
LIVRO DE APOIO

Gabriel Paes Duarte Baltazar e Kaê de Oliveira Budke

Guia teórico-prático das tecnologias mais utilizadas no mercado.

Área de Concentração: Computação Distribuída

Orientador: Prof. Brivaldo Alves da Silva Jr

Faculdade de Computação
Universidade Federal de Mato Grosso do Sul

Dezembro, 2025

LIVRO DE APOIO

Gabriel Paes Duarte Baltazar e Kaê de Oliveira Budke

Guia teórico-prático das tecnologias mais utilizadas no mercado.

Área de Concentração: Computação Distribuída

Orientador: Prof. Brivaldo Alves da Silva Jr

Faculdade de Computação
Universidade Federal de Mato Grosso do Sul

Dezembro, 2025

Sumário

1 Linux Containêres - LXC 1

1.1 Analisando a Rede do Contêiner . 2

1.2 Inspeção e Monitoramento de Contêineres 3

1.3 Parando Contêineres . 3

1.4 Verificando Configurações do Kernel . 4

1.5 Arquivos de Configuração do Contêiner 4

1.6 Integração com Systemd . 5

1.7 Disponibilidade de Templates . 6

1.7.1 Download de Templates . 6

1.8 Gerenciamento de Snapshots . 7

1.9 Tipos de Interfaces de Rede . 8

1.9.1 empty . 8

1.9.2 phys . 8

1.9.3 veth . 8

1.9.4 vlan . 9

1.9.5 macvlan . 9

1.10 Conclusão . 10

1.11 Atividades . 10

2 Incus: O Sucessor do LXD 11

2.1 Adicionar Repositório Zabbly . 11

2.2 Atualizar Pacotes e Instalar Incus . 12

2.3 Setup inicial e Comandos básicos . 12

2.3.1 Inicializando a ferramenta . 12

III

SUMÁRIO IV

2.3.2 Brincando com contêiners . 14

2.4 Gerenciamento de Snapshots . 14

2.5 Gerenciamento de Redes . 15

2.6 Gerenciando Armazenamento . 16

3 Podman: A Arquitetura Daemonless 19

3.1 Instalação . 19

3.2 Iniciando Nosso Primeiro Contêiner . 19

3.3 Operando Contêineres no Podman . 20

3.3.1 Comandos Essenciais . 20

3.3.2 Gerenciamento de Recursos . 20

3.3.3 Primeiro Containerfile com Podman 21

3.4 Aprofundando em Ambientes Rootless 22

3.4.1 O que é um Ambiente Rootless? 22

3.4.2 Os Bastidores do Rootless . 22

3.4.3 Configurando o Ambiente Host para Rootless 23

3.4.4 Operando em Modo Rootless na Prática 24

3.4.5 Limitações do Modo Rootless: Mapeamento de Portas 25

3.5 Orquestração com Podman Compose . 25

3.5.1 O que é podman-compose? 25

3.5.2 Instalação do podman-compose 26

3.6 Aplicações Práticas: Nextcloud e WordPress 26

3.6.1 Estrutura de um Arquivo compose.yml 26

3.6.2 Analisando a Anatomia do Compose 27

3.7 Gerenciamento Avançado de Rede com Traefik 28

3.7.1 Diferenças na Configuração com Podman 28

3.7.2 Configuração do Traefik com Compose 29

3.8 Recursos Avançados: Pods e Manifestos Kubernetes 30

3.8.1 O Conceito de “Pod” . 30

3.8.2 Gerando Manifestos Kubernetes 31

4 Introdução ao Docker: O Padrão da Indústria 32

SUMÁRIO V

4.1 Instalação . 32

4.2 Executando o Docker como um Usuário Não-Root 33

4.3 Operações Básicas de Contêineres . 33

4.4 Aprofundando em Dockerfiles . 34

4.4.1 Anatomia de um Dockerfile: Instruções Essenciais 34

4.4.2 Otimização: Encadeando Comandos RUN 34

4.4.3 Tópicos Avançados de Dockerfile 35

4.5 Gerenciamento de Dados com Volumes 36

4.5.1 Tipos de Persistência . 36

4.6 Orquestração com Docker Compose . 37

4.6.1 Instalando o Docker Compose 37

4.6.2 Orquestrando o Portainer . 37

4.6.3 Expandindo o Compose: Profiles e .env 38

4.7 Estudos de Caso: Nextcloud e WordPress 39

4.8 Orquestração de Cluster: Docker Swarm 40

4.8.1 Arquitetura: Managers e Workers 40

4.8.2 Serviços no Swarm . 40

4.8.3 Escalando e Gerenciando Nós 41

4.9 Gerenciamento de Rede Avançado com Traefik 41

4.9.1 Configuração do Traefik com Docker Compose 41

5 Introdução à Automação com Ansible 43

5.1 O que é o Ansible? . 43

5.2 Conceitos Fundamentais . 43

5.3 Instalação e Configuração Prática . 44

5.3.1 Instalação do Ansible . 44

5.3.2 Criando um Inventário . 44

5.3.3 Testando a Conexão (Comandos Ad-Hoc) 45

5.4 Seu Primeiro Playbook: A Idempotência 46

5.5 Playbooks Avançados: Handlers e Templates 47

5.5.1 Gerenciando Arquivos e Reiniciando Serviços com Handlers . . . 47

5.5.2 Gerando Configurações Dinâmicas com Templates 48

SUMÁRIO VI

6 Introdução ao Kubernetes com Minikube 50

6.1 O que é o Kubernetes? . 50

6.2 Arquitetura de um Cluster Kubernetes 51

6.2.1 Control Plane (Manager) . 51

6.2.2 Nodes (Workers) . 51

6.3 O que é o Minikube? . 51

6.4 Instalando o Cluster Minikube . 51

6.4.1 Instalando o Driver: Docker . 52

6.4.2 Instalando Minikube e Kubectl 52

6.4.3 Preparando o Host para o Kubernetes 53

6.4.4 Iniciando o Cluster Minikube 54

6.4.5 Interagindo com o Cluster e Serviços 55

6.4.6 Dashboard e Métricas . 55

6.5 Namespaces . 55

6.6 Instanciando Serviços: WordPress . 56

6.7 Acessando o Serviço via Minikube . 60

7 Introdução ao Terraform 61

7.1 O que é Terraform? . 61

7.1.1 Vantagens . 61

7.1.2 Ciclo de deploy . 61

7.1.3 Arquivos de configurações e suas funções 62

7.2 Instalação . 62

7.3 Build . 62

7.3.1 Criando a infraestrutura . 63

7.4 Fazendo alterações na infraestrutura . 63

7.4.1 Destruindo recursos . 64

7.4.2 Criando variáveis . 64

7.4.3 Objetificando outputs . 64

Capítulo 1

Linux Containêres - LXC

Neste capítulo, iniciamos nossa exploração prática das tecnologias de contêineres
em nível de sistema operacional, começando pelo LXC (Linux Containers). O LXC oferece
um método leve de virtualização, permitindo que múltiplos sistemas Linux isolados rodem
em um único host, compartilhando o mesmo kernel.

O primeiro passo para utilizar o LXC é a sua instalação. Em sistemas baseados em
Debian, como o utilizado nestes laboratórios, o processo de instalação é direto através do
gerenciador de pacotes apt, assumindo privilégios de superusuário:

$ su -
$ apt-get install lxc

Com o LXC instalado, nosso próximo passo é provisionar um contêiner. Para
isso, utilizamos o pacote lxc-templates, que contém os scripts necessários para
criar "imagens" base de diversas distribuições Linux. Em seguida, usamos o comando
lxc-create para instanciar nosso primeiro contêiner, que chamaremos de teste,
baseado no template do debian.

$ apt install lxc-templates -y
$ lxc-create -n teste -t debian

Este comando inicia um processo que, por baixo dos panos, utiliza a ferramenta
debootstrap para baixar os pacotes base do Debian e montar o sistema de arquivos
raiz do contêiner.

O ciclo de vida básico de interação com o contêiner é simples. Primeiro, podemos
listar os contêineres existentes com lxc-ls para confirmar que o teste foi criado:

$ lxc-ls
teste

Em seguida, iniciamos o contêiner com lxc-start:

$ lxc-start -n teste

1

Linux Containêres - LXC 2

Finalmente, para acessar o shell do contêiner, usamos lxc-attach. Este co-
mando nos "anexa" ao namespace do contêiner, nos dando um terminal interativo dentro
dele:

$ lxc-attach -n teste
root@teste:$

Note que o prompt do terminal muda para root@teste, indicando que estamos
logados como superusuário dentro do ambiente isolado do contêiner teste. Para sair do
contêiner e retornar ao host, basta usar o comando exit ou o atalho CTRL+D.

1.1 Analisando a Rede do Contêiner

Uma das mágicas do LXC acontece na camada de rede. Ao iniciar um contêiner, o
LXC configura automaticamente a conectividade. Do ponto de vista do host, é possível
pingar o IP do contêiner. Internamente, o LXC cria uma interface de rede virtual do tipo
vETH (Virtual Ethernet Pair).

Uma verificação das interfaces de rede no host com ip a revela essa nova arquite-
tura. Notamos duas novas entidades principais:

• lxcbr0: Uma interface de bridge Linux, que atua como um switch virtual para
onde todos os contêineres serão conectados.

• veth...: Uma interface par-a-par que conecta o namespace de rede do contêiner
à bridge lxcbr0 no host.

O exemplo de saída abaixo ilustra essa configuração:

$ ip a
...
4: lxcbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default qlen 1000
<===== rede para os containers LXC

link/ether 00:16:3e:00:00:00 brd ff:ff:ff:ff:ff:ff
inet 10.0.3.1/24 brd 10.0.3.255 scope global lxcbr0

...
6: vethONrrIZ@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500

qdisc noqueue master lxcbr0 state UP group default qlen 1000
<===== interface compartilhada com o container

link/ether fe:e1:9c:59:d3:8d brd ff:ff:ff:ff:ff:ff
link-netnsid 0

...

FACOM-UFMS

Linux Containêres - LXC 3

1.2 Inspeção e Monitoramento de Contêineres

Para inspecionar o estado de um contêiner específico, utilizamos o comando
lxc-info. Ele fornece um resumo vital, incluindo o estado (RUNNING), o PID do
processo principal no host, o IP alocado e a interface veth correspondente.

$ lxc-info -n teste

Name: teste
State: RUNNING
PID: 26205
IP: 10.0.3.19
Link: vethONrrIZ
TX bytes: 1.73 KiB
RX bytes: 2.20 KiB
Total bytes: 3.93 KiB

Para um monitoramento contínuo dos recursos (CPU, Memória, I/O) de todos os
contêineres ativos, o LXC fornece um utilitário análogo ao top tradicional, chamado
lxc-top:

$ lxc-top
Container CPU CPU CPU

BlkIO Mem
Name Used Sys User

Total(Read/Write) Used
teste 0.00 0.00 0.00

3087018381.88 GiB(...) 0.00
TOTAL 1 of 1 0.00 0.00 0.00

3087018381.88 GiB(...) 0.00

1.3 Parando Contêineres

O ciclo de vida do contêiner se completa com o comando lxc-stop. Vamos
parar nosso contêiner teste e, em seguida, tentar nos conectar a ele novamente:

$ lxc-stop -n teste
$ lxc-attach -n teste
lxc-attach: teste: ../src/lxc/attach.c: get_attach_context: 406

Connection refused - Failed to get init pid
lxc-attach: teste: ../src/lxc/attach.c: lxc_attach: 1470

Connection refused - Failed to get attach context

A falha no lxc-attach é esperada. O erro "Failed to get init pid"
nos informa que o processo principal (PID 1) do contêiner não existe mais, portanto, não

FACOM-UFMS

Linux Containêres - LXC 4

há a o que se anexar. Isso sublinha a natureza do LXC como um gerenciador de processos
isolados, e não uma máquina virtual completa.

1.4 Verificando Configurações do Kernel

O funcionamento do LXC depende intrinsecamente de recursos modernos do kernel
Linux, como Namespaces e Cgroups. O utilitário lxc-checkconfig é uma ferramenta
de diagnóstico crucial que varre a configuração do kernel atual e informa se os módulos e
recursos necessários estão habilitados.

$ lxc-checkconfig
LXC version 6.0.4
...
--- Namespaces ---
Namespaces: enabled
Utsname namespace: enabled
Ipc namespace: enabled
...
--- Control groups ---
Cgroups: enabled
Cgroup namespace: enabled
...
--- Misc ---
Veth pair device: enabled, loaded
...

1.5 Arquivos de Configuração do Contêiner

Para um controle mais granular, podemos inspecionar e editar os arquivos de
configuração do contêiner. O arquivo de configuração principal para o nosso contêiner
teste reside em /var/lib/lxc/teste/config.

Este arquivo define aspectos cruciais, como o tipo de rede, o caminho para o
sistema de arquivos raiz (rootfs), e quais perfis de configuração adicionais devem ser
incluídos (como debian.common.conf).

$ cat /var/lib/lxc/teste/config
...
lxc.net.0.type = veth
lxc.net.0.hwaddr = 00:16:3e:d6:57:df
lxc.net.0.link = lxcbr0
lxc.net.0.flags = up
...
lxc.rootfs.path = dir:/var/lib/lxc/teste/rootfs

FACOM-UFMS

Linux Containêres - LXC 5

Common configuration
lxc.include = /usr/share/lxc/config/debian.common.conf

Container specific configuration
lxc.uts.name = teste
lxc.arch = amd64
...

As configurações de DNS, por sua vez, são gerenciadas de forma tradicional dentro
do contêiner, no arquivo /etc/resolv.conf.

1.6 Integração com Systemd

Para ambientes de produção ou para garantir que os contêineres subam com o
host, é vital que eles sejam gerenciados como serviços. O LXC integra-se nativamente ao
systemd através do serviço lxc@.service.

Podemos iniciar nosso contêiner teste usando o systemctl:

$ systemctl start lxc@teste
$ systemctl status lxc@teste
• lxc@teste.service - LXC Container: teste

Loaded: loaded (/lib/systemd/system/lxc@.service;
disabled; preset: enabled)

Active: active (running) since Tue 2024-08-27 10:06:13
-04; 1s ago

...

