
Exploring Code Samples Characteristics
and Their Impacts on Software

Ecosystems

Gabriel Santana de Menezes

SERVIÇO DE PÓS-GRADUAÇÃO DA FACOM-
UFMS

Data de Depósito: 14/07/2022

Assinatura:

Exploring Code Samples
Characteristics and Their Impacts on

Software Ecosystems1

Gabriel Santana de Menezes

Advisor: Prof. Bruno Barbieri de Pontes Cafeo, Ph.D.
Co-Advisor: Prof. André Cavalvante Hora, Ph.D.

Dissertation delivered to the Faculty of Comput-
ing (FACOM/UFMS) as part of requirements to
obtain the title of Master in Computing Science.

UFMS
August/2022

1This work was supported by CNPq Grant No. 133898/2020-2

Acknowledgements

Since graduation, when I worked on a research project that later became

my master’s work, I always feel lucky to have Professor Bruno and Professor

André as advisors. I am immensely grateful to my advisor, Professor Bruno

Cafeo, who helped me a lot throughout this master’s project, for his patience

and enthusiasm to share his knowledge, which motivated me to continue. My

thanks go to my co-advisor, Professor André Hora, who helped us in the con-

struction of the work, through meetings where we discussed ideas about the

work and through revisions of texts that helped me in the evolution and im-

provement of my way of writing. I also thank Professor Awdren Fontão, either

for his collaboration in the development of scientific papers, or suggestions re-

ported on my qualification board or as coordinator of the Software Engineering

Laboratory (LEDES). I am also immensely grateful to Professor Hugo Borges

for the contributions and suggestions made on my qualification board.

I would like to thank my mother, Ana Maria, who always educated and

supported me from my childhood until her last day of life. I dedicate this

research to her. I also want to thank my girlfriend, Tatiane, who supported and

helped me during the difficult times throughout this research. This includes

my brother, Leandro, and my father, Aparecido.

I would also like to thank the friends I made during this research. Sharing

knowledge between us was very enriching. I thank all the members of LEDES.

Special thanks to Adriano Marques, Camila Minei, Gabriel Colman, Karolina

Milano, Matheus Melo, Pedro Arantes, Sábia Belle and Willian Marotzk.

Finally, I gratefully acknowledge CNPq for the funding that made this re-

search possible.

v

vi

Abstract

Modern software systems are commonly built on top of frameworks, li-

braries, and APIs (platforms). The environments where exists relations be-

tween organizations that maintain these platforms and clients that use fea-

tures of these platforms are known as the Software Ecosystem. In this context,

organizations develop code samples to help their client with learning barriers.

Code samples are small software projects, with educational purposes, and

teach how to use platform features. However, we know little about code sample

characteristics and their relation with organizations and clients. In this work,

we aim to fill these gaps by assessing four different aspects. First, comparing

code samples with conventional projects through their source code. Second,

exploring the code sample usage via Stack Overflow and GitHub. Third, as-

sessing the profile of actors that interact with code samples. Fourth, main-

tenance of code samples and their impact on clients. We found that code

samples are smaller and simpler than conventional projects. We also found

that code sample changes less frequently but updates faster to new platform

versions than conventional projects. Regarding code sample usage, we found

that the copy/paste approach is low used by clients. Also, we noted that the

most common problem faced by clients is when they try to modify the code

sample and improvements are the most common need from clients. Regarding

actors around code samples, we found that the target audience of code sam-

ples can range from inexperienced to experienced clients. Also, we noted that

platforms of different organizations seem to have different target audiences.

Also, code sample maintainers are aged and unpopular on GitHub. Finally,

about code sample maintenance, we found that code modifying is the most

common maintenance activity of code samples, but Pull Request management

plays an essential part in maintenance time. We also found that code samples

become less complex but larger and less readable over time.

vii

viii

Resumo

Os sistemas de software modernos são geralmente construídos sobre frame-
works, bibliotecas e APIs (plataformas). Ambientes onde existem relações en-

tre as organizações que mantêm essas plataformas e os clientes que utilizam

recursos dessas plataformas são conhecidos como Ecossistema de Software.

Nesse contexto, as organizações desenvolvem code samples para ajudar seus

clientes com as barreiras de aprendizado. Code samples são pequenos proje-

tos de software, com fins educacionais, e ensinam como usar os recursos da

plataforma. No entanto, sabemos pouco sobre as características de code sam-
ples e sua relação com organizações e clientes. Neste trabalho, pretendemos

preencher essas lacunas avaliando quatro aspectos diferentes. Primeiro, com-

parando code samples com projetos convencionais através de seu código-fonte.

Segundo, explorando o uso de code samples via Stack Overflow e GitHub. Ter-
ceiro, avaliando o perfil dos atores que interagem com code samples. Quarto,

manutenção de code samples e seu impacto nos clientes. Descobrimos que os

code samples são menores e mais simples do que os projetos convencionais.

Também descobrimos que code samples mudam com menos frequência, mas

atualiza mais rapidamente para novas versões de plataforma do que os pro-

jetos convencionais. Em relação ao uso de code samples, descobrimos que a

abordagem copiar/colar é pouco utilizada pelos clientes. Além disso, notamos

que o problema mais comum enfrentado pelos clientes é quando eles ten-

tam modificar a code samples e as melhorias são a necessidade mais comum

dos clientes. Em relação aos atores em torno dos code samples, descobri-

mos que o público-alvo dos code samples pode variar de clientes inexperientes

a clientes experientes. Além disso, notamos que plataformas de diferentes

organizações parecem ter diferentes públicos-alvo. Além disso, os mantene-

dores de code samples são antigos e impopulares no GitHub. Por fim, sobre

a manutenção de code samples, descobrimos que a modificação de código é a

atividade de manutenção mais comum de code samples, mas o gerenciamento

de Pull Rquests desempenha um papel essencial no tempo de manutenção.

ix

Também descobrimos que os code samples se tornam menos complexas, mas

maiores e menos legíveis ao longo do tempo.

x

Contents

Summary . xiii

List of Figures . xvi

List of Tables . xviii

List of Acronyms . xix

1 Introduction 1

2 Background 5

2.1 Software Ecosystem . 5

2.2 Learning Process in SECO . 7

2.3 Code Sample . 8

2.4 Selected Platforms and Organizations 11

3 Code Samples vs Conventional Projects 15

3.1 Study Design . 16

3.1.1 Conventional Projects Selection 17

3.1.2 (RQ1) What are the source code characteristics of code

samples in comparison to conventional projects? 17

3.1.3 (RQ2) How do code samples evolve over time in comparison

to conventional projects? . 18

3.1.4 (RQ3) How are code samples used by clients compared to

conventional projects? . 19

3.1.5 Comparative Analysis . 20

3.2 Results . 20

3.2.1 (RQ1) What are the source code characteristics of code

samples in comparison to conventional projects? 20

3.2.2 (RQ2) How do code samples evolve over time in comparison

to conventional projects? . 23

3.2.3 (RQ3) How are code samples used by clients compared to

conventional projects? . 26

xi

3.3 Implication . 27

3.4 Threats to Validity . 27

3.5 Related Work . 28

3.6 Conclusion . 30

4 Usage of Code Samples 31
4.1 Study Design . 32

4.1.1 (RQ1) How do clients use code samples in their own projects?

. 32

4.1.2 (RQ2) What are the most common questions about code

samples on Stack Overflow? 33

4.1.3 (RQ3) What are the most common issues that impact code

samples on GitHub? . 35

4.2 Results . 36

4.2.1 (RQ1) How do clients use code samples in their own projects?

. 36

4.2.2 (RQ2) What are the most common questions about code

samples on Stack Overflow? 39

4.2.3 (RQ3) What are the most common issues that impact code

samples on GitHub? . 45

4.3 Implications . 47

4.4 Threats to Validity . 47

4.5 Related Work . 48

4.6 Conclusion . 49

5 Actors of Code Samples 51
5.1 Study Design . 52

5.1.1 Code Sample Selection . 52

5.1.2 (RQ1) What is the reputation of questioner about code

samples? . 52

5.1.3 (RQ2) What is the reputation of answerer about code sam-

ples? . 53

5.1.4 (RQ3) What are the characteristics of code sample main-

tainers? . 54

5.2 Results . 55

5.2.1 (RQ1) What is the reputation of questioner about code

samples? . 55

5.2.2 (RQ2) What is the reputation of answerer about code sam-

ples? . 56

5.2.3 (RQ3) What are the characteristics of code sample main-

tainers? . 56

xii

5.3 Implications . 59

5.4 Threats to Validity . 60

5.5 Related Work . 61

5.6 Conclusion . 61

6 Maintenance of Code Samples 63
6.1 Study Design . 64

6.1.1 Code Sample Selection . 65

6.1.2 (RQ1) How are maintenance activities distributed in code

sample repositories? . 65

6.1.3 (RQ2) How do code samples evolve over time? 66

6.1.4 (RQ3) Does the evolution of code samples may impact clients’

questions? . 68

6.2 Results . 69

6.2.1 (RQ1) How are maintenance activities distributed in code

sample repositories? . 69

6.2.2 (RQ2) How do code samples evolve over time? 71

6.2.3 (RQ3) Does the evolution of code samples may impact clients’

questions? . 78

6.3 Implications . 83

6.4 Threats to Validity . 85

6.5 Related Work . 86

6.6 Conclusion . 86

7 Conclusion and Future Work 89

Bibliography 101

xiii

xiv

List of Figures

2.1 SECO representation . 7

2.2 Folders and files from gs-spring-boot in 2022. 10

2.3 Application.java from code sample gs-spring-guides in 2022 . . . 11

2.4 HelloController.java from code sample gs-spring-guides in 2022 . 11

2.5 Commits that edited pom.xml into gs-spring-boot. 12

3.1 Source code analysis (RQ1). 17

3.2 Evolutionary analysis (RQ2). 18

4.1 Example of Stack Overflow question about an Android code sample. 34

4.2 Distribution of the number of views of the selected Android and

Spring questions. 34

4.3 Number of Duplicate Lines of Code (left) and Relative Number of

Duplicate Code Lines (right). 39

4.4 Stack Overflow questions by category. 40

4.5 Distribution of issues’ categories. 46

4.6 Distribution of modification types. 46

5.1 Reputation of questioners about code samples on SO. 55

5.2 Reputation of answerers about code sample (left) and reputation

of answerers with accepted answers (right). 56

5.3 Followers (left) and Following (right) of code sample maintainers. 57

5.4 Number of days from code sample maintainers on GitHub. 58

6.1 New method added in compute-java-manage-vm (Azure code sam-

ple). 74

6.2 Comparing two versions (from July 2018 to September 2019) of

cognitive-services-face-android-detect (Azure code sample). 75

6.3 Files from aws-cloudhsm-jce-examples in 2018 and 2020 (AWS

code sample). 76

6.4 Change affecting WMC in android-testdpc (Android code sample. 78

xv

6.5 Question complaining about the high LOC number. 79

6.6 Client complaining about the number of files. 81

6.7 Client complaining about the code complexity. 82

xvi

List of Tables

3.1 Comparing Code Sample and Conventional Projects. Statistically

significant difference with small (*), medium (**) and large (***)

effect. Not statistically significant different (-). Direction of the

difference (Dir) . 21

3.2 File extensions of code samples and conventional projects (RQ1). 22

3.3 Configuration files of code samples and conventional projects

(RQ1). 23

3.4 Comparing Code Sample and Conventional Projects in RQ2 met-

rics. Statistically significant difference with small (*), medium

(**) and large (***) effect. Not statistically significant different (-).

Direction of the difference (Dir) . 23

3.5 File extension changes in code samples and conventional projects

(RQ2). 24

3.6 Action type per file in code samples and conventional projects

(RQ2). 25

3.7 Configuration file changes in code samples and conventional projects

(RQ2). 25

3.8 Comparing Code Sample and General Projects in RQ4 metrics.

Statistically significant difference with small (*), medium (**) and

large (***) effect. Not statistically significant different (-). Direc-

tion of the difference (Dir) . 26

4.1 Number of watchers. 37

4.2 Most common code samples used into watchers’ repositories. . . 38

4.3 Relevant watcher’s repositories . 38

4.4 Most common tags of modification questions. 44

5.1 Maintainers location . 59

6.1 GitHub Events of Code Sample Maintainers. 70

xvii

6.2 Results . 72

xviii

Acronyms

PR Pull Request. 6, 54, 63, 65, 66, 69–71, 84, 86, 89

SECO Software Ecosystem. xv, 1, 2, 5–8, 31, 51, 54, 60, 63, 70, 89, 90

SO Stack Overflow. xv, 2, 3, 6, 51–56, 64, 65, 68, 69

xix

xx

CHAPTER

1
Introduction

Nowadays, software development is commonly supported by frameworks,

libraries, and APIs. In the context of this work, we called framework, library,

and API as platforms. The use of these platforms can provide feature reuse,

improve productivity, and decrease costs [44, 68, 80]. These platforms sup-

port the development of different niches of tools, like mobile apps, web apps,

responsive interfaces, cross-platform systems, cloud computing, distributed

systems, and others. These platforms are widely used in the industry. In the

Java ecosystem, for example, there are more than 450,000 platforms available

in the Maven repository [27]. In the Python ecosystem are more than 350,000

platforms [26] made available via Python Package Index. And in the JavaScript

ecosystem, there are more than 400,000 platforms [14].

In some environments, can exists relations between organizations that de-

velop and maintain these platforms and clients that use the functionalities

provided by the platforms to build new tools or software. This environment is

studied as Software Ecosystem (SECO) [24, 45, 51]. These relations are not

limited to just technical, but also social and business relations [8, 25, 51]. In

this context, it is common that newcomers clients want to learn how to use the

platform features. In the same way, experienced clients want to update their

knowledge about new features provided by the platform. For both situations,

in this work we called as learning process.

There are several barriers that the clients may face on the learning plat-

form usage [81, 82, 96, 98, 115]. For instance, the lack of code examples

that illustrate scenarios of platform usage [81, 103]. Another example is that

due to the competitiveness of the job market, clients need to learn how to

use the platform as quickly as possible [115]. To facilitate and accelerate

1

the learning process of features provided by platforms, organizations com-

monly made available code samples to assist development efforts [20, 59].

Code samples are small software projects, with educational purposes and

stored in code repositories, implementing platform functionalities as exam-

ples to clients [20, 59, 93]. Code samples are often provided by worldwide

software projects and organizations, such as Android [30], Spring [94], Google

Maps [31], Twitter [101], Microsoft [63], to name a few.

Despite the widespread adoption of code samples by organizations, we

know little about their structure, maintenance, and usage. Exploring these

aspects makes a two-way contribution. First, is the increase in the knowledge

that exists about code samples in the literature. Second, assist organiza-

tions in building and maintaining their code samples. For example, we do not

know the differences and similarities between code samples and conventional

projects. We know that conventional projects have been well explored over

the years. Therefore, if organizations know which aspects of code samples

are similar to conventional projects, they can use similar solutions to possible

problems related to these aspects in code samples. If the possible problems

found in code samples are about aspects in which they differ from conven-

tional projects, organizations should look for alternative solutions. From this

perspective, we created the first goal of this work: Explore the differences

and similarities between code samples and conventional projects, comparing

structural evolutionary and usage characteristics, to increase the knowledge

about code samples. We show this study in Chapter 3.

When exploring the use of code samples compared to conventional projects,

we realized that the approach studied is not often used by code sample clients.

In addition to help to fill the lack of knowledge about code sample usage,

exploring how clients use code samples can help organizations to understand

the clients’ needs and their problems faced with code sample use. In this

way, organizations can direct efforts to meet these needs and create tools that

help clients to face problems these problems. This motivated us to create our

second goal: Assess code sample usage and their problems faced by clients,

through GitHub and SO, to help organizations to deal with the creation of

solutions for these problems. We present this study in Chapter 4

Since code samples belong to a SECO context, it is natural that there is

an interaction between them and other actors that belong to their SECO. In

Chapter 4, we found that the most common problem reported by clients was

when they tried to change the code sample to another context, extending its

usage. This made us think about the degree of experience of code sample

clients. By getting to know your profile better, organizations can create code

samples that are increasingly suitable for the target audiences of their code

2

samples. In addition to clients, maintainers also interact with code samples.

To help fill the lack of knowledge about them, we also evaluated their charac-

teristics. These reasons led us to create our third goal: Explore characteristics

from actors that interact with code samples, via SO and GitHub information,

to fill the gap of knowledge and help organizations to create more suitable code

samples. We present this study in Chapter 5.

Another little-explored aspect is the code sample maintenance. In our pre-

vious study [59], we assessed code sample evolution by analyzing commit fre-

quency, lifetime, most changed file types, and time to upgrade to a new plat-

form version. However, the results obtained were still not enough to know,

for example, if code samples get larger and more complex over time. In ad-

dition, Chapter 4 stated that clients typically face problems when they try to

modify the code samples and their main suggestion of change is the code sam-

ple improvement. This is important because code samples are projects with

the educational purpose of helping clients to understand how to use the plat-

form. To fill this gap of knowledge and to help organizations to understand

the maintenance activities happen, we built our fourth goal: Evaluate how

organizations maintain their code samples over time and the impact of this

maintenance on clients, analyzing their maintainers’ activities, source code

evolution, and clients’ doubts on Stack Overflow (SO), to provide insights for

other organizations. We show this study in Chapter 6.

After carrying out the studies, aiming to achieve the goals, we can highlight

the following contributions of this work. First: We provide a large empiri-

cal study on code samples from Android, AWS, Azure, and Spring platforms,

to increase the knowledge about code samples, their organization, and their

clients. Second: We provide a set of information on how code samples are

created and maintained by the organizations analyzed. Such information may

help organizations to create and maintain their code samples. Third: We pro-

vide an initial study about the profile of clients from code samples. This may

encourage further studies on who the clients of code samples are and help

organizations to build more appropriate code samples. Fourth: We provide a

qualitative analysis based on Stack Overflow posts and GitHub issues to re-

veal the most common problems and needs faced by developers that use code

samples.

As a result of this work, we had two published articles. A workshop paper

accepted in the Workshop on Software Visualization, Evolution, and Mainte-
nance [10], and a journal paper accepted in the Journal of Systems and Soft-
ware [60]. The rest of this work is organized as follows. Chapter 2 presents the

knowledge needed to understand this work. Chapter 3 shows details about the

study comparing code samples and conventional projects. Chapter 6 presents

3

the study about code sample maintenance and the characteristics of code

sample maintainers. Chapter 5 and Chapter 4 bring the study on who the

code sample’s clients are and how they use them. Finally, Chapter 7 presents

the conclusion of this work and the future work.

4

CHAPTER

2
Background

In this chapter, we present the background needed to understand this

work. Section 2.1 presents definitions and characteristics of SECOs. Sec-

tion 2.2 presents concepts about learning process and barriers faced by SECO

clients. Section 2.3 presents definitions and properties of code samples. Fi-

nally, Section 2.4 presents characteristics from organizations that were se-

lected and the motivation to their selection.

2.1 Software Ecosystem

The field of Software Ecosystem (SECO) is still recent and immature, but it

is maturing and consolidating through the growing number of published pa-

pers, presence in journals, empirical models, and the number of ecosystems

analyzed [51, 52] Through this consolidation, SECO has different definitions.

Here we present the definitions important to our context. Bosch defines SECO

as a set of software solutions that allow activities and transactions by actors

in a social or business ecosystem and the organizations that provide these so-

lutions [8]. Manikas stated that the software and actor interaction in relation

to a common technological infrastructure, results in a set of contributions and

influences directly or indirectly the ecosystem [51].

The SECO field uses theories from other fields, including concepts of in-

teraction. However, in the SECO context, the software interaction, and actors’

interaction have equal importance to keep the ecosystem alive [52]. In the con-

text of this work, we highlight two relevant actors: organization and clients.

The organization is responsible to provide the platform, to define good prac-

tices for its use, and to attempt to clients’ needs to evolve the platform [40].

5

The client uses the platform features to create new projects [40].

The interactions between SECO actors can happen through functionalities

provided by repositories. We can mention the interactions on Q&A sites like

Stack Overflow (SO) and on remote repository managers like GitHub. SO is a

Q&A platform for professional and enthusiast programmers. 1 The SO uses an

approach that the user community itself decides which questions and answers

are most relevant. Good answers are voted up and rise to the top, and the

best answers show up first so that they are always easy to find. In the same

way, questions and answers have their metric of relevance, users also have

theirs, called reputation. Reputation score goes up when others vote up your

questions, answers, and edits. At the highest levels, the user can access

special moderation tools, and work alongside our community moderators to

keep the site focused and helpful. In the context of SECO, clients can interact

with other actors, using SO to solve their doubts or find practical solutions to

problems that other people may have already faced. They can find the best

answers, with relevant comments and code snippets. These responses are

often made by highly reputable users, can be considered experienced clients

or even organization people.

GitHub is a code hosting platform for version control and collaboration. It

lets the users work together on projects from anywhere. 2 As SECOs are com-

posed by the interaction between actors around a platform, GitHub is a useful

tool to allow these interactions through Pull Request (PR) and Issues. PRs are

essential for collaboration on GitHub. A PR contains proposed changes and

requests to someone to review and merge them into the repository. Trough PR,

clients can contribute to platform inserting and modifying code. On the other

hand, Issues allows clients to report problems or request new changes to the

platform. GitHub Issues is a tracking tool that is integrated with your GitHub

repository. 3 Issues are useful for discussing specific details of a project such

as bug reports, planned improvements and feedback. 4

Figure 2.1 shows an example of SECO. Android is the platform in the cen-

ter of SECO. Google is the organization and it is responsible for making An-

droid available and for evolving it. Developers, here named as clients, use

the Android software development kit to create Android apps and make them

available in Google Play.

1https://stackoverflow.com/tour
2https://docs.github.com/en/get-started/quickstart/hello-world
3https://www.ibm.com/garage/method/practices/think/tool_github_issues/
4https://docs.github.com/en/get-started/quickstart/communicating-on-github

6

https://stackoverflow.com/tour
https://docs.github.com/en/get-started/quickstart/hello-world
https://www.ibm.com/garage/method/practices/think/tool_github_issues/
https://docs.github.com/en/get-started/quickstart/communicating-on-github

Platform

Users

Organization

De
ve

lo
pe

rs

(C
lie

nt
s)

Figure 2.1: SECO representation

To build a successful SECO, organizations need to meet the ecosystem

needs, and use business or motivation to incentive the actors to contribute to

the ecosystem evolution [51, 52]. The interaction between the actors results

in contributions to evolve the platform and the ecosystem it self. A contri-

bution can be technical, for instance, a commit to the platform repository or

an external plugin. A contribution can be non-technical, for example, user

data or reselling [51]. In the same way, SECO needs to be organized and even

managed in some aspects, either by for-profit organizations or by non-profit

communities [51].

If the organization does not take successful strategies to organize, manage

and govern, the SECO can to fail on meet the client’s needs into the plat-

form [45, 105]. When this situation occurs frequently over a long period of

time, clients may abandon the use of the platform and consequently abandon

the SECO. An important aspect of SECO management is the learning process

of clients on understanding features provided in platforms. For that, organi-

zations have to create alternatives to help their clients in this process.

2.2 Learning Process in SECO

One of the strategies that organizations can take is to help with the barriers

that clients face when they learn to use the platform. The process of clients

learning how to use features provided by the platform plays an important role

in SECO life cycle. However, there are some barriers that make it difficult for

the client to learn and use the specific platform features: (i) possible lack of

7

motivation to read traditional documentation [98], (ii) difficulty to understand

and to use specific features [96], (iii) large number of features [82], (iv) need

for quick learning [115], and (v) few complete examples [81].

