presented in Section 3.1.

3.6.1 Work specialization (RQ1)

To understand the work specialization between developers in terms of vari-

able and mandatory code, we produced, for each month, a cumulative list of

all developers that contributed to an analyzed system. The idea was to identify

whether these developers worked on variable, mandatory code, or both. Each

month we updated this list, tracking which developers worked in which parts

of the source code (mandatory and/or variable). To categorize developers, we

used the terms generalist to developers who only changed mandatory code

considering the entire development history; specialist to developers who only

changed variable code considering the whole development history; and mixed
to developers who changed both variable and mandatory code.

3.6.2 Distribution of work among developers (RQ2)

To address RQ2, we applied data aggregation using concentration statis-

tics [Gas72]. The idea is to analyze the equality of the distribution of work

between developers on variable code. This analysis allows us to make state-

ments such as “10% of the developers are responsible for over 70% of the

variable code”.

14

As a statistic concentration, we adopt a method to analyze and visualize in-

come inequalities in a country’s population called Lorenz inequality or Lorenz

curve [Gas72]. This paper uses it to explore the concentration of changes in

variabilities per developer. For a more in-depth description of Lorenz inequal-

ity, the reader may refer to the original work of Lorenz [Gas72]. To compare

the Lorenz concentration between different subject systems, we compress it

to one number named Gini coefficient [Dor79]. The Gini coefficient indicates

the degree of distributional inequality of variability changes per developer in

a subject system. The Gini coefficient takes a value between 0 and 1, with

g = 0 denoting perfect equality, meaning that x percent of the developers are

responsible for x percent of the variabilities changes. Conversely, g = 1 indi-

cates perfect inequality with only one developer responsible for 100 percent

of the cumulative changes in variabilities. Using the Gini coefficient, we can

compare different concentrations since such coefficient represents a concen-

tration in a scalar value.

3.6.3 Association between file expertise and variable code (RQ3)

To answer RQ3, we first extracted expertise-related metrics to identify au-

thors (DOA) and major contributors (Ownership) of all files of the analyzed

systems. In addition, to each file analyzed, we identified a list of developers

who changed variable code in this specific file. After that, we investigated

whether authors (DOA) and/or major contributors (Ownership) were on the

list of developers who changed variable code.

15

16

CHAPTER

4
Results

This Chapter presents the results of the research questions raised in Sec-

tion 3.1. Section 4.1 shows the results regarding the division of work of de-

velopers in configurable systems. We classify them as generalists, specialists,

and mixed developers to analyze this division. Section 4.2 describes the re-

sults of the distribution of work among developers by using, for example, con-

centration statistics. Finally, Section 4.3 shows the results of the comparison

between file experts and variable code developers.

Table 4.1 shows the results extracted from the data to answer the research

questions (Section 3.1).

4.1 Work specialization (RQ1)

To assess work specialization, we introduce three developer profiles. We

classify a developer as a generalist if (s)he only worked in mandatory code

considering the entire development history. A developer is classified as a spe-

cialist if (s)he only worked with variable code. A developer is classified as

mixed if (s)he worked both in mandatory and variable code considering the

entire development history.

Table 4.1 shows the percentage of generalists, specialists, and mixed devel-

opers for each subject system in the last commit analyzed. Proportionally, any

system has at least 25% of generalist developers, with an average of 61.53%

and a maximum of 82.30%. No more than 2.75% are specialists on average.

Considering mixed developers, we can note an average of 35.71% of mixed

developers. However, we notice that the proportion of generalists, specialists,

and mixed developers appears to vary across the entire data set of systems.

17

RQ1 RQ2 RQ3

Project Specialists Generalists Mixed Gini
Authors who
never touched
variabilities (%)

Majors who
never touched
variabilities (%)

Variabilities
that have
never been
changed by
Authors (%)

Variabilities
that have
never been
changed by
Majors (%)

AMXModX 0.00 64.40 35.59 0.70 35.84 54.72 1.50 0.00
Angband 1.19 66.66 32.14 0.71 32.43 54.05 11.56 2.98
ASF 0.00 53.12 46.87 0.81 78.26 91.3 3.38 0.58
Bison 0.00 66.66 33.33 0.74 31.25 40.63 14.36 3.79
BusyBox 2.15 76.81 21.02 0.88 15.94 24.06 19.23 2.72
Cherokee 0.00 69.56 30.43 0.78 44.44 44.44 5.88 2.26
Clamav 1.26 67.08 31.64 0.81 23.94 36.62 3.42 0.19
Collectd 1.88 77.61 20.50 0.76 21.01 29.87 28.38 10.76
Curl 2.95 62.83 34.21 0.84 11.55 14.52 28.15 13.58
Dia 10.25 55.12 34.61 0.73 24.28 34.29 16.09 1.95
Emacs 1.31 62.10 36.57 0.81 9.88 13.77 37.47 14.29
Ethersex 3.73 37.38 58.87 0.80 33.68 40.00 12.51 0.46
FreeRADIUS 2.25 56.39 41.35 0.84 17.50 25.00 11.19 1.37
FVWM 0.00 25.00 75.00 0.59 51.85 77.78 16.30 4.78
GCC 2.33 63.15 34.51 0.82 48.49 55.39 31.36 10.86
Glibc 4.23 60.91 34.85 0.89 42.16 59.44 13.46 1.35
Gnumeric 1.84 74.23 23.92 0.86 26.95 33.33 7.16 0.35
Gnuplot 0.00 65.32 34.67 0.86 7.01 11.40 20.33 3.49
Hexchat 4.44 72.59 22.96 0.80 6.87 20.61 19.51 1.82
Httpd 2.54 37.28 60.16 0.75 53.12 61.45 16.69 6.25
Irsii 1.05 81.05 17.89 0.71 15.90 39.77 17.70 9.37
Kerberos5 3.96 52.38 43.65 0.80 46.29 58.33 19.23 1.43
Libexpat 6.97 60.46 32.55 0.61 14.28 16.67 24.32 3.60
Libpng 6.25 46.87 46.87 0.83 9.67 19.35 4.18 1.39
LibSoup 5.26 73.02 21.71 0.72 13.04 17.39 9.09 2.27
Libssh 2.41 67.74 29.83 0.75 13.08 22.43 14.50 4.50
LibXML2 8.04 73.86 18.09 0.81 4.12 5.15 18.28 5.16
Lighttpd1.4 10.71 39.28 50.00 0.82 18.51 37.04 7.73 0.54
Machinekit 1.23 53.08 45.67 0.75 34.28 47.14 6.08 0.52
MapServer 0.00 63.11 36.88 0.77 19.46 20.35 11.07 0.92
Marlin 7.67 53.83 38.49 0.83 18.34 26.35 17.59 8.38
Mongo 0.83 72.12 27.04 0.88 51.91 64.24 4.88 0.65
OpenSC 1.99 67.66 30.34 0.68 15.47 30.39 37.69 6.02
OpenSSL 3.92 71.47 24.59 0.87 12.96 20.24 17.86 3.13
OpenTX 4.06 42.27 53.65 0.85 34.23 37.84 11.10 1.43
OpenVPN 2.54 62.71 34.74 0.77 10.52 12.28 23.90 3.53
OSSEC 1.03 62.88 36.08 0.79 12.94 32.94 18.61 11.66
Pacemaker 3.60 70.27 26.12 0.75 21.50 25.81 15.45 2.41
Parrot 0.63 54.43 44.93 0.63 45.23 66.67 20.70 11.27
Pidgin 0.82 71.15 28.02 0.70 22.54 31.11 26.15 7.78
RetroArch 4.22 53.33 42.44 0.89 17.70 21.7 6.26 2.52
SleuthKit 1.17 70.58 28.23 0.89 28.76 38.36 1.17 0.35
SQLite 0.00 43.33 56.66 0.77 22.22 18.52 11.49 2.38
syslog-ng 3.87 69.76 26.35 0.75 40.00 60.91 20.40 2.40
TauLabs 1.87 50.00 48.12 0.73 51.47 70.59 8.14 0.83
Totem 2.30 82.30 15.38 0.77 19.32 27.73 5.73 0.00
Uwsgi 2.72 63.60 33.67 0.71 8.42 19.05 36.85 13.00
WiredTiger 0.00 61.66 38.33 0.70 48.98 65.31 10.71 4.16
XServer 3.20 66.40 30.40 0.85 11.37 15.16 19.70 4.79
Average 2.75 61.53 35.71 0.78 26.51 36.56 15.60 4.09

