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“I think it's much more interesting to live not

knowing than to have answers which might be

wrong. I have approximate answers and

possible beliefs and different degrees of

uncertainty about different things, but I am not

absolutely sure of anything and there are many

things I don't know anything about …”

(Richard Feynman)
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RESUMO

Zamboni, P. (2021). Melhoria do monitoramento hidrológico através da aprendizagem

profunda e da fotogrametria. Tese de Doutorado, Faculdade de Engenharias, Arquitetura e

Urbanismo, e Geografia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS.

Brasil.

A observação dos componentes do ciclo hidrológico podem ser desafiadoras devido à

escala em que ocorrem e ao custo dos sensores. Medir a formação de escoamento superficial e

vazão são chave para a compreensão da dinâmica da água, uma vez que influencia também as

atividades humanas, a fim de manter ecossistemas naturais equilibrados. O principal objetivo

desta tese de doutorado é propor abordagens de aprendizagem profunda combinadas com

fotogrametria para medir automaticamente a formação de escoamento superficial e vazão.

Nossos resultados sugerem que considerar o desequilíbrio de classe e a incerteza do rótulo

durante o treinamento de aprendizagem profunda para segmentar áreas de poças de água é

mais importante do que a própria rede, bem como ensembles. Área, número e conectividade

das poças de água e a sua foram comparados com medida da vazão, onde foram encontrados

diferentes comportamentos em relação à geração de escoamento superficial. Em relação à

vazão, nossos resultados mostraram que tanto STCN quanto SAM utilizando pontos fixos e

SAM combinado com Dino alcançaram resultados satisfatórios para segmentação de água,

mesmo com conjunto de dados de rótulo mínimo ou não anotado. As medidas dos níveis de

água utilizando estas máscaras resultam num bom ajuste com os dados de referência, sendo

capazes de capturar alterações no fluxo de água, especialmente para níveis de água mais

elevados. Nas imagens dinâmicas, STCN e SAM Dino obtiveram resultados semelhantes,

entretanto a escolha do primeiro frame influencia os resultados da STCN. Os resultados

encontrados nesta tese de doutorado abrem uma nova fronteira para hidrólogos e

tranquilizadores da ciência do solo com a possibilidade de medir diretamente a formação de

escoamento superficial e uma solução mais barata e escalável para medição de vazão.

Palavras-chave: hidrologia, escoamento superficial, vazão, aprendizagem profunda,

fotogrametria.
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ABSTRACT

Zamboni, P. (2021). Enhancing hydrological monitoring through deep learning and

photogrammetry Doctoral Thesis, Faculty of Engineering, Architecture and Urbanism, and

Geography, Federal University of Mato Grosso do Sul, Campo Grande, MS. Brazil.

Observing components of the hydrological cycle can be challenging due to the

escalation that occurs and the cost of sensors. Measuring the formation of surface runoff and

flow is fundamental to understanding water dynamics, as it also influences human activities in

order to keep natural ecosystems balanced. The main objective of this doctoral thesis is to

propose deep learning approaches combined with photogrammetry to automatically measure

surface teaching formation and flow. Our results suggest that considering class imbalance and

label uncertainty when training deep learning to segment water pocket areas is more important

than the network itself as well as ensembles. Area, number and connectivity of water pools

and their comparison with the flow measurement, where different behaviors were found in

relation to the generation of surface runoff. Regarding flow rate, our results demonstrated that

both STCN and SAM using fixed points and SAM combined with Dino achieved

overwhelming results for water segmentation, even with minimal or unannotated label dataset.

Measurements of water levels using these masks resulted in a good fit with reference data,

being able to capture changes in water flow, especially at higher water levels. In dynamic

images, STCN and SAM Dino obtained similar results, however the choice of the first frame

influenced the STCN results. The results found in this doctoral thesis open a new frontier for

hydrologists and soil science practitioners with the possibility of directly measuring surface

runoff formation and a cheaper and more scalable solution for flow measurement.

Keywords: hydrology, runoff, streamflow, deep learning, photogrammetry.
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GENERAL INTRODUCTION

1. Background and problem statement

Through the water cycle, rainfall is partitioned into surface runoff, subsurface runoff,

and underground flow (Le Mesnil et al., 2021). When rainfall intensity overcomes infiltration

capacity, water starts to accumulate into soil depression forming ponding. Subsequently,

runoff is generated once rainfall surpasses the depression storage and infiltration capacity

(Yang et al., 2015). Surface runoff influences water resources, ecosystem and human

well-being and safety (Gulahmadov et al., 2021), and it is responsible for triggering processes

such as soil erosion. For instance, soil erosion causes loss of soil nutrients, reducing field

productivity. Moreover, it can lead to an increase of greenhouse gas emissions (Lugato et al.,

2018).

Runoff generation processes can be observed in different scales, from micro-scale up

to catchment scale, being the rainfall simulation on small-scale plots one of the most common

methods (Falcão et al., 2020; Abudi et al., 2012). Nevertheless, these runoff generation vary at

a very fine scale. It is well known that micro-topography is one of the most significant features

controlling the generation of surface runoff (Dunne et al., 1991; Govers et al., 2000; Kværner

and Kløve, 2008; Turunen et al., 2020). Nevertheless, limitations in measurement methods

limit the understanding of this process, especially at a micro-scale. Traditional approaches are

unable to observe and measure direct effects of micro-topography during rainfall partitioning,

ponding formation, its connection and runoff generation. Eventually surface runoff is

concentrated into the natural drainage (river network) and becomes streamflow. Understanding

runoff generation is key to better comprehend streamflow patterns since different mechanisms

lead to different floods (Stein et al., 2020).

Streamflow results from precipitation with a time delay, yet this connection is

influenced by factors like basin size, topography, soils, vegetation and spatial heterogeneity

(Bales et al., 2018). Floods triggered by rainfall stand out as one of the most prevalent forms

of natural disasters, possessing the highest potential for damage compared to all other natural

disasters globally (WMO, 2013). River floods not only cause significant immediate damages

and loss of life but also entail broader and more prolonged adverse economic repercussions
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(Koks and Thissem, 2016). To model and plan water resources effectively, it is essential to

establish hydrological observation networks that are dense in both space and time, ensuring a

comprehensive database (Eltner et al., 2021). However, water stage monitoring networks

usually are composed of a small number of sensors. In many instances, measurements in

hydrology primarily focus on large-scale catchments, or gauge positions are selected with a

focus on water management concerns rather than addressing hydrological research questions

(Kirchner, 2006). In Brazil, urban water stage monitoring networks are almost non-existent

due to difficulties in deploying such networks in urban areas. Traditional river monitoring

sensors (pressure gauges) require maintenance and are prone to oxidation, may be lost during

a flood event (Eltner et al., 2021) and prone to vandalism (Vitry et al., 2019). Moreover, this

kind of sensor can be expensive, mainly in developing countries.

In this context, images emerge as an remote sensing alternative with a high potential to

improve our understanding of such phenomena, allowing for a direct measurement. For

instance, images that capture soil surface during rainfall events hold significant potential for

enhancing the comprehension of runoff generation and infiltration processes. This monitoring

allows for direct observation of the formation of standing and flowing water. In order to build

operation tools capable of processing this data, automatic methods need to be explored. In

recent years, mainly Convolutional Neural Networks (CNNs) and Transformer based models

have greatly impacted environmental sciences as deep learning techniques (Persello et al.,

2022, Heipke & Rottensteiner, 2019). Works have explored deep learning approaches in

several hydrological applications such as rainfall measurement (Yin et al., 2023), water stage

retrieving (Vandaele et al., 2021; Virty et al., 2019) and surface water velocity measurement

(Ansari et al., 2023). Even though it is a powerful methodology, deep learning and image

processing only get us so far with measurements in terms of pixels.

Photogrammetry has fastly grown as an essential tool in geosciences (Eltner et al.,

2016), playing an important role in monitoring natural hazards (Blanch et al., 2023).

Photogrammetry methodologies allow us to transform measurement in a pixel resolution

originated from images into metric values. One of the main ideas relies on the projection on

points from an 2D space (e.g., water contour automatic segmented using deep learning and

images) into a 3D point cloud, assessing the n number of nearest points from the 3D point

cloud to the project 2D point. Combining deep learning and photogrammetry for automatic
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image processing opens a new world of possibilities in terms of hydrological monitoring as

demonstrated by Eltner et al. (2021). Notwithstanding, further development needs to be done

to extend the impact of this combined methodology. Regarding deep learning, training

strategies need to be studied and further developed to deal with challenge scenarios, i.e.

segmenting water ponding, and strategies to reduce the need of large annotated dataset.

To the best of our knowledge, no methodology allows for a direct observation and

measurement of the process involved in runoff generation. Additionally, there is a large gap in

observed hydrological data, especially water stage. Given the importance of water resources

for the general well-being of natural ecosystems to support human activities, it is necessary to

develop new and cheaper ways of hydrological monitoring. This doctoral thesis aims to

advance methods to measure and understand components of the hydrological cycle related to

runoff generation and streamflow by combining deep learning methods and photogrammetry.

By exploring different approaches combining state-of-the-art deep learning methods and

photogrammetry, this research seeks to address the challenge posed in hydrological

monitoring on different scales. The adoption of these methods can increase the understanding

of how rainfall is transformed into surface runoff and later into streamflow, further, helping to

adopt measures to reduce impact caused by both.

2. Objectives

2.1. General objective

The main objective of this study is to propose deep learning approaches combined with

photogrammetry to automatically measure runoff formation and streamflow.

2.2. Specific objectives

i. To evaluate the performance CNNs to water segmentation in time-lapse rainfall

simulation plots, evaluating label imbalance, patch spatial correlation during training,

and ensemble models;

ii. To evaluated runoff generation pattern in different plots under simulated rainfall;
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iii. To evaluate potential of pre-trained large models in water segmentation of river

images;

iv. To assess the potential of using water masks segmented by video object segmentation

and pre-trained large models in automatic water stage retrieve.

3. Organization of thesis

The Thesis is organized into two chapters. In Chapter 1, we investigate the potential

of deep learning in the segmentation of water areas in time-lapse images captured during

rainfall simulations. First, we evaluated three different CNNs, trained considering label

unbalanced as well spatial correlation between samples. Ensemble models were also

evaluated. We evaluated the transferability of all trained models in two different plots. Using

the best model, water pixel areas were identified. Finally, we compared the water area with

measured runoff, and computed the ponding time and the number of connected components.

In Chapter 2 we evaluated CNNs methods that require minimum to non annotated dataset to

retrieve water masks from camera gauge stations and Unmanned Aerial Vehicles datasets.

First, a video object segmentation network used to segment time-lapse images was evaluated.

This method only used one annotated image (the initial frame) to produce masks for the entire

image sequence. Further, we evaluated state-of-the-art image segmentation deep learning

approaches that work with user input (i.e. points, bounding box, or text). Segmented water

masks were evaluated both qualitatively and quantitative. Finally, we used segmented water

masks for river delineation and water stage retrive.
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CHAPTER 1

Measuring water ponding time, location and connectivity on soil surfaces

using time-lapse images and deep learning

Zamboni, P., Blümlein, M., Lenz, J., Gonçalves, W. N., Junior, J. M., Wöhling, T., Eltner, A.

