
A Multi-Faceted Analysis of How
Organizations Create and Maintain

Code Samples

Matheus Albuquerque de Melo

SERVIÇO DE PÓS-GRADUAÇÃO DA FACOM-
UFMS

Data de Depósito: 06/10/2023

Assinatura:

A Multi-Faceted Analysis of How
Organizations Create and Maintain

Code Samples1

Matheus Albuquerque de Melo

Advisor: Prof. Bruno Barbieri de Pontes Cafeo, Ph.D.

Dissertation delivered to the Faculty of Comput-
ing (FACOM/UFMS) as part of requirements to
obtain the title of Master in Computing Science.

UFMS
August/2023

1This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001.

Acknowledgements

I would like to extend my deepest gratitude and dedicate this dissertation

to:

First and foremost, to God for always being by my side and allowing me to

reach this moment. I also wish to express my heartfelt thanks to my advisor,

Bruno Cafeo, for his support and guidance throughout this journey. My ap-

preciation goes to Awdren Fontão and Hudson Borges for their contributions.

To my parents, Rosângela and José, thank you for your love and unwaver-

ing belief in me.

I would also like to express my gratitude to my colleagues who accompanied

me during this long master’s journey: Gabriel Menezes, Karolina Milano, José

Neto, Ana Elisa, and Sidny Molina. Lastly, I want to acknowledge all the

members of the Software Engineering Laboratory (LEDES) research group.

v

vi

Abstract

Code samples, artifacts within the realm of software ecosystems, serve to

assist developers by exemplifying the use of APIs, libraries, and other re-

sources. Their exploration in literature began relatively recently, around 2019.

Studies proposed to understand the structural characteristics of the code of

these artifacts, as well as how they undergo maintenance and evolve over time.

In 2020, there was also exploration of the target audience consuming this ar-

tifact through questions on StackOverflow. This present study was divided

into two parts. Firstly, we investigated code samples repositories on GitHub

and analyzed how organizations handles contributions from external develop-

ers within this environment. In the second part, we conducted a survey with

developers who produce code samples within organizations. This allowed us

to better understand their vision and perspectives regarding code samples, as

well as analyze their experiences with code samples and dedication to these

artifacts. The proposals of both parts of the study had not been previously ex-

plored in the context of code samples. Our findings revealed some points, such

as the delay in reviewing pull requests, especially those that were rejected, and

bottlenecks in the distribution of review activities among maintainers. These

findings resulted in a publication. Furthermore, we found that the purposes of

code samples go beyond educational purposes as suggested by the organiza-

tions’ developers. We also identified that experienced developers are involved

in the development of code samples in organizations, usually dedicating a few

hours per month or week to this activity. Finally, we noted the presence of

problems of divergence of opinions among the organizations’ developers, in re-

lation to the target audience of the code samples, the development process,

and the guarantee of the quality of these artifacts.

vii

Resumo

Code samples, como artefatos presentes no contexto dos ecossistemas de

software, a qual tem a função de auxiliar os desenvolvedores, exemplificando o

uso de APIs, bibliotecas e outros recursos começaram a ser explorados na lit-

eratura recentemente, por volta de 2019. Estudos propuseram a compreender

as características estruturais do código desses artefatos, bem como como eles

passam por manutenções e evoluem ao longo do tempo. Em 2020, também

houve exploração do público-alvo que consome este artefato por meio de per-

guntas no StackOverflow. Este presente estudo foi dividido em duas partes.

Na primeira, investigamos repositórios de code samples no GitHub e anal-

isamos como as organizações lidam com as contribuições de desenvolvedores

externos dentro desse ambiente. Na segunda parte, realizamos uma pesquisa

com desenvolvedores que produzem code samples dentro das organizações.

Isso nos permitiu compreender melhor a visão e as perspectivas deles em re-

lação aos code samples, além de analisar suas experiências com code samples

e a dedicação a esses artefatos. As propostas de ambas as partes do estudo

não haviam sido exploradas anteriormente no contexto de code samples. Nos-

sas descobertas revelaram alguns pontos como a demora na revisão de pull
requests, especialmente os que foram rejeitados, e gargalos na distribuição

das atividades de revisão entre os mantenedores. Essas constatações resul-

taram em uma publicação. Além disso, descobrimos que os objetivos dos code
samples vão além dos propósitos educacionais, conforme sugerido pelos de-

senvolvedores das organizações. Também identificamos que desenvolvedores

experientes estão envolvidos no desenvolvimento de code samples nas orga-

nizações, dedicando geralmente algumas horas mensais ou semanais para

essa atividade. Por fim, notamos a presença de problemas de divergência de

opiniões entre os desenvolvedores das organizações, em relação ao público-

alvo dos code samples, ao processo de desenvolvimento e à garantia da quali-

dade desses artefatos.

viii

Contents

Summary . x

List of Figures . xi

List of Tables . xiii

List of Acronyms . xv

1 Introduction 1

2 Background 4

2.1 Software Ecosystem . 4

2.2 Code samples . 6

2.3 Code samples, SECO and GitHub 8

3 Exploratory study in code sample repositories 13

3.1 Introduction . 13

3.2 Study Design . 14

3.2.1 Study Scenario . 14

3.2.2 Chosen Platform and Organizations 15

3.2.3 Code Sample Selection . 16

3.2.4 Pull Request Selection . 16

3.2.5 Maintainers Selection . 16

3.2.6 Research questions . 16

3.3 Results of exploratory study . 18

3.4 Implications . 22

3.4.1 The community matters . 22

3.4.2 To each organization, its rules 23

3.4.3 Rejected Pull Requests: The ’Time Rejectables’ Chronicles . 23

3.4.4 Expand to conquer . 24

3.5 Threats to validity . 24

3.6 Final considerations . 25

ix

4 Survey with professionals who produce code samples 26
4.1 Introduction . 26

4.2 Study Design . 27

4.2.1 Target population of survey 27

4.2.2 Criteria for Participant Selection 28

4.2.3 Pilot survey . 29

4.2.4 Final survey . 29

4.2.5 Research questions . 33

4.3 Results of Survey . 35

4.3.1 Roles . 35

4.3.2 Experience . 37

4.3.3 Number of code samples . 38

4.3.4 Frequency of work with code samples 38

4.3.5 Reported Activities . 40

4.3.6 Main objetive of code samples 43

4.3.7 Target audience . 44

4.3.8 Internal perspective within each organization 45

4.3.9 Overview of the similarity between development process

and quality assurance with other products of the organi-

zation . 47

4.3.10Internal perspective within each organization 48

4.4 Implications . 50

4.4.1 Code Samples: Beyond Educational Objectives 50

4.4.2 Veteran Developer, Old code samples 51

4.4.3 Internal Disparities in Code Sample Perspectives 51

4.5 Threats to validity . 52

4.6 Final Considerations . 53

5 Implications 54
5.1 Implications . 54

5.1.1 Fostering Collaborative Synergy: Code Samples as Bridges

Between Organizations and External Developers 54

5.1.2 Some practices for providing code samples 55

6 Related work 56

7 Conclusions and Future Work 59

Bibliography 68

x

List of Figures

2.1 Example of SECO and Actors . 5

2.2 Files of code sample android-custom-lint-rules 8

2.3 Example of interaction: A internal developer (Google employee)

responding to an issue from a developer 11

2.4 Example of interaction: A bot and a internal developer (Google

employee) responding to a pull request from an external developer. 12

3.1 Time spent to review code sample pull requests. 20

3.2 (Left) Time to review accepted pull requests. (Right) Time to re-

view rejected pull requests. 20

3.3 Lorenz curve between code sample maintainers and pull request

reviews. 22

4.1 Participants location map . 33

4.2 Role in organizations . 36

4.3 Years of code samples vs previous organizations 37

4.4 Number of code samples worked on simultaneously 38

4.5 Frequency Work with code samples 39

4.6 Activities in code samples . 40

4.7 Less vs More expienced vs Frequency of work 42

4.8 Main objective of code samples . 43

4.9 Variation of the target audience for code samples in organizations

from the participants’ perspective. 44

4.10Main purpose of providing code samples vs Organizations 45

4.11Target audience vs Organizations 46

4.12Process of development similarity vs Organizations 49

4.13Process of assurance quality vs Organizations 50

xi

xii

List of Tables

3.1 Unreviewed vs Reviewed Pull Requests 18

3.2 Accepted vs Rejected Pull Requests 19

xiii

xiv

Acronyms

SECO Software Ecosystem. 4–6, 8, 13, 14, 22, 56

xv

xvi

CHAPTER

1
Introduction

In the software development process, various actors, including organiza-

tions, developers, suppliers, customers, and users, interact to produce ar-

tifacts and services that contribute to the construction of a software prod-

uct. These actors, along with the artifacts they manage and the shared plat-

form that supports this interaction, they constitute a concept called software

ecosystems [25, 27].

A code sample is a type of artifact that organizations can provide within

a software ecosystem. Organizations distribute this artifact through official

websites/blogs targeting developers or on code hosting platforms, such as

GitHub. For instance, Amazon offers more than 5,000 code samples related

to its AWS product in GitHub repositories [49], and Microsoft over 2,000 [34],

among other organizations like Google, Twitter, Oracle, and Spring.

In the literature, we find some definitions about code samples. They are

complete software projects that assist developers in their development efforts,

exemplifying the use of APIs, libraries, frameworks, and other resources, and

evolve over time to maintain their relevance [32].

While the increasing provision of this artifact by organizations in the soft-

ware ecosystem landscape, code samples remain underexplored in literature.

There are still many facets of this artifact to be examined. When we refer to

facets, we address the various perspectives or angles a code sample can have.

A code sample can embody facets such as: the perspective of organizations

and internal developers, the angle of external contributions, the code’s struc-

ture itself (previously explored) [32, 33], and the target audience that utilizes

these artifacts (previously explored) [6], among others.

In this study, we seek to explore facets that remain underexplored in liter-

1

ature. Beyond the facet related to the interaction between organizations and

contributions from external developers in code sample repositories, we exam-

ine others facets like the experience, roles, and dedication of internal develop-

ers who create and maintain code samples, as well as the internal perspective

of organizations regarding this artifact.

Similarly to how open-source projects can benefit from community contri-

butions [2, 40], code samples on platforms like GitHub have similar potential.

However, others research has primarily focused on contributions to general

repositories and not specifically on the community’s interest in code samples.

This raises questions about how organizations manage and incorporate these

external contributions.

Considering that the environment of open repositories for code samples

might be conducive to collaborations between the organization and the com-

munity, we propose our first research question: RQ1: How do organiza-
tions engage with external developers and manage their contributions,
especially in the context of code samples? In response, we conducted an

exploratory study centered on external contributions to repositories by devel-

opers not affiliated with the code sample providing organization. Investigat-

ing these contributions is essential as it reveals organizational interest in the

community, the community’s intent to contribute to this artifact, and clarifies

certain organizational practices in the contribution process.

Motivated by the exploratory study, we decided to further explore practices

within organizations related to the examined artifact. We then formulated a

second research question: RQ2: What are the code sample practices within
organizations? To answer, we surveyed professionals directly involved with

code samples in organizations, aiming to better understand their experiences,

dedication, and the organization’s internal perspective. Investigating these

facets will help understand more about the process of developing and main-

taining code samples within organizations, identify potential issues or best

practices, and propose improvements.

We believe this work will enhance understanding from the organization’s

viewpoint regarding code samples. We hope our findings will spark reflec-

tions on improvements in the development, quality, and maintenance pro-

cesses of code samples, offering insights for organizations seeking to leverage

these artifacts in their ecosystems. Moreover, we hope this study will inspire

future research to continue investigating organizational processes related to

code samples and identify/reveal potential improvements.

The initial phase of our study resulted in a publication, with an article

published in the Workshop on Software Visualization, Evolution, and Mainte-
nance [31]. In Chapter 2, we provide the background of our work. In Chapter

2

3, we introduce our exploratory study. In Chapter 4, we present the sur-

vey conducted with professionals. Chapter 5 outlines the implications drawn

from our findings. Chapter 6 reviews related works. Finally, in Chapter 7,

we present our conclusions and directions for future research.

3

CHAPTER

2
Background

2.1 Software Ecosystem

In the context of software engineering, there is a concept called software

ecosystem or SECO, which consists of a set of actors capable of interacting

with each other with the aim of developing and maintaining one or more soft-

ware systems around a common technological platform [5, 20, 28, 57]. A set of

actors can be divided into individuals and organizations [60], where individu-

als may or may not belong to an organization. The actors within a SECO, when

interacting towards common goals related to a specific software, platform, or

technology, form a community (including developers from the organization re-

sponsible for the SECO, external developers) [58].

According to definitions by Manikas et al. [28] and Wouters et al. (2019)

[60], various actors have been identified in the context of SECOs, such as

niche player, orchestrator, technology provider, platform provider, end user,

etc. Although there are a variety of actors within a SECO, we highlight some

directly related to our context:

• Organization: Entities like companies or foundations responsible for the

SECO. It is important not to confuse with the individual actor inside the

organization. For instance, Google is the organization responsible for the

Android SECO.

• Internal Developer: Professionals directly associated with the organiza-

tion that manages the SECO, in charge of the development and mainte-

nance of products or services.

4

• External Developers: Individuals not linked to the central organization

of the SECO who collaborate according to their own interests and ob-

jectives. They can identify flaws, propose improvements, and promote

products.

In this work, we focus on the organization as an abstract entity that gov-

erns the SECO and offers artefact within their ecosystems. Moreover, our

focus is on the professionals, both internal and external, who develop and

maintain the artifact that we explored; we will call these individuals external

or internal developers. In Figure 2.1, we illustrate an example of SECO. In

this figure, we can see the actors that will be addressed in this study. We can

also observe artifacts which may include source code, documentation, files,

etc., that can be produced or consumed by these actors. Additionally, there

are technological platforms such as blogs, websites, code hosting platforms,

etc., which serve as mediums through which an ecosystem can expand, store

artifacts, and bring together actors.

Figure 2.1: Example of SECO and Actors

Within the domain of mobile applications, an example of a software ecosys-

tem are Android and iOS. In these ecosystems, there are professionals dedi-

cated to the development and maintenance of these operating systems. Some

individuals, known as internal developers, have direct affiliations with corpo-

rations such as Google or Apple (organizations) and are responsible for de-

veloping features, creating resources, drafting documentation, and providing

services, in addition to directly contributing to the operating system. On the

other hand, there are developers who, although not directly associated with

these companies, depend on the resources, APIs, and functionalities offered

by the ecosystem of these platforms to create, for example, games and apps

5

for these mobile operating systems. These latter are considered external de-

velopers, with the potential to engage in collaborative efforts within the SECO.