Clients in a SECO seek to overcome these barriers through different sources

of information. The main and most complete is the traditional and official doc-

umentation made available by organizations. Blog posts and videos can also

be another source of information to assist clients, usually developed by more

experienced clients within SECO or even members of the organization. We

can also mention the Q&A sites, which provide more explanatory descriptions

of specific platform usages relevant to the clients, and are generally of good

quality [3, 75]. Besides that, as we know, platforms receive constant updates

and the information found in Stack Overflow should be updated too, including

code as well [75]. In an attempt to combine the benefits found in both propos-

als, that is, knowledge and use of specific platform functionalities, frequently

with code, and knowledge about best practices and the frequent updating

provided by the organization, code samples are raise as an alternative to help

clients on platform features learning.

2.3 Code Sample

As a relatively recent concept coming from the industry, organizations de-

fine code samples in different ways. For example, Oracle states that “code

sample is provided for educational purposes or to assist your development or

administration efforts [93].” Similarly, Spring reports that “code samples are

designed to get you productive as quickly as possible [95].” And Mozilla says

“code samples need to be simple enough to be understandable, but complex

enough to do something interesting, and preferably useful [20].” Literature

defines code sample as a complete software project with education purpose,

made available by organizations, to assist their clients on understanding, us-

ing and staying up to date with their product features [59].

The number of organizations that provides code samples to help their clients

to deal with their platform features is growing. For example, Google provides

code samples to help clients to use Android features [30, 31]. Spring ecosys-

tem has more than 60 code samples, to support Spring Boot clients to build

web application [94] and over 30 code samples to support Spring Cloud clients

on the build of distributed systems [18]. Also, we can cite organizations Twit-

ter [101], Microsoft Azure [62] and Amazon AWS [2]. This growth is perhaps

due to the need that clients have to obtain examples of how to use the platform

features. For instance, a recent research with more than 2,000 developers

showed that almost 80% of participants think the lack of examples of platform

8

usage is a problem in its understanding [112].

To illustrate the important characteristics of code samples already explored

in the literature, we selected an example of a code sample. The selection

of the code sample was to corroborate the characteristics already evaluated.

The chosen code sample is gs-spring-boot, made available on GitHub 5 by

Spring Boot to help clients to learn how to build a Spring Boot application

with minimal configuration.

Code samples should be simple and small to facilitate reuse and under-
standing [20, 59]. We can notice these characteristics in our example. Fig-

ure 2.2 shows the folders and files of gs-spring-boot. We can observe a total of

six source code files. Figure 2.3 and Figure 2.4 illustrates the main lines of

code from gs-spring-boot. Figure 2.3 presents the main Java class of the code

sample. This class is important because it initiate the Spring Boot application

through the method run from SpringApplication class. From that, SpringAppli-
cation bootstraps our application and starts the auto-configured Tomcat web

server. We need to pass MyApplication.class as an argument to the run method

to tell SpringApplication which is the primary Spring component. 6

Figure 2.4 presents the class responsible by to handle incoming web re-

quests, an important feature for web applications. While @RestController an-

notation defines that as a web request handler, @RequestMapping annotation

maps all requests to the "/" address will be handled by the index method.

We can see the few lines of code and low complexity, mainly in the class Hel-
loController.java. We can assess the low complexity through a few numbers of

linearly-independent paths. The combination of platform features with small

and simple code can be useful to newcomers to understand the platform.

Code samples should provide working environment [59]. Code samples

are formed by source code as well as other configuration files needed to run

them properly. Automated build and integration tools may also support both

creators and clients, improving quality and reducing risks [22, 61, 104]. In

Figure 2.2 we can see files as build.gradle and setting.gradle, pom.xm and

.travis.yml. The files build.gradle and setting.gradle are from Gradle Build
Tool, which is an open-source build automation tool focused on flexibility and

performance, and uses scripts written with Groovy or Kotlin DSL. 7. The file

pom.xml comes from Apache Maven, which is a software project management

and comprehension tool, based on the project object model (POM). Maven can

manage a project’s build, reporting, and documenting from a central piece of

5https://github.com/spring-guides/gs-spring-boot
6https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

#getting-started.first-application.code.main-method
7https://docs.gradle.org/current/userguide/userguide.html

9

https://github.com/spring-guides/gs-spring-boot
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#getting-started.first-application.code.main-method
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#getting-started.first-application.code.main-method
https://docs.gradle.org/current/userguide/userguide.html

complete/
build.gradle
gradle/wrapper/

gradle-wrapper.jar
gradle-wrapper.properties

gradlew
gradlew.bat
mvnw
mvnw.cmd
pom.xml
settings.gradle
src/main/java/com/example/springboot/

Application.java
HelloController.java

test/java/com/example/springboot/
HelloControllerIT.java
HelloControllerTest.java

initial/
build.gradle
gradle/wrapper/

gradle-wrapper.jar
gradle-wrapper.properties

gradlew
gradlew.bat
mvnw
mvnw.cmd
pom.xml
settings.gradle
src/main/java/com/example/springboot/

Application.java
HelloController.java

test/
run.sh

.gitignore

.travis.yml
CONTRIBUTING.adoc
LICENSE.txt
LICENSE.writing.txt
README.adoc

Figure 2.2: Folders and files from gs-spring-boot in 2022.

information 8. The file .travis.yml is from Travis CI, which is a Continuous

Integration / Continuous Delivery (CI/CD) platform that enables developers

to quickly and easily build, test, and deploy code 9.

Code samples should evolve and keep up to date, otherwise they become

8https://maven.apache.org/
9https://www.travis-ci.com/about-us/

10

https://maven.apache.org/
https://www.travis-ci.com/about-us/

//Application.java
@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

@Bean
public CommandLineRunner commandLineRunner(ApplicationContext ctx) {

return args -> {

System.out.println("Let’s inspect the beans provided by Spring
Boot:");

String[] beanNames = ctx.getBeanDefinitionNames();
Arrays.sort(beanNames);
for (String beanName : beanNames) {

System.out.println(beanName);
}

};
}

}

Figure 2.3: Application.java from code sample gs-spring-guides in 2022

//HelloController.java
@RestController
public class HelloController {

@RequestMapping("/")
public String index() {

return "Greetings from Spring Boot!";
}

}

Figure 2.4: HelloController.java from code sample gs-spring-guides in 2022

outdated and less attractive to their clients [35, 46, 55, 59, 107]. Figure 2.5

presents the last commits performed into file pom.xml for gs-spring-boot. We

can see four Spring Boot updates and we also see an update to Java 8. We see

gs-spring-boot keep up to date with new Spring Boot versions as well as other

technologies.

2.4 Selected Platforms and Organizations

As previously stated, many organizations rely on code samples to help their

clients to deal with platform features [2, 18, 30, 31, 62, 63, 94, 101]. In this

section, we present information about the platforms and organizations that

were used in the studies presented in this work.

11

Figure 2.5: Commits that edited pom.xml into gs-spring-boot.

Android: The Android platform10 allows the creation of Android apps for sev-

eral devices, such as smartphones, smartwatches, and TVs. Android code

samples are publicly available on GitHub11 and help clients deal with Android

features, such as permissions, pictures, and video manipulation, background

tasks, notifications, networks, multiple touch events, among many others.

AWS: Amazon Web Services (AWS) is the world’s most adopted and most

comprehensive cloud platform. Millions of customers, including the fastest-

growing startups, large enterprises, and the largest government agencies are

using AWS to lower their costs, become more agile, and innovate faster. 12

10https://developer.android.com/guide/platform
11https://github.com/googlesamples
12https://aws.amazon.com/what-is-aws/

12

https://developer.android.com/guide/platform
https://github.com/googlesamples
https://aws.amazon.com/what-is-aws/

Azure: The Azure cloud platform consists of more than 200 cloud products

and services designed to help clients bring new solutions to life to solve to-

day’s challenges and create the future. Build, run and manage multi-cloud,

on-premises, and edge applications with the tools and frameworks of clients’

choice. 13

Spring Boot: Spring Boot is the world’s most popular Java platform 14 aiming

to make it easy to create stand-alone, production-grade Spring based Appli-

cations. 15 The Spring Boot platform belongs to the Spring ecosystem. Spring

Boot provides an embedded web server and also gives a base set of depen-

dencies to simplify build configuration. Furthermore, Spring Boot provides

production-ready features such as metrics, health checks, and externalized

configuration.

Motivation: We select these platforms due to several reasons. First, they are

relevant and worldwide adopted by millions of clients. Second, they support

the creation of distinct and important niches of apps: mobile, web, and cloud

computing. Third, their base of code samples is publicly available on GitHub.

Fourth, their code samples are written in Java.

13https://azure.microsoft.com/pt-br/overview/what-is-azure/
14https://snyk.io/blog/jvm-ecosystem-report-2018-platform-application/
15https://spring.io/projects/spring-boot

13

https://azure.microsoft.com/pt-br/overview/what-is-azure/
https://snyk.io/blog/jvm-ecosystem-report-2018-platform-application/
https://spring.io/projects/spring-boot

14

CHAPTER

3
Code Samples vs Conventional

Projects

Context: By definition, code samples have different purposes when com-

pared to conventional projects. While conventional projects are mainly inter-

ested in the correct execution of implemented functionalities, code samples

aim particularly at characteristics such as code quality, platform version up

to date, and reusability. Although their interests differ, we can find both sim-

ilar and different aspects. On the one hand, as code samples are made for

educational purposes, they should be smaller than conventional projects in

terms of source code. Likewise, code samples should be simpler and easier

to understand than conventional projects. But on the other hand, just like

conventional projects, code samples also evolve over time [59] and according

to Lehman’s laws [48] of software evolution, they should get bigger and more

complex over time.

Problem: Since conventional projects are well-known, there are plenty of

studies targeting them [13, 28, 111, 113]. To the best of our knowledge,

there are no studies comparing code sample source code and evolution as-

pects with conventional project source code and evolution aspects. In the

same way, there are no studies comparing code sample usage against conven-

tional project usage. In our previous work [59], we analyzed 233 code samples

from two platforms: Android and Spring Boot. We assessed aspects related to

source code and evolution, popularity, and client usage. As the result of this

work, we generated a set of implications. Among them, we have that: (1) code

samples should be simple and small; (2) code samples should keep up to date

with the platform versions; (3) code samples are infrequently used through the

15

fork approach. From these implications, some questions arise. For example,

are code samples simpler and smaller than conventional projects? Are code

samples updated to a new platform version, faster than conventional projects?

What is the difference between code samples and conventional projects in

terms of evolution? Code samples are used as conventional projects? Answer-

ing these questions, we first, fill the lack of knowledge about similarities and

differences between code samples and conventional projects. Second, we can

help organizations deal with potential code sample problems. For example, in

the case of code samples being similar to conventional projects, one can use

well-known conventional project solutions for code sample problems. Other-

wise, we need to find new alternatives to solve problems already explored in

conventional projects in the context of code samples.

Purpose: In this chapter, we aim to achieve the following goal: Explore the

differences and similarities between code samples and conventional projects,

comparing structural evolutionary and usage characteristics, to increase the

knowledge about code samples. To do so, we conducted studies on top of al-

ready found results of code samples [59] by assessing the characteristics of

conventional projects and compare them with code samples characteristics.

To do so, we defined three research questions: (RQ1) What are the source

code characteristics of code samples in comparison to conventional projects?

(RQ2) How do code samples evolve over time in comparison to conventional

projects? (RQ3) How are code samples used by clients compared to conven-

tional projects?

Structure: The rationale of research questions and study design are pre-

sented into Section 3.1. Section 3.2 presents the results obtained in the ex-

ploratory study. Section 3.3 presents the implications of the results. Sec-

tion 3.4 shows the threats to validity and how we mitigated them. Section

3.5 describes related work and their differences when compared to our work.

Finally, Section 3.6 presents the conclusion.

3.1 Study Design

In this section, we present the steps taken to answer our research ques-

tions. Section 3.1.1 presents selection method for conventional projects. Sec-

tion 3.1.2, Section 3.1.3 and Section 3.1.4 present the research questions,

their rationale and study design. Finally, Section 3.1.5 presents the study

design to compare code samples to conventional projects.

16

3.1.1 Conventional Projects Selection

The set of code samples and their results was obtained from our previous

study [59]. We used 233 Java code samples, 176 from the Android platform

and 57 from Spring Boot. Details about each platform and the motivation

that led us to select them were presented in Section 2.4. To compare the

characteristics of code samples to conventional projects, we need to select a set

of conventional projects. To do so, we take three steps. First, to select relevant

conventional projects, we selected GitHub’s top 5,000 Java repositories sorted

by the number of stars. We focus on Java because the code samples were

in Java language as well. Second, from the set of 5,000 repositories already

selected, we exclude all repositories that were not Android or Spring Boot

projects. We classified a repository as an Android project if there is at least

one Java file importing an Android library. In a similar way, we classified a

repository as a Spring Boot project if there is at least one import to a Spring

Boot library into any Java file. Third, we selected, randomly, 176 Android

conventional projects and 57 for Spring Boot. These numbers of projects were

chosen to keep the same proportion of code samples in terms of Android and

Spring Boot projects.

3.1.2 (RQ1) What are the source code characteristics of code

samples in comparison to conventional projects?

In this research question, we assess the last version of the source code from

conventional projects (35,697 Java files) and extract three data: source code

metrics, file extensions, and configuration files, as summarized in Figure 3.1.

Last source
code version

Source code
metrics

File

extensions

Configuration

files

Code sample

repositories 1

2

3

Figure 3.1: Source code analysis (RQ1).

1. Source code metrics: We first assess the current state of the conventional

projects by computing source code metrics with the support of the software

analysis tool Understand.1 We focus on four metrics: number of Java files,

lines of code, cyclomatic complexity, and commented code lines. Rationale:

Small code with simple structures may improve code understanding and read-

ability [54]. Code samples are not different; ideally, they should be concise and
1https://scitools.com

17

https://scitools.com

simple [20, 59]. This means that code samples need to be simpler than con-

ventional projects. In addition, code comment is important to any piece of

code [49]. However, it may be even more relevant to samples than to conven-

tional projects, as they provide inline comments to help their clients.

2. File extensions: We extract the file extensions found in conventional projects,

to compare to code samples, for a better understanding of their content in ad-

dition to source code files. Rationale: In our previous study [59], we found

that the most common extension files in code samples are xml, Java, jar, md,

json, properties and adoc. To understand whether the presence of this files

is a characteristic of code sample or a characteristic of any project from this

platforms (Android or Spring Boot), we need to extract the file extensions from

conventional projects and compare to code sample projects.

3. Configuration files: In addition to the file extensions, we also compute

the most common configuration files from conventional projects. In our pre-

vious study [59], we found that code samples are made available with the

support of automated build and integration tools. Rationale: With a simi-

lar result between code samples and conventional projects, we could conclude

that the code samples are following good development practices when they rely

on these automation tools, which are commonly adopted on software projects

to improve quality and productivity and reduce risks [22, 61, 104].

3.1.3 (RQ2) How do code samples evolve over time in compari-

son to conventional projects?

In this research question, we assess all versions (i.e. 96.867 commits) of

conventional projects and extract: evolutionary metrics, file extension changes,

configuration file changes, and migration delay, as presented in Figure 3.2.

Evolutionary
metrics

File extension
changes

Configuration

file changes

Code sample

repositories

1

2

3

 Source code

versions

Migration

delay 4

Figure 3.2: Evolutionary analysis (RQ2).

1. Evolutionary metrics: We compute metrics to assess the evolution of con-

ventional projects to compare with code samples. Specifically, we extract two

evolutionary metrics: frequency of commits and lifetime. Lifetime is computed

18

as the number of days between the first and the last project commit. Rationale:

In our previous study [59], we found that code samples are updated over time.

Since we do not have a threshold to guide if the frequency of code samples is

high or low, we need to extract and compare them with conventional projects.

In addition, the frequency of changes can be related to the platform updates.

2. File extension changes: We analyze the file extension changes over time

to better understand how conventional projects of Android and Spring Boot

are actually maintained and compare them to code samples. Rationale: In

our previous study, [59], we assessed how code samples evolve considering

file extension changes. To better understand that, we need to know how con-

ventional projects of these platforms are maintained and compare them to

understand if the way that code sample evolved is a characteristic of the code

sample itself or is a characteristic of projects using these central platforms.

3. Configuration file changes: We analyze the modifications in the configura-

tion files of conventional projects to assess and compare whether the automa-

tion tools are being updated as in the code sample. Rationale: In addition, to

use automation tools to build, integrate, and manage dependencies, it is im-

portant to keep them alive, otherwise, the advantages provided by these tools

are not achieved. In our previous study, [59] we assessed the configuration file

changes in code samples. To better understand the result obtained, we also

need to explore how conventional projects from the same central platforms.

4. Migration delay: We compute the migration delay between projects and

their platforms. In other words, we assess how long it takes for conventional

projects to migrate to new platform versions and compare them with code sam-

ples. Rationale: As client projects, code samples and conventional projects are

dependent on their platforms. When these platforms evolve and provide new

versions, the code samples (as any other platform client project) should be

updated. Otherwise, they will be frozen on past versions and become less at-

tractive to their clients [35, 46, 55, 107]. As a result of our previous study [59],

we found that code samples change over time to keep up to date with new plat-

form versions. However, since code samples are projects used for educational

purposes, it is important to be updated as fast as possible. We need to ex-

tract migration delay from conventional projects and compare them with code

samples to better understand the code sample results.

3.1.4 (RQ3) How are code samples used by clients compared to

conventional projects?

In this research question, we aim to assess the code sample usage by com-

puting two metrics: number of forks and number of ahead forks. We assess

19

60,142 forks from conventional projects. An ahead fork is a fork that received

at least one commit after being forked. Rationale: Fork can be seen as a mea-

sure of popularity [7]. After forking, the client can update the code or simply

not perform any change. If the forked project is updated, this may indicate

that the client is somehow exploring the code sample, possibly, by running

and improving it.

3.1.5 Comparative Analysis

After extracting the metrics from the conventional projects that were de-

scribed earlier, we need to compare them with the metrics from code sam-

ples extracted in our previous study [59] We know that only an absolute

comparison with metrics maybe not be enough. So, to get more confident

in our results, we decided to apply statistical tests. We choose the Mann-

Whitney test [89] to assess the difference between code sample and conven-

tional projects metrics and using the 5% confident level (i.e., p-value < 0.05).

The Mann-Whitney test does not assume a normal distribution since it is a

non-parametric statistical. Also, this test assesses if two independent distri-

butions have equally large values [111]. To show the effect size of the differ-

ence between the metrics, we compute Cliff’s Delta (or d). Following previous

guidelines [83], we interpret the effect size values as negligible for d<0.147,

small for d < 0.33, medium for d < 0.474, and large otherwise.

3.2 Results

In this section, we present the results obtained through the steps detailed

in Section 3.1. We divided this section into subsections for each research

question. Sections 3.2.1 shows results for RQ1, Section 3.2.2 for RQ2 and

Section 3.2.3 for RQ3.

3.2.1 (RQ1) What are the source code characteristics of code

samples in comparison to conventional projects?

Source code metrics: When we compare code samples to conventional projects,

the numbers confirm our initial impression that code samples are overall

smaller and simpler than conventional projects. Table 3.1 presents the com-

parison between code samples and conventional projects. They are statisti-

cally significantly different regarding the number of Java files in both Android

(**: medium effect) and Spring Boot (***: large effect). In other words, in both

platforms, code samples are smaller than conventional projects in terms of

the number of Java files (direction: ↓). Another metric in which both platforms

20

agree is cyclomatic complexity: code samples have statistically significant less

complexity (Android: * small effect, direction: ↓; Spring Boot: *** large effect,

direction: ↓) than conventional projects.

The other metrics (lines of code per file and relative comment lines) vary

according to the platform. For example, Android code samples have more

relative comment lines than conventional projects (***: large effect size, direc-

tion: ↑), while Spring Boot samples have fewer relative comment lines than

conventional projects (***: large effect size, direction: ↓). There are fewer lines

of code per file in Spring Boot samples (***: large effect size, direction: ↓) than

in conventional projects. However, when we analyze the Android platform,

there is no statistically significant difference between samples and conven-

tional projects.

Table 3.1: Comparing Code Sample and Conventional Projects. Statistically
significant difference with small (*), medium (**) and large (***) effect. Not
statistically significant different (-). Direction of the difference (Dir)

Android Spring

Metrics Sample x Conventional Dir Sample x Conventional Dir

Java files ** ↓ *** ↓
Lines of code per file - - *** ↓
Relative comment lines *** ↑ *** ↓
Cyclomatic complexity * ↓ *** ↓

File extensions: Table 3.2 shows the file extensions found in code samples and

conventional projects. Android conventional projects are dominated by Java

files (40%), followed by XML files (14%), and other extensions representing

41%. In Spring Boot conventional projects, most cases are Java files (56%),

followed by XML files (10%), and other extensions (27%).

Comparing Android code samples with Android conventional projects, we

can notice that most files in code samples are related to XML files (15.73%).

In contrast, in conventional projects, the majority is related to source code

files (i.e. Java extension) comprising 40.61%. This is an interesting behavior

since there are more XML files in Android code samples than source code

files. Our analysis points out the following reasons: (i) Android often generates

a considerable amount of XML files, especially to define UI layouts, (ii) code

samples are complete projects providing a working environment to the users

besides the source code, and (iii) source code should be simple and small in

code samples.

When comparing Spring Boot code samples with Spring Boot conventional

projects, in both cases, the majority of files are related to source code files

(i.e. Java extension). In Spring Boot code samples, we found 12.49% of files

21

related to the java extension, while in Spring Boot conventional projects over

56%. Unlike Android, Spring Boot does not generate the same amount of XML

configuration files; nonetheless, XML files present a considerable amount in

conventional projects. On the other side, it is important to highlight that, de-

spite java files being the majority in Spring Boot samples, the low percentage,

when compared to conventional projects, restates that (i) code samples provide

a complete working environment and (ii) code samples are simple and small.

Table 3.2: File extensions of code samples and conventional projects (RQ1).

Android Spring
Extensions # % Extensions # %

Code Samples

xml 4,307 15.73 java 319 12.49
java 2,477 9.05 properties 249 9.75
jar 1,083 3,96 jar 221 8.65
md 572 2.09 xml 147 5.75
json 549 2,00 adoc 122 4.77
other 17,245 67,17 other 1,379 58.59

Conventional Projects

java 21,260 40.61 java 14,437 56.73
xml 7,608 14.53 xml 2,621 10.30
properties 687 1,31 properties 700 2.75
jar 427 1.01 md 430 1.69
kt 391 0.75 yml 264 1.04
other 21,983 41.97 other 6,996 27.49

Configuration files: Table 3.3 presents the numbers of working environment

files in conventional Android and Spring Boot projects. In Android conven-

tional projects, we found the same pattern as the one observed in code sam-

ples: build.gradle files on top (1.40%), followed by the mandatory manifest.xml

(1.09%). When analyzing Spring Boot conventional projects, the top 3 files

are the same as Spring Boot code samples. The pom.xml is on top of the

most found configuration files (2.22%), followed by build.gradle (0.37%) and

travis.yml (0.13%).

Lesson Learned 1: Code samples are overall simpler and smaller than con-

ventional projects. We also find that code samples, as conventional projects,

rely on tools to automate build and integration (e.g., Gradle, Maven, and

Travis) and provide a working environment to the clients (i.e. including jar,

xml, properties, and other files in addition to code).

22

Table 3.3: Configuration files of code samples and conventional projects (RQ1).

Android Spring
Files # % Files # %

Code Samples

build.gradle 604 2.21 pom.xml 144 5.64
manifest.xml 397 1.45 build.gradle 118 4.62
travis.yml 2 0.01 travis.yml 56 2.19

Conventional Projects

build.gradle 732 1.40 pom.xml 566 2.22
manifest.xml 573 1.09 build.gradle 91 0.37
pom.xml 26 0.05 travis.yml 31 0.13

3.2.2 (RQ2) How do code samples evolve over time in compari-

son to conventional projects?

