LIVRO DE APOIO

Gabriel Paes Duarte Baltazar e Kaé de Oliveira Budke

Guia tedrico-pratico das tecnologias mais utilizadas no mercado.

Area de Concentragdo: Computacéo Distribuida

Orientador: Prof. Brivaldo Alves da Silva Jr

Faculdade de Computacéao
Universidade Federal de Mato Grosso do Sul
Dezembro, 2025

LIVRO DE APOIO

Gabriel Paes Duarte Baltazar e Kaé de Oliveira Budke

Guia tedrico-pratico das tecnologias mais utilizadas no mercado.

Area de Concentragdo: Computacéo Distribuida

Orientador: Prof. Brivaldo Alves da Silva Jr

Faculdade de Computagao
Universidade Federal de Mato Grosso do Sul
Dezembro, 2025

Sumario

1 Linux Containéres - LXC 1
1.1 Analisando aRede do Contéiner 2
1.2 Inspe¢do e Monitoramento de Contéineres 3
1.3 Parando Contéineres 3
1.4 Verificando Configuragdes do Kernel 4
1.5 Arquivos de Configuragdo do Contéiner 4
1.6 Integracdo com Systemd Lo 5
1.7 Disponibilidade de Templates 6

1.7.1 Download de Templates 6
1.8 Gerenciamento de Snapshots Lo 7
1.9 Tipos de InterfacesdeRede, 8
1.9.1 empty e 8
1.92 phys e 8
1.93 wveth e 8
1.94 vlan e 9
1.95 macvlan. e 9
1.10 Conclus@o e 10
111 Atividades L 10

2 Incus: O Sucessor do LXD 11
2.1 Adicionar Repositorio Zabblyo Lo 11
2.2 Atualizar Pacotes e Instalar Incuso 12
2.3 Setupinicial e Comandos bdsicos 12

2.3.1 [Inicializando a ferramenta 12

II

SUMARIO

2.3.2 Brincando com contéinerso e e
2.4 Gerenciamento de Snapshots
2.5 GerenciamentodeRedes

2.6 Gerenciando Armazenamento e e e e e e

3 Podman: A Arquitetura Daemonless
3.1 Imstalac@o
3.2 Iniciando Nosso Primeiro Contéiner
3.3 Operando Contéineres no Podman
3.3.1 Comandos Essenciais
3.3.2 Gerenciamento de Recursos
3.3.3 Primeiro Containerfile com Podman
3.4 Aprofundando em Ambientes Rootless
34.1 Oqueéum Ambiente Rootless?
34.2 OsBastidoresdoRootless
3.4.3 Configurando o Ambiente Host para Rootless
3.4.4 Operando em Modo Rootless na Pratica
3.4.5 Limitagdes do Modo Rootless: Mapeamento de Portas
3.5 Orquestragdo com Podman Compose
3.5.1 Oqueépodman—-compose?
3.5.2 Instalacdo do podman—compose
3.6 Aplicagdes Praticas: Nextcloud e WordPress
3.6.1 Estrutura de um Arquivo compose.yml
3.6.2 Analisando a Anatomiado Compose
3.7 Gerenciamento Avancado de Rede com Traefik
3.7.1 Diferencgas na Configuracdo com Podman
3.7.2 Configuracdo do Traefik com Compose
3.8 Recursos Avancgados: Pods e Manifestos Kubernetes
3.8.1 OConceitode “Pod” oL
3.8.2 Gerando Manifestos Kubernetes

4 Introducao ao Docker: O Padrao da Industria

v

14
14
15
16

19
19
19
20
20
20
21
22
22
22
23
24
25
25
25
26
26
26
27
28
28
29
30
30
31

32

SUMARIO

4.1 Instalac@o e
4.2 Executando o Docker como um Usudrio Nao-Root
4.3 Operacdes Basicas de Contéineres
4.4 Aprofundando em Dockerfiles
4.4.1 Anatomia de um Dockerfile: Instru¢des Essenciais
4.4.2 Otimizacdo: Encadeando Comandos RUN
4.43 Topicos Avancados de Dockerfile
4.5 Gerenciamento de Dados com Volumes
45.1 TiposdePersisténcia Lo
4.6 Orquestracdo com Docker Compose
4.6.1 Instalando o Docker Compose
4.6.2 Orquestrandoo Portainer
4.6.3 Expandindo o Compose: Profilese.env
4.7 Estudos de Caso: Nextcloud e WordPress
4.8 Orquestracdo de Cluster: Docker Swarm
4.8.1 Arquitetura: Managerse Workers
4.8.2 Servigosno Swarmo e e e e e e
4.8.3 Escalando e GerenciandoN6s
4.9 Gerenciamento de Rede Avancado com Traefik

4.9.1 Configuragdo do Traefik com Docker Compose

5 Introducao a Automaciao com Ansible
5.1 OqueéoAnsible?
5.2 Conceitos Fundamentais,
5.3 Instalacdo e Configuragdo Pratica.
5.3.1 Instalaciodo Ansible
5.3.2 Criandoum Inventdrio
5.3.3 Testando a Conexdo (Comandos Ad-Hoc)
5.4 Seu Primeiro Playbook: A Idempoténcia
5.5 Playbooks Avancados: Handlers e Templates
5.5.1 Gerenciando Arquivos e Reiniciando Servi¢os com Handlers . . .

5.5.2 Gerando Configura¢des Dinadmicas com Templates

SUMARIO

6 Introducao ao Kubernetes com Minikube

6.1 OqueéoKubernetes?,
6.2 Arquitetura de um Cluster Kubernetes
6.2.1 Control Plane (Manager)
6.2.2 Nodes (Workers) e
6.3 OqueéoMinikube?
6.4 Instalando o Cluster Minikube
6.4.1 Instalando o Driver: Docker
6.4.2 Instalando Minikube e Kubectl
6.4.3 Preparando o Host para o Kubernetes
6.4.4 Iniciando o Cluster Minikube
6.4.5 Interagindo com o Cluster e Servicos
6.4.6 Dashboard e Métricas
6.5 Namespaces e e e
6.6 Instanciando Servicos: WordPresso
6.7 Acessando o Servigo viaMinikubeo o000 oL
7 Introducio ao Terraform
7.1 Oqueé Terraform?
7.1.1 Vantagens
7.1.2 Ciclodedeploy
7.1.3 Arquivos de configuracdes e suas fungdes
7.2 Instalacdo
7.3 Build ...
7.3.1 Criando a infraestrutura
7.4 Fazendo alteracdes na infraestrutura

7.4.1 Destruindo recursos o v e e e e e e
7.4.2 Criando variaveis e e e e

7.4.3 Objetificandooutputso

VI

50
50
51
51
51
51
51
52
52
53
54
55
55
55
56
60

61
61

Capitulo 1

Linux Containéres - LXC

Neste capitulo, iniciamos nossa exploragado prética das tecnologias de contéineres
em nivel de sistema operacional, comecando pelo LXC (Linux Containers). O LXC oferece
um método leve de virtualizacio, permitindo que multiplos sistemas Linux isolados rodem
em um unico host, compartilhando o mesmo kernel.

O primeiro passo para utilizar o LXC € a sua instalacdo. Em sistemas baseados em
Debian, como o utilizado nestes laboratdrios, o processo de instalagdo € direto através do
gerenciador de pacotes apt, assumindo privilégios de superusuério:

$ su -
S apt—-get install 1xc

Com o LXC instalado, nosso proximo passo € provisionar um contéiner. Para
isso, utilizamos o pacote 1xc-templates, que contém os scripts necessarios para
criar "imagens" base de diversas distribui¢des Linux. Em seguida, usamos o comando
lxc—create para instanciar nosso primeiro contéiner, que chamaremos de teste,
baseado no template do debian.

S apt install lxc-templates -y

$ lxc—-create —-n teste -t debian

Este comando inicia um processo que, por baixo dos panos, utiliza a ferramenta
deboot strap para baixar os pacotes base do Debian e montar o sistema de arquivos
raiz do contéiner.

O ciclo de vida bésico de interacdo com o contéiner € simples. Primeiro, podemos
listar os contéineres existentes com 1xc—1s para confirmar que o teste foi criado:

$ 1lxc-1s
teste
Em seguida, iniciamos o contéiner com 1xc—start:

$ lxc—-start —-n teste

Linux Containéres - LXC 2

Finalmente, para acessar o shell do contéiner, usamos 1xc-attach. Este co-
mando nos "anexa" ao namespace do contéiner, nos dando um terminal interativo dentro
dele:

S lxc—attach —n teste
root@teste:$

Note que o prompt do terminal muda para root @teste, indicando que estamos
logados como superusudrio dentro do ambiente isolado do contéiner t este. Para sair do
contéiner e retornar ao host, basta usar o comando exit ou o atalho CTRL+D.

1.1 Analisando a Rede do Contéiner

Uma das magicas do LXC acontece na camada de rede. Ao iniciar um contéiner, o
LXC configura automaticamente a conectividade. Do ponto de vista do host, € possivel
pingar o IP do contéiner. Internamente, o LXC cria uma interface de rede virtual do tipo
vETH (Virtual Ethernet Pair).

Uma verificag@o das interfaces de rede no host com ip a revela essa nova arquite-
tura. Notamos duas novas entidades principais:

* 1xcbr0: Uma interface de bridge Linux, que atua como um switch virtual para
onde todos os contéineres serdo conectados.

* veth...: Uma interface par-a-par que conecta o namespace de rede do contéiner
a bridge 1xcbrO0 no host.

O exemplo de saida abaixo ilustra essa configuracao:

$ ip a

4: 1lxcbr0: <BROADCAST,MULTICAST,UP, LOWER_UP> mtu 1500 gdisc
noqueue state UP group default glen 1000
<===== rede para o0s containers LXC
link/ether 00:16:3e:00:00:00 brd ff:ff:ff:ff:ff:ff
inet 10.0.3.1/24 brd 10.0.3.255 scope global 1lxcbr0

6: vethONrrIZ@if2: <BROADCAST,MULTICAST,UP, LOWER_UP> mtu 1500
gdisc noqueue master lxcbr0O state UP group default glen 1000
<===== interface compartilhada com o container
link/ether fe:e1:9c:59:d3:8d brd ff:ff:ff:ff:ff:ff
link—-netnsid 0

FACOM-UFMS

Linux Containéres - LXC 3

1.2 Inspecao e Monitoramento de Contéineres

Para inspecionar o estado de um cont€iner especifico, utilizamos o comando
1lxc—-info. Ele fornece um resumo vital, incluindo o estado (RUNNING), o PID do
processo principal no host, o IP alocado e a interface veth correspondente.

$ 1lxc—-info —n teste

Name : teste
State: RUNNING
PID: 26205

IP: 10.0.3.19
Link: vethONrrIZ
TX bytes: 1.73 KiB
RX bytes: 2.20 KiB
Total bytes: 3.93 KiB

Para um monitoramento continuo dos recursos (CPU, Memoria, I/0) de todos os
contéineres ativos, o LXC fornece um utilitario andlogo ao top tradicional, chamado
lxc-top:

S 1lxc-top
Container CPU CPU CPU
B1kIO Mem
Name Used Sys User
Total (Read/Write) Used
teste 0.00 0.00 0.00
3087018381.88 GiB(...) 0.00
TOTAL 1 of 1 0.00 0.00 0.00
3087018381.88 GiB(...) 0.00

1.3 Parando Contéineres

O ciclo de vida do contéiner se completa com o comando 1xc-stop. Vamos
parar nosso contéiner teste e, em seguida, tentar nos conectar a ele novamente:

$ lxc-stop —-n teste
S lxc—attach —-n teste

lxc—attach: teste: ../src/lxc/attach.c: get_attach_context: 406
Connection refused - Failed to get init pid
lxc—attach: teste: ../src/lxc/attach.c: lxc_attach: 1470

Connection refused - Failed to get attach context

A falhano 1xc—attach é esperada. O erro "Failed to get init pid"
nos informa que o processo principal (PID 1) do cont€iner ndo existe mais, portanto, nao

FACOM-UFMS

Linux Containéres - LXC 4

hd a o que se anexar. Isso sublinha a natureza do LXC como um gerenciador de processos
isolados, e ndo uma maquina virtual completa.

1.4 Verificando Configuracoes do Kernel

O funcionamento do LXC depende intrinsecamente de recursos modernos do kernel
Linux, como Namespaces e Cgroups. O utilitdrio 1xc-checkconfig é uma ferramenta
de diagndstico crucial que varre a configuracao do kernel atual e informa se os médulos e
recursos necessarios estdo habilitados.

$ 1lxc—-checkconfig
LXC version 6.0.4

——— Namespaces ———
Namespaces: enabled
Utsname namespace: enabled
Ipc namespace: enabled

——— Control groups ——-—
Cgroups: enabled
Cgroup namespace: enabled

-—— Misc —-—-
Veth pair device: enabled, loaded

1.5 Arquivos de Configuracao do Contéiner

Para um controle mais granular, podemos inspecionar e editar os arquivos de
configuracdo do contéiner. O arquivo de configuracao principal para o nosso contéiner
testeresideem /var/lib/lxc/teste/config.

Este arquivo define aspectos cruciais, como o tipo de rede, o caminho para o
sistema de arquivos raiz (root f£s), e quais perfis de configuracao adicionais devem ser
incluidos (como debian.common.conf).

$ cat /var/lib/lxc/teste/config
lxc.net.0.type = veth
lxc.net.0.hwaddr = 00:16:3e:d6:57:df
lxc.net.0.1link = 1lxcbr0
lxc.net.0.flags = up

lxc.rootfs.path = dir:/var/lib/lxc/teste/rootfs

FACOM-UFMS

Linux Containéres - LXC 5

Common configuration
lxc.include = /usr/share/lxc/config/debian.common.conf

Container specific configuration
lxc.uts.name = teste
lxc.arch = amd64

As configuracdes de DNS, por sua vez, sdo gerenciadas de forma tradicional dentro
do contéiner, no arquivo /etc/resolv.conf.

1.6 Integracao com Systemd

Para ambientes de producdo ou para garantir que os contéineres subam com o
host, € vital que eles sejam gerenciados como servigos. O LXC integra-se nativamente ao
systemd através do servico 1xc@.service.