In some software ecosystem models, external actors can generate values

that go beyond monetary compensations, such as knowledge, experience, or

fulfilling needs [27]. To attract individuals capable of generating value in their

ecosystems, organizations can create and provide artifacts, which are means

of exchanging information among those involved in a SECO [57]. In short,

artifacts can be the code of a software, components, services, models, docu-

mentation, and other elements that can interact with actors or other software

[48].

Some developers may encounter difficulties for learning to use a product

offered within the ecosystem, such as an API. At this point, some barriers

arise, such as lack of motivation to read the documentation [55], difficulties in

understanding and using specific functionalities [54], the need for rapid learn-

ing [68], and even documentation that tends to become outdated [24]. One of

the artifacts that an organization can provide and that can be particularly

useful to meet developers’ needs, particularly when it comes to aiding in the

understanding of an API, libraries, frameworks, and software functionalities

in general, are code samples.

2.2 Code samples

Developers may, for example, when they have difficulties about a frame-

work, a library, turn to the web. In such cases, some developers, in the

absence of official documentation for a library or for other reasons, end up

seeking answers on question and answer sites like Stack Overflow or other

similar platforms. When seeking help online, they may come across code

fragments that are copied from software projects or online sources to Stack

Overflow, known as "code snippets" [43].

Many developers not only use these code snippets to learn or seek answers

but also sometimes use them with the intention of code reuse. Although code

reuse serves to accelerate development [45, 47] and is useful for developers

[64], in the case of code snippets, they can bring vulnerabilities, outdated

code, or code that violates the original license [43, 45].

Code samples may have similar purposes to code snippets, but they are not

the same artifact. In the literature, we can find that code samples are not just

code fragments (like code snippets) but are described as complete software

projects aimed at assisting developers in understanding software products

such as APIs, libraries, and frameworks, and they evolve over time undergoing

maintenance to avoid becoming outdated [32, 33]. According to Menezes et

6

al. [32], it was found that code samples, despite usually being small and

simple for better understanding and ease of reuse, provide a complete working

environment with configuration files and other tools to facilitate the use of the

code sample by the client. Studies have also shown that code samples are

not only consumed by beginner developers. The range of developers includes

novices to the most experienced, making them an important artifact in the

community [6].

In the industry, we find some definitions as well. Oracle states that "code

sample is provided for educational purposes or to assist your development or

administrative efforts" [39]. Guidelines set by Mozilla highlight the didactic

purpose, stating that codes should be clean and easy to comprehend, avoid-

ing the inclusion of unnecessary libraries, files, or dependencies [9]. As for

the Spring organization, it states that "code samples are designed to make

you productive as quickly as possible".[53]. As for Microsoft, they serve to

demonstrate things that the developer can build [35].

Figure 2.2 exposes the files of the android-custom-lint-rules code sample

stored in the GitHub repository1. Among the project files, the presence of

configuration files can be noticed. Gradle files2, which are automation tools

for compilation and software building, can also be seen. The project also

includes the README.md, a file that describes the project’s objectives, and the

LICENSE file indicating the license used3.In this example, it can be observed

that code samples come with a configuration environment, including build

files and usage licenses, demonstrating that they are not just code fragments

like code snippets. Additionally, there are files like CONTRIBUTING.md4 that

specify rules for developers to contribute to the project.

Several organizations make code samples available in their ecosystems.

These code samples can be found on their official developer blogs/sites, and

often the source code is made available on GitHub. We have examples from

some organizations such as Google1, Microsoft2, Amazon3, Spring4, Oracle5,

and Twitter6.

1https://github.com/googlesamples/android-custom-lint-rules
2https://docs.gradle.org/current/userguide/what_is_gradle.html
3https://www.apache.org/licenses/LICENSE-2.0
4https://github.blog/2012-09-17-contributing-guidelines/
1https://developers.google.com/style/

code-samples
2https://docs.microsoft.com/pt-br/

samples/browse/
3https://docs.aws.amazon.com/

code-samples/latest/catalog/welcome.html
4https://spring.io/guides
5https://www.oracle.com/downloads/samplecode/

developers-admins-samplecode.html
6https://blog.twitter.com/developer/en_us/a/2015/

twitterdev-code-samples-on-github

7

https://github.com/googlesamples/android-custom-lint-rules
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://www.apache.org/licenses/LICENSE-2.0
https://github.blog/2012-09-17-contributing-guidelines/
https://developers.google.com/style/
code-samples
https://docs.microsoft.com/pt-br/
samples/browse/
https://docs.aws.amazon.com/
code-samples/latest/catalog/welcome.html
https://spring.io/guides
https://www.oracle.com/downloads/samplecode/
developers-admins-samplecode.html
https://blog.twitter.com/developer/en_us/a/2015/
twitterdev-code-samples-on-github

Figure 2.2: Files of code sample android-custom-lint-rules

Code samples that are officially provided by organizations with specific

guidelines for contributions and code licenses might exhibit consistent quality.

This suggests that code samples can be viewed as a more reliable alternative

than online code snippets, which often violate license terms or come from

untrustworthy sources.

2.3 Code samples, SECO and GitHub

According to Lima et al. [25], SECO approaches generally refer to an en-

vironment where a repository of components brings together stakeholders, as

well as software products and components. The components of a SECO, such

as source code, APIs, libraries, and documentation, are typically stored in

repositories. These components are considered artifacts in the context of the

study.

GitHub is the leading online code hosting platform where developers can

8

submit their own open-source projects and contribute to others [61]. With the

growth and popularity of GitHub, organizations have started storing artifacts

of their open-source software products in GitHub repositories. GitHub has

become the technological platform that gathers the stakeholders of a SECO,

including major tech companies like Google, Microsoft, and Amazon.

Code samples are artifacts that organizations can make available. It has

been previously mentioned that various multinational organizations provide

the source code of their code samples on GitHub. As code samples evolve over

time, undergo maintenance, and are used by developers with various levels of

expertise, it is necessary for actors to interact with each other for the benefit

of these artifacts. GitHub helps bring together the stakeholders of code sam-

ples (organization’s developers and external) and facilitates access. Through

GitHub, developers can create forks (independent copies) of the source code of

a code sample to learn from it, reuse code in their own projects, or contribute

to code samples through pull requests or issues (requests for code incorpora-

tion or identified problems).

By understanding that one way to make code sample available is by storing

them in repositories, such as on GitHub, it is necessary to understand some

concepts present in these repositories that enable interaction among differ-

ent actors within the code hosting platform, such as pull requests, issues,

collaborators, contributors, and users.

• Fork: On GitHub, a "fork" is a copy of a repository made by a user to

their own GitHub space. It allows users to contribute to projects without

altering the original repository. Forks encourage collaboration, facilitate

proposed modifications, and are useful for personal work;

• Branch: Git repositories are organized similarly to a tree. When creating

a repository, the initial version is stored in the "master branch," which is

equivalent to the trunk of a tree. A branch is a "branching" off the main

tree of the project. Created branches can serve for version control, adding

new features, separating a part in development from a stable part, etc;

• Pull requests: These are used to inform about changes that have been

sent to a branch in a GitHub repository. When opening a pull request, it

is possible to discuss changes with collaborators who are usually respon-

sible for accepting or rejecting the requests. Pull requests can be made

by both organization developers and external developers;

• Issues: Issues allow users to report problems or make comments about

a project stored in the repository. It is also a means by which users can

ask questions related to a project;

9

• Merge: This is the process of combining different branches and integrat-

ing them into a single branch. It is typically used to consolidate changes

into one branch;

• Commit: A commit is a set of changes that add modifications to source

code and files in a repository;

• Contributors: All individuals who have contributed commits to a repos-

itory and had their commits merged into the project’s default branch.

They can be either organization developers or external developers;

• Collaborators: Collaborators can be project maintainers or users who

have administrative permissions on the repository. They can be either

organization developers or external developers;

• Member: An individual who is part of an organization, with access to spe-

cific resources and privileges within it. Members can have different levels

of permissions, added by owners or administrators of the organization;

• Users: Users are all those who have a profile within the platform. They

can act as a collaborator, contributor, or both on a project. Typically,

user profiles are associated with the number of followers/following and

some personal information such as their organization, email, location,

etc.

It is possible to observe part of the functioning of a SECO by observing

repositories on the GitHub platform. In the following Figure 2.3 and Fig-

ure 2.4, we can observe the interaction between actors, where organizations,

through their internal developers, interact with external developers in favor of

artifacts. In the Figures, we can see the interaction between a internal devel-

oper and a external developer who opened an issue and another pull request

within the code samples repository called glass-enterprise-samples.

In the issue of Figure 2.3, the external developer opens a question in the

context of the repository, and the organization’s developer responds three days

after the issue is opened, providing an explanation and guidance. Then, the

issue is closed by the organization’s developer, and the external developer

reacts to the response with a heart emoji.

In Figure 2.4, an external developer attempts a pull request to contribute

to a code sample, which is addressed by a Google collaborator bot that guides

the developer in their first contribution to the repository, asking them to sign a

Contributor License Agreement (CLA) for their request to be reviewed. Subse-

quently, the developer confirms that they have completed the indicated steps

as instructed by the bot, receiving a thank-you message in return. Finally, it

10

Figure 2.3: Example of interaction: A internal developer (Google employee)
responding to an issue from a developer

can be seen that an organization’s developer closes and merges (merged) the

pull request, accepting the external contribution.

11

Figure 2.4: Example of interaction: A bot and a internal developer (Google
employee) responding to a pull request from an external developer.

12

CHAPTER

3
Exploratory study in code sample

repositories

3.1 Introduction

As described in Chapter 2, code samples are provided within a context

called software ecosystems. Within these ecosystems, there are interactions

between actors. In some SECO models, external developers can add value to

an organization’s product, and the organization’s engagement to attract contri-

butions from such actors is essential. Some code samples are made available

through repositories on GitHub, and within this platform, interactions be-

tween internal and external developers can occur through pull requests and

issues. Pull requests need to be reviewed to be approved or rejected [44], and

one way organizations engage is by allocating developers to this review activity,

thus fostering interaction.

Pull requests can be analyzed through repository mining. Within this do-

main, several studies have investigated pull requests without specifically fo-

cusing on code sample repositories [36, 52, 66, 67]. These studies do not ad-

dress the interaction between the organization and the community concerning

code samples. In our exploratory study, we analyzed pull requests within code

sample repositories hosted on GitHub.

Our goal is to determine if organizations are receiving contributions from

external developers (assessing their engagement) and understand if they are

open to reviewing and accepting such contributions, as well as the time it

takes to review and distribute tasks among maintainers. The lack of contribu-

13

tions from external developers might suggest that organizations might not be

receptive, or there’s limited community interest or incentives for such contri-

butions. This can affect the maintenance and utilization of this artifact. On

the other hand, the presence of external contributions and organizational en-

gagement gives us a evidence of the relevance of the study artifact for both the

organization and the community, revealing findings about the organizations’

practices in these repositories.

To guide our goal, we defined the following research questions: (RQ1)

Do organizations review and accept external contributions in code samples?

(RQ2) How long does it take organizations to review contributions? Is there a

difference in time between accepted and rejected contributions? (RQ3) How do

organizations distribute pull request review tasks among code sample main-

tainers? To answer these questions, we conducted an exploratory study evalu-

ating around 12,000 pull requests from 2,179 code samples of Android, AWS,

Azure, and Spring.

3.2 Study Design

3.2.1 Study Scenario

In previous studies on code samples, it has been observed that the most

common problem faced by the audience consuming this artefact is when they

try to modify the code samples [33].It was also observed that the most recur-

ring demand from audience consuming code samples is related to improving

this artefact, whether improving source code, documentation, or supporting

tools [33]. Given a scenario where external developers consuming code sam-

ples might find issues and attempt to contribute to repositories of this arti-

fact, organizations can leverage these contributions to generate value within

the SECO. To maintain a successful SECO, organizations need to meet the

ecosystem needs and use business or motivation to encourage actors to con-

tribute to the ecosystem evolution [27, 28]. Pull requests allow external de-

velopers to interact and contribute with code samples, requesting changes to

their repository [16, 52].

On the one hand, organizations can benefit from receiving contributions

from their external developers, this can improve their interactions and en-

gagement, which is good for a healthy SECO. On the other hand, it is essential

that these contributions be reviewed since code review has a significant im-

pact on software quality, it is crucial to review as many submitted changes as

possible [30]. If changes with low-quality code or defects are incorporated into

code sample repositories, it can have a negative impact on those who want to

learn from this artifact or copy parts of it into their projects. In this study, we

14

aim to explore how organizations deal with requests to change code samples

repository through pull requests on GitHub. In addition, we aim to explore

how are distributed the activities from pull requests management between the

code sample maintainers.

3.2.2 Chosen Platform and Organizations

We selected code samples from four platforms: Android, AWS, Azure, and

Spring Boot. The following reasons motivated us to select these platforms: (1)

they are relevant and have a wide range of clients; (2) they support the creation

of different application niches, such as mobile applications, web applications,

and cloud computing; (3) their code samples are publicly available on GitHub;

(4) some of these platforms have already been explored in previous works [32,

33, 58]. Although there are other large platforms that provide code samples,

we have identified 4 that cover the mobile and cloud computing niches.

• Android: Android is an open-source mobile operating system owned by

Google, serving over 1300 brands and more than 24,000 device models

worldwide. There are over 2 million apps developed for this platform 1.

As such, the platform is widely used by people from all over the world,

attracting developers from diverse regions. The code samples available

on this platform assist developers in creating applications with exempli-

fications of resource usage, APIs, etc.

• AWS (Amazon Web Services): AWS is a cloud computing services plat-

form owned by Amazon, catering to organizations like Lyft, Netflix, Coca-

Cola, and Moderna 2. Besides some free services, the platform offers a

wide range of cloud computing products. The code samples provided in

this ecosystem can assist developers from various client organizations.

• Azure: Azure is a cloud platform that competes with AWS and is owned

by Microsoft. They offer over 200 cloud computing products and services

with clients spread worldwide3. The code samples available on this plat-

form, similar to the previous ones, can be useful for developers across

various client organizations of the platform.

• Spring Boot: Spring Boot is a platform belonging to the Spring ecosys-

tem. It is an open-source framework that facilitates the creation of stan-

dalone applications 4. Several organizations and developers produce ap-

1,https://www.android.com/intl/pt-BR_br/everyone/
2https://aws.amazon.com/pt/products/compute
3https://azure.microsoft.com/pt-br/resources/cloud-computing-dictionary/

what-is-azure/
4,https://spring.io/projects/spring-boot

15

https://www.android.com/intl/pt-BR_br/everyone/
https://aws.amazon.com/pt/products/compute
https://azure.microsoft.com/pt-br/resources/cloud-computing-dictionary/
what-is-azure/
https://spring.io/projects/spring-boot

plications based on this framework, its language is JAVA, which made it

even better known.