When we compare code samples with conventional projects (Table 3.4), we

did not find a statistically significant difference in the lifetime of Android code

samples compared to Android conventional projects. However, the lifetime of

code samples is slightly higher than the one found in conventional projects. In

Spring Boot, we found a statistically significant difference in lifetime compared

to conventional projects (***: large effect size, direction: ↑). In other words,

our results show that code samples tend to be longer-lived than conventional

projects using the analyzed platforms. Regarding the comparison of lifetime

per commit, there is a statistically significant difference in both Android (***:

large effect, direction: ↑) and Spring Boot (**: medium effect, direction: ↑). This

means that, despite a considerable evolutionary activity, code samples have a

lower frequency of commits when compared to conventional projects. Next, we

analyze the types of changes that happen in these commits. More specifically,

we analyze changes per extension and changes in configuration files.

Table 3.4: Comparing Code Sample and Conventional Projects in RQ2 metrics.
Statistically significant difference with small (*), medium (**) and large (***)
effect. Not statistically significant different (-). Direction of the difference (Dir)

Android Spring

Metrics Sample x Conventional Dir Sample x Conventional Dir

Lifetime - ↓ *** ↑
Lifetime per commit *** ↑ ** ↑
Delay to update *** ↓ *** ↓

File extension changes: Table 3.5 presents the changes per file extension both

in code samples and conventional projects. We clearly see that the code sam-

ples are not static: several files are updated over the years.

Regarding comparing code samples and conventional projects, it is inter-

esting to notice that Java files and XML files hold the first two places in con-

23

Table 3.5: File extension changes in code samples and conventional projects
(RQ2).

Android Spring
Extensions # % Extensions # %

Code Samples

xml 9,075 15.67 xml 7,735 28.75
java 7,034 12.14 java 1,437 5.34
properties 1,926 3.33 properties 961 3.57
jar 1,783 3.08 jar 770 2.86
json 1,111 1.92 bat 331 1.23
other 36,988 63.86 other 15,666 58.25

Conventional Projects

java 212,278 56.55 java 147,159 57.88
xml 52,366 13.95 xml 40,984 16.12
md 5,879 1.57 md 4490 1.77
jar 4,294 1.14 properties 3,675 1.45
properties 2,806 0.75 yml 2,007 0.79
other 97,782 26.04 other 55,948 21.99

ventional projects (Table 3.5). However, the Java file extension is the most

changed type both in Android and Spring Boot conventional projects, differ-

ently from their code samples where xml extension is the most changed type of

file during the evolution of the analyzed projects. In short, code samples tend

to change more configuration files than source code. This happens mainly be-

cause changes in source code are not as frequent as in conventional projects.

Most of the changes in code samples only happen to update the source code

to a more recent platform version. But not exclusively, and careless evolution

may impact on clients’ understanding of it and, consequently, on its useful-

ness.

Table 3.6 shows another view of this data: the actions performed on files

(addition, modification, or removal). While in Android samples, most of the

actions are to add files (53.03%), in Spring Boot samples, the majority is to

modify existing ones (85.13%). In both cases, the removal of files is uncom-

mon. When we compare code samples to conventional projects, the behavior is

very similar. The majority of changes during the evolution of Spring Boot con-

ventional projects are to modify existing files (Android - 63.52% and Spring

Boot - 66.73%). Moreover, the removal of files in both Android and Spring

Boot is also uncommon. The only difference is that in conventional Android

projects, the action to modify files is more common than the addition of files

(63.54% vs. 25.20%). In Android code samples, adding a file is more com-

mon than file modification (53.03% vs. 40.91%). This behavior is noticed in

Android code samples because, after every update to a more recent platform

version, files are automatically generated in the context of the code sample

project. As shown later, in conventional Android projects, there is a migration

delay to a new platform version, thus making file modifications more common.

24

Table 3.6: Action type per file in code samples and conventional projects
(RQ2).

Android Spring
File action type # % File action # %

Code Samples

Add 30,716 53.03 Modify 22,900 85.13
Modify 23,696 40.91 Add 3,020 11.23
Delete 3,505 6.05 Delete 980 3.64

Total 57,917 100.00 Total 26,900 100.00
Conventional Projects

Modify 238,546 63.54 Modify 169,665 66.73
Add 94,596 25.20 Add 54,479 21.43
Delete 42,263 11.26 Delete 30,119 11.85

Total 375,405 100.00 Total 254,263 100.00

Configuration file changes: Table 3.7 presents the most changed configura-

tion files. We notice that build.gradle files are the most changed in both

platforms. In Android code samples, the manifest.xml are usually changed,

while in Spring Boot, the pom.xml are often updated. Therefore, as most of

these files are related to automation tools, we can confirm that these tools

keep being updated over time.

Table 3.7: Configuration file changes in code samples and conventional
projects (RQ2).

Android Spring
Files # % Files # %

Code Samples

build.gradle 5,281 9.12 build.gradle 7,565 28.12
manifest.xml 1,076 1.86 pom.xml 7,531 28.00
travis.yml 24 0.04 travis.yml 208 0.77

Conventional Projects

build.gradle 7,257 1.93 pom.xml 24,884 9.79
manifest.xml 3,462 0.92 build.gradle 1,457 0.57
pom.xml 2,561 0.68 travis.yml 280 0.11

Most of the code sample behavior previously presented is also observed in

conventional projects in configuration file changes (Table 3.7). We highlight

that pom.xml takes the first place from build.gradle in Spring Boot conven-

tional projects. The numbers of these files in Spring Boot code samples are

very similar in configuration file changes (28.12% vs. 28.00%). Another point

to highlight is that the percentage of configuration file changes in code sam-

ples is higher than in conventional projects. This happens due to the higher

number of total files in conventional projects when compared to code samples.

Migration delay: Finally, to compare the migration delay to new platform ver-

sions, we analyzed the delay to update also in conventional projects. In this

25

analysis, we found a statistically significant difference in the delay to update to

new platform versions when comparing code samples to conventional projects

(***: large effect, direction: ↓) in both Android and Spring Boot (Table 3.4). In

other words, we show that code samples update faster to new platform ver-

sions than conventional projects. We believe this happens mainly because (i)

code samples have an educational purpose, and thus it is essential to be up-

dated, and (ii) developers who maintain the platform itself may also maintain

its code samples.

Lesson Learned 2: Like conventional projects, code samples also evolve. How-

ever, code samples are changed less frequently. Despite this, code sam-

ples are updated more quickly for new versions of the platform. Also, while

changes in conventional projects are mostly done in source code, in code

samples they happen more in configuration files.

3.2.3 (RQ3) How are code samples used by clients compared to

conventional projects?

We adopt the fork metric as a proxy of client usage for the code sam-

ples. Table 3.8 shows the comparison between code samples and conventional

projects. In terms of the number of forks, we can note that for both cases code

samples presented less forks than conventional projects. For Android, we have

a small effect (*) with ↓ direction, and for Spring Boot we have a large effect

(***) with ↓ direction. This may be a consequence of the way we select con-

ventional projects. We selected the 5,000 Java projects with the most stars.

Projects with more stars tend to have more forks as they are more popular.

Table 3.8: Comparing Code Sample and General Projects in RQ4 metrics.
Statistically significant difference with small (*), medium (**) and large (***)
effect. Not statistically significant different (-). Direction of the difference (Dir)

Android Spring

Metrics Sample x Conventional Dir Sample x Conventional Dir

Number of forks * ↓ *** ↓
Relative ahead forks - - *** ↑

In terms of ahead forks, we compare code samples to conventional projects,

there is no statistically significant difference in the context of Android. In

contrast, there is a statistically significant difference in Spring Boot (***: large

effect, direction: ↑). This means that forks in Spring Boot code samples tend

to be more active than forks in Spring Boot conventional projects.

26

Lesson Learned 3: The approach of using code samples via fork has low usage

by clients compared to conventional projects. Despite this, there are indica-

tions that code sample forks may receive more updates than conventional

project forks.

3.3 Implication

Based on our findings, we provide a set of implications to code sample

creators and clients to support their maintenance and usage practices:

Be a simple kind of project: code samples are simpler and smaller than con-

ventional projects to facilitate the understanding and readability. Indeed, the

majority of the code samples provided by Android and Spring Boot follow this

rule.

Keep the environment pleasant: As with conventional projects, code samples

provide a working environment to facilitate CI/CD activities. For code sam-

ples, even more frequent than changes in source code files, changes in con-

figuration files are important to keep the code sample updated for platform

versions and other dependencies. In addition, to manage build, compile, test-

ing, deployments, monitoring, and other activities.

Quick on the draw: code samples should be updated to newer versions of the

platform more quickly than conventional projects. Given the educational pur-

pose of code samples, they should always be updated as they are one of the

reliable sources of how to use the platform’s features. Otherwise, they may

become out of date and useless for your purpose. On the other hand, con-

ventional projects are more complex and upgrading to a new platform version

may impact the need for many changes.

Don’t fork up: when evaluating the use of code samples, we were able to

verify that the fork approach is not popularly adopted by clients. To better

understand how code samples are used, it is necessary to go depth on other

ways to use them. Like the repository download approach or the copy and

paste approach.

3.4 Threats to Validity

This section discusses the study limitations based on the four categories

of validity threats described by Wohlin et al. [106]. Each category has a set of

possible threats to the validity of an experiment. We identified these possible

threats to our study within each category, which are discussed in the following

with the measures we took to reduce each risk.

27

Conclusion validity: It concerns the relationship between the treatment and

the outcome. In this work, potential threats arise from violated assumptions of
statistical tests: the statistical tests used to support our conclusions may have

been inappropriately chosen. To mitigate this threat wherever possible, we

used statistical tests obeying the characteristics of our data. More specifically,

we used non-parametric tests, which do not make any assumption on the

underlying data distribution regarding variances and types.

Construct validity: It refers to the degree to which inferences can legitimately

be made from the operationalizations in your study to the theoretical con-

structs on which those operationalizations were based. We detected a pos-

sible threat related to the restricted generalizability across constructs: Java

might present specific source code characteristics than other programming

languages and affect RQ1. This risk cannot be avoided since we analyzed only

source code implemented in Java. However, we argue that Java is an impor-

tant programming language and comprises many code samples in the GitHub

repository.

External validity: Threats associated with external validity concern the degree

to which the findings can be generalized to the wider classes of subjects from

which the experimental work has drawn a sample. We identified a risk related

to the interaction between selection and treatment: the use of code samples

provided by two frameworks might present specific aspects compared to other

frameworks. This risk cannot be avoided because our focus is on the Android

and Spring Boot platforms. However, we argue that they are relevant and

worldwide adopted frameworks that have millions of end-users. Therefore, we

believe the results extracted can be the first step towards the generalization of

the results.

3.5 Related Work

Platforms are used to support development, provide source code reuse, im-

prove productivity, and decrease costs [44, 68, 80]. Often there is a steep

learning curve involved when developers adopt platforms. Development based

on code samples provides the benefits of code reuse, efficient development,

and code quality [91]. Moreover, with the popularity and relevance of the

Question and Answer (Q&A) sites such as Stack Overflow, some studies pro-

pose approaches and tools to search and/or retrieve source code samples and

explore the properties of those samples.

Context-based code samples. Software engineering tools bring sophisticated

search power into the development environment by extending the browsing

and searching capabilities [34, 50, 78, 85, 91]. For instance, Holmes and Mur-

28

phy [34] proposed a technique that recommends source code examples from a

repository by matching structures of given code. FuzzyCatch [72] provides a

code recommendation tool, based on fuzzy logic, for handling exceptions. XS-

nippet [85] provides a context-sensitive code assistant platform that provides

sample source code snippets for developers. In general, these tools help locate

samples of code, demonstrate the use of platform, and fasten development

by exploring the syntactic context provided mainly by the IDE to recommend

code samples more relevant to developers (as in Strathcona [34]). However, the

samples provided by these systems are highly dependent on a particular de-

velopment context. In contrast, code samples typically are complete projects

that organizations made to facilitate and accelerate the learning process of

features provided by platforms. Therefore, it is expected that the types of code

samples explored in this work present different characteristics compared to

samples automatically generated by tools.

Mining API usage examples. Complementing the aforementioned tools, many

studies confirmed the significance of API usage examples, mainly in the con-

text of platform APIs, and proposed approaches to mine API usage examples

from open code repositories and search engines [4, 16, 42, 64, 65, 71, 73,

102, 116]. Most of these works retrieve the so-called code snippets to support

API learning, whereas our work focuses on complete projects of platform code

samples. In addition, our work is not focused on proposing an approach to

mine code samples, but analyze the characteristics of these code samples.

Assessing Q&A code snippets. Nasehi et al. [90] focused on finding the char-

acteristics of a good example on Stack Overflow. They adopted an approach

based on high/low voted answers, the number of code blocks used, the con-

ciseness of the code, the presence of links to other resources, the presence

of alternate solutions, and code comments. Yang et al. [108] assessed the

usability of code snippets across four languages: C#, Java, JavaScript, and

Python. The analysis was based on the standard steps of parsing, compil-

ing, and running the source code, which indicates the effort that would be

required for developers to use the snippet as-is. A similar work was done by

Uddin et al. [23] that assesses the prevalence and vulnerabilities of share code

examples using C# unsafe keyword in Stack Overflow. They assess using reg-

ular expressions and manual checks. Meldrum et al. [56] evaluate the quality

of code snippets on Stack Overflow, exploring aspects such as reliability and

conformance to programming rules, readability, performance, and security.

Finally, studies are analyzing the adoption of code snippets [33, 84, 109]. For

instance, Roy and Cordy [84] analyzed code snippet clones in open source

systems. They found that, on average, 15% of the files in the C systems, 46%

of the files in the Java systems, and 29% of files in the C# systems are as-

29

sociated with exact (block-level) clones. Similar to our work, these studies

focus on analyzing the properties of code snippets and their adoption in real

projects. However, our work targets entire code sample projects instead of

code snippets.

3.6 Conclusion

In this chapter, we proposed an extension of our previous study [59] to com-

pare and better understand code samples against the conventional projects

from the same central platform. By assessing 233 conventional projects re-

lated to Android and Spring Boot platforms, we investigated aspects related to

their source code, evolution, and usage. We found that most code samples are

smaller and simpler than conventional projects, both of them provide a work-

ing environment, and rely on automated build tools. They frequently change,

for example, to adapt to new platform versions, but not exclusively, making it

necessary to carry out a more in-depth study on how code samples are evolved

and how this impacts clients. Also, the fork approach is an unusual way that

clients use code samples. It is interesting to delve into other approaches to

the use of code samples.

30

CHAPTER

4
Usage of Code Samples

Context: Since the relation between clients, organization, and the platform

forms a SECO, code samples are also included in this context. Due to the

barriers that can turn difficult the learning process of the platform’s features,

code samples can be seen as an alternative to mitigate these barriers and help

clients to learn and use platform features and interact with the SECO.

Problem: Besides that, there is small knowledge of how clients use code

samples. In our previous study [59], we assess code sample usage through

the fork approach and we found that, in general, a few clients use forks on

code samples and even fewer clients perform changes on these forks and send

them to GitHub. In Chapter 3, we noted that the fork usage is fewer in code

samples than in conventional projects. However, there are some questions

unanswered yet, such as what are the most common doubts raised from code

sample usage? What are the most common needs or problems faced by clients

on code sample usage? Beyond the fork approach, how do clients use code

samples? Do they copy and paste the code instead of forking? In this way,

knowing how clients use code samples, can help to build code samples that are

more adaptable to clients’ expectations and needs. In addition, the knowledge

about the most common troubles faced by clients when they use code samples

can help organizations to create solutions and avoid client frustration.

Purpose: To explore and better understand how clients use code samples,

we create our fist research question: (RQ1) How do clients use code samples

in their own projects? In addition, to assess the most common problems

and needs of code sample clients, we create our second and third research

questions: (RQ2) What are the most common questions about code samples

on Stack Overflow? (RQ3) What are the most common issues that impact code

31

samples on GitHub?

Structure: Section 4.1 shows methods and steps used to conduct the

study. Section 4.2 shows the results obtained after we performed steps of Sec-

tion 4.1. Section 4.3 presents the implications of results. Section 4.4 shows

the threats to validity of this study and how we mitigated them. Section 4.5

presents the related work and differences to our study. Finally, Section 4.6

presents the conclusion of this study.

4.1 Study Design

As in Chapter 3, in this chapter we focused only in two platforms: Android

and Spring Boot (details about each platform were presented in Section 2.4).

Since we are interested in assessing long-term aspects of code sample usage,

we selected platforms with more aged code samples. In this way, we have more

historical data from both Stack Overflow and GitHub. Finally, we got 233 to

be analyzed, being 176 from Android and 57 from Spring Boot.

4.1.1 (RQ1) How do clients use code samples in their own projects?

In this research question, we aim to explore code sample usage through

source code analysis. In our previous study [59] and in Chapter 3, we assess

code sample usage and compare with conventional projects usage through the

fork approach. We found that fork approach has low usage on code samples

comparing with conventional projects. In this research question, we want to

assess the code sample usage through the copy/paste approach.

Since it is not viable to look into the entire GitHub repository, for code

sample usage, we use a set of criteria to select our sample. We selected only

repositories from watchers of code samples. When users start to “watch” a

repository, they receive notifications on new discussions, as well as events

about this repository in their “GitHub activity feed 1”. In that way, we choose

only repositories from users interested in code sample changes. As another

selection criteria, we exclude all repositories that are forks, because we already

look for forks in our previous study.

After the repository selection, we need to choose which approach to assess

code sample usage. To do so, we choose to explore duplicate code through

copy/paste detector tools. For that task, we used the CPD library provided by

the PMD tool. The PMD is an open-source tool and provides, besides others

functionalities, a Copy/Paste Detector (CPD) tool for finding duplicate code.

1https://docs.github.com/en/rest/reference/activity

32

https://docs.github.com/en/rest/reference/activity

CPD uses the Karp-Rabin string matching algorithm. 2 This tool scans the

files themselves for duplicate code, also it is successful in returning similar

code across different files [58]. As next step, we ran the CPD library for each

pair: code sample and watcher’s repository of the code sample itself.

4.1.2 (RQ2) What are the most common questions about code

samples on Stack Overflow?

Code samples are created to support clients dealing with platform features.

In addition, the literature shows that code samples are important to support

learning [82]. Even more, a lack of code samples can be a barrier to un-

derstand central platforms [112]. Nonetheless, some aspects could make it

difficult for clients to understand and use, such as an increase in complexity

and size, and a decrease in readability. So, this research question aims to

explore the most common problems faced by clients regarding code sample

usage. Rationale: identifying these problems, first, fill the void of knowledge

about it in the state-of-the-art and second, it will help organizations that de-

velop code samples to become aware of these problems and also motivate them

to create solutions to mitigate them.

To answer this research question we conduct a qualitative study, assessing

Stack Overflow questions related to code samples. Stack Overflow is the de

facto question & answer platform for software development: it hosts over 20M

questions, helping millions of developers to learn and share their knowledge.3

Questions on Stack Overflow can receive answers, and the community is re-

sponsible for evaluating the quality of the proposed answers, giving positive or

negative votes.

Figure 4.1 presents an example of a Stack Overflow question4 about the An-

droid sample android-ConstraintLayoutExample.5 In this case, the client

performs a simple modification in the sample (i.e. replacing left & right con-

strains with start & end), and, according to him, the sample is not working as

expected. As we can notice, the question has 5 positive votes and 4k views.

We use the dataset provided by Stack Exchange6 to mine Stack Overflow

questions about Android and Spring code samples. We first run a script to

select all questions with the URLs github.com/googlesamples/ or github.

com/spring-guides/ in their bodies, which are official Android and Spring

sample repositories on GitHub. From this data, we removed (i) questions with

a score less than or equal to zero and (ii) questions without answers. This

2https://pmd.github.io/latest/pmd_userdocs_cpd.html
3https://stackoverflow.com/company
4https://stackoverflow.com/questions/49232559
5https://github.com/googlearchive/android-ConstraintLayoutExamples
6https://data.stackexchange.com/help

33

github.com/googlesamples/
github.com/spring-guides/
github.com/spring-guides/
https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://stackoverflow.com/company
https://stackoverflow.com/questions/49232559
https://github.com/googlearchive/android-ConstraintLayoutExamples
https://data.stackexchange.com/help

Figure 4.1: Example of Stack Overflow question about an Android code sam-
ple.

process resulted in 527 questions for Android and 87 questions for Spring,

totaling 614. Figure 4.2 presents the distribution of the number of views of

the selected questions. On the median, the Android questions have 890 views,

while the Spring ones have 1,579. Notice that this is larger than general

Android and Spring questions, which have 746 and 935 views, respectively,

on the median.

890
1,579

100

1,000

10,000

Android Spring
Code Samples

V
ie

w
s

(lo
g

sc
al

e)

Code Samples

746 935

100

10,000

1,000,000

Android Spring
General

V
ie

w
s

(lo
g

sc
al

e)

General

Figure 4.2: Distribution of the number of views of the selected Android and
Spring questions.

After collecting the posts on Stack Overflow, we perform a manual classi-

fication. We analyzed the questions using thematic analysis [21], a technique

for identifying and recording themes in textual documents. This technique

includes the following steps: (1) initial reading of the answers, (2) generating a

first code for each answer, (3) searching for themes among the proposed codes,

and (4) reviewing the themes to find opportunities for merging, and (5) defining

and naming the final themes [12]. Steps 1 to 4 were performed independently

34

by two authors of this paper. We used the Cohen Kappa test [19] to measure

the agreement: the score was 0.50 for Android (moderate agreement) and 0.34

for Spring (fair agreement). After this, the second and third authors held a

sequence of meetings to resolve conflicts and assign the final themes (step 5).

Our manual classification leads to four categories of questions: Importing:

questions in which clients are trying to import the code sample to use or mod-

ify it but could not due to configuration issues. Running: questions in which

clients are trying to run the code sample but could not due to runtime prob-

lems. Modification: questions in which clients are trying to modify or improve

the code sample and faced some trouble. Reference: questions that include

references to the code samples to illustrate some particular programming sce-

nario or general doubts.

4.1.3 (RQ3) What are the most common issues that impact code

samples on GitHub?

While RQ2 aims to explore Stack Overflow questions, here we are interested

in GitHub Issues. We assess GitHub issues to explore common needs related

to code samples. In this analysis, we aim to explore common issues that

impact code samples. In other words, we want to assess issues that led to

code sample changes. With that, we can answer questions like: Do clients

need to change code samples? Moreover, we aim to explore whether the clients’

questions (and other types of interactions) are different from Stack Overflow

ones.

To conduct this study, the first step was to select all issues for the studied

code samples. On the second step, we removed all open issues, since they

do not cause code sample changes yet. When an issue causes modification

in a repository, it is common to reference the commit or pull request with

the modifications. The third step was to exclude issues without reference to

commits or pull requests, only keeping the ones that cause modification. In

the fourth step, we manually removed false positive references. Based on that,

we found 269 GitHub issues from code sample repositories.

After the issue selection, we performed a manual classification of each one.

Based on the title, body, and comments of the issues, we classify them in the

following categories: (i) importing, when clients try to import the code sample to

use or modify it but could not due to configuration issues; (ii) running, when

clients try to run the code sample but could not due to run-time problems;

(iii) modification, when clients try to modify the code sample and faced some

trouble; (iv) improvement, when clients suggest an improvement into the code

sample or their comments led code sample’ maintainers to improve them; and

(v) question, when clients are simply asking about code sample usage or better

35

patterns.7

Furthermore, we look at the changed files in the commits related to the

issues. We classify the changes as follows: (i) documentation changes, when

maintainers edit documentation files as readme.md; (ii) source code changes,

when maintainers edit Java files; and (iii) configuration changes, when main-

tainers edit configuration files, such as manifest.xml, pom.xml, or build.gradle.

The manual classification was performed as in the Stack Overflow study, that

is, based on thematic analysis [21].