Measuring water ponding time, location and connectivity on soil surfaces using time-lapse images and

deep learning. Under revision in International Soil and Water Conservation Research (Impact factor:

6.4)

Abstract

Rainfall simulations are an established method to gain knowledge on small-scale

hydrological processes like infiltration, ponding and the formation of surface runoff. Due to

limitations in measuring methods, these processes must usually be understood to happen

homogeneously within the bounded plot area while it is well known that they actually vary on

a subplot scale. Within this study we took high resolution time-lapse images of several plots to

observe and quantify the subplot processes of ponding and the formation of connectivity and

surface runoff. We investigated the potential of deep learning in the segmentation of water

ponding areas in time-lapse images during rainfall simulations and to estimate the ponding

time. We trained three different Convolutional Neural Networks (CNNs), considering

classification uncertainty and imbalance of the ground-truth data (water pixels) as well as

ensemble modeling and spatial correlation between samples. Our findings suggest that

addressing ground-truth annotation uncertainty and imbalance was more important in our

study than the choice of the CNNs itself, and ensemble models increase the model

performance leading to more robust predictions. Overall, our results suggest that CNNs have

a great potential to segment ponding areas, and thus it is possible to observe their

spatio-temporal evolution. When comparing the evolution of water ponding areas to runoff,

different behaviors across the plots were observable, which could be related to differences in

initial soil moisture and infiltration behaviors. Further, our image-based deep learning

approach allows for direct measurement of the ponding time, and can be considered a first step

to spatially and temporally resolved mapping of infiltration rates.

Keywords: Climate change, general circulation model, rainfall, regional climate model.
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1. Introduction

Enhancing our understanding of runoff processes is a central objective within

hydrological and geomorphological sciences (Beven, 2021; Sone et al., 2020; Vlček et al.,

2022; Zhao et al., 2018). One goal is to comprehend the mechanisms involved in the

partitioning of precipitation into the surface, subsurface, or underground flow (Le Mesnil et

al., 2021). However, infiltration and runoff processes on soils are complex and controlled by

various factors, e.g., soil type, slope, microtopography, land use and cover, and rainfall

intensity. Traditional approaches to measure runoff on sloping soils mostly provide local

values, and observing the spatiotemporal dynamics of water on the soil surface (e.g., water

pond formation) continues to pose a challenge. For instance, time to ponding is usually a

subjective field measurement due to unclear definitions, resulting often in a rough estimation

by differencing infiltration and runoff rate (Fiener et al., 2011). In this sense, images capturing

the soil surface during rainfall events have a high potential to improve the understanding of

runoff generation and also infiltration processes as the formation of standing and flowing

water can be observed directly. The analysis of such images remains a tedious work, if done

manually - which this study overcomes by providing automatic workflows for image analysis

and therefore derived quantifications for relevant processes.

Rainfall water surplus accumulates in soil depressions leading to ponding formation

when the rainfall intensity and water accumulation exceeds the infiltration capacity. The

ponding time of soil represents the time period between the initiation of rainfall and the

occurrence of surface ponding. It indicates when the infiltration capacity of the soil is

exceeded, which is a valuable parameter for runoff and infiltration modeling (Assouline et al.,

2007). Once the rainfall intensity exceeds the depression storage capacity (DSC) and

infiltration capacity, the water ponds start to connect, and runoff is generated (Yang et al.,

2015). DSC can be used to support water balance measurements and corresponding models

that estimate the time delay of the onset of overland flow (e.g., de Roo et al., 1996).

Information about the temporary water storage and infiltration in surface depressions

also helps to track changes in the hydrological connectivity (Darboux and Huang, 2001;

Peñuela et al. 2016; Wang et al., 2018). Hydrologic connectivity describes the connection of

individual isolated water patches on hillslopes, which is a necessary condition for the
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formation of runoff (Bracken & Croke, 2007). In addition, it is also an important aspect to

consider in soil erosion studies (Baartman et al., 2013). Its development depends on the spatial

distribution of water on the soil surface (McNamara et al., 2005; Wilson et al., 2016),

micro-topography (Ali and Roy, 2009), and its changes in four dimensions; longitudinal,

transversal, vertical, and temporal (Wu et al., 2021).

In addition to measuring water ponds and their interconnections during rainfall events,

simply identifying the area covered by water can be an important information for soil erosion

studies. Many raster based soil erosion models internally estimate the areas covered by water

due to its relevance for soil particle detachment and transport (e.g. RillGrow - Favis-Mortlock

et al., 1998, LISEM - Jetten & De Roo, 2001, EROSION-3D - von Werner & Schmidt, 1996).

Thus, the image-based water coverage observation can be an important parameter to validate

and calibrate such models.

Recent developments in computer vision and deep learning, especially Convolutional

Neural Networks (CNNs), have greatly impacted environmental sciences (Persello et al., 2022,

Heipke & Rottensteiner, 2019). Researchers have explored the potential of CNNs for scene

classification (Carvalho et al., 2022; Su et al., 2021), image segmentation (Brandt et al., 2020;

Nguyen et al., 2022), and object detection (Higa et al., 2022; Jing et al., 2021; Zamboni et al.,

2021), in images captured from satellites, unmanned aerial vehicles (UAVs) and with

stationary cameras. Regarding water segmentation, CNNs have been used to automatically

identify water in images (Wagner et al., 2023) to perform water level measurements with

camera gauges (Eltner et al., 2021; Vandaele et al., 2021), and flood mapping with aerial

images, either using UAV (Gebrehiwot et al., 2019; Ichim & Popescu, 2020) or satellite

(Konapala et al., 2021; Muñoz et al., 2021) platforms. Nevertheless, the application of these

methods to observe ponding and runoff formation at soil surfaces still needs to be seen,

especially considering the challenges of distinguishing wet from water-covered soil.

Compared to other image water segmentation cases (e.g., Eltner et al., 2021), the water

area on the soil surface during a simulated rainfall event, as conducted in this study, is

considerably small. Furthermore, identifying and labeling water ponding areas presents a

significant challenge due to their small scale, complex shapes, similar color gradients at the

class boundaries, and class imbalance. In images from rainfall simulations, water represents a

small fraction of the pixels for the majority of the rainfall event, leading to an imbalance when
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compared to the rest of the image pixels. The performance of CNNs can decrease by

imbalances in the training sample distribution across classes (López et al., 2013). Therefore, it

is necessary to investigate methodologies that consider class imbalance and labeling

uncertainty while learning the CNN models.

Moreover, when using deep learning in geospatial applications, the spatial correlation

of sampled objects has to be considered. Usually, samples, e.g., images, for training and

testing are drawn randomly across a region of interest, assuming independence. However,

employing images not used during the model training does not ensure that this sample is

independent. Dependence among samples can emerge due to spatial proximity because close

objects are more correlated than distant ones (Tobler, 1970). Generally, using non-independent

data with a different distribution (e.g., nearby samples in a spatial cluster) during testing can

lead to biased results and overly optimistic model results (Kattenborn et al., 2022; Meyer &

Pebesma, 2022), with differences in performance up to almost 50% (Schratz et al., 2019).

The contribution of this study is the demonstration of the potential of computer vision

to estimate the water ponding time and assess runoff formation behaviors. CNNs are adapted

to segment water ponds on the soil surface in time-lapse images to differentiate between water

retention and surface runoff measured at the plot outlet. CNNs were trained to automatically

segment the water areas on the soil, acknowledging class imbalance and labeling uncertainty.

We assess the impact of spatial correlation between training and testing samples and the

transferability of the models to new and unseen plots. The best models were used to segment

water in orthorectified time-lapse images allowing for the scaled estimation of water coverage

and assessing changes in the connectivity of individual water ponds. Finally, we estimated the

ponding time and compared it with ponding time derived using rainfall simulation. The

proposed method can help to better understand how runoff is generated by understanding how

ponding and connected ponds occur at different temporal and spatial scales. This study is a

proof of concept of how CNN-driven, spatiotemporal separation of ponded plot areas can help

a better understanding of runoff-generating processes.
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2. Material and methods

Our work was carried out in four steps (Figure 1). First, we conducted rainfall

simulations, collecting soil surface images, measuring the runoff, and collecting ground

control points (GCPs). Second, we manually annotated 83 images from three plots (plots 1 to

3) with binary masks (background and water areas), created two datasets, and performed

model training and testing. The first dataset was created by randomly separating sample image

patches into training, validation, and test sets. The second dataset was split considering spatial

correlation of samples. An additional dataset of eight labeled images was annotated from two

further unseen plots (from here on referred to as plots 4 and 5), which was not used during

training to assess model transferability. We used three well-known deep learning models for

water segmentation, i.e., VGG-16, U-Net EfficientNetB0, and U-Net ResNet101. Furthermore,

two weighted equations were used for class imbalance and label uncertainty. Finally, the

different models were combined into ensembles. Overall, six models (three considering

weighted equations and three without this consideration) and four ensembles (considering

weighted equations) were generated.

In the third step, the best model was used during inference to segment the water

ponding area (producing binary masks) for each plot for all images. Furthermore, we

investigated the models' robustness and transferability using unseen plots 4 and 5. Water

pixels were further processed to identify connected components, i.e. individual water ponds.

Afterwards, the image measurements were scaled via orthorectification. Finally, we compared

the predicted water area, pond number and the measured runoff at the plot outlet. We also

assessed the ponding time using the discharge measured during rainfall simulation and

compared them to the ponding time estimated using the CNN-based water segmentation.
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Figure 1: Study workflow. GCPs are ground control points, CW denotes class weight, and LU means
label uncertainty.

2.1. Study area and rainfall simulations

Three different soil erosion plots were considered to develop the workflow. The plots

are situated in landscapes in Germany, which are prone to soil erosion; i.e., in the quaternary

loess belt in Saxony and in geology from the Keuper period in Thuringen. The landscapes are

hilly and exhibit grain size distributions dominated by silt or clay in the former and latter

regions, respectively. The plots are situated on farmed land managed by different soil tillage

practices (tillage or grubber).

Experimental plots with a size of about 3 m² were used. The plots were exposed to

artificial rainfall (Figure 2a, e.g., Hänsel et al., 2016) with different intensities ranging from

0.6 to 0.9 mm/min (Table 1). In the first plot, the rainfall experiment lasted about 140 minutes;

with a break in between after about one hour, lasting for one hour, and some additional rainfall

afterward for another 20 minutes. In the second plot, the rainfall experiment lasted for about

55 minutes. In the third plot, data was captured for the rainfall experiment that ran for 85
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minutes. Discharge was measured at the outlet (at the bottom of the plot) every minute during

all experiments.

Table 1: Parameters of the single soil erosion plots used during rainfall simulations.

Plot
Capture

date

Tillage

practice
Cover

Rainfall

intensity

[mm/min]

Grain

size

Initial soil

moisture

[Vol-%]

Soil bulk

density

[g/cm3]

1 06.10.2020 Strip till

Bare

(10%

mulch)

0,6 Tu2 40,5 1,45

2 20.07.2021 Grubber Bare 0,6 Us 24,9 1,25

3 13.05.2020 Conserving

Field

bean

(10%

mulch)

0,8 Ut3 25,24 1,21

4 06.05.2020 Grubber

Bare

(5%

mulch)

0,8 Ut3 26,63 1,35

5 22.05.2020 Grubber

Field

bean

(10%

mulch)

0,9 Ut3 25,99 1,29

26



Figure 2: (a) Rainfall simulator system. (b) Plot 1, c) Plot 2, (d) Plot 3, (e) Plot 4, and (f) Plot 5.