3.2.3 Code Sample Selection

We select code samples from the official list provided by their organization

on GitHub. The code sample selection was performed, as well as the extrac-

tion of all other metrics, through Python scripts. We used PyGithub library5.

PyGitHub encapsulates the functionality of the GitHub API 6 and provides it

with Python functions. As a result, we obtained a total of 2,179 code samples,

44 from Android, 1,047 from AWS, 1,007 from Azure, and 81 from Spring

Boot. All data and scripts are available publicly. 7

3.2.4 Pull Request Selection

Our study focuses on contributions from external developers in code sam-

ples, which are then reviewed (those that were accepted (merged), those that

were rejected (only closed)) by the organization, so we should not select pull

requests created by maintainers (considered internal developers in this study)

or code samples that have been closed by their creators. For that, in the first

step, we select pull requests of the selected code samples. Second, we re-

move pull requests created by maintainers of the code sample (details about

the maintainers are presented below). Finally, we removed pull requests that

were closed by their own creators.

3.2.5 Maintainers Selection

We consider a code sample maintainer (organization developer) any GitHub

user who accepted (performed the merge into the project’s branch) at least one

pull request (which was not created by himself) to a repository of the studied

code samples.

3.2.6 Research questions

(RQ1) Do organizations review and accept external contributions in code
samples? To answer this question, we compute four metrics: number of

reviewed pull requests, number of unreviewed pull requests, number of ac-

cepted pull requests and number of rejected pull requests. we consider a pull

request to be reviewed when its state changes to closed and unreviewed when

5https://pypi.org/project/PyGithub/
6https://docs.github.com/pt/rest
7https://github.com/MatheusM97/VEM2022

16

https://pypi.org/project/PyGithub/
https://docs.github.com/pt/rest
https://github.com/MatheusM97/VEM2022

its state is open. We consider that a pull request has been accepted when

its state changes to closed and it has been merged [36, 52]. And we consider

that a pull request has been rejected when its state changes to closed but it

has not been merged [36, 52]. Rationale: If there is a high proportion of unre-

viewed pull requests, it may indicate that organizations are not worried about

reviewing them or have not been maintainers enough to attend to the needs

of the community. This may discourage external developers from contributing

to the evolution of the code sample. In addition, if we find a low proportion

of accepted pull requests, it may indicate that organizations are not open to

receiving contributions, possibly from external developers, in their code sam-

ples.

(RQ2) How long does it take for organizations to review contributions? Is
there a time difference between accepted and rejected contributions? To

answer this question, we selected three metrics: time to review, time to accept
and time to reject. Time to review is computed by the difference between the

date pull requests became closed and its creation date. Time to review con-

sider both, accepted and rejected pull requests. Time to accept is calculated

by the difference between the date pull requests became closed and its cre-

ation date, but only considers accepted pull requests. Similarly, time to reject
is calculated by the difference between the date pull requests became closed
and its creation date, but considers only rejected pull requests. Rationale: If

the time to close is too high, this may deter external developers to contribute,

as they don’t see their contributions being inserted or even reviewed by code

sample maintainers. By another view, if the time to close and the time to accept
shows a high value, it could be an indication that maintainers took more time

to review the pull requests may be due to a detailed review in order to reduce

the insert of low-quality code or even errors in the code sample.

(RQ3) How do organizations distribute the activities of reviewing contri-
butions via pull requests among code sample maintainers? Given the set of

code sample maintainers, we compute the number of pull requests reviewed
performed for each maintainer. Next, we compute the Gini coefficient [15]

along with the Lorenz curve [26]. The Gini Coefficient is a statistical measure

that represents the inequality of a distribution, a value of 0 expresses total

equality (for instance, everyone has the same income), and a value of 1 ex-

presses maximum inequality. The Lorenz Curve is a graphical representation

of the proportion of review activities and the proportion of maintainers. The

straight line represents perfect equality, while the Lorenz Curve indicates the

degree of inequality. The area between the line of equality and the Lorenz

Curve is used to calculate the Gini coefficient. The adoption of the Gini Coef-

ficient and the Lorenz Curve allows us to assess the inequality in the distri-

17

bution of pull request reviews among the code samples’ maintainers. These

metrics provide insights on whether reviews are being carried out equitably

among the maintainers or if they are concentrated on a few individuals. Ratio-
nale: In this question, we intend to analyze the distribution of activities among

the maintainers. An excessive concentration can indicate a possible workload

overload for certain maintainers and, consequently, delays in the review pro-

cess. By understanding this distribution, we can identify potential bottlenecks

and areas for optimization in the review process.

3.3 Results of exploratory study

This section presents the obtained results. First, we present the results

of pull request states (RQ1). Next, we present the results of the time to re-

view code sample pull requests (RQ2). Finally, we present the results of the

distribution of pull requests review (RQ3).

(RQ1) Do organizations review and accept external contributions in code
samples? Table 3.1 presents the number of reviewed and unreviewed pull

requests from code samples throughout the entire sample period. We found

483 pull requests for code samples from Android, 123 (25.5%) unreviewed and

360 (74.5%) reviewed. For AWS samples, we found 6,194 pull requests, 1,166

(18.9%) unreviewed and 5,028 (81.1%) reviewed. For Azure samples, we found

4,933 pull requests, 1,579 (32.1%) unreviewed and 3,354 (67.9%) reviewed.

For Spring samples, we found 1,150 pull requests, 150 (13.1%) unreviewed
and 1,000 (86.9%) reviewed. These results show that most pull requests have

been reviewed by organizations. In any case, there is a non-negligible per-

centage of pull requests unreviewed, and organizations must show efforts to

review them.

Table 3.1: Unreviewed vs Reviewed Pull Requests

Project Unreviewed Reviewed Total

Android 123 (25.5%) 360 (74.5%) 483

AWS 1,166 (18.9%) 5,028 (81.1%) 6,194

Azure 1,579 (32.1%) 3,354 (67.9%) 4,933

Spring 150 (13.1%) 1,000 (86.9%) 1,150

Table 3.2 presents the number of accepted and rejected pull requests from

code samples throughout the entire sample period. For Android samples,

we found 292 (81.1%) accepted pull requests and merged to code samples

repository and 68 (18.9%) rejected pull requests. In AWS samples, we found

4,422 (87.9%) accepted pull requests and 606 (12.1%) rejected pull requests.

18

For Azure samples, we found 2,901 (86.4%) accepted pull requests and 453

(13.6%) rejected pull requests. In Spring samples, we found 705 (70.5%) ac-
cepted pull requests and 295 (29.5%) rejected pull requests. These results

seem to show that most reviewed pull requests are accepted. At least 70%

of them, but reaching cases with 87% of accepted pull requests. In general

projects (which are not necessarily code samples), have approximately 76%

acceptability rate [36]. This value is exceeded in the code samples of 3 out of

the 4 analyzed platforms. The fact that the majority are reviewed, coupled with

the acceptance rate of pull requests, may indicate the organizations’ manage-

ment of these external pull requests and their receptiveness to this type of

contribution.

Table 3.2: Accepted vs Rejected Pull Requests

Project Accepted Rejected Reviewed

Android 292 (81.1%) 68 (18.9%) 360

AWS 4,422 (87.9%) 606 (12.1%) 5,028

Azure 2,901 (86.4%) 453 (13.6%) 3,354

Spring 705 (70.5%) 295 (29.5%) 1,000

In general, organizations demonstrate openness to reviewing contributions

through pull requests in code sample repositories. A higher number of contri-

butions have been accepted and incorporated into the code samples, regard-

less of the period analyzed.

We can conclude that organizations interact with external developers through

reviews; they review and accept the majority of these pull requests. On the

other hand, with the existence of these external contributions, the interest of

external developers in contributing to the artifact was demonstrated.

(RQ2) How long does it take for organizations to review contributions?
Is there a time difference between accepted and rejected contributions?
Figure 3.1 presents the time taken to pull requests be reviewed. We can see

that, in the median, Android samples take 7.5 days to be reviewed. While pull

requests from AWS samples take 3.6 days, in the median. Pull requests from

Azure samples take 12.73 days and Spring samples take 32.58 days on the

median. This indicate that there is no standard across organizations, while

pull requests for code samples from AWS typically take approximately 3 days,

Spring pull requests take more than 30 days to be reviewed. However, on

all platforms, there are pull requests that take longer than others, and there

are even cases that take more than 500 days to review. This may be due to

the complexity of the modifications, given that the number of lines added or

19

modified and the number of commits is an attributes to determine the time to

review [65].

Figure 3.1: Time spent to review code sample pull requests.

Figure 3.2 (left) presents the time taken to review pull requests accepted
into code sample repositories. We noted that in Android samples, in the me-

dian, pull requests took 6.61 days to be accepted. In AWS, was 2.67 days, on

the median. While in Azure samples were 7.75 days and Spring samples were

7.54 days, in the median. Figure 3.2 (right) shows the time taken to review

pull requests rejected. For Android samples, we noted that, in the median,

was spent 24 days reviewing rejected pull requests. In AWS samples, pull re-

quests took 29 days, in the median. While Azure and Spring present 75.5 and

108.38 days respectively, in the median.

Figure 3.2: (Left) Time to review accepted pull requests. (Right) Time to review
rejected pull requests.

20

We found that, in general, accepted pull requests take less time to be re-

viewed than rejected pull requests. This behavior is also observed in other

projects (projects in general, which are not necessarily code samples) [17].

Pull requests with code that does not conform to the project’s coding style

tend to be rejected [18], and pull requests that are out of compliance may re-

main open for a longer time while waiting for the necessary changes, and if the

pull request author does not make the required changes, they may be rejected.

Other factors that can contribute to longer review times include proposing a

new feature that is not accepted by the project (or conflicts with other features)

[29], leading to extended evaluation periods and, consequently, rejections.

The time to review varies by organizations and repositories, but the results

show that rejected pull requests take longer to be closed.

(RQ3) How do organizations distribute the activities of reviewing con-
tributions via pull requests among code sample maintainers? Figure 3.3

presents the Lorenz curve for the relation between code sample maintainers

and the number of pull requests reviewed. In addition to the Lorenz curve, we

also compute the Gini coefficient. The values were 0.8 for Android, 0.91 for

AWS, 0.91 for Azure, and 0.82 for Spring. These results display an inequality

in the distribution of activities among maintainers. Through the coefficients,

we can observe that the values are closer to 1 than to 0, which would represent

complete equality.

The Lorenz curve shows a deviation from the straight line that would repre-

sent an egalitarian distribution, indicating that the pull request review activity

is primarily carried out by a small group of maintainers across all analyzed or-

ganizations. This behavior can be explained because the pull request review

task requires experienced maintainers and organizations are concerned about

selecting only competent maintainers for this task. Consequently, having the

review power in the hands of a small group of maintainers might be an organi-

zational strategy, where this group is allocated due to their familiarity with the

contribution guidelines and standards, and their experience with code sam-

ples. This can ensure consistency in the artifact’s quality.

However, as observed in the results of RQ2, there are certain reviewed pull

requests that take more than 500 days to reach their final review. When

there’s a large number of pull requests pending review and instances where

the reviews are prolonged, an uneven distribution with reviews concentrated

in the hands of a small group of maintainers might lead to bottlenecks. Orga-

nizations should be mindful of this potential issue.

21

Figure 3.3: Lorenz curve between code sample maintainers and pull request
reviews.

We observed that there isn’t an equal distribution of review activity among the

maintainers in the analyzed organizations. Only a subset of the maintainers

is responsible for accepting or rejecting the majority of the pull requests.

3.4 Implications

3.4.1 The community matters

The results show that the majority of the pull requests received are ac-

cepted, reaching high values of 70.5% in the case of Android and over 87%

in the case of AWS, indicating the interest of organizations in receiving con-

tributions from external developers who are part of their SECO community,

interacting with them through this medium.

These interactions among the actors are as important as interactions with

the platform and play a crucial role in the survival of SECO [27]. The data

shows that organizations recognize the importance of the community and con-

tributions. Therefore, it is essential for organizations to devote efforts to en-

courage and increase these interactions and contributions.

22

3.4.2 To each organization, its rules

We observed different review times for pull requests among organizations,

indicating that each organization may handle contributions differently, with

some having a larger number of reviewers than others. Organizations might

require adherence to the project’s code style, acceptance of ’Contribution Li-

censing Agreement’ (CLA) terms, or demand associated test files. When we

analyzed some repositories to gain insight into the rules, we encountered

requirements specified in the ’CONTRIBUTING’ files, detailing contribution

guidelines. In other words, each organization can have its own set of rules;

some might be less open, while others might be more accommodating, having

fewer requirements.

We recommend external developers who are interested in contributing to

always follow the instructions of each organization to avoid having their pull

requests rejected. It is important to ensure that their changes have not been

previously resolved by other contributors, thus avoiding the insertion of du-

plicate or obvious pull requests, which could consume the organization’s time

and result in rejection. Adhering to the code style is crucial, as studies have

shown that contributions with a different code style from the project tend to

be more likely to be rejected [18]. External developers may test their contri-

butions and including test files to mitigate the chances of their contributions

being rejected.

3.4.3 Rejected Pull Requests: The ’Time Rejectables’ Chronicles

We have observed that, in general, rejected pull requests take more time

to be reviewed and closed, not being an exclusive issue of pull requests from

code sample repositories, but rather a common problem in repositories overall

[17]. We have noticed some situations where rejected pull requests fit into: the

first situation was when reviewers suggested changes, but contributors took

a long time to respond and did not address the "rule inconformities" or the

reviewers’ suggestions. The second situation was when contributors did not

sign the CLA, leaving the pull request open for an extended period. Another

situation was when no one opened a review, and after some time, the author

themselves closed the pull request.

In some of these situations, we found automated bots pointing out the

need to sign the CLA or informing the remaining time for contributors to com-

ply or fix their pull requests, otherwise, they would be closed. Establishing

deadlines for contributors to correcat their pull requests or comply with the

organization’s rules seems to be a way to prevent pull requests from staying

open for too long and, consequently, being rejected (rejected for being ignored).

23

Some practices to mitigate prolonged open pull requests and save develop-

ers’ time include using bots to identify inconformities and using static code

analysis tools to automatically detect problems with code style, formatting,

vulnerabilities, and other programming best practices. Additionally, to pre-

vent contributors from closing their pull requests on their own before a review,

it is crucial for responsible professionals to provide prompt feedback.