4.2 Results

In this section, we present the results of the study for each research ques-

tion. Section 4.2.1 presents the results about code sample usage (RQ1). Sec-

tion 4.2.2 shows the results related to common issues on GitHub (RQ2). Fi-

nally, Section 4.2.3 explain the results of most common Stack Overflow ques-

tions.

4.2.1 (RQ1) How do clients use code samples in their own projects?

Table 4.1 shows the result about the number of code sample watchers.

From the 233 analyzed code samples we have a total of 20,197 watchers,

16,232 belong to Android samples, and 3,965 to Spring Boot samples. For the

Android platform, we found that only 515 from 16,232 (3.2%) watchers use

code sample code inside their own GitHub projects. In the same way, for the

Spring Boot platform, we found that only 43 from 3,965 (1.1%) of the watchers

use code sample code in their own GitHub projects. Table 4.1 also presents

another view of code sample usage, it also presents the number of watchers’

repositories. We found 145,064 repositories, 115,283 from Android watchers,

and 29,781 from Spring Boot watchers. In the Android platform, from 115,283

only 638 (0.6%) of repositories from watchers contain code sample code. For

the Spring Boot platform we found from 29,781 only 48 (0.02%) of repositories

from watchers present code sample code.

7The first three categories come from our prior analysis on Stack Overflow.

36

Table 4.1: Number of watchers.

Android Spring

Metric n° % n° %

Watchers with usage 515 3.2% 43 1.1%
Watchers without usage 15,717 96.8% 3,922 98.9%
Repositories with usage 638 0.6% 48 0.02%
Repositories without usage 114,645 99.4% 29,733 99.8%

There are some possible reasons that can explain the low usage of code

samples snippets within watcher’s projects. For example, given that code sam-

ples are simple and small projects, which help in learning the platform’s func-

tionalities. The use of code samples may demands adaption to meet complex

scenarios often found in real projects. In this case, the copy/paste approach

is not enough.

Table 4.2 presents the most common code samples found into watcher’s

repositories. In the Android context, the most common code sample is android-
Camera2Basic, which is present in 136 repositories (21.3%), and it is related

to the usage of Camera2 API to capture images. 8. The second most common

is android-vision and this sample demonstrates the usage of features from

vision API for detecting faces and barcodes 9 The third most common sam-

ple is android-BluetoothLeGatt, presented into 43 repositories (6.7%) and this

sample demonstrates how to use the Bluetooth LE Generic Attribute Profile

(GATT) to transmit arbitrary data between devices 10. The fourth is the sam-

ple android-BluetoothChat, we found it is present into 35 repositories (5.4%)

and this sample shows how to implement two-way text chat over Bluetooth

between two Android devices, using all the fundamental Bluetooth API ca-

pabilities 11. The fifth sample is android-Camera2Video, presented into 32

repositories representing 5% and helps clients to record video using the new

Camera2 API in Android 12. The others code samples were presented in 286

(45%) repositories.

Also in Table 4.2, we have the most common code samples of Spring Boot

platform. The most common sample is gs-uploading-files found in 12 (25%)

projects. This code sample helps Spring Boot’s clients to deal with the pro-

cess of creating a server application that can receive HTTP multi-part file up-

8https://github.com/android/camera-samples/tree/main/Camera2Basic
9https://github.com/googlesamples/android-vision

10https://github.com/googlearchive/android-BluetoothLeGatt/blob/
559163eed3fbd777df0d9a1dfb2b792c827b9528/README.md

11https://github.com/googlearchive/android-BluetoothChat/tree/
62adaa391f4d6714172451b42f6f665f39fbe7bb

12https://github.com/googlearchive/android-Camera2Video/tree/
c5029e62a2c52f39c43c503ebebd67fbf861e74e

37

https://github.com/android/camera-samples/tree/main/Camera2Basic
https://github.com/googlesamples/android-vision
https://github.com/googlearchive/android-BluetoothLeGatt/blob/559163eed3fbd777df0d9a1dfb2b792c827b9528/README.md
https://github.com/googlearchive/android-BluetoothLeGatt/blob/559163eed3fbd777df0d9a1dfb2b792c827b9528/README.md
https://github.com/googlearchive/android-BluetoothChat/tree/62adaa391f4d6714172451b42f6f665f39fbe7bb
https://github.com/googlearchive/android-BluetoothChat/tree/62adaa391f4d6714172451b42f6f665f39fbe7bb
https://github.com/googlearchive/android-Camera2Video/tree/c5029e62a2c52f39c43c503ebebd67fbf861e74e
https://github.com/googlearchive/android-Camera2Video/tree/c5029e62a2c52f39c43c503ebebd67fbf861e74e

loads 13. The second most common is tut-rest, found in 9 (18.8%) repositories.

This code sample teaches how to build a RESTful services with Spring 14.

The third most common code sample gs-producing-web-service, found in 5

repositories (10.4%), helps clients to create a SOAP-based web service server

with Spring 15. The fourth sample is gs-rest-service, found in 5 repositories

(10.4%). This code sample helps Spring Boot’s clients on Building a RESTful

Web Service with Spring. The fifth code sample is gs-accessing-data-mongodb,

found in 5 repositories (10.4%), assisting on learning how to persist data in

MongoDB 16 The others samples are present in 12 (25%) repositories.

Table 4.2: Most common code samples used into watchers’ repositories.

Android Spring

Code Sample n° % Code Sample n° %

android-Camera2Basic 136 21.3% gs-uploading-files 12 25%
android-vision 106 16.6% tut-rest 9 18.8%
android-BluetoothLeGatt 43 6.7% gs-producing-web-service 5 10.4%
android-BluetoothChat 35 5.4% gs-rest-service 5 10.4%
android-Camera2Video 32 5% gs-accessing-data-mongodb 5 10.4%
Others 286 45% Others 12 25%

Total 638 100% Total 48 100%

Despite the low frequency use of code sample source code in its watch-

ers repositories as presented in Table 4.1, we found the use of code samples

in relevant repositories to the community. Table 4.3 present a set of rele-

vant watchers’ repositories. For instance, the repository SimplifyReader from

watcher chentao0707 presents 1,655 forks, and more than 4,500 stars and

use 118 from Android’s code sample SwipeRefreshMultipleViews. Also, the

repository SamrtTubeNext developed by yuliskov have 411 forks, more than

5,000 stars and have a huge code sample usage with 901 lines from Android’

code sample MediaBrowserService.

Table 4.3: Relevant watcher’s repositories

Watcher Repository Forks Stars Duplicate Lines Code Samples Usage

chentao0707 SimplifyReader 1,655 4,576 118 SwipeRefreshMultipleViews
yuliskov SmartTubeNext 411 5,176 901 MediaBrowserService

Also about code sample usage, Figure 4.3 presents the number of duplicate

code lines and the percentage of duplicate code lines for watcher’s repositories.

13https://github.com/spring-guides/gs-uploading-files
14https://github.com/spring-guides/tut-rest
15https://github.com/spring-guides/gs-producing-web-service
16https://github.com/spring-guides/gs-accessing-data-mongodb

38

https://github.com/spring-guides/gs-uploading-files
https://github.com/spring-guides/tut-rest
https://github.com/spring-guides/gs-producing-web-service
https://github.com/spring-guides/gs-accessing-data-mongodb

In an absolute analysis, we can see that Android has more variation between

the usage. There are repositories with few lines until repositories with more

than 5,000 lines, and the median is 210.5 duplicate lines of code. In Spring

Boot, there is a concentration of use of source code of code samples, with the

median watchers using 36 lines of code. Looking at the relative view, also

in Figure 4.3, Android has a high distribution but the median is only 4.45%,

while in Spring Boot has 15,34% of relative duplicate code lines.

210.5

36

2500
5000
7500

Android Spring
Framework

Li
ne

s
(lo

g
sc

al
e)

Duplicate Lines

4.45

15.34

0

20

40

60

Android Spring
Framework

P
er

ce
nt

ag
e

Relative Duplicate Lines of
Code

Figure 4.3: Number of Duplicate Lines of Code (left) and Relative Number of
Duplicate Code Lines (right).

Lesson Learned 7: The code sample usage through copy and paste approach

has low usage. Despite that, projects relevant to the community can benefit

from its use

4.2.2 (RQ2) What are the most common questions about code

samples on Stack Overflow?

Figure 4.4 presents the distribution of the categories. The most com-

mon is the category modification, which represented 50.1% of Android and

44.8% of Spring questions. The second most common is reference (32.3% and

26.4%), which is followed by running (12% and 18.4%) and importing (5.7%

and 10.3%) questions. Interestingly, both Android and Spring present the

same order of questions, that is, (1) modification, (2) reference, (2) running,

and (4) importing.

39

5.7%
12.0%32.3%

50.1%

Android Questions

Importing
Running
Reference
Modification

10.3%
18.4%

26.4%

44.8%

Spring Questions

Figure 4.4: Stack Overflow questions by category.

In the following lines, we detail each category and present concrete exam-

ples of the challenges faced by code sample clients.

Importing. This category includes questions in which clients are trying to

import the code sample to use or modify it but could not due to configuration

issues, e.g., external dependency is not properly imported, code is not com-

piling, IDE is not configured, etc. For example, in the Question 1, the client

cannot import and run the code sample in the Android Studio IDE.17 The ac-

cepted answer simply presents step-by-step how the client should successfully

import the code sample using that IDE.

Question 1: “No matter what projects I import they never work - Android

Studio is always flagging this is not a Gradle build project [...] Can anybody

tell me specifically how to import and run the following git repo in Android

studio for example?”

Clients also have problems building the code samples, as in the following

question, in which he is struggling with the gradle build.18 The client itself

later discovers that the wrong Java version was being used (Java 1.8 instead

of 1.7).

17https://stackoverflow.com/questions/31188849
18https://stackoverflow.com/questions/31506508

40

https://stackoverflow.com/questions/31188849
https://stackoverflow.com/questions/31506508

Question 2: “I just cloned the project at GoogleSamples then cd to the native-

activity dir. I typed: gradle clean build. And I am getting this: [...] I have no

idea what’s going on here. I updated to latest gradle 2.5 which supports

’model’ in app script per the project requires.”

As a final example in this category, we present a similar case in a Spring

code sample. In Question 3, the client tries to use Maven for building the

code sample and faces an error message.19 The solution involves adding a

new dependency to the maven repository (in the pom.xml file) and to upgrade

maven to 3.0.5 above:

Question 3: “I am going through this guide: spring.io/guides/gs/rest-

service/ I use Maven for building, so I’ve fetched the pom.xml linked in the

official Spring guide [...] I get the following error when running mvn install

[...]”

Running. This category includes questions in which clients are trying to run

the code sample, but could not due to runtime problems. For instance, in

Question 4, the client can run an Android code sample, however, it crashes in

some specific cases.20 The accepted answer states that this issue refers to a

known bug, and there is no trivial solution to avoid it.

Question 4: “I’m running the Barcode Reader example from Google Vision

API, it works very well reading some 2d - pdf417 codes, but in some cases

it crashes with a native exception attempting to use NewStringUTF like this:

[...]”

Indeed, runtime problems may be diverse. The clients can run the code

sample in the following two questions, but they face specific issues. In the

first case, Question 5, the Android client21 cannot run the code sample on

some Android devices, whereas in the second case, Question 6, the Spring

client22 cannot kill the session.

19https://stackoverflow.com/questions/22935840
20https://stackoverflow.com/questions/43765499
21https://stackoverflow.com/questions/33763874
22https://stackoverflow.com/questions/37598036

41

https://stackoverflow.com/questions/22935840
https://stackoverflow.com/questions/43765499
https://stackoverflow.com/questions/33763874
https://stackoverflow.com/questions/37598036

Question 5: “I’m testing Nearby connection API with the sample application

available here: [...] It seems that this is not working for some devices. I

successfully connected Samsung Galaxy S3 with Nexus 7 in both directions

(S3 as host, N7 as slave, and vice versa). However, when I try to connect

Samsung Galaxy S3 to Nexus 5, the connection ALWAYS fails, with status

code 8005.”

Question 6: “The problem that I am facing is, when I clicked the logout button

this send a post request to the /logout endpoint to kill to session, but when

I clicked the LogIn button again I expect to see the login Form Again.”

Modification. This category is the most frequent in our classification. It

includes questions in which clients are trying to modify or improve the code

sample, but faced some trouble, for instance, while adding new features, using

the sample in larger applications, performing migrations, etc. For example, in

the following questions, the clients perform minor changes in the code sample,

however, the modifications do not behave as expected. In Question 7, the

Spring modification resulted in an exception,23 whereas in Question 8, the

clients reports a deformed image in Android.24 In both cases, the answers are

trivial, and it seems that the clients do not have enough experience.

Question 7: “I’m having trouble with my first steps using Spring-Boot with

JPA. I’ve started with a pretty minimalistic example from Git using Gradle.

Now simply moving Customer to another package, let’s say to hello2 results

in an exception Caused by: java.lang.IllegalArgumentException: Not an man-

aged type: class hello2.Customer.”

Question 8: “I tested with the GoogeSamples project android-Camera2Basic.

But when I change the preview with a ratio of 1:1 image is deformed. Does

anyone have an idea on this?”

Besides performing minor changes, clients may also create applications

based on the code samples. In the following examples, Question 9 and Ques-

tion 10, the clients are building custom cameras based on code samples pro-

vided by Android.2526

23https://stackoverflow.com/questions/23366226
24https://stackoverflow.com/questions/34638651
25https://stackoverflow.com/questions/39044494
26https://stackoverflow.com/questions/39022845

42

https://stackoverflow.com/questions/23366226
https://stackoverflow.com/questions/34638651
https://stackoverflow.com/questions/39044494
https://stackoverflow.com/questions/39022845

Question 9: “I’m building a custom camera using the new camera2 API. My

code is based on the code sample provided by Google here. I can’t find a way

to get the camera preview in full screen. In the code sample, they use ratio

optimization to adapt to all screens but it’s only taking around 3/4 of the

screen’s height.”

Question 10: “I’m creating a custom camera capturing videos with the new

camera2 API. My code is strongly inspired from the code provided by Google

here. My camera preview has a button to switch from back to front camera

and then from front to back camera [...]. For some reason, when I click on

the “switch/swap camera” button for the first time, it brings be to the front

camera as it should, BUT everytime I click again, the switch/swap doesn’t

work anymore.”

As a final example, we present a question in which the client aims to expand

the code sample considerably, taking into account security issues.27

Question 11: “I would like to be able to upload images to a server, handling

errors and exceptions gracefully [...]. Using the example project gs-uploading-

files I can upload files to a server using Spring Boot and Thymeleaf. In ap-

plication.properties I set [...]. However several security and validation issues

are unresolved when I upload files larger than 1MB.”

Modification tags. To further explore the questions related to the modifica-

tion, we assess their tags. In Stack Overflow, a tag is a word or phrase that

describes the topic of the question.28 For that analysis, we select all tags of

the analyzed questions and remove noisy ones, such as the framework name,

framework versions, and others. Finally, we merge similar tags for the sake of

clarity, for example, the tags “android-camera2”, “android-camera”, “camera”,

“camera2”, “front-camera”, and “camera-api” become camera.

Table 4.4 summarizes the most common tags for each framework. Camera

is the most common tag in the Android framework (105 questions). It refers

to the Camera API,29 an Android library that provides camera features for

distinct devices. The second most common tag is vision (36). The Mobile

Vision API is part of the Machine Learning Kit30 and provides a framework for

finding objects in photos and video as face, barcode, and text detection.31 The

next tag is setup (29), which is a merge of two other tags: ndk and studio.

27https://stackoverflow.com/questions/40355743
28https://stackoverflow.com/help/tagging
29https://developer.android.com/guide/topics/media/camera?hl=en_us
30https://developers.google.com/ml-kit
31https://developers.google.com/vision/introduction

43

https://stackoverflow.com/questions/40355743
https://stackoverflow.com/help/tagging
https://developer.android.com/guide/topics/media/camera?hl=en_us
https://developers.google.com/ml-kit
https://developers.google.com/vision/introduction

The Android NDK32 is a toolset that allows apps to be implemented in native

code (using languages such as C and C++), while the Android Studio is the

official IDE for building Android apps.33 The next tag is dagger (31), which is

a dependency injection framework for Java, Kotlin, and Android.34 Lastly, we

find architecture components (24), which is a merge of architectural tags as

android-viewmodel, android-room, and android-livedata; they are all related

to the Android app architecture.35

Table 4.4: Most common tags of modification questions.

Android Spring

Tags # Tags #

camera 105 security 36
vision 36 data 14
setup 29 social 6
dagger 31 cloud 4
architecture components 24 maven 3

For Spring Boot, we note that the most common tag is security (36). Spring

Security is a framework that focuses on providing both authentication and

authorization to Java applications.36 The second tag is data (14): Spring

Data’s goal is to provide a familiar and consistent, Spring-based program-

ming model for data access.37 The third tag is social (6), which is a tool to

connect Spring application with Software-as-a-Service (SaaS) API providers

such as Facebook, Twitter, and LinkedIn.38 The next tag is cloud (4): Spring

Cloud provides tools for clients to build some of the common patterns in dis-

tributed systems quickly.39 Lastly, we have the tag maven (3). Apache Maven

is a software project management and comprehension tool that can manage a

project’s build, reporting, and documentation.40

Overall, these results suggest that clients have issues modifying distinct

types of code samples, as presented by the variation of detected tags. In both

platforms, the doubts are not concentrated on a single tag, but spread over

several ones.

Reference. This final category contains questions with references to the code

samples to illustrate some particular programming scenario or general doubts.

For example, in Question 12, the client is simply illustrating his problem with

32https://developer.android.com/ndk
33https://developer.android.com/studio/intro
34https://dagger.dev
35https://developer.android.com/jetpack/guide#recommended-app-arch
36https://spring.io/projects/spring-security
37https://spring.io/projects/spring-data
38https://projects.spring.io/spring-social/
39https://spring.io/projects/spring-cloud
40https://maven.apache.org/

44

https://developer.android.com/ndk
https://developer.android.com/studio/intro
https://dagger.dev
https://developer.android.com/jetpack/guide#recommended-app-arch
https://spring.io/projects/spring-security
https://spring.io/projects/spring-data
https://projects.spring.io/spring-social/
https://spring.io/projects/spring-cloud
https://maven.apache.org/

reference to an Android code sample.41

Question 12: “My main requirement would be to have a service having its

own process and trigger its own geofencing event [...]. Then there is this

code sample from Google showing how to use geofencing with google play

services: Google samples geofencing. What I found so far is that we have to

use an IntentService to trigger geofencing events, and from the docs, I’ve read

it states that an IntentService terminates itself when its work is done”

In the next example, the client is curious about the design of the code

sample and looks for explanations about it.42

Question 13: “Does anybody know why the Spring Boot Guide includes two

different types of integration tests? [...]”

Finally, in the following question, the client references the code sample to

illustrate his doubt with a concrete example better.43

Question 14: “Does the Google Mobile Vision API work offline? Or does it

need Internet connectivity? The sample app does not require any Internet

permission. Which means the API works entirely offline. I am looking for a

positive confirmation of this. [...]”

Lesson Learned 5: Clients typically face problems when trying to modify the

code samples, for example, when adding new features or performing minor

changes to explore them. This category corresponds to 50% of the cases in

Android questions and 45% in Spring Boot.

4.2.3 (RQ3) What are the most common issues that impact code

samples on GitHub?

Figure 4.5 presents the distribution of the categories after the manual anal-

ysis. The most common category is improvement, with 40.9% in Android and

65.5% in Spring Boot code samples. This may suggest that clients who use

code samples want to improve them, and, at the same time, maintainers care

about improvements and clients’ requests. In both platforms, the second most

common is importing, with 30.3% in Android and 13.8% in Spring Boot code

samples. Running has 16.7% in Android code samples and 11.8% in Spring

Boot ones. The fourth category is question (7.6%) in Android but modification

41https://stackoverflow.com/questions/28355353
42https://stackoverflow.com/questions/46732371
43https://stackoverflow.com/questions/40832882

45

https://stackoverflow.com/questions/28355353
https://stackoverflow.com/questions/46732371
https://stackoverflow.com/questions/40832882

(4.9%) in Spring Boot. Finally, modification has 4.5% in Android code samples,

and the question category has 3.9% in Spring Boot ones.

30.3%

40.9%

4.5%7.6%

16.7%

Android Issues

Importing
Improvement
Modification
Question
Running

13.8%
65.5%

4.9%
3.9%

11.8%

Spring Issues

Figure 4.5: Distribution of issues’ categories.

Figure 4.6 presents the distribution of changes type led by issues. In An-

droid, we notice that source code changes are the most common type of change

with 51.9%. Followed by configuration with 41.3% and documentation with

6.7%. In contrast, in Spring Boot, we observe that documentation is the most

common type of change with 43%, while configuration and source code have

34.7% and 22.3%, respectively.

41.3%

6.7%

51.9%

Android Issues

Configuration File
Documentation
Source Code

34.7%

43.0%
22.3%

Spring Issues

Figure 4.6: Distribution of modification types.

46

Lesson Learned 6: Clients create issues mainly suggesting improvements to

code samples. Since we only assessed issues that changed the code samples,

this shows that those issues are well accepted by code samples maintainers.

4.3 Implications

Many hands make work lighter. We found that clients frequently try to

modify or improve the code samples, but face some problems, for instance,

expanding the sample with new features. We also detect that clients may even

suggest the improvement of code samples via GitHub issues. Experienced

clients can help newcomers deal with code samples problems. In that way,

they may feel part of the community.

From code sample to beyond. We find that many questions are created, for

example, when clients try to use camera API on Android and security features

on Spring Boot. Maybe clients would not create these questions if organi-

zations made available extra content explaining how to evolve code samples,

including the use of different related features (e.g., more complex use of com-

mon features). For instance, the basic code sample explains how to use a

camera to take a picture, but the extra content could explain how to switch

between the front and back camera, turn on the flashlight, or take a picture

within a canvas drawing. This could help to spread the technology and also to

support clients.

Each client counts: We found that code sample clients don’t usually use the

copy/paste approach to reuse code sample code in their own repositories. Be-

sides that, there is a minority that does and it must not be ignored. Code

sample guides also stated that clients will copy and paste code sample code

into their own projects and may put it in production [20]. For that, code sam-

ples need to follow generally accepted best practices and does not do anything

that will cause an application to be insecure, grossly inefficient, bloated, or

inaccessible.

4.4 Threats to Validity

This section discusses the study limitations based on the four categories

of validity threats described by Wohlin et al. [106]. Each category has a set of

possible threats to the validity of an experiment. We identified these possible

threats to our study within each category, which are discussed in the following

with the measures we took to reduce each risk.

47

Conclusion validity: It concerns the relationship between the treatment and

the outcome. In this work, potential threats arise from low reliability of mea-
sures: we conduct a manually classification of Stack Overflow questions and

GitHub issues. This is a risk since we could have bias to this classification. To

mitigate this risk, we used thematic analysis [21] and Cohen Kappa test [19].

Construct validity: It refers to the degree to which inferences can legitimately

be made from the operationalizations in your study to the theoretical con-

structs on which those operationalizations were based. We detected a pos-

sible threat related to the restricted generalizability across constructs: Java

might have specific characteristics about their usage, understanding and de-

mands, different from another programming languages and could affect this

study. This risk cannot be avoided since we analyzed only code samples in

Java. However, we argue that Java is an important programming language

and comprises many code samples in the GitHub repository.

External validity: Threats associated with external validity concern the degree

to which the findings can be generalized to the wider classes of subjects from

which the experimental work has drawn a sample. We identified a risk related

to the interaction between selection and treatment: the use of code samples

provided by four platforms might present specific aspects compared to other

platforms. This risk cannot be avoided because our focus is on this platforms.

However, we argue that they are relevant and worldwide adopted platforms

that have millions of end-users. Therefore, we believe the results extracted

can be the first step towards the generalization of the results.