Table 4.1: Summary of results.

18

These proportions naturally depend on characteristics like the number of vari-

abilities and developers. Nevertheless, we can say that specialists are always

the minority in all subject systems.

Since the subject systems present a wide range of systems in terms of the

number of developers and variability, we chose four systems representative

of the data of the entire system set to perform a more in-depth analysis of

this division over time. Figure 4.1 presents the work specialization over time

considering the following systems: GCC, Ethersex, LibSoup, and Machinekit.

Figure 4.1: Work specialization over time in four systems.

Analyzing the graphs of the four systems (Figure 4.1), we can see a growing

trend in the number of developers. We can also notice that the growth of

generalist and mixed developers is much higher than that of specialists in all

four systems. It is interesting to note that Ethersex and Machinekit have more

mixed developers than generalists. Both systems also have fewer developers

compared to GCC and LibSoup, which have more generalists. That is, there

seems to be a tendency for developers to end up working more on mandatory

code than on variable code.

Considering the results of all subject systems and the four analyzed sys-

tems, depending on the division of variable code between mixed and expert

developers, the number of developers who can perform tasks in variable code

may be small. If this division is not equal, a few developers can have a concen-

tration of variable code knowledge, which is harmful to any system, including

19

configurable systems.

Specialization of work like the one we saw in the results was expected.

However, the considerable difference in relative terms between these divisions

can be a problem in many of the analyzed systems.

Lessons Learned 1: Specialization among developers of configurable systems

is uneven when considering mandatory and variable code. Specialization is

more even with few developers at the beginning of the development history.

Still, as the system evolves, there is a tendency for new developers to focus

more on mandatory code.

4.2 Distribution of work among developers (RQ2)

As mentioned in Section 4.1, it is essential to understand how variability is

divided among developers working with variability. There are a small number

of specialist developers and many mixed developers. Therefore, this division

can be pretty uneven.

In a first analysis, it is possible to notice in the violin chart with boxplot

(Figure 4.2) the division of variabilities by developer (mixed or specialist) in

the four analyzed systems with representatives of the subject systems (GCC,

Ethersex, LibSoup , and Machinekit).

Figure 4.2: Variabilities per developer.

In Figure 4.2, it is noted that there is a relatively equal distribution among

developers for most developers, with a median of 5 variabilities per developer

20

in the Ethersex and GCC systems; 8 variabilities per developer in Machinekit;

and one variability per developer in LibSoup.

Despite the apparent equality of variabilities between developers, there are

several outliers in all systems, which may indicate a concentration of variabil-

ity in a few developers. Table 4.1 shows the Gini coefficient for each subject

system. The Gini coefficient takes a value between 0 and 1, with 0 denoting

perfect equality and 1 denoting perfect inequality.

We can notice that there is considerable inequality in all subject systems.

In other words, few developers worked on variable code during the entire de-

velopment history. This concentration limits developers who have expertise

in variable code and, therefore, who are best suited to perform maintenance

tasks and code reviews in variabilities.

We can see this concentration when we plot the Lorenz curve for the four

representative systems (Figure 4.3). The Lorenz curve is complementary to

the Gini coefficient to represent inequality. The black line represents complete

equality in the distribution of variabilities by developers. The further the curve

is from the line of equality, the more uneven the distribution. The Lorenz

curves of the four systems corroborate with what was found in all subject

systems and with the findings mentioned above.

Figure 4.3: Lorenz curve of the four representative systems.

21

Lessons Learned 2: Few developers accumulate considerable expertise over

system variabilities. Only a small portion of developers working with variable

code accumulate the most changes over their entire development history.

4.3 Association between file expertise and variable

code (RQ3)

According to the results of RQ2 (Section 4.2), few developers know most

of the variable code. Expertise-related metrics try to identify developers with

expertise in parts of the code to assign them to specific tasks in those parts.

However, expertise-related metrics known in the literature do not consider

variability to indicate developers.

Table 4.1 shows the percentage of developers nominated by DOA and Own-

ership who have never worked on variable code. In addition, it is shown the

rate of variability that has never been changed by the developers indicated by

such metrics.

It is possible to notice from the data presented in Table 4.1 that a consid-

erable number of developers indicated by the expertise-related metrics never

work on any variability of the system, even though they are experts developers

in the file in which the implementation of one or more variabilities is found. It

is also possible to notice the low participation of these developers in the imple-

mentation of most of the variability. A lot of variabilities were never changed

by such developers. Therefore, considering the analyzed systems, it is possi-

ble to say that the analyzed expertise-related metrics may not be right in the

indication of developers’ expertise when it comes to configurable systems.

Lessons Learned 3: Expertise-related metrics may not correctly indicate the

expertise of developers in most cases when configurable systems, even when

variabilities are implemented in the file in which the developer is an expert.

22

CHAPTER

5
Implications

Be average at everything = be good at nothing. The data from our analysis

showed that there are a lot of developers who either work with only the manda-

tory part of the code (generalist) or with mandatory parts and few variable

parts (mixed developer). In configurable systems, it is of paramount impor-

tance that developers know variable code, as they are tangled with mandatory

code. Furthermore, combining these variable codes will generate different final

system configurations. Due to the mental load to understand combinations of

variabilities, developers tend to avoid changing variable code. Thus, it is likely

that there are few developers able to maintain or perform variable code review

tasks.

Knowledge is power. Sharing knowledge is the key to unlocking that
power. Our data showed that in addition to the fact that few developers work

with variable code, only a few work with most of the variabilities of the sys-

tems. Several studies claim that the concentration of knowledge is harmful to

any software system [APHV16, RMT11]. It can be even more critical in con-

figurable systems, given that essential parts of the system (i.e., variable code)

are concentrated in a few developers. These developers may have a consid-

erable backlog of maintenance tasks and code reviews. As a result, the time

for carrying out these activities may be compromised. An alternative would be

to randomly assign such activities to developers with no knowledge of variable

code. In this case, the maintenance effort is likely more significant than usual.

Thus, it is essential to try to share knowledge of variable code and introduce

developers, especially the new ones, to familiarize themselves with variable

code to reduce the concentration of knowledge and increase the number of

23

developers capable of working with variability.