3.4.4 Expand to conquer

In our observations, we noticed a pattern among organizations where only

a portion, a small group of maintainers, were responsible for the majority of

pull request reviews. Even so, having a small group of developers might be

a strategic choice by the organization (and not necessarily a problem) due

to their knowledge of the code samples or contribution rules. However, in

situations where there’s a high demand for pull requests to review, or if the

reviewer is engaged in other organizational tasks, it can create a bottleneck

in the review activities.We observed pull requests that took months or even

years to be reviewed. Of course, for this phenomenon, there might be other

causes beyond the organization’s maintainers. Such delays might discourage

external developers from making frequent contributions.

To mitigate this potential bottleneck, we recommend organizations take

steps to more equitably distribute review tasks among their group of maintain-

ers. By increasing the number of maintainers (as needed based on pull request

demand) and improving the distribution of activities among them in the review

process, organizations can benefit in two ways. First, pull requests could be

processed more swiftly, ensuring that updates and fixes are integrated with-

out unnecessary delays and avoiding contributor drop-offs. Secondly, a more

efficient and responsive review system could act as a motivating factor for ex-

ternal contributors, encouraging them to contribute more frequently to the

project.

3.5 Threats to validity

We will discuss the validity threats of the study according to the main

threats described by Wohlin [59]. We identified these possible threats to our

study and allocated them to the most appropriate category.

External Validity: To try to cover the maximum of generalization, we fo-

cused on studying only globally recognized ecosystems like Android, Spring,

AWS, and Azure, to reach the largest number of contributors and achieve

greater diversity in the sample, as people from all over the world can con-

tribute to these projects.

24

Construct Validity: It is not necessarily certain that the way we filtered ex-

ternal developers from organization developers (maintainers) is fully effective.

We cannot validate with certainty that all members of the organization were

excluded since there might be organization members who are not defined as

members or collaborators on the repository and not have administrative pow-

ers to perform merges in the projects. On the other hand, organizations may

adopt external members to maintain their repositories.

Conclusion Validity: It is important to consider that the delay in review-

ing pull requests can be influenced by various factors, and it is not always

directly related to the size of the maintainer group. Although we identified

a small group of maintainers responsible for the majority of pull request re-

views, this does not necessarily reflect the situation where other developers do

little work. They may have different reasons for conducting just a few reviews.

For example, over time, some maintainers may have left the organization or

are no longer responsible for the code sample in question. To mitigate this

and avoid erroneous conclusions, we filtered a shorter time period to see if the

concentration of review activities among maintainers would still persist.

3.6 Final considerations

In this chapter, we addressed pull requests as a tool to analyze the inter-

action between organizations and external developers. The results revealed

that, in general, organizations not only review but also accept contributions

through this medium. This interaction can be crucial for the maintenance of

code samples and for the SECO. We identified that organizations have varying

review times and rejected pull requests take longer to be reviewed. A third ob-

servation was that the majority of reviews are in the hands of a small group of

maintainers. For future studies, we might suggest examining external devel-

opers to determine if the time identified for review in this study are sufficient

to encourage them to contribute. Other studies could also delve deeper into

whether the contribution rules specified in each code sample influence the

acceptance or rejection rate as well as motivation for new contributions.

The active engagement of organizations with the community through pull

requests and the adoption of practices such as reviewing these requests mo-

tivates us to better understand the organizations’ side in the context of code

samples. The motivation led us to try to know more about these internal

developers, their experiences, dedication and perspectives regarding this arti-

fact.. In the next chapter, we will present data from a survey conducted with

professionals from the organizations studied in this chapter.

25

CHAPTER

4
Survey with professionals who

produce code samples

4.1 Introduction

In the previous chapter, our exploratory study with pull requests in code

sample repositories showed that code samples have become relevant in re-

cent years, receiving numerous pull requests from external developers. The

organizations studied have shown interest in receiving contributions from the

community in these repositories, investing time and effort in reviews and allo-

cating professionals for these activities.

As per Chapter 2, we saw that in the literature we find some definitions of

code samples, even definitions from organizations, and we also identified the

audience that consumes the code samples [6]. Therefore, we did not find stud-

ies that showed the practices within organizations and perspectives of internal

developers about code samples; for example, we do not know if internal de-

velopers perceive differences in the target audience or have aligned objectives

regarding code samples.

In this chapter, we conducted a survey with internal developers, whom in

this chapter we will refer to as organization professionals or participants to

avoid confusion with the developer role within the organization. Professionals

from the 4 organizations studied in the previous chapter were invited to the

survey. To the best of our knowledge, this will be the first study to apply a

survey in the context of code samples among professionals involved with this

artifact. Our goal is to investigate the following aspects in this study:

26

1. What are the objectives of the code examples for the organization’s pro-

fessionals?

2. In the perspective of professionals, to which audiences are the code sam-

ple projects directed within the organizations?

3. Are there similarities with other products of the organizations in terms of

quality assurance and development process?

4. What is the experience and roles of professionals who work with this

artifact?

5. How do they dedicate to the development of code samples?

We hope to understanding practices of how organizations are creating and

maintaining code samples, through the responses of these participants, ex-

pecting to identify possible issues with the practices and internals of the or-

ganizations in order to propose improvements.

To facilitate the conduct of the study, we defined the following research

questions:

• (RQ1) What is the role of individuals working with code samples within

organizations, and what practices are associated with this work?

• (RQ2)How does the experience of individuals working with code samples

influence the frequency at which they engage in this activity?

• (RQ3) What is the underlying purpose of providing code samples within

organizations, and how are these purposes perceived by the professionals

involved?

• (RQ4) How do the development, quality assurance practices of code sam-

ples compare to similar practices applied to other products within orga-

nizations?

4.2 Study Design

4.2.1 Target population of survey

We selected professionals who work or have worked on code sample repos-

itories stored on GitHub belonging to the following platforms: AWS, Android,

Azure, and Spring-Boot, as described in Chapter 3. Moreover, our target was

solely professionals from the organizations that own the platforms where the

code samples were hosted.

27

4.2.2 Criteria for Participant Selection

We utilized the "Purposeful Sampling" technique to select the sample for

the survey. In this type of sampling, we identified and selected individuals or

groups with knowledge or experience related to the research’s phenomenon of

interest [41, 50]. In our case, we sought individuals who had worked (created

and/or responded to issues, made pull requests, including creation, response,

and/or merging, created tags and/or releases) with code samples and were

professionals with the analyzed organizations.

We only included professionals who had engaged in the aforementioned ac-

tivities within the last two years (from April 10, 2021, to April 10, 2023), with

the intention of increasing the probability of reaching individuals who have

actively worked with code samples recently. To specifically filter for profes-

sionals from the organizations, we sought out users who were associated as

either a MEMBER or COLLABORATOR in at least one code sample repository

of the organizations. This was done as a way to help filter out users who

had no affiliations with the organization. This was necessary because the pa-

rameter on GitHub, which determines if a user is part of an organization via

the repository, is private and accessible only to members of that organization.

Also, to ensure that we invited only those truly part with the organizations, we

not only checked for corporate email addresses but also cross-referenced their

GitHub and/or LinkedIn profiles. By analyzing the organization each individ-

ual declared in their profile, we could confirm their affiliation. This manual

verification was conducted for each candidate before initiating the pilot, and

for the rest of the candidates one week before dispatching the final survey.

We chose not to include individuals who did not have an email linked to

their GitHub profile in our sample, since the email was not public, we de-

cided not to disturb the users by other means. Additionally, we decided to

exclude highly popular users, often referred to in the literature as "rockstars."

A common way to identify them is by their follower count [19, 63]. It has been

observed that the more followers these users have, the more they actively

participate in events and influence their followers [19, 23]. We strategically

decided to exclude these popular users since they are often more sought after

than less popular ones, and it can be more difficult to obtain responses from

them. We focused on less popular users, specifically those with fewer than

323 followers (median + standard deviation of the sample). Our initial sample

consisted of 475 candidates.

28

4.2.3 Pilot survey

We initially conducted a pilot study with two surveys, each being a subset

of the other. One had a greater number of questions, and we sent them to 20

random candidates (10 per survey) via email, with a link to a Google Forms.

Our aim was to identify questions that might be misinterpreted or from which

we wouldn’t obtain responses or the expected responses. We received feed-

back from three participants, who suggested new options for multiple-choice

questions and highlighted questions that could potentially violate the N.D.A

(Non-Disclosure Agreement) contract [51] according to respondents. There-

fore, we improved the phrasing of some questions and removed ones that went

unanswered or were flagged as potential N.D.A violations.

4.2.4 Final survey

In the final version of our survey, we included a total of 14 questions.

Among them, one demographic question, eight multiple-choice questions re-

lated to the role, experiences, and dedication of the participants regarding code

samples, and four questions about the participants’ views on code samples.

The applied form can be found in the footer1.

We did not consider any response nor did we resend the survey to any

candidate chosen in the pilot. Our study invited 455 individuals via e-mail

containing a link to the Google Forms with the questions from May 30, 2023,

to June 6, 2023.

Survey questions

The first question was demographic in nature: “Which country do you live

in?” where we provided an open field for users to respond. Regarding the

questions about professional experience, we proposed: "How many years have

you been working in software development?", "How many years have you been

working with code sample repositories? (If you no longer work with code sam-

ples, please consider the number of years you have worked with them.)", and

"Have you previously worked with code samples in other organizations? How

many organizations?". We utilized the criterion of years of work related to

the artifact or software development, which has been employed as a metric of

experience in other studies [8, 56, 62]. We drew from scales of professional

experience in years documented in other studies [7, 11, 50], using a year-

based scale to facilitate and expedite the survey response process. We set the

following response options: "up to 1 year", "between 2 and 5 years", "between

1https://docs.google.com/forms/d/e/1FAIpQLSdzqJUIss-6wU_
lamTOAA-c00mAg7IT0ROnNP9EduTuWyUe_w/viewform

29

https://docs.google.com/forms/d/e/1FAIpQLSdzqJUIss-6wU_lamTOAA-c00mAg7IT0ROnNP9EduTuWyUe_w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSdzqJUIss-6wU_lamTOAA-c00mAg7IT0ROnNP9EduTuWyUe_w/viewform

5 and 10 years", and "more than 10 years", which were employed for the first

two questions about years of work. For the question about how many previous

organizations the respondent had worked with code samples, we offered the

choices "none", "1", "2", "3", "4", and "5 or more.

To determine their roles, we asked, “What is/was your role within the orga-

nization when working with code samples?”. We provided participants with op-

tions to identify as developers, software architects, quality analysts, program

managers, and some roles related to developer relations that were highlighted

in other studies [14, 38]. We also included additional options suggested by re-

spondents during the pilot tests. Each participant could select only one role,

provide further details, or input a role not listed in the form via the ’other’

field.

Regarding dedication, we assessed the number of code samples that profes-

sionals typically work on at the same time with the following question, “How

many code samples do you typically work on simultaneously?” We provided

participants with 5 multiple-choice options ranging from 1 to 5 or more. On

another aspect of dedication, we presented a frequency-based question, “How

frequently do you work with code samples?” to gauge dedication to code sam-

ples. We offered 5 options: "Every day I work a few hours with code samples";

"I don’t work every day, but I work a few hours every week with code samples";

"I work with code samples for a few hours per month, but not every week"; "I

work with code samples for a few hours per year"; "I go years without working

with code samples".

Still on the topic of dedication, we inquired about activities with the follow-

ing question, “Which of these activities related to the development, commu-

nication, and maintenance of code samples do you perform?”. We prompted

developers to check or write in the "other" field any activities related to the

development, maintenance, and communication of code samples. Among the

options available for marking, we inferred activities from repositories and com-

munication, as code sample repositories generate these types of activities. Ac-

tivities in code sample repositories include: responding to issues, reviewing

pull requests, and managing code sample repositories (a generalization of ad-

ministrative activities such as adding members and collaborators to reposito-

ries, releasing new versions, among other repository-related tasks that do not

involve responding to issues, reviewing pull requests, and coding). We also

provided the option for respondents to indicate if they define requirements or

scope and code code samples or coding activities. In terms of communication

options, we included: publishing code samples on blogs, forums, and other

official channels of organizations, communicating with external developers re-

garding code samples, training other professionals to handle this communica-

30

tion within code sample repositories, or being responsible for recruiting new

members for the organization through code samples.

Regarding the professionals’ perspective, we posed 4 questions. We asked,

“In your opinion, what is the main objective of providing code samples" For

the main objective, we formulated key goals based on the literature about

code samples. The following options were provided to the respondents:

• Facilitate knowledge sharing: Code samples can serve as a means for

developers to share their knowledge about a framework’s feature, a li-

brary’s functionality, etc., by providing examples of usage and sharing

them with other developers. This objective can have educational pur-

poses [32, 33, 39], where other developers learn from these code samples.

Knowledge sharing can also be mutual, where both professionals within

the organizations and external individuals can contribute and collaborate

in the maintenance or creation of new code samples.

• Promote new functionalities, APIs, libraries, etc.: Since code samples

are provided to exemplify the usage of a specific functionality or feature,

they can aim to promote the adoption of new resources, such as a newly

designed feature for the Android platform that developers may not be

familiar with. Developers can learn about these new resources through

code samples and start using them.

• Accelerate development: According to some definitions, code samples

are meant to help developers become more productive [53]. Developers

can also partially or entirely copy code from a code sample for their own

use [9]. One utility for code samples is to accelerate development through

code reuse, either in whole or in part, or at the very least, to increase the

speed of learning about a resource.

• Promote code reuse: Developers may use code samples as a way to

reuse code. In a recent study [32], it was observed that developers forked

repositories, but often did not update the project. This could indicate that

some developers may be forking repositories solely for code reuse in their

projects and not for contributing. We also found guidelines, such as those

from Mozilla, encouraging code reuse, and some "CONTRIBUTING" files

in GitHub repositories indicating that code samples should be "developer-

friendly" to facilitate copying and pasting by other developers.

• Promote collaboration and continuous learning: Sharing code sam-

ples on collaboration platforms, such as GitHub, can create opportuni-

ties for collaboration between external and internal developers, allowing

them to learn from each other, review, and improve the shared code.

31

This creates a cycle of contributions, where new code samples are made

available and evolve over time.

• To attract new developers to the organization’s ecosystem: Our pre-

vious study [31] showed that organizations receive and review contribu-

tions from external developers in their code sample repositories. Through

this engagement with code sample repositories, new developers could be

attracted to the organization’s ecosystem.