4.5 Related Work

Frameworks are used to support development, provide source code reuse,

improve productivity, and decrease costs [44, 68, 80]. Often there is a steep

learning curve involved when developers adopt frameworks. Development

based on code samples provides the benefits of code reuse, efficient devel-

opment, and code quality [91]. Moreover, with the popularity and relevance of

the Question and Answer (Q&A) sites such as Stack Overflow, some studies

propose approaches and tools to search and/or retrieve source code samples

and explore the properties of those samples.

Context-based code samples. Software engineering tools bring sophisticated

search power into the development environment by extending the browsing

and searching capabilities [34, 50, 78, 85, 91]. For instance, Holmes and Mur-

phy [34] proposed a technique that recommends source code examples from

a repository by matching structures of given code. FuzzyCatch [72] provides

a code recommendation tool, based on fuzzy logic, for handling exceptions.

48

XSnippet [85] provides a context-sensitive code assistant framework that pro-

vides sample source code snippets for developers. In general, these tools help

locate samples of code, demonstrate the use of frameworks, and fasten de-

velopment by exploring the syntactic context provided mainly by the IDE to

recommend code samples more relevant to developers (as in Strathcona [34]).

However, the samples provided by these systems are highly dependent on a

particular development context. In contrast, code samples typically are com-

plete projects that organizations made to facilitate and accelerate the learning

process of features provided by frameworks. Therefore, it is expected that the

types of code samples explored in this paper present different characteristics

compared to samples automatically generated by tools.

Assessing Q&A code snippets. Nasehi et al. [90] focused on finding the char-

acteristics of a good example on Stack Overflow. They adopted an approach

based on high/low voted answers, the number of code blocks used, the con-

ciseness of the code, the presence of links to other resources, the presence

of alternate solutions, and code comments. Yang et al. [108] assessed the

usability of code snippets across four languages: C#, Java, JavaScript, and

Python. The analysis was based on the standard steps of parsing, compiling,

and running the source code, which indicates the effort that would be required

for developers to use the snippet as-is. A similar work was done by Uddin et
al. [23] that assesses the prevalence and vulnerabilities of share code exam-

ples using C# unsafe keyword in Stack Overflow. They assess using regular

expressions and manual checks. Meldrum et al. [56] evaluate the quality of

code snippets on Stack Overflow, exploring aspects as reliability and confor-

mance to programming rules, readability, performance, and security. Finally,

studies are analyzing the adoption of code snippets [33, 84, 109]. For instance,

Roy and Cordy [84] analyzed code snippet clones in open source systems. They

found that, on average, 15% of the files in the C systems, 46% of the files in

the Java systems, and 29% of files in the C# systems are associated with exact

(block-level) clones. Similar to our work, these studies focus on analyzing the

properties of code snippets and their adoption on real projects. However, our

work targets entire code sample projects instead of code snippets.

4.6 Conclusion

In this study, we explore the code sample usage through the copy/paste

approach. We also assess the most common issues related to code samples.

Finally, we analyzed the most common Stack Overflow questions related to

code samples. Based on our results on this study, we stand out the following

results: (1) the copy/paste approach had low frequency of usage in reposito-

49

ries of code sample watchers; (2) clients typically face problems when trying to

modify the code samples; (3) The main need raised by code sample clients are

suggestions to improve the code sample. From these findings, some questions

arose. For example, if the most common problem faced by clients was when

trying to modify the code sample, then how experienced are these clients? And

if the most common suggestion was to improve the code sample, are organi-

zations paying enough attention when releasing new updates to their code

samples? These and some other questions helped in the development of the

studies of the other chapters.

50

CHAPTER

5
Actors of Code Samples

Context: As already stated in Chapter 2, to a health SECO context is im-

portant to exist interaction between the actors [52]. In Chapter 2 and Chap-

ter 4, we show that Stack Overflow (SO) is an environment where newcomers

clients, experienced clients, and code sample maintainers can interact with

each other. In general, we believe that newcomers clients, when facing prob-

lems or raising questions about the platform or code samples, turn to SO for

a solution. On the other hand, more experienced clients or maintainers, help

newcomers by answering these questions in a detailed and accurate way.

Problem: Few studies that explore the most common characteristics of

code samples and similar projects. [59, 112]. There is a gap in knowledge

about the profile of actors that interact with code samples. In Chapter 4, we

found that the motivation behind most code sample questions on SO is related

to trying to modify the code sample. That is, clients face problems when trying

to extend the code sample to another context, probably more complex. This

may indicate that the clients are less experienced than organizations believe

and should receive assistance through more complete artifacts and code sam-

ple extension guides. Through the assessment of experience level of actors

that interact with the code sample can be useful to (1) organizations that seek

to disseminate knowledge to the community and accelerate contributions (in-

cluding evolution) around its products; and (2) actors that seek to contribute

to the “curatorship” of the repository, as they will understand the profiles of

other actors.

Purpose: As a way of moving towards a characterization of actors that

interact with code sample, In this chapter we seek to achieve the following

goal: Explore characteristics from actors that interact with code samples, via

51

SO and GitHub information, to fill the gap of knowledge and help organizations

to create more suitable code samples.

To do so, we built three research questions. (RQ1) What is the reputation

of questioner about code samples? (RQ2) What is the reputation of answerer

about code samples? (RQ3) What are the characteristics of code sample main-

tainers? To answer these questions, we conduct a study that explores the

degree of experience of questioners and answerer through reputation on SO.

In addition, we also explore the characteristics of code sample maintainers via

the information provided by GitHub. We explore actors’ information from four

different platforms: Android, AWS, Azure, and Spring Boot.

Structure: Section 5.1 shows methods and steps used to conduct the

study. Section 5.2 shows the results obtained after we performed steps of Sec-

tion 5.1. Section 5.3 presents the implications of results. Section 5.4 shows

the threats of validity from this study and how we mitigated them. Section 5.5

presents the related work and differences to our study. Finally, Section 5.6

presents the conclusion of this study.

5.1 Study Design

This section presents how we design and conduct the exploratory study.

Section 5.1.1 presents the code sample selection. Section 5.1.2, Section 5.1.2

and Section 5.1.2 present the research question, their rationale and method

to be answered.

5.1.1 Code Sample Selection

In Chapter 3 and Chapter 4 we explored information from code samples

of only two platforms: Android and Spring Boot. For this chapter and Chap-

ter 6, we decide to explore information from code samples of four platforms:

Android, AWS, Azure, and Spring Boot. In that way, we could expand the

number of analyzed code samples, increasing the reliability and generality of

our results. For the study presented in this chapter we selected 176 code sam-

ples from Android, 111 from AWS, 263 from Azure, and 57 from Spring Boot,

totaling 607 code samples. We detail each selected platform and motivation

behind in Section 2.4.

5.1.2 (RQ1) What is the reputation of questioner about code sam-

ples?

This research question aims to explore the experience degree of the clients

who ask questions about code samples (questioners). To do so, we use the

52

SO reputation as one of the indicators of the experience and knowledge of

actors [9, 67]. Reputation is a SO metric that indicates how much the com-

munity believes in a user [38]. The idea of this research question is to have a

threshold that can indicate the experience level of questioners. In other words,

it would be possible to know the reputation of clients who have doubts about

the code samples.

Rationale: In Chapter 4, we found that most of the code sample questions

on SO are related to the situation when the client tries to make changes to the

code sample. This may indicate that clients may not have enough experience

to be able to use the code sample in this way and may need support tools.

By answering this research question, we can advance the characterization of

clients and organizations can better define the target audience of their code

samples.

Since the absolute reputation score may not be that representative, we

decided to extract the reputation of the average of SO community to be com-

pared. We obtained this information through the Stack Exchange platform1

which provides a database referring to the reputation of all the 12,485,155

SO users. The data statistics of SO users were: Minimum (1), Maximum

(1,185,733), Average (119), Median (1), and Mode (1).

To identify SO questions related to code samples, we used the following

approach: a question is related to a code sample when a reference (URL) to

the GitHub repository is found in the body of the question. The entire pro-

cedure for collecting the questions was conducted through the official Stack

Exchange API2 and from StackAPI library3. We extracted questions created

from November 2013 to June 2020.

5.1.3 (RQ2) What is the reputation of answerer about code sam-

ples?

While RQ1 is interested in evaluating the experience of who ask about code

samples, this research question aims to evaluate the experience of who answer

questions about code samples (answerer). We believe that answerer should be

more experienced than questioner about code samples on SO.

Rationale: Thus, answering this research question helps us to characterize

more about the profile of actors around code samples. This will fill the gap

of knowledge about these actors, and may assist organizations to create code

samples most appropriate to their target audience.

The answers used in this research question are the answers to the ques-

1https://archive.org/download/stackexchange/stackoverflow.com-Users.7z
2https://api.stackexchange.com/
3https://stackapi.readthedocs.io/

53

https://archive.org/download/stackexchange/stackoverflow.com-Users.7z
https://api.stackexchange.com/
https://stackapi.readthedocs.io/

tions found in RQ1 and presented in Section 5.1.2. In the same way, we

extracted answers from November 2013 and June 2020. In addition, we col-

lected the data through the official Stack Exchange API and from StackAPI

library. In SO, there is a concept of accepted answer. The SO user that ask

a question has the option to accept an answer. Accepting an answer is not

meant to be a definitive and final statement indicating that the question has

now been answered perfectly. It simply means that the author received an

answer that worked for them personally. 4

5.1.4 (RQ3) What are the characteristics of code sample main-

tainers?

In RQ1 we aim to explore who ask about code samples, in RQ2 we aim

to explore who answer about code samples, and in this research question

we aim to find characteristics of code sample maintainers. To cover another

gap of knowledge in code sample maintenance, we explore characteristics like

popularity, experience, and location, provided by GitHub API.

Rationale: The interaction between the actors is essential to keep a health

SECO [52]. For these interactions to occur properly, it is necessary that the

actors know the characteristics of each other. For example, cultural and lin-

guistic aspects can influence how interactions occur. Another example, geolo-

cation factors can affect the communication time between actors.

First of all, we need to know which GitHub users are maintainers of code

samples. To do so, we consider a code sample maintainer the user that (1)

performed at least one commit directly to the main code sample branch or

(2) accepted (merged) at least one Pull Request (PR) to the code sample main

branch. Second, we extract all information via GitHub API wrapped in python

library PyGitHub5. To assess maintainer popularity we use the following met-

ric, which means the number of GitHub users following the maintainer. To

assess maintainer experience we use GitHub time, this metric is the number

of days since the maintainer creates his account on GitHub. For location in-

formation, GitHub provides a field that the user can fill where he is located,

but it is optional. As this field is free to be filled, the user can write any-

thing, so we removed information that is not interesting to us. For example,

we exclude 127.0.0.1, Earth, XYY-IA, somewhere, and others.

4https://stackoverflow.com/help/accepted-answer
5https://pygithub.readthedocs.io/en/latest/

54

https://stackoverflow.com/help/accepted-answer
https://pygithub.readthedocs.io/en/latest/

5.2 Results

In this section, we presents the results for each research question. Sec-

tion 5.2.1 shows results of experience degree questioners (RQ1). Section 5.2.1

presents the results of experience degree of answerer (RQ2). Finally, Sec-

tion 5.2.3 presents characteristics of code sample maintainers (RQ3).

5.2.1 (RQ1) What is the reputation of questioner about code sam-

ples?

We obtained 549 SO questions, from which 453 were related to Android

code samples, 36 questions related to code samples from Azure, 6 of the code

samples from AWS, and 54 related to Spring Boot code samples. Figure 5.1

presents the reputation score of questioners about code samples, for each

platform. On the median, Spring Boot ones presented higher reputation, with

430.5, followed by AWS with 388.5, Android with 323, and Azure with 57.

Compared with the reputation of the average of SO community, we can note

that questioners are most experienced for most of the platforms. Azure ones

seem to be more inexperienced them other platforms and the average of SO

community. This may indicate that each platform and its code samples have

different target audiences and organizations must create code samples suit-

able for each one.

Still on Figure 5.1, we can see that there is a wide distribution among

reputations, especially for Android and Spring Boot. Looking for the data, we

could find clients with 1 until over 100,000. This may indicate that, although

most clients are a little more experienced than the average of SO community

(119), the target audience for code samples ranges from the inexperienced

clients, who need simple code samples and even auxiliary content to help

them understand. them better even the most experienced clients who need

more complex code samples to meet their demands.

323 388.5

57

430.5

0

50000
100000150000

Android AWS Azure Spring
Code Samples

R
ep

ut
at

io
n

(lo
g

sc
al

e)

Reputation of Questioners

Figure 5.1: Reputation of questioners about code samples on SO.

55

Lesson Learned 1: The target audience of code samples can range from the

inexperienced clients to the most experienced clients. Despite this, each

organization should evaluate its target audience in a specific way, to create

suitable code samples.

5.2.2 (RQ2) What is the reputation of answerer about code sam-

ples?

From the set of questions obtained in Section 5.2.1, we have 639 answers,

with 538 answers related to Android code samples, 62 related to Spring Boot

code samples, 5 to AWS code samples and 34 to Azure. Of these 639 answers,

145 are accepted answers. Section 5.2 (left) presents the reputation of SO

users that answer questions about code sample. We can note that the Spring

Boot platform has the most experienced answerers, with 1,391 on the median.

Followed by AWS with 1,387, Android with 885, and Azure with 646 of rep-

utation on the median. Figure 5.2 (right) shows the reputation of who have

accepted answer. We note that AWS ones present 3,970 of reputation on the

median, followed by Android with 1,514, Azure with 1,226, and Spring with

1,211.5. Comparing these results with the average of SO community (119), we

can note that answerers are, in general, much more experienced. In addition,

answerers also are much more experienced than questioners.

885 646 1,391 1,387

0

40000080000012000001600000

Android AWS Azure Spring
Code Samples

R
ep

ut
at

io
n

(lo
g

sc
al

e)

Reputation of Answerer

1,514 1,226 1,211.5
3,970

0

40000080000012000001600000

Android AWS Azure Spring
Code Samples

R
ep

ut
at

io
n

(lo
g

sc
al

e)

Reputation of Answerer
 with Accepted Answser

Figure 5.2: Reputation of answerers about code sample (left) and reputation
of answerers with accepted answers (right).

Lesson Learned 2: Answerers of code samples questions are very experienced

compared with questioners and the average of SO community.

5.2.3 (RQ3) What are the characteristics of code sample main-

tainers?

After carrying out the selection of maintainers described in the Section 5.1.4,

we obtained a set of 740 code samples maintainers, 186 from Android, 228

56

from AWS, 253 from Azure, and 74 from Spring Boot. Figure 5.3 shows the

number of followers and following of code sample maintainers. Figure 5.3

(left) present the followers, and we can see that in Android and Spring Boot,

the dispersion of the number of followers is greater compared with AWS and

Azure. In Android and Spring Boot the median is 29.5, while Azure presents

10 and AWS with 3 followers. Besides this difference between organizations,

it is noted that the majority of code sample maintainers are not as popular on

GitHub as we could think. Figure 5.3 (right) presents the number of follow-

ings of code samples maintainers. As in the number of followers, the number

of followings presents a high dispersion of the that, where some users follow

more than 200 GitHub users, while some maintainers follow zero users. In

Spring, code sample maintainers follow four users on the median, while An-

droid presents one follow, AWS and Azure zero on the median. There are some

reasons for this low number of followers, for example, code sample maintain-

ers can use a different GitHub account for their personal repositories and the

organization repositories.

29.5

3
10

29.5

0

10000
20000

Android AWS Azure Spring
Framework

F
ol

lo
w

er
s

(lo
g

sc
al

e)

Followers

1
0 0

4

0

100

200
300
400

Android AWS Azure Spring
Framework

F
ol

lo
w

in
g

(lo
g

sc
al

e)

Following

Figure 5.3: Followers (left) and Following (right) of code sample maintainers.

Figure 5.4 presents the time in days since the code sample maintainers cre-

ate their GitHub account. We can note that maintainers of Spring and Android

present on the median of 3,665.5 and 3,360.5 days respectively, which means

around 10 years of GitHub usage. In Azure and AWS the time is smaller, Azure

maintainers have 2,662 on the median, while AWS maintainers present 2,182.

It means around 7 years for Azure maintainers and around 6 years of GitHub

usage to AWS maintainers. This result may be explained by the niche of each

platform. The development of mobile and web applications has been popular

longer than the development of cloud computing, which has been popularized

more recently.

57

3360.5

2182
2662

3665.5

0

1000

2000

3000

4000

5000

Android AWS Azure Spring
Framework

T
im

e
in

 d
ay

s

GitHub Time

Figure 5.4: Number of days from code sample maintainers on GitHub.

Table 5.1 presents the results about maintainers location for each platform.

We can note that for all platforms, the majority of maintainers are located in

the United States of America, representing 55 (30%) of Android maintainers,

74 (33%) in AWS, 97 (38%) in Azure, and 19 (25%) in Spring. A high part of

them is in cities inside or around Silicon Valley, such as San Jose, Sunny-

vale, Mountain View, Palo Alto, and others. However, there is a percentage

of maintainers distributed in other regions, countries, and continents. For

example, in Android, we found 11 (6%) maintainers in the United Kingdom,

4 (2%) in Australia, 4 (2%) in Japan, and 2 (1%) in Germany. Also, others

8 (4%) maintainers are distributed in Spain, Canada, Finland, India, Russia,

Switzerland, and Italy. In AWS, besides the US, we found the United Kingdom

with 5 (2%) maintainers, Brazil with 4 (2%), Germany with 3 (1%), and France

with 3 (%1). And others with 21 (9%) maintainers in countries such as the

Netherlands, Canada, India, China, Singapore, Australia, Japan, Switzerland,

Belgium, Norway, Sweden, Taiwan, Ireland, Luxembourg, and Argentina. For

Azure platform, besides the US, we found 11 (4%) maintainers in China, 8

(3%) in France, 7 (3%) in Canada, and 7 (3%) in India. We also found 13 (5%)

maintainers in other countries such as UK, Germany, Netherlands, Singapore,

Belgium, Poland, New Zealand, Mexico, Ukraine, Israel, and Iceland. Finally,

in Spring, we also found 8 (11%) maintainers in Germany, 5 (7%) in UK, 3 (4%)

in Canada, and 3 (4%) in Poland. Spring also presented 10 (13%) maintainers

located in France, Belgium, China, India, Netherlands, Russia, Lithuania, and

Turkey.

Also in Table 5.1, we found a high number of maintainers without location

information. In Android, 97 (53%) of maintainers had location information

empty in their GitHub accounts. It happened in other platforms as well, in

AWS, 116 (51%) of the maintainers had empty locations, Azure presented 106

(42%) and Spring with 23 (30%).

58

Table 5.1: Maintainers location

Android AWS Azure Spring

Region # Region # Region # Region #

US 55 (30%) US 74 (33%) US 97 (38%) US 19 (25%)
UK 11 (6%) UK 5 (2%) CN 11 (4%) DE 8 (11%)
AU 4 (2%) BR 4 (2%) FR 8 (3%) UK 5 (7%)
JP 4 (2%) DE 3 (1%) CA 7 (3%) CA 3 (4%)
DE 2 (1%) FR 3 (1%) IN 7 (3%) PL 3 (4%)

Others 8 (4%) Others 21 (9%) Others 13 (5%) Others 10 (13%)
Ignored 3 (2%) Ignored 1 (0%) Ignored 5 (2%) Ignored 2 (3%)
Empty 97 (53%) Empty 116 (51%) Empty 106 (42%) Empty 23 (30%)
Total 184 (100%) Total 227 (100%) Total 254 (100%) Total 76 (100%)

Lesson Learned 3: Code sample maintainers are not the most popular or in-

fluential users on GitHub. Besides that, they seem to be experienced users

on GitHub. A wide part of them located in USA but there is a set of maintain-

ers distributed in other countries as United Kingdom, China and Germany.

5.3 Implications

From beginners to experts. In general, we identify a wide range of reputa-

tions among clients. We found inexperienced clients with a reputation close

to one to more experienced clients with a reputation greater than 100,000.

This indicates that, contrary to common sense, code samples, despite their

simplicity, can target even more experienced clients.

For each target audience, a strategy. We found that clients who ask, in

general, are relatively experienced. Despite this, we noticed that there is a

difference in the degree of experience of who ask between platforms. In this

way, each organization must identify the target audiences for its code samples

and develop code samples and auxiliary tools that best suit each of them.

Simplicity is not all. In this chapter, we found that newcomers are more

experienced than the community. but, in Chapter 3, we found that code sam-

ples are smaller and simpler than conventional projects. And in Chapter 4,

we found that clients typically face problems when they try to modify the code

sample. In this case, even with the code samples following guidelines and best

practices, they were not sufficiently explanatory for the target audience with

above-average reputation. Organizations should provide code samples that

meet complex usage scenarios, as real-world projects demand.

Community matters. We noticed that who answer questions about code sam-

ples are actually more experienced than the community average and also more

experienced than who ask. This may indicate that the community itself can

59

help to solve this questions. Thus, it is interesting that organizations provide

incentives for this type of interaction between their actors. Whether encourag-

ing the most experienced clients themselves or with professionals in the field

such as evangelists or developer relations. This can strengthen the community

and imply the strengthening of SECO as well.

Old is not cool: We found that code sample maintainers have some age on the

GitHub, in general, around six years. Besides that, they are not so popular

on GitHub. Perhaps more influential maintainers in the community could

use its popularity to attract more clients to code samples, helping to spread

knowledge about the platform and helping to further consolidate SECO as

well.

5.4 Threats to Validity

This section discusses the study limitations based on the four categories

of validity threats described by Wohlin et al. [106]. Each category has a set of

possible threats to the validity of an experiment. We identified these possible

threats to our study within each category, which are discussed in the following

with the measures we took to reduce each risk.

Internal validity: It is the degree to which conclusions can be drawn about

the causal effect of independent variables on the dependent variables. One

important threat to internal validity is related to the sample selection: on the

Stack Overflow platform, any user can create question without any restriction.

In other words, there is no filter to have only relevant questions, and poor

questions could be a risk. To mitigated this we only select questions with

positive score.

Construct validity: It refers to the degree to which inferences can legitimately

be made from the operationalizations in your study to the theoretical con-

structs on which those operationalizations were based. We detected a possible

threat related to the measurement metrics: we evaluated the today’s reputa-

tion on Stack Overflow and this could not represent the reputation when the

user created the question. This threat can not be avoid since Stack Overflow

API only provides today’s reputation.

External validity: Threats associated with external validity concern the degree

to which the findings can be generalized to the wider classes of subjects from

which the experimental work has drawn a sample. We identified a risk related

to the interaction between selection and treatment: the use of code samples

provided by four platforms might present specific aspects compared to other

platforms. This risk cannot be avoided because our focus is on this platforms.

However, we argue that they are relevant and worldwide adopted platforms

60

that have millions of end-users. Therefore, we believe the results extracted

can be the first step towards the generalization of the results.

5.5 Related Work

Code samples. Menezes et al. [59] carries out an exploratory study, seek-

ing to clarify characteristics found in code samples, as well as defining a set of

lessons learned. Zhang et al. [112], an approach to API documentation enrich-

ment is proposed, mapping code samples into corresponding usage scenarios.

Although the work cited focuses on code samples, they do not address aspects

of clients who seek or use these projects. In this work, developers who use

code samples are explored, evidencing their degree of expertise in the OS.

Reputation score in Q&A platforms. Unlike this work, which analyzes the

target audience of code samples by reputation, Movshovitz-Attias et al. [69],

focuses on the behavior pattern of users of high and low reputation, conclud-

ing that, although most of the questions asked come from users with a low

reputation, on average, a user with a high reputation asks more questions

than a user with a low reputation. In the study carried out by Bosu and

colleagues [9] an empirical evaluation of the OS user reputation is presented,

guiding new users to obtain high reputation scores in an agile way. Differently,

in this work, the reputation of developers who use several code samples in the

OS is observed, exposing possible contributions to organizations in improving

their repositories and making them more adaptable to the characteristics of

the developers who use them.