Wrong does not cease to be wrong because the majority share in it.
Expertise-related metrics are extensively used to plan the overall division of

work, identify key collaborators, and find the best developers for a target task.

However, in configurable systems, it is natural that variabilities are used as

units of abstraction, for example, in maintenance tasks. Expertise-related

metrics generally use the file as a modular unit for indicating developers.

Our results showed that this misalignment between the unit of abstraction

used by configurable systems and the unit used by expertise-related metrics

causes such metrics to be wrong in the indication of developers if this indi-

cation is for the performance of a task that involves variability. Metrics used

in preprocessor-based configurable systems must be variability-aware so that

suggestions are more likely to be correct regarding variable code.

24

CHAPTER

6
Proposed Approach

Since findings from the exploratory study (Chapter 3) surges that (i) the

minority of the developers have touched variable code considering the entire

development history and (ii) there is a concentration of expertise about vari-

able code among few developers, we exploit such information in our proposed

approach. In our approach, we analyze important properties of source code

repositories, developers, and source code to propose a formula that can indi-

cate the expertise level of a particular developer regarding a specific variability.

Using this formula, we can generate a list of expert developers for a particular

variability that may be reviewer candidates. Our goal is to support the choice

of an appropriate reviewer for a pull request involving variabilities. This sec-

tion describes the concepts, steps, and details used in the definition of the

proposed approach.

6.1 Feature Selection

The first step of our approach is to understand which properties can be

used as indicators of expertise of developers regarding variabilities. The idea

is to use these indicators to propose a formula that calculates the level of

authorship of a particular developer considering a specific variability. To do

so, we use the well-known machine learning and statistics technique called

feature selection.

Feature selection is the process of detecting relevant features and remov-

ing irrelevant, redundant, or noisy data for use in model construction [KM14].

This process improves accuracy while accelerating the training of the algo-

rithms by removing features that do not provide helpful information or do not

25

provide more information than the currently selected features [DL97, GE03,

XZBY15, FPHK94].

The features selection algorithms are often divided into three groups: Fil-

ter approaches, Wrapper approaches, and Embedded approaches [XZBY15,

KM14].

Filter approaches. Filter approaches are computationally efficient methods

that evaluate features without a learning algorithm, applying an independent

measure to each subset of features. The filter approach allows the algorithms

to have a straightforward structure, with a straightforward search strategy

and a feature evaluation criterion [KM14, LMSZ10].

Wrapper approaches. The main difference between the filter and wrapper

approaches resides in the evaluation criteria. The wrapper approach uses a

learning algorithm to evaluate each subset of features and identify relevant

features [KM14, LMSZ10].

Embedded approaches. Embedded approach incorporate the learning algo-

rithm, with lower computational cost than the wrapper approach, with the

search element from the filter approach, by searching for the optimal feature

subset for a known cardinality. Then, it uses the learning algorithm to select

the optimal subset among the optimal subsets across different cardinalities

[KM14, LMSZ10].

In our solution, to find the features that best fit the problem, we applied

one method from each group using the implementation given by the tool scikit-

learn 1. The following methods were applied to select relevant features:

Univariate Selection (US). Univariate Selection is a feature selection method

that selects the k highest scoring features based on univariate statistical tests,

comparing each feature with the dependent variable [JBB15]. For regression,

the only test available is the cross-correlation test that generates an F-score,

which is recommended as a feature selection criterion to identify potentially

predictive features and the mutual information gain test that measures the

dependence between features using entropy and k-nearest neighbors [JBB15].

Recursive Feature Elimination (RFE). Recursive Feature Elimination is a

feature selection method that starts with all the features and iteratively re-

moves those with the weakest relationship with the output until the desired

number of features is reached [CJ07].

Decision Tree (DT). The Decision Tree is a graph where every node represents

the event or choice, and the edges represent the decision rules or conditions.

With this structure, the graph ends up taking the form of a tree, where, for

each decision made, one level is descended in the tree [DBW+02].

1https://scikit-learn.org/

26

https://scikit-learn.org/

We selected candidate features based on properties used in the studies

proposing DOA and Ownership. However, since these expertise-related met-

rics use files as the unit to calculate the expertise, we used to adapt these

properties to consider the variability as the unit of interest in our approach.

Moreover, we also included properties related to files in the feature selection

process that are relevant to defining the boundaries of a variability. Table 6.1

shows all the candidate features and a brief description of these features.

Feature Description
fa_variability First author of the variability
n_commits_variability Number of commits involving a particular variability

dl_variability
Number of commits done by a developer touching a
particular variability

ac_variability
Number of commits done by others than a particular
developer touching a specific variability

n_files_variability
Number of files used to implement a particular vari-
ability

n_commits_files_variability
Number of commits involving files with code of a par-
ticular variability

fa_files_variability
First author of a file that contains code of a particular
variability

n_r_commit_variability
Relative number of commits of a developer consider-
ing the total number of commits in a variability

Table 6.1: Features analyzed.

We executed scripts to analyze the development history of all subject sys-

tems (Section 3.2) and calculate the values of the candidate features. With

these values, we applied the three methods mentioned earlier to select the

relevant features to our approach based on developers who changed variabil-

ities. Since we used three methods, our criteria to select a feature was that

a feature should be selected by the majority of the methods (i.e., at least two

methods) to be considered in our approach. Table 6.2 shows the results of the

feature selection for each method. The value True means that a feature was

selected by a method. The value False means that a feature was not selected

by a method. The features considered to be used in our approach (two or three

true values) are represented in bold.

6.2 Linear Regression

With relevant features, the next step was to use them to create a formula

that could indicate the expertise of a developer regarding a specific variability.

One of the most used techniques to do so in related studies is linear regres-

sion.

Linear Regression can be used to predict, or classify, a set of labeled data.

27

Feature US RFE DT
fa_variability TRUE TRUE FALSE
n_commits_variability TRUE FALSE TRUE
dl_variability TRUE TRUE TRUE
ac_variability TRUE TRUE TRUE
n_files_variability TRUE FALSE TRUE
n_commits_files_variability FALSE FALSE FALSE
fa_files_variability FALSE TRUE FALSE
n_r_commit_variability FALSE TRUE FALSE

Table 6.2: Results of the application of three feature selection methods.

This labeled data, composed of input (x) and predicted output (y), is used to

find a function that relates the input to the predicted output [MA20]. The

function that can infer the relationship between the dependent variable y and

the independent variable x can be defined as:

y = β0 +β1 ∗ x+ ε (6.1)

with β0, β1 and ε as constants. Linear regression provides a sloped straight

line representing the relationship between the variables (Figure 6.1).

Figure 6.1: Illustration of the process of linear regression.

If more than one independent variable is used to predict the value of the

dependent variable, we can use Multiple Linear Regression (MLR). Similarly

to linear regression, MLR attempts to find a linear equation that best pre-

dicts the relationship between a scalar result Y and n explanatory variables

X1, X2, X3, . . . , Xn, based on the values of the features multiplied by the weights

calculated during the regression run [Job91]. Given a sample of m observa-

tions as the matrix:

28

x11 x12 x13 . . . x1m y1
x21 x22 x23 . . . x2m y2
...

...
...