Podemos iniciar nosso contéiner teste usando o systemctl:

$ systemctl start lxc@teste
S systemctl status lxc@teste
lxc@teste.service - LXC Container: teste
Loaded: loaded (/lib/systemd/system/lxc@.service;
disabled; preset: enabled)
Active: active (running) since Tue 2024-08-27 10:06:13
-04; 1s ago

Para que o contéiner inicialize junto com o boot do sistema, basta habilitar o
Servigo:

$ systemctl enable lxc@teste
Created symlink

" /etc/systemd/system/multi-user.target.wants/lxc@teste.
service’ =+ ' /usr/lib/systemd/system/lxc@.service’.

E para desativar essa inicializagdo automatica:

S systemctl disable lxc@teste
Removed ' /etc/systemd/system/multi-user.target.wants/lxc@teste.
service’.

FACOM-UFMS

Linux Containéres - LXC 6

1.7 Disponibilidade de Templates

Uma diavida comum € se o LXC, rodando em um host Debian, esta restrito a
contéineres Debian. A resposta € ndo. O LXC € agndstico em relacdo a distribuigdo,
desde que um template de criagdo exista. O diretério /usr/share/lxc/templates/
revela a vasta gama de op¢des disponiveis:

$ 1s /usr/share/lxc/templates/

lxc-alpine lxc-busybox 1lxc-debian lxc-fedora
1lxc-kali

lxc—altlinux lxc-centos 1xc—-devuan 1xc—-fedora-legacy
1lxc-local

lxc-archlinux 1lxc-cirros lxc—download 1lxc—gentoo
lxc-oci

1.7.1 Download de Templates

Além dos scripts de template locais (como o do Debian que usou debootstrap),
o LXC pode baixar imagens de contéiner pré-construidas usando o template download.
Este método € frequentemente mais rapido.

Podemos listar todas as imagens remotas disponiveis com a flag —1ist. Alistaé
extensa, entdo vamos mostrar apenas um extrato:

$ lxc-create -t download -n alpha —- —--list
Downloading the image index

DIST RELEASE ARCH VARIANT BUILD

almalinux 10 amdo4 default 20250925_23:08
alpine 3.20 amd64 default 20250927_13:00
archlinux current amdod4 default 20250926_19:46
busybox 1.36.1 amdoe4 default 20250927 _06:00
centos 9-Stream amd64 default 20250924_08:35
debian bookworm amdo4 default 20250927 _05:24
fedora 40 amd64 default 20250926_20:33
opensuse tumbleweed amd64 default 20250927_04:20
rockylinux 9 amd64 default 20250926_02:06
ubuntu Jammy amd64 default 20250927_07:42
ubuntu noble amd64 default 20250927_07:42

(e muitas outras)

Como exemplo, vamos baixar a imagem do Alpine Linux (versdo 3.20, arquitetura
amd64):

$ 1lxc—-create -t download -n alpine ——- -d alpine -r 3.20 —-a amdé64

FACOM-UFMS

Linux Containéres - LXC 7

Downloading the image index

Unpacking the rootfs

You just created an Alpinelinux 3.20 x86_64 (20240826_13:00)
container.

Agora, o contéiner alpine estd disponivel para ser iniciado e utilizado como
qualquer outro.

$ 1lxc-1s

alpine teste

$ lxc-start -n alpine
$ 1lxc—attach -n alpine
root@alpine:~#

1.8 Gerenciamento de Snapshots

O LXC oferece um recurso poderoso para controle de versao do sistema de arquivos:
os snapshots. Um snapshot é uma "foto"do estado do cont€iner em um determinado
momento.

Para criar um snapshot, o contéiner precisa estar parado. Vamos verificar os
snapshots do nosso contéiner teste e, em seguida, criar um:

$ 1lxc-snapshot -L -n teste
No snapshots

S lxc-stop -n teste

$ lxc—-snapshot -n teste

$ lxc-snapshot -L -n teste

snap0 (/var/lib/lxc/teste/snaps) 2025:09:27 16:39:56

Podemos criar multiplos snapshots. Cada um € numerado sequencialmente (snap0,
snapl, etc.).

Para restaurar um snapshot, usamos a flag —r. Uma pratica recomendada € restaurar
o snapshot como um novo contéiner, usando a flag —N, o que preserva o contéiner original
e o préprio snapshot:
$ lxc—-snapshot -n teste -r snapl -N teste-snapl
$ 1lxc-1s
alpine teste teste-snapl

Para destruir (apagar) um snapshot especifico, usamos a flag —d:

$ 1lxc—-snapshot -n teste —-d snap0
$ lxc-snapshot -L -n teste
snapl (/var/lib/lxc/teste/snaps) 2025:09:27 16:40:32

FACOM-UFMS

Linux Containéres - LXC 8

E para remover completamente um contéiner (como o teste—snapl que criamos
a partir da restauragdo), usamos 1xc—destroy:

S lxc-destroy teste-snapl
$ lxc-1s
alpine teste

1.9 Tipos de Interfaces de Rede

O LXC é extremamente flexivel na configuracdo de rede. A diretiva 1xc.net.0.type
no arquivo de configuracdo define o comportamento da rede. A seguir, detalhamos os tipos
mais comuns.

1.9.1 empty

Este € o tipo mais restritivo. O contéiner € iniciado apenas com uma interface de
loopback (10). Se nenhuma outra interface for definida, o contéiner ficard completamente
isolado da rede do host e do mundo exterior.

1.9.2 phys

O tipo phys (fisico) concede ao contéiner acesso direto a uma interface fisica
existente no sistema host. A interface do host é especificada com 1xc.net.0.1link.

Exemplo: Passando a interface eth(O do host para o contéiner
lxc.net.0.type = phys
lxc.net.0.flags = up
Ixc.net.0.1link = ethO

1.9.3 veth
Este € o tipo mais comum e o padrao usado em nossa instalacdo. Ele cria um

Virtual Ethernet Pair Device (par veth) para fazer a ponte ou rotear o trafego entre o host e
o contéiner.

bridge mode
Este € o modo padrdo do veth. O par veth € conectado a uma interface de bridge

no host (definida por 1xc.net.0.1ink), que em nosso caso € a 1xcbr0. Todos os
contéineres na mesma bridge podem se comunicar.

FACOM-UFMS

Linux Containéres - LXC 9

Exemplo: Conectando o contéiner a bridge lxcbr0
lxc.net.0.type = veth

lxc.net.0.flags = up

lxc.net.0.1link = 1xcbr0

router mode

Neste modo, em vez de usar uma bridge, rotas estaticas sao criadas entre a interface
do host e a interface veth do contéiner, permitindo comunicacao roteada.

194 wvlan

O tipo v1an permite compartilhar uma interface do host com o contéiner, mas
restringindo a comunica¢@o a uma ID de VLAN especifica (1xc.net.0.v1lan.id).

Exemplo: Conectando o contéiner a VLAN 100 na ethO
lxc.net.0.type = vlan
lxc.net.0.flags = up
1xc.net.0.1link = ethO
0

lxc.net.0.vlan.id = 100

1.9.5 macvlan

O tipo macvlan permite que uma unica interface fisica do host seja "dividida"em
multiplas interfaces virtuais, cada uma com seu préprio endereco MAC. Isso permite que o
contéiner apareca na rede como um dispositivo fisico separado.

private mode

Este € o modo padrao do macvlan. A interface virtual dentro do cont€iner nao
pode se comunicar com a interface fisica principal no host.

vepa (Virtual Ethernet Port Aggregator)

Similar ao modo private, mas os pacotes sdo for¢ados a passar por um switch fisico
externo. [sso permite que diferentes contéineres macvlan no mesmo host se comuniquem,
desde que o switch suporte hairpin mode.

passthru

Este modo oferece um alto nivel de isolamento, semelhante a0 phys, mas o
contéiner recebe a interface macvlan em vez da interface fisica bruta.

FACOM-UFMS

Linux Containéres - LXC 10

1.10 Conclusao

Com 1ss0, encerramos nosso laboratorio introdutério sobre os contéineres LXC,
cobrindo desde a criacdo e gerenciamento basico até conceitos avancados de rede e
snapshots.

1.11 Atividades

Para solidificar o conhecimento, propomos os seguintes exercicios:

1. Crie 5 containers, sendo 2 Debian, 1 Ubuntu e 2 Alpine.

2. Instale o servidor SSH em um dos contéineres e acesse-o via SSH a partir do host
usando um usuario comum (nao-root).

3. Configure o acesso SSH para o contéiner usando autenticacido baseada em chaves
(par de chaves SSH) da sua maquina local.

4. Desative o login por senha no servidor SSH do contéiner, permitindo apenas a
conexdo via chaves.

5. Permita a conexdo remota via chaves para o usuario root do contéiner.

6. (Avancado) Configure uma aplicagdo web, como o Nextcloud, em um contéiner, e
seu banco de dados (ex: MySQL) em um segundo contéiner, fazendo com que o
Nextcloud se conecte ao banco de dados na rede interna do LXC.

FACOM-UFMS

Capitulo 2

Incus: O Sucessor do LXD

Ap06s explorarmos os fundamentos do LXC, avangamos para o Incus. O Incus é
um projeto de codigo aberto, mantido pela comunidade, que surgiu como um fork direto do
LXD (LXC Daemon) apds mudancas em seu licenciamento e manutengdo. Ele herda toda
a poderosa API e a experiéncia de usudrio do LXD, focando em ser um gerenciador robusto
tanto para contéineres de sistema (como o LXC) quanto para maquinas virtuais. Para um
estudo mais aprofundado, vocé€ pode conferir mais sobre a ferramenta na documentacao.

Sua adocdo tem crescido, € em novas versoes de distribuicdes como o Debian 13
(Trixie), o Incus ja é o substituto padrdo. Em nosso ambiente Debian 12 (Bookworm),
precisamos adiciond-lo através de um repositdrio externo. Utilizaremos o repositério
mantido pela Zabbly. Aqui vamos utilizar o sudo para executar os comandos, mas vocé
pode entrar no modo root com su - para ndo precisar incluir sudo sempre que rodar
os comandos.

2.1 Adicionar Repositorio Zabbly

O primeiro passo € estabelecer confianga com o repositério, baixando sua chave
GPG (GNU Privacy Guard). Isso garante que os pacotes que instalarmos sejam auténticos
e ndo tenham sido modificados.

$ sudo mkdir -p /etc/apt/keyrings/
$ sudo curl -£fsSL https://pkgs.zabbly.com/key.asc -o
/etc/apt/keyrings/zabbly.asc

Com a chave em vigor, informamos ao apt onde encontrar os pacotes do Incus,
criando um novo arquivo de fontes em /etc/apt/sources.list.d/.

$ sudo sh -c ’'cat <<EOF >
/etc/apt/sources.list.d/zabbly-incus—-1ts-6.0.sources

Enabled: yes

Types: deb

11

https://linuxcontainers.org/incus/docs/main/
https://linuxcontainers.org/incus/introduction/
https://linuxcontainers.org/incus/introduction/

Incus: O Sucessor do LXD 12

URIs: https://pkgs.zabbly.com/incus/lts-6.0

Suites: $(. /etc/os-release && echo S${VERSION_CODENAME})
Components: main

Architectures: $(dpkg —--print-architecture)

Signed-By: /etc/apt/keyrings/zabbly.asc

EOF'

2.2 Atualizar Pacotes e Instalar Incus

Finalmente, com o repositério configurado, atualizamos o indice de pacotes do
apt e solicitamos a instalacdo do Incus.

$ sudo apt-get update
$ sudo apt-get install incus -y
$ incus —--version

2.3 Setup inicial e Comandos basicos

2.3.1 Inicializando a ferramenta

Antes de levantarmos contéiners € necessario realizar o init da ferramenta na
nossa maquina. Para isto, executamos sudo incus admin init Neste processo, ele
vai realizar algumas perguntas bésicas de configuracio referente ao armazenamento e rede
do novo ambiente.

S sudo incus admin init

Would you like to use clustering? (yes/no) [default=no]: no

Do you want to configure a new storage pool? (yes/no)
[default=yes]:

Name of the new storage pool [default=default]: teste

Name of the storage backend to use (dir, btrfs) [default=btrfs]:

Would you like to create a new btrfs subvolume under
/var/lib/incus? (yes/no) [default=yes]:

Would you like to create a new local network bridge? (yes/no)
[default=yes]:

What should the new bridge be called? [default=incusbr0]:

What IPv4 address should be used? (CIDR subnet notation, ’auto’

or '"'none’) [default=auto]:
What IPv6 address should be used? (CIDR subnet notation, ’auto’
or "'none’) [default=auto]: none

FACOM-UFMS

Incus: O Sucessor do LXD 13

Would you like the server to be available over the network?
(yes/no) [default=no]: yes

Address to bind to (not including port) [default=all]:

Port to bind to [default=8443]:

Would you like stale cached images to be updated automatically?
(yes/no) [default=yes]:

Would you like a YAML ’'init’ preseed to be printed? (yes/no)
[default=no]: yes

config:
core.https_address: " [::]:8443'
networks:
— config:
ipv4.address: auto
ipvé6.address: none
description: '’
name: incusbr0

type . nn
project: default

storage_pools:
- config:
source: /var/lib/incus/storage—-pools/teste
description: 7’
name: teste
driver: btrfs

storage_volumes: []

profiles:

- config: {}
description: '’
devices:

ethO:
name: ethO
network: incusbr0

type: nic
root:

path: /

pool: teste

type: disk

name: default

project: default
projects: []
certificates: []
cluster: null

FACOM-UFMS

Incus: O Sucessor do LXD

14

2.3.2 Brincando com contéiners

Para compreender seu funcionamento basico, vamos iniciar, entrar € parar um

contéiner com Ubuntu 25.04.

Verificando as imagens remotas disponiveis

$ sudo incus image list images: ubuntu

$ sudo incus launch images:ubuntu/25.04 teste

Launching teste
S sudo incus list

e o e e t—— t——

| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS
t—— o t—— t————— t—— t——

| teste | RUNNING | 10.231.124.199 (ethO)
t————— o e o t————— t—————

$ sudo incus exec teste —- bash

root@teste:~# exit
$ sudo incus stop teste
S sudo incus delete teste

————— +

————— +

CONTAINER

————— +

0

Vocé também pode ver as informagdes mais detalhadas de uma instancia com
sudo incus info <instancia>, no nosso caso, vamos encontrar informacoes

semelhantes a esta:

$ sudo incus info teste

Name: teste

Description:

Status: RUNNING

Type: container

Architecture: x86_64

PID: 4092

Created: 2025/12/01 11:47 EST
Last Used: 2025/12/01 12:08 EST
Started: 2025/12/01 12:08 EST

2.4 Gerenciamento de Snapshots

O Incus também realiza o controle de versdes do ambiente via Snapshots. Vamos
criar duas *fotos’ do nosso contéiner e restaurar a primeira versao.