Regarding the main objective, we included the "others" field for participants

who disagreed with the provided objectives or wanted to add their own per-

spectives.

Concerning the target audience of code samples, we asked, “Does the tar-

get audience of code samples vary depending on the repository or project?”

In the literature, it is mentioned that the audience consuming code samples

ranges from developers with little experience to seasoned developers [6]. In the

survey, we asked each developer about their perspective on whether the target

audience for a code sample changes based on the repository. The options pro-

vided were: "Yes, in my organization, code samples are crafted for developers

with a specific level of expertise (for instance, some might be made targeting

beginner developers while others target experienced developers)," "No, they are

designed for developers of any expertise level," "I don’t know," "I prefer not to

say," and "other.

Regarding the perspective of the similarity of code samples to other prod-

ucts within the organization, we provided two questions: “In your opinion,

on a scale of 1 to 5, how similar is the development process of a code sam-

ple to that of another product within the organization?” and “In your view,

on a scale of 1 to 5, how similar is the quality assurance process of a code

sample compared to that of another product within the organization?” We pro-

vided respondents with a 5-point Likert scale ranging from 1 (not similar) to 5

(very similar) to assess the similarity between the code samples development

process and other products within the organization, as well as the similarity

of the quality assurance process for code samples compared to other prod-

ucts. Initially, we had planned to extract more details about the development

and quality processes of code samples from participants, along with a more

detailed comparison with other products. However, due to time constraints,

which could extend the survey and decrease the response rate or even lead

to participants potentially raising concerns about non-disclosure agreements,

we decided to simplify the question using a Likert scale. Any further details

will be explored in subsequent studies through interviews.

32

Participants in final survey

We received responses from 26 professionals, resulting in a margin of er-

ror of approximately 15.85% within a 90% confidence interval. We identified

participants from 3 organizations: Google (only 1), Amazon (12), and Microsoft

(10). Three participants did not provide their respective emails in the form,

so it was not possible to identify which organizations they were from. To

anonymize the participants, we included ID from R1 to R26, which we will

refer to as such during the results.

The map below, Figure 4.1, displays the participants with colors corre-

sponding to the number of participants from each country. We received re-

sponses from North and South America, Europe, and the Middle East. We

had 14 participants from the USA, 3 from Brazil, 2 from Canada, 2 from the

Netherlands, and 1 participant from each of the following countries: Israel,

Germany, France, Finland, and the United Kingdom. All participants an-

swered all the survey questions, except for the option to provide their email

address.

Figure 4.1: Participants location map

4.2.5 Research questions

(RQ1) What is the role of individuals working with code samples within or-
ganizations, and what practices are associated with this work? To address

this question, we examined the roles reported by the professionals who par-

ticipated in the survey. Additionally, we considered their experience in terms

33

of years in software development and with code samples. Lastly, we assessed

their reported dedication by analyzing their work frequency, the number of

code samples they work on simultaneously, and the activities related to code

samples they mentioned.

Rationale: To address this question, we examined the roles reported by

the professionals who participated in the survey. Additionally, we considered

their experience in terms of years in software development and with code sam-

ples. Lastly, by examining the dedication of the professionals, we can under-

standing more practices related to the development and maintenance of code

samples within the analyzed organizations.

(RQ2)How does the experience of individuals working with code samples
influence the frequency at which they engage in this activity? To answer

this question, we considered developers with more than 5 years of experience,

who stated that they had worked with code samples in 3 or more organiza-

tions, i.e., those who had a number greater than the sum of the median (1) of

the professional’s number of organizations plus the standard deviation (1.81).

On the other hand, less experienced developers were classified as those with

less than 5 years of experience and who had worked in fewer organizations

previously than the median of the sample, i.e., those who had not worked

with code samples in any organization before. We then analyzed the reported

frequencies by contrasting them between these more experienced and less ex-

perienced professionals.

Rationale: The purpose of this question is to investigate whether individ-

uals with more experience with code samples work with these artifacts more

frequently compared to those with less experience. With this inquiry, we aim

to understand if there is a relationship between professionals’ experience with

code samples and the frequency of their dedication to these artifacts.

(RQ3) What is the underlying purpose of providing code samples within
organizations, and how are these purposes perceived by the professionals
involved? To address this question, we examined two survey questions.

The first pertained to the professionals’ perspective on the main objective of

providing code samples, and the second concerned the target audience for

whom the code samples are intended within organizations. Subsequently, we

internally analyzed the organizations where the professionals were identified

and which had more than one survey participant, in this case, Amazon and

Microsoft.

Rationale: Understanding the professionals’ perspective regarding the main

objective of providing code samples and their target audience will allow us to

learn more about what these professionals think and understand their view-

points. On the other hand, in the internal analysis by organizations, if there

34

is a misalignment of opinions, it may indicate that within the same organiza-

tion there are different approaches or strategies for dealing with code samples.

This could be due to a lack of a well-structured concept of code samples in-

ternally, or it might even be a strategic decision by the organization.

(RQ4) How do the development, quality assurance practices of code sam-
ples compare to similar practices applied to other products within organi-
zations? To address this question, we analyzed the two perspective questions

obtained through Likert scale feedback from professionals regarding the de-

velopment process and quality assurance in relation to other products of the

organizations. Lastly, we internally analyzed two organizations, specifically

Amazon and Microsoft, which had more than one participant, to examine the

internal perspective.

Rationale: With this question, we aim to understand how code samples are

handled in relation to practices and standards established for the develop-

ment of other products within the same organization from the professionals’

perspective. If they are not classified as similar, it may indicate that code sam-

ples might have different strategies concerning their development process and

quality within the same organization (misalignment of internal perspective) or

between organizations (varying perspectives across organizations).

4.3 Results of Survey

(RQ1) What is the role of individuals working with code samples within
organizations, and what practices are associated with this work?

To answer this question, we divided it into subsections, each addressing a

specific point.

4.3.1 Roles

In our sample, participants reported being involved in at least 13 different

roles while working or having worked with code samples. Figure 4.2 displays

the roles declared by the participants. The largest group, comprising 42.31%

(11 participants), identified themselves solely as developers. Following that,

30.77% (8 participants) declared themselves as software architects, and 7.69%

(2 participants) reported being developer/Technical Advocates. Additionally,

we found 1 person in each of the following roles: Content developer, Solutions

Architect, CTO, and 2 individuals declared multiple roles.

We can further observe that 2 participants, R21 and R23, reported having

played different roles throughout their careers while working with code sam-

ples in their respective organizations. Both individuals mentioned working

with code samples in 3 or more organizations. Among the roles mentioned

35

Figure 4.2: Role in organizations

by the participants, we found developers (R2, R3, R6, R13, R17, R18, R25,

R26), software architects (R1, R8, R14, R16, R19, R20, R22, R24), develop-

er/Technical Advocate (R9, R15), CTO (R4), Solutions Architect (R11), Content

Developer (R12), support engineer (R23), and technical evangelist (R23), pro-

gram manager (R23).

We believe that the numerous presence of software architects in our sample

is related to specific characteristics of the organization in which these profes-

sionals are employed. In this case, all of these professionals are from the same

organization, Amazon. However, we cannot assert that this concentration of

software architects has a direct influence on how code samples are produced,

nor that it is a fundamental role in code samples production. Although the

presence of software architects in the sample is a relevant data point, it is

crucial to explore other organizational aspects to understand how the organ-

zation’s context may influence the production and usage of code samples.

The results did not demonstrate the existence of a defined professional role

for working with code samples. Any software development professional within

an organization can be involved in the process of creating, coding, maintain-

ing, and other activities related to code samples. Although a significant portion

of the participants declared having only the role of developers, participants

from other roles also reported engaging in activities related to code samples

similarly to those who identified solely as developers.For example, in our sam-

ple, we found that approximately 85% indicated working directly with coding

activities of code samples. This specific activity involved individuals from var-

ious roles, not being exclusive to a specific role.

36

We found that working with code samples is not restricted to a specific profes-

sional role but is an activity that can involve various roles within a software

development organization.

4.3.2 Experience

Regarding software development experience, 76.92% (20 participants) of

the sample declared having more than 10 years of experience, and 96.15% (25

participants) have more than 5 years of experience. None of the participants

reported having less than 2 years of experience, demonstrating a solid level of

experience among the participants. Additionally, none of the participants re-

ported having more years of experience with code samples than with software

development.

In Figure 4.3, we compare the number of previous organizations in which

each participant worked with code samples with the years of experience work-

ing with code samples. We noticed that the majority of participants with more

than 5 years of experience with code samples had previously worked with code

samples in other organizations.

Figure 4.3: Years of code samples vs previous organizations

In general, the results provided an insight into how long the concept of

code samples has been present in the industry. Finding professionals who de-

clared more than 10 years of experience with code samples, such as R23, who

specified 16 years of work, shows that this concept has been in the industry

for over a decade. Moreover, professionals stating that they have worked with

37

code samples in more than 5 different organizations indicate that there may

be many more companies than the ones studied in this research that provide

code samples.

Most professionals are very experienced and have already worked with code

samples in previous organizations.

4.3.3 Number of code samples

A figure 4.4 displays the values representing the number of code samples

participants handle simultaneously. Approximately 50% (13 participants) re-

ported working with one code sample at a time, while 26.92% (7 participants)

mentioned dealing with two, 15.38% (4 participants) indicated three, and fi-

nally, 7.69% stated they deal with five or more simultaneously.

Figure 4.4: Number of code samples worked on simultaneously

The majority of the sample indicated deal 1 or 2 code samples simultane-

ously (76.92%). This suggests that they allocate time to code samples while

also sharing their time with other tasks and responsibilities. As we observed

earlier, these professionals hold various roles within the organization and are

not solely dedicated to code samples.

Most are not tasked with working with many code samples simultaneously.

4.3.4 Frequency of work with code samples

In Figure 4.5, the distribution of respondents who reported working with

code samples at different frequencies is presented. None of the respondents

38

selected the option "I go years without working with code samples." The ma-

jority of respondents (65.38% or 17 participants) do not dedicate themselves

to code samples daily but indicated that they work with code samples for a few

hours monthly, and some also work with them weekly.

Specifically, 34.62% (9 participants) reported not working with code sam-

ples every day but dedicating a few hours per week to them. Another 30.77%

(8 participants) stated that they work with code samples for a few hours per

month but not weekly. Additionally, 19.23% (5 participants) mentioned work-

ing with code samples for a few hours per year. Finally, 15.38% (4 participants)

declared working with code samples daily.

Figure 4.5: Frequency Work with code samples

Among the participants who work more sporadically, contributing a few

hours per year, there are some who declared activities such as reviewing pull

requests and managing code sample repositories. This raises concerns, as in

the previous chapter’s study, we observed pull requests taking a long time to

be reviewed, contributors giving up on their contributions and closing pull re-

quests without reviews after a while, and a bottleneck in the review process.

Professionals who work with code samples sporadically may cause delays in

reviews, result in fewer pull requests being reviewed, and discourage commu-

nity contributions.

The participants in our sample showed to be active in their activities with

code samples, with their dedication concentrated monthly. A minority of par-

ticipants indicated having a more sporadic activity with code samples, men-

tioning working only a few hours per year. Furthermore, professionals who

work sporadically, working only a few hours per year, and yet are responsi-

ble for repositories and pull request reviews, may be responsible for potential

bottlenecks in the pull request review process.

39

Most work frequently with code samples, dedicating a few hours each week.

4.3.5 Reported Activities

The figure 4.6 shows the 5 most frequently marked activities, and the re-

sults are as follows, as displayed in Figure 4.6: 84.62% (22 participants)

reported engaging in coding activities of code samples, 73.08% (19 partic-

ipants) performed repository management of code samples and their pub-

lication through blogs, forums, or other organization platforms. Addition-

ally, 69.23% (18 participants) stated they carry out pull request reviews, and

61.54% (16 participants) mentioned defining the requirements or scope of a

code sample. The remaining activities were mentioned by approximately 50%

or fewer of the participants.

Figure 4.6: Activities in code samples

The results indicate that the majority of participants working with code

samples are involved in the coding of the artifacts. Additionally, many of

those who code code samples also have the responsibility of managing the

repositories (releasing releases, adding members and collaborators, adjusting

permissions, among other tasks). They also publish the code samples on

official developer websites or blogs of the organization or other platforms, such

as the organization’s repositories on GitHub. Another frequently mentioned

activity was defining requirements or scope, meaning planning and defining

the purpose of the code sample to be developed, indicating that a significant

portion of the respondents may be responsible for the planning of these code

samples, from coding to publication.

40

Although only the activity of publishing was found among the most re-

ported, we found that 46.15% (12 participants) of the participants engaged in

communication activities (include respond to issues) with external developers

regarding code samples, such as responding to Issues. Additionally, 19.23%

(5 participants) declared being responsible for seeking out skilled developers

and members for the organization through code samples, while 23.08% (6

participants) were responsible for training other professionals within the or-

ganization to communicate with external developers. The presence of these

activities points to the DevRel area, which is significant for code samples, as

developers create Issues, pull requests, and attempt to communicate with or-

ganizations in code sample repositories.

The occurrence of pull request reviews may indicate a considerable de-

mand in this area, as discovered in the our previous study, which showed

that part of the contributions to the repositories occurs through pull requests

from external contributors. However, returning to the topic of work frequency

with code samples, we identified professionals who reported working only a

few hours a year while pointing out important activities in the maintenance of

code samples, which could cause a bottleneck in these activities.

The same professionals who work with code sample repositories in organiza-

tions are responsible for publishing code samples through other means such

as blogs, media, or organization websites. Code samples involve various ac-

tivities.

In response to RQ1, there isn’t a specific role for handling code samples; or-

ganizations assign mostly experienced developers to work with code samples.

At the same time, they don’t overload the tasks, as most reported handling

a maximum of 1 or 2 code samples simultaneously. However, the majority

work with them frequently. Professionals are typically involved in various

activities related to code samples.

(RQ2)How does the experience of individuals working with code samples
influence the frequency at which they engage in this activity?

In Figure 4.7, we conducted a comparison between two groups of respon-

dents within our sample: the more experienced and the less experienced. The

aim was to investigate whether the experience declared by them influences the

frequency at which they work with code samples.

The results revealed that among the more experienced respondents, 85.75%

(6 participants) declared dedicating hours of work to code samples weekly,

while only 14.29% (1 participant) stated dedicating themselves daily to this

type of activity.

On the other hand, among the less experienced respondents, 50% (4 partic-

41

ipants) declared dedicating a few hours per year to working with code samples,

37.50% (3 participants) dedicate hours monthly, and 12.50% (1 participant)

mentioned working with code samples daily.