Para que o contêiner inicialize junto com o boot do sistema, basta habilitar o
serviço:

$ systemctl enable lxc@teste
Created symlink

’/etc/systemd/system/multi-user.target.wants/lxc@teste.
service’ → ’/usr/lib/systemd/system/lxc@.service’.

E para desativar essa inicialização automática:

$ systemctl disable lxc@teste
Removed ’/etc/systemd/system/multi-user.target.wants/lxc@teste.
service’.

FACOM-UFMS

Linux Containêres - LXC 6

1.7 Disponibilidade de Templates

Uma dúvida comum é se o LXC, rodando em um host Debian, está restrito a
contêineres Debian. A resposta é não. O LXC é agnóstico em relação à distribuição,
desde que um template de criação exista. O diretório /usr/share/lxc/templates/
revela a vasta gama de opções disponíveis:

$ ls /usr/share/lxc/templates/
lxc-alpine lxc-busybox lxc-debian lxc-fedora

lxc-kali ...
lxc-altlinux lxc-centos lxc-devuan lxc-fedora-legacy

lxc-local ...
lxc-archlinux lxc-cirros lxc-download lxc-gentoo

lxc-oci ...

1.7.1 Download de Templates

Além dos scripts de template locais (como o do Debian que usou debootstrap),
o LXC pode baixar imagens de contêiner pré-construídas usando o template download.
Este método é frequentemente mais rápido.

Podemos listar todas as imagens remotas disponíveis com a flag -list. A lista é
extensa, então vamos mostrar apenas um extrato:

$ lxc-create -t download -n alpha -- --list
Downloading the image index

DIST RELEASE ARCH VARIANT BUILD

almalinux 10 amd64 default 20250925_23:08
alpine 3.20 amd64 default 20250927_13:00
archlinux current amd64 default 20250926_19:46
busybox 1.36.1 amd64 default 20250927_06:00
centos 9-Stream amd64 default 20250924_08:35
debian bookworm amd64 default 20250927_05:24
fedora 40 amd64 default 20250926_20:33
opensuse tumbleweed amd64 default 20250927_04:20
rockylinux 9 amd64 default 20250926_02:06
ubuntu jammy amd64 default 20250927_07:42
ubuntu noble amd64 default 20250927_07:42
... (e muitas outras) ...

Como exemplo, vamos baixar a imagem do Alpine Linux (versão 3.20, arquitetura
amd64):

$ lxc-create -t download -n alpine -- -d alpine -r 3.20 -a amd64

FACOM-UFMS

Linux Containêres - LXC 7

Downloading the image index
...
Unpacking the rootfs

You just created an Alpinelinux 3.20 x86_64 (20240826_13:00)

container.

Agora, o contêiner alpine está disponível para ser iniciado e utilizado como
qualquer outro.

$ lxc-ls
alpine teste
$ lxc-start -n alpine
$ lxc-attach -n alpine
root@alpine:~#

1.8 Gerenciamento de Snapshots

O LXC oferece um recurso poderoso para controle de versão do sistema de arquivos:
os snapshots. Um snapshot é uma "foto"do estado do contêiner em um determinado
momento.

Para criar um snapshot, o contêiner precisa estar parado. Vamos verificar os
snapshots do nosso contêiner teste e, em seguida, criar um:

$ lxc-snapshot -L -n teste
No snapshots

$ lxc-stop -n teste
$ lxc-snapshot -n teste
$ lxc-snapshot -L -n teste
snap0 (/var/lib/lxc/teste/snaps) 2025:09:27 16:39:56

Podemos criar múltiplos snapshots. Cada um é numerado sequencialmente (snap0,
snap1, etc.).

Para restaurar um snapshot, usamos a flag -r. Uma prática recomendada é restaurar
o snapshot como um novo contêiner, usando a flag -N, o que preserva o contêiner original
e o próprio snapshot:

$ lxc-snapshot -n teste -r snap1 -N teste-snap1
$ lxc-ls
alpine teste teste-snap1

Para destruir (apagar) um snapshot específico, usamos a flag -d:

$ lxc-snapshot -n teste -d snap0
$ lxc-snapshot -L -n teste
snap1 (/var/lib/lxc/teste/snaps) 2025:09:27 16:40:32

FACOM-UFMS

Linux Containêres - LXC 8

E para remover completamente um contêiner (como o teste-snap1 que criamos
a partir da restauração), usamos lxc-destroy:

$ lxc-destroy teste-snap1
$ lxc-ls
alpine teste

1.9 Tipos de Interfaces de Rede

O LXC é extremamente flexível na configuração de rede. A diretiva lxc.net.0.type
no arquivo de configuração define o comportamento da rede. A seguir, detalhamos os tipos
mais comuns.

1.9.1 empty

Este é o tipo mais restritivo. O contêiner é iniciado apenas com uma interface de
loopback (lo). Se nenhuma outra interface for definida, o contêiner ficará completamente
isolado da rede do host e do mundo exterior.

1.9.2 phys

O tipo phys (físico) concede ao contêiner acesso direto a uma interface física
existente no sistema host. A interface do host é especificada com lxc.net.0.link.

Exemplo: Passando a interface eth0 do host para o contêiner
lxc.net.0.type = phys
lxc.net.0.flags = up
lxc.net.0.link = eth0

1.9.3 veth

Este é o tipo mais comum e o padrão usado em nossa instalação. Ele cria um
Virtual Ethernet Pair Device (par veth) para fazer a ponte ou rotear o tráfego entre o host e
o contêiner.

bridge mode

Este é o modo padrão do veth. O par veth é conectado a uma interface de bridge
no host (definida por lxc.net.0.link), que em nosso caso é a lxcbr0. Todos os
contêineres na mesma bridge podem se comunicar.

FACOM-UFMS

Linux Containêres - LXC 9

Exemplo: Conectando o contêiner à bridge lxcbr0
lxc.net.0.type = veth
lxc.net.0.flags = up
lxc.net.0.link = lxcbr0

router mode

Neste modo, em vez de usar uma bridge, rotas estáticas são criadas entre a interface
do host e a interface veth do contêiner, permitindo comunicação roteada.

1.9.4 vlan

O tipo vlan permite compartilhar uma interface do host com o contêiner, mas
restringindo a comunicação a uma ID de VLAN específica (lxc.net.0.vlan.id).
Exemplo: Conectando o contêiner à VLAN 100 na eth0
lxc.net.0.type = vlan
lxc.net.0.flags = up
lxc.net.0.link = eth0
lxc.net.0.vlan.id = 100

1.9.5 macvlan

O tipo macvlan permite que uma única interface física do host seja "dividida"em
múltiplas interfaces virtuais, cada uma com seu próprio endereço MAC. Isso permite que o
contêiner apareça na rede como um dispositivo físico separado.

private mode

Este é o modo padrão do macvlan. A interface virtual dentro do contêiner não
pode se comunicar com a interface física principal no host.

vepa (Virtual Ethernet Port Aggregator)

Similar ao modo private, mas os pacotes são forçados a passar por um switch físico
externo. Isso permite que diferentes contêineres macvlan no mesmo host se comuniquem,
desde que o switch suporte hairpin mode.

passthru

Este modo oferece um alto nível de isolamento, semelhante ao phys, mas o
contêiner recebe a interface macvlan em vez da interface física bruta.

FACOM-UFMS

Linux Containêres - LXC 10

1.10 Conclusão

Com isso, encerramos nosso laboratório introdutório sobre os contêineres LXC,
cobrindo desde a criação e gerenciamento básico até conceitos avançados de rede e
snapshots.

1.11 Atividades

Para solidificar o conhecimento, propomos os seguintes exercícios:

1. Crie 5 containers, sendo 2 Debian, 1 Ubuntu e 2 Alpine.

2. Instale o servidor SSH em um dos contêineres e acesse-o via SSH a partir do host
usando um usuário comum (não-root).

3. Configure o acesso SSH para o contêiner usando autenticação baseada em chaves
(par de chaves SSH) da sua máquina local.

4. Desative o login por senha no servidor SSH do contêiner, permitindo apenas a
conexão via chaves.

5. Permita a conexão remota via chaves para o usuário root do contêiner.

6. (Avançado) Configure uma aplicação web, como o Nextcloud, em um contêiner, e
seu banco de dados (ex: MySQL) em um segundo contêiner, fazendo com que o
Nextcloud se conecte ao banco de dados na rede interna do LXC.

FACOM-UFMS

Capítulo 2

Incus: O Sucessor do LXD

Após explorarmos os fundamentos do LXC, avançamos para o Incus. O Incus é
um projeto de código aberto, mantido pela comunidade, que surgiu como um fork direto do
LXD (LXC Daemon) após mudanças em seu licenciamento e manutenção. Ele herda toda
a poderosa API e a experiência de usuário do LXD, focando em ser um gerenciador robusto
tanto para contêineres de sistema (como o LXC) quanto para máquinas virtuais. Para um
estudo mais aprofundado, você pode conferir mais sobre a ferramenta na documentação.

Sua adoção tem crescido, e em novas versões de distribuições como o Debian 13
(Trixie), o Incus já é o substituto padrão. Em nosso ambiente Debian 12 (Bookworm),
precisamos adicioná-lo através de um repositório externo. Utilizaremos o repositório
mantido pela Zabbly. Aqui vamos utilizar o sudo para executar os comandos, mas você
pode entrar no modo root com su - para não precisar incluir sudo sempre que rodar
os comandos.

2.1 Adicionar Repositório Zabbly

O primeiro passo é estabelecer confiança com o repositório, baixando sua chave
GPG (GNU Privacy Guard). Isso garante que os pacotes que instalarmos sejam autênticos
e não tenham sido modificados.

$ sudo mkdir -p /etc/apt/keyrings/
$ sudo curl -fsSL https://pkgs.zabbly.com/key.asc -o

/etc/apt/keyrings/zabbly.asc

Com a chave em vigor, informamos ao apt onde encontrar os pacotes do Incus,
criando um novo arquivo de fontes em /etc/apt/sources.list.d/.

$ sudo sh -c ’cat <<EOF >
/etc/apt/sources.list.d/zabbly-incus-lts-6.0.sources

Enabled: yes
Types: deb

11

https://linuxcontainers.org/incus/docs/main/
https://linuxcontainers.org/incus/introduction/
https://linuxcontainers.org/incus/introduction/

Incus: O Sucessor do LXD 12

URIs: https://pkgs.zabbly.com/incus/lts-6.0
Suites: $(. /etc/os-release && echo ${VERSION_CODENAME})
Components: main
Architectures: $(dpkg --print-architecture)
Signed-By: /etc/apt/keyrings/zabbly.asc

EOF’

2.2 Atualizar Pacotes e Instalar Incus

Finalmente, com o repositório configurado, atualizamos o índice de pacotes do
apt e solicitamos a instalação do Incus.

$ sudo apt-get update
$ sudo apt-get install incus -y
$ incus --version

2.3 Setup inicial e Comandos básicos

2.3.1 Inicializando a ferramenta

Antes de levantarmos contêiners é necessário realizar o init da ferramenta na
nossa máquina. Para isto, executamos sudo incus admin init Neste processo, ele
vai realizar algumas perguntas básicas de configuração referente ao armazenamento e rede
do novo ambiente.

$ sudo incus admin init

Would you like to use clustering? (yes/no) [default=no]: no
Do you want to configure a new storage pool? (yes/no)

[default=yes]:
Name of the new storage pool [default=default]: teste
Name of the storage backend to use (dir, btrfs) [default=btrfs]:
Would you like to create a new btrfs subvolume under

/var/lib/incus? (yes/no) [default=yes]:
Would you like to create a new local network bridge? (yes/no)

[default=yes]:
What should the new bridge be called? [default=incusbr0]:
What IPv4 address should be used? (CIDR subnet notation, ’auto’

or ’none’) [default=auto]:
What IPv6 address should be used? (CIDR subnet notation, ’auto’

or ’none’) [default=auto]: none

FACOM-UFMS

Incus: O Sucessor do LXD 13

Would you like the server to be available over the network?
(yes/no) [default=no]: yes

Address to bind to (not including port) [default=all]:
Port to bind to [default=8443]:
Would you like stale cached images to be updated automatically?

(yes/no) [default=yes]:
Would you like a YAML ’init’ preseed to be printed? (yes/no)

[default=no]: yes

config:
core.https_address: ’[::]:8443’

networks:
- config:

ipv4.address: auto
ipv6.address: none

description: ’’
name: incusbr0
type: ""
project: default

storage_pools:
- config:

source: /var/lib/incus/storage-pools/teste
description: ’’
name: teste
driver: btrfs

storage_volumes: []
profiles:
- config: {}

description: ’’
devices:
eth0:
name: eth0
network: incusbr0
type: nic

root:
path: /
pool: teste
type: disk

name: default
project: default

projects: []
certificates: []
cluster: null

FACOM-UFMS

Incus: O Sucessor do LXD 14

2.3.2 Brincando com contêiners

Para compreender seu funcionamento básico, vamos iniciar, entrar e parar um
contêiner com Ubuntu 25.04.

Verificando as imagens remotas disponiveis
$ sudo incus image list images: ubuntu

$ sudo incus launch images:ubuntu/25.04 teste
Launching teste
$ sudo incus list
+------+-------+------+------+------+-----------+
| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |
+------+-------+------+------+------+-----------+
| teste | RUNNING | 10.231.124.199 (eth0) | | CONTAINER | 0 |
+------+-------+------+------+------+-----------+
$ sudo incus exec teste -- bash
root@teste:~# exit
$ sudo incus stop teste
$ sudo incus delete teste

Você também pode ver as informações mais detalhadas de uma instância com
sudo incus info <instancia>, no nosso caso, vamos encontrar informações
semelhantes à esta:

$ sudo incus info teste
Name: teste
Description:
Status: RUNNING
Type: container
Architecture: x86_64
PID: 4092
Created: 2025/12/01 11:47 EST
Last Used: 2025/12/01 12:08 EST
Started: 2025/12/01 12:08 EST
....