S sudo incus snapshot create teste snapO
$ sudo incus snapshot create teste snapl

$ sudo incus snapshot list teste

o Fom Fo—— fo————————— +

FACOM-UFMS

Incus: O Sucessor do LXD 15

| NAME | TAKEN AT | EXPIRES AT | STATEFUL |
o o pomm e pomm e +
| snap0 | 2025/12/01 12:05 EST | | NO |
o o pomm e pomm e +
| snapl | 2025/12/01 12:06 EST | | NO |
o o pomm e pomm e +

$ sudo incus snapshot restore teste snapO

2.5 Gerenciamento de Redes

Uma outra caracteristica do Incus € a possibilidade de criar redes e perfis para con-
textos especificos nos seus ambientes. Por padrdo, ao executar sudo incus network
1ist a gente observa que existe diversos tipos de redes ja reconhecidas pela ferramenta,
e, conforme configuramos no inicio a rede incusbr0 € a padrdo para qualquer novo
contéiner. De forma andloga, a ferramenta ja atribui um perfil padrdo default para
qualquer novo contéiner.

Devido a heranga do LXC e de toda esquematica de redes do Linux, os tipos de
rede do Incus sdo os mesmos que apresentamos no ultimo capitulo. Conforme recomenda
na documentac¢do, a melhor alternativa € utilizar a rede via bridge — padrdo — para todas as
instancias, todavia, € possivel criar e gerenciar novas redes.

Criando uma nova rede
$ sudo incus network create redinha

Adicionando teste a essa rede e verificando no container

S sudo incus network attach redinha teste

S sudo incus exec teste —— ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state
UNKNOWN group default glen 1000

22: ethl@if23: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state
DOWN group default glen 1000
link/ether 10:66:6a:11:66:a2 brd ff:ff:ff:ff:ff:ff
link-netnsid O

Ativando a interface e entregando um IPv4 a maquina
S sudo incus exec teste —-- ip link set ethl up && dhclient ethl

$ sudo incus exec teste -- ip a
22: ethl@if23: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc
noqueue state UP group default glen 1000

link/ether 10:66:6a:11:66:a2 brd ff:ff:ff:ff:ff:ff
link—-netnsid O

FACOM-UFMS

https://github.com/lxc/incus/blob/main/doc/explanation/networks.md

Incus: O Sucessor do LXD 16

inet 10.159.55.142/24 brd 10.159.55.255 scope global
dynamic ethl
valid_1ft 3597sec preferred_1ft 3597sec

Podemos ainda fazer duas instancias se comunicarem. Como segunda maquina,
vamos usar um Debian 12 semelhante a instancia t2.micro da aws (1 vCPU, 1GiB de RAM)

com a rede j4 determinada.

$ sudo incus launch images:debian/12 debinho -t aws:t2.micro -n

redinha

Verificando a rede dentro do container
$ sudo incus exec debinho —-- ip a

24: eth0@if25:

global

<BROADCAST, MULTICAST,UP, LOWER_UP> mtu 1500 gdisc
noqueue state UP group default glen 1000
link/ether 10:66:6a:aa:92:4f brd ff:ff:ff:ff:ff:ff
link-netnsid O
inet 10.159.55.111/24 metric 1024 brd 10.159.55.255 scope

dynamic ethO

valid_1ft 3571sec preferred_1ft 3571sec

Fazendo a comunicacdo

$ sudo incus exec debinho —-- ping -c 3 teste

PING teste(teste.incus
(fd42:5b4c:aabe:ab28:1266:06aff:fell:66a2)) 56 data bytes

64 bytes from teste.incus
(fd42:5b4c:aabe:ab28:1266:6aff:fell:66a2): icmp_seqg=1 ttl=64
time=0.132 ms

64 bytes from teste.incus
(fd42:5b4dc:aabe:ab28:1266:6aff:fell:66a2): icmp_seqg=2 ttl=64
time=0.086 ms

64 bytes from teste.incus
(fd42:5bdc:aabe:ab28:1266:6aff:fell:66a2): icmp_seqg=3 ttl=64

time=0.086

ms

—-—— teste ping statistics —-——

3 packets transmitted,
rtt min/avg/max/mdev

3 received,

0% packet loss,
0.086/0.101/0.132/0.021 ms

2.6 Gerenciando Armazenamento

time 2004ms

O Incus realiza seu armazenamento por meio do conceito de storage pool que é,
basicamente, um espacgo na qual a ferramenta pode usar para guardar root filesystems de

FACOM-UFMS

Incus: O Sucessor do LXD 17

containers ou imagens do sistema. Ele pode ser baseado em diferentes tipos de backends,
como:

e dir: apenas um diretério no sistema de arquivos do host. Simples, mas sem snapshots
eficientes.

* zfs: sistema de arquivos ZFS. Permite snapshots instantaneos e clones eficientes.

e btrfs: similar ao ZFS, com snapshots e subvolumes.

* lvm: volumes légicos no LVM.

* ceph: para armazenamento distribuido.

* cephfs: Ceph FS, também distribuido.

* custom: vocé pode usar drivers de storage externos.

Além disso, também € possivel armazenar os arquivos do sistema de modo compar-

tilhado com o host ou isoladamente. Isso garante flexibilidade ao arquiteto ao analisar as

necessidades e riscos de determinado caso de uso. Alguns dos comandos para explorar
essas funcionalidades sdo:

$ sudo incus storage list

R o o ———— o Fo— +

| NAME | DRIVER | DESCRIPTION | USED BY | STATE |
o o o ———— o R +

| teste | btrfs | | 5 | CREATED |
f————— o o o e +

Criando uma nova pool

S sudo incus storage create piscina dir

Storage pool piscina created

$ sudo incus storage list

o e o o o +
| NAME | DRIVER | DESCRIPTION | USED BY | STATE |
o - o o o +
| piscina | dir | | O | CREATED |
o - f——— o o +
| teste | btrfs | | 5 | CREATED |
o o o o o +

Alternando o armazenamento do debinho para piscina
$ sudo incus stop debinho
$ sudo incus move debinho --storage piscina

Confirme com
S sudo incus config device show debinho

FACOM-UFMS

Incus: O Sucessor do LXD

18

ethO:
name: ethO
network: redinha

type: nic
root:

path: /

pool: piscina

type: disk

FACOM-UFMS

Capitulo 3

Podman: A Arquitetura Daemonless

Continuando nossa jornada pelas tecnologias de contéineres, saimos do nivel de
"sistema"do LXC e entramos no mundo dos "contéineres de aplicacao". O principal
expoente moderno nesta drea, e uma alternativa direta ao Docker, ¢ o Podman.

O Podman (Pod Manager) se distingue por sua arquitetura daemonless (sem dae-
mon) e sua filosofia rootless (sem raiz) como padrao. Diferente do Docker, que depende
de um processo de fundo (o daemon) rodando como root para gerenciar contéineres,
o Podman interage diretamente com o kernel. Isso significa que todo o ciclo de vida de
um contéiner — desde o download da imagem até sua execucdo — pode ser gerenciado
por um usudrio comum, sem privilégios de superusudrio. Esta abordagem representa um
avanco significativo na seguranca de contéineres.

3.1 Instalacao

A instalacdo do Podman em sistemas baseados em Debian € direta, utilizando o
gerenciador de pacotes apt com privilégios de superusudrio:

$ su -
$ apt—-get update
$ apt—-get -y install podman

Ap6s a instalacdo, podemos verificar a versao com o comando:

$ podman -v

3.2 Iniciando Nosso Primeiro Contéiner

O rito de passagem para qualquer ferramenta de cont€ineres € executar uma imagem
de teste. A sintaxe do Podman €, por design, idéntica a do Docker, o que nos permite testar

19

Podman: A Arquitetura Daemonless 20

a ferramenta com um podman run hello-world. No entanto, devemos usar o nome
qualificado da imagem para evitar erros de resolugdo ("short-name resolution") comuns
em algumas distribui¢des:

$ podman run docker.io/library/hello-world

Este comando baixa a imagem de teste (caso ndo esteja em cache) e a executa.
Se tudo estiver configurado corretamente, voc€ verd uma mensagem de boas-vindas do
Docker. E possivel que o Podman venha solicitar uma autenticagio para poder puxar a
imagem do hub do docker. Para o nosso caso vocé pode tentar realizar a autenticacdo
conforme solicitado ou optar por puxar uma outra imagem como podman run -it
ubuntu.

3.3 Operando Conté€ineres no Podman

O Podman oferece um conjunto de comandos robustos para gerenciar o ciclo de
vida dos contéineres.

3.3.1 Comandos Essenciais

Para interagir com um contéiner em execu¢do, como abrir um terminal interativo,
usamos podman exec:

$ podman exec —it <ID_CONTAINER> /bin/bash

Também € possivel utilizar o nome do contéiner ao invés do seu id. Para exibir in-
formagdes detalhadas sobre a configuracdo de um contéiner (como IPs, volumes montados,
etc.), usamos podman inspect:

$ podman inspect <ID_CONTAINER>

O ciclo de vida de execugdo € gerenciado com pause, unpause, stope start.
Para remover um conté€iner que ndo é mais necessario, usa-se podman rm. A flag —f
for¢a a remoc¢ao de um contéiner que ainda esteja em execugao.

podman pause <ID_CONTAINER>
podman unpause <ID_CONTAINER>
podman stop <ID_CONTAINER>
podman start <ID_CONTAINER>
podman rm —f <ID_CONTAINER>

Ur i Ur > Ux

3.3.2 Gerenciamento de Recursos

O Podman permite monitorar o consumo de recursos (CPU, memoria, rede) em
tempo real com podman stats.

FACOM-UFMS

Podman: A Arquitetura Daemonless 21

Mais importante, ele permite limitar dinamicamente os recursos de um contéiner
em execucdo usando podman update. Por exemplo, para limitar um contéiner a 50%
de um nicleo de CPU e 128 MB de RAM:

Limita o contéiner a 50% da CPU
$ podman update —--cpus 0.5 <ID_CONTAINER>

Limita o contéiner a 128 MB de memdria
S podman update —-memory 128M <ID_CONTAINER>

3.3.3 Primeiro Containerfile com Podman

Assim como o Docker utiliza um Docker file para definir os passos de constru-
¢do de uma imagem, o Podman utiliza o0 mesmo formato de arquivo. Por convengao, para
diferenciar o contexto, a comunidade Podman frequentemente nomeia este arquivo como
Containerfile.

Vamos criar um diretério para nosso projeto e definir um Containerfile que
instala o utilitdrio st ress:

mkdir meucontainer
cd meucontainer
nano Containerfile

O conteudo do Containerfile utiliza a sintaxe padrdo (note o uso da imagem
base completa para evitar erros):

FROM docker.io/library/debian:latest
LABEL app="MeuContainer"
RUN apt-get update && apt-get install -y stress && apt-get clean

CMD stress —--cpu 1 —-vm-bytes 32m —-vm 1

Para construir a imagem a partir deste arquivo, usamos podman build. A flag
—t define o nome (tag) da imagem:

S podman build -t meucontainer

Com a imagem construida, podemos executid-la da mesma forma que executamos a
imagem hello:

S podman run -d —--name meu_teste meucontainer
Erro Comum: Imagem vs. Contéiner

Um erro frequente € tentar gerenciar a execucao usando o nome da imagem em vez
do nome do contéiner.

FACOM-UFMS

Podman: A Arquitetura Daemonless 22

Se vocé rodar o comando acima sem a flag —name, o Podman criard um contéiner
com um nome aleatério (como practical_bell). Se vocé tentar rodar podman
stop meucontainer, receberd um erro, pois meucontainer é o nome da imagem.

A Solucao: Sempre use o comando podman ps para listar os contéineres em
execucao e descobrir o nome correto (na coluna NAMES) antes de tentar pausar ou remover
uma instancia.

3.4 Aprofundando em Ambientes Rootless

Na sessdo anterior, introduzimos o conceito de rootless como a principal vantagem
de seguranca do Podman. Agora, vamos aprofundar tecnicamente no que isso significa,
como funciona "por baixo dos panos"e como configurar corretamente o ambiente do host
para suporté-lo.

3.4.1 O que é um Ambiente Rootless?

A verdadeira poténcia do Podman € sua capacidade nativa de operar em modo
rootless. Para isso, basta garantir que seu usudrio comum tenha as permissoes corretas
e possa executar os comandos sem sudo ou su -. Tradicionalmente, ferramentas de
contéiner dependiam de um daemon central rodando como root. Isso criava um vetor
de ataque significativo: se um processo malicioso conseguisse "escapar'do contéiner, ele
poderia ganhar acesso ao daemon e, consequentemente, obter privilégios de superusuario
no sistema host. Um ambiente rootless quebra esse paradigma.

Com o Podman, todo o ciclo de vida do contéiner — desde o download da imagem
até a execucdo e o gerenciamento de rede — ocorre inteiramente dentro do espaco de
privilégios do usudrio que executou o comando. Nesse sentido, ao executar como um
usudrio comum, o Podman cria e armazena os cont€ineres e imagens dentro do diretério
home daquele usudrio (~/.local/share/containers), sem tocar nos diretérios
do sistema.

3.4.2 Os Bastidores do Rootless

Para que um usudrio comum possa realizar tarefas que normalmente exigiriam
privilégios de root (como montar sistemas de arquivos e configurar redes), o Podman
utiliza duas tecnologias fundamentais do kernel Linux.

User Namespaces (userns)

Os User Namespaces sdo a tecnologia central. Eles permitem que um processo
tenha privilégios de "root"dentro de seu proprio namespace, sem ser 0 root do sistema

FACOM-UFMS

Podman: A Arquitetura Daemonless 23

host.

O sistema mapeia o ID do usudrio (por exemplo, UID 1000) no host para o
UID O (root) dentro do contéiner. Da mesma forma, uma faixa de UIDs "subordinados"é
alocada para aquele usudrio no host, que serd mapeada para os UIDs de usudrios comuns
dentro do contéiner (ex: UID 100000 no host se torna UID 1 no contéiner).

Rede com slirp4netns

Como um usudrio comum nao pode criar ou gerenciar interfaces de rede no host
(como a bridge docker0), o Podman utiliza s1irp4netns. Esta ferramenta cria uma
rede virtual no "espago do usudrio", permitindo que os contéineres acessem a rede externa
através do namespace de rede do préprio usudrio, de forma semelhante a como uma
madquina virtual em modo "NAT"se conecta.