2.2. Image acquisition and dataset generation

A SLR camera Canon EOS 450D was used to capture images in plots 1 and 2. The

camera has a resolution of 4274x2848 pixels and was equipped with a fixed focal length of 24

mm at plot 1 and 18 mm at plot 2. For the third plot, a Canon 1200D, with a resolution of

5184x3456 pixels and a focal distance of 18 mm, was used. The cameras were mounted at the

side of the plots on tripods at heights of about 2 to 3 meters above the ground. At plot 1

images were recorded every 20 seconds during the rainfall and every 2 minutes during the

rainfall break. At plot 2 and 3 images were captured every 20 and 10 seconds, respectively.

Moreover, a Canon EOS 600D was used to acquire images from plots 4 and5 with a 5184x346

pixels resolution and focal distances of 23 and 9.1 mm.

We used a total of 1388 images (338, 429, and 613 at plots 1, 2, and 3, respectively),

from which the water area was annotated manually in 83 images. Additionally, three primary

images from plot 4 and five from plot 5 were labeled. To produce a more generalized and

robust model, the images include different stages during the rainfall simulation, different

perspectives at the area of interest, varying illumination conditions, various soil colors, and

different coverages of vegetation.
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Two datasets were created for model training using annotated images from plots 1 to 3.

The first dataset was created without considering the spatial correlation among samples

(Figure 3a). For the second dataset, patches were selected considering the spatial correlation

among samples (Figure 3b). We cropped the labeled images in patches with a size of

1024x1024 pixels due to the high resolution of the original images and to guarantee that the

water class occupies a feasible amount of pixels, discarding all the patches with no water

pixels. An additional dataset, composed of the eighth annotated images from plots 4 and 5,

was used to assess model generalization and transferability.

Figure 3: Example of the splitting process in order to create a dataset without (a) and with (b)
consideration of spatial correlation between samples. (a) patches were randomly selected from images
to be used for training, validation, and testing of the models. (b) patches were not chosen randomly
across the entire plot, but from pre-set regions; the first portion of the images was used for training, the
middle part for validation, and the last portion for testing the models.

For the dataset not considering the spatial correlation between samples, a total of 304

patches were generated, where 110, 69, and 125 patches were from plots 1, 2, and 3,

respectively. The patches were randomly split into training (60%), validation (20%), and test

sets (20%).

Commonly, the performance of deep learning models is assessed using independent

test samples. However, this is special for geospatial tasks due to correlations between close

pixels and patches or even overlapping patches in a time-series of images. We ensure spatial

independence during the random splitting of the patches by keeping training, validation, and
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test regions apart. We used the first portion of each image for training, the middle part for

validation, and the last portion for testing. Thereby, patches used for testing are most distant

from training patches. For this dataset, 410 patches (50% for training, 25% for validation, and

25% for testing) were generated.

2.3. Deep learning approach

Models

The water area was segmented in the images using three different CNNs. The first one

was based on VGG-16 (Simonyan & Zisserman, 2015), and the second and third ones were

U-Net (Ronneberger et al., 2015) networks, using ResNet101 (He et al., 2015) and

EfficientNetB0 (Tan & Le, 2019) as backbones. In CNN architectures, backbones are

networks used to extract relevant features to encode the input into a feature representation.

CNNs for semantic segmentation are commonly composed of convolutions, batch

normalization, activations, pooling, upsampling, and fully convolutional layers. Convolutional

layers convert an input volume (i.e., image) into an output volume or feature map by

convolving the input volume with a set of learnable filters, where the filters are trained to

extract useful information. Usually, convolution layers are followed by batch normalization

and an activation function, i.e., Rectified linear unit or ReLU (a nonlinear function defined by

f(x)=max(x,0)). Pooling layers reduce the dimensions of the feature map, typically by

maintaining the maximum value of the region (max pooling) or the average value of the region

(average pooling). Upsampling layers are applied to increase the feature map dimension since

pooling layers reduce the dimensions of the feature map. A convolution layer with a kernel of

1 by 1 is used to map the feature map to the desired number of classes.

VGG-16 is a well-known semantic segmentation network, easy to implement, and

provides competitive results. For the VGG-16-based architecture, an encoder-decoder network

was built. The encoder, responsible for extracting relevant features that characterize the image

content, has five convolution blocks with convolutional layers, batch normalization, activation

(Relu activation function), and maximum pooling layers. The blocks are composed of different

numbers and orders of layers. The decoder, used for upsampling the feature map results from

the encoder, is composed of five blocks made of upsampling, convolution, batch
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normalization, and activation layers, again with varying numbers and order. The final layer of

the network is an activation layer using the softmax activation function.

U-Net, along with U-Net variants, is one of the most often-used networks for semantic

segmentation (Hu et al., 2021; Shamsolmoali et al., 2020; Ye et al., 2022). U-Net presents a U

shape network with a contracting path, i.e., the encoder, and a symmetrical expanding path,

i.e., the decoder. We adopted two CNN-based architectures as backbones; ResNet101 (He et

al., 2015) and EfficientNetB0 (Tan & Le, 2019). Thus, we build the two U-Net-like networks

implementing ResNet101 and EfficientNetB0 as encoders and designing symmetrical versions

of them as decoders.

Regarding the U-Net backbone, residual networks, or ResNets, have been explored in

image segmentation, revealing good performance (Huang et al., 2020). Using connections

across feature maps, ResNets allow the gradient to flow through the skip connection, thus

solving the vanishing gradient problem. The vanishing gradient problem is an issue in deep

networks, where the gradient, computed from the loss function and used in backpropagation,

tends to zero after multiple applications of the chain rule and thus hindering the optimization

of parameter weights. In ResNets, skip connections allow for a better gradient flow from the

initial filters. ResNets consist of five convolution blocks, followed by average pooling, a fully

connected layer, and a final softmax activation function.

EfficientNets is a family of models that introduced a compound scaling method that

uniformly scales the network dimensions, i.e., width, depth, and resolution, with a fixed set of

coefficients, presenting state-of-the-art results in image segmentation (Atila et al., 2021;

Baheti et al., 2020). Thus, new network structures are learned, which depending on the

training task, can be potentially more efficient as the networks can turn out smaller and faster.

EfficientNet architecture uses mobile inverted bottleneck convolutions (MBConv). MBConv

applies an inverted strategy, applying an initial 1x1 convolution, followed by a deep-wise

convolution with a kernel size of 3x3 or 5x5, and another 1x1 convolution. Here, we adopted

the EfficienNetB0 due to memory limitations; EfficienNetB0 is the lightest model of the

EfficientNet family.

Dataset imbalance and label uncertainty

In deep learning methods, the class imbalance can lead to a biased segmentation

towards the more dominant class during the inference procedure (López et al., 2013). To
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reduce the imbalance problem, different strategies have been proposed, e.g., uniformly

sampling the dataset (Deng et al., 2009), and rebalancing the dataset by oversampling the

minority class or undersampling the majority class (as used by Ravuri et al., 2021). However,

these strategies change the data distribution and can disturb training and inference procedures

(Dal Pozzolo et al., 2015). Annotating accurate labels for the water area can be challenging for

the human eye due to complex boundary gradients between water and soil, as well as the

resolution of the images. Figure 4 illustrates the challenge of the labeling task due to the

complex shapes of the water ponds and similar color schemes and textures, as well the class

imbalance.

Figure 4: Example of a water mask: on the left, the RGB patch, and, on the right, the corresponding
annotated mask is displayed. Due to the complex appearance of water on the soil, creating labels that
distinguish between water and background is challenging. The example further shows the class
imbalance, where it can be seen that more pixels were assigned as background (shown in black) instead
of water (white pixels).

To overcome the issues of class imbalance and label uncertainty, Bressan et al. (2022)

proposed a new approach introducing a strategy that considers weights for each image pixel

during the loss calculation (Figure 5, Equation 4). Loss or cost functions measure the

difference, or error, between the prediction of a neural network and the ground-truth data,

where the goal is to minimize the error. In this strategy, pixels that belong to the minority class

(water) receive a higher weight to increase their importance. Moreover, pixels close to the

object border have higher uncertainty; thus, they have less importance, and their weight is

decreased. The equation is expressed as follows:
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  𝐿(𝑀,𝑀) =  1
𝑛

𝑥=1

𝑛

∑ ω(𝑥) · 𝐿(𝑀(𝑥), 𝑀(𝑥))#4 

Where M is the ground-truth mask, M is the predicted mask, L is the loss function, n is the

number of pixels and (x) is the pixel weight.ω

The pixel weight is calculated according to Equation 5.

ω(𝑥) =  φ(𝑐(𝑥)) · δ(𝑥)#5
where (c(x)) refers to class imbalance with c(x) being the class labeled for a given pixel x,φ

and (x) is related to the label uncertainty.δ

The first part, , is calculated using Equation 6.φ(𝑥)

φ(𝑥) =  𝑚

𝐶 ∗ 𝑛𝑐
#6

where m is the total number of pixels in all training labels, C is the number of classes, and 𝑛𝑐

is the number of pixels that belong to class C.

Note that classes with fewer pixels have higher importance. Furthermore, for the pixel

in the same class c, the weight (x) is the same. The second term, (x), is modeled accordingφ δ

to Equation 7, where d(x) refers to the distance from a given pixel x to the closest border pixel

and is the standard deviation describing the uncertainty buffer of the object border. We used

sigma equal to 2, based on the findings of Bressan et al. (2022).

δ(𝑥) =  1 − 𝑒
− 𝑑(𝑥)2

2σ2

#7
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Figure 5: The experimental scheme used in the training of CNNs. The ground-truth mask is used to
determine the pixel weights for the CNNs training, considering the class imbalance and the label
uncertainty. During inference, we averaged the output of the trained models using the weighted loss
function to produce ensemble predictions.

Experimental setup

Training and test procedures were conducted in Google Colab Pro using

Keras-Tensorflow. We used categorical cross-entropy as a loss function and Stochastic

Gradient Descent as an optimizer. The learning rate was set to 0.001, considering a momentum

of 0.9 and decay of 0.005. The batch size was 2. All the models were trained over 100 epochs

and we started the training with pre-trained weights from ImageNet.

To evaluate the models, we applied pixel accuracy (ACC) and intersection over union

(IoU); two standard metrics for semantic segmentation. The ACC (Equation 8) compares the

true positives and true negatives (in other words, the correct and wrongly segmented pixels

assigned to a class) and all classified pixels (true positives, true negatives, false positives, and

false negatives). ACC is the percentage of pixels correctly assigned to each class. An ACC

equal to 1 indicates that all pixels of a class were correctly classified, and a value of 0

indicates that all pixels were wrongly classified. IoU (Equation 9) is the ratio between the

intersection and the union of the predicted and the ground-truth area. In other words, if both

masks predict and ground-truth match perfectly, the IoU will be equal 1.
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𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 #8

𝐼𝑜𝑈 =  𝐺𝑇 ∩ 𝑃
𝐺𝑇 ∪ 𝑃 #9

2.4. Water area and its connectivity

The predicted masks, i.e., the number of pixels classified as water, are thus far solely

provided in the image space. To quantify the area of water in the plot during the rainfall

simulation, the image measurements need to be scaled. Therefore, the predicted masks were

orthorectified. GCPs (i.e., marked targets) surrounding the plot were measured with a total

station or using a measuring tape. The GCPs were also measured in the images to derive the

parameters of a homography to perform a projective transformation eventually. Thus, the

image measurements were projected into a plane defined by the GCPs resulting in pixels with

known ground sampling distance. Assuming the surface is a plane is a strong simplification as

we do not consider the microtopography. However, to generally illustrate the potential of our

method it is sufficient. Eventually, each mask is used to compute the total water area in square

meters.