2.4 Gerenciamento de Snapshots

O Incus também realiza o controle de versões do ambiente via Snapshots. Vamos
criar duas ’fotos’ do nosso contêiner e restaurar à primeira versão.

$ sudo incus snapshot create teste snap0
$ sudo incus snapshot create teste snap1
$ sudo incus snapshot list teste
+-------+----------------------+------------+----------+

FACOM-UFMS

Incus: O Sucessor do LXD 15

| NAME | TAKEN AT | EXPIRES AT | STATEFUL |
+-------+----------------------+------------+----------+
| snap0 | 2025/12/01 12:05 EST | | NO |
+-------+----------------------+------------+----------+
| snap1 | 2025/12/01 12:06 EST | | NO |
+-------+----------------------+------------+----------+
$ sudo incus snapshot restore teste snap0

2.5 Gerenciamento de Redes

Uma outra característica do Incus é a possibilidade de criar redes e perfis para con-
textos específicos nos seus ambientes. Por padrão, ao executar sudo incus network
list a gente observa que existe diversos tipos de redes já reconhecidas pela ferramenta,
e, conforme configuramos no inicio a rede incusbr0 é a padrão para qualquer novo
contêiner. De forma análoga, a ferramenta já atribui um perfil padrão default para
qualquer novo contêiner.

Devido a herança do LXC e de toda esquemática de redes do Linux, os tipos de
rede do Incus são os mesmos que apresentamos no último capítulo. Conforme recomenda
na documentação, a melhor alternativa é utilizar a rede via bridge – padrão – para todas as
instancias, todavia, é possível criar e gerenciar novas redes.

Criando uma nova rede
$ sudo incus network create redinha

Adicionando teste à essa rede e verificando no container
$ sudo incus network attach redinha teste
$ sudo incus exec teste -- ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000
...

22: eth1@if23: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state
DOWN group default qlen 1000
link/ether 10:66:6a:11:66:a2 brd ff:ff:ff:ff:ff:ff

link-netnsid 0

Ativando a interface e entregando um IPv4 à máquina
$ sudo incus exec teste -- ip link set eth1 up && dhclient eth1

$ sudo incus exec teste -- ip a
...
22: eth1@if23: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default qlen 1000
link/ether 10:66:6a:11:66:a2 brd ff:ff:ff:ff:ff:ff

link-netnsid 0

FACOM-UFMS

https://github.com/lxc/incus/blob/main/doc/explanation/networks.md

Incus: O Sucessor do LXD 16

inet 10.159.55.142/24 brd 10.159.55.255 scope global
dynamic eth1
valid_lft 3597sec preferred_lft 3597sec

...

Podemos ainda fazer duas instâncias se comunicarem. Como segunda máquina,
vamos usar um Debian 12 semelhante à instância t2.micro da aws (1 vCPU, 1GiB de RAM)
com a rede já determinada.
$ sudo incus launch images:debian/12 debinho -t aws:t2.micro -n

redinha

Verificando a rede dentro do container
$ sudo incus exec debinho -- ip a
...
24: eth0@if25: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default qlen 1000
link/ether 10:66:6a:aa:92:4f brd ff:ff:ff:ff:ff:ff

link-netnsid 0
inet 10.159.55.111/24 metric 1024 brd 10.159.55.255 scope

global dynamic eth0
valid_lft 3571sec preferred_lft 3571sec

...

Fazendo a comunicação
$ sudo incus exec debinho -- ping -c 3 teste
PING teste(teste.incus

(fd42:5b4c:aabe:ab28:1266:6aff:fe11:66a2)) 56 data bytes
64 bytes from teste.incus

(fd42:5b4c:aabe:ab28:1266:6aff:fe11:66a2): icmp_seq=1 ttl=64
time=0.132 ms

64 bytes from teste.incus
(fd42:5b4c:aabe:ab28:1266:6aff:fe11:66a2): icmp_seq=2 ttl=64
time=0.086 ms

64 bytes from teste.incus
(fd42:5b4c:aabe:ab28:1266:6aff:fe11:66a2): icmp_seq=3 ttl=64
time=0.086 ms

--- teste ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 0.086/0.101/0.132/0.021 ms

2.6 Gerenciando Armazenamento

O Incus realiza seu armazenamento por meio do conceito de storage pool que é,
basicamente, um espaço na qual a ferramenta pode usar para guardar root filesystems de

FACOM-UFMS

Incus: O Sucessor do LXD 17

containers ou imagens do sistema. Ele pode ser baseado em diferentes tipos de backends,
como:

• dir: apenas um diretório no sistema de arquivos do host. Simples, mas sem snapshots
eficientes.

• zfs: sistema de arquivos ZFS. Permite snapshots instantâneos e clones eficientes.

• btrfs: similar ao ZFS, com snapshots e subvolumes.

• lvm: volumes lógicos no LVM.

• ceph: para armazenamento distribuído.

• cephfs: Ceph FS, também distribuído.

• custom: você pode usar drivers de storage externos.

Além disso, também é possível armazenar os arquivos do sistema de modo compar-
tilhado com o host ou isoladamente. Isso garante flexibilidade ao arquiteto ao analisar as
necessidades e riscos de determinado caso de uso. Alguns dos comandos para explorar
essas funcionalidades são:

$ sudo incus storage list
+-------+--------+-------------+---------+---------+
| NAME | DRIVER | DESCRIPTION | USED BY | STATE |
+-------+--------+-------------+---------+---------+
| teste | btrfs | | 5 | CREATED |
+-------+--------+-------------+---------+---------+

Criando uma nova pool
$ sudo incus storage create piscina dir
Storage pool piscina created
$ sudo incus storage list
+---------+--------+-------------+---------+---------+
| NAME | DRIVER | DESCRIPTION | USED BY | STATE |
+---------+--------+-------------+---------+---------+
| piscina | dir | | 0 | CREATED |
+---------+--------+-------------+---------+---------+
| teste | btrfs | | 5 | CREATED |
+---------+--------+-------------+---------+---------+

Alternando o armazenamento do debinho para piscina
$ sudo incus stop debinho
$ sudo incus move debinho --storage piscina

Confirme com
$ sudo incus config device show debinho

FACOM-UFMS

Incus: O Sucessor do LXD 18

eth0:
name: eth0
network: redinha
type: nic

root:
path: /
pool: piscina
type: disk

FACOM-UFMS

Capítulo 3

Podman: A Arquitetura Daemonless

Continuando nossa jornada pelas tecnologias de contêineres, saímos do nível de
"sistema"do LXC e entramos no mundo dos "contêineres de aplicação". O principal
expoente moderno nesta área, e uma alternativa direta ao Docker, é o Podman.

O Podman (Pod Manager) se distingue por sua arquitetura daemonless (sem dae-
mon) e sua filosofia rootless (sem raiz) como padrão. Diferente do Docker, que depende
de um processo de fundo (o daemon) rodando como root para gerenciar contêineres,
o Podman interage diretamente com o kernel. Isso significa que todo o ciclo de vida de
um contêiner — desde o download da imagem até sua execução — pode ser gerenciado
por um usuário comum, sem privilégios de superusuário. Esta abordagem representa um
avanço significativo na segurança de contêineres.

3.1 Instalação

A instalação do Podman em sistemas baseados em Debian é direta, utilizando o
gerenciador de pacotes apt com privilégios de superusuário:

$ su -
$ apt-get update
$ apt-get -y install podman

Após a instalação, podemos verificar a versão com o comando:

$ podman -v

3.2 Iniciando Nosso Primeiro Contêiner

O rito de passagem para qualquer ferramenta de contêineres é executar uma imagem
de teste. A sintaxe do Podman é, por design, idêntica à do Docker, o que nos permite testar

19

Podman: A Arquitetura Daemonless 20

a ferramenta com um podman run hello-world. No entanto, devemos usar o nome
qualificado da imagem para evitar erros de resolução ("short-name resolution") comuns
em algumas distribuições:

$ podman run docker.io/library/hello-world

Este comando baixa a imagem de teste (caso não esteja em cache) e a executa.
Se tudo estiver configurado corretamente, você verá uma mensagem de boas-vindas do
Docker. É possível que o Podman venha solicitar uma autenticação para poder puxar a
imagem do hub do docker. Para o nosso caso você pode tentar realizar a autenticação
conforme solicitado ou optar por puxar uma outra imagem como podman run -it
ubuntu.

3.3 Operando Contêineres no Podman

O Podman oferece um conjunto de comandos robustos para gerenciar o ciclo de
vida dos contêineres.

3.3.1 Comandos Essenciais

Para interagir com um contêiner em execução, como abrir um terminal interativo,
usamos podman exec:

$ podman exec -it <ID_CONTAINER> /bin/bash

Também é possível utilizar o nome do contêiner ao invés do seu id. Para exibir in-
formações detalhadas sobre a configuração de um contêiner (como IPs, volumes montados,
etc.), usamos podman inspect:

$ podman inspect <ID_CONTAINER>

O ciclo de vida de execução é gerenciado com pause, unpause, stop e start.
Para remover um contêiner que não é mais necessário, usa-se podman rm. A flag -f
força a remoção de um contêiner que ainda esteja em execução.

$ podman pause <ID_CONTAINER>
$ podman unpause <ID_CONTAINER>
$ podman stop <ID_CONTAINER>
$ podman start <ID_CONTAINER>
$ podman rm -f <ID_CONTAINER>

3.3.2 Gerenciamento de Recursos

O Podman permite monitorar o consumo de recursos (CPU, memória, rede) em
tempo real com podman stats.

FACOM-UFMS

Podman: A Arquitetura Daemonless 21

Mais importante, ele permite limitar dinamicamente os recursos de um contêiner
em execução usando podman update. Por exemplo, para limitar um contêiner a 50%
de um núcleo de CPU e 128 MB de RAM:
Limita o contêiner a 50% da CPU
$ podman update --cpus 0.5 <ID_CONTAINER>

Limita o contêiner a 128 MB de memória
$ podman update --memory 128M <ID_CONTAINER>

3.3.3 Primeiro Containerfile com Podman

Assim como o Docker utiliza um Dockerfile para definir os passos de constru-
ção de uma imagem, o Podman utiliza o mesmo formato de arquivo. Por convenção, para
diferenciar o contexto, a comunidade Podman frequentemente nomeia este arquivo como
Containerfile.

Vamos criar um diretório para nosso projeto e definir um Containerfile que
instala o utilitário stress:
mkdir meucontainer
cd meucontainer
nano Containerfile

O conteúdo do Containerfile utiliza a sintaxe padrão (note o uso da imagem
base completa para evitar erros):
FROM docker.io/library/debian:latest

LABEL app="MeuContainer"

RUN apt-get update && apt-get install -y stress && apt-get clean

CMD stress --cpu 1 --vm-bytes 32m --vm 1

Para construir a imagem a partir deste arquivo, usamos podman build. A flag
-t define o nome (tag) da imagem:
$ podman build -t meucontainer .

Com a imagem construída, podemos executá-la da mesma forma que executamos a
imagem hello:
$ podman run -d --name meu_teste meucontainer

Erro Comum: Imagem vs. Contêiner

Um erro frequente é tentar gerenciar a execução usando o nome da imagem em vez
do nome do contêiner.

FACOM-UFMS

Podman: A Arquitetura Daemonless 22

Se você rodar o comando acima sem a flag -name, o Podman criará um contêiner
com um nome aleatório (como practical_bell). Se você tentar rodar podman
stop meucontainer, receberá um erro, pois meucontainer é o nome da imagem.

A Solução: Sempre use o comando podman ps para listar os contêineres em
execução e descobrir o nome correto (na coluna NAMES) antes de tentar pausar ou remover
uma instância.

3.4 Aprofundando em Ambientes Rootless

Na sessão anterior, introduzimos o conceito de rootless como a principal vantagem
de segurança do Podman. Agora, vamos aprofundar tecnicamente no que isso significa,
como funciona "por baixo dos panos"e como configurar corretamente o ambiente do host
para suportá-lo.

3.4.1 O que é um Ambiente Rootless?

A verdadeira potência do Podman é sua capacidade nativa de operar em modo
rootless. Para isso, basta garantir que seu usuário comum tenha as permissões corretas
e possa executar os comandos sem sudo ou su -. Tradicionalmente, ferramentas de
contêiner dependiam de um daemon central rodando como root. Isso criava um vetor
de ataque significativo: se um processo malicioso conseguisse "escapar"do contêiner, ele
poderia ganhar acesso ao daemon e, consequentemente, obter privilégios de superusuário
no sistema host. Um ambiente rootless quebra esse paradigma.

Com o Podman, todo o ciclo de vida do contêiner — desde o download da imagem
até a execução e o gerenciamento de rede — ocorre inteiramente dentro do espaço de
privilégios do usuário que executou o comando. Nesse sentido, ao executar como um
usuário comum, o Podman cria e armazena os contêineres e imagens dentro do diretório
home daquele usuário (~/.local/share/containers), sem tocar nos diretórios
do sistema.

3.4.2 Os Bastidores do Rootless

Para que um usuário comum possa realizar tarefas que normalmente exigiriam
privilégios de root (como montar sistemas de arquivos e configurar redes), o Podman
utiliza duas tecnologias fundamentais do kernel Linux.

User Namespaces (userns)

Os User Namespaces são a tecnologia central. Eles permitem que um processo
tenha privilégios de "root"dentro de seu próprio namespace, sem ser o root do sistema

FACOM-UFMS

Podman: A Arquitetura Daemonless 23

host.

O sistema mapeia o ID do usuário (por exemplo, UID 1000) no host para o
UID 0 (root) dentro do contêiner. Da mesma forma, uma faixa de UIDs "subordinados"é
alocada para aquele usuário no host, que será mapeada para os UIDs de usuários comuns
dentro do contêiner (ex: UID 100000 no host se torna UID 1 no contêiner).

Rede com slirp4netns

Como um usuário comum não pode criar ou gerenciar interfaces de rede no host
(como a bridge docker0), o Podman utiliza slirp4netns. Esta ferramenta cria uma
rede virtual no "espaço do usuário", permitindo que os contêineres acessem a rede externa
através do namespace de rede do próprio usuário, de forma semelhante a como uma
máquina virtual em modo "NAT"se conecta.