3.4.3 Configurando o Ambiente Host para Rootless

Embora o Podman em si possa ser instalado facilmente, para que o modo rootless
funcione corretamente, o host precisa de algumas dependéncias e configuracoes.

Instalando Dependéncias Essenciais

Como superusudrio, precisamos garantir que o host tenha os pacotes que fornecem
as funcionalidades de rede e armazenamento para o modo rootless:

Use sudo ou troque para root com ’su -’/
sudo apt-get update
sudo apt-get -y install slirpéd4netns fuse-overlayfs

* slirp4netns: Fornece a rede para os contéineres rootless.

* fuse-overlayfs: Permite a criacdo de camadas de sistema de arquivos (overlay)
sem privilégios de root.

Configurando UIDs e GIDs Subordinados

Este € o passo mais critico. O sistema precisa saber quais faixas de User IDs (UIDs)
e Group IDs (GIDs) um usudrio tem permissdo para usar em seus namespaces. Essas faixas
sdo definidas nos arquivos /etc/subuide /etc/subgid.

Podemos verificar se nosso usudrio ja possui essas faixas alocadas:

$ grep $USER /etc/subuid
$ grep SUSER /etc/subgid

FACOM-UFMS

Podman: A Arquitetura Daemonless 24

Se os comandos ndo retornarem nada, precisamos adiciona-los. O comando
usermod, executado como root, aloca uma faixa de 65.536 UIDs e GIDs para o usuério
especificado:

Substitua ’seu _usuario’ pelo seu nome de usudrio
sudo usermod —--add-subuids 100000-165535 --add-subgids
100000-165535 seu_usuario

ApOs esta alteracdo, o usudrio precisa fazer logout e login novamente para que as mudancas
tenham efeito.

Troubleshooting: Problemas Comuns de Configuracao

Em ambientes de laboratério ou instalagdes minimas (como Debian netinst ou
containers LXC), € comum encontrar dois obstdculos nessa etapa:

1. Arquivo subuid ausente: As vezes, o arquivo /etc/subgid existe, mas o
/etc/subuid ndo. Isso impede o mapeamento de usudrios. Correcdo: Se o
comando usermod falhar, vocé pode criar o arquivo manualmente. O formato deve
ser idéntico ao do subgid: usuario:100000:65536.

2. Falta do sudo e Dependéncias: Em instalacdes "cruas”, o comando sudo pode
ndo vir instalado. Correcdo: E necessdrio logar como root real (via su —-) para
instalar as dependéncias criticas (s1lirp4netns e fuse-overlayfs). Sem
elas, o Podman até pode rodar, mas falhard ao criar a rede ou montar o sistema de
arquivos.

3.4.4 Operando em Modo Rootless na Pratica

Com o ambiente configurado, podemos verificar se 0 Podman estd operando cor-
retamente. O comando podman info revelard que os caminhos de armazenamento
(graphRoot) e execucdo (runRoot) agora apontam para o diretério home do usudrio,
e ndo para /var/lib/containers:

S podman info | grep —-E ’graphRoot |runRoot’

A saida sera semelhante a:

graphRoot: /home/seu_usuario/.local/share/containers/storage
runRoot: /run/user/1000/containers

Isso prova que o Podman estd armazenando todas as suas imagens e dados dentro do
espaco do usudrio.

FACOM-UFMS

Podman: A Arquitetura Daemonless 25

3.4.5 Limitacoes do Modo Rootless: Mapeamento de Portas

Uma limitagdo importante do modo rootless € que usudrios comuns nao podem
mapear servigos para portas privilegiadas do host (aquelas abaixo de 1024), pois isso é
uma restri¢ao do kernel.

Por exemplo, tentar expor um servidor web na porta 80 do host falhara:

ERRO: Usudrio comum ndo pode usar a porta 80 do host
$ podman run -d —--name web -p 80:80 nginx
Error: rootlessport cannot expose privileged port 80

A solucdo é mapear para uma porta nao privilegiada (acima de 1024):

CORRETO: Mapeia a porta 8080 do host para a porta 80 do
contéiner
S podman run -d —--name web -p 8080:80 nginx

O servidor web estar4, entdo, acessivel em http://localhost:8080.

3.5 Orquestracao com Podman Compose

Até agora, nossos comandos podman run lidaram com um tnico contéiner por
vez. No entanto, aplicacdes do mundo real raramente sdo tdo simples. Uma aplicacao web
moderna, como um WordPress ou Nextcloud, tipicamente envolve multiplos componentes
— um servidor web (como Nginx ou Apache), a aplicagdo em si (em PHP) e um banco de
dados (como MySQL ou PostgreSQL) — todos rodando em conté€ineres separados que
precisam de rede, volumes e uma ordem de inicializac¢do especifica.

Gerenciar essa complexidade manualmente com multiplos comandos podman
run € impraticivel e propenso a erros. Para resolver isso, utilizamos uma abordagem
declarativa, definindo o estado desejado de nossa aplicagdo em um unico arquivo. No
ecossistema Podman, essa ferramenta é o podman—compose.

3.5.1 O que é podman—compose?

E crucial entender que o podman-compose difere filosoficamente do docker—compose.
Enquanto a ferramenta do Docker (especialmente a V2) é um plugin que se comunica com
a API do daemon Docker, 0 podman—compose € uma ferramenta independente, escrita
em Python, que atua como um tradutor.

Ele foi projetado para ser compativel com a sintaxe dos arquivos docker—compose.yml,
o que facilita a migracao. Sua fun¢do principal é:

1. Ler e interpretar o arquivo compose . yml que define os servigos, redes e volumes.

FACOM-UFMS

Podman: A Arquitetura Daemonless 26

2. Traduzir essas definicdes em uma série de comandos podman equivalentes.

Por exemplo, uma se¢do service no YAML € traduzida para um podman run
com todos os mapeamentos de porta, volumes e varidveis de ambiente corretos. Uma secio
network se torna um podman network create.

A maior vantagem desta abordagem € que ela herda todos os beneficios do Podman:
opera em modo rootless por padrao e ndo depende de um daemon central.

3.5.2 Instalacdo do podman—compose

Assumindo que o ambiente rootless ja foi configurado (conforme o capitulo anterior,
com slirpdnetns e fuse-overlayfs), a instalagdo do podman—compose em
sistemas Debian € feita através do apt:

Como root
apt—-get install podman—-compose

3.6 Aplicacoes Praticas: Nextcloud e WordPress

Vamos explorar a orquestragdo através de dois estudos de caso idénticos em sua
estrutura: a implantacdo do Nextcloud e do WordPress. Ambas sdo aplicagdes que exigem
dois servigos principais:

* O servico de banco de dados (ex: mariadb oumysql).

* O servico da aplicacao (ex: nextcloud ou wordpress).

O arquivo compose.yml é onde descrevemos essa relacdo. Vamos analisar a
estrutura para o Nextcloud.

3.6.1 Estrutura de um Arquivo compose.yml

Primeiro, criamos um diretdrio para o projeto e, dentro dele, o arquivo compose . ym1:
mkdir nextcloud-podman && cd nextcloud-podman

nano compose.yml

O conteudo do arquivo define nossos dois servigos, db e app (usando imagens
qualificadas para evitar erros):

services:
db:
image: docker.io/mariadb:10.6

FACOM-UFMS

Podman: A Arquitetura Daemonless 27

container_name: nextcloud_db
restart: always
command: —--transaction-isolation=READ-COMMITTED
——-binlog-format=ROW
volumes:
- db_data:/var/lib/mysqgl
environment :
- MYSQL_ROOT_PASSWORD=seu_password_super_secreto
— MYSQL_PASSWORD=nextcloud_password
- MYSQIL_DATABASE=nextcloud
— MYSQL_ USER=nextcloud

app:
image: docker.io/nextcloud
container_name: nextcloud_app
restart: always
ports:
"8080:80" # Porta alta para rootless
volumes:
— nextcloud_data:/var/www/html
depends_on:
- db

volumes:
db_data:
name: nextcloud_db_data
nextcloud_data:
name: nextcloud_app_data

3.6.2 Analisando a Anatomia do Compose

Este arquivo € um excelente exemplo de orquestragdo. Vamos destacar os conceitos-
chave:

* Servicos (services): Cadabloco, db e app, € um servico. O podman—-compose
criard um contéiner para cada um.

* Persisténcia (volumes): A secdo volumes: no final declara "volumes nome-
ados"gerenciados pelo Podman. Dentro de cada servigo, a linha volumes: (ex:
db_data:/var/lib/mysqgl) mapeia esse volume nomeado para um diretério
dentro do contéiner. Isso garante que, se o contéiner for destruido, os dados do banco
de dados e os arquivos do Nextcloud persistam.

* Rede e Descoberta: O podman—-compose cria automaticamente uma rede interna
para este projeto. E por isso que o servigo app pode se conectar ao banco de dados

FACOM-UFMS

Podman: A Arquitetura Daemonless 28

usando o nome db como host (veja a varidvel WORDPRESS_DB_HOST no exemplo
do WordPress).

* Ordem de Inicializacdo (depends_on): A diretiva depends_on: - dbno
servigo app instrui o Podman a iniciar o contéiner do banco de dados antes de
iniciar o contéiner da aplicagdo.

* Portas (ports): A linha "8080:80" no servico app € a tnica que expde algo
ao mundo exterior. Ela mapeia a porta 8080 do nosso host (lembre-se, rootless nao
pode usar portas < 1024) para a porta 80, onde o servidor web do Nextcloud esta
escutando dentro do contéiner.

A implantacdo do WordPress segue um padrdo idéntico, apenas substituindo as
imagens e as varidveis de ambiente apropriadas.

Para iniciar a aplicagdo, o comando € simples e, o mais importante, executado
COmo um usudrio comum:

O —d significa "detached" (em segundo plano)
podman—compose up -d

O podman-compose lerd o arquivo, criard os volumes, a rede e os contéineres
na ordem correta. A aplicacao estard acessivel em http://localhost:8080.

3.7 Gerenciamento Avancado de Rede com Traefik

Embora o mapeamento de portas (como 8080 : 80) funcione para uma ou duas apli-
cacdes, ele rapidamente se torna complexo. Teriamos que memorizar que 1ocalhost : 8080
é o Nextcloud, localhost: 8081 € o WordPress, 1localhost : 8082 é o Portainer, e
assim por diante.

A solugdo profissional para isso ¢ um Reverse Proxy (Proxy Reverso). O Trae-
fik ¢ um proxy reverso moderno, nativo para a nuvem, projetado especificamente para
contéineres.

Sua principal vantagem ¢é a descoberta de servico automéatica. Em vez de editar-
mos manualmente um arquivo de configuragdo toda vez que subimos um novo servigo, o
Traefik "assiste"a API do Podman. Quando ele vé um novo contéiner subir com labels
especificas, ele automaticamente configura o roteamento para ele.

3.7.1 Diferencas na Configuracao com Podman

Para o Traefik funcionar com o Podman rootless, duas corre¢des sdo necessarias
em relacdo a configuragcdo padrao do Docker:

FACOM-UFMS

Podman: A Arquitetura Daemonless 29

1. O Socket da API: O Podman expde sua API em um socket de usudrio (user socket),
geralmente em /run/user/<UID>/podman/podman. sock.

2. O Provedor: Devido a incompatibilidades em versdes recentes (como a v2.11),
o provedor nativo podman pode falhar. A solucdo robusta é utilizar o provedor
docker padrdao, mas apontando-o para o socket do Podman.

Primeiro, habilitamos o socket da API do Podman para nosso usudrio. Atenc¢ao:
Nao use sudo, pois o socket deve pertencer ao usudrio:

Habilita e inicia o socket para o usudrio atual
systemctl --user enable --now podman.socket

3.7.2 Configuracao do Traefik com Compose

A seguir, um arquivo compose.yml corrigido que implanta o Traefik e um
servi¢o de exemplo whoami, resolvendo os problemas de portas e provedores relatados:

services :
traefik :
image: docker.io/traefik:v3.6
container_name: traefik
command :
Instrucoes para o Traefik
— "——api.insecure=true"
Usamos o provider Docker compativel com a API do Podman
— "——providers .docker=true"
— "——providers.docker.exposedbydefault=false"
Apontamos para o socket do usudrio

"——providers .docker.endpoint=unix :/// var/run/podman/podman.sock"
— "——entrypoints .web.address=:8081"

ports:
- "8080:8080" # Porta 8080 (Host) mapeia para 8080 (Traefik)
[Rootless]
- "8081:8081" # Porta para o Dashboard do Traefik
volumes :

Monta o socket do Podman (substitua 1000 pelo seu ’'id -u’)

— /run/user/1000/podman/podman.sock :/ var/run/podman/podman.sock:z
networks:

— proxy

whoami :
image: docker.io/traefik /whoami
container_name : whoami
labels:
— "traefik .enable=true"
O roteamento deve considerar a porta exposta (8081)

"traefik . http.routers.whoami.rule=Host(‘whoami.podman.localhost)"

FACOM-UFMS

Podman: A Arquitetura Daemonless 30

— "traefik . http.routers .whoami. entrypoints=web"
networks:
— proxy

networks :

proxy:
name: proxy

A madgica acontece nas 1abels do servico whoami:

* traefik.enable=true: "Ol4 Traefik, por favor, gerencie este contéiner."

~

* ...rule=Host (whoami.podman.localhost): "Se uma requisicao chegar
com o dominio whoami .podman. localhost, envie-a para mim."

Ap6s subir este compose, podemos acessar o dashboard do Traefikem http://localhost:8081
e nossa aplicacdo em http://whoami.podman.localhost : 8081 (apds adicionar
este dominio ao nosso /etc/hosts local).

3.8 Recursos Avancados: Pods e Manifestos Kubernetes

O Podman possui dois recursos fundamentais que o diferenciam do Docker e o
aproximam do Kubernetes.

3.8.1 O Conceito de “Pod”

Emprestado diretamente do Kubernetes, um Pod é a menor unidade de implantagao.

E um grupo de um ou mais contéineres que compartilham os mesmos namespaces de rede
e IPC.

Isso significa que contéineres dentro do mesmo pod podem se comunicar usando
localhost, como se estivessem na mesma maquina. Isso é mais eficiente do que
criar uma rede virtual. Em nosso exemplo Nextcloud/WordPress, poderiamos colocar os
servicos app € db no mesmo pod. O podman—compose nao gerencia pods nativamente,
mas 0 podman sim.