The orthorectified masks were further processed to identify connected water pixels.

The aim is the measurement of individual water ponds and to assess their changing number

throughout the rainfall experiment. The ponds were extracted using the connected component

algorithm that enables the identification of the connectivity of pixels and pixel clusters with a

structuring element (a kernel). Due to some artifacts in the water masks, i.e., false one-pixel

wide border lines that resulted from the need to clip the large input images into smaller

patches, it was necessary to close these lines. Therefore a simple morphological operator, i.e.,

dilatation was applied. Thereby, again a structuring element is used, but this time to probe and

expand the water ponds and hence closing such one-pixel wide gaps. Eventually, the identified

water ponds were counted in each image. To verify as a pond, at least 50 and 100 connected

pixels had to be present at plot 2 and 3 and at plot 1, respectively. These thresholds were set to

account for outlier pixels identified as very small water patches. For the time-series

assessment the water pixel count and water pond count were smoothed due to some outliers
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using a median kernel with the size of five.

3. Results and discussion

First, we present the water segmentation results for all test datasets applied to the three

networks analyzing the influence class weights and label uncertainty (CW/LU) for the models

and ensembles and without considering the spatial correlation. Then, we analyze the

performance of the models of each individual plot. Afterwards, we assess the impact of spatial

correlations of patches on the model performance and we evaluate the performance of each

model, when applied to new and unseen images to assess model transferability. At the end, we

compare the water area growth at the different plots, we assess the ponding time estimated by

our image approach, and we evaluate the interplay between water pond connectivity, water

area growth and discharge. We refer to networks trained using CW and LU as VGG-16

CW/LU, U-Net EfficientNetB0 CW/LU, and U-Net ResNet101 CW/ LU.

3.1. Pond segmentation without considering spatial correlation of samples

For the dataset without considering the spatial correlation among samples, we

evaluated the performance of different network configurations and loss functions for pond

segmentation. Using CW and LU during training consistently improved performance,

indicated by an increase in ACC and IoU (Table 2, Figure 6). Figure 7 shows examples of

segmented images from each network and the ensemble models.
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Table 2: Impact of CW and LU and ensemble models on pixel accuracy (ACC), Intersection over
Union (IoU) for the dataset without considering the spatial correlation of samples.

tID Model
CW/

LU

Background Water

ACC IoU ACC IoU
Model 1 VGG-16 True 0.959 0.947 0.795 0.466

Model 2 VGG-16 False 0.989 0.963 0.535 0.453

Model 3 U-Net EfficientNetB0 True 0.916 0.916 0.872 0.376

Model 4 U-Net EfficientNetB False 0.988 0.960 0.502 0.418

Model 5 U-Net ResNet 101 True 0.954 0.939 0.736 0.412

Model 6 U-Net ResNet 101 False 0.971 0.943 0.499 0.332

Ensemble 1 Average model 1 and 5 True 0.959 0.947 0.778 0.458

Ensemble 2 Average models 1, 3 and 5 True 0.964 0.954 0.822 0.509

Ensemble 3 Average models 1 and 3 True 0.950 0.432 0.859 0.465

Ensemble 4 Average models 3 and 5 True 0.961 0.949 0.797 0.477

When considering single models, U-Net EfficientNetB0 with CW and LU achieved the

highest ACC value for segmented water (0.872). However, this network also had the lowest

background segmentation ACC, indicating that it incorrectly assigns a greater number of

background pixels as water leading to an overestimation of the water area. Because ACC only

considers the ratio of correctly assigned pixels to the total number of pixels, these incorrectly

background pixels do not affect water ACC. VGG-16 with CW and LU revealed the highest

water segmentation IoU (0.466).

Generally, we observed a decrease in image segmentation performance when rainfall

was captured. The rain seemed to act as noise in these images, making it more challenging for

the neural networks to correctly segment images in such cases, especially considering that

images with rain were not implemented during the training phase of the models. Thus, in

future training also, images with captured rainfall should be included.
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Figure 6: Segmentation performance of all single models for the water area (ACC1, IoU1) and
background (ACC0, IoU0) considering CW and LU and sample spatial correlation (True orange, False
blue). Note, the y-axis range is different for the different plots to improve visibility of differences.

Influence of CW and LU

When considering CW and LU, the models showed a higher increase of the ACC for

the water class (median ACC of 0.794 ± 0.05 and IoU of 0.411 ± 0.04; Figure 6) and a lower

segmentation performance for the background. If CW and LU are used, the importance of the

dominant class, background, is lowered in the loss equation, shifting it to the less dominant

class (i.e., water). Thus, the weights of the network were adjusted, focusing on the ACC of the

water class. As our goal was to correctly segment water, the decrease in the performance of

background segmentation was neglected. It is evident that models trained with CW produced a

better correlation between the predicted number of water pixels and the ground-truth data for

the test dataset (Figure 7). When comparing the same model with and without CW and LU, the

use of these two parameters further increased the correlation between the predicted number of

water pixels and the ground-truth data.
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Figure 7: Examples of segmentation results for plot 1 (a), plot 2 (b), and plot 3 (c) with and without
CW and LU and considering ensembles of the three models with CW/LU (d) for the dataset without
considering spatial correlation between patches. Ground-truth data is shown in red, while green
represents pixels wrongly classified as water and yellow represents pixels correctly classified as water.

The enhanced performance of CW/LU models underscores the importance of

addressing class imbalance and labeling uncertainty during training. Using Equation 5 we can

assess the weight of each class. Our training set had a weight of 0.528 for the background and

9.184 for the water class, while the validation and test sets had weights of 0.527 and 0.529 for

the background and 9.670 and 9.037 for the water class, respectively, indicating a significant

imbalance between the two classes. Bressan et al. (2022) also found that considering pixel

weights improved classification performance for imbalanced datasets in vegetation mapping

tasks using different CNN models, demonstrating the effectiveness of this approach across a

range of network architectures and segmentation tasks. The increased agreement between the

models that consider the pixel weights indicates that, for the task of soil surface water

segmentation, it is more important to consider the class imbalance and the uncertainty of the

annotations than the choice of the network architecture.
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Considering ensembles

Ensembles have been used in different computer vision tasks (Qummar et al., 2019;

Thambawita et al., 2021), presenting better performance than individual models. In our

ensembles, we averaged the output of the models, which were trained considering CW and

LU. We created four different ensemble models, each compromised a different combination of

the single models. Generally, the ensemble models revealed the highest values of ACC and

IoU (Table 2). Ensemble 2, considering all architectures, achieved the highest water class IoU

(0.509), and ensemble 3, considering VGG-16 CW/LU and U-Net EfficientNetB0 CW/LU,

was the second best model in terms of water class ACC (0.859). For ensemble 2, water IoU

showed an increase in performance from 4.27% up to 13.35% and for ensemble 3 the

difference in performance considering water ACC ranged from -1.26% to 12.34% when

compared to the models trained with CW/LU. Ensembles presented a higher median value for

water class ACC and IoU (0.809 ± 0.03 and 0.471 ± 0.02, respectively) when compared to

single models (0.794 ± 0.05 and 0.411 ± 0.04, respectively). Furthermore, ensembles

presented a lower standard deviation for both classes and both metrics, highlighting an

increase in the robustness of the predictions (Figure 8).
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Figure 8:Segmentation performance water area (ACC1, IoU1) and background (ACC0, IoU0)
considering ensemble models or not (columns True and False, respectively) and spatial correlation of
samples (True orange and False blue).

Looking at the individual plots

At the individual plot scale the improved performance, when considering CW and LU,

becomes obvious again (Figure A1). Water class ACC increased from 0.575 ± 0.027 to 0.821

± 0.032, 0.452 ± 0.030 to 0.755 ± 0.036, and 0.504 ± 0.027 to 0.798 ± 0.068 for Plot 1, 2 and

3, respectively. Thus, average performance increased, although the standard deviation

increased slightly. Generally, there was no obvious difference in performance in all individual

models.

Figure 9 presents the results of the ensemble models for each plot. Again, ensembles

are showing superior average performance and a decrease in standard deviation. Furthermore,

we observed a better performance of plot 1 compared to the other two plots, even though in

plot 1 we did not use more images (110 for plot 1 versus 69 and 125 images for plots 2 and 3

respectively) or a greater number of water pixels (3.581.510 for plot 1 versus 4.272.067 and

9.381.495 pixels for plot 2 and 3 respectively) during the training. The difference in

performance might be caused by the camera position. As can be seen in Figure 2, for plot 1,

the camera was positioned such that it had nearly a nadir view of the region of interest. In
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contrast, in plots 2 and 3 images were captured with slanted views, leading to more concealed

regions behind soil aggregates.

Figure 9: Segmentation performance of all study plots for the water and background accuracy (ACC0
and ACC1, respectively) and background and water IoU (IoU0 and IoU1, respectively) considering
ensemble models and the spatial correlation between samples.

3.2. Pond segmentation considering spatial correlation of samples

Table 3 presents the performance of models and ensemble trained considering the

spatial correlation between samples, with and without the use CW and LU, and the difference

in performance compared to their contra parts. In general, similar to models trained not
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considering the spatial correlation, by using CW and LU, models trained considering the

spatial correlation achieved higher values of water ACC and IoU. Consistent gains in

performance were observed for water ACC by applying the pixel weights for single models

with increases in performance of 0.208, 0.277, and 0.094 for, respectively, VGG-16, U-Net

EfficientNetB0, and U-Net ResNet101. For water IoU, the use of pixel weight did not produce

a significant impact on performance, and for U-Net EfficientNetB0 a slight decrease in

performance. U-Net EfficienetNet reached the best value of water ACC, although the lowest

water IoU, and VGG-16 the best water IoU. Using CW and LU also increases the performance

for the background class for both metrics. By using ensembles, we achieved better

performance than single models. Except for U-Net EfficientNetB0, ensembles achieved

higher water ACC, with emphasis on ensembles 2 and 3. Likewise, ensembles reached the

highest values of water IoU, especially Ensembles 1 and 2.
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Table 3: Performance and comparison of models trained considering the spatial correlation among
samples. In bold, the difference between the performance of models trained considering not the spatial
correlation.

Model CW/LU
Background Water

ACC IoU ACC IoU

VGG-16 True
0.971
-0.012

0.958
+0.011

0.487
-0.308

0.235
-0.231

VGG-16 False
0.991
-0.002

0.972
+0.009

0.279
-0.256

0.208
-0.245

U-Net EfficientNetB0 True
0.847
-0.069

0.840
-0.076

0.673
-0.198

0.101
-0.274

U-Net EfficientNetB False
0.968
-0.032

0.953
-0.007

0.396
-0.106

0.182
-0.237

U-Net ResNet 101 True
0.960
-0.006

0.945
+0.006

0.427
-0.309

0.171
-0.241

U-Net ResNet 101 False
0.971
0.000

0.954
+0.011

0.333
-0.166

0.162
-0.170

Ensemble 1 True
0.980
+0.021

0.957
+0.011

0.588
-0.191

0.437
-0.021

Ensemble 2 True
0.975
-0.019

0.954
0.000

0.608
-0.214

0.428
-0.081

Ensemble 3 True
0.940
-0.010

0.921
-0.022

0.644
-0.215

0.319
-0.146

Ensemble 4 True
0.969
+0.008

0.944
-0.005

0.560
-0.237

0.364
-0.112

Figures 10 and A2 show the performance of models trained considering and not

considering the spatial correlation among samples. Models trained considering spatial

correlation achieved a lower performance compared to the contra parts in all cases. We

observed an average difference in the performance of 22% and almost 18% for water ACC and

water IoU, respectively, when comparing the two different training strategies. Regarding the

background class, models achieved similar performance with margin differences (positives

and negatives) between training strategies. Our data shows a lower difference in performance

for models trained without CW and LU, with an average difference in the performance of

almost 18% and 22% for water ACC and IoU, respectively, compared to 27% and 25% for

models trained with CW and LU. The gap in performance, considering models trained with
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CW and LU, for water ACC ranged from 20% for U-Net EfficientNetB0 to almost 30% for

VGG-16. On the other hand, for water IoU, the decrease in performance ranged from 23% for

VGG-16 to 27% for U-Net EfficientNetB0. For ensembles, the average difference in

performance was 21% for water ACC and 9% for water IoU. Regarding water ACC, the

difference in performance was between 19% for Ensemble 1 and 24% for Ensemble 4. For

water IoU, the gap ranged from 2% for Ensemble 1 to 15% for Ensemble 3.