Figure 4.7: Less vs More expienced vs Frequency of work

The results revealed that, in general, more experienced participants work

more frequently with code samples. This suggests that organizations may be

allocating professionals with greater experience in code samples to work on

this artifact, possibly because these individuals are already familiar with code

sample development from previous work in other organizations. Another pos-

sible reason is that these professionals have a deeper understanding of the

resources or technologies they are exemplifying through the code samples. A

third motive could be their desire to share their knowledge with less experi-

enced colleagues, prompting them to make code samples available within the

organizations.

But less experienced developers may also face more difficulties in produc-

ing code samples, as they work less frequently with code sample repositories.

Looking at the roles of the less experienced and more experienced, we found

no justification for a greater dedication from the more experienced. Both

among the more experienced and the less experienced, there are professionals

who state they have other defined roles within the organization.

These results suggest that, in our sample, more experienced participants

tend to work with code samples more frequently compared to less experienced

ones.

(RQ3) What is the underlying purpose of providing code samples within

42

organizations, and how are these purposes perceived by the professionals
involved? To answer this question, we divided it into subsections, each

addressing a specific point.

4.3.6 Main objetive of code samples

Regarding the main objective of code samples, we identified four main goals.

In Figure 4.8, we observed that 46.15% (12 participants) considered falici-

tate knowledge sharing as the main objective. Next, 23.08% (6 participants)

indicated that the main goal is to accelerate development, while 15.38% (4

participants) stated that the focus is on promoting new functionalities, APIs,

libraries, among other resources.

Furthermore, 11.54% (3 participants) highlighted that the main objective

of code samples is to attract new developers to the organization’s ecossystem.

It’s worth noting that one of the participant R23 chose to select "others" in

the field and considered all available options as main objectives. Additionally,

R23 added that, in their view, code samples aim to address questions asked

by developers in forums.

On the other hand, the options "Promote code reuse" and "Promote collab-

oration and continuous learning" were not mentioned directly by any of the

participants as the main objective of code samples.

Figure 4.8: Main objective of code samples

The results indicate that although the participants’ perspectives may not be

aligned, the purposes of code samples can go beyond educational objectives.

43

They serve to accelerate development, attract developers to the ecosystem, and

promote and encourage the use of new features or APIs.

Regardless of the organization, the main objective of providing code samples

varied among the participating professionals, but the largest group indicated

facilitating knowledge sharing.

4.3.7 Target audience

In Figure 4.9, the depicted outcomes of participant responses illustrate that

73.08% (19 participants) assert variability in target audience across reposito-

ries or code sample projects within their organizations. This group affirms that

code samples are tailored for developers with specific levels of expertise. Con-

versely, 26.92% (7 participants) indicated a lack of distinction among created

code samples, asserting their universality across expertise levels.

Figure 4.9: Variation of the target audience for code samples in organizations
from the participants’ perspective.

These findings suggest that most developers working with code samples

prioritize levels of knowledge when creating the artifact from their perspective,

where some may be crafted for experienced developers, while others are tai-

lored for the less experienced. Meanwhile, a minority show a viewpoint where

no distinction is made, indicating that the code samples are made in a more

comprehensive manner in terms of target audience.

44

Regardless of the organization, in the view of the majority, the level of exper-

tise is prioritized when producing a code sample.

4.3.8 Internal perspective within each organization

In Figure 4.10, it can be observed that for Amazon, 33.33% (4 participants)

indicated ’Facilitate knowledge sharing’ as their main objective. Furthermore,

25% (3 participants) selected ’Accelerate development’, another 25% opted for

’Promote new functionalities, APIs, libraries, etc.’, and finally, 16.67% (2 par-

ticipants) indicated ’To attract new developers to the organization’s ecosystem’.

In the context of Microsoft, we observed that 60% (6 participants) high-

lighted ’Facilitate knowledge sharing’ as their main objective. Meanwhile,

20% (2 participants) mentioned ’Accelerate development’, 10% (1 participant)

pointed out ’To attract new developers to the organization’s ecosystem’, and

equally 10% (1 participant) mentioned ’Other’, agreeing with all the objectives.

Figure 4.10: Main purpose of providing code samples vs Organizations

These results demonstrate that, although the main objective was not fully

aligned between the two organizations, there was a greater degree of con-

vergence within Microsoft, with 60% of participants emphasizing the goal of

facilitating knowledge sharing.

This highlights a greater variation in objectives within Amazon compared

to Microsoft, where participants exhibited greater consistency toward a collab-

orative approach, providing code samples to share knowledge. On the other

hand, in Amazon, certain perspectives indicated a focus on promoting new

functionalities, an approach that did not found among Microsoft participants.

45

In both organizations, a minority also viewed the code samples as an op-

portunity to attract new developers to the company’s ecosystem. However, the

most prevalent objective in both situations was to facilitate knowledge sharing.

In Figure 4.11, we conducted a comparison between employees from the

same organizations, specifically Amazon and Microsoft, in order to understand

their perspectives regarding code samples. The results showed that there are

different viewpoints among employees from the two companies.

At Amazon, 25% (3 participants) of the employees declared that, in their

view, code samples are projects intended for developers regardless of their

expertise, meaning there is no distinction based on the developers’ skill levels.

On the other hand, 75% (9 participants) reported that, in their organization,

there are indeed distinctions between code samples, with some designed for a

certain level of expertise and others for another level.

At Microsoft, 30% (3 participants) stated that code samples are designed

for developers of any expertise level, indicating there is no distinction based

on developers’ skills. However, 70% (7 participants) affirmed that, in their

organization, there are indeed distinctions between code samples, and some

are created specifically for a certain expertise level.

Figure 4.11: Target audience vs Organizations

In an individual analysis of the respondents, we observed that there were

people who had been working with code samples for many years on both sides

of the responses. Additionally, there were individuals who declared involve-

ment in both coding and defining requirements or scope of code samples in

both companies, yet they presented different perspectives regarding code sam-

46

ples, either at Microsoft or Amazon.

These results suggest that perspectives on code samples can vary within

the same organization, even among employees who perform similar roles with

code samples. The existence of different viewpoints may be related to factors

such as the specific objectives of the code samples these participants worked

on and their individual experiences, or it could be simply a matter of pessoal

interpretation.

As a result, we identified various objectives for providing code samples from

the participants’ perspectives. However, we noticed a misalignment in their

views. While some saw a variation in the expertise level of developers targeted

by the code samples, others within the same organization did not share the

same perspective. A similar discrepancy was observed regarding the main

objective of providing code sample.

(RQ4) How do the development, quality assurance practices of code sam-
ples compare to similar practices applied to other products within or-
ganizations? To answer this question, we divided it into subsections, each

addressing a specific point.

4.3.9 Overview of the similarity between development process

and quality assurance with other products of the organiza-

tion

Regarding the development process, the participants voted on a Likert scale

from 1 to 5, where the value 1 indicated "not similar" and the value 5 "very

similar." Option 3, representing neutrality in similarity, was the most voted

by 34.62% (9 participants). However, we noticed that 19.23% (5 participants)

voted for option 1, and another 19.23% (5 participants) voted for option 2,

forming a majority that considered the process as "not similar" or "not very

similar." On the other hand, 15.38% (4 participants) and 11.54% (3 partici-

pants) indicated that the process was "similar" or "very similar."

The same scale was applied regarding the quality assurance process. Again,

the neutral option was the most voted, totaling 38.46% (10 participants). In

this case, 34.62% (9 participants) voted for option 2, and 7.69% (2 partici-

pants) voted for option 1 or "not similar." As for similarity, there were fewer

votes compared to the previous case, with 11.54% (3 participants) rating it as

"similar," and 7.69% (2 participants) voting for "very similar."

In both cases, the majority of votes were for options indicating neutrality

or low similarity. The number of participants voting for "not similar" (option

1) or "not very similar" (option 2) was higher than those who chose the neutral

47

option. If we disregard the neutral option and group those who voted 1 or

2 as negative options regarding similarity, we have in both cases a majority

group of 42.31% voting negatively about the similarity of the quality assurance

process compared to other products within the organization, and 38.46% in

relation to the similarity of the development process. The smallest portion of

our sample rated the similarity of code samples positively compared to other

products within the organization.

In general, regardless of the organization, the majority of participating profes-

sionals indicated from a neutral vote downwards, meaning the largest group

rated it as "not very similar" or "not similar", both for the development pro-

cess and for the quality assurance process compared to other products of the

organization.

4.3.10 Internal perspective within each organization

Now we are starting an internal comparison of the responses of profession-

als from the same organization, remembering that in the case of Google there

was only 1 participant, and 3 were not identified, so they will be excluded,

leaving only Amazon and Microsoft. In Figure 4.12, the Likert scale votes of

the participants from Amazon and Microsoft are displayed regarding the sim-

ilarity of the code sample development process compared to other products

within the organization.

At Amazon, 4 participants remained neutral regarding the similarity, while

6 voted negatively, rating between 1 and 2 on the scale, indicating they per-

ceive low similarity. On the other hand, 2 participants voted positively, giving

a rating between 4 and 5, suggesting similarity with other products within the

organization.

At Microsoft, 4 participants also positioned themselves as neutral, 4 voted

negatively with a rating between 1 and 2, indicating low similarity, and 2

voted positively with a rating between 4 and 5, pointing out similarity with

other products within the organization.

Regarding the similarity of the quality assurance process, in Figure 4.13,

we observed that among the participants from Amazon, 4 remained neutral in

the rating scale, 6 voted negatively about the quality (between 1 and 2), and

2 participants rated positively (between 4 and 5). In Microsoft, 5 remained

neutral in the rating scale, 3 voted negatively (between 1 and 2), and 2 voted

positively (4)

In a more detailed analysis of the participants who rated the process of

development and quality assurance, we observed the following results: Among

the 4 participants who voted positively (R6, R7, R8, and R12) regarding the

48

Figure 4.12: Process of development similarity vs Organizations

similarity of the development process, 2 of them (R7 and R12, one from each

organization) voted neutral regarding the quality assurance process. On the

other hand, among those who voted positively for quality assurance (R6, R8,

R10, R16), 2 of them (R10 and R16, one from each organization) voted neutral

regarding the development process. Thus, out of the 4 who voted positively for

the similarity of the development process and the 4 who voted positively for

the similarity of the quality assurance process, only 2 participants maintained

their positive votes in both cases.

Among those who rated negatively the similarity of the development pro-

cess, none of them rated the quality positively, and only 3 participants (1 from

Microsoft and 2 from Amazon) changed their votes to neutral regarding the

quality. As for the 9 participants who rated negatively the similarity of the

quality assurance process, none of them changed their vote to positive regard-

ing the development process, and 2 of them (from Amazon) changed their votes

to neutral regarding the development process.

Both at Microsoft and Amazon, there were more experienced participants

with code samples and a similar frequency of work on both sides of the rating.

The analysis shows that most participants were consistent in their positive

and negative ratings in both questions about similarities. In the manual anal-

ysis, we did not identify individuals who oscillated from negative to positive in

both organizations. Some participants may have been unsure about the simi-

larity of one aspect (development process or quality assurance), leading them

to change their votes to neutral in one of the questions.

49

Figure 4.13: Process of assurance quality vs Organizations

The results also indicate that there are internal differences in perspectives

within both organizations, and factors such as experience with code samples

may not have influenced the decision. However, in both organizations, the

results show that the majority, excluding neutral votes, rated negatively in

both questions.

4.4 Implications

4.4.1 Code Samples: Beyond Educational Objectives

The main objectives indicated by participants when providing code sam-

ples suggest that these artifacts go beyond the educational purposes often

mentioned in literature. Although the most frequently mentioned goal was

’Facilitating Knowledge Sharing’ through code samples, which can be benefi-

cial for both those wishing to learn from them and those providing them, this

objective often aligns with educational purposes. However, some participants

pointed out that code samples also serve other purposes in their view.

Code samples are also used to expedite the development process and not

just for learning, especially when a code sample is well-structured and of good

quality, as it can be incorporated into a project. Another goal identified was to

promote new functionalities by providing code samples, thus introducing de-

velopers to these new features. Code samples can also be strategically used to

attract external developers to collaborate and participate in the organization’s

ecosystem.

50

4.4.2 Veteran Developer, Old code samples

In our study, The majority of participants had over 10 years of experience

in the software industry, and most of them had been working with code sam-

ples for more than 5 years, having gained experience across various previous

organizations. Furthermore, we observed that more experienced developers

tend to engage more frequently with code sample repositories.

Experienced professionals indicated through their years of working with

code samples that it is not a new concept in the industry. They highlighted

that the concept of code samples has existed for more than 10 years. We had

participants who reported producing code samples for as long as 16 years.

In our previous chapter’s research, we had only observed repositories dating

back to 2013.

The presence of professionals experienced in the area of code samples may

suggest an organizational strategy to allocate these individuals. Given or-

ganizations’ interest in providing code samples to exemplify the use of certain

APIs, features, or libraries, it makes sense to assign experienced individuals to

share knowledge, especially benefiting less experienced developers. Moreover,

developers experienced, especially those proficient in producing code samples,

might be more familiar with contribution guidelines and the code sample pro-

duction process within the organization. This can result in higher quality code

samples that are better aligned with the organization’s objectives.

However, it’s important to note that code samples, as a means of sharing

knowledge and exemplifying the use of a resource, can also be created by less

experienced developers. Thus, more experienced developers may be encour-

aging and guiding their less experienced peers in relation to this artifact.

4.4.3 Internal Disparities in Code Sample Perspectives

We have observed that, even within a single organization, there are differ-

ing perspectives regarding the objectives, target audience, and development

and quality assurance processes of code samples compared to other organi-

zational products. It’s essential to note that we are looking at organizations

with teams and branches spread across various regions and countries, which

might contribute to these perspective shifts.

Organizations might adopt distinct strategies for creating and maintaining

code samples. For instance, one organization might vary the target audience

of the code samples, crafting some for more experienced developers and oth-

ers for beginners. However, different objectives might lead to variations in

development and quality assurance processes. Therefore, it’s important for

the organization to determine whether this variation is a strategic feature or a

51

concern.

On the other hand, the misalignment in perspectives among members of

the same organization suggest that the guidelines and objectives for the code

samples might not be consistently understood or applied. If this is the case,

there will be a need to enhance communication and training among profes-

sionals, ensuring a unified understanding of the purpose of the code samples

and the processes involved in their development and maintenance.