Cria um Pod que expbée a porta 8080 (rootless)

$ podman pod create —--name minha-app-pod —-p 8080:80

Executa os contéineres DENTRO do pod

S podman run -d —--pod minha-app-pod —--name redis_db
docker.io/redis

S podman run -d --pod minha-app-pod —--name webapp minha-webapp

Neste cendrio, a webapp se conectaria ao Redis simplesmente em 1ocalhost:63709.

FACOM-UFMS

Podman: A Arquitetura Daemonless 31

3.8.2 Gerando Manifestos Kubernetes

A funcionalidade mais poderosa do Podman € sua capacidade de atuar como
uma ponte entre o desenvolvimento local e a produ¢cdo em Kubernetes. O Podman pode
inspecionar um pod em execugdo e gerar um manifesto .yml do Kubernetes que o
descreve.

Gere o YAML a partir do Pod que criamos
$ podman kube generate pod minha-app-pod > minha-app.yml

O arquivo minha-app . yml resultante € um recurso Kubernetes valido que pode
ser implantado em qualquer cluster (como Minikube, GKE, ou OpenShift) com kubect1

apply —f minha-app.yml. Isso unifica drasticamente o fluxo de trabalho de desen-
volvimento e produgdo.

FACOM-UFMS

Capitulo 4

Introducao ao Docker: O Padrao da
Industria

Neste capitulo, voltamos nossa aten¢do para o Docker, a plataforma que populari-
zou os contéineres de aplicacdo e definiu o padrio da inddstria. Embora o Podman ofereca
uma arquitetura daemonless inovadora, € fundamental compreender o Docker, pois sua
arquitetura, ferramentas (como o Docker Compose) e o proprio formato do Dockerfile
sdo a base do ecossistema de conté€ineres moderno.

4.1 Instalacao

Ao contrario do Podman, o Docker opera em uma arquitetura cliente-servidor.
O componente central € o daemon Docker (dockerd), um processo que roda com
privilégios de root e € responsavel por construir, executar e gerenciar os contéineres.
A ferramenta de linha de comando docker (o cliente) se comunica com a API deste
daemon.

A instalacdao no Debian envolve adicionar o repositdrio oficial do Docker para
garantir que recebamos as versdes mais recentes.

Primeiro, como superusudrio, configuramos o apt para confiar no repositorio do
Docker:

Adicionar o repositoério do Docker

apt—-get update

apt—-get install -y ca-certificates curl gnupg lsb-release

mkdir -p /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/debian/gpg | gpg
——dearmor -o /etc/apt/keyrings/docker.gpg

echo \
"deb [arch=$ (dpkg ——-print—-architecture)

signed-by=/etc/apt/keyrings/docker.gpg]

32

Introducao ao Docker: O Padrao da Indistria 33

https://download.docker.com/linux/debian \
S(lsb_release —-cs) stable" | tee
/etc/apt/sources.list.d/docker.list > /dev/null

Com o repositorio configurado, atualizamos o indice de pacotes e instalamos o
Docker Engine, a CLI e o plugin do Compose:

Instalar o Docker Engine

apt—-get update

apt—-get install -y docker-ce docker-ce-cli containerd.io
docker-compose-plugin

Uma vez instalado, podemos verificar a versao com:

S docker -v

4.2 Executando o Docker como um Usuario Nao-Root

Por padrdo, apenas o usudrio root (ou usudrios com sudo) pode se comunicar
com o daemon do Docker. Para permitir que seu usudrio comum execute comandos
docker sem sudo, vocé deve adiciond-lo ao grupo docker (criado durante a instala-

cao).

Nota de Seguranga: Adicionar um usudrio ao grupo docker é equivalente a dar
a ele privilégios de root, pois ele pode usar o Docker para montar qualquer diretério do
host ou executar comandos privilegiados. A abordagem rootless do Podman, discutida
anteriormente, é a solucdo para esta vulnerabilidade.

4.3 Operacoes Basicas de Contéineres

A sintaxe de comandos do Docker € o padrao que o Podman imitou. O ciclo de
vida de um contéiner € gerenciado com comandos idénticos:
* docker run hello-world: O comando candnico para testar a instalacao.
* docker exec —-it <ID> /bin/bash: Entra em um contéiner em execugdo.
e docker stop <ID>: Paraum contéiner.
e docker rm <ID>: Remove um contéiner.
* docker stats: Monitora o uso de recursos.

e docker update —cpus 0.5 <ID>: Atualiza recursos de um contéiner em
execucao.

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 34

4.4 Aprofundando em Dockerfiles

O Dockerfile é o "projeto"ou a "receita"de uma imagem de contéiner. E um
script de texto que contém uma sequéncia de comandos que o daemon do Docker utiliza
para montar, de forma automatizada e reprodutivel, uma imagem.

Cada instru¢do em um Dockerfile cria uma nova "camada"(layer) na imagem.
O Docker armazena essas camadas em cache, um recurso que acelera drasticamente as
builds futuras, pois o Docker sé reconstrdi as camadas que mudaram.

4.4.1 Anatomia de um Dockerfile: Instrucoes Essenciais

Vamos detalhar as instru¢cdes mais comuns e sua finalidade:

e FROM: Define a imagem base a partir da qual a nova imagem serd construida. Todo
Dockerfile deve comecar com FROM. A escolha de uma base pequena (como
alpine oudebian:slim)é a melhor pratica para imagens leves.

* WORKDIR: Define o diretério de trabalho para todas as instru¢gdes subsequentes
(RUN, COPY, CMD, etc.). E uma pritica muito superior a usar RUN cd /meu-app.

* COPY: Copia arquivos ou diretérios do contexto do build (a maquina local) para
dentro do sistema de arquivos da imagem.

* RUN: Executa um comando shell durante o processo de build. E usado para instalar
pacotes (RUN apt-get install -y ...), compilar cédigo ou criar diretd-
rios. Cada RUN cria uma nova camada.

e CMD: Define o comando padrdo que sera executado quando um contéiner for ini-
ciado a partir da imagem. SO pode haver uma instru¢do CMD. Se 0 usudrio espe-
cificar um comando ao iniciar o contéiner (ex: docker run minha-imagem
/bin/bash), o CMD padrio serd ignorado.

* EXPOSE: Documenta quais portas de rede o contéiner escuta em tempo de execucao.
E importante notar que EXPOSE néo publica a porta; ele apenas informa ao operador
humano (e a algumas ferramentas) quais portas sdo importantes. A publicagdo real é
feita com —p no comando docker run.

4.4.2 Otimizacdo: Encadeando Comandos RUN

Como cada RUN cria uma camada, Dockerfiles ndo otimizados podem ficar
inchados.

Nao otimizado (cria 3 camadas):

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 35

RUN apt-get update
RUN apt-get install -y curl
RUN apt-get install -y git

A forma otimizada € encadear os comandos com & & e
, 0 que 0s agrupa em uma Unica instru¢do RUN e, portanto, em uma Unica camada. Além
disso, limpamos o cache do apt na mesma camada, garantindo que o cache ndo seja
incluido desnecessariamente no tamanho final da imagem.

Otimizado (cria 1 camada):

RUN apt-get update && apt-get install -y \
curl \
git \
&& rm —-rf /var/lib/apt/lists/x*

4.4.3 Topicos Avancados de Dockerfile

Para criar imagens prontas para producdo, dominamos trés conceitos adicionais:
ENTRYPOINT, Builds Multi-Stage e HEALTHCHECK.

ENTRYPOINT vs. CMD

Este é um dos conceitos mais confusos para iniciantes. A melhor maneira de
entendé-los é:

* ENTRYPOINT: Define o executével principal, o "ponto de entrada"da imagem. Nao
¢ feito para ser sobrescrito pelo usudrio.

* CMD: Define os argumentos padrdo para o ENTRYPOINT.

Um exemplo cléssico € a imagem do apachectl:

ENTRYPOINT ["/usr/sbin/apachectl"]
CMD ["-D", "FOREGROUND"]

Aoexecutar docker run <imagem>, o contéiner executa /usr/sbin/apachectl

-D FOREGROUND. Se o usudrio executar docker run <imagem> -X, ele estard so-
brescrevendo apenas o CMD, e o comando final serd /usr/sbin/apachectl -X.

Builds Multi-Stage

Builds multi-stage sdo a técnica mais eficaz para criar imagens pequenas e seguras.
A ideia € usar uma imagem grande e cheia de ferramentas (como golang ou maven)

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 36

para compilar a aplicagdo e, em seguida, copiar apenas o bindrio compilado para uma
imagem final minima (como alpine ou scratch).

Isso separa o ambiente de build do ambiente de producdo, resultando em uma ima-
gem final drasticamente menor, que ndo contém cédigo-fonte, compiladores ou ferramentas
de build.

Estagio 1: Build

FROM golang AS buildando
WORKDIR /app

ADD . /app

RUN go build -o meugo

Estagio 2: Imagem Final

FROM alpine

WORKDIR /new

Coplia apenas o executdvel do estdgio anterior
COPY —-from=buildando /app/meugo /new/
ENTRYPOINT ./meugo

HEALTHCHECK

A instrucdo HEALTHCHECK define um comando que o Docker executa periodica-
mente dentro do contéiner para verificar se ele estd funcionando corretamente (ou seja,
"sauddvel"). Isso é crucial para orquestradores, que podem usar essa informacgdo para
reiniciar automaticamente um contéiner "doente"(unhealthy).

HEALTHCHECK —-interval=1lm —-timeout=3s \
CMD curl —-f http://localhost/ || exit 1

O status da verificacdo (ex: starting, healthy, unhealthy) aparecerd na saida do
docker ps.

4.5 Gerenciamento de Dados com Volumes

Por padrido, contéineres sdo efémeros. Seus sistemas de arquivos sdo voliteis;
quaisquer dados escritos dentro de um contéiner sdo perdidos quando ele é removido. Para
aplicacdes que precisam manter estado (como bancos de dados, uploads de usudrios ou
arquivos de configuracdo), precisamos de uma forma de persistir dados. O mecanismo
preferido pelo Docker para isso sdo os Volumes.

4.5.1 Tipos de Persisténcia

Existem duas formas principais de persistir dados no Docker:

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 37

* Named Volumes (Volumes Nomeados): Esta é a abordagem recomendada. Os
volumes sdo gerenciados diretamente pelo Docker e armazenados em uma area
especifica no host (ex: /var/lib/docker/volumes/). Eles sdo desacoplados
do ciclo de vida do contéiner. Podemos criar um volume com docker volume
create meusdados.

* Bind Mounts: Mapeiam um diretério ou arquivo existente no sistema de arquivos
do host para dentro de um contéiner (ex: —v /opt/meu—app:/app). Sao uteis
em desenvolvimento para refletir mudangas no cédigo-fonte em tempo real, mas em
producdo sdo menos flexiveis que os volumes nomeados.

Para usar um volume nomeado, o criamos € 0o anexamos no docker run:
Crie um volume nomeado

$ docker volume create meusdados

Execute um contéiner usando o volume
S docker container run -ti —-mount
type=volume, src=meusdados,dst=/dados debian

Agora, qualquer coisa escrita em /dados dentro do contéiner serd salva no volume
meusdados no host. Se removermos o contéiner, o volume (e seus dados) permanecera
intacto.

4.6 Orquestracao com Docker Compose

Similar a0 podman-compose, o Docker Compose ¢ a ferramenta do Docker
para definir e executar aplicacoes multi-contéiner. Ele usa um arquivo YAML (por padrao,
compose.yml) para declarar todos os servigos, redes € volumes que compdem uma
aplicacao.

4.6.1 Instalando o Docker Compose
Desde 2021, o Docker Compose foi reescrito em Go e integrado diretamente ao

Docker Engine como um plugin (docker—-compose-plugin). O comando moderno é
docker compose (sem o hifen), que instalamos no primeiro capitulo.

4.6.2 Orquestrando o Portainer

Vamos usar o Compose para implantar o Portainer, uma popular interface grafica
de gerenciamento para o Docker.

Primeiro, criamos nosso arquivo compose . yml:

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 38

services:
portainer:
image: portainer/portainer-ce:latest
container_name: portainer
ports:
— "9443:9443"
"9000:9000"
volumes:
Mapeia o socket do Docker para que o Portainer possa
gerenciar o Docker
- /var/run/docker.sock:/var/run/docker.sock
Volume para persistir os dados do Portainer
- portainer_data:/data
restart: always

volumes:
portainer_data:

Os dois mapeamentos de volume aqui s@o cruciais:

* /var/run/docker.sock:/var/run/docker.sock: Este é um bind mount
que mapeia o socket da API do Docker do host para dentro do conté€iner. E assim
que o Portainer ganha a capacidade de controlar o Docker.

* portainer_data:/data: Este é um volume nomeado que garante que os dados
do Portainer (configuracdes, senhas) persistam.

Para iniciar a aplica¢do, navegamos até o diretorio do arquivo e executamos:

S docker compose up -d

O Portainer estara acessivel em https://localhost:9443.

4.6.3 Expandindo o Compose: Profiles e .env

O Docker Compose possui recursos avangados para gerenciar ambientes comple-
XOS.

Profiles (Perfis)

Os perfis permitem agrupar servigos no compose . yml e ativd-los seletivamente.
Isso € ideal para separar servigos de producdo (padrio) de servigos de desenvolvimento ou
depuragdo (debug).

Por exemplo, podemos adicionar um visualizador de logs como o Dozzle ao
nosso compose, mas associd-lo a um perfil debug:

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 39

services:
portainer:
... (configuracado do portainer)

dozzle:
image: amir20/dozzle:latest
container name: dozzle
volumes:
- /var/run/docker.sock:/var/run/docker.sock
ports:
- "8081:8080"
profiles:
- debug # Este servico sé6 iniciard se o perfil ’debug’
for ativado

Ao executar docker compose up -—d,apenas o Portainer iniciard. Para iniciar
ambos, executamos: docker compose -profile debug up -d

Arquivos . env para Variaveis

E uma ma pratica "chumbar"(hardcode) valores como senhas, portas ou nomes de
usudrio no compose.yml. A solugdo € usar um arquivo .env no mesmo diretério. O
Docker Compose o carrega automaticamente.

Arquivo .env:
.env
PORTAINER_WEB_PORT=9443
Arquivo compose.yml:

services:
portainer:
#
ports:
Usando a variavel do arquivo .env
— "S{PORTAINER_WEB_PORT} :9443"

Isso torna a configura¢do mais segura e flexivel.