3.4.3 Configurando o Ambiente Host para Rootless

Embora o Podman em si possa ser instalado facilmente, para que o modo rootless
funcione corretamente, o host precisa de algumas dependências e configurações.

Instalando Dependências Essenciais

Como superusuário, precisamos garantir que o host tenha os pacotes que fornecem
as funcionalidades de rede e armazenamento para o modo rootless:

Use sudo ou troque para root com ’su -’
sudo apt-get update
sudo apt-get -y install slirp4netns fuse-overlayfs

• slirp4netns: Fornece a rede para os contêineres rootless.

• fuse-overlayfs: Permite a criação de camadas de sistema de arquivos (overlay)
sem privilégios de root.

Configurando UIDs e GIDs Subordinados

Este é o passo mais crítico. O sistema precisa saber quais faixas de User IDs (UIDs)
e Group IDs (GIDs) um usuário tem permissão para usar em seus namespaces. Essas faixas
são definidas nos arquivos /etc/subuid e /etc/subgid.

Podemos verificar se nosso usuário já possui essas faixas alocadas:

$ grep $USER /etc/subuid
$ grep $USER /etc/subgid

FACOM-UFMS

Podman: A Arquitetura Daemonless 24

Se os comandos não retornarem nada, precisamos adicioná-los. O comando
usermod, executado como root, aloca uma faixa de 65.536 UIDs e GIDs para o usuário
especificado:

Substitua ’seu_usuario’ pelo seu nome de usuário
sudo usermod --add-subuids 100000-165535 --add-subgids

100000-165535 seu_usuario

Após esta alteração, o usuário precisa fazer logout e login novamente para que as mudanças
tenham efeito.

Troubleshooting: Problemas Comuns de Configuração

Em ambientes de laboratório ou instalações mínimas (como Debian netinst ou
containers LXC), é comum encontrar dois obstáculos nessa etapa:

1. Arquivo subuid ausente: Às vezes, o arquivo /etc/subgid existe, mas o
/etc/subuid não. Isso impede o mapeamento de usuários. Correção: Se o
comando usermod falhar, você pode criar o arquivo manualmente. O formato deve
ser idêntico ao do subgid: usuario:100000:65536.

2. Falta do sudo e Dependências: Em instalações "cruas", o comando sudo pode
não vir instalado. Correção: É necessário logar como root real (via su -) para
instalar as dependências críticas (slirp4netns e fuse-overlayfs). Sem
elas, o Podman até pode rodar, mas falhará ao criar a rede ou montar o sistema de
arquivos.

3.4.4 Operando em Modo Rootless na Prática

Com o ambiente configurado, podemos verificar se o Podman está operando cor-
retamente. O comando podman info revelará que os caminhos de armazenamento
(graphRoot) e execução (runRoot) agora apontam para o diretório home do usuário,
e não para /var/lib/containers:

$ podman info | grep -E ’graphRoot|runRoot’

A saída será semelhante a:

graphRoot: /home/seu_usuario/.local/share/containers/storage
runRoot: /run/user/1000/containers

Isso prova que o Podman está armazenando todas as suas imagens e dados dentro do
espaço do usuário.

FACOM-UFMS

Podman: A Arquitetura Daemonless 25

3.4.5 Limitações do Modo Rootless: Mapeamento de Portas

Uma limitação importante do modo rootless é que usuários comuns não podem
mapear serviços para portas privilegiadas do host (aquelas abaixo de 1024), pois isso é
uma restrição do kernel.

Por exemplo, tentar expor um servidor web na porta 80 do host falhará:

ERRO: Usuário comum não pode usar a porta 80 do host
$ podman run -d --name web -p 80:80 nginx
Error: rootlessport cannot expose privileged port 80

A solução é mapear para uma porta não privilegiada (acima de 1024):

CORRETO: Mapeia a porta 8080 do host para a porta 80 do
contêiner

$ podman run -d --name web -p 8080:80 nginx

O servidor web estará, então, acessível em http://localhost:8080.

3.5 Orquestração com Podman Compose

Até agora, nossos comandos podman run lidaram com um único contêiner por
vez. No entanto, aplicações do mundo real raramente são tão simples. Uma aplicação web
moderna, como um WordPress ou Nextcloud, tipicamente envolve múltiplos componentes
— um servidor web (como Nginx ou Apache), a aplicação em si (em PHP) e um banco de
dados (como MySQL ou PostgreSQL) — todos rodando em contêineres separados que
precisam de rede, volumes e uma ordem de inicialização específica.

Gerenciar essa complexidade manualmente com múltiplos comandos podman
run é impraticável e propenso a erros. Para resolver isso, utilizamos uma abordagem
declarativa, definindo o estado desejado de nossa aplicação em um único arquivo. No
ecossistema Podman, essa ferramenta é o podman-compose.

3.5.1 O que é podman-compose?

É crucial entender que o podman-compose difere filosoficamente do docker-compose.
Enquanto a ferramenta do Docker (especialmente a V2) é um plugin que se comunica com
a API do daemon Docker, o podman-compose é uma ferramenta independente, escrita
em Python, que atua como um tradutor.

Ele foi projetado para ser compatível com a sintaxe dos arquivos docker-compose.yml,
o que facilita a migração. Sua função principal é:

1. Ler e interpretar o arquivo compose.yml que define os serviços, redes e volumes.

FACOM-UFMS

Podman: A Arquitetura Daemonless 26

2. Traduzir essas definições em uma série de comandos podman equivalentes.

Por exemplo, uma seção service no YAML é traduzida para um podman run
com todos os mapeamentos de porta, volumes e variáveis de ambiente corretos. Uma seção
network se torna um podman network create.

A maior vantagem desta abordagem é que ela herda todos os benefícios do Podman:
opera em modo rootless por padrão e não depende de um daemon central.

3.5.2 Instalação do podman-compose

Assumindo que o ambiente rootless já foi configurado (conforme o capítulo anterior,
com slirp4netns e fuse-overlayfs), a instalação do podman-compose em
sistemas Debian é feita através do apt:

Como root
apt-get install podman-compose

3.6 Aplicações Práticas: Nextcloud e WordPress

Vamos explorar a orquestração através de dois estudos de caso idênticos em sua
estrutura: a implantação do Nextcloud e do WordPress. Ambas são aplicações que exigem
dois serviços principais:

• O serviço de banco de dados (ex: mariadb ou mysql).

• O serviço da aplicação (ex: nextcloud ou wordpress).

O arquivo compose.yml é onde descrevemos essa relação. Vamos analisar a
estrutura para o Nextcloud.

3.6.1 Estrutura de um Arquivo compose.yml

Primeiro, criamos um diretório para o projeto e, dentro dele, o arquivo compose.yml:

mkdir nextcloud-podman && cd nextcloud-podman
nano compose.yml

O conteúdo do arquivo define nossos dois serviços, db e app (usando imagens
qualificadas para evitar erros):

services:
db:
image: docker.io/mariadb:10.6

FACOM-UFMS

Podman: A Arquitetura Daemonless 27

container_name: nextcloud_db
restart: always
command: --transaction-isolation=READ-COMMITTED

--binlog-format=ROW
volumes:
- db_data:/var/lib/mysql

environment:
- MYSQL_ROOT_PASSWORD=seu_password_super_secreto
- MYSQL_PASSWORD=nextcloud_password
- MYSQL_DATABASE=nextcloud
- MYSQL_USER=nextcloud

app:
image: docker.io/nextcloud
container_name: nextcloud_app
restart: always
ports:
- "8080:80" # Porta alta para rootless

volumes:
- nextcloud_data:/var/www/html

depends_on:
- db

volumes:
db_data:
name: nextcloud_db_data

nextcloud_data:
name: nextcloud_app_data

3.6.2 Analisando a Anatomia do Compose

Este arquivo é um excelente exemplo de orquestração. Vamos destacar os conceitos-
chave:

• Serviços (services): Cada bloco, db e app, é um serviço. O podman-compose
criará um contêiner para cada um.

• Persistência (volumes): A seção volumes: no final declara "volumes nome-
ados"gerenciados pelo Podman. Dentro de cada serviço, a linha volumes: (ex:
db_data:/var/lib/mysql) mapeia esse volume nomeado para um diretório
dentro do contêiner. Isso garante que, se o contêiner for destruído, os dados do banco
de dados e os arquivos do Nextcloud persistam.

• Rede e Descoberta: O podman-compose cria automaticamente uma rede interna
para este projeto. É por isso que o serviço app pode se conectar ao banco de dados

FACOM-UFMS

Podman: A Arquitetura Daemonless 28

usando o nome db como host (veja a variável WORDPRESS_DB_HOST no exemplo
do WordPress).

• Ordem de Inicialização (depends_on): A diretiva depends_on: - db no
serviço app instrui o Podman a iniciar o contêiner do banco de dados antes de
iniciar o contêiner da aplicação.

• Portas (ports): A linha "8080:80" no serviço app é a única que expõe algo
ao mundo exterior. Ela mapeia a porta 8080 do nosso host (lembre-se, rootless não
pode usar portas < 1024) para a porta 80, onde o servidor web do Nextcloud está
escutando dentro do contêiner.

A implantação do WordPress segue um padrão idêntico, apenas substituindo as
imagens e as variáveis de ambiente apropriadas.

Para iniciar a aplicação, o comando é simples e, o mais importante, executado
como um usuário comum:

O -d significa "detached" (em segundo plano)
podman-compose up -d

O podman-compose lerá o arquivo, criará os volumes, a rede e os contêineres
na ordem correta. A aplicação estará acessível em http://localhost:8080.

3.7 Gerenciamento Avançado de Rede com Traefik

Embora o mapeamento de portas (como 8080:80) funcione para uma ou duas apli-
cações, ele rapidamente se torna complexo. Teríamos que memorizar que localhost:8080
é o Nextcloud, localhost:8081 é o WordPress, localhost:8082 é o Portainer, e
assim por diante.

A solução profissional para isso é um Reverse Proxy (Proxy Reverso). O Trae-
fik é um proxy reverso moderno, nativo para a nuvem, projetado especificamente para
contêineres.

Sua principal vantagem é a descoberta de serviço automática. Em vez de editar-
mos manualmente um arquivo de configuração toda vez que subimos um novo serviço, o
Traefik "assiste"à API do Podman. Quando ele vê um novo contêiner subir com labels
específicas, ele automaticamente configura o roteamento para ele.

3.7.1 Diferenças na Configuração com Podman

Para o Traefik funcionar com o Podman rootless, duas correções são necessárias
em relação à configuração padrão do Docker:

FACOM-UFMS

Podman: A Arquitetura Daemonless 29

1. O Socket da API: O Podman expõe sua API em um socket de usuário (user socket),
geralmente em /run/user/<UID>/podman/podman.sock.

2. O Provedor: Devido a incompatibilidades em versões recentes (como a v2.11),
o provedor nativo podman pode falhar. A solução robusta é utilizar o provedor
docker padrão, mas apontando-o para o socket do Podman.

Primeiro, habilitamos o socket da API do Podman para nosso usuário. Atenção:
Não use sudo, pois o socket deve pertencer ao usuário:

Habilita e inicia o socket para o usuário atual
systemctl --user enable --now podman.socket

3.7.2 Configuração do Traefik com Compose

A seguir, um arquivo compose.yml corrigido que implanta o Traefik e um
serviço de exemplo whoami, resolvendo os problemas de portas e provedores relatados:
s e r v i c e s :

t r a e f i k :
image : d oc ke r . i o / t r a e f i k : v3 . 6
c o n t a i n e r _ n a m e : t r a e f i k
command :

I n s t r u ç õ es para o T r a e f i k
− "−− a p i . i n s e c u r e = t r u e "
Usamos o p r o v i d e r Docker compat í v e l com a API do Podman
− "−− p r o v i d e r s . do ck e r = t r u e "
− "−− p r o v i d e r s . do ck e r . e x p o s e d b y d e f a u l t = f a l s e "
Apontamos para o s o c k e t do usu á r i o
−

"−− p r o v i d e r s . do ck e r . e n d p o i n t = un ix : / / / v a r / run / podman / podman . sock "
− "−− e n t r y p o i n t s . web . a d d r e s s =:8081 "

p o r t s :
− " 8080:8080 " # Por ta 8080 (Host) mapeia para 8080 (T r a e f i k)

[R o o t l e s s]
− " 8081:8081 " # Por ta para o Dashboard do T r a e f i k

volumes :
Monta o s o c k e t do Podman (s u b s t i t u a 1000 p e l o seu ’ i d −u ’)
− / run / u s e r / 1 0 0 0 / podman / podman . sock : / v a r / run / podman / podman . sock : z

n e t w o r k s :
− proxy

whoami :
image : d oc ke r . i o / t r a e f i k / whoami
c o n t a i n e r _ n a m e : whoami
l a b e l s :

− " t r a e f i k . e n a b l e = t r u e "
O r o t e a m e n t o deve c o n s i d e r a r a p o r t a e x p o s t a (8 0 8 1)
−

" t r a e f i k . h t t p . r o u t e r s . whoami . r u l e =Host (‘ whoami . podman . l o c a l h o s t ‘) "

FACOM-UFMS

Podman: A Arquitetura Daemonless 30

− " t r a e f i k . h t t p . r o u t e r s . whoami . e n t r y p o i n t s =web "
n e t w o r k s :

− proxy

n e t w o r k s :
proxy :

name : proxy

A mágica acontece nas labels do serviço whoami:

• traefik.enable=true: "Olá Traefik, por favor, gerencie este contêiner."

• ...rule=Host(ẁhoami.podman.localhost)̀: "Se uma requisição chegar
com o domínio whoami.podman.localhost, envie-a para mim."

Após subir este compose, podemos acessar o dashboard do Traefik em http://localhost:8081
e nossa aplicação em http://whoami.podman.localhost:8081 (após adicionar
este domínio ao nosso /etc/hosts local).

3.8 Recursos Avançados: Pods e Manifestos Kubernetes

O Podman possui dois recursos fundamentais que o diferenciam do Docker e o
aproximam do Kubernetes.