...
xn1 xn2 xn3 . . . xnm yn

We can describe this sample as (xi1, xi2, xi3, . . . , xim, yi), for i = 1, 2, 3, . . . , m

and, therefore, we can describe this as a linear model:

yi = β0 +β1 ∗ xi1 +β2 ∗ xi2 +β3 ∗ xi3 + · · ·+βm ∗ xim (6.2)

for i = 1, 2, 3, . . . , n, where β0, β1, β2, β3, . . . , βm are constants.

To find the best fit line, the error between the predicted values and the

obtained values must be minimized. This is calculated through a cost function

that will choose the best values for β0 and β1. The cost function can be Mean

Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared

Error (RMSE).

6.2.1 Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is the average of the difference between the

estimated values and the predicted values and can be described as:

MAE =
1
n

n

∑
j=1

|y j − ŷ j| (6.3)

where y j is the estimated value, ŷ j is the predicted value from the regression

model, and m is the number of data points.

6.2.2 Mean Squared Error (MSE)

Mean Squared Error (MSE) finds the average of the squared difference be-

tween the estimated value and the value predicted by the regression model.

MSE =
1
n

n

∑
j=1

(y j − ŷ j)
2 (6.4)

where y j is the estimated value, ŷ j is the predicted value from the regression

model, and m is the number of data points.

6.2.3 Root Mean Squared Error (RMSE)

Root Mean Squared Error (RMSE) corresponds to the square root of the av-

erage squared difference between the estimated value and the value predicted.

Mathematically, it can be represented as:

29

RMSE =

√
1
n

n

∑
j=1

(y j − ŷ j)2 (6.5)

where y j is the estimated value, ŷ j is the predicted value from the regression

model, and m is the number of data points.

Once the error function is defined, the execution of linear regression takes

place in 2 stages: training and test. In the training stage, the data set is

divided into two parts. One part of the data set is used to train the regression

in a series of iterations, called epochs. At each epoch, the weights applied

to each feature are updated using a previously defined fixed value, called the

learning rate. The value of the cost function and the accuracy of the model

are also calculated in this stage. The number of epochs and the learning rate

are empirically defined values, differing for different applications. The linear

regression test stage is performed at the end of the training stage. In this step,

the function is applied to the other part of the data set, and the accuracy of

the regression is measured. More details related to this stage are presented in

Section 7.

To generate the function to calculate the authorship of variability, we used

MLR with the most relevant features (Section 6.1) to create a formula to indi-

cate the degree of authorship of a particular developer regarding a variability.

We used fa_variability as (x1), n_commits_variability as (x2), dl_variability

as (x3), ac_variability as (x4), n_files_variability as (x5), and the developers that

touched the variability during the development history as the y. Multiple linear

regression is suitable for our data, even though changes in variabilities are

ordinal because we are attempting to find an approximation, not a certain

class, for expertise. We use the following linear combination as an initial

starting point to determine the Degree-Of-Authorship-in-Variabilities (DOAV):

DOAV (d,v) = α0 +β1 ∗ x1 +β2 ∗ x2 +β3 ∗ x3 +β4 ∗ x4 +β5 ∗ x5 (6.6)

being d a particular developer and v a particular variability.

To determine appropriate weightings for the factors contributing to our for-

mula, the first step was to select a subset of systems to train the linear regres-

sion algorithm, the number of epochs, and the learning rate. We trained the

linear regression with 20 and 32 systems, using 1000 and 2000 epochs and

learning rates of 0.001, 0.0001, and 0.00001. The best solution was found

when training the linear regression with 32 systems, 1000 epochs, and learn-

ing rate of 0.00001, and the resulting equation to the Degree-Of-Authorship-in-
Variabilities (DOAV) is as follows:

30

DOAV (d,v) = 1.446+0.364∗ x1 −0.007∗ x2 −0.326∗ x3 +0.633∗ x4 −0.004∗ x5 (6.7)

31

32

CHAPTER

7
Experiment

One of the most effective ways to evaluate an expertise-related metric is

to consult with actual code maintainers and code reviewers assigned from a

code base. We evaluate our technique using the actual commits and code re-

views data of a subset of 17 from the subject system. In particular, we use

201,707 commits involving variabilities as our oracle in evaluating our ap-

proach against a popular performance metric. To further validate our findings

and demonstrate its superiority, we experiment our approach using 45,955

pull requests and their code review details and compare them with the state-

of-the-art expertise-related metrics. We mainly answer the following research

questions through our conducted experiments:

RQ4: How does DOAV accurately suggest maintainers of variabilities?

RQ5: Does DOAV outperform widely used expertise-related metrics for reviewer
recommendation in preprocessor-based configurable software systems?

7.1 Experimental Data Set

We used 17 projects from the subject systems (Section 3.2) for our experi-

ments. It should be noted that the experiments involve the actual recommen-

dation of code reviewers, and the choice of the same systems does not impact

the evaluation since there is no direct relationship with the exploratory study.

Instead, choosing the same systems confirms the findings of the exploratory

study and vice versa.

We identify the developers who added, changed, or deleted variable code

from the development history and are appended to the maintainer set of the

33

variability. We use such a set as the gold maintainer set for each of the variabil-

ities in our experiment to answer RQ4. In addition, besides some constraints

the subset of subject systems met as mentioned in Section 3.2, they also

have explicit reviewers identified in pull requests. In other words, these sys-

tems present pull requests with code reviewers assigned explicitly in a GitHub

feature to assign code reviewers. We collect developer references (i.e., rec-

ommended reviewers) and make a reviewer set for each variability touched,

considering all pull requests. We use such a set as the gold reviewer set for

each of the variabilities in our experiment to answer RQ5. Table 3.1 shows

the summary statistics of the selected projects (in bold).

7.2 Performance Metrics

Since our technique recommends a list of developers with expertise re-

garding a particular variability, we choose two relevant performance metrics

for evaluation from the corresponding literature [FMMH+14, BNM+11]. These

metrics were adapted to the context of each research question. We also choose

these metrics from the information retrieval domain due to the inclination of

this technique to this domain.

Maintainer Accuracy: It refers to the percentage of developers for which at

least one maintainer is correctly recommended within the results given by

DOAV considering the gold maintainer set of each variability. MAccuracy(V) can

be defined as follows:

MAccuracy(V) =

(
∑variabilities∈V isCorrect(variabilities,Maintainers)

|V |
∗100

)
% (7.1)

isCorrect(variabilities,Maintainers) returns a value of 1 if at least one developer

exists from the gold set in the Maintainers results generated by DOAV and

returns 0 otherwise. V denotes the set of all variabilities of a particular system.

The higher the accuracy, the better our approach. It is worth mentioning that

the list of Maintainers depends on a cut-off based on the value of DOAV .

Jaccard distance of reviewers: It refers to the dissimilarity between the gold

reviewers set and the indicated reviewers set given by DOAV . dJ(A,B) can be

defined as follows:

dJ(A,B) =
|A∪B|− |A∩B|

|A∪B|
(7.2)

Here, A is the list of reviewers indicated by our approach with a predefined

cut-off. B is the gold reviewer’s list. The value of Jaccard distance is bound

34

between 0 and 1. Values closer to 1 mean a higher dissimilarity between

sets. Values closer to 0 mean lower dissimilarity between sets. The lower the

distance, the better our approach compared to other approaches. It is worth

mentioning that we used cut-off values in the compared expertise-related met-

rics that were recommended in their respective papers.