4.7 Estudos de Caso: Nextcloud e WordPress

A implantacdo do Nextcloud e do WordPress com Docker Compose segue exa-
tamente o mesmo padrdo de dois servicos (aplicacdo + banco de dados) que vimos no

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 40

capitulo do Podman, demonstrando a portabilidade dos arquivos compose . yml entre os
ecossistemas.

A tunica diferenca notavel é o nome do driver de rede padrao (Docker cria uma
rede bridge, enquanto Podman usa netavark ou CNI), mas para o usudrio final, a
descoberta de servigo baseada no nome do servi¢o (db) funciona de forma idéntica.

4.8 Orquestracao de Cluster: Docker Swarm

O Docker Compose € excelente para gerenciar multiplos contéineres em um tinico
host. No entanto, para producgdo, precisamos de resiliéncia e escala, o que significa
distribuir nossos contéineres por miiltiplos hosts (nos).

O Docker Swarm ¢ a ferramenta de orquestracio nativa do Docker para gerenciar
um cluster de nds como se fossem um tnico sistema.

4.8.1 Arquitetura: Managers e Workers

Um cluster Swarm consiste em dois tipos de nos:

* Managers: Responsaveis por gerenciar o estado do cluster, agendar servicos e
manter a consisténcia. Para alta disponibilidade, recomenda-se um nimero impar de
managers (ex: 3 ou 5) para formar um quérum.

* Workers: Executam os cont€ineres (chamados de tasks) que sdo atribuidos pelos
managers.

Para inicializar um cluster, vamos ao n6 que serd o primeiro manager e executamos:

S docker swarm init

Este comando torna o n6 atual um manager e gera um token. Nos outros nds, executamos
o comando docker swarm join <token> para que eles entrem no cluster como
workers.

4.8.2 Servicos no Swarm

No Swarm, ndo executamos contéineres diretamente; nds criamos Servi¢os. Um
servigo define o estado desejado de uma aplicacao, incluindo a imagem, o nimero de
réplicas e as portas. O Swarm entdo garante que o nimero correto de réplicas (tasks) esteja
sempre em execu¢do em algum lugar do cluster.

Cria um servigo chamado ’'webserver’ com 3 réplicas da imagem
nginx

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 41

S docker service create ——name webserver —-replicas 3 -p
8080:80 nginx

O Swarm agora garantira que 3 contéineres nginx estejam rodando. Se um né falhar, o
Swarm automaticamente reagendard as tasks daquele né em outros nds saudaveis.

4.8.3 Escalando e Gerenciando Nos

A principal vantagem de um orquestrador € a capacidade de escalar e gerenciar
falhas.

Podemos escalar um servigo instantaneamente:

S docker service scale webserver=10

O Swarm tratara de criar 7 novas réplicas e distribui-las pelo cluster.

Para manuten¢@o de um né (ex: node01), podemos drena-lo. O drain remove
todas as tarefas do nd, reagendando-as em outros nds ativos, sem interromper o Servigo:

S docker node update —--availability drain nodeO1l

Apds a manutengdo, retornamos o no ao estado ativo: docker node update —availability
active nodeOl.

4.9 Gerenciamento de Rede Avancado com Traefik

Assim como no Podman, o Traefik brilha como um proxy reverso para o Docker,
especialmente em um ambiente Swarm. Sua capacidade de descoberta de servi¢o nos
permite expor aplicacdes a internet de forma dindmica, sem reconfiguragdo manual.

A configuracao é quase idéntica a do Podman, com uma diferencga chave: em vez
de usar o provedor podman, usamos o provedor docker.

4.9.1 Configuracao do Traefik com Docker Compose

Em um ambiente Docker (seja single-host ou Swarm), implantamos o Traefik como
um servigo, geralmente via Docker Compose.

docker—compose.yml
services:
traefik:
image: traefik:v2.11
container name: traefik
command:
— "——api.dashboard=true"

FACOM-UFMS

Introducao ao Docker: O Padrao da Indistria 42

— "—-providers.docker=true" # Usando o provedor Docker
— "——-providers.docker.exposedbydefault=false"
- "——entrypoints.web.address=:80"

ports:
- "80:80" # Porta para o trafego HTTP
- "8080:8080" # Porta para o Dashboard
volumes:

Monta o socket do Docker para que o Traefik possa ouvir
0s eventos
- /var/run/docker.sock:/var/run/docker.sock:ro
networks:
- Proxy

whoami :
image: traefik/whoami
container name: whoami
labels:
- "traefik.enable=true"

"traefik.http.routers.whoami.rule=Host (‘whoami.localhost)"
— "traefik.http.routers.whoami.entrypoints=web"
networks:
- proxy

networks:
Proxy:
name: pProxy

O volume /var/run/docker.sock:/var/run/docker.sock:ro € a
chave. E através dele que o Traefik monitora a API do Docker e detecta novos contéineres
(ou servicos Swarm) que possuem as labels traefik.enable=true. Ao detectar um,
ele 1€ a label rule e cria a rota de acesso automaticamente.

FACOM-UFMS

Capitulo 5

Introducao a Automacao com Ansible

Nos capitulos anteriores, focamos em como empacotar € executar aplicagoes
de forma isolada e consistente usando contéineres. No entanto, ainda resta um desafio
fundamental: como preparar e gerenciar a infraestrutura subjacente onde esses contéineres
irdo rodar?

A preparacdo de um servidor (o "provisionamento") envolve tarefas como instalar
pacotes, configurar servigos, gerenciar usudrios e garantir que os arquivos de configuracao
estejam corretos. Fazer isso manualmente € lento, propenso a erros e impossivel de escalar.

Neste capitulo, introduzimos o Ansible, uma poderosa ferramenta de automacao
de TI que simplifica radicalmente o gerenciamento de configuracio e a implantacdo de
aplicacdes.

5.1 O que é o Ansible?

O Ansible é um motor de automacdo de c6digo aberto que opera em um paradigma
push-based (baseado em "empurrar"configuragdes). Sua caracteristica mais marcante €
sua arquitetura agentless (sem agentes).

Diferente de outras ferramentas como Puppet ou Chef, que exigem que um
"agente"de software seja instalado e mantido em cada servidor gerenciado, o Ansible
ndo requer nada além de uma conexao SSH padrdo e um interpretador Python (que ja vem
instalado na maioria das distribui¢cdes Linux modernas).

Essa simplicidade reduz a complexidade de gerenciamento e a superficie de ataque
da sua infraestrutura.

5.2 Conceitos Fundamentais

Para trabalhar com o Ansible, precisamos entender sua terminologia:

43

Introducio a Automaciao com Ansible 44

* Control Node (N6 de Controle): A maquina onde o Ansible esta instalado e de
onde vocé executa os comandos.

* Managed Nodes (N6s Gerenciados): Os servidores que o Ansible gerencia.

* Inventory (Inventario): Um arquivo (em formato INI ou YAML) que lista e agrupa
os nés gerenciados. E o "catdlogo de enderecos"do Ansible.

* Playbook: O coracido do Ansible. E um arquivo YAML que define uma lista de
tarefas a serem executadas em um grupo de servidores.

* Task (Tarefa): Uma unica acdo, como "instalar o pacote nginx"ou "copiar um
arquivo".

* Module (Médulo): O cédigo que o Ansible envia via SSH para o né gerenciado
executar uma tarefa. Por exemplo, o médulo apt gerencia pacotes no Debian, e o
modulo service gerencia servigos.

5.3 Instalacio e Configuracio Pratica

Vamos configurar um ambiente basico no N6 de Controle.

5.3.1 Instalacdo do Ansible

O Ansible € facilmente instalado via gerenciador de pacotes. Em um sistema
baseado em Debian/Ubuntu, executamos:

Atualiza o indice de pacotes e instala o Ansible
$ sudo apt-get update
S sudo apt-get install -y ansible

Podemos verificar a instalacdo com ansible -version.

5.3.2 Criando um Inventario

O inventdrio define quais servidores o Ansible ird gerenciar. Vamos criar um
diretdrio para nosso projeto e um arquivo de inventdrio chamado hosts:

S mkdir ansible-lab && ed ansible-lab
$ nano hosts

Dentro do arquivo host s, definimos um grupo de servidores. Para este exemplo,
vamos assumir que queremos gerenciar um servidorem 192.168.1.100:

FACOM-UFMS

Introducio a Automaciao com Ansible 45

Arquivo: hosts

[webservers]
serverl ansible _host=192.168.1.100

* [webservers]: Define um grupo de hosts.
* serverl: E um apelido (alias) para o host.

* ansible_host: E uma varidvel que informa ao Ansible o IP real para conexao.

5.3.3 Testando a Conexao (Comandos Ad-Hoc)

Antes de escrever um playbook complexo, sempre testamos a conectividade. Usa-
mos um comando "ad-hoc"para executar o médulo ping em todos os hosts do inventdrio.

-1 especifica o inventdrio

-m especifica o médulo (ping)

7all’ é um grupo especial que significa "todos os hosts"
ansible all -i hosts —m ping

Ur S

Se a conexdo SSH (geralmente por chaves) estiver funcionando, o Ansible retornara
uma resposta SUCCESS comum "ping": "pong". Caso contrario, é possivel que
voce encontre uma mensagem semelhante a esta:

[serverl] UNREACHABLE! => {"msg": "Failed to connect to the
host wvia
ssh: (publickey).", "unreachable": true} Permission denied.

Casa maquina € um caso que deve ser diagnosticado com ateng¢do, todavia, uma das
solucdes mais comuns € verificar se a chave publica dos hosts/nodes foram corretamente
adicionadas no arquivo authorized_keys do host/node de controle. Outra possibili-
dade de solugao € passar o nome do usudrio pelo arquivo de inventario do Ansible, no nosso
caso hosts. Uma terceira possibilidade € adicionar o caminho da chave privada do host-
alvo para facilitar o processo de autenticagdo com ansible_ssh_private_key_file=
logo apds especificar o usudrio:

Arquivo: hosts
[webservers]

serverl ansible host=192.168.1.100 ansible user=fulani
ansible_ssh_private_key_file=~/.ssh/id_ed25519

FACOM-UFMS

Introducio a Automaciao com Ansible 46

5.4 Seu Primeiro Playbook: A Idempoténcia

Agora, vamos automatizar uma tarefa real: garantir que o servidor web Nginx
esteja instalado e rodando. Criamos um arquivo install_nginx.yml:

install nginx.yml
— name: Instalar e configurar o Nginx
hosts: webservers
become: yes # Indica que as tarefas devem ser executadas com
sudo

tasks:
— name: Atualizar o cache do apt
apt:
update_cache: yes

— name: Instalar o Nginx
apt:
name: nginx
state: present

Vamos analisar este playbook:

* hosts: webservers: Define que este play serd executado no grupo [webservers]
do nosso inventario.

* become: vyes: Informa ao Ansible para escalar privilégios (usar sudo) para
executar as tarefas.

* tasks: A lista de a¢cdes. Cada tarefa chama um moddulo.

* state: present: Estaé achave do gerenciamento de configuracdo. Estamos
dizendo ao Ansible: "Eu ndo me importo como, apenas garanta que o Nginx esteja
presente".

Executamos o playbook com o comando:

$ ansible-playbook -1 hosts install_nginx.yml —--ask-become-pass

Na primeira execugdo, o Ansible verd que o Nginx ndo estd instalado e o instalard.
A saida da tarefa mostrard changed. Se executarmos o mesmo playbook uma segunda
vez, o Ansible verificard o estado, verd que o Nginx jd estd presente e ndo fard nada. A
saida mostrard ok.

Esse conceito é chamado de Idempoténcia e € o pilar do Ansible: um playbook
descreve o estado final desejado, e o Ansible de forma inteligente sé realiza as agdes
necessdrias para alcanca-lo.

FACOM-UFMS

Introducio a Automaciao com Ansible 47

5.5 Playbooks Avancados: Handlers e Templates

Instalar pacotes € apenas o comeco. O verdadeiro poder do Ansible estd em
gerenciar arquivos de configuracdo e o estado dos servicos.

5.5.1 Gerenciando Arquivos e Reiniciando Servicos com Handlers

Um desafio comum € que um servico (como o Nginx) s6 deve ser reiniciado se seu
arquivo de configuracao for realmente alterado. Reinicia-lo a cada execugao do playbook é
ineficiente e pode causar indisponibilidade.

O Ansible resolve isso com Handlers. Um Handler é uma tarefa especial que s6 é
executada se outra tarefa a "notificar".

Vamos aprimorar nosso playbook para copiar um arquivo index.html persona-
lizado e notificar um handler para reiniciar o Nginx apenas se o arquivo for alterado.

Primeiro, criamos o arquivo local:

$ mkdir files
$ echo "<hl>Site gerenciado pelo Ansible!</h1>" >
files/index.html

Agora, modificamos nosso playbook:

install nginx.yml

— name: Instalar e configurar o Nginx
hosts: webservers
become: yes

tasks:
— name: Garantir que o Nginx esteja instalado
apt:
name: nginx
state: present

— name: Copiar a pagina index.html personalizada

copy:
src: files/index.html # Origem no Control
Node
dest: /var/www/html/index.html # Destino no Managed
Node

ATENCAO: A indentacdo do notify deve estar no mesmo
nivel do médulo copy

O nome deve ser EXATAMENTE igual ao definido no handler
abaixo

notify: Reiniciar Nginx

FACOM-UFMS

Introducio a Automaciao com Ansible 48

Bloco especial para handlers
handlers:
— name: Reiniciar Nginx
service:
name: nginx
state: restarted

Na primeira execugdo, o modulo copy copiard o arquivo, verd uma mudanca
(changed=true), e notificard o handler Reiniciar Nginx, que serd executado
no final do play. Na segunda execugdo, o copy verd que os arquivos sdo idénticos
(ok=true), ndo notificard o handler, e o Nginx ndo serd reiniciado.

5.5.2 Gerando Configuracoes Dinamicas com Templates

"Chumbar"arquivos de configuracao estaticos ndo € escaldvel. Ambientes diferentes
(desenvolvimento, producdo) precisam de configuragdes diferentes. O Ansible resolve isso
com 0 médulo template e o motor de templates Jinja2.

O médulo template funciona como o copy, mas antes de enviar o arquivo, ele
0 processa, substituindo varidveis (marcadas com { { ... }}) por valores definidos no
playbook.

Vamos transformar nossa pagina index.html em um template. A convengao é
usar a extensao . j2.