5.6 Conclusion

Based on the results obtained from conducting the exploratory study, the

following results stand out: (1) Contrary to what was imagined, clients who

ask or answer about code samples are more experienced than the community

in general; (2) Code samples are likely to be used by a wide variety of clients

ranging from novices to the most experienced; (3) Organizations should look

for characteristics in their code samples compatible with the average commu-

nity experience to avoid a high number of questions; (4) Organizations should

analyze code samples individually in some situations to identify specific target

audiences (eg, less or more experienced than average), and thus adapt them

to these clients; (5) Organizations should engage experienced clients in their

code samples so they can answer other clients’ questions on Q&A sites.

61

62

CHAPTER

6
Maintenance of Code Samples

Context: Since code samples belong to a SECO context, it is important

to exist interaction between the actors since it is essential for the survival

of the SECO [52]. As previously stated in Chapter 2, clients can interact

with organizations through GitHub. Clients can related bugs or claim for new

usage scenarios via GitHub issues. In addition, clients can also contribute to

the code sample code via Pull Request (PR). Whether coming from external

contributors or from within the organization itself, it is vital that code samples

preserve or even improve their quality [20, 59].

On the other hand, Lehman’s laws of software report that evolution makes

software projects more complex and harder to maintain [48]. In a similar way

Jacobson et al. [39] defined software entropy as a closed system’s disorder

that cannot be reduced, it can only remain unchanged or increase. We know

that code samples are software projects, made available by organizations, for

educational purposes, to assist clients with platform features [20, 59].

Problem: As code samples are software projects, it is natural that they also

evolve [59]. For example, a code sample evolves to update to a new platform

version, otherwise, it becomes outdated. But it’s not strict as was stated in

Chapter 3, a code sample may change to accommodate new usage scenarios to

clients’ needs. However, the uncontrolled evolution of code samples can make

their quality decay. They may become large in code size and project size, less

readable, and more complex. Low-quality code samples can implicate a barrier

to the learning process, and raise doubts for clients. They may lose their

educational purpose and become useless. Even worse, they may be another

source of questions, confusing clients. Therefore, instead of being the solution

to a problem, they may be another problem that clients must overcome to

63

understand or keep up to date on an organization’s product.

So, it is essential for both organizations and academia to investigate ques-

tions such as what are the most common code sample maintenance activities?

how organizations are evolving their code samples how code sample evolution

impacts their clients. In this way, we can raise points that need more atten-

tion from organizations that are already evolving their code samples, but also

help new organizations that would like to create and evolve their own code

samples.

Purpose: Since there are still few studies that evaluate how organizations

evolve their code samples, the goal of this chapter is Evaluate how organiza-

tions maintain their code samples over time and the impact of this mainte-

nance on clients, analyzing their maintainers’ activities, source code evolu-

tion, and clients’ doubts on Stack Overflow (SO), to provide insights for other

organizations.

To do so, we built three research questions. (RQ1) How are maintenance

activities distributed in code sample repositories? (RQ2) How do code samples

evolve over time? (RQ3) Does the evolution of code samples may impact clients’

questions? To answer these questions, we conduct an exploratory study on

top of 166 code samples implemented in Java and provided by Android, AWS,

Azure, and Spring Boot. We assess information about maintenance activi-

ties on GitHub. In addition, we assess code sample evolution of code size,

readability, project size, OO design, and code complexity. Finally, we explore

questions about code samples on SO and compare their raise with code sam-

ple evolution.

Structure: Section 6.1 shows methods and steps used to conduct the

study. Section 6.2 shows the results obtained after we performed steps of Sec-

tion 6.1. Section 6.3 presents the implications of results. Section 6.4 shows

the threats to validity of this study and how we mitigated them. Section 6.5

presents the related work and differences to our study. Finally, Section 6.6

presents the conclusion of this study.

6.1 Study Design

This section presents how we design and conduct the exploratory study.

Section 6.1.1 presents the code samples selection. Section 6.1.2, Section 6.1.3

and Section 6.1.4 present the research questions, their rationale and method

to be answered.

64

6.1.1 Code Sample Selection

We selected code samples written in Java from four different organizations:

Google, Microsoft, Amazon, and Spring. More specifically, we analyzed code

samples of the following products: Android, Azure, AWS, and Spring Boot.

Details about each platform and motivation are described in Section 2.4. The

extraction of the code samples was conducted via GitHub [29]. It’s worth

noticing that we only selected a code sample if it was mentioned in at least one

question on SO. Details of questions selection is presented in Section 6.1.4.

6.1.2 (RQ1) How are maintenance activities distributed in code

sample repositories?

In this research question, we aim to explore the maintenance process by

looking at the division of maintenance activities on code samples repositories

in GitHub. Rationale: The results of this research question can help us un-

derstand of the maintenance process of the code samples. Code samples are

created to help clients in the learning process of platform features, and for

that, it is interesting that they get and maintain high code quality. In that

way, we want to know if the code sample maintainers use PR approach, using

a review process, that can be helpful to maintain code quality. On the other

hand, they could insert new code directly into the main branch and that could

be a factor to introduce new bugs or bad code.

We use GitHub events, provided by GitHub Activity API, to assess how orga-

nization distribute maintenance activities. The GitHub Activity API allows us

to list events and feeds, and also manage notifications, starring, and watching

for the authenticated users 1. As a part of Activity API, GitHub make avail-

able the event API to the user’s events. Trough events, we can track activities

performed by GitHub users as create a branch, fork a repository, create a pull

request or an issue, and among others. There are a few types of events and

we will present they and they definition as well. CommitCommentEvent is

triggered when a commit comment is created. CreateEvent: when user create

a reference to a repository, as a Git branch or tag. DeleteEvent: in the same

way as create, delete is when user delete a reference to a repository, branch

or tag. Fork: this event is triggered when a user fork a repository. IssueCom-
mentEvent: Activity related to an issue or pull request comment, can be cre-
ated, edited or deleted. IssuesEvent: Activity related to an issue, and can be

opened, edited, closed, reopened, assigned, unassigned, labeled, or unlabeled.

MemberEvent: Activity related to repository collaborators and Can be added
to indicate a user accepted an invitation to a repository. PublicEvent: When

1https://docs.github.com/en/rest/reference/activity

65

a private repository is made public. PullRequestEvent: Activity related to

PR, and the action that was performed. Can be one of opened, edited, closed,

reopened, assigned, unassigned, review_requested, review_request_removed,

labeled, unlabeled, and synchronize. PullRequestReviewEvent: Activity re-

lated to pull request reviews, and only can be created. PullRequestReview-
CommentEvent: Activity related to pull request review comments in the pull

request’s unified diff. Can be created. PushEvent: One or more commits are

pushed to a repository branch or tag. ReleaseEvent: Activity related to a

release and can be published.

Since the GitHub API does not provide us with a list of repository main-

tainers, we need to find a way to get it. For that, we consider a code sample

maintainer a GitHub user that: (1) performed at least one commit directly to

the code sample main branch or (2) accepted at least one PR to the code sam-

ple main branch. Then we got a list of 740 maintainers, 186 from Android,

228 from AWS, 253 from Azure, and 74 from Spring. After maintainer selec-

tion, we extract from them, all GitHub events related to code samples, but it

is important to highlight that GitHub API only provides the events performed

in the last 90 days ago.

6.1.3 (RQ2) How do code samples evolve over time?

Aiming to answer RQ1, we evaluated historical changes in code samples

and extracted the trend of four groups of metrics: source code size, source

code readability, project size, OO design and code complexity.

1. Source code size: We first explored the evolution of the code sample size by

computing metrics related to their source code size. We focused on 16 metrics:

Physical Lines (PL), Lines of Code (LOC), Declarative Lines of Code (DLOC), Ex-

ecutable Lines of Code (ELOC), Commented Lines of Code (CLOC), Blank Lines

(BL), Number of Class Variables (NV), Number of Instance Variables (NIV),

NUmber of All Methods (AM), Public Methods (NPRM), Private Methods (NPM),

Protected Methods (PM), Local Methods (LM), Statements (STMT), Declarative

Statements (DSTMT), Executable Statements (ESTMT) [87]. Rationale: Small

code with simple structures may improve code understanding [54]. So, it is

important to assess whether source code size remains as small and concise as

possible throughout the evolution of code samples.

2. Source code readability: The metrics selected to cover code readability are

Buse and Weimer’s Readability (BWR), Scalabrino et al.’s Readability (SAR),

and Comment to Code Ratio (CCR). The readability metric (BWR) defined by

Buse and Weimer [15], is based primarily on local, line-by-line features such

as line length, identifier length, and indentation. The value of the metric varies

between 0 and 1, with higher values indicating higher readability. In a similar

66

way, Scalabrino et al’s [86] readability (SAR) uses source code lexicon analysis,

as consistency between code and comments, specificity of the identifiers, tex-

tual coherence, and comments, to assess the code readability. The Comment

to Code Ratio (CCR) measures the ratio between code and comment into a code

sample to analyze how commented it is. Rationale: Code samples can bridge

technical resources and clients who want to learn or be updated about these

resources. Therefore, it is vital to analyze if code samples are not becoming

difficult to read and hard to understand.

3. Project size: We also investigated the evolution of the code sample size by

computing metrics related to project size. We extracted the following three

metrics: Number of Java Files (JAVA), Number of Classes (CLASSES), and

Number of Packages (PKG). Rationale: In addition to the source code size, it

is important to observe the project size. An increasing number of source code
files (i.e., java files), classes and/or packages may demand more effort to be

driven by clients in order to understand the code sample.

4. OO design: To explore the OO design of code samples, we extracted the so-

called CK metrics suite [17]. The CK metrics suite comprises the following met-

rics: Weighted Methods per Class (WMC), Coupling Between Object Classes

(CBO), Depth of the Inheritance Tree (DIT), Number of Children (NOC), Re-

sponse for a Class (RFC), and Lack of Cohesion of Methods (LCOM). Rationale:

The authors of this suite of metrics claim that these measures can aid users

in understanding design complexity [17]. In addition, there are several stud-

ies using these metrics to analyze the design of OO projects [47, 74, 97, 111].

Since we are analyzing Java projects, it is important to understand how the

OO design changes during its evolution. A worsening in the value of these

metrics can indicate a worsening in the design along the evolution making it

difficult for the clients to understand code samples.

5. Code Complexity: Finally, we also investigated aspects of code complexity.

To do that we select 9 metrics selected to measure code complexity: FANIN,

FANOUT, Cyclomatic Complexity (CC), Cyclomatic Complexity Modified (CCM),

Cyclomatic Complexity Strict (CCS), Essential Complexity (EC), Knots (KNTS),

Number of Paths (NPATH) and Number of Paths in Logarithm Scale (NPLOG).

Rationale: It is worth analyzing code complexity since an increasing complex-

ity of source code may lead to questions, and even drive off clients from the

organization’s products.

To extract the analyzed metrics, we used the Understand [87] tool to gather

metrics related to source code size, project size, and OO design. The code

readability is calculated using the implementation of Buse and Weimer’s [15],

which is largely adopted by the literature [5, 66]. In a similar way, Scalabrino

et al’s readability metric is computed using the authors’ tool [86]. To retrieve

67

evolutionary data, we implemented a script using GitPython [100] library to

handle commit information. It is worth mentioning that the whole histori-

cal data available in the official repository of each code sample was analyzed,

which comprises from the first commit of the project to the last commit per-

formed until the end of August 2021.

The process of data aggregation was performed as follows: (1) at each com-

mit of each code sample, the analyzed metrics were extracted. File-based

metrics (source code size, source code readability, and OO design) were aggre-

gated by averaging the metric of the code sample’s Java files. In this way, we

had for each commit of each code sample a value for each metric. (2) To orga-

nize the data over time, we consider the average of the metrics of the commits

carried out each month. In this way, we were able to have the evolutionary

data of each code sample per month.

The metrics trend over time were calculated by applying the Mann-Kendall

test [43, 53] with p-value ≤ 0.05 for each analyzed metric. The Mann-Kendall

trend test (also known as the M-K test) is used to analyze data collected over

time for increasing, decreasing, or no trends [32]. We used the pymannkendall

package in Python[36] to compute it.

6.1.4 (RQ3) Does the evolution of code samples may impact clients’

questions?

For this research question, we mined questions from the Q&A website SO.

We considered that a question is related to a selected code sample when a

reference to the official code sample repository is found in a question. This

reference should be made by including the URL of the code sample in the

question body. The questions were selected using the official Stack Exchange

repository [Inc]. By using the described steps, we found 1,188 questions, 939

of these questions are related to Android code samples, 149 from Spring Boot,

84 for Azure, and 15 for AWS.

To assess whether careless evolution is related to a raise of questions re-

lated to code samples, we used the number of SO questions related to the

code samples analyzed and associated them to the metrics extracted in RQ2

(Section 6.1.3). To obtain the correlation between each metric and the SO

questions, we used two different correlation tests. If the data presented a

normal distribution, we used the Pearson’s correlation test [6], otherwise, we

applied the Spearman’s correlation test [92]. To find whether the data pre-

sented normal distribution, we used Shapiro-Wilk’s test [88]. To automate

this step, we used the scipy package in Python to compute all statistical tests.

It is important to highlight that all data were normalized before we run the

statistical tests.

68

Rationale: A correlation may mean that the metric (alone or together with

other metrics) may have led to a difficulty in understanding the code sample.

In addition, with this analysis, it would be possible to identify metrics (i.e.,

properties of code samples) that are important to avoid clients’ questions.

6.2 Results

This section presents the results obtained during the extraction of data

presented in Section 6.1. More specifically, Section 6.2.1 presents the re-

sult found on maintenance activities of code samples (RQ1). Section 6.2.2

shows the result obtained from evolution metrics of code samples (RQ2). And

Section 6.2.3 presents the results of SO questions and their correlation to

evolution metrics (RQ3).

6.2.1 (RQ1) How are maintenance activities distributed in code

sample repositories?

Table 6.1 presents the GitHub events of code sample maintainers. We can

note that the Push event is the most common event with 1,264 (36.47%) on

code samples. This means that code sample maintainers dedicate more than

1/3 of their activities on GitHub to uploading new versions of the code sample

to the repository, adding new features, fixing bugs, or updating it to a new

platform version, also in the source code, documentation or configuration files.

The second most common event is Pull Request with 802 (23.14%). This

event is related to Pull Request management, as Pull Request create or edit,

request a review, labeling, and other actions into Pull Requests. Pull Request

Review is the third most common event on code samples maintainers with

546 (15.75%). This event is triggered when a review is created. A code review

is an important approach to improving or maintaining code quality and it

is essential to code samples since they have an educational purpose. The

fifth most common event is Pull Request Review Comment with 190 (5.48%)

events. This event is triggered when the reviewer creates a comment into a Pull

Request. As a part of code review, this communication between reviewer and

code sender is essential because the reviewer can comment directly on code,

providing different approaches or improvements to get a better code quality.

69

Table 6.1: GitHub Events of Code Sample Maintainers.

Event Code Samples
Push 1,264 (36.47%)
Pull Request 802 (23.14%)
PR Review 546 (15.75%)
Delete 212 (6.11%)
PR Review Comment 190 (5.48%)
Others 451 (14.96%)
Total 3,465 (100%)

This means that among the most performed maintenance activities is the

insertion of changes in the code samples repository. These changes can be up-

dated to a new platform version, add of new usage scenarios, improvement of

documentation, and others. We know that the increase in size and complexity

is directly related to the evolution of conventional software [48]. But we also

know that code samples have an educational purpose and should keep their

smallness and simplicity. [20, 59]. Thus, organizations should use good prac-

tices for maintaining code samples, such as the use of CD/CI tools to control

these characteristics.

Although the Push events are the most common activity performed by code

sample maintainers, exists a relevant part related to the Pull Request man-

agement, being PR creation, review or comment. As said before, it is worth

mentioning that Pull Requests is a way that code samples receive contribu-

tions from internal members of the organization and external contributions,

for example, from code sample clients as well. On the one hand, the Pull Re-

quest development approach helps clients to keep code bugs safe, avoid code

smells, and improve code quality. This occurs because one of the steps on the

PR approach is code review, where a highly experienced client assesses the

PR code, to reject, accept or suggest alternatives. In addition to code quality

benefits, this approach also has a social one. PR approach also can encourage

code sample clients to feel free to contribute with code sample, creating PRs to

fix a bug, remove a code smell, or improve documentation, feeling part of the

community and contributing to the SECO health. On the other hand, if this

approach is not carried out correctly, it means with a complete and thorough

review, it may have a reverse effect and generate a technical debt in the code

samples code, with the insertion of bugs and code smells.

70

Lesson Learned 1: The code sample modification is the most common ac-

tivity performed by maintainers. Followed by PR activities. Due to the high

amount of modifications and possible modifications from outside organiza-

tion contributors, organizations should pay attention to these modifications,

and may use CI/CD tools, to keep code samples small, simple, readable, and

of high code quality.

6.2.2 (RQ2) How do code samples evolve over time?

Table 6.2 presents the results of the trend test (Mann-Kendall Test) for each

analyzed metric. We present the number of code samples which statistically

increased the value of a metric (↗), decreased (↘), and presented no trend

(←→).

71

Table 6.2: Results

Category Shortname Trend Correlation

Code Size

PL ↗ +

ELOC ↗ +

LOC ↗ +

BL ↗ +

STMT ↗ +

ESTMT ↗ +

DLOC ↗ +

DSTMT ↗ ?

CLOC ↗ ?

AM ↗ ?

LM ←→ ?

PM ←→ ?

NV ←→ ?

NPM ←→ ?

NIV ←→ ?

NPRM ←→ ?

Readability
SAR ↘ -

CCR ↘ ?

BWR ←→ ?

Project Size
CLASSES ↗ +

JAVA ↗ ?

PKG ←→ ?

OO Metrics

WMC ↗ +

CBO ↗ ?

RFC ↗ ?

NOC ←→ ?

DIT ←→ ?

LCOM ←→ ?

Complexity

EC ↘ -

CC ↘ ?

CCM ↘ ?

CCS ↘ ?

NPATH ↘ ?

FANIN ↘ ?

FANOUT ↘ ?

NPLOG ←→ ?

KNTS ←→ ?

72

Source code size

The majority of code samples presented an upward trend over time in met-

rics related to source code size as expected. The metrics related to lines of

code and their average increase over time are PL (+153%), ELOC (+131%),

LOC (+124%), BL (+46%), DLOC (+65%), and CLOC (+65%) and statements as

STMT (+89%), ESTMT (+84%), and DSTMT (+60%) presented a growth behav-

ior in most of the code samples. Metrics related to the number of variables as

NV and NIV and the number of methods as PM, NPM, and NPRM, unlike lines

of code, surprisingly do not present a trend during the evolution in most of

the code samples. No metric related to source code size showed a decreasing

behavior in most of the code samples analyzed.

Discussion: Analyzing the code samples evolution to understand what causes

the increase in source code size, we can highlight that they often occur by

(i) adding new functionalities and usage scenarios to the code sample, and

(ii) updating the code sample to support newer versions of frameworks and

libraries. Our analysis shows there are recurring cases where there is an

increase in the complexity related to the use of the product presented by the

code sample. This situation requires more lines of code to implement the same

functionalities previously existing in the code sample. Another situation that

may be causing an increasing trend in the source code size is the maintainers’

attempt to take advantage of existing code throughout the evolution and adapt

it to new features, as well as update it to newer versions of frameworks and

libraries. In this case, we believe there is an upward trend as the organization

may not have given due importance to the quality of code during maintenance

tasks of code samples, causing clients to quickly implement an evolution of

the code sample without proper quality criteria. One point that, in principle,

can be positive in our data is the upward trend in the number of comment

lines and, proportionally, an increase in that number in relation to the PL.

This, on one hand, may indicate a concern by the organization to insert com-

ments in parts of the source code as a way to assist clients’ learning. On the

other hand, it is known that the increase in the number of comment lines can

cause problems for the maintenance of the code sample, as these comments

may be out of date, and not useful for learning, among others [54]. Thus,

this trend, although beneficial in a first analysis, should be better explored

and understood. Figure 6.1 shows an example of a method added during the

evolution of an Azure code sample. This method contains both source code

and comments, thus increasing PL, LOC, CLOC, AM, NPRM, among others.

73

//Utils.java
+/**
+* Print management lock.
+* @param lock a management lock
+*/
+public static void print(ManagementLock lock)
+{
+ StringBuilder info = new StringBuilder();
+ info.append("\nLock ID: ").append(lock.id())
+ .append("\nLocked resource ID: ")
+ .append(lock.lockedResourceId())
+ .append("\nLevel: ").append(lock.level());
+ System.out.println(info.toString());
+ }
+}

Figure 6.1: New method added in compute-java-manage-vm (Azure code sam-
ple).

Source code readability

Readability is a measure that tries to indicate how readable a source code

is. The value of the metrics analyzed in our study varies between zero and

one, with higher values indicating higher readability. It is worth mentioning

that, for a code sample that has an educational side, it is important that

source code readability remains high and preferably does not decrease over

the evolution. However, in our data, we noted a downward trend both in SAR

and CCR metrics with -20% and -1% of decrease on average, while BWR does

not present a trend.

Discussion: Readability metrics are based primarily on local, line-by-line fea-

tures such as line length, identifier length, and indentation. Figure 6.2 illus-

trates the evolution of a code snippet from code sample cognitive-services-face-
android-detect provided by Azure. In the previous version, SAR value for this

file is around 0.72, while in the last version (after code addiction) the value for

SAR metric goes to 0.69. It means a decrease in the readability of SAR metrics.

Despite being a controversial measure, its importance is hard to be contested

when it comes to code samples. The downward trend present is not a good

indicator of how organizations are dealing with code samples evolution. It is

common in software development to use tools to check the style of the source

code based on good programming practices. This action may impact readabil-

ity. This point is important, as it can show that organizations are probably not

using tools that aim to improve the quality of the source code, at least for code

samples. Another point that we highlight is the lack of maturity of the main-

tainers of the code samples. There are several commit authors in the life cycle

of a code sample. This shows that occasional maintainers are assigned to code

samples. We believe that more experienced programmer which is familiar with

74

the source code of the code samples may help increase the readability.

//MainActivity.java
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

−}
+Button button1 = findViewById(R.id.button1);
+button1.setOnClickListener(new +View.OnClickListener() {
+ @Override
+ public void onClick(View v) {
+ Intent intent = new +Intent(Intent.ACTION_GET_CONTENT);
+ intent.setType("image/*");
+ startActivityForResult(Intent.createChooser(
+ intent, "Select Picture"), PICK_IMAGE);
+ }
+ }) ;
+
+ detectionProgressDialog = new ProgressDialog(this);
+ }
+}

Figure 6.2: Comparing two versions (from July 2018 to September 2019) of
cognitive-services-face-android-detect (Azure code sample).

Project size

Besides the source code size, we are also interested in the project size. Ta-

ble 6.2 also presents the results of the metrics number of Java files (Java), the

number of classes (Classes), and the number of packages (PKG). We noted that

in the case of Java and Classes, the number of code samples with an upward

trend is higher than downward and code samples with no trend. On aver-

age, Java increases +208% and Classes +299% since their creation until now.

PKG metric does not present a trend in most of the code samples analyzed.

Considering these results with the source code size, we can say there is a real

increase in code sample size since the content of files (e.g., PL, LOC, CLOC,

etc.) and the number of files/classes are increasing. Figure 6.3 presents an

example of the number of files increasing over time. More specifically, in this

AWS code sample, there were six files in 2018 which became 22 in 2020.

Discussion: The first conclusion with this data is that we have a real increase

in code sample size since both source code size and project size, in general,

since most of the metrics in both categories showed an upward trend during

the evolution. So, the increase in both number of classes and number of

files are not result of the splitting of existing classes into different classes and

files. Regarding the increase in the number of classes and files, and based

on analysis made of the source code of the analyzed code samples, we believe

75

(a) Files in 2018.