3.8.1 O Conceito de “Pod”

Emprestado diretamente do Kubernetes, um Pod é a menor unidade de implantação.
É um grupo de um ou mais contêineres que compartilham os mesmos namespaces de rede
e IPC.

Isso significa que contêineres dentro do mesmo pod podem se comunicar usando
localhost, como se estivessem na mesma máquina. Isso é mais eficiente do que
criar uma rede virtual. Em nosso exemplo Nextcloud/WordPress, poderíamos colocar os
serviços app e db no mesmo pod. O podman-compose não gerencia pods nativamente,
mas o podman sim.

Cria um Pod que expõe a porta 8080 (rootless)
$ podman pod create --name minha-app-pod -p 8080:80

Executa os contêineres DENTRO do pod
$ podman run -d --pod minha-app-pod --name redis_db

docker.io/redis
$ podman run -d --pod minha-app-pod --name webapp minha-webapp

Neste cenário, a webapp se conectaria ao Redis simplesmente em localhost:6379.

FACOM-UFMS

Podman: A Arquitetura Daemonless 31

3.8.2 Gerando Manifestos Kubernetes

A funcionalidade mais poderosa do Podman é sua capacidade de atuar como
uma ponte entre o desenvolvimento local e a produção em Kubernetes. O Podman pode
inspecionar um pod em execução e gerar um manifesto .yml do Kubernetes que o
descreve.

Gere o YAML a partir do Pod que criamos
$ podman kube generate pod minha-app-pod > minha-app.yml

O arquivo minha-app.yml resultante é um recurso Kubernetes válido que pode
ser implantado em qualquer cluster (como Minikube, GKE, ou OpenShift) com kubectl
apply -f minha-app.yml. Isso unifica drasticamente o fluxo de trabalho de desen-
volvimento e produção.

FACOM-UFMS

Capítulo 4

Introdução ao Docker: O Padrão da
Indústria

Neste capítulo, voltamos nossa atenção para o Docker, a plataforma que populari-
zou os contêineres de aplicação e definiu o padrão da indústria. Embora o Podman ofereça
uma arquitetura daemonless inovadora, é fundamental compreender o Docker, pois sua
arquitetura, ferramentas (como o Docker Compose) e o próprio formato do Dockerfile
são a base do ecossistema de contêineres moderno.

4.1 Instalação

Ao contrário do Podman, o Docker opera em uma arquitetura cliente-servidor.
O componente central é o daemon Docker (dockerd), um processo que roda com
privilégios de root e é responsável por construir, executar e gerenciar os contêineres.
A ferramenta de linha de comando docker (o cliente) se comunica com a API deste
daemon.

A instalação no Debian envolve adicionar o repositório oficial do Docker para
garantir que recebamos as versões mais recentes.

Primeiro, como superusuário, configuramos o apt para confiar no repositório do
Docker:

Adicionar o repositório do Docker
apt-get update
apt-get install -y ca-certificates curl gnupg lsb-release
mkdir -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/debian/gpg | gpg

--dearmor -o /etc/apt/keyrings/docker.gpg
echo \

"deb [arch=$(dpkg --print-architecture)
signed-by=/etc/apt/keyrings/docker.gpg]

32

Introdução ao Docker: O Padrão da Indústria 33

https://download.docker.com/linux/debian \
$(lsb_release -cs) stable" | tee

/etc/apt/sources.list.d/docker.list > /dev/null

Com o repositório configurado, atualizamos o índice de pacotes e instalamos o
Docker Engine, a CLI e o plugin do Compose:

Instalar o Docker Engine
apt-get update
apt-get install -y docker-ce docker-ce-cli containerd.io

docker-compose-plugin

Uma vez instalado, podemos verificar a versão com:

$ docker -v

4.2 Executando o Docker como um Usuário Não-Root

Por padrão, apenas o usuário root (ou usuários com sudo) pode se comunicar
com o daemon do Docker. Para permitir que seu usuário comum execute comandos
docker sem sudo, você deve adicioná-lo ao grupo docker (criado durante a instala-
ção).

Nota de Segurança: Adicionar um usuário ao grupo docker é equivalente a dar
a ele privilégios de root, pois ele pode usar o Docker para montar qualquer diretório do
host ou executar comandos privilegiados. A abordagem rootless do Podman, discutida
anteriormente, é a solução para esta vulnerabilidade.

4.3 Operações Básicas de Contêineres

A sintaxe de comandos do Docker é o padrão que o Podman imitou. O ciclo de
vida de um contêiner é gerenciado com comandos idênticos:

• docker run hello-world: O comando canônico para testar a instalação.

• docker exec -it <ID> /bin/bash: Entra em um contêiner em execução.

• docker stop <ID>: Para um contêiner.

• docker rm <ID>: Remove um contêiner.

• docker stats: Monitora o uso de recursos.

• docker update -cpus 0.5 <ID>: Atualiza recursos de um contêiner em
execução.

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 34

4.4 Aprofundando em Dockerfiles

O Dockerfile é o "projeto"ou a "receita"de uma imagem de contêiner. É um
script de texto que contém uma sequência de comandos que o daemon do Docker utiliza
para montar, de forma automatizada e reprodutível, uma imagem.

Cada instrução em um Dockerfile cria uma nova "camada"(layer) na imagem.
O Docker armazena essas camadas em cache, um recurso que acelera drasticamente as
builds futuras, pois o Docker só reconstrói as camadas que mudaram.

4.4.1 Anatomia de um Dockerfile: Instruções Essenciais

Vamos detalhar as instruções mais comuns e sua finalidade:

• FROM: Define a imagem base a partir da qual a nova imagem será construída. Todo
Dockerfile deve começar com FROM. A escolha de uma base pequena (como
alpine ou debian:slim) é a melhor prática para imagens leves.

• WORKDIR: Define o diretório de trabalho para todas as instruções subsequentes
(RUN, COPY, CMD, etc.). É uma prática muito superior a usar RUN cd /meu-app.

• COPY: Copia arquivos ou diretórios do contexto do build (a máquina local) para
dentro do sistema de arquivos da imagem.

• RUN: Executa um comando shell durante o processo de build. É usado para instalar
pacotes (RUN apt-get install -y ...), compilar código ou criar diretó-
rios. Cada RUN cria uma nova camada.

• CMD: Define o comando padrão que será executado quando um contêiner for ini-
ciado a partir da imagem. Só pode haver uma instrução CMD. Se o usuário espe-
cificar um comando ao iniciar o contêiner (ex: docker run minha-imagem
/bin/bash), o CMD padrão será ignorado.

• EXPOSE: Documenta quais portas de rede o contêiner escuta em tempo de execução.
É importante notar que EXPOSE não publica a porta; ele apenas informa ao operador
humano (e a algumas ferramentas) quais portas são importantes. A publicação real é
feita com -p no comando docker run.

4.4.2 Otimização: Encadeando Comandos RUN

Como cada RUN cria uma camada, Dockerfiles não otimizados podem ficar
inchados.

Não otimizado (cria 3 camadas):

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 35

RUN apt-get update
RUN apt-get install -y curl
RUN apt-get install -y git

A forma otimizada é encadear os comandos com && e
, o que os agrupa em uma única instrução RUN e, portanto, em uma única camada. Além
disso, limpamos o cache do apt na mesma camada, garantindo que o cache não seja
incluído desnecessariamente no tamanho final da imagem.

Otimizado (cria 1 camada):

RUN apt-get update && apt-get install -y \
curl \
git \
&& rm -rf /var/lib/apt/lists/*

4.4.3 Tópicos Avançados de Dockerfile

Para criar imagens prontas para produção, dominamos três conceitos adicionais:
ENTRYPOINT, Builds Multi-Stage e HEALTHCHECK.

ENTRYPOINT vs. CMD

Este é um dos conceitos mais confusos para iniciantes. A melhor maneira de
entendê-los é:

• ENTRYPOINT: Define o executável principal, o "ponto de entrada"da imagem. Não
é feito para ser sobrescrito pelo usuário.

• CMD: Define os argumentos padrão para o ENTRYPOINT.

Um exemplo clássico é a imagem do apachectl:

ENTRYPOINT ["/usr/sbin/apachectl"]
CMD ["-D", "FOREGROUND"]

Ao executar docker run <imagem>, o contêiner executa /usr/sbin/apachectl
-D FOREGROUND. Se o usuário executar docker run <imagem> -X, ele estará so-
brescrevendo apenas o CMD, e o comando final será /usr/sbin/apachectl -X.

Builds Multi-Stage

Builds multi-stage são a técnica mais eficaz para criar imagens pequenas e seguras.
A ideia é usar uma imagem grande e cheia de ferramentas (como golang ou maven)

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 36

para compilar a aplicação e, em seguida, copiar apenas o binário compilado para uma
imagem final mínima (como alpine ou scratch).

Isso separa o ambiente de build do ambiente de produção, resultando em uma ima-
gem final drasticamente menor, que não contém código-fonte, compiladores ou ferramentas
de build.

Estágio 1: Build
FROM golang AS buildando
WORKDIR /app
ADD . /app
RUN go build -o meugo

Estágio 2: Imagem Final
FROM alpine
WORKDIR /new
Copia apenas o executável do estágio anterior
COPY --from=buildando /app/meugo /new/
ENTRYPOINT ./meugo

HEALTHCHECK

A instrução HEALTHCHECK define um comando que o Docker executa periodica-
mente dentro do contêiner para verificar se ele está funcionando corretamente (ou seja,
"saudável"). Isso é crucial para orquestradores, que podem usar essa informação para
reiniciar automaticamente um contêiner "doente"(unhealthy).

HEALTHCHECK --interval=1m --timeout=3s \
CMD curl -f http://localhost/ || exit 1

O status da verificação (ex: starting, healthy, unhealthy) aparecerá na saída do
docker ps.

4.5 Gerenciamento de Dados com Volumes

Por padrão, contêineres são efêmeros. Seus sistemas de arquivos são voláteis;
quaisquer dados escritos dentro de um contêiner são perdidos quando ele é removido. Para
aplicações que precisam manter estado (como bancos de dados, uploads de usuários ou
arquivos de configuração), precisamos de uma forma de persistir dados. O mecanismo
preferido pelo Docker para isso são os Volumes.

4.5.1 Tipos de Persistência

Existem duas formas principais de persistir dados no Docker:

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 37

• Named Volumes (Volumes Nomeados): Esta é a abordagem recomendada. Os
volumes são gerenciados diretamente pelo Docker e armazenados em uma área
específica no host (ex: /var/lib/docker/volumes/). Eles são desacoplados
do ciclo de vida do contêiner. Podemos criar um volume com docker volume
create meusdados.

• Bind Mounts: Mapeiam um diretório ou arquivo existente no sistema de arquivos
do host para dentro de um contêiner (ex: -v /opt/meu-app:/app). São úteis
em desenvolvimento para refletir mudanças no código-fonte em tempo real, mas em
produção são menos flexíveis que os volumes nomeados.

Para usar um volume nomeado, o criamos e o anexamos no docker run:

Crie um volume nomeado
$ docker volume create meusdados

Execute um contêiner usando o volume
$ docker container run -ti --mount

type=volume,src=meusdados,dst=/dados debian

Agora, qualquer coisa escrita em /dados dentro do contêiner será salva no volume
meusdados no host. Se removermos o contêiner, o volume (e seus dados) permanecerá
intacto.

4.6 Orquestração com Docker Compose

Similar ao podman-compose, o Docker Compose é a ferramenta do Docker
para definir e executar aplicações multi-contêiner. Ele usa um arquivo YAML (por padrão,
compose.yml) para declarar todos os serviços, redes e volumes que compõem uma
aplicação.

4.6.1 Instalando o Docker Compose

Desde 2021, o Docker Compose foi reescrito em Go e integrado diretamente ao
Docker Engine como um plugin (docker-compose-plugin). O comando moderno é
docker compose (sem o hífen), que instalamos no primeiro capítulo.

4.6.2 Orquestrando o Portainer

Vamos usar o Compose para implantar o Portainer, uma popular interface gráfica
de gerenciamento para o Docker.

Primeiro, criamos nosso arquivo compose.yml:

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 38

services:
portainer:
image: portainer/portainer-ce:latest
container_name: portainer
ports:
- "9443:9443"
- "9000:9000"

volumes:
Mapeia o socket do Docker para que o Portainer possa

gerenciar o Docker
- /var/run/docker.sock:/var/run/docker.sock
Volume para persistir os dados do Portainer
- portainer_data:/data

restart: always

volumes:
portainer_data:

Os dois mapeamentos de volume aqui são cruciais:

• /var/run/docker.sock:/var/run/docker.sock: Este é um bind mount
que mapeia o socket da API do Docker do host para dentro do contêiner. É assim
que o Portainer ganha a capacidade de controlar o Docker.

• portainer_data:/data: Este é um volume nomeado que garante que os dados
do Portainer (configurações, senhas) persistam.

Para iniciar a aplicação, navegamos até o diretório do arquivo e executamos:

$ docker compose up -d

O Portainer estará acessível em https://localhost:9443.

4.6.3 Expandindo o Compose: Profiles e .env

O Docker Compose possui recursos avançados para gerenciar ambientes comple-
xos.

Profiles (Perfis)

Os perfis permitem agrupar serviços no compose.yml e ativá-los seletivamente.
Isso é ideal para separar serviços de produção (padrão) de serviços de desenvolvimento ou
depuração (debug).

Por exemplo, podemos adicionar um visualizador de logs como o Dozzle ao
nosso compose, mas associá-lo a um perfil debug:

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 39

services:
portainer:
... (configuração do portainer) ...

dozzle:
image: amir20/dozzle:latest
container_name: dozzle
volumes:
- /var/run/docker.sock:/var/run/docker.sock

ports:
- "8081:8080"

profiles:
- debug # Este serviço só iniciará se o perfil ’debug’

for ativado

Ao executar docker compose up -d, apenas o Portainer iniciará. Para iniciar
ambos, executamos: docker compose -profile debug up -d.

Arquivos .env para Variáveis

É uma má prática "chumbar"(hardcode) valores como senhas, portas ou nomes de
usuário no compose.yml. A solução é usar um arquivo .env no mesmo diretório. O
Docker Compose o carrega automaticamente.