4.5 Threats to validity

In this section, we discusses the study limitations based on four categories

of threats to validity described by Wohlin et al. [59]. For each category, we have

a set of possible threats validity of an experiment. Here, we identified these

possible threats to our study and allocated in fittest category and discussed

measures we took to reduce the risk of each threat.

Internal Validity: One of the threats in this case is related to historical

changes. To mitigate it, we analyzed the candidates’ organizations one week

before sending out the final survey. The manual analysis aimed to ensure that

these employees belonged to the organizations, by verifying their corporate

email, GitHub, and LinkedIn profiles. However, employees could still have

outdated profiles or may no longer be part of the organizations.

External Validity: One of the threats to external validity could be the gen-

eralizability of the study. To mitigate it, we sought to obtain employees from

four multinational organizations, which may have employees spread across

various countries, aiming to achieve maximum diversity in the sample. We re-

ceived responses from individuals in nine different countries. Another threat

is related to the sample size, with a margin of error of approximately 18.68%

at a 95% confidence interval.

Construct Validity: One of the threats in this regard is related to the for-

mulation of questions, as some questions may allow for multiple interpreta-

tions. To mitigate this, the questions were analyzed by three other researchers

involved in the project. Still, some respondents may have refrained from pro-

viding information truthfully due to non-disclosure agreements (N.D.A). To

mitigate this threat, we tried to make the questionnaire as non-intrusive as

possible, not forcing respondents to answer some questions and providing the

option to disagree or withhold information in others.

Conclusion Validity: The sample size may limit the p-value and statistical

significance in some cases. Another threat is related to the term "working

with code samples," which can have many interpretations, such as merely

using or making use of them in projects (which was not the survey’s target

52

audience). To mitigate this threat, we specifically sought participants involved

in some modification activity (e.g., releasing, merging, responding to issues or

pull requests) in code sample repositories in their respective organizations.

4.6 Final Considerations

In this chapter, we conducted a survey with 26 professionals, representing

3 distinct organizations identified. Through this survey, we explored various

aspects, including the roles played by participants, their years of experience

in software development and code samples, as well as the number of previous

organizations they worked with on code sample projects. Furthermore, we

investigated the dedication of these professionals, addressing activities, work

frequency, and the number of code samples they work on simultaneously.

Consequently, we delved into participants’ perspectives on the target audi-

ence for which the code samples are intended, their main objectives, and their

views on the similarities and differences between the development and quality

assurance processes compared to other products within the organization. The

results obtained revealed that the majority of participants have more than 5

years of experience in both software development and code samples, and have

worked in more than 1 previous organization within this context.

We observed that professionals’ dedication to code samples varies, with

most of them investing hours on a weekly or monthly basis in this activity.

Regarding the number of code samples worked on concurrently, we found

that the majority of participants handle 1 or 2 samples.

Furthermore, we identified a diversity of roles undertaken by professionals

involved with code samples. Perceptions regarding the objectives of code sam-

ples and their target audience exhibited variations among participants. The

prevailing opinion indicated that the development and quality assurance pro-

cesses for code samples have little to no similarity to those of other products

within organizations.

53

CHAPTER

5
Implications

5.1 Implications

5.1.1 Fostering Collaborative Synergy: Code Samples as Bridges

Between Organizations and External Developers

Code samples are not produced just to be consumed; organizations ex-

pect a synergy between internal developers and external developers to help in

the development and maintenance of the artifact. In Chapter 3, we analyzed

approximately 12,000 pull requests from 2,179 code samples of 4 different or-

ganizations. We found that most of the pull requests from external developers

were reviewed and accepted. Furthermore, among the professionals from the

organizations explored in Chapter 4, 69.23% (18 participants) of them were

responsible for reviewing pull requests within the organizations, found also

that 46.15% (12 participants) were responsible for responding to issues and

communicating with external developers. In addition, among these profes-

sionals, we found people who were dedicated daily to the code samples, thus

showing an engagement of organizations with the community. Code samples

can be a means for developers in general to participate in large ecosystems

like Android’s and use code samples not just for consumption but also as a

way to share knowledge, suggest or send bug fixes, address other issues, and

even contribute with new code samples.

54

5.1.2 Some practices for providing code samples

For organizations interested in working with code samples, we identified

practices that demonstrate that these projects go beyond sharing in reposito-

ries. They are dynamic, evolving as highlighted in the literature, and actively

receive contributions from external developers, as noted in Chapter 3. Fol-

lowing the insights from Chapter 4, among the principal practices are: having

professionals who code, manage code samples repositories, and publish these

samples, whether through the organization’s websites or blogs, and who are

committed to reviewing pull requests. It’s important to have team members

ready to communicate with external developers. These activities can align with

the practice of ’Developer Relations’, which can be understood as an organi-

zational area that works to create and nurture a community, maintaining a

collaborative relationship with developers and the proprietary platform [13].

Although we identified only three professionals area who classified themselves

in this category, in chapter 4, these individuals are responsible for providing

APIs, code samples, and other resources to facilitate community engagement,

primarily through communication activities [38]. Another practice observed

in participants is that, even if not all dedicate daily to code samples, the vast

majority put in some hours, whether weekly or monthly. Furthermore, pro-

fessionals focus on only a few code samples at a time, which may imply that

they also have other roles and tasks beyond working with code samples.

55

CHAPTER

6
Related work

Code samples in SECO. Code samples within the context of software ecosys-

tems have been addressed in previous studies [6, 32, 33]. Menezes et al.
assessed the characteristics of the source code, its evolution, and the usage

of code samples [32]. Menezes et al. observed the primary challenges and

the main needs of code sample clients [33]. Braga et al. analyzed the target

audience for code samples and gauged the experience level of their clients [6].

Although we adhere to the definitions of code samples found in previous ar-

ticles as being complete software projects that are typically simple and small

to facilitate understanding and evolve over time, unlike other studies, our re-

search delves into code samples beyond their structural characteristics and

the clients who utilize them. We explore how organizations are handling con-

tributions from external developers in repositories, which can aid in maintain-

ing and evolving the code samples, as well as the vision and dedication of the

developers in the studied organizations towards code samples.

SECO and artifacts. Within the SECO context, we found studies that ex-

plored other artifacts which may be related to code samples, given that code

samples serve to exemplify the use of APIs, frameworks, and libraries [32].

Bogart et al.. investigate APIs within the software ecosystem context and the

impact of community contributions on changes to these APIs [3], while Bavota

et al. explore the evolution of library dependencies in Apache projects and how

updates are crucial for these projects to keep functioning [1]. The code sample

artifact is directly related to these other artifacts, like libraries and APIs, since

they need to evolve as an API or a library does to maintain their relevance [32].

In some SECO, external developers become crucial for maintenance, and it’s

in this scenario of code sample evolution through external contributions that

56

we delve into in this work. Other studies have explored APIs in the ecosystem

context and the challenges developers might encounter when trying to learn

to use APIs [46, 55]. Even though no paper directly mentions the code sample

artifact, it can be one of the means to assist in understanding APIs.

Pull requests and contributions. Regarding repositories, contributions, and

pull requests, we found some studies that analyzed contributions through this

medium and some implications in a context of projects that aren’t specifically

code samples. Soares et al. explored around 97,000 pull requests from 30

GitHub projects to identify characteristics that have impacted pull requests’

lifetimes [36]. Soares et al. conducted a study with 22,523 pull requests to

understand the factors that influence the assignment of reviewers to pull re-

quests [52]. Gousios et al. assessed approximately 166,000 pull requests to

discern the characteristics of lifetime, acceptance, and rejection of pull re-

quests in 291 projects [17]. Cosentino et al. conducted a systematic map-

ping with four research questions and evaluated 80 publications from 2009

to 2016. Among the topics they addressed, they identified the main reasons

for pull requests being accepted or rejected [10]. Other studies have explored

contribution rules in repositories through the "CONTRIBUTING" file. For in-

stance, Kobayakawa et al. analyzed "CONTRIBUTING" files from 459 GitHub

projects to identify the significance of this file [22]. Elazhary et al. utilized the

content of "CONTRIBUTING" files from 53 projects to check if the recommen-

dations and guidelines were being followed in practice [12]. As is the case with

other projects, repositories of code samples stored on GitHub can also receive

contributions via pull requests and have rules for contributions. In our work,

we sought to evaluate if organizations were receiving, reviewing, and specifying

rules for contributions concerning this artifact.

Survey with developers. One of the strategies for collecting opinions, per-

spectives, and information from developers who have worked on GitHub projects

is to invite them by email to respond to surveys. Several studies have chosen

this approach to get opinions from Github users [4, 21, 37, 42, 50]. We found

several works that applied surveys to GitHub users in other contexts. In Pham

et al.’s study, they invited 4,000 GitHub users by email to validate findings on

’how the increased transparency on GitHub influences developers’ testing be-

haviors,’ receiving responses from 569 users [42]. Shahin et al. empirically

investigated how Development (Dev) and Operations (Ops) teams are organized

in the software industry for the adoption of Continuous Delivery and Deploy-

ment (CD) practices. For data collection, they invited approximately 4,000

GitHub users, resulting in a response rate of less than 10% [50]. Borges et
al. conducted a survey with developers who worked on GitHub repositories,

inviting 4,370 participants and receiving 791 responses to unveil their motiva-

57

tions for starring projects on GitHub repositories [4]. Jiang et al. received 102

responses from GitHub developers regarding participants in repositories who

do not contribute to those repositories [21]. Oliveira et al. conducted a survey

with 110 developers from GitHub to evaluate the applicability of two models

for computing programming skills based on the metrics of Changed Files and

Changed Lines of Code [37]. Similarly to other studies, we sought GitHub

users via email, but in the context of code samples repositories, contacting

users involved in the development or maintenance of this artifact.

58

CHAPTER

7
Conclusions and Future Work

In this study, we explored code examples within the context of ecosystems,

which are stored in GitHub repositories. We began an exploratory investigation

into code sample repositories across four platforms: Android, AWS, Azure, and

Spring. In the initial phase of the study, we found that organizations value

the external developer community that contributes code samples and engage

to review and accept such contributions. However, we also identified areas

of concern, such as delays in review and in closing pull requests, especially

those that are rejected. Additionally, we observed that only a small group of

maintainers was responsible for the majority of reviews, which could be an

organizational strategy or an area needing improvement if necessary.

During the second part of the study, we conducted a survey with develop-

ers from the organizations that own the platforms discussed in the first part,

involving participation from employees of 3 organizations. Our goal was to

focus on developers within these organizations, comprehending their experi-

ences, roles, and dedication to code sample production. Moreover, we sought

to grasp these developers’ perspectives on the purpose of code samples, their

intended audience, and their perceptions of the development and quality as-

surance processes, in comparison to other products within the organizations.

We identified the presence of developers with over 10 years of experience,

both in software development and in creating code samples; these profession-

als had engaged with code samples across various organizations. The number

of years spent working with code samples suggested by the participants in-

dicates that the concept of code samples in the industry spans more than

a decade. We observed that code sample developers typically allocate a few

hours per week or month to this activity, with more experienced ones often

59

investing more time. We noted that the objectives of code samples extend be-

yond their educational aspect, promoting new features, expediting the devel-

opment process, and even fostering engagement between developers and orga-

nizational ecosystems. These code samples also serve as a means for external

developers to contribute and showcase their expertise within the community

and organizations.

We encountered divergent perspectives among developers regarding the tar-

get audience for code samples, as well as differing opinions about the develop-

ment and quality assurance processes compared to other organizational prod-

ucts. This may indicate an internal misalignment in understanding the devel-

opment and maintenance process of code samples in relation to the guidelines

and objectives set within organizations. This could be a potential area for im-

provement if these varying perspectives impact the quality or purpose of the

code samples.

As this work concentrated on exploratory studies, we suggest as future

work the conduct of interviews with developers from organizations to obtain

deeper insights into how development and quality assurance processes func-

tion. Additionally, more research is needed to comprehend how individuals

responsible for code samples are selected within organizations, and how their

activities are distributed, aiming to consolidate best practices and establish

standards for producing higher quality and more precise code samples for

clients.

60

Bibliography

[1] Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., e Panichella, S. (2015).

How the apache community upgrades dependencies: an evolutionary study.

Empirical Software Engineering, 20:1275–1317. Citado na página 56.

[2] Bettenburg, N., Hassan, A. E., Adams, B., e German, D. M. (2015). Man-

agement of community contributions: A case study on the android and linux

software ecosystems. Empirical Software Engineering, 20:252–289. Citado

na página 2.

[3] Bogart, C., Kästner, C., Herbsleb, J., e Thung, F. (2016). How to break an

api: cost negotiation and community values in three software ecosystems.

In Proceedings of the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, páginas 109–120. Citado na

página 56.

[4] Borges, H. e Valente, M. T. (2018). What’s in a github star? understanding

repository starring practices in a social coding platform. Journal of Systems

and Software, 146:112–129. Citado nas páginas 57 e 58.

[5] Bosch, J. (2009). From software product lines to software ecosystems. In

SPLC, volume 9, páginas 111–119. Citado na página 4.

[6] Braga, W. M., Menezes, G., Fontao, A., Hora, A., e Cafeo, B. (2020). Quero

lhe usar! uma análise do público alvo de code samples. In Anais do VIII

Workshop de Visualização, Evolução e Manutenção de Software, páginas

33–40. Citado nas páginas 1, 7, 26, 32, e 56.

[7] Bushra, F., Usman, A., e Naveed, A. (2011). Effect of transformational

leadership on employees’ job satisfaction and organizational commitment in

banking sector of lahore (pakistan). International journal of Business and

Social science, 2(18):261–267. Citado na página 29.

61

[8] Calikli, G., Bener, A., e Arslan, B. (2010). An analysis of the effects of

company culture, education and experience on confirmation bias levels of

software developers and testers. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering-Volume 2, páginas 187–

190. Citado na página 29.

[9] Corporation, M. (2023). Code example guidelines.

https://shre.ink/MozillaOrg. Online; accessed 17 July 2023. Citado

nas páginas 7 e 31.

[10] Cosentino, V., Izquierdo, J. L. C., e Cabot, J. (2017). A systematic map-

ping study of software development with github. Ieee access, 5:7173–7192.

Citado na página 57.

[11] Dias-Neto, A. C., Matalonga, S., Solari, M., Robiolo, G., e Travassos, G. H.

(2017). Toward the characterization of software testing practices in south

america: looking at brazil and uruguay. Software Quality Journal, 25:1145–

1183. Citado na página 29.

[12] Elazhary, O., Storey, M.-A., Ernst, N., e Zaidman, A. (2019). Do as i

do, not as i say: Do contribution guidelines match the github contribution

process? In 2019 IEEE International Conference on Software Maintenance

and Evolution (ICSME), páginas 286–290. IEEE. Citado na página 57.