7.3 Approach performance (RQ4)

In this section, we discuss our evaluation results, and answer RQ4. We

evaluate our technique using a collection of 226,287 commits from 17 subject

systems comprising 23,761 touched variabilities. We collected all developers

during the entire development history. Then, the developers were ranked by

our approach. We then compare the ranked developer’s list with the gold de-
veloper set containing developers that touched variable code of a particular

variability. This procedure is made for each variability of each analyzed sys-

tem. Table 7.1 summarizes the performance details of our approach.

Accuracy
cut off of 0.1 cut off of 0.15 cut off of 0.2

Clamav 90.33 90.15 89.99
Collectd 40.62 40.62 40.62
Curl 60.08 59.91 59.77
FreeRADIUS 58.57 57.99 57.89
Httpd 82.28 81.79 81.68
Irssi 69.82 69.29 69.29
Libexpat 60.90 60.90 60.90
Lighttpd1.4 69.12 69.03 68.52
Marlin 76.44 75.94 75.65
Mongo 94.70 93.71 93.04
OpenSC 66.15 66.02 65.58
OpenSSL 79.89 79.68 79.51
OSSEC 74.70 72.84 72.42
Pacemaker 73.00 72.11 71.86
RetroArch 85.16 84.35 82.28
syslog-ng 78.71 78.71 78.71
WiredTiger 71.50 71.50 70.50
Average 72.47 72.03 71.66

Table 7.1: Accuracy of the approach with individual subject systems.

Table 7.1 shows the performance of our approach for each of the individual

subject system analyzed in this stage (test stage). We consider three different

cut-off values to evaluate the performance of our approach: We noted that the

approach provides a recommendation accuracy of around 72.5% with a cut-

off of 0.1, 72.0% with a cut-off of 0.15, and 71.7% with a cut-off of 0.2. We

35

also note that the cut-off value of 0.1 returns an average accuracy of 72.5%,

which suggests its more significant potential for a recommendation. Therefore,

the cut-off value of 0.1 was chosen as the recommended cut-off value in our

approach. It is also worth mentioning that our technique performs well with

the performance metric with all the cut-off values tested, and the findings

answer our first research question (RQ4).

7.4 Approach comparison (RQ5)

To further validate the performance of our approach, we compare it with

DOA and Ownership, two widely used expertise-related metrics. We evalu-

ate the techniques using a collection of 45,955 pull requests from 17 subject

systems.

We collected the reviewers of each GitHub pull request that had a reviewer

assigned explicitly in the reviewer assignment feature. It is important to men-

tion that we only considered pull requests involving changes in variable code.

We created a list of reviewers for each variability, thus creating our gold re-
viewer set. We also mapped files with variable code in pull requests to use in

the target expertise-related metrics. After that, we generate a list of reviewers

for each variability (DOAV) or file (DOA and Ownership) and calculate the Jac-

card distance between those lists and the gold reviewer set. Table 7.2 sum-

marizes the comparison details for three different cut-offs in our approach.

Values in bold represent the best values of an approach for a particular sys-

tem.

Cut-off of 0.1 Cut-off of 0.15 Cut-off of 0.2
DOA Ownership DOAV DOA Ownership DOAV DOA Ownership DOAV

Clamav 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Collectd 0.92 0.91 0.83 0.92 0.91 0.77 0.92 0.91 0.77
Curl 0.84 0.86 0.82 0.84 0.86 0.84 0.84 0.86 0.85
FreeRADIUS 1.00 0.96 0.50 1.00 0.96 0.50 1.00 0.96 0.50
Httpd 1.00 0.98 0.50 1.00 0.98 0.50 1.00 0.98 0.50
Irssi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Libexpat 0.70 0.76 0.25 0.70 0.76 0.25 0.70 0.76 0.50
Lighttpd1.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Marlin 0.98 0.97 0.88 0.98 0.97 0.87 0.98 0.97 0.86
Mongo 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00
OpenSC 0.90 0.87 0.69 0.90 0.87 0.69 0.90 0.87 0.69
OpenSSL 0.89 0.90 0.87 0.89 0.90 0.86 0.89 0.90 0.85
OSSEC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pacemaker 0.93 0.84 0.87 0.93 0.84 0.87 0.93 0.84 0.87
RetroArch 0.96 0.98 1.00 0.96 0.98 1.00 0.96 0.98 1.00
syslog-ng 0.86 0.90 0.86 0.86 0.90 0.86 0.86 0.90 0.88
WiredTiger 0.73 0.78 0.84 0.73 0.78 0.84 0.73 0.78 0.84
Average 0.92 0.92 0.82 0.92 0.92 0.81 0.92 0.92 0.83

Table 7.2: Comparison between expertise-related metrics and our approach.

In Table 7.2, we can observe that our approach outperforms the competing

36

metrics for most of the analyzed systems using the gold reviewer set. The dis-

tance of our reviewer’s list is closer to the gold reviewer set than the competing

metrics in 8 out of 17 systems, with an average distance of 0.82 with a cut-off

of 0.1. We also noticed that our metric outperformed the competing metrics

even using other cut-off values. For example, using 0.15 as the cut-off, our

metric outperformed DOA and Ownership in 8 systems presenting an average

distance of 0.81. Using 0.2 as the cut-off, our metric also outperformed the

competing metrics in 8 systems showing an average distance of 0.83.

Thus, each of the analyses above shows that our approach outperforms

widely used expertise-related metrics answering RQ5.

37

38

CHAPTER

8
Related Work

C preprocessor. In literature, the C preprocessor is often heavily criticized.

Numerous studies discuss the negative effect of preprocessor usage on code

quality and maintainability [AVRGC08, EBN02, Fav95, Fav97, KS94, SC92].

There are attempts to extract structures from the source code (e.g., nest-

ing, dependencies, and include hierarchies) and visualize them in a separate

view [KS94, PO97, SC92]. Views on configurations have been explored, which

show only part of the feature code and hence reduce complexity [ABGM02,

CCWY03, HEB+10, KAK08, SGC07]. In addition, there are also the idea

of using colors to support a developer to work with variable code [FKA+13,

Ram86, ON92, Wuu94]. Similarly to our work, these studies try to support

the use of C preprocessor. However, our work focus on using C preprocessor

properties to indicate key developers that probably will not have difficulties

to maitain variable code. Another problem related to our work is related to

modularity. Variability modularity has been a long-standing goal of feature-

oriented software development such as configurable systems [ABKS13]. While

some researchers view variabilities as modular unit of behavior and compo-

sition, others pointed out that, at the source-code level, most implementa-

tion mechanisms provide merely syntactic compositions, and thus lack proper

interface abstractions and modular reasoning. Kästner et al. [KAO11] pin-

point two different notions of modularity: one based on locality and cohe-

sion, and another based on information hiding and interfaces. Examples

of approaches for improving modularity include architecture-based product

lines (based on frameworks or components) [BCK03], feature-oriented pro-

gramming [Pre97, BSR04], aspectual feature modules [ALMK08], feature cohe-

sion [AB11], and superimposition [AKL13]. Despite the improvement of mod-

39

ularity in those cases, simple solutions like conditional compilation prevail

in practice [GA01, EBN02, KAK08]. We argue that, independent from the no-

tion of modularity, the identification of key developers to deal with variabilities

remains important. Moreover, differently from their work, our goal is not im-

prove modularity regarding variability. We use existing variabilities properties

to propose a metric that fit to the solution that prevail in practice.