S mkdir templates
S echo "<hl>{{ mensagem_da_pagina }}</hl1>" >
templates/index.html. j2

Agora, modificamos o playbook para usar template e definir a varidvel:

install nginx.yml

— name: Instalar e configurar o Nginx com Templates
hosts: webservers
become: yes

Define variadveis para este play.

CUIDADO: A indentacdo de ’vars’ deve estar alinhada com
"tasks’ e "hosts’

vars:

mensagem_da_pagina: "Site dinédmico com Ansible!"

tasks:
— name: Garantir que o Nginx esteja instalado
apt:
name: nginx

FACOM-UFMS

Introducio a Automaciao com Ansible 49

state: present

— name: Gerar a pagina index.html a partir do template
template:
Garanta que a pasta ’'templates’ existe no diretdrio
onde roda o comando
src: templates/index.html. j2
dest: /var/www/html/index.html
notify: Reiniciar Nginx

handlers:
— name: Reiniciar Nginx
service:
name: nginx
state: restarted

Ao executar, o Ansible lerdo index .html . j2, substituird { { mensagem_da_pagina
} } pelo valor em vars, e enviard o arquivo final resultante para o servidor. Agora,
podemos gerenciar o conteudo do nosso site (ou configuracdes complexas do Nginx)
simplesmente alterando as varidveis em nosso playbook, e ndo os arquivos em Ssi.

FACOM-UFMS

Capitulo 6

Introducao ao Kubernetes com
Minikube

Nos capitulos anteriores, exploramos como criar contéineres (com Docker e Pod-
man), como gerencid-los em um tnico host (com Compose) e como provisionar a infraes-
trutura (com Ansible). Finalmente, chegamos ao desafio da orquestracao em larga escala:
como gerenciar, escalar e manter milhares de contéineres distribuidos por um cluster
de dezenas ou centenas de maquinas? A resposta para essa pergunta ¢ o Kubernetes
(comumente abreviado como K8s).

6.1 O que é o Kubernetes?

O Kubernetes ¢ um sistema de orquestracdo de contéineres de cédigo aberto, origi-
nalmente desenvolvido pelo Google. Ele automatiza a implantacdo, o dimensionamento
(escalabilidade) e o gerenciamento de aplicacdes em contéineres.

Ele agrupa os contéineres que compdem uma aplica¢do (como o servidor web
e o banco de dados) em unidades 16gicas para facilitar o gerenciamento e a descoberta
de servicos. Mais importante, o Kubernetes opera em um nivel de cluster. Ele abstrai
a infraestrutura subjacente (sejam maquinas virtuais, bare-metal ou nuvem publica) e a
apresenta como um unico e vasto pool de recursos computacionais.

Suas principais fungdes incluem:

* Automacio de Implantacao (Deploy): Define o estado desejado da aplicacdo e o
Kubernetes trabalha para alcancé-lo.

* Balanceamento de Carga e Descoberta de Servico: Expde contéineres na rede e
distribui o trafego entre eles.

* Auto-healing (Auto-reparacio): Reinicia automaticamente contéineres que falham,
substitui nds problematicos e garante que o estado desejado seja mantido.

50

Introducao ao Kubernetes com Minikube 51

* Auto-escalabilidade: Ajusta automaticamente o niimero de contéineres em execucao
com base no uso de CPU ou memoria.

6.2 Arquitetura de um Cluster Kubernetes

Um cluster Kubernetes € composto por dois tipos de recursos principais: o Control
Plane (Plano de Controle) e os Nodes (NOs).

6.2.1 Control Plane (Manager)

O Control Plane € o "cérebro"do cluster. Ele toma as decisdes globais, como
agendar contéineres e responder a eventos. E composto por virios componentes, como
0 api-server (o front-end para o cluster), o et cd (o banco de dados de estado) e o
scheduler (que decide em qual né um contéiner deve rodar).

6.2.2 Nodes (Workers)

Os Nodes, ou "workers", sdo as mdquinas (virtuais ou fisicas) que executam as
aplicagdes. Cada n6 executa dois processos principais: 0 kubelet (que se comunica com
o Control Plane) e um container runtime (como o Docker ou containerd) que
¢ responsdvel por, de fato, iniciar e parar os contéineres.

6.3 O que é o Minikube?

Um cluster Kubernetes completo é complexo de configurar. Para fins de aprendi-
zado, desenvolvimento e teste local, usamos o Minikube.

O Minikube € uma ferramenta que cria um cluster Kubernetes local de forma
simples e rdpida, geralmente rodando todos os componentes do Control Plane € um n6
Worker dentro de uma tinica maquina virtual ou contéiner Docker em sua maquina. Ele nos
permite experimentar a API completa do Kubernetes sem a complexidade de provisionar
uma infraestrutura de multiplos servidores.

6.4 Instalando o Cluster Minikube

Neste capitulo, prepararemos nosso ambiente Debian 12 para executar um cluster
Minikube. Isso envolve a instalacdo de trés componentes: o docker (que servird como o
"driver"ou a base para o n6 do Minikube), o kubect 1 (a ferramenta de linha de comando
para interagir com o cluster) e o proprio minikube.

FACOM-UFMS

Introducao ao Kubernetes com Minikube 52

6.4.1 Instalando o Driver: Docker

O Minikube precisa de um ambiente para criar seu "nd"de cluster. A op¢ao mais
comum € usar o Docker. Se vocé ainda ndo o instalou (conforme o Capitulo 5), o processo
envolve adicionar o repositério oficial do Docker:

Adiciona o repositério Docker (comandos de curl e gpg
omitidos por brevidade)
$ echo \

"deb [arch=$ (dpkg —-—-print—-architecture)
signed-by=/etc/apt/keyrings/docker.asc]
https://download.docker.com/linux/debian \

S(. /etc/os—-release && echo "SVERSION_CODENAME") stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

$ sudo apt-get update

Com o repositorio pronto, instalamos o Docker Engine:

S sudo apt-get install docker-ce docker-ce-cli containerd.io
$ docker —--version

Configurando o Driver para o Systemd

Para garantir que o Minikube e o Docker interajam corretamente no gerenciamento
de recursos (cgroups), € crucial configurar o containerd (o runtime de baixo nivel do
Docker) para usar o systemd como seu driver de cgroup.

Geramos o arquivo de configuracio padrao do containerd e, em seguida, usa-
mos o sed para alterar a diretiva SystemdCgroup de false para true:

$ containerd config default | sudo tee
/etc/containerd/config.toml >/dev/null 2>&1

$ sudo sed -i ’'s/SystemdCgroup \= false/SystemdCgroup \=
true/g’ /etc/containerd/config.toml

Finalmente, reiniciamos e habilitamos o servico containerd para aplicar a
mudanga:

$ sudo systemctl restart containerd
$ sudo systemctl enable containerd

6.4.2 Instalando Minikube e Kubectl

O kubectl é a CLI (Command Line Interface) universal para interagir com
qualquer cluster Kubernetes, seja ele local (Minikube) ou na nuvem. O minikube é o
executdvel que cria o cluster local.

FACOM-UFMS

Introducao ao Kubernetes com Minikube 53

Instalamos o kubect1 usando snap ou curl, e o minikube baixando seu
pacote .deb:

S curl -LO
https://storage.googleapis.com/minikube/releases/latest/minikube_latest_a

$ sudo dpkg —-i minikube_latest_amd64.deb
$ minikube version

S sudo snap install kubectl --classic

$ kubectl version —--client

6.4.3 Preparando o Host para o Kubernetes

O Kubernetes tem requisitos estritos sobre o ambiente do host, principalmente em
relacdo a memoria e rede.

Desativando a SWAP

O Kubernetes espera que os recursos de memoria sejam previsiveis. A SWAP (me-
moria de troca em disco) interfere no agendador (scheduler), que precisa saber exatamente
quanta memoria um né possui. Se a SWAP estiver ativa, o agendador pode alocar um
Pod (unidade de trabalho) em um né que estd com a memoria fisica esgotada, levando a
instabilidade.

Por isso, devemos desativd-la permanentemente:

sudo swapoff -a

Comenta a linha da SWAP no /etc/fstab para desabilitar no boot
sudo sed -i '/ swap / s/"\(.*\)S$/#\1/g’ /etc/fstab

sudo systemctl daemon-reload

Lr 0 HH W

Carregando Médulos do Kernel

O Kubernetes precisa de dois médulos do kernel para gerenciar a rede de cont€ine-
res e os sistemas de arquivos em camadas:

* overlay: Permite o sistema de arquivos em camadas usado pelas imagens de
contéiner.

* br_netfilter: Permite que o trafego de rede entre Pods seja filtrado e roteado
corretamente pelas regras do iptables.

Carregamos esses modulos e os tornamos permanentes no boot:

$ sudo tee /etc/modules-load.d/containerd.conf <<EOF
overlay

FACOM-UFMS

Introducao ao Kubernetes com Minikube 54

br netfilter
EOF

$ sudo modprobe overlay
$ sudo modprobe br_netfilter

Também habilitamos o encaminhamento de IP para que a rede do cluster funcione:

$ sudo tee /etc/sysctl.d/kubernetes.conf <<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge—nf-call-iptables =1
net.ipvé4.ip_forward = 1

EOF

$ sudo sysctl —-system

6.4.4 Iniciando o Cluster Minikube

Com o ambiente preparado, iniciar o cluster € um unico comando. Podemos
solicitar multiplos nds (-nodes=2) para simular um ambiente mais realista com um
control-plane e um worker:

$ minikube start --nodes=2

minikube v1.36.0 on Debian 12.11 (armo64)

Using the docker driver based on user configuration

Starting "minikube" primary control-plane node in "minikube"
cluster

Creating docker container (CPUs=2, Memory=1975MB)

Preparing Kubernetes v1.33.1 on Docker 28.1.1

Enabled addons: default-storageclass, storage-provisioner

Starting "minikube-m02" worker node in "minikube" cluster

Creating docker container (CPUs=2, Memory=1975MB)

Done! kubectl is now configured to use "minikube" cluster...

Ap6s alguns instantes, o Minikube configura o kubect 1 automaticamente. Pode-
mos verificar o status do nosso cluster:

$ kubectl get nodes -o wide

NAME STATUS ROLES AGE VERSION
INTERNAL-IP OS—-IMAGE

minikube Ready control-plane 115s v1.33.1
192.168.49.2 Ubuntu 22.04

minikube-m02 Ready <none> 93s v1.33.1

192.168.49.3 Ubuntu 22.04

Nosso cluster de dois nés estd pronto para ser usado.

FACOM-UFMS

Introducao ao Kubernetes com Minikube 55

6.4.5 Interagindo com o Cluster e Servicos

Com nosso cluster Minikube em execugdo, podemos comecar a interagir com ele e
implantar aplicagdes.

6.4.6 Dashboard e Métricas

O Kubernetes oferece um Dashboard grafico (Web Ul) para inspecionar o cluster.
O Minikube o fornece como um "addon". Para que o dashboard mostre informacoes de
uso (CPU/Memodria), precisamos habilitar também o metrics—server:

S minikube addons enable metrics—-server
The "metrics—-server’ addon is enabled

S minikube dashboard

Launching proxy

Opening
http://127.0.0.1:37853/api/vl/namespaces/kubernetes—-dashboard...

O comando minikube dashboard inicia um proxy e abre a interface no nave-
gador. Como estamos em um servidor, podemos usar um tinel SSH (conforme visto em
laboratdrios anteriores) para acessar essa porta 127.0.0.1 a partir da nossa miquina
fisica.

6.5 Namespaces

Antes de implantar aplicagdes, devemos introduzir o conceito de Namespaces. Em
vez de lancar todos os nossos recursos (Pods, Servicos, etc.) no namespace default,
uma boa pratica € criar um namespace separado para cada aplica¢do ou projeto.

Namespaces fornecem:

* Isolamento logico: Recursos com o mesmo nome podem existir em namespaces
diferentes.

* Controle de Acesso (RBAC): Podemos definir permissdes por namespace (ex: Time
A s6 acessa 0 namespace dev).

* Gerenciamento de Recursos: E possivel definir cotas de CPU, memdria e storage
por namespace.

Criamos um namespace com kubectl create namespace e podemos defi-
nir nosso contexto kubect 1 para atuar dentro dele:

FACOM-UFMS

Introducao ao Kubernetes com Minikube 56

$ kubectl create namespace nextcloud
namespace/nextcloud created

Alterando para um ns especifico
$ kubectl config set-context —--current —--namespace=nextcloud

6.6 Instanciando Servicos: WordPress

Vamos implantar uma aplicacdo WordPress completa. No Kubernetes, nao criamos
"Pods"diretamente. N6s definimos objetos de nivel superior, como Deployments, Services
e PersistentVolumeClaims, e o Control Plane se encarrega de criar os Pods para nés.

A forma mais comum de fazer isso € através de um arquivo de manifesto YAML,
que descreve o estado final desejado.