[13] Fontão, A., Cleger-Tamayo, S., Wiese, I., Pereira dos Santos, R., e Claudio

Dias-Neto, A. (2023). A developer relations (devrel) model to govern devel-

opers in software ecosystems. Journal of Software: Evolution and Process,

35(5):e2389. Citado na página 55.

[14] Fontão, A., Cleger-Tamayo, S., Wiese, I., Santos, R. P. d., e Dias-Neto,

A. C. (2020). On value creation in developer relations (devrel) a practitioners’

perspective. In Proceedings of the 15th international conference on global

software engineering, páginas 33–42. Citado na página 30.

[15] Gini, C. (1912). Variabilita e mutabilita. Reprinted in Memorie di

metodologica statistica (Ed. Pizetti E. Citado na página 17.

[16] GitHub, I. (2023). About pull requests. Online; accessed 20 July 2023.

Citado na página 14.

[17] Gousios, G., Pinzger, M., e Deursen, A. v. (2014). An exploratory study

of the pull-based software development model. In Proceedings of the 36th

international conference on software engineering, páginas 345–355. Citado

nas páginas 21, 23, e 57.

62

[18] Hellendoorn, V. J., Devanbu, P. T., e Bacchelli, A. (2015). Will they

like this? evaluating code contributions with language models. In 2015

IEEE/ACM 12th Working Conference on Mining Software Repositories, pági-

nas 157–167. IEEE. Citado nas páginas 21 e 23.

[19] Huang, Y. e Chung, W. (2019). Rockstar effect in distributed project man-

agement on github social networks. In Proceedings of the 2019 Pre-ICIS

SIGDSA Symposium. Citado na página 28.

[20] Jansen, S., Cusumano, M. A., e Brinkkemper, S. (2013). Software

ecosystems: analyzing and managing business networks in the software

industry. Edward Elgar Publishing. Citado na página 4.

[21] Jiang, J., Lo, D., Ma, X., Feng, F., e Zhang, L. (2017). Understanding inac-

tive yet available assignees in github. Information and Software Technology,

91:44–55. Citado nas páginas 57 e 58.

[22] Kobayakawa, N. e Yoshida, K. (2017). How github contributing. md con-

tributes to contributors. In 2017 IEEE 41st Annual Computer Software and

Applications Conference (COMPSAC), volume 1, páginas 694–696. IEEE.

Citado na página 57.

[23] Lee, M. J., Ferwerda, B., Choi, J., Hahn, J., Moon, J. Y., e Kim, J. (2013).

Github developers use rockstars to overcome overflow of news. In CHI ’13

Extended Abstracts on Human Factors in Computing Systems, CHI EA ’13,

pagina 133–138, New York, NY, USA. Association for Computing Machinery.

Citado na página 28.

[24] Lethbridge, T., Singer, J., e Forward, A. (2003). How software engineers

use documentation: the state of the practice. IEEE Software, 20(6):35–39.

Citado na página 6.

[25] Lima, T., dos Santos, R. P., Oliveira, J., e Werner, C. (2016). The im-

portance of socio-technical resources for software ecosystems management.

Journal of Innovation in Digital Ecosystems, 3(2):98–113. Citado nas pági-

nas 1 e 8.

[26] Lorenz, M. O. (1905). Methods of measuring the concentration of wealth.

Publications of the American statistical association, 9(70):209–219. Citado

na página 17.

[27] Manikas, K. (2016). Revisiting software ecosystems research: A longitudi-

nal literature study. Journal of Systems and Software, 117:84–103. Citado

nas páginas 1, 6, 14, e 22.

63

[28] Manikas, K. e Hansen, K. M. (2013). Software ecosystems–a system-

atic literature review. Journal of Systems and Software, 86(5):1294–1306.

Citado nas páginas 4 e 14.

[29] Marlow, J., Dabbish, L., e Herbsleb, J. (2013). Impression formation

in online peer production: activity traces and personal profiles in github.

In Proceedings of the 2013 conference on Computer supported cooperative

work, páginas 117–128. Citado na página 21.

[30] McIntosh, S., Kamei, Y., Adams, B., e Hassan, A. E. (2014). The impact

of code review coverage and code review participation on software quality: A

case study of the qt, vtk, and itk projects. In Proceedings of the 11th working

conference on mining software repositories, páginas 192–201. Citado na

página 14.

[31] Melo, M., Menezes, G., e Cafeo, B. (2022). Exploring pull requests in code

samples. In Anais do X Workshop de Visualização, Evolução e Manutenção

de Software, páginas 36–40. SBC. Citado nas páginas 2 e 32.

[32] Menezes, G., Cafeo, B., e Hora, A. (2019). Framework code sam-

ples: How are they maintained and used by developers? In 2019

ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM). Citado nas páginas 1, 6, 7, 15, 31, e 56.

[33] Menezes, G., Cafeo, B., e Hora, A. (2022). How are framework code sam-

ples maintained and used by developers? the case of android and spring

boot. Journal of Systems and Software, 185:111146. Citado nas páginas

1, 6, 14, 15, 31, e 56.

[34] Microsoft (2023a). Azure samples. GitHub repository. Citado na

página 1.

[35] Microsoft (2023b). microsoft samples. Online; accessed 17 July 2023.

Citado na página 7.

[36] Moreira Soares, D., de Lima Júnior, M. L., Murta, L., e Plastino, A. (2021).

What factors influence the lifetime of pull requests? Software: Practice and

Experience, 51(6):1173–1193. Citado nas páginas 13, 17, 19, e 57.

[37] Oliveira, J., Souza, M., Flauzino, M., Durelli, R., e Figueiredo, E. (2022).

Can source code analysis indicate programming skills? a survey with de-

velopers. In International Conference on the Quality of Information and

Communications Technology, páginas 156–171. Springer. Citado nas pági-

nas 57 e 58.

64

[38] Oliveira, R., Ajala, C., Viana, D., Cafeo, B., e Fontão, A. (2021). Developer

relations (devrel) roles: An exploratory study on practitioners’ opinions. In

Proceedings of the XXXV Brazilian Symposium on Software Engineering,

páginas 363–367. Citado nas páginas 30 e 55.

[39] Oracle (2023). Oracle. Online; accessed 17 July 2023. Citado nas pági-

nas 7 e 31.

[40] Padhye, R., Mani, S., e Sinha, V. S. (2014). A study of external commu-

nity contribution to open-source projects on github. In Proceedings of the

11th working conference on mining software repositories, páginas 332–335.

Citado na página 2.

[41] Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N.,

e Hoagwood, K. (2015). Purposeful sampling for qualitative data collection

and analysis in mixed method implementation research. Administration and

policy in mental health and mental health services research, 42:533–544.

Citado na página 28.

[42] Pham, R., Singer, L., Liskin, O., Figueira Filho, F., e Schneider, K. (2013).

Creating a shared understanding of testing culture on a social coding site. In

2013 35th International Conference on Software Engineering (ICSE), pági-

nas 112–121. IEEE. Citado na página 57.

[43] Ragkhitwetsagul, C., Krinke, J., Paixao, M., Bianco, G., e Oliveto, R.

(2021). Toxic code snippets on stack overflow. IEEE Transactions on

Software Engineering, 47(3):560–581. Citado na página 6.

[44] Rahman, M. M. e Roy, C. K. (2014). An insight into the pull requests of

github. In Proceedings of the 11th working conference on mining software

repositories, páginas 364–367. Citado na página 13.

[45] Reid, D., Jahanshahi, M., e Mockus, A. (2022). The extent of orphan

vulnerabilities from code reuse in open source software. In Proceedings of

the 44th International Conference on Software Engineering, ICSE ’22, pag-

ina 2104–2115, New York, NY, USA. Association for Computing Machinery.

Citado na página 6.

[46] Robillard, M. P. (2009). What makes apis hard to learn? answers from

developers. IEEE software, 26(6):27–34. Citado na página 57.

[47] Sarker, I. H. e Apu, K. (2014). Mvc architecture driven design and

implementation of java framework for developing desktop application.

International Journal of Hybrid Information Technology, 7(5):317–322.

Citado na página 6.

65

[48] Seichter, D., Dhungana, D., Pleuss, A., e Hauptmann, B. (2010). Knowl-

edge management in software ecosystems: Software artefacts as first-class

citizens. In Proceedings of the Fourth European Conference on Software

Architecture: Companion Volume, ECSA ’10, pagina 119–126, New York,

NY, USA. Association for Computing Machinery. Citado na página 6.

[49] Services, A. W. (2023). Aws samples. GitHub repository. Citado na

página 1.

[50] Shahin, M., Zahedi, M., Babar, M. A., e Zhu, L. (2017). Adopting contin-

uous delivery and deployment: Impacts on team structures, collaboration

and responsibilities. In Proceedings of the 21st international conference

on evaluation and assessment in software engineering, páginas 384–393.

Citado nas páginas 28, 29, e 57.

[51] SINOVA, U. (2023). About contributions. Online; accessed 29 July 2023.

Citado na página 29.

[52] Soares, D. M., de Lima Júnior, M. L., Plastino, A., e Murta, L.

(2018). What factors influence the reviewer assignment to pull requests?

Information and Software Technology, 98:32–43. Citado nas páginas 13,

14, 17, e 57.

[53] Spring (2023). Spring | guides. Online; accessed 17 July 2023. Citado

nas páginas 7 e 31.

[54] Stylos, J. e Myers, B. A. (2006). Mica: A web-search tool for finding

api components and examples. In Visual Languages and Human-Centric

Computing (VL/HCC’06), páginas 195–202. IEEE. Citado na página 6.

[55] Tian, Y., Thung, F., Sharma, A., e Lo, D. (2017). Apibot: question an-

swering bot for api documentation. In 2017 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE), páginas 153–158.

IEEE. Citado nas páginas 6 e 57.

[56] Treude, C., Figueira Filho, F., e Kulesza, U. (2015). Summarizing and

measuring development activity. In Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering, páginas 625–636. Citado

na página 29.

[57] Van Den Berk, I., Jansen, S., e Luinenburg, L. (2010). Software ecosys-

tems: a software ecosystem strategy assessment model. In Proceedings

of the fourth european conference on software architecture: Companion

volume, páginas 127–134. Citado nas páginas 4 e 6.

66

[58] van Ingen, K., van Ommen, J., e Jansen, S. (2011). Improving activ-

ity in communities of practice through software release management. In

Proceedings of the International Conference on Management of Emergent

Digital EcoSystems, páginas 94–98. Citado nas páginas 4 e 15.

[59] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, B., e Wessln,

A. (2012). Experimentation in Software Engineering. Springer Publishing

Company, Incorporated. Citado nas páginas 24 e 52.

[60] Wouters, J., Ritmeester, J., Carlsen, A., Jansen, S., e Wnuk, K. (2019).

A seco meta-model: A common vocabulary of the seco research domain. In

Software Business: 10th International Conference, ICSOB 2019, Jyväskylä,

Finland, November 18–20, 2019, Proceedings 10, páginas 31–45. Springer.

Citado na página 4.

[61] Wu, Y., Kropczynski, J., Shih, P. C., e Carroll, J. M. (2014). Explor-

ing the ecosystem of software developers on github and other platforms.

In Proceedings of the Companion Publication of the 17th ACM Conference

on Computer Supported Cooperative Work amp; Social Computing, CSCW

Companion ’14, pagina 265–268, New York, NY, USA. Association for Com-

puting Machinery. Citado na página 9.

[62] Wyrich, M., Graziotin, D., e Wagner, S. (2019). A theory on individ-

ual characteristics of successful coding challenge solvers. PeerJ Computer

Science, 5:e173. Citado na página 29.

[63] Xavier, J., Macedo, A., e de Almeida Maia, M. (2014). Understanding

the popularity of reporters and assignees in the github. In SEKE, páginas

484–489. Citado na página 28.

[64] Yang, D., Hussain, A., e Lopes, C. V. (2016). From query to usable code:

an analysis of stack overflow code snippets. In Proceedings of the 13th

International Conference on Mining Software Repositories, páginas 391–

402. Citado na página 6.

[65] Yu, Y., Wang, H., Filkov, V., Devanbu, P., e Vasilescu, B. (2015). Wait

for it: Determinants of pull request evaluation latency on github. In 2015

IEEE/ACM 12th working conference on mining software repositories, pági-

nas 367–371. IEEE. Citado na página 20.

[66] Zampetti, F., Ponzanelli, L., Bavota, G., Mocci, A., Di Penta, M., e

Lanza, M. (2017). How developers document pull requests with external

references. In 2017 IEEE/ACM 25th International Conference on Program

Comprehension (ICPC), páginas 23–33. IEEE. Citado na página 13.

67

[67] Zhang, X., Chen, Y., Gu, Y., Zou, W., Xie, X., Jia, X., e Xuan, J. (2018).

How do multiple pull requests change the same code: A study of competing

pull requests in github. In 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME), páginas 228–239. IEEE. Citado na

página 13.

[68] Zhu, Z., Hua, C., Zou, Y., Xie, B., e Zhao, J. (2017). Automatically gener-

ating task-oriented api learning guide. In Proceedings of the 9th Asia-Pacific

Symposium on Internetware, páginas 1–10. Citado na página 6.

68

	Summary
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Software Ecosystem
	Code samples
	Code samples, SECO and GitHub

	Exploratory study in code sample repositories
	Introduction
	Study Design
	Study Scenario
	Chosen Platform and Organizations
	Code Sample Selection
	Pull Request Selection
	Maintainers Selection
	Research questions

	Results of exploratory study
	Implications
	The community matters
	To each organization, its rules
	Rejected Pull Requests: The 'Time Rejectables' Chronicles
	Expand to conquer

	Threats to validity
	Final considerations

	Survey with professionals who produce code samples
	Introduction
	Study Design
	Target population of survey
	Criteria for Participant Selection
	Pilot survey
	Final survey
	Research questions

	Results of Survey
	Roles
	Experience
	Number of code samples
	Frequency of work with code samples
	Reported Activities
	Main objetive of code samples
	Target audience
	Internal perspective within each organization
	Overview of the similarity between development process and quality assurance with other products of the organization
	Internal perspective within each organization

	Implications
	Code Samples: Beyond Educational Objectives
	Veteran Developer, Old code samples
	Internal Disparities in Code Sample Perspectives

	Threats to validity
	Final Considerations

	Implications
	Implications
	Fostering Collaborative Synergy: Code Samples as Bridges Between Organizations and External Developers
	Some practices for providing code samples

	Related work
	Conclusions and Future Work
	Bibliography