Figure 10: Segmentation performance of single models trained with and without CW and LU
considering and not the spatial correlation among samples.

Our findings suggest over-optimistic models when training procedures are conducted

without considering the spatial correlation, confirming previous studies (Kattenborn et al.,

2022; Meyer & Pebesma, 2022; Schratz et al., 2019). Even though models trained not

considering spatial correlation were “over-fitted” for the plots used to train, this does not make

the results invalid. Predictions produced by CNNs trained and tested with spatially correlated

data are not invalid and the predictions can be unbiased for balanced input data (Kattenborn et

al., 2022).
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3.3. Model performance on unseen plots

Figures A3 present the performance of Ensemble 2 for plots 4 and 5. It is worth

emphasizing that plots 4 and 5 were not used during training and testing procedures, being

used only to assess model robustness and transferability to unseen areas. Our results do not

show a specific pattern regarding the best strategy to be used to train the models, being models

trained not considering the spatial correlation more transferable to plot 4, and models

considering the spatial correlation more transferable to plot 5. This fact could be related to

dataset size and difference and image perspective.

For plot 4, models trained using non spatial correlated patches and considering CW

and LU showed an overall best performance for water accuracy. In terms of water IoU, models

trained with spatially correlated patches and that consider CW and LU have a slightly better

performance. U-Net EfficientNetB0 and Ensemble 3, trained considering CW and LU, reached

the highest performance, with similar values for models trained considering and not the

spatial correlation between samples (being the models trained not considering the spatial

correlation 5% and almost 2% better, respectively). Nevertheless, for these two cases, models

trained considering the spatial correlation reached better performance in terms of water IoU,

with an increase of 9% and 13%, respectively. Ensemble 3 and VGG-16 with CW and LU,

both models considering the spatial correlation, reached the highest values of water IoU (35%

and 32%, respectively).

For plot 5, models trained considering spatial correlation among samples showed a

better performance in terms of water ACC and water IoU for most cases. U-Net

EfficientNetB0 and Ensemble 3 trained using CW and LU present the highest values of water

ACC. Although, for plot 5, by considering the spatial correlation, we increase the performance

of U-Net EfficientNetB0 and Ensemble 3 by almost 4%. In terms of water IoU, Ensemble 1

and VGG-16 without CW and LU, both considering the spatial correlation, reached the best

values (17% and 16%, respectively).

3.4. Interaction between discharge, water pixel area and connectivity

This section demonstrates how the segmented and orthorectified water area from

ensemble 2 can be used to improve the hydrological interpretation of experimental results. We
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compare the water area identified by the CNN to the number of connected water segments and

the measured runoff for each plot (Figures 12, 13 and 14). It is important to highlight that we

present a rough estimate of the water coverage area. To provide a more accurate estimation, it

is necessary to consider microtopography. Furthermore, the pixel measurements were scaled,

projecting the images into a plane defined by the GCPs, which were not exactly at ground

level, leading to some overestimation of the pixel size.

CNN-based image segmentation also enables the observation of the spatiotemporal

evolution of ponding areas. Thus, it can be used to track and understand the onset of

hydrologic connectivity, such as the interconnection of isolated ponding areas which is

illustrated in Figure 11. The observation of the connectivity among the ponding areas can help

to estimate when surface runoff occurs and where it is likely to form. It should be noted that

the method is perfectly scalable and therefore of potential use in a variety of hydrologic

applications.

Segmenting small flow channels that emerge once the depressions overflow is

challenging due to their limited water volume. However, the spatial distribution of the

depression can indicate where the flow channels are likely to occur (between the ponding

areas in a downhill direction).
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Figure 11: Examples that highlight the growth of water ponds, measured by CNN based segmentations
(green patches) at the soil surface during different points in time at plot 2 (lower row) and plot 3 (upper
row).

Figure 12 shows the segmented water area and the measured discharge for plot 2. We

highlighted different stages of water ponding and runoff formation. In the initial stage of the

rainfall simulation, the infiltration capacity is higher than the rainfall intensity, and all water

infiltrates.
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Figure 12: Water coverage area and measured discharge for plot 2.

In the second stage i.e., after about 10 minutes, the rainfall intensity exceeds the

infiltration capacity at certain areas of the soil and the excess water starts to accumulate in

surface depressions leading to an increase in the water coverage area. However, no discharge

is measured yet, and the time gap between water ponding and runoff can be observed. The

ongoing rainfall causes more soil areas to reach their maximum infiltration capacity, leading to

the formation of new ponding areas as well as the spatial expansion of already existing ones,

which in turn leads to an increase in the water coverage area. Once a depression reaches its

storage capacity, water spills over and flows downhill, generating flow channels, and thus

initiating the first transport of soil particles (Yang & Chu, 2013). The water is then captured

and collected in the next downstream depression that has not yet reached its storage capacity.

This process leads to the interconnection of different ponding areas, which is highlighted by a

decrease of the growth of the number of water ponds. During this phase a strong settling of the

freshly tilled soil is visible in the orthophoto time series (see supplementary material), which

causes changes in microtopography and the formation of water flow paths on the soil surface.

In stage three i.e. after about 25 minutes, an increase in discharge occurs. This is

caused by ponding areas, which have developed a connection with the outlet of the plot. The
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hydrological connectivity increased and therefore also the drainage of the water to the outlet.

The water area growth decelerates and no new water ponds develop. A further extension of

water covered area seems hindered by the comparable rough soil surface with larger

aggregates remaining from soil tillage.

In stage four the water coverage area has reached a steady state. This happens when the

storage capacity of each depression is exceeded, and maximum connectivity among the

ponding areas is reached. Thus, the number of water ponds starts to slowly decrease. At this

stage, the maximum spatial extent of water is reached and the whole plot contributes to the

discharge. Furthermore, after about 35 to 40 minutes also the water area decreases, which

coincides with another increase in discharge, potentially due to the emptying of water ponds.

In the final (5th) stage, the discharge reaches a steady state.

The assessment of water ponding demonstrates that the microrelief delays the onset of

runoff as excess water is first captured in depressions rather than immediately running off the

soil surface. Water that is temporarily stored in depressions has more time to infiltrate,

resulting in an increased cumulative infiltration. The discharge starts shortly before the water

coverage area reaches a steady state suggesting that the CNN-based image segmentation can

allow a rough estimation for the runoff onset.

At plot 3 we can also observe a similar behavior of water area and number of ponds

growth as well as of discharge (Figure 13). However, the timing and intensities are different.

Again, a time delay between the start of water ponding and the first discharge can be seen. The

water coverage quickly increases after about 15 minutes. Already after about 20 minutes the

growth of the number of water ponds starts to stall, while the water area continues to grow

strongly, so individual ponds are extending their area rather than new ponds are being formed.

The water area reaches a constant value around the time when discharge accelerates and the

number of water ponds starts to decrease due to a higher connectivity between ponds, i.e.,

after about 50 minutes.
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Figure 13: In blue, the water coverage area at plot 3 is predicted using ensemble two and time-lapse
images, and in red the measured discharge at the outlet of the rainfall simulations. Green markers
highlight the number of water ponds.

The water ponds grow a lot slower at plot 3 when compared to plot 2 (0.1 to 0.15 m² in

about 20 minutes versus 0.1 to about 0.15 m² in about 10 minutes), although the rainfall

intensity was higher in plot 3. The initial soil moisture was similar in both plots. The different

speed of water growth indicates a different change in infiltration rates, i.e. a faster decrease in

plot 2. However, a total higher water coverage is observed at plot 3 (~0.2 m² versus ~0.7 m²).

In contrast to plot 2, with freshly tilled soil, the growing bean plants on plot 3 indicate that a

larger time span has passed since the last soil tillage. Consequently, the surface shows less

large aggregates, as these are already destructed by previous rainfall impact and the available

water storage in depressions is lower than on plot 2. This suggests also a higher initial

connectivity provided by the micro-relief of the plot. Due to the smoother surface, the

initiating ponds can spread wider, so the number of ponds does not increase while the water

covered area still grows (minutes 20 to 45).

At plot 1, different behavior in regard to water ponding was observed (Figure 14). Very

early on (after about 10 minutes), a strong increase in discharge was measured, while water

ponding did not accelerate until about 20 minutes after rainfall started. In general, water on the
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surface did not grow as strongly when compared to the other two plots, i.e. water covered less

than 0.05 m² after 25 minutes, whereas after the same duration at plots 2 and 3 water coverage

reached at least 0.15 m². This might indicate a larger infiltration rate at the beginning of plot 1

compared to plots 2 and 3. Although similar rainfall intensities were given in plots 1 and 2, the

different temporal behavior of water ponding became obvious and might be attributed to

heterogeneities, e.g. in soil moisture content, across the plot area at the beginning of the

rainfall. Within the orthophoto time series (see supplementary material) it can be seen that a

single pond is forming near the plot outlet, which causes the increase in runoff. The rest of the

plot shows a later - and nearly - homogeneous formation of ponds. Their number increases

with the increase of water area and, in contrast to plot 2 and 3, no stagnation or even decrease

during the first phase of rainfall becomes obvious.

After the hour break and second start of rainfall, the number of water ponds increases

strongly over a very short interval, as does the water area. However, afterwards the number of

water ponds very strongly decreases again, occurring around the same time, i.e. after about

125 minutes, when discharge increases strongly. This corresponds to the processes observed in

the other two plots, i.e. some decrease of water ponds number after connectivity increased.

The delayed onset of the discharge indicates that the heterogeneities seen in the first rainfall

phase have dissolved. The decreasing number of water ponds during onset of discharge shows

again how hydrological connectivity emerges between ponds, as in plots 2 and 3.

Roughly between the 60th and 120th minutes, during the rainfall simulation break, an

increase in the water pixel area and the number of ponds can be observed. However, no actual

changes happened at the soil surface. The error in the measurement is related to changes in the

lighting conditions leading to a misclassification of water pixels. During this period the water

pixel area slightly increased, whereas the number of ponds increased strongly, which indicates

a large number of small ponds that can be considered as outliers.
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Figure 14: In blue, the water coverage area at plot 1 is predicted using ensemble two and time-lapse
images, and in red the measured discharge at the outlet of the rainfall simulations. Green markers
highlight the number of water ponds.