Expert recommendation. A number of prior studies have examined the ef-

fect of developer contribution on software quality. McDonald and Ackerman

propose the “Line 10 Rule”, one of the first and most used heuristics for ex-

pertise recommendation [MA00]. The heuristic considers that the last person

who changes a file is most likely to be the expert. Expertise Browser [MH02]

and Emergent Expertise Locator [MM07] are alternative implementations to

the “Line 10 Rule”. Our study relies on the Degree-of-Authorship (DOA) met-

ric [FMMH+14] and Ownership [BNM+11] to identify experts. DOA and Own-

ership considers the whole version history to indicate developers with respect

to a given code element. Rahman and Devanbu [RD11] examined the effects

of ownership and experience on quality in several open-source projects. Sim-

ilarly to our work, they analyze experience of developers in open-source soft-

ware. However, they operationalize ownership differently from the ownership

used in our work and they do not consider preprocessor-based configurable

systems. Similarly, Meneely and Williams [MW09] examined the relationship

of the number of developers working on parts of the Linux kernel with security

vulnerabilities. They found that when more than nine developers contribute

to a source file, it is sixteen times more likely to include a security vulnera-

bility. Avelino et al. [APHV19] also analyze code authorship on Linux kernel

and other systems. They found that a small portion of developers makes the

most significant contribution to the code base and that the number of files

per developer is highly skewed. Similarly to our work, both of these studies

consider configurable systems. However, none of them explore whether the

expertise-related metrics they used are appropriate to that type of system.

There are also studies that analyze code authorship through machine learn-

ing algorithms [ARA+19, KKG+19]. Differently from our work, these studies

take into account characteristics related to code style to identify developers.

Thongtanunam and colleagues focus on proposing models to select reviewers

using neural networks [TTK+15, TMHI16]. In Ye et al. [YZAM21], pull request

title, commit message, and code change data are extracted to predict the like-

lihood that a candidate reviewer will be the appropriate reviewer. However,

none of these studies focus on preprocessor-based configurable systems.

40

CHAPTER

9
Threats to Validity

This section discusses the study limitations based on the four categories

of validity threats described by Wohlin et al. [WRH+12]. Each category has

a set of possible threats to the validity of an experiment. We identified these

potential threats to our study within each category, which are discussed in

the following with the measures we took to reduce each risk.

Conclusion validity. It concerns the relationship between the treatment and

the outcome. In this work, potential threats arise from violated assumptions of
statistical tests: the statistical tests used to support our conclusions may have

been inappropriately chosen. To mitigate this threat wherever possible, we

used statistical tests obeying the characteristics of our data. More specifically,

we used non-parametric tests, which do not make any assumption on the

underlying data distribution regarding variances and types.

Internal validity. It is the degree to which conclusions can be drawn about

the causal effect of independent variables on the dependent variables. A crit-

ical threat to the internal validity is related to historical events: a past re-

viewer/maintainer may be the natural reviewer/maintainer of variability, thus

concentrating knowledge compared to other developers. We analyze the sys-

tems with many developers and variabilities to alleviate this threat.

Construct validity. It refers to the degree to which inferences can legiti-

mately be made from the operationalizations in your study to the theoretical

constructs on which those operationalizations were based. We detected a pos-

sible threat related to the restricted generalizability across constructs: C/C++

might present specific source code characteristics compared to other program-

ming languages and affects our study. This risk cannot be avoided since we

41

analyzed only source code implemented in C/C++. However, we argue that

C/C++ is an important programming language with preprocessor integrated

and comprises most preprocessor-based configurable systems in the GitHub

repository.

External validity. Threats associated with external validity concern the de-

gree to which the findings can be generalized to the broader classes of subjects

from which the experimental work has drawn a sample. We identified a risk

related to the interaction between selection and treatment: the use of open

source systems might present specific aspects when compared to proprietary

systems. This risk cannot be avoided because our focus was open source

systems with a development history available. However, we argue that they

are relevant worldwide adopted systems with millions of end-users. Therefore,

we believe the results extracted can be a first step toward generalizing the

results.

42

CHAPTER

10
Conclusions and Future Work

Expertise-related metrics allow for coordinating developer teams by plan-

ning the overall division of work, identifying key collaborators, and finding

the best developers for a target task. However, misalignment between files

and variabilities of configurable systems may make it impossible to use such

metrics in preprocessor-based configurable software systems.

In this context, this work was the first to explore how the work on manda-

tory code and variable code is divided between project developers and whether

expertise-related metrics can help to indicate a developer with expertise for

a task involving variable code. The results showed that few developers are

specialists in variable code. We also identified that, among developers who

changed variable code during the development history, only a few concentrate

the majority of changes in variable code. We also explored whether expertise-

related metrics can help to indicate a developer with expertise for a task in-

volving variable code. The results suggest that expertise-related metrics are

not a good fit to point to experts regarding variable code.

Given the results obtained with the exploratory study, we have had enough

clues to conclude that a variability-aware expertise-related metric would be

interesting in this context. To propose this metric, we used techniques such as

feature selection and multiple linear regression to propose a variability-aware

expertise-related metric based on historical data. We validate this metric by

analyzing maintenance tasks made on variable code. We also compare our

metric with two well-known expertise-related metrics - DOA and Ownership -

in 45,955 pull requests involving variable code. The results showed that our

metric outperformed both metrics in the subject systems.

Despite the contributions of this work, there are many other directions

43

for future work. For example, it is important to conduct a qualitative study to

understand how difficult it is for a developer to maintain variable code without

knowledge. Another future work would be using different techniques such as

neural networks and deep learning to propose a more precise set of developers.

Finally, we believe it is important to expand the exploratory study with more

systems and different research questions to have a broader view of this and

other problems, as well as possible solutions.

44

References

[AB11] Sven Apel and Dirk Beyer. Feature cohesion in software product

lines: an exploratory study. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, pages 421–430, 2011.

[ABGM02] David L Atkins, Thomas Ball, Todd L Graves, and Audris Mockus.

Using version control data to evaluate the impact of software tools:

A case study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, 2002.

[ABKS13] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake.

Feature-oriented software product lines: Concepts and implemen-

tation, 2013.

[AKL13] Sven Apel, Christian Kastner, and Christian Lengauer. Language-

independent and automated software composition: The feature-

house experience. IEEE Transactions on Software Engineering,

39(1):63–79, 2013.

[ALMK08] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian

Kästner. An algebra for features and feature composition. In

International Conference on Algebraic Methodology and Software
Technology, pages 36–50. Springer, 2008.

[AMS+18] Iago Abal, Jean Melo, Ştefan Stănciulescu, Claus Brabrand, Már-

cio Ribeiro, and Andrzej Wąsowski. Variability bugs in highly

configurable systems: a qualitative analysis. ACM Transactions
on Software Engineering and Methodology (TOSEM), 26(3):1–34,

2018.

[APHV16] Guilherme Avelino, Leonardo Passos, Andre Hora, and

Marco Tulio Valente. A novel approach for estimating truck fac-

tors. In 2016 IEEE 24th International Conference on Program Com-
prehension (ICPC), pages 1–10. IEEE, 2016.