(b) Files in 2020.

Figure 6.3: Files from aws-cloudhsm-jce-examples in 2018 and 2020 (AWS
code sample).

that the reason for the upward trend is mainly due to the addition of new

features and new usage scenarios, as pointed out in the discussion about

source code size. It is interesting to note that code sample maintainers try

to implement these new features and scenarios by avoiding to touch existing

code (i.e., existing classes and files). The problem is that this attempt by

maintainers to not change existing code causes the number of classes and

files to increase. These new classes and files may increase the effort of clients

resorting on code samples to understand them. This is not a good practice

in code samples. This increase may show that organizations probably do not

have a process for creating and maintaining code samples. Maintainers, based

on their knowledge of good programming practices and organizational culture,

carry out the evolution of code samples but do not pay attention to especially

important properties when it comes to code samples. Therefore, this attempt

to improve modularization and avoid changes may be good for conventional

projects but it also may be an anti-pattern to code samples. For instance,

the code sample aws-cloudhsm-jce-examples provided by AWS, starts with six

Java files in 2018 and presents 22 in 2020. Besides that, of 22 files, only four

remained throughout the evolution in these two years.

76

OO metrics

We analyze the results obtained in six CK metrics for OO design [17]. An-

alyzing the results of the Mann-Kendall trend test presented in Table 6.2, we

can observe that only WMC (+49%) has an upward trend in the majority of the

code samples analyzed, while NOC, DIT, RFC, CBO, and LCOM have no trend

in most of the code samples.

Discussion: Analyzing the results, we can initially observe that the metrics

related to the class hierarchy did not present a definite trend for most code

samples. For code samples, it is interesting that the DIT value remains sta-

ble, as greater depth in the inheritance tree means greater complexity of the

project. This lack of trend is believed to have occurred because code samples

have simpler designs and do not require complex hierarchies. Regarding the

NOC, although an increasing number indicates greater reuse of the code, but

it is expected that this will not occur in code samples. A higher NOC value

may also indicate greater complexity in understanding the code sample, as

more classes will be created. That is, a larger NOC could be an anti-pattern in

the context of code samples. Regarding the values of LCOM and CBO metrics,

it should be noted that most code samples do not show a trend. Through our

observations, we found many classes with few or no class attributes making

the metric obtain a value of zero over time. Finally, the WMC metric has an

upward trend in its values for most code samples. Such metrics are related to

the class complexity of a software project. Similar to points already presented

in previous discussions, it is believed that this increase is related to the code

sample maintainers’ attempting not to alter existing code when evolution is

made, as well as the lack of specific tasks for code samples to verify the qual-

ity of the code within organizations. In summary, some of the CK metrics

showed an increasing trend, thus indicating a software decay [76]. This decay

may hinder code samples maintenance as well as the impact on clients’ un-

derstanding of code samples. Figure 6.4 shows a representative example of

a method’s WMC increasing in Android’s code sample android-testdpc during

an evolution.

Code Complexity

According to Lehman’s law of software evolution [48] and Jacobson et al.’s
software entropy [39], software projects become more complex and harder to

maintain. However, our results, unexpectedly, show a decreasing trend in the

complexity for 7 out of 9 metrics in the majority of the code samples.

Discussion: The unexpected result in which a decreasing trend in the com-

plexity is noted for most metrics shows that code samples are types of software

77

//KioskModeActivity.java
@Override
public void onItemClick(AdapterView<?> parent, View view,
int position, long id) {

if (getPackageName().equals(getItem(position))){
onBackdoorClicked();
return;

}
PackageManager pm = getPackageManager();

− startActivity(pm.getLaunchIntentForPackage(getItem(position)));
+ Intent launchAppIntent;
+ String appPackage = getItem(position);
+
+ if (Util.isRunningOnTvDevice(getContext())){
+ launchAppIntent = pm
+ .getLeanbackLaunchIntentForPackage(appPackage);
+ } else {
+ launchAppIntent = pm.
+ getLaunchIntentForPackage(appPackage);
+ }
+ startActivity(launchAppIntent);
}

Figure 6.4: Change affecting WMC in android-testdpc (Android code sample.

projects with particularities and deserve a different look. As code samples have

an educational purpose, perhaps the main characteristic that comes to mind

when thinking about the source code of these projects is that they should not

be complex. Therefore, we believe that organizations focus on keeping con-

trolled or decreasing code complexity as a way to ensure the quality of code

samples. This kind of concern contrasts with the form code samples evolve if

we look at other categories of metrics in the previous analyses. Furthermore,

it is essential to emphasize that code samples never present complex exam-

ples of functionality usage. That is, if we look at the implementation logic, the

complexity tends to get controlled. And as new scenarios or new functionality

are required, it is expected that other code samples will be generated instead

of using the same.

Lesson Learned 2: Unlike conventional software projects, code complexity of

code samples is decreasing throughout evolution. However, they are becom-

ing larger and less readable.

6.2.3 (RQ3) Does the evolution of code samples may impact clients’

questions?

In this section, we present the results obtained by correlating the evolution

metrics analyzed in RQ1 and the Stack Overflow questions about code sam-

78

ples. The results of the correlation for each of the metrics are presented in

Table 6.2. The number of code samples presenting positive (+), negative (-),

and inconclusive (?) correlations are shown.

Source code size

It is known that there is an upward trend in 10 out of 16 metrics of source

code size (Section 6.2.2). As these results go against guidelines and good

practices of code samples, we hypothesize there is also an increase in clients’

questions. Looking at Table 6.2 we notice that the number of code samples

with a positive correlation (i.e., trends of metrics and questions in the same

direction) happens in 7 metrics showing a strong correlation with the increase

in the number of SO questions related to code samples. The other 9 metrics

presented an inconclusive correlation with clients’ questions.

Figure 6.5: Question complaining about the high LOC number.

Discussion: The results obtained correlating source code size and clients’

questions are somehow expected. An increase in the source code size is likely

to increase the clients’ efforts to understand the code sample. Figure 6.5

shows an example of a question where the client complains about the number

of lines of code in an Android code sample. An interesting behavior is that

almost all metrics related to lines of code (exception made to CLOC) presented

a positive correlation. Considering this fact with the no trend of the metrics

related to the number of methods (LM, PM, NPM, and MPRM), we can say that

methods are becoming longer throughout evolution. In conventional projects,

a long method is a well-known code smell that brings collateral effects such as

software decay, increases in the maintenance effort, and difficulty in under-

79

standing. We believe that this may be one of the causes of questions related to

code samples. In addition, considering the results obtained, code size metrics

related to lines of code have proven to be an important indicator to be tamed

during the evolution.

Source code readability

The SAR and CCR metrics related to the source code readability presented

a downward trend in our analysis (Section 6.2.2). This behavior may indicate

that the code samples became harder to read and understand over time. So,

in this case, we expected a negative correlation with the number of questions.

In other words, as the readability decreases, the number of questions should

increase. The correlation results showed this behavior only in the SAR met-

ric. Both CCR and BWR showed an inconclusive correlation with the clients’

questions.

Discussion: It is interesting to notice that one of the readability metrics SAR

showed the expected negative correlation with the number of questions. As

in conventional projects, it is expected that the readability decreases as the

software evolves. This means that code samples evolution is showing the same

behavior as conventional software projects in terms of readability. Probably,

organizations are not giving due attention to a vital indicator when it comes to

code samples. It is worth noting that there is criticism regarding readability

metrics. For instance, Posnett et al. assessed this metric BWR and identified

several weaknesses in its statistical modeling [79]. Despite that, we believe,

based on our analysis, that some properties considered by these metrics are

indeed relevant to clients referring to code samples.

Project size

There is an upward trend in the values of 2 out of 3 metrics related to

project size over time (Section 6.2.2). This upward trend is not advisable for

conventional projects as it may increase maintenance effort [17]. In the con-

text of code samples, such an increase in project size (number of Java files

and number of classes) could mean an increase in questions related to code

samples due to the number of files and/or classes that should be analyzed.

Discussion: Considering the results, it is possible to notice that the number

of classes is the only metric that has a correlation (positive) with questions of

most of the code samples. It is interesting to notice that code samples often

present more than one class per file. This result must be analyzed in other

studies to understand the need (or not) to implement some classes in the code

samples. It is important to understand if good practices of conventional soft-

ware projects fit in code samples. For instance, a modularization of a code into

80

Figure 6.6: Client complaining about the number of files.

a new class in the context of a conventional project to improve maintainability

may be more harmful to a code sample, where the source code should be as

simple as possible.

OO metrics

The authors of the CK metrics suite claim that the proposed OO metrics

can indicate code complexity, detect design flaws and predict external soft-

ware qualities such as software defects, testing, and maintenance effort in

conventional software projects [17]. In our results about code samples trying

to correlate them with clients’ questions, all metrics but WMC presented an

inconclusive result. In other words, just the WMC has proven to be a good

indicator of clients’ questions when it comes to code samples since most of the

code samples presented a positive correlation with the number of questions.

Discussion: The CK metrics measure various properties related to the project’s

OO design. Code samples have different properties when compared to conven-

tional software projects. For example, they must be simple and not present

high complexity. As we observed in the results presented in Section 6.2.1,

some metrics showed an upward trend meaning a code sample decay over

time. However, when analyzing the relationship between these metrics and

the clients’ questions, we noticed that only the WMC metric had a correlation

with clients’ questions. Such a metric is of paramount importance in the con-

text of code samples, as it represents the complexity of a class. It is believed

that a more complex class can generate more clients’ questions. Added to this

81

Figure 6.7: Client complaining about the code complexity.

is the fact that there is an increasing number of classes during the evolution

of code samples. In other words, the number of classes is growing and they

are becoming more complex. Figure 6.7 illustrates an example of a question

where a client complains about the complexity of an AWS code sample. Ana-

lyzing the mentioned file, we found more than 25 decision points which may be

one of the main reasons for the question to be made by the client. Regarding

the RFC and CBO metrics that showed an upward trend in the results of RQ1,

but did not present a conclusive correlation in the results related to RQ2, we

believe that such metrics may interfere more in code samples maintenance

tasks than in clients’ understanding.

Complexity metrics

Our results show that in the set of complexity metrics considered in our

study, only the EC metric showed an unexpected negative correlation with the

clients’ questions related to code samples, while the other metrics showed an

inconclusive correlation.

Discussion: Complexity is one of the first properties that comes to mind when

one thinks about code understandability. The results presented in RQ1 showed

that organizations may be driving efforts to this property when they evolve

code samples since 7 out of 9 metrics showed a decreasing trend. However, the

correlation test showed that only one of these metrics is correlated to clients’

questions. Even worse, a negative correlation is shown with the EC metric,

82

while the complexity decreases, the questions increase. This fact showed us

that (1) organizations may be driving efforts to the wrong property if one con-

siders only clients’ questions, and (2) only taming complexity is not enough

to minimize clients’ questions; this property should be considered with other

metrics such as code size, project size, and readability.

Lesson Learned 3: Careless evolution may be causing clients’ questions, es-

pecially when indicators of size and readability are not observed.

6.3 Implications

More code, less samples: Our results show that code samples seem to evolve

like any other conventional software. Most of the analyzed metrics presented

an upward trend. However, a key difference between conventional software

projects and code samples is that conventional projects aim at the correct ex-

ecution of their functionalities at the expense of code quality. That is, the

main goal when a conventional project is implemented is that it runs the re-

quired functionalities in a correct way. In the case of code samples, although

it is important to execute the required functionalities, code quality plays a

key role. Putting aside code samples peculiarities can make clients give up

on using code samples and look for other sources of information. Or even

worse, clients can give up on using the organization’s products and migrate

to competing products. Thus, it is important that the development of code

samples is not adapted to the routine of development of conventional projects

in organizations. In fact, code samples should have specific activities in the

development life cycle within organizations so that the focus can be on the

quality of the project and, especially, the source code.

Our differences are only skin deep, but our same goes down to the bone:
In this exploratory study, we analyzed code samples from four different orga-

nizations. Although it is outside our scope to consider the differences between

organizations when analyzing the data we noticed differences in the way of

dealing with code samples within the same organization and between organi-

zations. For example, Spring Boot’s code samples appear to be more standard-

ized than each other while Android’s are very different from each other. When

comparing the code samples from different organizations, we notice that some

indicators that seem to be important for one organization are not important for

another. There are several factors that can lead to these differences, for exam-

ple, the number of different clients working on the code samples, acceptance

policies for pull requests from external clients (outside of the organization), the

complexity of the products presented by the code samples, the target audience

83

of each code sample, organization priorities, among others. Thus, it is impor-

tant (i) to understand how organizations deal with code samples in practice,

and (ii) to define a set of good practices that must be followed so that there is

at least standardization between code samples from the same organization. In

this way, it is possible to have code samples more similar in terms of quality

as well as characteristics and priorities defined by organizations.

Size does matter (in code samples): When we look at the possible impacts

of code samples evolution on clients’ questions, we noticed that not all the

metrics analyzed are important. Metrics related to OO design as well as the

readability metric were not conclusive as to their results (except the WMC

metric). However, the code size and project size metrics (except the number

of files) were found to be related to the number of clients’ questions. That

is, especially when the metrics related to the size increased, the questions of

the clients also increased. Thus, although more specific studies are needed,

it appears that the increase in the size of the code sample, as well as the

increase in cyclomatic complexity, can have an impact on the growth of clients’

questions. Knowing this, organizations can direct their efforts to keep these

metrics under control in their tasks related to maintenance/evolution in case

the goal of organizations is to minimize the clients’ questions.

Natural selection of code samples: Our results show that code samples can

be very different. In specific analyzes of some code samples, it was noted

that even with evolution the number of questions from clients regarding these

code samples remained unchanged. This behavior can be desirable when the

evolution is well done and does not raise questions. However, this behavior can

also indicate that code samples have lost their usefulness and are no longer a

source of information for clients. And one of the reasons for the second case

may be the way the code sample has evolved. It should be highlighted that

code samples are strategic for organizations as a way to attract clients to use

their products. Therefore, organizations should be aware of how their code

samples evolve or their risk to become outdated and useless.

Pull Request is the approach, maintenance is the game: We found that

a wide part of code sample maintenance is the management of Pull Request.

Due to the review process, the PR approach helps maintainers to maintain

high code quality, and avoid bugs and code smell insert. This approach can

encourage code sample clients to contribute with code sample, proposing bug

fixes or improvements via PRs and feeling part of the community.

Sympathy to the devil: Besides the wide usage of PR approach, we also

found a representative part of code pushed directly to the main branch, which

means, without a code review. This kind of practice can be a factor to decrease

the code sample quality in terms of code.

84

6.4 Threats to Validity

This section discusses the study’s limitations based on the four categories

of threats to validity described by Wohlin et al. [106]. Each category has a set

of possible threats to the validity of an experiment. The following are the main

threats and measures taken to reduce the risk.

Conclusion Validity: It concerns the relation between treatment and outcome.

Here, potential threats arise from violated assumptions of statistical tests: the

statistical tests used to support the conclusions may have been improperly

chosen. To mitigate this threat, we perform a test of normality to identify

whether the set of metrics comes from a normal distribution or not. From this

result, it was decided which correlation test would be used.

Intern Validity: It is the degree to which it is possible to conclude the causal

effect of independent variables on dependent variables. A major threat to in-

ternal validity is related to ambiguity about the direction of causal influence:

the number of questions in SO is not necessarily an indication that code sam-

ples evolution caused these questions. However, like conventional software

projects, we believe that metrics analyzed in this study can lead clients to

have problems in code understanding.

Construct Validity: It refers to the degree to which inferences can legitimately

be made from operationalizations in the study for the theoretical constructs

on which those operationalizations were made. A possible threat related to

restricted generalization between constructs was detected: Java might present

specific characteristics when compared to other programming languages and

affects our results. This risk cannot be avoided, since we analyzed only Java

code. However, it is argued that Java is an important programming language

and comprises a large number of code samples on GitHub. Another possi-

ble threat to the study validity is related to the use of CK metrics. Despite

the criticism, we argue that several fresh studies use CK metrics in similar

studies [1, 99, 110].

External Validity: Threats associated with external validity concern the degree

to which the results can be generalized to the wider classes of subjects from

which the experimental work has drawn a sample. A risk related to the inter-
action between selection and treatment was identified: the use of code samples

provided by four organizations may have specific aspects when compared to

other code samples’ organizations. This risk was mitigated by using four rele-

vant organizations.

85

6.5 Related Work

Code samples. Menezes et al. [59], which evaluates 233 code samples for

Android and Spring Boot, and evaluates aspects of source code, evolution,

popularity, and use by customers. Zhang et al. [112] propose a novel ap-

proach towards enriching API documentation with high-quality code samples

and corresponding usage scenarios by leveraging crowd knowledge from Stack

Overflow. Zhou et al. [114] propose a context-aware code-to-code recommen-

dation tool to automatically analyze the intention of the incomplete code and

recommend relevant and reusable code samples in real-time. Picard [77] de-

scribes an architecture to manage code samples in documentation, it involves

documentation associated with code samples and a testing module. In our

study, we are focusing on code sample evolution. The mentioned related stud-

ies investigate code sample acquiring, quality or documentation.

Stack Overflow. In [70] is identified which makes the Stack Overflow code ex-

amples effective for user learning. Through a qualitative analysis of posts, it

was possible to realize that, some artifacts such as, for instance, a good expla-

nation of the code, are fundamental for a solution to be easily understood. In

our study, the search for the characteristics of the users of the stack overflow

differs from the approach used by [70], here, the information raised about the

users is incorporated into the evolutionary analyzes of the code samples gen-

erating data on the evolutionary trend of the observed projects. Through the

results obtained, it is possible to improve the availability of code samples by

organizations. Meldrum et al. [57] by performing a systematic mapping study

on crowdsourced knowledge on Stack Overflow indicate the need to research

quality aspects of the code. There is no study that performs analysis involving

code samples evolution and Stack Overflow.

Software evolution. There are countless studies that address the impact of

software systems evolution on several quality attributes and code understand-

ing. For example, [41] brings a 10-year analysis of JHot Draw and Rhino soft-

ware versions, in which object-oriented metrics and their behavior over time

are investigated. In addition, they also make an assessment of Lehman’s Laws

on the systems analyzed. Considering the clients’ perceptions about code sam-

ples, Breivold et al. [11] indicates that there is a lack of precise definition or

explanation of the authors’ perception of software evolvability.

6.6 Conclusion

Finally, we concluded that modification is the most common maintenance

activity, followed by PR management. Indeed code samples tend to increase

86

mainly in size, and become less readable and less complex. In addition, there

is an impact of the code samples’ evolution on clients. In other words, the

larger the code sample becomes, the more questions arise from clients. We

also noticed that the organizations may be evolving code samples like conven-

tional software projects. It seems that they are not considering code samples

in a preventive maintenance plan. Based on this we suggest to practitioners

and researchers: (1) the code samples project must have a specific develop-

ment life cycle within organizations so that the focus can be on the quality

of the project and, especially, the source code. Organizations may benefit

from using CI/CD tools to control the size, complexity, readability, and design

of code samples; (2) establishing strategies to share and communicate about

code samples since the way to support the code sample awareness can be im-

pacted by the level of knowledge of the public that will use the code sample;

(3) applying software engineering disciplines to design, develop, test, deploy

and maintain adapted to code samples goals; (4) using metrics provided in

our study as indicators of problems in order to support the "code sample en-

gineering". In future work, the idea is to expand the database of code samples

by including new platforms, frameworks, or libraries. In addition, the inclu-

sion of new metrics increases understanding and reinforces the data presented

here. Another point we are interested in is conducting qualitative studies with

clients and organizations that maintain code samples in order to understand

the decisions made about the maintenance and evolution of code samples.

87

88

CHAPTER

7
Conclusion and Future Work

In this work, we seek to explore characteristics of code samples and aspects

related to their context in a Software Ecosystem (SECO). In Chapter 3, we eval-

uate the main similarities and differences between code samples and conven-

tional projects, in terms of source code, evolution and usage. We can conclude

that code samples are smaller and simpler than conventional projects. Also,

code samples, as conventional projects, rely on tool to automate build and

integration, and provide a working environment to their clients. Besides code

samples change less frequently, they update to a new platform version faster

than conventional projects. In addition, we found that code samples has low

usage trough fork approach. In Chapter 4, we go deep to explore code sam-

ple usage. We found that the copy and paste approach has low usage in code

sample clients. In addition, we noted that clients typically face problems when

trying to modify the code sample. And the most client need is code sample im-

provement. In Chapter 5, we assess the actors that interact with code samples.

We highlight that the target audience of code samples can range from inexpe-

rienced to experienced client. Also, platforms of different organizations seem

to have different target audience. Also, code sample maintainers are aged and

unpopular on GitHub, and the majority of them are located in USA, but a set

of them are distributed in United Kingdom, China and Germany. Finally, in

Chapter 6 we go deep on code sample evolution assessing their maintenance

and impact on clients. We found that the most common maintenance activity

is modify the code sample repository, but PR management plays a important

part of maintenance time. We also found that code samples, become less com-

plex but larger and less readable over time. In addition, careless evolution

of code samples may be causing clients questions, especially when size and

89

readability are not observed by organizations.

As this work is a exploratory study about code samples and their relation

to SECO context, we need more in-deep studies to complete it. About code

sample usage, will be interesting if we assess code sample usage through a

survey to understand clients needs and how they use code samples. In addi-

tion, we believe that a survey is necessary to better understand the profile of

code sample clients. Finally, to better understand the process of code sam-

ple maintenance, is necessary a survey with organizations to assess how they

handle code sample maintenance.

We provide publicly all data and scripts used in this

research in https://github.com/researchgroupsoma/

DISSERTATION-ExploringCodeSamplessAndImpactOnSECO

90

https://github.com/researchgroupsoma/DISSERTATION-ExploringCodeSamplessAndImpactOnSECO
https://github.com/researchgroupsoma/DISSERTATION-ExploringCodeSamplessAndImpactOnSECO

Bibliography

[1] Alsolai, H., Roper, M., e Nassar, D. (2018). Predicting software maintain-

ability in object-oriented systems using ensemble techniques. In 2018 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

páginas 716–721. IEEE. Citado na página 85.

[2] Amazon (2021). Aws samples. Citado nas páginas 8 e 11.

[3] Andersson, J., Larsson, S., Ericsson, M., e Wingkvist, A. (2015). A study

of demand-driven documentation in two open source projects. In 2015 48th

Hawaii International Conference on System Sciences, páginas 5271–5279.

IEEE. Citado na página 8.

[4] Barnaby, C., Sen, K., Zhang, T., Glassman, E., e Chandra, S. (2020).

Exempla gratis (eg): code examples for free. In Proceedings of the 28th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, páginas 1353–

1364. Citado na página 29.

[5] Bavota, G. e Russo, B. (2016). A large-scale empirical study on self-

admitted technical debt. In Working Conference on Mining Software

Repositories (MSR), páginas 315–326. IEEE. Citado na página 67.

[6] Benesty, J., Chen, J., Huang, Y., e Cohen, I. (2009). Noise reduction in

speech processing, volume 2. Springer Science & Business Media. Citado

na página 68.

[7] Borges, H., Hora, A., e Valente, M. T. (2016). Understanding the fac-

tors that impact the popularity of GitHub repositories. In International

Conference on Software Maintenance and Evolution, páginas 334–344.

Citado na página 20.

[8] Bosch, J. (2009). From software product lines to software ecosystems. In

SPLC, volume 9, páginas 111–119. Citado nas páginas 1 e 5.

91

[9] Bosu, A., Corley, C. S., Heaton, D., Chatterji, D., Carver, J. C., e Kraft,

N. A. (2013). Building reputation in stackoverflow: An empirical investiga-

tion. In 2013 10th Working Conference MSR, páginas 89–92. Citado nas

páginas 53 e 61.