Our work shows the potential of using CNNs to map soil surface water coverage to

provide a direct and visual quantitative assessment of ponding. Water retention on the soil

surface, estimated with high temporal and spatial resolution from images, can be used to

approximate soil infiltration and the hydrological connectivity for a given runoff event,

representing a step forward in understanding runoff formation at the plot scale. Our

measurements highlight the importance of the micro-topography of the soil surface and the

connectivity among the ponds, as it controls the generation of the runoff and its temporal

variation. Limitations to our methods remain in the detection of small connecting channels,

which might be covered by large aggregates (e.g. in plot 2) or by grown plants (e.g. plot 3)

from the view of the camera. On the other hand, our proposed method can easily be upscaled.

It is not limited to the plot scale and is potentially applicable at higher spatial resolutions such

as the field scale.

In the future, we intend to increase our dataset with images captured from different
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perspectives from the plot, i.e. a multi-camera setup, to achieve a more robust water

segmentation and connectivity assessment, considering redundant information. Furthermore,

further deep learning models should be tested because there might be even better models

available in the model zoo for the challenging task of segmenting shallow water on soil

surfaces. Another future task should be the combination of the predicted water mask with a

model of the surface microtopography to allow for actual water volume estimations and

potentially measure spatially variable infiltration rates if pond catchment areas are taken into

account.

4. Conclusions

We propose an image-based approach that employs CNNs and photogrammetric

techniques to segment water in rainfall simulation plots to estimate the area of water coverage

and to analyze ponding. Images from five different erosion plots were captured during rainfall

simulations, along with the discharge and GCPs for image rectification. Our findings suggest

that accounting for class imbalance and label uncertainty during network training leads to

significantly improved performance. Our results indicate that, for the task of soil surface water

segmentation, considering the pixel weights is more important than the model architecture to

reach satisfactory performance. Furthermore, ensemble models lead to better results compared

to single models. Our results further suggest that models trained considering the spatial

correlation among samples can be slightly more transferable to unseen sites. However, the

application of these models revealed the lowest performance when compared to the inference

performed to the images of the plots for which the models were trained and tested. Thus, more

training data might be needed.

The direct comparison of the measured discharge and the development of the ponding

areas, i.e., measured by the number of water area pixels and the number of ponds, revealed the

importance of ponding time and connectivity assessment to better understand the runoff

formation. We could observe different behavior regarding the timing and intensity of ponding

and discharge at all three plots. For instance, at one plot the interplay between water ponds

connectivity, water coverage and discharge highlighted that due to an increase of hydrological

connectivity, water coverage stagnated and discharge increased.
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Visually observing and automatic quantification of water pond formation and

development is a new frontier and a step forward in understanding runoff generation,

providing a new and detailed data source. To the best of our knowledge, our approach is the

first to allow the direct quantification of the spatial-temporal development of the water

ponding.
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6. Appendix

Figure A1: Model performance, background and water accuracy (ACC0 and ACC1, respectively) and
IoU (IoU0 and IoU1, respectively) for individual plots considerindering and not patch spatial
correlation.
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Figure A2: Segmentation performance of ensemble models trained considering and not the sample
spatial correlation.
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Figure A3: Model performance considering models trained with CW/LU and with and without
considering spatial correlation for Ensemble 2 for plots 4 and 5.
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CHAPTER 2

Few to Non Label Water Segmentation: Benchmark and for Water Stage

Measurement

Zamboni, P., Junior J. M., Gonçalves, W. N., Blanch, XEltner, A. Few to Non Label Water

Segmentation: Benchmark and for Water Stage Measurement. To be submitted in Hydrology and Earth

System Sciences.

Abstract

Visual based solutions are a non-concat and cheaper solution for water mapping and

water stage estimation. Therefore, image based solutions are an alternative in order to increase

the hydrological monitoring network. Many of this solution utilizes deep learning for

automatic segmentation of the water area, thus, relies on large annotated datasets. Here, we

propose a deep learning approach for water segmentation and water level estimation that

relies on minimum to non annotated dataset. To minimize the labeling effort, we considered a

video object segmentation network (STCN), SAM, which is an open-set promptable image

segmentation , and a combination between SAM and Grounding DINO (a promptable

open-set detector). Three camera gauges time series images were used along with dynamic

river images captured using unmanned aerial vehicles (UAV). Segmented water masks were

evaluated both qualitatively and quantitatively, moreover, camera based water stages were

compared to reference values. For the UAV dataset, our results suggest STCN and SAM

achieved similar results. For the STCN, changes and the initialization of the model can

significantly impact results. Our findings show similar results among the tested models for

camera gauges cameras. Furthermore, models were capable of producing realistic water

stages, capturing variations in flow, especially for high flows, with STCN achieving the best

results, being a suitable option for sub-hour monitoring. Our results showed that the tested

approaches can be viable tools for an ad hoc water stage measurement, proof being capable of

producing good results in different stations, under different climate and illuminations

conditions with minimum annotation.

Keywords:Water stage, water segmentation, deep learning, photogrammetry.
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1. Introduction

Water segmentation is a key task in multiple water resources applications such as river

and flood mapping. Traditional computer vision and image analysis algorithms have been

explored to automatically extract water areas from images. Researchers explored

spatial-temporal texture based algorithms to detect river water lines in images from stationary

cameras (Eltner et al., 2018, Stumpf et al., 2016). Other utilized grayscale intensity, textural

features, or motion segmentation or combination of these methods (Penã-Haro et al., 2021),

and background subtraction, and morphological and color analysis for flash flood detection in

surveillance cameras (Filonenko et al., 2015) for river water segmentation. However,

traditional image processing approaches to extract water are prone to errors due to changing

environmental conditions (Eltner et al., 2021), and more robust methods are required to deal

with these limitations. In this context, deep learning techniques, notably Convolutional Neural

Networks (CNNs), have garnered significant interest within the environmental science

community due to their efficacy and resilience as tools for image processing.

Several studies have applied deep learning in the form of CNNs to derive water areas

from remote sensing images (Ling et al., 2019; Mullen et al., 2023). In the case of camera

gauges at rivers, deep learning gained attention in recent years because of the ability of

adapting to challenging scenarios, such as different flow conditions, illuminations, sediment

concentration, or vegetation growth. For instance, Vitry et al. (2019) utilized 1214 images

from Chaudhary (2018) and 300 images from the Cityscapes (Cordts et al., 2016) dataset for

water segmentation. In this study seven frames from each camera gauge station were used and

data augmentation, to artificially increase the training dataset, and fine-tuning, to adapt already

trained models to the new domain, were applied. Vandaele et al. (2021a), utilized two water

dataset, i.e., LAGO (Lopez-Fuentes at al., 2017) with a total of 300 images and WATERDB

(Vandaele et al. (2021b) composed of 12,684 images. The authors combined the datasets with

two different networks, Resnet50-Upernet and DeepLab V3, along with transfer learning to

extract water areas in images. In another camera gauge setup, Muhadi et al. (2021) used 710

images as training data for the DeeplabV3+ and SegNet models. The idea behind the transfer

learning relies on using features learned from one problem and using it on a similar and new

problem, helping the initialization of this new model. Model fine-tuning consists of re-training
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the model, or parts of the model, using new and small datasets with a very low learning rate.

Wagner et al. (2023) studied the potential of offline and online augmentation using 32

different CNNs for water segmentation to improve their generalization with a dataset

composed of 1,128 labeled images. Data augmentation is a commonly used technique during

the training of deep learning models where the dataset is artificially increased using a series of

transformations to avoid overfitting and to increase model robustness and generalization.

Eltner et al. (2021), trained two CNNs, SegNet and FCN, using 20,309 annotated images

captured by a Raspberry Pi camera.

One obstacle to the adoption of deep learning for image segmentation is the fact that

large labeled datasets are required to properly train supervised models (Sung et al., 2018;

Feyjie et al., 2021). Collecting and labeling data for semantic segmentation or video

segmentation can be notably expensive (Liu et al., 2020). Main datasets, which are used as

benchmarks for image segmentation, such as the Pascal VOC (Everingham et al., 2010),

Cityscapes (Cordts et al., 2016), and ADE20K (Zhou et al., 2016, are composed of thousands

of hand annotated images. In environmental applications, collecting and labeling data is even

more difficult due to challenging conditions to acquire the data and due to the often fuzzy and

complex nature of the objects of interest. Various environmental obstacles such as rain, fog,

and unfavorable lighting have to be considered. Labeled datasets require samples for all

different conditions to achieve a robustly trained model. Furthermore, models trained with a

large dataset for a specific river or region can become “too good” for that specific dataset,

being not that easily transferable to different rivers/regions due to overfitting. Thus, there is a

need to study approaches that can be used to reduce the effort expended to create large training

datasets in environmental applications. Reducing labeling effort in water segmentation for

camera gauges and flood monitoring is a fundamental step towards a more dense network of

monitoring networks, enabling better water resources management and planning, especially in

face of the climate changes.

Recent developments in deep learning for image and video segmentation can be useful

to tackle such issues. In video object segmentation (VOS), the goal is to produce segmentation

for class-agnostic objects in a video (Ge at al., 2021). Several models have already been

proposed, with emphasis on Space-Time Memory networks, or STM (Oh et al., 2019). STMs

sequentially analyze video frames, starting from the second frame and using the annotation for
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the first frame. During frame processing, previously frames object masks are treated as

memory frames. Space-Time Correspondence Networks, STCN, is a video segmentation

network, proposed by Cheng et al., (2021), that works similar to STM, achieving high

performance in terms of segmentation and speed. Main difference between STCN and STM

relies on the memory bank and affinity calculation. In the STM, for each object in the video a

specific memory bank is built and the affinity calculated, while in STCN a single affinity

matrix is built.

Also in the context of minimizing labeling efforts, great advances were achieved in

computer vision with the introduction of pre-trained open-set models with a high degree of

generalization, such as Grounding Dino, proposed by Liu et al. (2023) for object detection and

Segment Anything (SAM) proposed by Kirillov et al. (2023) for image segmentation.

Grounding Dino combines language and visual models to achieve an open set detector that

works with huma inputs (such as object names). In other words, Grounding Dino locates

objects in images given a text prompt. Meanwhile, SAM is a foundation model for image

segmentation, capable of producing segmentation masks with prompt input (points, text, or

bounding box) by a user. Foundation models are neural networks trained with a large amount

of raw data and can be adapted to several tasks. SAM has gained attention from researchers

from different areas, e.g. medical images (Mazurowski et al., 2023; Chauveau and Merville,

2023), and crater mapping (Giannakis et al., 2024).

To the best of our knowledge, the application of neither VOS nor Groduning Dino and

SAM were explored for water segmentation with the special focus on camera gauges and flood

monitoring. The novel contribution of this study is to evaluate approaches for water

segmentation in the context of water stage estimation, with minimum to non annotated dataset.

Additionally, we evaluated these approaches in dynamic scenarios with river unmanned aerial

vehicles (UAVs) dataset. We evaluated the performance of the STCN network and the

combination of Grounding Dino and SAM, from hereon referred to as SAM Dino, to

automatically extract the water mask from image sequences. Three different datasets of image

time series, acquired by static camera gauges, were used to demonstrate the generalization

power of such networks. In the same sense, a UAV dataset was used to show that the methods

can handle image sequences captured by a moving platform and from a very different

perspective. Eventually, we used the water masks from the camera gauges to derive the water
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height to assess the performance of the AI approach to measure water stages. Our work does

not aim to replace existing water segmentation methods or camera gauge setups but to support

them for water level measurement or in flood monitoring.