Arquivo .env:

.env
PORTAINER_WEB_PORT=9443

Arquivo compose.yml:

services:
portainer:
...
ports:
Usando a variável do arquivo .env
- "${PORTAINER_WEB_PORT}:9443"

...

Isso torna a configuração mais segura e flexível.

4.7 Estudos de Caso: Nextcloud e WordPress

A implantação do Nextcloud e do WordPress com Docker Compose segue exa-
tamente o mesmo padrão de dois serviços (aplicação + banco de dados) que vimos no

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 40

capítulo do Podman, demonstrando a portabilidade dos arquivos compose.yml entre os
ecossistemas.

A única diferença notável é o nome do driver de rede padrão (Docker cria uma
rede bridge, enquanto Podman usa netavark ou CNI), mas para o usuário final, a
descoberta de serviço baseada no nome do serviço (db) funciona de forma idêntica.

4.8 Orquestração de Cluster: Docker Swarm

O Docker Compose é excelente para gerenciar múltiplos contêineres em um único
host. No entanto, para produção, precisamos de resiliência e escala, o que significa
distribuir nossos contêineres por múltiplos hosts (nós).

O Docker Swarm é a ferramenta de orquestração nativa do Docker para gerenciar
um cluster de nós como se fossem um único sistema.

4.8.1 Arquitetura: Managers e Workers

Um cluster Swarm consiste em dois tipos de nós:

• Managers: Responsáveis por gerenciar o estado do cluster, agendar serviços e
manter a consistência. Para alta disponibilidade, recomenda-se um número ímpar de
managers (ex: 3 ou 5) para formar um quórum.

• Workers: Executam os contêineres (chamados de tasks) que são atribuídos pelos
managers.

Para inicializar um cluster, vamos ao nó que será o primeiro manager e executamos:

$ docker swarm init

Este comando torna o nó atual um manager e gera um token. Nos outros nós, executamos
o comando docker swarm join <token> para que eles entrem no cluster como
workers.

4.8.2 Serviços no Swarm

No Swarm, não executamos contêineres diretamente; nós criamos Serviços. Um
serviço define o estado desejado de uma aplicação, incluindo a imagem, o número de
réplicas e as portas. O Swarm então garante que o número correto de réplicas (tasks) esteja
sempre em execução em algum lugar do cluster.

Cria um serviço chamado ’webserver’ com 3 réplicas da imagem
nginx

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 41

$ docker service create --name webserver --replicas 3 -p
8080:80 nginx

O Swarm agora garantirá que 3 contêineres nginx estejam rodando. Se um nó falhar, o
Swarm automaticamente reagendará as tasks daquele nó em outros nós saudáveis.

4.8.3 Escalando e Gerenciando Nós

A principal vantagem de um orquestrador é a capacidade de escalar e gerenciar
falhas.

Podemos escalar um serviço instantaneamente:

$ docker service scale webserver=10

O Swarm tratará de criar 7 novas réplicas e distribuí-las pelo cluster.

Para manutenção de um nó (ex: node01), podemos drená-lo. O drain remove
todas as tarefas do nó, reagendando-as em outros nós ativos, sem interromper o serviço:

$ docker node update --availability drain node01

Após a manutenção, retornamos o nó ao estado ativo: docker node update -availability
active node01.

4.9 Gerenciamento de Rede Avançado com Traefik

Assim como no Podman, o Traefik brilha como um proxy reverso para o Docker,
especialmente em um ambiente Swarm. Sua capacidade de descoberta de serviço nos
permite expor aplicações à internet de forma dinâmica, sem reconfiguração manual.

A configuração é quase idêntica à do Podman, com uma diferença chave: em vez
de usar o provedor podman, usamos o provedor docker.

4.9.1 Configuração do Traefik com Docker Compose

Em um ambiente Docker (seja single-host ou Swarm), implantamos o Traefik como
um serviço, geralmente via Docker Compose.

docker-compose.yml
services:

traefik:
image: traefik:v2.11
container_name: traefik
command:
- "--api.dashboard=true"

FACOM-UFMS

Introdução ao Docker: O Padrão da Indústria 42

- "--providers.docker=true" # Usando o provedor Docker
- "--providers.docker.exposedbydefault=false"
- "--entrypoints.web.address=:80"

ports:
- "80:80" # Porta para o tráfego HTTP
- "8080:8080" # Porta para o Dashboard

volumes:
Monta o socket do Docker para que o Traefik possa ouvir

os eventos
- /var/run/docker.sock:/var/run/docker.sock:ro

networks:
- proxy

whoami:
image: traefik/whoami
container_name: whoami
labels:
- "traefik.enable=true"
-

"traefik.http.routers.whoami.rule=Host(‘whoami.localhost‘)"
- "traefik.http.routers.whoami.entrypoints=web"

networks:
- proxy

networks:
proxy:
name: proxy

O volume /var/run/docker.sock:/var/run/docker.sock:ro é a
chave. É através dele que o Traefik monitora a API do Docker e detecta novos contêineres
(ou serviços Swarm) que possuem as labels traefik.enable=true. Ao detectar um,
ele lê a label rule e cria a rota de acesso automaticamente.

FACOM-UFMS

Capítulo 5

Introdução à Automação com Ansible

Nos capítulos anteriores, focamos em como empacotar e executar aplicações
de forma isolada e consistente usando contêineres. No entanto, ainda resta um desafio
fundamental: como preparar e gerenciar a infraestrutura subjacente onde esses contêineres
irão rodar?

A preparação de um servidor (o "provisionamento") envolve tarefas como instalar
pacotes, configurar serviços, gerenciar usuários e garantir que os arquivos de configuração
estejam corretos. Fazer isso manualmente é lento, propenso a erros e impossível de escalar.

Neste capítulo, introduzimos o Ansible, uma poderosa ferramenta de automação
de TI que simplifica radicalmente o gerenciamento de configuração e a implantação de
aplicações.

5.1 O que é o Ansible?

O Ansible é um motor de automação de código aberto que opera em um paradigma
push-based (baseado em "empurrar"configurações). Sua característica mais marcante é
sua arquitetura agentless (sem agentes).

Diferente de outras ferramentas como Puppet ou Chef, que exigem que um
"agente"de software seja instalado e mantido em cada servidor gerenciado, o Ansible
não requer nada além de uma conexão SSH padrão e um interpretador Python (que já vem
instalado na maioria das distribuições Linux modernas).

Essa simplicidade reduz a complexidade de gerenciamento e a superfície de ataque
da sua infraestrutura.

5.2 Conceitos Fundamentais

Para trabalhar com o Ansible, precisamos entender sua terminologia:

43

Introdução à Automação com Ansible 44

• Control Node (Nó de Controle): A máquina onde o Ansible está instalado e de
onde você executa os comandos.

• Managed Nodes (Nós Gerenciados): Os servidores que o Ansible gerencia.

• Inventory (Inventário): Um arquivo (em formato INI ou YAML) que lista e agrupa
os nós gerenciados. É o "catálogo de endereços"do Ansible.

• Playbook: O coração do Ansible. É um arquivo YAML que define uma lista de
tarefas a serem executadas em um grupo de servidores.

• Task (Tarefa): Uma única ação, como "instalar o pacote nginx"ou "copiar um
arquivo".

• Module (Módulo): O código que o Ansible envia via SSH para o nó gerenciado
executar uma tarefa. Por exemplo, o módulo apt gerencia pacotes no Debian, e o
módulo service gerencia serviços.

5.3 Instalação e Configuração Prática

Vamos configurar um ambiente básico no Nó de Controle.

5.3.1 Instalação do Ansible

O Ansible é facilmente instalado via gerenciador de pacotes. Em um sistema
baseado em Debian/Ubuntu, executamos:

Atualiza o índice de pacotes e instala o Ansible
$ sudo apt-get update
$ sudo apt-get install -y ansible

Podemos verificar a instalação com ansible -version.

5.3.2 Criando um Inventário

O inventário define quais servidores o Ansible irá gerenciar. Vamos criar um
diretório para nosso projeto e um arquivo de inventário chamado hosts:

$ mkdir ansible-lab && cd ansible-lab
$ nano hosts

Dentro do arquivo hosts, definimos um grupo de servidores. Para este exemplo,
vamos assumir que queremos gerenciar um servidor em 192.168.1.100:

FACOM-UFMS

Introdução à Automação com Ansible 45

Arquivo: hosts

[webservers]
server1 ansible_host=192.168.1.100

• [webservers]: Define um grupo de hosts.

• server1: É um apelido (alias) para o host.

• ansible_host: É uma variável que informa ao Ansible o IP real para conexão.

5.3.3 Testando a Conexão (Comandos Ad-Hoc)

Antes de escrever um playbook complexo, sempre testamos a conectividade. Usa-
mos um comando "ad-hoc"para executar o módulo ping em todos os hosts do inventário.

-i especifica o inventário
-m especifica o módulo (ping)
’all’ é um grupo especial que significa "todos os hosts"
$ ansible all -i hosts -m ping

Se a conexão SSH (geralmente por chaves) estiver funcionando, o Ansible retornará
uma resposta SUCCESS com um "ping": "pong". Caso contrário, é possível que
você encontre uma mensagem semelhante a esta:

[server1] UNREACHABLE! => {"msg": "Failed to connect to the
host via

ssh: (publickey).", "unreachable": true} Permission denied.

Casa máquina é um caso que deve ser diagnosticado com atenção, todavia, uma das
soluções mais comuns é verificar se a chave pública dos hosts/nodes foram corretamente
adicionadas no arquivo authorized_keys do host/node de controle. Outra possibili-
dade de solução é passar o nome do usuário pelo arquivo de inventário do Ansible, no nosso
caso hosts. Uma terceira possibilidade é adicionar o caminho da chave privada do host-
alvo para facilitar o processo de autenticação com ansible_ssh_private_key_file=
logo após especificar o usuário:

Arquivo: hosts

[webservers]
server1 ansible_host=192.168.1.100 ansible_user=fulani

ansible_ssh_private_key_file=~/.ssh/id_ed25519

FACOM-UFMS

Introdução à Automação com Ansible 46

5.4 Seu Primeiro Playbook: A Idempotência

Agora, vamos automatizar uma tarefa real: garantir que o servidor web Nginx
esteja instalado e rodando. Criamos um arquivo install_nginx.yml:

install_nginx.yml

- name: Instalar e configurar o Nginx

hosts: webservers
become: yes # Indica que as tarefas devem ser executadas com

sudo

tasks:
- name: Atualizar o cache do apt
apt:

update_cache: yes

- name: Instalar o Nginx
apt:

name: nginx
state: present

Vamos analisar este playbook:

• hosts: webservers: Define que este play será executado no grupo [webservers]
do nosso inventário.

• become: yes: Informa ao Ansible para escalar privilégios (usar sudo) para
executar as tarefas.

• tasks: A lista de ações. Cada tarefa chama um módulo.

• state: present: Esta é a chave do gerenciamento de configuração. Estamos
dizendo ao Ansible: "Eu não me importo como, apenas garanta que o Nginx esteja
presente".

Executamos o playbook com o comando:

$ ansible-playbook -i hosts install_nginx.yml --ask-become-pass

Na primeira execução, o Ansible verá que o Nginx não está instalado e o instalará.
A saída da tarefa mostrará changed. Se executarmos o mesmo playbook uma segunda
vez, o Ansible verificará o estado, verá que o Nginx já está presente e não fará nada. A
saída mostrará ok.

Esse conceito é chamado de Idempotência e é o pilar do Ansible: um playbook
descreve o estado final desejado, e o Ansible de forma inteligente só realiza as ações
necessárias para alcançá-lo.

FACOM-UFMS

Introdução à Automação com Ansible 47

5.5 Playbooks Avançados: Handlers e Templates

Instalar pacotes é apenas o começo. O verdadeiro poder do Ansible está em
gerenciar arquivos de configuração e o estado dos serviços.

5.5.1 Gerenciando Arquivos e Reiniciando Serviços com Handlers

Um desafio comum é que um serviço (como o Nginx) só deve ser reiniciado se seu
arquivo de configuração for realmente alterado. Reiniciá-lo a cada execução do playbook é
ineficiente e pode causar indisponibilidade.

O Ansible resolve isso com Handlers. Um Handler é uma tarefa especial que só é
executada se outra tarefa a "notificar".

Vamos aprimorar nosso playbook para copiar um arquivo index.html persona-
lizado e notificar um handler para reiniciar o Nginx apenas se o arquivo for alterado.

Primeiro, criamos o arquivo local:

$ mkdir files
$ echo "<h1>Site gerenciado pelo Ansible!</h1>" >

files/index.html

Agora, modificamos nosso playbook:

install_nginx.yml

- name: Instalar e configurar o Nginx

hosts: webservers
become: yes

tasks:
- name: Garantir que o Nginx esteja instalado
apt:

name: nginx
state: present

- name: Copiar a pagina index.html personalizada
copy:

src: files/index.html # Origem no Control
Node

dest: /var/www/html/index.html # Destino no Managed
Node

ATENÇÃO: A indentação do notify deve estar no mesmo
nível do módulo copy

O nome deve ser EXATAMENTE igual ao definido no handler
abaixo

notify: Reiniciar Nginx

FACOM-UFMS

Introdução à Automação com Ansible 48

Bloco especial para handlers
handlers:
- name: Reiniciar Nginx
service:

name: nginx
state: restarted

Na primeira execução, o módulo copy copiará o arquivo, verá uma mudança
(changed=true), e notificará o handler Reiniciar Nginx, que será executado
no final do play. Na segunda execução, o copy verá que os arquivos são idênticos
(ok=true), não notificará o handler, e o Nginx não será reiniciado.

5.5.2 Gerando Configurações Dinâmicas com Templates

"Chumbar"arquivos de configuração estáticos não é escalável. Ambientes diferentes
(desenvolvimento, produção) precisam de configurações diferentes. O Ansible resolve isso
com o módulo template e o motor de templates Jinja2.

O módulo template funciona como o copy, mas antes de enviar o arquivo, ele
o processa, substituindo variáveis (marcadas com {{ ... }}) por valores definidos no
playbook.

Vamos transformar nossa página index.html em um template. A convenção é
usar a extensão .j2.