45

[APHV19] Guilherme Avelino, Leonardo Passos, Andre Hora, and

Marco Tulio Valente. Measuring and analyzing code authorship in

1+ 118 open source projects. Science of Computer Programming,

176:14–32, 2019.

[ARA+19] Mohammed Abuhamad, Ji-su Rhim, Tamer AbuHmed, Sana Ul-

lah, Sanggil Kang, and DaeHun Nyang. Code authorship identi-

fication using convolutional neural networks. Future Generation
Computer Systems, 95:104–115, 2019.

[AVRGC08] Bram Adams, Bart Van Rompaey, Celina Gibbs, and Yvonne

Coady. Aspect mining in the presence of the c preprocessor. In

Proceedings of the 2008 AOSD workshop on Linking aspect tech-
nology and evolution, pages 1–6, 2008.

[AVRW+13] Sven Apel, Alexander Von Rhein, Philipp Wendler, Armin

Größlinger, and Dirk Beyer. Strategies for product-line verifica-

tion: Case studies and experiments. In 2013 35th International
Conference on Software Engineering (ICSE), pages 482–491. IEEE,

2013.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software architecture
in practice. Addison-Wesley Professional, 2003.

[BND+09] Christian Bird, Nachiappan Nagappan, Premkumar Devanbu,

Harald Gall, and Brendan Murphy. Does distributed development

affect software quality? an empirical case study of windows vista.

In 2009 IEEE 31st International Conference on Software Engineer-
ing, pages 518–528. IEEE, 2009.

[BNM+11] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald

Gall, and Premkumar Devanbu. Don’t touch my code! examining

the effects of ownership on software quality. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pages 4–14, 2011.

[BSR04] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-

wise refinement. IEEE Transactions on Software Engineering,

30(6):355–371, 2004.

[CCWY03] Mark C Chu-Carroll, James Wright, and Annie TT Ying. Visual

separation of concerns through multidimensional program stor-

age. In Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 188–197, 2003.

46

[CJ07] Xue-wen Chen and Jong Cheol Jeong. Enhanced recursive feature

elimination. In Sixth International Conference on Machine Learning
and Applications (ICMLA 2007), pages 429–435. IEEE, 2007.

[DBW+02] Wlodzislaw Duch, Jacek Biesiada, Tomasz Winiarski, Karol

Grudzinski, Krzysztof Grabczewski, Krzysztof Gr, et al. Feature

selection based on information theory filters. In In Proceedings of
the International Conference on Neural Networks and Soft Comput-
ing (ICNNSC 2002), Advances in Soft Computing. Citeseer, 2002.

[DL97] Manoranjan Dash and Huan Liu. Feature selection for classifica-

tion. Intelligent data analysis, 1(1-4):131–156, 1997.

[Dor79] Robert Dorfman. A formula for the gini coefficient. The review of
economics and statistics, pages 146–149, 1979.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical

analysis of c preprocessor use. IEEE Transactions on Software
Engineering, 28(12):1146–1170, 2002.

[Fav95] Jean-Marie Favre. The cpp paradox. In Proc. European workshop
on software maintenance. Citeseer, 1995.

[Fav97] J-M Favre. Understanding-in-the-large. In Proceedings Fifth In-
ternational Workshop on Program Comprehension. IWPC’97, pages

29–38. IEEE, 1997.

[FKA+13] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig,

Michael Schulze, Raimund Dachselt, Maria Papendieck, Thomas

Leich, and Gunter Saake. Do background colors improve program

comprehension in the# ifdef hell? Empirical Software Engineering,

18(4):699–745, 2013.

[FMMH+14] Thomas Fritz, Gail C Murphy, Emerson Murphy-Hill, Jingwen

Ou, and Emily Hill. Degree-of-knowledge: Modeling a developer’s

knowledge of code. ACM Transactions on Software Engineering
and Methodology (TOSEM), 23(2):1–42, 2014.

[FPHK94] Francesc J Ferri, Pavel Pudil, Mohamad Hatef, and Josef Kittler.

Comparative study of techniques for large-scale feature selection.

In Machine Intelligence and Pattern Recognition, volume 16, pages

403–413. Elsevier, 1994.

[GA01] Critina Gacek and Michalis Anastasopoules. Implementing prod-

uct line variabilities. In Proceedings of the 2001 symposium on

47

Software reusability: putting software reuse in context, pages 109–

117, 2001.

[Gas72] Joseph L Gastwirth. The estimation of the lorenz curve and gini

index. The review of economics and statistics, pages 306–316,

1972.

[GE03] Isabelle Guyon and André Elisseeff. An introduction to vari-

able and feature selection. Journal of machine learning research,

3(Mar):1157–1182, 2003.

[GJ05] Alejandra Garrido and Ralph Johnson. Analyzing multiple config-

urations of a c program. In 21st IEEE International Conference on
Software Maintenance (ICSM’05), pages 379–388. IEEE, 2005.

[HEB+10] Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolf-

gang Schröder-Preikschat, and Daniel Lohmann. Toolchain-

independent variant management with the leviathan filesystem.

In Proceedings of the 2nd International Workshop on Feature-
Oriented Software Development, FOSD ’10, page 18–24, New York,

NY, USA, 2010. Association for Computing Machinery.

[HPSG16] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and

Volker Gruhn. Automatically recommending code reviewers based

on their expertise: An empirical comparison. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software
Engineering, pages 99–110, 2016.

[JBB15] A. Jović, K. Brkić, and N. Bogunović. A review of feature selection

methods with applications. In 2015 38th International Convention
on Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO), pages 1200–1205, 2015.

[Job91] JD Jobson. Multiple linear regression. In Applied multivariate
data analysis, pages 219–398. Springer, 1991.

[JZM+17] He Jiang, Jingxuan Zhang, Hongjing Ma, Najam Nazar, and Zhilei

Ren. Mining authorship characteristics in bug repositories. Sci-
ence China Information Sciences, 60(1):1–16, 2017.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granular-

ity in software product lines. In 2008 ACM/IEEE 30th Interna-
tional Conference on Software Engineering, pages 311–320. IEEE,

2008.

48

[KAO11] Christian Kästner, Sven Apel, and Klaus Ostermann. The road

to feature modularity? In Proceedings of the 15th International
Software Product Line Conference, Volume 2, pages 1–8, 2011.

[Käs12] Christian Kästner. Virtual separation of concerns: toward prepro-

cessors 2.0. 2012.

[KCH+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak,

and A Spencer Peterson. Feature-oriented domain analysis (foda)

feasibility study. Technical report, Carnegie-Mellon Univ Pitts-

burgh Pa Software Engineering Inst, 1990.

[KDP16] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Using dynamic

and contextual features to predict issue lifetime in github projects.

In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), pages 291–302. IEEE, 2016.

[KKG+19] Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia

Stakhanova, and Alina Matyukhina. Code authorship attribu-

tion: Methods and challenges. ACM Computing Surveys (CSUR),
52(1):1–36, 2019.

[KM14] Vipin Kumar and Sonajharia Minz. Feature selection: a literature

review. SmartCR, 4(3):211–229, 2014.

[KS94] Maren Krone and Gregor Snelting. On the inference of configu-

ration structures from source code. In Proceedings of 16th Inter-
national Conference on Software Engineering, pages 49–57. IEEE,

1994.

[LAL+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Käst-

ner, and Michael Schulze. An analysis of the variability in

forty preprocessor-based software product lines. In Proceed-
ings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 105–114, 2010.