[10] Braga, W., Menezes, G., Fontao, A., Hora, A., e Cafeo, B. (2020). Quero

lhe usar! uma análise do público alvo de code samples. In Anais do VIII

Workshop de Visualização, Evolução e Manutenção de Software, páginas

33–40. SBC. Citado na página 3.

[11] Breivold, H. P., Crnkovic, I., e Larsson, M. (2012). A systematic re-

view of software architecture evolution research. Information and Software

Technology, 54(1):16–40. Citado na página 86.

[12] Brito, A., Valente, M. T., Xavier, L., e Hora, A. (2020). You broke my code:

Understanding the motivations for breaking changes in APIs. Empirical

Software Engineering, 25:1458–1492. Citado na página 34.

[13] Brito, G., Hora, A., Valente, M. T., e Robbes, R. (2018). On the use of

replacement messages in API deprecation: An empirical study. Journal of

Systems and Software, 137:306–321. Citado na página 15.

[14] Brown, P. (2017). State of the union: npm - linux.com. Citado na

página 1.

[15] Buse, R. P. e Weimer, W. R. (2008). A metric for software readability. In

Proceedings of the 2008 international symposium on Software testing and

analysis, páginas 121–130. Citado nas páginas 66 e 67.

[16] Buse, R. P. L. e Weimer, W. (2012). Synthesizing api usage examples.

In International Conference on Software Engineering, páginas 782–792.

Citado na página 29.

[17] Chidamber, S. R. e Kemerer, C. F. (1994). A metrics suite for object ori-

ented design. IEEE Transactions on software engineering, 20(6):476–493.

Citado nas páginas 67, 77, 80, e 81.

[18] Cloud, S. (2021). Spring cloud samples. Citado nas páginas 8 e 11.

[19] Cohen, J. (1960). A coefficient of agreement for nominal scales.

Educational and psychological measurement, 20(1):37–46. Citado nas pági-

nas 35 e 48.

[20] Corporation, M. (2022). Code exam-

ple guidelines. https://developer.mozilla.org/en-

US/docs/MDN/Guidelines/Code_guidelines. Citado nas páginas 2,

8, 9, 18, 47, 63, e 70.

92

[21] Cruzes, D. S. e Dyba, T. (2011). Recommended steps for thematic syn-

thesis in software engineering. In International Symposium on Empirical

Software Engineering and Measurement (ESEM), páginas 275–284. Citado

nas páginas 34, 36, e 48.

[22] Duvall, P., Matyas, S. M., e Glover, A. (2007). Continuous Integration:

Improving Software Quality and Reducing Risk. Addison-Wesley Signature

Series. Addison-Wesley. Citado nas páginas 9 e 18.

[23] Firouzi, E., Sami, A., Khomh, F., e Uddin, G. (2020). On the use of c# un-

safe code context: An empirical study of stack overflow. In Proceedings

of the 14th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), páginas 1–6. Citado nas páginas

29 e 49.

[24] Fontão, A., Ábia, B., Wiese, I., Estácio, B., Quinta, M., Santos, R. P. d.,

e Dias-Neto, A. C. (2018). Supporting governance of mobile application

developers from mining and analyzing technical questions in stack over-

flow. Journal of Software Engineering Research and Development, 6(1):1–

34. Citado na página 1.

[25] Fontão, A., Cleger-Tamayo, S., Wiese, I., Santos, R. P. d., e Dias-Neto,

A. C. (2020). On value creation in developer relations (devrel) a practitioners’

perspective. In Proceedings of the 15th International Conference on Global

Software Engineering, páginas 33–42. Citado na página 1.

[26] Foundation, P. S. (2021a). Pypi - the python package index. Citado na

página 1.

[27] Foundation, T. A. S. (2021b). Apache maven project. Citado na página 1.

[28] German, D. M., Adams, B., e Hassan, A. E. (2013). The evolution of the R

software ecosystem. In European Conference on Software Maintenance and

Reengineering. Citado na página 15.

[29] GitHub, I. (2021). Example of extraction. Citado na página 65.

[30] Google (2021a). Android samples. Citado nas páginas 2, 8, e 11.

[31] Google (2021b). Google maps samples. Citado nas páginas 2, 8, e 11.

[32] Hamed, K. H. (2008). Trend detection in hydrologic data: the mann–

kendall trend test under the scaling hypothesis. Journal of hydrology,

349(3-4):350–363. Citado na página 68.

93

[33] Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., e Irlbeck,

M. (2011). On the Extent and Nature of Software Reuse in Open Source Java

Projects. In International Conference on Top Productivity Through Software

Reuse, páginas 207–222. Citado nas páginas 29 e 49.

[34] Holmes, R. e Murphy, G. C. (2005). Using structural context to rec-

ommend source code examples. In International Conference on Software

Engineering, páginas 117–125. Citado nas páginas 28, 29, 48, e 49.

[35] Hora, A., Robbes, R., Valente, M. T., Anquetil, N., Etien, A., e Ducasse,

S. (2018). How do developers react to API evolution? a large-scale empirical

study. Software Quality Journal, 26(1):161–191. Citado nas páginas 11

e 19.

[36] Hussain, M. e Mahmud, I. (2019). pymannkendall: a python package for

non parametric mann kendall family of trend tests. Journal of Open Source

Software, 4(39):1556. Citado na página 68.

[Inc] Inc, S. E. Stack exchange data explorer. Citado na página 68.

[38] Inc, S. E. (2022). What is reputation? how do i earn (and lose) it?

https://stackoverflow.com/help/whats-reputation. Citado na página 53.

[39] Jacobson, I., Christerson, M., Jonsson, P., e Övergaard, G. (1992).

Object-Oriented Software Engineering: A Use Case Driven Approach.

Addison-Wesley, Reading. Citado nas páginas 63 e 77.

[40] Jansen, S., Cusumano, M. A., e Brinkkemper, S. (2013). Software

ecosystems: analyzing and managing business networks in the software

industry. Edward Elgar Publishing. Citado nas páginas 5 e 6.

[41] Johari, K. e Kaur, A. (2011). Effect of software evolution on software

metrics: an open source case study. ACM SIGSOFT Software Engineering

Notes, 36(5):1–8. Citado na página 86.

[42] Keivanloo, I., Rilling, J., e Zou, Y. (2014). Spotting working code exam-

ples. In International Conference on Software Engineering, páginas 664–

675. Citado na página 29.

[43] Kendall, M. e Gibbons, J. D. (1990). Rank Correlation Methods. A Charles

Griffin Title, 5 edition. Citado na página 68.

[44] Konstantopoulos, D., Marien, J., Pinkerton, M., e Braude, E. (2009).

Best principles in the design of shared software. In International Computer

Software and Applications Conference, páginas 287–292. Citado nas pági-

nas 1, 28, e 48.

94

[45] Kude, T., Huber, T., e Dibbern, J. (2018). Successfully governing software

ecosystems: Competence profiles of partnership managers. IEEE software,

36(3):39–44. Citado nas páginas 1 e 7.

[46] Kula, R. G., German, D. M., Ouni, A., Ishio, T., e Inoue, K. (2018).

Do developers update their library dependencies? Empirical Software

Engineering, 23(1):384–417. Citado nas páginas 11 e 19.

[47] Kurmangali, A., Rana, M. E., e Ab Rahman, W. N. W. (2022). Impact of

abstract factory and decorator design patterns on software maintainability:

Empirical evaluation using ck metrics. In 2022 International Conference

on Decision Aid Sciences and Applications (DASA), páginas 517–522. IEEE.

Citado na página 67.

[48] Lehman, M. M. (1996). Laws of software evolution revisited. In European

Workshop on Software Process Technology, páginas 108–124. Springer.

Citado nas páginas 15, 63, 70, e 77.

[49] Lethbridge, T. C., Singer, J., e Forward, A. (2003). How software engineers

use documentation: The state of the practice. IEEE Software, páginas 35–

39. Citado na página 18.

[50] Mandelin, D., Xu, L., Bodík, R., e Kimelman, D. (2005). Jungloid mining:

Helping to navigate the api jungle. In Conference on Programming Language

Design and Implementation, páginas 48–61. Citado nas páginas 28 e 48.

[51] Manikas, K. (2016). Revisiting software ecosystems research: A longitudi-

nal literature study. Journal of Systems and Software, 117:84–103. Citado

nas páginas 1, 5, e 7.

[52] Manikas, K. e Hansen, K. M. (2013). Software ecosystems–a system-

atic literature review. Journal of Systems and Software, 86(5):1294–1306.

Citado nas páginas 5, 7, 51, 54, e 63.

[53] Mann, H. B. (1945). Nonparametric tests against trend. Econometrica:

Journal of the econometric society, páginas 245–259. Citado na página 68.

[54] Martin, R. C. (2009). Clean code: a handbook of agile software

craftsmanship. Pearson Education. Citado nas páginas 17, 66, e 73.

[55] McDonnell, T., Ray, B., e Kim, M. (2013). An empirical study of API sta-

bility and adoption in the Android ecosystem. In International Conference

on Software Maintenance, páginas 70–79. Citado nas páginas 11 e 19.

[56] Meldrum, S., Licorish, S. A., Owen, C. A., e Savarimuthu, B. T. R. (2020).

Understanding stack overflow code quality: A recommendation of caution.

95

Science of Computer Programming, 199:102516. Citado nas páginas 29

e 49.

[57] Meldrum, S., Licorish, S. A., e Savarimuthu, B. T. R. (2017). Crowd-

sourced knowledge on stack overflow: A systematic mapping study.

In Proceedings of the 21st International Conference on Evaluation and

Assessment in Software Engineering, páginas 180–185. Citado na

página 86.

[58] Menai, M. E. B. e Al-Hassoun, N. S. (2010). Similarity detection in

java programming assignments. In 2010 5th International Conference

on Computer Science & Education, páginas 356–361. IEEE. Citado na

página 33.

[59] Menezes, G., Cafeo, B., e Hora, A. (2019). Framework code samples:

How are they maintained and used by developers? In 2019 ACM/IEEE

International Symposium ESEM, páginas 1–11. IEEE. Citado nas páginas

2, 3, 8, 9, 11, 15, 16, 17, 18, 19, 20, 30, 31, 32, 51, 61, 63, 70, e 86.

[60] Menezes, G., Cafeo, B., e Hora, A. (2022). How are framework code sam-

ples maintained and used by developers? the case of android and spring

boot. Journal of Systems and Software, 185:111146. Citado na página 3.

[61] Meyer, M. (2014). Continuous integration and its tools. IEEE Software,

31(3):14–16. Citado nas páginas 9 e 18.

[62] Microsoft (2021a). Azure samples. Citado nas páginas 8 e 11.

[63] Microsoft (2021b). Microsoft samples. Citado nas páginas 2 e 11.

[64] Montandon, J. E., Borges, H., Felix, D., e Valente, M. T. (2013). Docu-

menting apis with examples: Lessons learned with the apiminer platform.

In Working Conference on Reverse Engineering, páginas 401–408. Citado

na página 29.

[65] Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., e Marcus, A. (2015a).

How Can I Use this Method? In International Conference on Software

Engineering, páginas 880–890. Citado na página 29.

[66] Moreno, L., Bavota, G., Di Penta, M., Oliveto, R., e Marcus, A. (2015b).

How can I use this method? In International Conference on Software

Engineering, páginas 880–890. Citado na página 67.

[67] Morrison, P. e Murphy-Hill, E. (2013). Is programming knowledge related

to age? In Companion to the Working Conference MSR, páginas 1–4. Cite-

seer. Citado na página 53.

96

[68] Moser, S. e Nierstrasz, O. (1996). The effect of object-oriented frameworks

on developer productivity. Computer, 29(9). Citado nas páginas 1, 28, e 48.

[69] Movshovitz-Attias, D., Movshovitz-Attias, Y., Steenkiste, P., e Falout-

sos, C. (2013). Analysis of the reputation system and user contributions

on a question answering website: Stackoverflow. In 2013 IEEE/ACM

International Conference on ASONAM 2013, páginas 886–893. IEEE.

Citado na página 61.

[70] Nasehi, S. M., Sillito, J., Maurer, F., e Burns, C. (2012). What makes

a good code example?: A study of programming q a in stackoverflow. In

2012 28th IEEE International Conference on Software Maintenance (ICSM),

páginas 25–34. IEEE. Citado na página 86.

[71] Nguyen, P. T., Di Rocco, J., Di Ruscio, D., Ochoa, L., Degueule, T., e

Di Penta, M. (2019). Focus: A recommender system for mining api function

calls and usage patterns. In 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE), páginas 1050–1060. IEEE. Citado na

página 29.

[72] Nguyen, T., Vu, P., e Nguyen, T. (2020). Code recommendation for excep-

tion handling. In Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of

Software Engineering, páginas 1027–1038. Citado nas páginas 29 e 48.

[73] Niu, H., Keivanloo, I., e Zou, Y. (2017). Learning to rank code examples

for code search engines. Empirical Software Engineering, 22(1):259–291.

Citado na página 29.

[74] Nuñez-Varela, A. S., Pérez-Gonzalez, H. G., Martínez-Perez, F. E., e

Soubervielle-Montalvo, C. (2017). Source code metrics: A systematic map-

ping study. Journal of Systems and Software, 128:164–197. Citado na

página 67.

[75] Nybom, K., Ashraf, A., e Porres, I. (2018). A systematic mapping study

on api documentation generation approaches. In 2018 44th Euromicro

Conference on Software Engineering and Advanced Applications (SEAA),

páginas 462–469. IEEE. Citado na página 8.

[76] Olague, H. M., Etzkorn, L. H., e Cox, G. W. (2006). An entropy-

based approach to assessing object-oriented software maintainability and

degradation-a method and case study. In Software Engineering Research

and Practice, páginas 442–452. Citado na página 77.

97

[77] Picard, A. (2014). Managing code samples in documentation. US Patent

8,694,964. Citado na página 86.

[78] Poshyvanyk, D. e and, A. M. (2006). Jiriss - an eclipse plug-in for source

code exploration. In International Conference on Program Comprehension,

páginas 252–255. Citado nas páginas 28 e 48.

[79] Posnett, D., Hindle, A., e Devanbu, P. (2011). A simpler model of soft-

ware readability. In Proceedings of the 8th Working Conference on Mining

Software Repositories, MSR ’11, pagina 73–82, New York, NY, USA. Associ-

ation for Computing Machinery. Citado na página 80.

[80] Raemaekers, S., van Deursen, A., e Visser, J. (2012). Measuring soft-

ware library stability through historical version analysis. In International

Conference on Software Maintenance, páginas 378–387. Citado nas pági-

nas 1, 28, e 48.

[81] Robillard, M. P. (2009). What makes apis hard to learn? answers from

developers. IEEE software, 26(6):27–34. Citado nas páginas 1 e 8.

[82] Robillard, M. P. e DeLine, R. (2011). A field study of api learning obstacles.

Empirical Software Engineering, 16(6):703–732. Citado nas páginas 1, 8,

e 33.

[83] Romano, J., Kromrey, J. D., Coraggio, J., e Skowronek, J. (2006). Appro-

priate statistics for ordinal level data: Should we really be using t-test and

cohen’sd for evaluating group differences on the nsse and other surveys.

In Florida Association of Institutional Research, páginas 1–33. Citado na

página 20.

[84] Roy, C. K. e Cordy, J. R. (2010). Near-miss function clones in open source

software: An empirical study. Journal of Software: Evolution and Process,

22(3):165–189. Citado nas páginas 29 e 49.

[85] Sahavechaphan, N. e Claypool, K. (2006). Xsnippet: Mining for sample

code. In Conference on Object-oriented Programming Systems, Languages,

and Applications, páginas 413–430. Citado nas páginas 28, 29, 48, e 49.

[86] Scalabrino, S., Linares-Vásquez, M., Oliveto, R., e Poshyvanyk, D. (2018).

A comprehensive model for code readability. Journal of Software: Evolution

and Process, 30(6):e1958. Citado na página 67.

[87] Scitools (2021). Understand documentation. Citado nas páginas 66 e 67.

98

[88] Shapiro, S. S. e Wilk, M. B. (1965). An analysis of variance test for

normality (complete samples). Biometrika, 52(3/4):591–611. Citado na

página 68.

[89] Sheskin, D. J. (2003). Handbook of parametric and nonparametric

statistical procedures. Chapman and Hall/CRC. Citado na página 20.

[90] Sillito, J., Maurer, F., Nasehi, S. M., e Burns, C. (2012). What Makes a

Good Code Example?: A Study of Programming Q&A in StackOverflow. In

International Conference on Software Maintenance, páginas 25–34. Citado

nas páginas 29 e 49.

[91] Sindhgatta, R. (2006). Using an information retrieval system to retrieve

source code samples. In International Conference on Software Engineering,

páginas 905–908. Citado nas páginas 28 e 48.

[92] Spearman, C. (1904). The proof and measurement of association between

two things. The American Journal of Psychology, 15(1):72–101. Citado na

página 68.

[93] Spring (2021a). Oracle. Citado nas páginas 2 e 8.

[94] Spring (2021b). Spring samples. Citado nas páginas 2, 8, e 11.

[95] Spring (2022). Spring | guides. Citado na página 8.

[96] Stylos, J. e Myers, B. A. (2006). Mica: A web-search tool for finding

api components and examples. In Visual Languages and Human-Centric

Computing (VL/HCC’06), páginas 195–202. IEEE. Citado nas páginas 1

e 8.

[97] Subramanyam, R. e Krishnan, M. S. (2003). Empirical analysis of ck

metrics for object-oriented design complexity: Implications for software de-

fects. IEEE Transactions on software engineering, 29(4):297–310. Citado

na página 67.

[98] Tian, Y., Thung, F., Sharma, A., e Lo, D. (2017). Apibot: question an-

swering bot for api documentation. In 2017 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE), páginas 153–158.

IEEE. Citado nas páginas 1 e 8.

[99] Trautsch, A., Herbold, S., e Grabowski, J. (2020). Static source code met-

rics and static analysis warnings for fine-grained just-in-time defect predic-

tion. In 2020 IEEE International Conference on Software Maintenance and

Evolution (ICSME), páginas 127–138. IEEE. Citado na página 85.

99

[100] Trier, M. (2021). Gitpython documentation. Citado na página 68.

[101] Twitter (2021). Twitter samples. Citado nas páginas 2, 8, e 11.

[102] Uddin, G., Khomh, F., e Roy, C. K. (2020). Mining api usage scenarios

from stack overflow. Information and Software Technology, 122:106277.

Citado na página 29.

[103] Uddin, G. e Robillard, M. P. (2015). How api documentation fails. IEEE

Software, 32(4):68–75. Citado na página 1.

[104] Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., e Filkov, V. (2015). Quality

and Productivity Outcomes Relating to Continuous Integration in GitHub.

In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, páginas 805–816. Citado nas páginas 9 e 18.

[105] Wareham, J., Fox, P. B., e Cano Giner, J. L. (2014). Technology

ecosystem governance. Organization science, 25(4):1195–1215. Citado na

página 7.

[106] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., e Wessln,

A. (2012). Experimentation in Software Engineering. Springer Publishing

Company, Incorporated. Citado nas páginas 27, 47, 60, e 85.

[107] Xavier, L., Brito, A., Hora, A., e Valente, M. T. (2017). Historical and im-

pact analysis of API breaking changes: A large scale study. In International

Conference on Software Analysis, Evolution and Reengineering, páginas

138–147. Citado nas páginas 11 e 19.

[108] Yang, D., Hussain, A., e Lopes, C. V. (2016). From Query to Usable Code:

An Analysis of Stack Overflow Code Snippets. In International Conference

on Mining Software Repositories, páginas 391–402. Citado nas páginas 29

e 49.

[109] Yang, D., Martins, P., Saini, V., e Lopes, C. (2017). Stack Overflow

in Github: Any Snippets There? In International Conference on Mining

Software Repositories, páginas 280–290. Citado nas páginas 29 e 49.

[110] Yu, X., Bennin, K. E., Liu, J., Keung, J. W., Yin, X., e Xu, Z. (2019). An

empirical study of learning to rank techniques for effort-aware defect pre-

diction. In 2019 IEEE 26th International Conference on Software Analysis,

Evolution and Reengineering (SANER), páginas 298–309. IEEE. Citado na

página 85.

[111] Zhang, F., Mockus, A., Zou, Y., Khomh, F., e Hassan, A. E. (2013a).

How does context affect the distribution of software maintainability metrics?

100

In 2013 IEEE International Conference on Software Maintenance, páginas

350–359. IEEE. Citado nas páginas 15, 20, e 67.

[112] Zhang, J., He, J., Ren, Z., Zhang, T., e Huang, Z. (2019). Enriching api

documentation with code samples and usage scenarios from crowd knowl-

edge. IEEE Transactions on Software Engineering, PP:1–1. Citado nas

páginas 9, 33, 51, 61, e 86.

[113] Zhang, J., Sagar, S., e Shihab, E. (2013b). The evolution of mobile apps:

An exploratory study. In Proceedings of the 2013 International Workshop

on Software Development Lifecycle for Mobile, páginas 1–8. Citado na

página 15.

[114] Zhou, S., Shen, B., e Zhong, H. (2019). Lancer: Your code tell me

what you need. In 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE), páginas 1202–1205. IEEE. Citado

na página 86.

[115] Zhu, Z., Hua, C., Zou, Y., Xie, B., e Zhao, J. (2017). Automatically gener-

ating task-oriented api learning guide. In Proceedings of the 9th Asia-Pacific

Symposium on Internetware, páginas 1–10. Citado nas páginas 1 e 8.

[116] Zhu, Z., Zou, Y., Xie, B., Jin, Y., Lin, Z., e Zhang, L. (2014). Mining

api usage examples from test code. In International Conference on Software

Maintenance and Evolution, páginas 301–310. Citado na página 29.

101

	Summary
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Software Ecosystem
	Learning Process in SECO
	Code Sample
	Selected Platforms and Organizations

	Code Samples vs Conventional Projects
	Study Design
	Conventional Projects Selection
	(RQ1) What are the source code characteristics of code samples in comparison to conventional projects?
	(RQ2) How do code samples evolve over time in comparison to conventional projects?
	(RQ3) How are code samples used by clients compared to conventional projects?
	Comparative Analysis

	Results
	(RQ1) What are the source code characteristics of code samples in comparison to conventional projects?
	(RQ2) How do code samples evolve over time in comparison to conventional projects?
	(RQ3) How are code samples used by clients compared to conventional projects?

	Implication
	Threats to Validity
	Related Work
	Conclusion

	Usage of Code Samples
	Study Design
	(RQ1) How do clients use code samples in their own projects?
	(RQ2) What are the most common questions about code samples on Stack Overflow?
	(RQ3) What are the most common issues that impact code samples on GitHub?

	Results
	(RQ1) How do clients use code samples in their own projects?
	(RQ2) What are the most common questions about code samples on Stack Overflow?
	(RQ3) What are the most common issues that impact code samples on GitHub?

	Implications
	Threats to Validity
	Related Work
	Conclusion

	Actors of Code Samples
	Study Design
	Code Sample Selection
	(RQ1) What is the reputation of questioner about code samples?
	(RQ2) What is the reputation of answerer about code samples?
	(RQ3) What are the characteristics of code sample maintainers?

	Results
	(RQ1) What is the reputation of questioner about code samples?
	(RQ2) What is the reputation of answerer about code samples?
	(RQ3) What are the characteristics of code sample maintainers?

	Implications
	Threats to Validity
	Related Work
	Conclusion

	Maintenance of Code Samples
	Study Design
	Code Sample Selection
	(RQ1) How are maintenance activities distributed in code sample repositories?
	(RQ2) How do code samples evolve over time?
	(RQ3) Does the evolution of code samples may impact clients' questions?

	Results
	(RQ1) How are maintenance activities distributed in code sample repositories?
	(RQ2) How do code samples evolve over time?
	(RQ3) Does the evolution of code samples may impact clients' questions?

	Implications
	Threats to Validity
	Related Work
	Conclusion

	Conclusion and Future Work
	Bibliography