$ mkdir templates
$ echo "<h1>{{ mensagem_da_pagina }}</h1>" >

templates/index.html.j2

Agora, modificamos o playbook para usar template e definir a variável:

install_nginx.yml

- name: Instalar e configurar o Nginx com Templates

hosts: webservers
become: yes

Define variáveis para este play.
CUIDADO: A indentação de ’vars’ deve estar alinhada com

’tasks’ e ’hosts’
vars:
mensagem_da_pagina: "Site dinâmico com Ansible!"

tasks:
- name: Garantir que o Nginx esteja instalado
apt:

name: nginx

FACOM-UFMS

Introdução à Automação com Ansible 49

state: present

- name: Gerar a pagina index.html a partir do template
template:

Garanta que a pasta ’templates’ existe no diretório
onde roda o comando

src: templates/index.html.j2
dest: /var/www/html/index.html

notify: Reiniciar Nginx

handlers:
- name: Reiniciar Nginx
service:

name: nginx
state: restarted

Ao executar, o Ansible lerá o index.html.j2, substituirá {{ mensagem_da_pagina
}} pelo valor em vars, e enviará o arquivo final resultante para o servidor. Agora,
podemos gerenciar o conteúdo do nosso site (ou configurações complexas do Nginx)
simplesmente alterando as variáveis em nosso playbook, e não os arquivos em si.

FACOM-UFMS

Capítulo 6

Introdução ao Kubernetes com
Minikube

Nos capítulos anteriores, exploramos como criar contêineres (com Docker e Pod-
man), como gerenciá-los em um único host (com Compose) e como provisionar a infraes-
trutura (com Ansible). Finalmente, chegamos ao desafio da orquestração em larga escala:
como gerenciar, escalar e manter milhares de contêineres distribuídos por um cluster
de dezenas ou centenas de máquinas? A resposta para essa pergunta é o Kubernetes
(comumente abreviado como K8s).

6.1 O que é o Kubernetes?

O Kubernetes é um sistema de orquestração de contêineres de código aberto, origi-
nalmente desenvolvido pelo Google. Ele automatiza a implantação, o dimensionamento
(escalabilidade) e o gerenciamento de aplicações em contêineres.

Ele agrupa os contêineres que compõem uma aplicação (como o servidor web
e o banco de dados) em unidades lógicas para facilitar o gerenciamento e a descoberta
de serviços. Mais importante, o Kubernetes opera em um nível de cluster. Ele abstrai
a infraestrutura subjacente (sejam máquinas virtuais, bare-metal ou nuvem pública) e a
apresenta como um único e vasto pool de recursos computacionais.

Suas principais funções incluem:

• Automação de Implantação (Deploy): Define o estado desejado da aplicação e o
Kubernetes trabalha para alcançá-lo.

• Balanceamento de Carga e Descoberta de Serviço: Expõe contêineres na rede e
distribui o tráfego entre eles.

• Auto-healing (Auto-reparação): Reinicia automaticamente contêineres que falham,
substitui nós problemáticos e garante que o estado desejado seja mantido.

50

Introdução ao Kubernetes com Minikube 51

• Auto-escalabilidade: Ajusta automaticamente o número de contêineres em execução
com base no uso de CPU ou memória.

6.2 Arquitetura de um Cluster Kubernetes

Um cluster Kubernetes é composto por dois tipos de recursos principais: o Control
Plane (Plano de Controle) e os Nodes (Nós).

6.2.1 Control Plane (Manager)

O Control Plane é o "cérebro"do cluster. Ele toma as decisões globais, como
agendar contêineres e responder a eventos. É composto por vários componentes, como
o api-server (o front-end para o cluster), o etcd (o banco de dados de estado) e o
scheduler (que decide em qual nó um contêiner deve rodar).

6.2.2 Nodes (Workers)

Os Nodes, ou "workers", são as máquinas (virtuais ou físicas) que executam as
aplicações. Cada nó executa dois processos principais: o kubelet (que se comunica com
o Control Plane) e um container runtime (como o Docker ou containerd) que
é responsável por, de fato, iniciar e parar os contêineres.

6.3 O que é o Minikube?

Um cluster Kubernetes completo é complexo de configurar. Para fins de aprendi-
zado, desenvolvimento e teste local, usamos o Minikube.

O Minikube é uma ferramenta que cria um cluster Kubernetes local de forma
simples e rápida, geralmente rodando todos os componentes do Control Plane e um nó
Worker dentro de uma única máquina virtual ou contêiner Docker em sua máquina. Ele nos
permite experimentar a API completa do Kubernetes sem a complexidade de provisionar
uma infraestrutura de múltiplos servidores.

6.4 Instalando o Cluster Minikube

Neste capítulo, prepararemos nosso ambiente Debian 12 para executar um cluster
Minikube. Isso envolve a instalação de três componentes: o docker (que servirá como o
"driver"ou a base para o nó do Minikube), o kubectl (a ferramenta de linha de comando
para interagir com o cluster) e o próprio minikube.

FACOM-UFMS

Introdução ao Kubernetes com Minikube 52

6.4.1 Instalando o Driver: Docker

O Minikube precisa de um ambiente para criar seu "nó"de cluster. A opção mais
comum é usar o Docker. Se você ainda não o instalou (conforme o Capítulo 5), o processo
envolve adicionar o repositório oficial do Docker:

Adiciona o repositório Docker (comandos de curl e gpg
omitidos por brevidade)

$ echo \
"deb [arch=$(dpkg --print-architecture)

signed-by=/etc/apt/keyrings/docker.asc]
https://download.docker.com/linux/debian \

$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

$ sudo apt-get update

Com o repositório pronto, instalamos o Docker Engine:

$ sudo apt-get install docker-ce docker-ce-cli containerd.io
$ docker --version

Configurando o Driver para o Systemd

Para garantir que o Minikube e o Docker interajam corretamente no gerenciamento
de recursos (cgroups), é crucial configurar o containerd (o runtime de baixo nível do
Docker) para usar o systemd como seu driver de cgroup.

Geramos o arquivo de configuração padrão do containerd e, em seguida, usa-
mos o sed para alterar a diretiva SystemdCgroup de false para true:

$ containerd config default | sudo tee
/etc/containerd/config.toml >/dev/null 2>&1

$ sudo sed -i ’s/SystemdCgroup \= false/SystemdCgroup \=
true/g’ /etc/containerd/config.toml

Finalmente, reiniciamos e habilitamos o serviço containerd para aplicar a
mudança:

$ sudo systemctl restart containerd
$ sudo systemctl enable containerd

6.4.2 Instalando Minikube e Kubectl

O kubectl é a CLI (Command Line Interface) universal para interagir com
qualquer cluster Kubernetes, seja ele local (Minikube) ou na nuvem. O minikube é o
executável que cria o cluster local.

FACOM-UFMS

Introdução ao Kubernetes com Minikube 53

Instalamos o kubectl usando snap ou curl, e o minikube baixando seu
pacote .deb:

$ curl -LO
https://storage.googleapis.com/minikube/releases/latest/minikube_latest_amd64.deb

$ sudo dpkg -i minikube_latest_amd64.deb
$ minikube version
$ sudo snap install kubectl --classic
$ kubectl version --client

6.4.3 Preparando o Host para o Kubernetes

O Kubernetes tem requisitos estritos sobre o ambiente do host, principalmente em
relação à memória e rede.

Desativando a SWAP

O Kubernetes espera que os recursos de memória sejam previsíveis. A SWAP (me-
mória de troca em disco) interfere no agendador (scheduler), que precisa saber exatamente
quanta memória um nó possui. Se a SWAP estiver ativa, o agendador pode alocar um
Pod (unidade de trabalho) em um nó que está com a memória física esgotada, levando a
instabilidade.

Por isso, devemos desativá-la permanentemente:

$ sudo swapoff -a
Comenta a linha da SWAP no /etc/fstab para desabilitar no boot
$ sudo sed -i ’/ swap / s/^\(.*\)$/#\1/g’ /etc/fstab
$ sudo systemctl daemon-reload

Carregando Módulos do Kernel

O Kubernetes precisa de dois módulos do kernel para gerenciar a rede de contêine-
res e os sistemas de arquivos em camadas:

• overlay: Permite o sistema de arquivos em camadas usado pelas imagens de
contêiner.

• br_netfilter: Permite que o tráfego de rede entre Pods seja filtrado e roteado
corretamente pelas regras do iptables.

Carregamos esses módulos e os tornamos permanentes no boot:

$ sudo tee /etc/modules-load.d/containerd.conf <<EOF
overlay

FACOM-UFMS

Introdução ao Kubernetes com Minikube 54

br_netfilter
EOF

$ sudo modprobe overlay
$ sudo modprobe br_netfilter

Também habilitamos o encaminhamento de IP para que a rede do cluster funcione:

$ sudo tee /etc/sysctl.d/kubernetes.conf <<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
EOF
$ sudo sysctl --system

6.4.4 Iniciando o Cluster Minikube

Com o ambiente preparado, iniciar o cluster é um único comando. Podemos
solicitar múltiplos nós (-nodes=2) para simular um ambiente mais realista com um
control-plane e um worker:

$ minikube start --nodes=2
minikube v1.36.0 on Debian 12.11 (arm64)
Using the docker driver based on user configuration
Starting "minikube" primary control-plane node in "minikube"

cluster
Creating docker container (CPUs=2, Memory=1975MB) ...
Preparing Kubernetes v1.33.1 on Docker 28.1.1 ...
Enabled addons: default-storageclass, storage-provisioner
Starting "minikube-m02" worker node in "minikube" cluster
Creating docker container (CPUs=2, Memory=1975MB) ...
Done! kubectl is now configured to use "minikube" cluster...

Após alguns instantes, o Minikube configura o kubectl automaticamente. Pode-
mos verificar o status do nosso cluster:

$ kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION

INTERNAL-IP OS-IMAGE
minikube Ready control-plane 115s v1.33.1

192.168.49.2 Ubuntu 22.04
minikube-m02 Ready <none> 93s v1.33.1

192.168.49.3 Ubuntu 22.04

Nosso cluster de dois nós está pronto para ser usado.

FACOM-UFMS

Introdução ao Kubernetes com Minikube 55

6.4.5 Interagindo com o Cluster e Serviços

Com nosso cluster Minikube em execução, podemos começar a interagir com ele e
implantar aplicações.

6.4.6 Dashboard e Métricas

O Kubernetes oferece um Dashboard gráfico (Web UI) para inspecionar o cluster.
O Minikube o fornece como um "addon". Para que o dashboard mostre informações de
uso (CPU/Memória), precisamos habilitar também o metrics-server:

$ minikube addons enable metrics-server
The ’metrics-server’ addon is enabled

$ minikube dashboard
Launching proxy ...
Opening

http://127.0.0.1:37853/api/v1/namespaces/kubernetes-dashboard...

O comando minikube dashboard inicia um proxy e abre a interface no nave-
gador. Como estamos em um servidor, podemos usar um túnel SSH (conforme visto em
laboratórios anteriores) para acessar essa porta 127.0.0.1 a partir da nossa máquina
física.

6.5 Namespaces

Antes de implantar aplicações, devemos introduzir o conceito de Namespaces. Em
vez de lançar todos os nossos recursos (Pods, Serviços, etc.) no namespace default,
uma boa prática é criar um namespace separado para cada aplicação ou projeto.

Namespaces fornecem:

• Isolamento lógico: Recursos com o mesmo nome podem existir em namespaces
diferentes.

• Controle de Acesso (RBAC): Podemos definir permissões por namespace (ex: Time
A só acessa o namespace dev).

• Gerenciamento de Recursos: É possível definir cotas de CPU, memória e storage
por namespace.

Criamos um namespace com kubectl create namespace e podemos defi-
nir nosso contexto kubectl para atuar dentro dele:

FACOM-UFMS

Introdução ao Kubernetes com Minikube 56

$ kubectl create namespace nextcloud
namespace/nextcloud created

Alterando para um ns específico
$ kubectl config set-context --current --namespace=nextcloud

6.6 Instanciando Serviços: WordPress

Vamos implantar uma aplicação WordPress completa. No Kubernetes, não criamos
"Pods"diretamente. Nós definimos objetos de nível superior, como Deployments, Services
e PersistentVolumeClaims, e o Control Plane se encarrega de criar os Pods para nós.

A forma mais comum de fazer isso é através de um arquivo de manifesto YAML,
que descreve o estado final desejado.

Primeiro, criamos um namespace para o projeto:

$ kubectl create namespace wordpress

Em seguida, criamos um único arquivo wp-mysql.yml que define todos os
recursos necessários:

wp-mysql.yml
apiVersion: v1
kind: Namespace
metadata:

name: wordpress

apiVersion: v1
kind: Secret
metadata:

name: mysql-pass
namespace: wordpress

type: Opaque
stringData:

A senha real é definida aqui (o K8s fará o encode base64
automaticamente com stringData)

password: senha-super-secreta

Serviço para o MySQL (ClusterIP - Interno)
apiVersion: v1
kind: Service
metadata:

name: mysql
namespace: wordpress

spec:
ports:

FACOM-UFMS

Introdução ao Kubernetes com Minikube 57

- port: 3306
selector:
app: mysql

clusterIP: None # Headless service é comum para DBs, mas
ClusterIP normal funciona

PVC para o Banco de Dados
apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: mysql-pv-claim
namespace: wordpress

spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 1Gi

Deployment do MySQL
apiVersion: apps/v1
kind: Deployment
metadata:

name: mysql
namespace: wordpress

spec:
selector:
matchLabels:
app: mysql

strategy:
type: Recreate

template:
metadata:
labels:

app: mysql
spec:
containers:
- image: mysql:5.7 # Versão estável para WP

name: mysql
env:
- name: MYSQL_ROOT_PASSWORD

valueFrom:
secretKeyRef:

name: mysql-pass
key: password

ports:
- containerPort: 3306

FACOM-UFMS

Introdução ao Kubernetes com Minikube 58

name: mysql
volumeMounts:
- name: mysql-persistent-storage

mountPath: /var/lib/mysql
volumes:
- name: mysql-persistent-storage

persistentVolumeClaim:
claimName: mysql-pv-claim

Serviço para o WordPress (NodePort ou LoadBalancer)
apiVersion: v1
kind: Service
metadata:

name: wordpress
namespace: wordpress

spec:
ports:
- port: 80

selector:
app: wordpress

type: LoadBalancer # No Minikube, isso requer ’minikube
tunnel’ ou apenas NodePort

PVC para arquivos do WordPress
apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: wp-pv-claim
namespace: wordpress

spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 1Gi

Deployment do WordPress
apiVersion: apps/v1
kind: Deployment
metadata:

name: wordpress
namespace: wordpress

spec:
selector:
matchLabels:
app: wordpress

template:

FACOM-UFMS

Introdução ao Kubernetes com Minikube 59

metadata:
labels:

app: wordpress
spec:
containers:
- image: wordpress:latest

name: wordpress
env:
- name: WORDPRESS_DB_HOST

value: mysql # Nome do Serviço do MySQL definido acima
- name: WORDPRESS_DB_PASSWORD

valueFrom:
secretKeyRef:

name: mysql-pass
key: password

ports:
- containerPort: 80

name: wordpress
volumeMounts:
- name: wordpress-persistent-storage

mountPath: /var/www/html
volumes:
- name: wordpress-persistent-storage

persistentVolumeClaim:
claimName: wp-pv-claim

Com o arquivo pronto, aplicamos o manifesto ao cluster:

$ kubectl apply -f wp-mysql.yml
namespace/wordpress created
persistentvolumeclaim/wordpress-pvc created
secret/mysql-pass created
deployment.apps/mysql created
service/mysql created
...