Primeiro, criamos um namespace para o projeto:

S kubectl create namespace wordpress

Em seguida, criamos um unico arquivo wp-mysgl.yml que define todos os
recursos necessarios:

wp-mysqgl.yml
apiVersion: vl
kind: Namespace
metadata:
name: wordpress
apiVersion: vl
kind: Secret
metadata:
name: mysgl-pass
namespace: wordpress
type: Opaque
stringData:
A senha real é definida aqui (o K8s fard o encode base64
automaticamente com stringData)
password: senha—-super—-secreta
Servico para o MySQL (ClusterIP - Interno)
apiVersion: vl
kind: Service
metadata:
name: mysqgl
namespace: wordpress
spec:
ports:

FACOM-UFMS

Introducao ao Kubernetes com Minikube

57

- port: 3306
selector:
app: mysql
clusterIP: None # Headless service é comum para DBs,
ClusterIP normal funciona
PVC para o Banco de Dados
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: mysqgl-pv-claim
namespace: wordpress
spec:
accessModes:
— ReadWriteOnce
resources:
requests:
storage: 1Gi
Deployment do MySQL
apiVersion: apps/vl
kind: Deployment
metadata:
name: mysqgl
namespace: wordpress
spec:
selector:
matchlLabels:
app: mysql
strategy:
type: Recreate
template:
metadata:
labels:
app: mysql
spec:
containers:
- image: mysqgl:5.7 # Versao estavel para WP
name: mysqgl
env:
— name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef:
name: mysgl-pass
key: password
ports:
— containerPort: 3306

FACOM-UFMS

mas

Introducao ao Kubernetes com Minikube

58

name: mysql
volumeMounts:
- name: mysgl-persistent-storage
mountPath: /var/lib/mysqgl
volumes:
— name: mysdgl-persistent-storage
persistentVolumeClaim:
claimName: mysgl-pv-claim
Servico para o WordPress (NodePort ou LoadBalancer)
apiVersion: vl
kind: Service
metadata:
name: wordpress
namespace: wordpress
spec:
ports:
- port: 80
selector:
app: wordpress
type: LoadBalancer # No Minikube, isso requer ’'minikube
tunnel’ ou apenas NodePort
PVC para arquivos do WordPress
apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: wp-pv-claim
namespace: wordpress
spec:
accessModes:
— ReadWriteOnce
resources:
requests:
storage: 1Gi
Deployment do WordPress
apiVersion: apps/vl
kind: Deployment
metadata:
name: wordpress
namespace: wordpress
spec:
selector:
matchLabels:
app: wordpress
template:

FACOM-UFMS

Introducao ao Kubernetes com Minikube 59

metadata:
labels:
app: wordpress
spec:
containers:
— image: wordpress:latest
name: wordpress
env:
— name: WORDPRESS DB HOST
value: mysgl # Nome do Servigco do MySQL definido acima
— name: WORDPRESS_DB_PASSWORD
valueFrom:
secretKeyRef:
name: mysqgl-pass
key: password
ports:
— containerPort: 80
name: wordpress
volumeMounts:
— name: wordpress—-persistent-storage
mountPath: /var/www/html
volumes:
— name: wordpress—-persistent-storage
persistentVolumeClaim:
claimName: wp-pv-claim

Com o arquivo pronto, aplicamos o manifesto ao cluster:

S kubectl apply -f wp-mysgl.yml
namespace/wordpress created
persistentvolumeclaim/wordpress—pvc created
secret/mysgl-pass created

deployment .apps/mysgl created

service/mysqgl created

O Kubernetes agora trabalhara para criar tudo isso. Podemos verificar o status dos
Pods (as unidades de execug@o) dentro do namespace wordpress:

S kubectl get pods -n wordpress

NAME READY STATUS RESTARTS AGE
mysqgl-65d8c54c47-abcde 1/1 Running 0 5m
wordpress—-7£58£555d4-fghij 1/1 Running 0 5m

FACOM-UFMS

Introducao ao Kubernetes com Minikube 60

6.7 Acessando o Servico via Minikube

O WordPress foi exposto através de um Service. O Minikube fornece um comando
de atalho para expor este servico em uma URL acessivel:

S minikube service wordpress -n wordpress —--url

http://192.168.49.2:30080

Podemos entao usar este IP e porta (novamente, com um tinel SSH se necessa-
rio) para acessar a tela de instalagdo do WordPress em nosso navegador, concluindo a
implantacio.

FACOM-UFMS

Capitulo 7

Introducao ao Terraform

7.1 O que é Terraform?

O Terraform ¢ uma ferramenta para gerenciamento de infraestrutura de aplicacdes
via descri¢do de cédigo (IaC). Ela € mantida e criada pela empresa HashiCorp e apresenta
uma documentacdo bem amigédvel com tutoriais de instalacdo em diversos provedores
Cloud como AWS, Azure, Oracle, Docker e Google Cloud, por exemplo, além de tutoriais
mais especificos da propria ferramenta, também trazendo casos de uso.

Com ela € possivel instanciar componentes de baixo nivel — servidores, bancos de
dados, balanceadores de carga e redes—, bem como aqueles de alto nivel, como entradas
de DNS, CDN, Serveless services, Simple Queue Service, Simple Notification Service,
Monitoramento e Logs, entre outras funcionalidades de SaaS.

Aqui vamos continuar seguindo a documentacdo para implementacdo de uma
infraestrutura com Docker para Linux, mas caso queira, voc€ pode seguir os passos para
Windows ao longo do tutorial.

7.1.1 Vantagens

* Gestao centralizada da infraestrutura em diversos provedores de plataformas na
nuvem (Cloud) via arquivos de configuracao.

* Linguagem declarativa e de alto nivel para escrita rdpida da infraestrutura.

* Controle dos estados permite acompanhar as alteragdes dos recursos ao longo das
implantacdes.

7.1.2 Ciclo de deploy

Para realizar o deploy com o terraform, vamos seguir as seguintes etapas:

61

https://developer.hashicorp.com/terraform/tutorials
https://developer.hashicorp.com/terraform/tutorials/docker-get-started

Introducao ao Terraform 62

* Scope: identificar a infraestrutura do projeto.

* Author: escrever a configuracdo que define a infraestrutura.
* [nicialize: instalar os provedores necessarios.

* Plan: visualizar as mudancgas que o Terraform vai fazer.

* Apply: aplicar as mudancgas na infraestrutura.

7.1.3 Arquivos de configuracoes e suas funcoes

* main.tf: arquivo de configuracdo de infraestrutura da aplicagao.

* terraform.tfstate: responsivel por guardar o estado das alteragdes ao longo
do tempo, contendo mais detalhes sobre os recursos. Deve ser armazenado com
cuidado por conter informacoées sensiveis como IDs, hashs e outros atributos dos
recursos.

7.2 Instalacao

Para instalar a ferramenta, consulte a documentagdo no site oficial da HashiCorp
e escolha o tutorial de acordo com a sua mdquina. Verifique se a instalagdo foi bem
sucedida com terraform -version ou dé uma olhada nos comandos da ferramenta
com terraform -help. Caso queira saber mais de um determinado comando basta
inclui-lo no comando: terraform plan —help. Vocé pode habilitar o auto-complete
de comandos com terraform —-install-autocomplete.

7.3 Build

Cada arquivo de configuracao do terraform deve estar organizado em um diretério
de trabalho especifico. Vamos

mkdir build-nginx && cd build-nginx
touch main.tf
Adicione a configuracdo como no arquivo main. t £ e depois inicialize o deploy

comterraform init.

terraform {
required_providers {
docker = {
source = "kreuzwerker/docker"

FACOM-UFMS

https://developer.hashicorp.com/terraform/install

Introducao ao Terraform 63

version = "~> 3.0.1"

provider "docker" {}

resource "docker_image" "nginx" {
name = "nginx:latest"
keep_locally = false

}

resource "docker_ container" "nginx" {
image = docker_image.nginx.image_id
name = "tutorial"
ports {

internal = 80

external = 8000

Aqui o terraform vai baixar o docker e instalar em um subdiretério escondido
chamado .terraform. Ele também vai criar um arquivo de "trava"especificando a
versdo e o provedor exato que foi utilizado. Nao € recomendado realizar alteracdes
manuais nele, pois pode resultar em perdas futuras.

7.3.1 Criando a infraestrutura

Ao executar terraform apply, o terraform vai mostrar o planejamento a ser
executado descrevendo as acdes a serem tomadas para subir a infraestrutura. Ele vai
esperar vocé€ aprovar a aplicacdo e dentro de alguns segundos vocé terd seu nginx ativo
emhttp://localhost:8000. Vocé pode verificar o estado atual da infraestrutura
comterraform show.

7.4 Fazendo alteracoes na infraestrutura

No arquivo main.tf altere a porta externa de 8000 para 8888. Em seguida
execute terraform apply como anteriormente e voc€ verd que ele vai mostrar as
alteracOes semelhante ao git. Verifique em http://localhost:8888.

FACOM-UFMS

http://localhost:8000
http://localhost:8888

Introducao ao Terraform 64

7.4.1 Destruindo recursos

Para destruir recursos, basta executar terraform destroy, o que executa
exatamente o procedimento inverso do terraform apply.

7.4.2 Criando variaveis

Uma boa pratica dessa ferramenta € criar um arquivo de varidveis variables.tf
para configurar os nomes de uma forma flexivel e segura. Aqui vamos criar uma variavel
para o nome do container.

variable "container name" {

description = "Value of the name for the Docker container"
type = string
default = "Ngineco"

Em seguida, namain. t £ adapte para o nome que deseja no recurso do container
e altere o nome de "tutorial" para var.container_name.

resource "docker_ container" "nginx" {
image = docker_image.nginx.image_id
name = var.container_name
ports {
internal = 80

external = 8888

Aplique as alteragdes com terraform apply. Vocé também pode aplicar isso
diretamente na CLI com a flag —var "container_name=0utroNome".

7.4.3 Objetificando outputs

Crie um arquivo chamado outputs.tf e insira os blocos de id do container e
da imagem, como estd no arquivo. Aplique as alteracdes novamente com terraform
apply e vocé verd os valores dos respectivos IDs. De forma alternativa vocé pode verificar
com terraform output.

output "container_id" {
description = "ID of the Docker container"
value = docker_container.nginx.id

output "image_id" {
description = "ID of the Docker image"
value = docker_image.nginx.id

FACOM-UFMS

Introducao ao Terraform 65

Como saida teremos algo semelhante ao seguinte prompt:

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

Outputs:

container_ id =
"e5fff27c62e04d21980543£21161225ab483a1e534a98311a677b9453a"

image_id =

"sha256:d1a364dc548d5357f0da3268594f1d6lcbfdeenginx:latest"

Entre os beneficios de utilizd-lo estd a possibilidade de conectar os recursos de
outros projetos a sua infraestrutura de modo a automatizar o workflow da sua aplicagao.

FACOM-UFMS

	1 Linux Containêres - LXC
	1.1 Analisando a Rede do Contêiner
	1.2 Inspeção e Monitoramento de Contêineres
	1.3 Parando Contêineres
	1.4 Verificando Configurações do Kernel
	1.5 Arquivos de Configuração do Contêiner
	1.6 Integração com Systemd
	1.7 Disponibilidade de Templates
	1.7.1 Download de Templates

	1.8 Gerenciamento de Snapshots
	1.9 Tipos de Interfaces de Rede
	1.9.1 empty
	1.9.2 phys
	1.9.3 veth
	1.9.4 vlan
	1.9.5 macvlan

	1.10 Conclusão
	1.11 Atividades

	2 Incus: O Sucessor do LXD
	2.1 Adicionar Repositório Zabbly
	2.2 Atualizar Pacotes e Instalar Incus
	2.3 Setup inicial e Comandos básicos
	2.3.1 Inicializando a ferramenta
	2.3.2 Brincando com contêiners

	2.4 Gerenciamento de Snapshots
	2.5 Gerenciamento de Redes
	2.6 Gerenciando Armazenamento

	3 Podman: A Arquitetura Daemonless
	3.1 Instalação
	3.2 Iniciando Nosso Primeiro Contêiner
	3.3 Operando Contêineres no Podman
	3.3.1 Comandos Essenciais
	3.3.2 Gerenciamento de Recursos
	3.3.3 Primeiro Containerfile com Podman

	3.4 Aprofundando em Ambientes Rootless
	3.4.1 O que é um Ambiente Rootless?
	3.4.2 Os Bastidores do Rootless
	3.4.3 Configurando o Ambiente Host para Rootless
	3.4.4 Operando em Modo Rootless na Prática
	3.4.5 Limitações do Modo Rootless: Mapeamento de Portas

	3.5 Orquestração com Podman Compose
	3.5.1 O que é podman-compose?
	3.5.2 Instalação do podman-compose

	3.6 Aplicações Práticas: Nextcloud e WordPress
	3.6.1 Estrutura de um Arquivo compose.yml
	3.6.2 Analisando a Anatomia do Compose

	3.7 Gerenciamento Avançado de Rede com Traefik
	3.7.1 Diferenças na Configuração com Podman
	3.7.2 Configuração do Traefik com Compose

	3.8 Recursos Avançados: Pods e Manifestos Kubernetes
	3.8.1 O Conceito de ``Pod''
	3.8.2 Gerando Manifestos Kubernetes

	4 Introdução ao Docker: O Padrão da Indústria
	4.1 Instalação
	4.2 Executando o Docker como um Usuário Não-Root
	4.3 Operações Básicas de Contêineres
	4.4 Aprofundando em Dockerfiles
	4.4.1 Anatomia de um Dockerfile: Instruções Essenciais
	4.4.2 Otimização: Encadeando Comandos RUN
	4.4.3 Tópicos Avançados de Dockerfile

	4.5 Gerenciamento de Dados com Volumes
	4.5.1 Tipos de Persistência

	4.6 Orquestração com Docker Compose
	4.6.1 Instalando o Docker Compose
	4.6.2 Orquestrando o Portainer
	4.6.3 Expandindo o Compose: Profiles e .env

	4.7 Estudos de Caso: Nextcloud e WordPress
	4.8 Orquestração de Cluster: Docker Swarm
	4.8.1 Arquitetura: Managers e Workers
	4.8.2 Serviços no Swarm
	4.8.3 Escalando e Gerenciando Nós

	4.9 Gerenciamento de Rede Avançado com Traefik
	4.9.1 Configuração do Traefik com Docker Compose

	5 Introdução à Automação com Ansible
	5.1 O que é o Ansible?
	5.2 Conceitos Fundamentais
	5.3 Instalação e Configuração Prática
	5.3.1 Instalação do Ansible
	5.3.2 Criando um Inventário
	5.3.3 Testando a Conexão (Comandos Ad-Hoc)

	5.4 Seu Primeiro Playbook: A Idempotência
	5.5 Playbooks Avançados: Handlers e Templates
	5.5.1 Gerenciando Arquivos e Reiniciando Serviços com Handlers
	5.5.2 Gerando Configurações Dinâmicas com Templates

	6 Introdução ao Kubernetes com Minikube
	6.1 O que é o Kubernetes?
	6.2 Arquitetura de um Cluster Kubernetes
	6.2.1 Control Plane (Manager)
	6.2.2 Nodes (Workers)

	6.3 O que é o Minikube?
	6.4 Instalando o Cluster Minikube
	6.4.1 Instalando o Driver: Docker
	6.4.2 Instalando Minikube e Kubectl
	6.4.3 Preparando o Host para o Kubernetes
	6.4.4 Iniciando o Cluster Minikube
	6.4.5 Interagindo com o Cluster e Serviços
	6.4.6 Dashboard e Métricas

	6.5 Namespaces
	6.6 Instanciando Serviços: WordPress
	6.7 Acessando o Serviço via Minikube

	7 Introdução ao Terraform
	7.1 O que é Terraform?
	7.1.1 Vantagens
	7.1.2 Ciclo de deploy
	7.1.3 Arquivos de configurações e suas funções

	7.2 Instalação
	7.3 Build
	7.3.1 Criando a infraestrutura

	7.4 Fazendo alterações na infraestrutura
	7.4.1 Destruindo recursos
	7.4.2 Criando variáveis
	7.4.3 Objetificando outputs