2. Material and methods

Our proposed approach can be seen on Figure 1. Using images for the camera gauges

stations, we produce masks using STCNm SAM using points along the river and outside the

river as input, and SAM Dino. We assess model performance both qualitatively and

quantitatively. Afterwards, masks produced by all the models were used to estimate the water

stage for each station and values were then compared to reference values for the nearest water

stage sensor. For the UAV dataset, we evaluated STCN and SAM Dino, quantitatively and

qualitatively. Once this dataset is dynamic, fixing points alongside the river was not possible,

therefore, we were not able to use SAM with fixed points. We used the best results for the

UAV dataset and combined river mask segmentation from the original images with a 3D point

cloud of the river to segment the river shores and estimate water stage.
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,
Figure 1: Study workflow. Masks for the UAV dataset were produced using STCN and SAM Dino and
after that we assess the performance of both models in terms of pixel accuracy and IoU. For the camera
gauges datasets, we produce water masks using STCN, SAM with six points and SAM Dino. For the
Wesenitz dataset, we assess model performance in terms of pixel accuracy and IoU, and for the
Elberdosf and Lauenstein datasets we conducted a qualitative analysis. For all three camera gauges
datasets we assess the water stage and compare it with reference data.

2.1. Images datasets

Four datasets were explored in this work. The first one, proposed by Eltner et al.

(2021), is composed of 20,309 images collected using a Raspberry Pi camera V2 with a

resolution of 2,592 x 1,944 pixels. The camera was mounted at the Wesenitz river in eastern

Germany. The images were collected from March 30th, 2017 until April 30th, 2018. Thereby,

data was acquired in 15 frames every 30 min. During the observation period the camera

position had been changed three times due to system failures. Due to the long observation

period it was possible to capture images during different environmental conditions, which

allows us to assess the models performance in different scenarios. Reference water stages were

measured by a nearby pressure gauge. These measurements were averaged for 15 minute

intervals. From here, we will refer to this dataset as the Wesenitz dataset.
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The Elbersdorf dataset is part of the KIWA (Artificial Intelligence for Flood Warning)

project (Blanch et al., 2022). The dataset contains 14.281 images of the Wesenitz river

(Germany) acquired using an AXIS Q1645-LE surveillance camera with a 1980x1280 pixel

resolution at a 4.3 mm focal length. The camera is located at the Elbersdorf gauging station of

the Saxony HWIMS network, thereby enabling comparison with official measurements from

the discharge station. The dataset consists of images captured every 15 minutes during

daylight hours, spanning from August 23th, 2021 to July 07th, 2022. In addition, the

Lauenstein dataset contains 12.880 images of the river Müglitz (Germany) and is also part of

the KIWA project.. The images are acquired using the AXIS Q1645-LE camera, with a

1980x1280 pixel resolution and an approximate focal length of 6 mm. Located at the gauge

station in the town of Lauenstein, the camera is also part of Saxony's official measurement

network. The dataset contains images taken at 15-minute intervals between December 09th,

2021 and July 07th, 2022.

The UAV dataset consisted of 367 images. The data was captured in Northern Finland

to study the river flow and hydromorphology of a river in cold climates (Eltner et al., 2021).

The studied river reach has a length of about 1 km and the data was captured in autumn 2020

during low-flow conditions. The images were acquired with a DJI Phantom 4 RTK with a

resolution of 5472 x 3648 pixels.

2.2. Deep learning approach for water segmentation

Space-Time correspondence Network - STCN

STCN (Cheng et al., 2021) is a simple and efficient video object segmentation (VOS)

network. The key advantage of STCN compared to typical image segmentation networks is

that VOS can produce segmentation masks for an entire video or a sequence of images by

using only the first annotated frame. Therefore, STCN maintains and updates a “memory” of

important features as it processes subsequent frames. Initially, key features are extracted from

the query frame and the memory frame using a Siamese key encoder and RGB information.

The features are used to compute an affinity matrix. Afterwards, an encoder-decoder network

uses the affinity matrix to transform the mask features, stored in the memory, to produce the

mask for the frame being queried. The memory is periodically updated every five frames to
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ensure it aligns with the evolving characteristics of the video. This enables STCN to adapt and

provide accurate object segmentation throughout the video sequence.

We label the camera gauges datasets by manually labeling the first frame of the image

sequences as can be seen in Figure 2. For the UAV dataset, we label two frames, the first and

the frame number 40. We chose the 40th frame after the initial experiment and where we

observe a drop in performance around the chosen frame.

Figure 2: Initial label for each dataset used for STCN. For the UAV dataset we started STCN using two
different frames, the first one on the sequence and the 40th frame.

Grounding Dino and Segment Anything model (SAM)

Grounding Dino is a state of the art open-set object detector, able to locate a large

range of objects using minimum human inputs, such as text. The model is based on the Dino

object detector (Zhang et al., 2022) with grounded pre-training. The key idea to achieve an

open-set object detector is the combination of language models with closed-set object

detectors. Grounding Dino is composed of a dual-encoder and a single decoder architecture.

The dual encoder is composed of an image backbone that extracts image features, a text

backbone for text features extraction, a feature enhancer for cross-modality features fusion and

a language-guided query selection module that selects cross-modality queries from the image

features. Cross modality queries are processed by a cross-modality decoder.

SAM is an innovative approach for promptable image segmentation proposed by

Kirillov et al. (2023), inspired by natural language processing models. SAM can receive as

prompt input single point, multiple point, bounding box coordinates, masks, and text. It can

produce multiple segmentation masks for prompts that are associated with multiple or

ambiguous objects. The model is composed of a heavyweight image encoder, a prompt
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encoder and a mask decoder. SAM image encoder is based on a masked autoencoder

pre-trained Vision Transformers that produce an image embedding that will be queried by the

input prompt. In the prompt encode, sparse prompts (e.g. points, bounding box, text) are

represented by position encoding, while dense prompts (e.g. masks) are embedded by

convolutions. The image decoder was employed by a Transformer decoder block alongside a

dynamic mask prediction head. SAM was trained using a dataset composed of 11 million

images and 1.1 billion masks and trained progressively, known as SA-1B. SA-1B was

developed in three stages: a model-assisted manual annotation stage, a second stage

semi-automatic stage combining automatically predicted masks and model-assisted

annotation, and finally an automatically generated mask by prompting SAM with a set of

points.

We use a combination of Grounding Dino and SAM (SAM Dino) for all datasets and

SAM for the camera gauges datasets (Figure 1). When using SAM Dino, the query “river” was

used as input to Dino, which returned a bounding box with the river location, later used by

SAM to create a river mask. On the other hand, for SAM alone, we selected six fixed points

for each camera gauge dataset, once the images were static. Using these six points, three for

the background class and three for the water class, SAM created the river masks.

Experimental setup

For the camera gauges datasets, the first frame on each sequence was manually

annotated and used as initial segmentation mask with STCN model. For SAM, we select three

points representing the class water and three points representing the class background. We

used three points inside the river once in initial experiment SAM failed to segment the whole

water area, therefore, we chose three points along the whole extent of the water area to

minimize such issues. For the UAV, we hand annotated two frames, the first frame on the

sequence and the 40th frame, once during initial experiments we notice a drop in segmentation

performance around the 40th frame. For both camera gauges and UAV datasets, we used the

query “river” as input.
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STCN, SAM and SAM Dino models were used with pre-trained weights, therefore, we

did not re-train any of the models. Inference procedures were conducted using a NVidia RTX

3090 graphic card, with a Ryzen 5700X and 32 Gb of ram memory.

Segmentation models were evaluated using pixel accuracy (ACC) and intersection over

union (IoU); two standard metrics for semantic segmentation. ACC (Equation 1) represents

the percentage of correctly classified pixels to each class, where an ACC equal to 0 implies

that all pixels were wrongly classified, and an ACC of 1 that all the pixels were correctly

classified. IoU (Equation 2) quantifies the overlap between the ground-truth and the predicted

masks, being the ratio between the intersection and the union of the predicted and the

ground-truth area. Therefore, IoU will be equal 1 indicates a perfect match between both

masks.

𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 #1

𝐼𝑜𝑈 =  𝐺𝑇 ∩ 𝑃
𝐺𝑇 ∪ 𝑃 #2

2.3. Water stage estimation and performance assessment

Water stage was estimated based on methodology proposed by Eltner et al. (2021). For

all datasets, 3D georeferenced models were built using Structure from Motion (SfM)

strategies. Ground control points were measured using a multi-band GNSS equipment.

Following, the 2D coordinates from water masks automatically segmented by the deep

learning models were intersected with the 3D model for the respective station. In the 3D

model, the Z-coordinate of nearest neighbor points to the ones projected were considered the

water height. In order to reduce noise and outliers, we applied LOWESS (Locally Weighted

Scatterplot Smoothing). For the Wesenitz station, once the images were not recorded in a

constant time series, we used images from 2017-05-15 until 2017-06-23 as a proof of concept

for the water level estimation. For the Lauaenstein and Elberdorf station, we used only

daylight images to assess the water stage.

To evalured water stade estimation performance we used the mean absolute

percentage error (mape), mean absolute error (mae), mean squared error (mse), root mean

square error (rmse), pbias, Nash-Sutcliffe efficiency (nse), Kiling-Gupta efficiency (kge),
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coefficient of determination (r²), Spearman correlation, mean error and error standard

deviation.

3. Results and Discussion

First, we present a quantitative and qualitative analysis of the deep learning approaches

for the water segmentation using Wesenitz and the UAV datasets. Then, we present a

qualitative analysis of the other two camera gauge datasets. Finally, we assess the water stage

for all three camera gauge datasets and compare to reference water stage values.

3.1. Water segmentation performance

Table 1 presents results for the Wesenitz dataset in terms of pixel accuracy and IoU for

the background and water classes. SAM Dino achieved the best overall performance,

considering all images and the test set, followed by STCN, with models scoring more than 0.9

for all metrics. SAM using six points achieved the worst overall performance. This might be

related to the fact that the camera for this dataset had to be changed three times due to system

failures, changing camera perspective, therefore, we can not ensure that the selected points

were on the river and outside the river for all images. Our results, considering SAM Dino and

STCN, were similar to results founded in the literature for the same dataset, being around

0.02% and 0.025% lower for water pixel accuracy and IoU, respectively, for SAM Dino, and,

for STCN, 0.03% and 0.06% lower for water pixel accuracy and IoU, respectively. The fact

that the camera for this dataset had to be changed several times during image collection could

have led to worse results using STCN compared to SAM Dino. Using Dino, for each image or

frame, a new river bounding box is assigned, with no interference or relation to previous or

future frames, allowing SAM Dino to produce accurate results even when the camera poses

changed.
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Table 1. Metrics for the Wesenitz dataset. For the Test set, we present metrics only for images
presented on the test set, and for FD (Full Dataset), metrics for all images on the dataset. Δ is the
difference from our approaches and Eltner et al. (2021) best model.