O Kubernetes agora trabalhará para criar tudo isso. Podemos verificar o status dos
Pods (as unidades de execução) dentro do namespace wordpress:

$ kubectl get pods -n wordpress
NAME READY STATUS RESTARTS AGE
mysql-65d8c54c47-abcde 1/1 Running 0 5m
wordpress-7f58f555d4-fghij 1/1 Running 0 5m

FACOM-UFMS

Introdução ao Kubernetes com Minikube 60

6.7 Acessando o Serviço via Minikube

O WordPress foi exposto através de um Service. O Minikube fornece um comando
de atalho para expor este serviço em uma URL acessível:

$ minikube service wordpress -n wordpress --url
http://192.168.49.2:30080

Podemos então usar este IP e porta (novamente, com um túnel SSH se necessá-
rio) para acessar a tela de instalação do WordPress em nosso navegador, concluindo a
implantação.

FACOM-UFMS

Capítulo 7

Introdução ao Terraform

7.1 O que é Terraform?

O Terraform é uma ferramenta para gerenciamento de infraestrutura de aplicações
via descrição de código (IaC). Ela é mantida e criada pela empresa HashiCorp e apresenta
uma documentação bem amigável com tutoriais de instalação em diversos provedores
Cloud como AWS, Azure, Oracle, Docker e Google Cloud, por exemplo, além de tutoriais
mais específicos da própria ferramenta, também trazendo casos de uso.

Com ela é possível instanciar componentes de baixo nível – servidores, bancos de
dados, balanceadores de carga e redes–, bem como aqueles de alto nível, como entradas
de DNS, CDN, Serveless services, Simple Queue Service, Simple Notification Service,
Monitoramento e Logs, entre outras funcionalidades de SaaS.

Aqui vamos continuar seguindo a documentação para implementação de uma
infraestrutura com Docker para Linux, mas caso queira, você pode seguir os passos para
Windows ao longo do tutorial.

7.1.1 Vantagens

• Gestão centralizada da infraestrutura em diversos provedores de plataformas na
nuvem (Cloud) via arquivos de configuração.

• Linguagem declarativa e de alto nível para escrita rápida da infraestrutura.

• Controle dos estados permite acompanhar as alterações dos recursos ao longo das
implantações.

7.1.2 Ciclo de deploy

Para realizar o deploy com o terraform, vamos seguir as seguintes etapas:

61

https://developer.hashicorp.com/terraform/tutorials
https://developer.hashicorp.com/terraform/tutorials/docker-get-started

Introdução ao Terraform 62

• Scope: identificar a infraestrutura do projeto.

• Author: escrever a configuração que define a infraestrutura.

• Inicialize: instalar os provedores necessários.

• Plan: visualizar as mudanças que o Terraform vai fazer.

• Apply: aplicar as mudanças na infraestrutura.

7.1.3 Arquivos de configurações e suas funções

• main.tf: arquivo de configuração de infraestrutura da aplicação.

• terraform.tfstate: responsável por guardar o estado das alterações ao longo
do tempo, contendo mais detalhes sobre os recursos. Deve ser armazenado com
cuidado por conter informações sensíveis como IDs, hashs e outros atributos dos
recursos.

7.2 Instalação

Para instalar a ferramenta, consulte a documentação no site oficial da HashiCorp
e escolha o tutorial de acordo com a sua máquina. Verifique se a instalação foi bem
sucedida com terraform -version ou dê uma olhada nos comandos da ferramenta
com terraform -help. Caso queira saber mais de um determinado comando basta
incluí-lo no comando: terraform plan -help. Você pode habilitar o auto-complete
de comandos com terraform -install-autocomplete.

7.3 Build

Cada arquivo de configuração do terraform deve estar organizado em um diretório
de trabalho específico. Vamos

mkdir build-nginx && cd build-nginx

touch main.tf

Adicione a configuração como no arquivo main.tf e depois inicialize o deploy
com terraform init.

terraform {
required_providers {
docker = {
source = "kreuzwerker/docker"

FACOM-UFMS

https://developer.hashicorp.com/terraform/install

Introdução ao Terraform 63

version = "~> 3.0.1"
}

}
}

provider "docker" {}

resource "docker_image" "nginx" {
name = "nginx:latest"
keep_locally = false

}

resource "docker_container" "nginx" {
image = docker_image.nginx.image_id
name = "tutorial"
ports {
internal = 80
external = 8000

}
}

Aqui o terraform vai baixar o docker e instalar em um subdiretório escondido
chamado .terraform. Ele também vai criar um arquivo de "trava"especificando a
versão e o provedor exato que foi utilizado. Não é recomendado realizar alterações
manuais nele, pois pode resultar em perdas futuras.

7.3.1 Criando a infraestrutura

Ao executar terraform apply, o terraform vai mostrar o planejamento a ser
executado descrevendo as ações a serem tomadas para subir a infraestrutura. Ele vai
esperar você aprovar a aplicação e dentro de alguns segundos você terá seu nginx ativo
em http://localhost:8000. Você pode verificar o estado atual da infraestrutura
com terraform show.

7.4 Fazendo alterações na infraestrutura

No arquivo main.tf altere a porta externa de 8000 para 8888. Em seguida
execute terraform apply como anteriormente e você verá que ele vai mostrar as
alterações semelhante ao git. Verifique em http://localhost:8888.

FACOM-UFMS

http://localhost:8000
http://localhost:8888

Introdução ao Terraform 64

7.4.1 Destruindo recursos

Para destruir recursos, basta executar terraform destroy, o que executa
exatamente o procedimento inverso do terraform apply.

7.4.2 Criando variáveis

Uma boa prática dessa ferramenta é criar um arquivo de variáveis variables.tf
para configurar os nomes de uma forma flexível e segura. Aqui vamos criar uma variável
para o nome do container.

variable "container_name" {
description = "Value of the name for the Docker container"
type = string
default = "Ngineco"

}

Em seguida, na main.tf adapte para o nome que deseja no recurso do container
e altere o nome de "tutorial" para var.container_name.

resource "docker_container" "nginx" {
image = docker_image.nginx.image_id
name = var.container_name
ports {
internal = 80
external = 8888

}

Aplique as alterações com terraform apply. Você também pode aplicar isso
diretamente na CLI com a flag -var "container_name=OutroNome".

7.4.3 Objetificando outputs

Crie um arquivo chamado outputs.tf e insira os blocos de id do container e
da imagem, como está no arquivo. Aplique as alterações novamente com terraform
apply e você verá os valores dos respectivos IDs. De forma alternativa você pode verificar
com terraform output.

output "container_id" {
description = "ID of the Docker container"
value = docker_container.nginx.id

}

output "image_id" {
description = "ID of the Docker image"
value = docker_image.nginx.id

}

FACOM-UFMS

Introdução ao Terraform 65

Como saída teremos algo semelhante ao seguinte prompt:

...
Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

Outputs:

container_id =
"e5fff27c62e04d21980543f21161225ab483a1e534a98311a677b9453a"

image_id =
"sha256:d1a364dc548d5357f0da3268594f1d61c6fdeenginx:latest"

Entre os benefícios de utilizá-lo está a possibilidade de conectar os recursos de
outros projetos a sua infraestrutura de modo a automatizar o workflow da sua aplicação.

FACOM-UFMS

	1 Linux Containêres - LXC
	1.1 Analisando a Rede do Contêiner
	1.2 Inspeção e Monitoramento de Contêineres
	1.3 Parando Contêineres
	1.4 Verificando Configurações do Kernel
	1.5 Arquivos de Configuração do Contêiner
	1.6 Integração com Systemd
	1.7 Disponibilidade de Templates
	1.7.1 Download de Templates

	1.8 Gerenciamento de Snapshots
	1.9 Tipos de Interfaces de Rede
	1.9.1 empty
	1.9.2 phys
	1.9.3 veth
	1.9.4 vlan
	1.9.5 macvlan

	1.10 Conclusão
	1.11 Atividades

	2 Incus: O Sucessor do LXD
	2.1 Adicionar Repositório Zabbly
	2.2 Atualizar Pacotes e Instalar Incus
	2.3 Setup inicial e Comandos básicos
	2.3.1 Inicializando a ferramenta
	2.3.2 Brincando com contêiners

	2.4 Gerenciamento de Snapshots
	2.5 Gerenciamento de Redes
	2.6 Gerenciando Armazenamento

	3 Podman: A Arquitetura Daemonless
	3.1 Instalação
	3.2 Iniciando Nosso Primeiro Contêiner
	3.3 Operando Contêineres no Podman
	3.3.1 Comandos Essenciais
	3.3.2 Gerenciamento de Recursos
	3.3.3 Primeiro Containerfile com Podman

	3.4 Aprofundando em Ambientes Rootless
	3.4.1 O que é um Ambiente Rootless?
	3.4.2 Os Bastidores do Rootless
	3.4.3 Configurando o Ambiente Host para Rootless
	3.4.4 Operando em Modo Rootless na Prática
	3.4.5 Limitações do Modo Rootless: Mapeamento de Portas

	3.5 Orquestração com Podman Compose
	3.5.1 O que é podman-compose?
	3.5.2 Instalação do podman-compose

	3.6 Aplicações Práticas: Nextcloud e WordPress
	3.6.1 Estrutura de um Arquivo compose.yml
	3.6.2 Analisando a Anatomia do Compose

	3.7 Gerenciamento Avançado de Rede com Traefik
	3.7.1 Diferenças na Configuração com Podman
	3.7.2 Configuração do Traefik com Compose

	3.8 Recursos Avançados: Pods e Manifestos Kubernetes
	3.8.1 O Conceito de ``Pod''
	3.8.2 Gerando Manifestos Kubernetes

	4 Introdução ao Docker: O Padrão da Indústria
	4.1 Instalação
	4.2 Executando o Docker como um Usuário Não-Root
	4.3 Operações Básicas de Contêineres
	4.4 Aprofundando em Dockerfiles
	4.4.1 Anatomia de um Dockerfile: Instruções Essenciais
	4.4.2 Otimização: Encadeando Comandos RUN
	4.4.3 Tópicos Avançados de Dockerfile

	4.5 Gerenciamento de Dados com Volumes
	4.5.1 Tipos de Persistência

	4.6 Orquestração com Docker Compose
	4.6.1 Instalando o Docker Compose
	4.6.2 Orquestrando o Portainer
	4.6.3 Expandindo o Compose: Profiles e .env

	4.7 Estudos de Caso: Nextcloud e WordPress
	4.8 Orquestração de Cluster: Docker Swarm
	4.8.1 Arquitetura: Managers e Workers
	4.8.2 Serviços no Swarm
	4.8.3 Escalando e Gerenciando Nós

	4.9 Gerenciamento de Rede Avançado com Traefik
	4.9.1 Configuração do Traefik com Docker Compose

	5 Introdução à Automação com Ansible
	5.1 O que é o Ansible?
	5.2 Conceitos Fundamentais
	5.3 Instalação e Configuração Prática
	5.3.1 Instalação do Ansible
	5.3.2 Criando um Inventário
	5.3.3 Testando a Conexão (Comandos Ad-Hoc)

	5.4 Seu Primeiro Playbook: A Idempotência
	5.5 Playbooks Avançados: Handlers e Templates
	5.5.1 Gerenciando Arquivos e Reiniciando Serviços com Handlers
	5.5.2 Gerando Configurações Dinâmicas com Templates

	6 Introdução ao Kubernetes com Minikube
	6.1 O que é o Kubernetes?
	6.2 Arquitetura de um Cluster Kubernetes
	6.2.1 Control Plane (Manager)
	6.2.2 Nodes (Workers)

	6.3 O que é o Minikube?
	6.4 Instalando o Cluster Minikube
	6.4.1 Instalando o Driver: Docker
	6.4.2 Instalando Minikube e Kubectl
	6.4.3 Preparando o Host para o Kubernetes
	6.4.4 Iniciando o Cluster Minikube
	6.4.5 Interagindo com o Cluster e Serviços
	6.4.6 Dashboard e Métricas

	6.5 Namespaces
	6.6 Instanciando Serviços: WordPress
	6.7 Acessando o Serviço via Minikube

	7 Introdução ao Terraform
	7.1 O que é Terraform?
	7.1.1 Vantagens
	7.1.2 Ciclo de deploy
	7.1.3 Arquivos de configurações e suas funções

	7.2 Instalação
	7.3 Build
	7.3.1 Criando a infraestrutura

	7.4 Fazendo alterações na infraestrutura
	7.4.1 Destruindo recursos
	7.4.2 Criando variáveis
	7.4.3 Objetificando outputs