[LKA11] Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the dis-

cipline of preprocessor annotations in 30 million lines of c code.

In Proceedings of the tenth international conference on Aspect-
oriented software development, pages 191–202, 2011.

[LMSZ10] Huan Liu, Hiroshi Motoda, Rudy Setiono, and Zheng Zhao. Fea-

ture selection: An ever evolving frontier in data mining. In Feature
selection in data mining, pages 4–13. PMLR, 2010.

49

[MA00] David W McDonald and Mark S Ackerman. Expertise recom-

mender: a flexible recommendation system and architecture. In

Proceedings of the 2000 ACM conference on Computer supported
cooperative work, pages 231–240, 2000.

[MA20] Dastan Maulud and Adnan M Abdulazeez. A review on linear re-

gression comprehensive in machine learning. Journal of Applied
Science and Technology Trends, 1(4):140–147, 2020.

[MH02] Audris Mockus and James D Herbsleb. Expertise browser: a

quantitative approach to identifying expertise. In Proceedings of
the 24th International Conference on Software Engineering. ICSE
2002, pages 503–512. IEEE, 2002.

[MM07] Shawn Minto and Gail C Murphy. Recommending emergent

teams. In Fourth International Workshop on Mining Software
Repositories (MSR’07: ICSE Workshops 2007), pages 5–5. IEEE,

2007.

[MRB+17] Romero Malaquias, Márcio Ribeiro, Rodrigo Bonifácio, Eduardo

Monteiro, Flávio Medeiros, Alessandro Garcia, and Rohit Gheyi.

The discipline of preprocessor-based annotations-does# ifdef tag

n’t# endif matter. In 2017 IEEE/ACM 25th International Confer-
ence on Program Comprehension (ICPC), pages 297–307. IEEE,

2017.

[MRG13] Flávio Medeiros, Márcio Ribeiro, and Rohit Gheyi. Investigating

preprocessor-based syntax errors. In Proceedings of the 12th in-
ternational conference on Generative programming: concepts & ex-
periences, pages 75–84, 2013.

[MRG+17] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian

Kästner, Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca.

Discipline matters: Refactoring of preprocessor directives in the#

ifdef hell. IEEE Transactions on Software Engineering, 44(5):453–

469, 2017.

[MW09] Andrew Meneely and Laurie Williams. Secure open source collab-

oration: an empirical study of linus’ law. In Proceedings of the
16th ACM conference on Computer and communications security,

pages 453–462, 2009.

[ON92] Bruce Oberg and David Notkin. Error reporting with graduated

color. IEEE Software, 9(6):33–38, 1992.

50

[PBvDL05] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software
product line engineering: foundations, principles and techniques.

Springer Science & Business Media, 2005.

[PO97] T Troy Pearse and Paul W Oman. Experiences developing and

maintaining software in a multi-platform environment. In 1997
Proceedings International Conference on Software Maintenance,

pages 270–277. IEEE, 1997.

[Pre97] Christian Prehofer. Feature-oriented programming: A fresh look

at objects. In European Conference on Object-Oriented Program-
ming, pages 419–443. Springer, 1997.

[Ram86] Gerard K Rambally. The influence of color on program readability

and comprehensibility. In Proceedings of the seventeenth SIGCSE
technical symposium on Computer science education, pages 173–

181, 1986.

[RD11] Foyzur Rahman and Premkumar Devanbu. Ownership, experi-

ence and defects: a fine-grained study of authorship. In Proceed-
ings of the 33rd International Conference on Software Engineering,

pages 491–500, 2011.

[RMT11] Filippo Ricca, Alessandro Marchetto, and Marco Torchiano. On

the difficulty of computing the truck factor. In International Con-
ference on Product Focused Software Process Improvement, pages

337–351. Springer, 2011.

[RRM+16] Iran Rodrigues, Márcio Ribeiro, Flávio Medeiros, Paulo Borba,

Baldoino Fonseca, and Rohit Gheyi. Assessing fine-grained fea-

ture dependencies. Information and Software Technology, 78:27–

52, 2016.

[SAB18] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. PyDriller:
Python Framework for Mining Software Repositories. 2018.

[SC92] Henry Spencer and Geoff Collyer. # ifdef considered harmful, or

portability experience with c news. In USENIX Summer 1992 Tech-
nical Conference (USENIX Summer 1992 Technical Conference),
1992.

[SGC07] Nieraj Singh, Celina Gibbs, and Yvonne Coady. C-clr: A tool for

navigating highly configurable system software. In Proceedings of
the 6th workshop on Aspects, components, and patterns for infras-
tructure software, pages 9–es, 2007.

51

[TMHI16] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan,

and Hajimu Iida. Revisiting code ownership and its relationship

with software quality in the scope of modern code review. In Pro-
ceedings of the 38th international conference on software engineer-
ing, pages 1039–1050, 2016.

[TOB11] Christian Kästner Paolo G Giarrusso Tillmann, Rendel Sebastian

Erdweg Klaus Ostermann, and Thorsten Berger. Variability-aware

parsing in the presence of lexical macros and conditional compi-

lation. 2011.

[TTK+15] Patanamon Thongtanunam, Chakkrit Tantithamthavorn,

Raula Gaikovina Kula, Norihiro Yoshida, Hajimu Iida, and

Ken-ichi Matsumoto. Who should review my code? a file location-

based code-reviewer recommendation approach for modern code

review. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pages 141–150.

IEEE, 2015.

[WRH+12] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn

Regnell, and Anders Wessln. Experimentation in Software Engi-
neering. Springer Publishing Company, Incorporated, 2012.

[Wuu94] Yang Wuu. How to merge program texts. Journal of Systems and
Software, 27(2):129–135, 1994.

[XZBY15] Bing Xue, Mengjie Zhang, Will N Browne, and Xin Yao. A sur-

vey on evolutionary computation approaches to feature selection.

IEEE Transactions on Evolutionary Computation, 20(4):606–626,

2015.

[YL05] Huilin Ye and Hanchang Liu. Approach to modelling feature

variability and dependencies in software product lines. IEE
Proceedings-Software, 152(3):101–109, 2005.

[YZAM21] Xin Ye, Yongjie Zheng, Wajdi Aljedaani, and Mohamed Wiem

Mkaouer. Recommending pull request reviewers based on code

changes. Soft Computing, 25(7):5619–5632, 2021.

52

	List of Figures
	List of Tables
	Introduction
	Preliminaries
	Configurable Software Systems
	Motivating Example

	Exploratory Study
	Research Questions
	Subject Systems
	Degree of Authorship (DOA)
	Ownership
	The Data Collection Procedure
	The Data Evaluation Procedure
	Work specialization (RQ1)
	Distribution of work among developers (RQ2)
	Association between file expertise and variable code (RQ3)

	Results
	Work specialization (RQ1)
	Distribution of work among developers (RQ2)
	Association between file expertise and variable code (RQ3)

	Implications
	Proposed Approach
	Feature Selection
	Linear Regression
	Mean Absolute Error (MAE)
	Mean Squared Error (MSE)
	Root Mean Squared Error (RMSE)

	Experiment
	Experimental Data Set
	Performance Metrics
	Approach performance (RQ4)
	Approach comparison (RQ5)

	Related Work
	Threats to Validity
	Conclusions and Future Work