Model Set
Pixel

Accuracy
(Background)

Pixel
Accuracy
(Water)

Δ IoU
(Background) IoU (Water) Δ

STCN
Test 0.977 ± 0.041 0.949 ± 0.026 -0.031 0.929 ± 0.042 0.923 ± 0.057 -0.057

FD 0.976 ± 0.043 0.948 ± 0.030 -0.032 0.927 ± 0.044 0.921 ± 0.061 -0.059

SAM Dino
Test 0.996 ± 0.023 0.961 ± 0.022 -0.019 0.960 ± 0.030 0.957 ± 0.030 -0.023

FD 0.996 ± 0.023 0.960 ± 0.022 -0.020 0.959 ± 0.031 0.956 ± 0.032 -0.024

SAM 6
points

Test 0.942 ± 0.126 0.673 ± 0.360 -0.307 0.781 ± 0.185 0.672 ± 0.359 -0.308

FD 0.937 ± 0.135 0.668 ± 0.359 -0.312 0.775 ± 0.191 0.667 ± 0.360 -0.313

Eltner et
al. (2021)
best model

0.982 ± 0.006 0.980 ± 0.018
-

0.982 ± 0.006 0.980 ± 0.018 -

As can be seen on Figure 3, STCN and SAM Dino showed a higher temporal

agreement in terms of water pixel accuracy and water IoU, with 75% of the images scoring

metrics above 0.9. SAM using six points present a higher desagrement for both metrics,

scoring values above 0.9 only in 25% of the time. Considering the Wesenitz dataset, both

STCN and SAM Dino were able to produce accurate masks even in challenging lighting

conditions and camera position.
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Figure 3. Boxplots for Wesenitz for all three models, considering all the images on the dataset. On the
left, water IoU and on the right, water pixel accuracy.

Previous research for water segmentation in camera gauges applied several

methodologies using standard image segmentation networks, combining with data

augmentation, fine-tuning, and transfer learning strategies. Researchers had found results, in

terms of water pixel accuracy and IoU higher than 0.9 on average (Vitry et al., 2019; Vandaele

(a) et al , 2021; Muhadi et al., 2021). Wagner et al. (2023), presented results for 32 different

neural networks for this task, combining with online and offline data augmentation. When not

using data augmentation, results ranged from 0.828 up to 0.928 for water IoU, and when using

offline data augmentation, average results ranged from 0.893 to 0.980. Previous approaches

relied on large datasets and training of image segmentation neural networks. On the other

hand, our approach relies on minimum annotation and our results showed a minimal trade-off

between large hand annotated datasets and performance. Moreover, as on Section 3.2, we

present water stage results using these approaches in three different camera gauge stations,

showing that our approach is robust and can be easily adopted in different environments,

regarding static images.

Table 2 shows the results of STCN and SAM Dino models for the UAV dataset. For

this dataset, we did not apply SAM with fixed points, once the images were not static. For

STCN we tested using two different frames as the initial frame. First we used the first frame

on the image sequence (frame 0) and the frame 40, chosen after analysis of the initial results.

STCN, using frame 0, and SAM Dino achieved similar results, being SAM Dino slightly

better. STCN showed a drop in segmentation performance around the 40th. Therefore, we use
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the 40th frame as the initial frame to assess if the change on the initial image could affect

segmentation performance. Using the 40th frame of the image sequence as the annotated

frame for STCN drastically improved model performance. Likewise, standard deviation

decreased for this case. Figure 6 shows examples of segmentation masks produced by both

variants of STCN. One possible direction can be the use of multiple frames as the “initial

frame”. Initially, consecutives RGB frames can be analyzed to check strong differences in the

frames, indicating the possible need to add a new annotated frame.

Table 2. Model performance for the UAV dataset considering pixel accuracy and IoU.

Model
Pixel Accuracy
(Background)

Pixel
Accuracy
(Water)

IoU
(Background) IoU (Water)

STCN
(frame 0) 0.716 ± 0.183 0.962 ± 0.061 0.705 ± 0.181 0.615 ± 0.211

STCN
(frame 40) 0.971 ± 0.044 0.971 ± 0.019 0.958 ± 0.044 0.912 ± 0.086

SAM Dino 0.776 ± 0.197 0.934 ± 0.097 0.754 ± 0.197 0.674 ± 0.227

In terms of pixel accuracy, all models reached values higher than 0.9 for water class.

For the background class, pixel accuracy values were around 0.7 for STCN and SAM Dino,

being STCN using 40th the only modelo with values higher than 0.9. The results indicate that

STCN using frame 0 and SAM Dino misclassify background pixels as water, even though both

models were able to correctly classify water pixels (Figure 4). On the other hand, in terms of

IoU, SAM Dino shows a higher variance in values than STCN frame 0 for both classes (Figure

4), with higher mean value.
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(a)

(b)

Figure 4: Boxplot for STCN using the first frame, using the 40th frame and SAM Dino regarding pixel
accuracy (a), and IoU (b).
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(a)

(b)

,

Figure 5: Temporal evolution of the water IoU for STCN with the first frame (a), and using the 40th (b)
frame for the UAV dataset.

Figure 5 shows the temporal evolution of the performance, in terms of water IoU, for

STCN frame 0 and STCN 40th frame. Overall, there is a negative performance trend during

the evolution of the image sequences. STCN frame 0 presented a higher negative trend, with

an overall lower performance, compared to STCN 40th frame. When starting STCN using the

first frame, frame 0, the first drop in performance occurs around the 13th frame due to the

presence of a water pond on one side of the river. During these frames, STCN classified the
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pond border as the river border, instead of the sand bank, keeping this information in the

memory, propagating the error. Performance increases around the 97th frames, when the sand

bank starts to disappear and the river, and decreases again due to the same issue around the

frame 154. For STCN 40th frame, frames that were temporarily before the 40th frame, some

problems occurred during segmentation, with some parts of the river not being correctly

classified as water (Figure 6). Performance issues around the 150th frame were due to

misclassification of sand river banks. Around frame 232, some river borders were wrongly

assigned as water and around the 330th frame some parts of the river, especially shallow areas,

were not classified as water.

82



Figure 6: Examples of masks produced by STCN using frame 0 (first column), using the 40th frame
(second column), and the respective RGB frame (third column). On the first row, we show the
annotated frame used to start STCN, frame 0 on the first column and frame 40th on the second column.

Masks produced by SAM Dino heavily depend on the objective detention made by

Grounding Dino. We did not observe correlation between the detection confidence and the

water IoU (Figure 7). Nevertheless, we observed that Grounding Dino produces often larger

bounding boxes that contain both the river area and parts of the shore banks (Figure 8),

leading to an over segmentation of the river area. It can be noticed that the river border close

to the edge of the bounding box was accurately segmented. We also observed that shadows

posed a challenge on this dataset, as can be seen on Figure 9. Although, when Grounding

Dino produces a more adjusted bounding box, SAM were capable of producing correct water

masks (Figure 8).
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Figure 7: Water IoU for SAM Dino and bounding box score for the UAV dataset.
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Figure 8: On the first column, examples of bounding boxes and masks generated by SAM Dino, and on
the second column the respective RGB image.

Applying these methods to moving images can be considered a more challenging

scenario compared to the camera gauges static images. On using these methods in camera

gauges river, the object to be detected and segmented (in this case the river), the object is not
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moving, only expanding and contracting, alongside with changes on the surroundings. That

said, on the UAV dataset the object itself is constantly changing position in different images,

combining with the movement of the camera, making it a more challenging scenario. Results

from the UAV dataset shows that the choice of the initial frame can dramatically impact the

model performance, therefore, it needs to be carefully chosen. Nonetheless, even using the

STCN with the first frame and SAM Dino, results can still provide an initial assessment of the

water area, with a human operator can only correct the mask, reducing the effort needed to

produce masks. One possible option for the UAV dataset would be, instead of segmenting the

river area, mask the surrounding areas.

Figure A1 (Appendix A) shows results for the Elberdosf dataset. Generally, all models

were able to generate accurate masks most part of the time. STCN showed a better overall

performance than SAM Dino and SAM using points, with more accurate borders. In most part

of the time, as can been seen on section 3.2.1., water level results using STCN for Elberdorsf

dataset overestimate reference values, indicating that the used border, in this case the superior

one, often includes non river pixels. Moreover, it can be seen on Figure 9, that STCN wrongly

classifies snow areas and parts of the upper right portion of the image. SAM Dino and SAM

using six points trend to produce masks with edges a few pixels indented towards the center of

the mask.

Figure 9 displays results for the Lauenstein dataset. STCN showed better overall

performance than SAM Dino and SAM using six points. The STCN model shows problems

with shadow during summer, especially between 14 and 17 hours. Changes in light

illumination quickly occur between the frames, associated with the time game between the

frames (15 minutes), projected shadow for a few frames, and STCN was able to adapt itself.

Similar to the Elberdorf dataset, both SAM based models underestimate the border toward the

center of the mask. SAM Dino showed some issues during the river detection, leading to

misclassification (Figure 10). One solution to overcome this issue would be using Grounding

Dino to assess the best bounding box position for all images and fix the coordinates during

SAM segmentation inference.
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STCN SAM Dino SAM six points

Figure 9: Example of masks and bounding box for the Lauenstein dataset. First row: 2021-12-09
11:10:00; second row: 2021-03-18 10:30:00, third row: 2022-06-12 15:30; last row: 2022-07-03
15:00:00
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Figure 10:Example of error during river bounding box detection.

3.2. Water level measurement

Table 3 presents the results for the STCN model, using and not LOWESS regression,

for Wesenitz, Elbersdorf and Lauentein. Water level results are presented in centimeters.

Figure 11 shows results for the tree station, considering and not the LOWESS regression, only

for Wesenitz station we display results with LOWESS regression and results from Eltner et al.,

(2021), for the same station. For Wesenitz station, LOWESS regression did not produce any

improvement in terms of metrics. Average deviation for STCN was 0.793 ± 0.414. Average

deviation for Ebersdorf station was 1.339 ± 3.066 for STCN and 1.338 ± 2.870 for STCN

with LOWESS regression. For Lauenstein, -0.194 ± 3.271 for STCN and -0.195 ± 2.400 for

STCN LOWESS. It can be observed that, even though the mean error was not affected when

applying the smoothing, standard deviation was reduced for both cases, once LOWESS

regression smooths the data using a fraction of nearest points. Generally, LOWESS regression

reduces the error on the measured water level. For both stations, STCN achieved a similar

performance in terms of RMSE, NSE and Spearman’s correlation, with a marginal difference.

We observed a reduction on the RMSE from 3.346 to 3.168 and from 3.278 to 2.451 for

Elberdorf and Lauenstein, respectively. In the same way, NSE and Spearman’s correlation
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increased, respectively, from 0.843 to 0.859 and 0.946 to 0.959 for Elberdorf, and from 0.881

to 0.933 and 0.936 to 0.954 for Lauenstein, respectively. Further, as can be seen in Figures 13,

LOWESS regression was useful to reduce the noise on the measurements, especially for the

summer portion of Lauenstein station.

Table 3. Water stage metrics for using STCN model and LOWESS regression for all tree camera gauge
stations.

Wesenitz Elbersdorf Lauenstein

STCN
STCN

LOWESS STCN
STCN

LOWESS STCN
STCN

LOWESS

MAPE 0.035 0.035 0.072 0.070 0.194 0.143

MAE 1.375 1.375 2.859 2.775 2.094 1.758

MSE 2.682 2.682 11.193 10.035 10.742 6.006

RMSE 1.638 1.638 3.346 3.168 3.278 2.451

pBias -3.344 -3.344 -3.149 -3.148 1.165 1.165

NSE 0.557 0.557 0.843 0.859 0.881 0.933

KGE 0.914 0.914 0.826 0.806 0.934 0.917

R² 0.557 0.557 0.843 0.859 0.881 0.933

Spearman's
correlation

0.893 0.893
0.946 0.959 0.936 0.954

Mean error 0.793 1.312 1.339 1.338 -0.194 -0.195

Error std 0.414 0.979 3.066 2.870 3.271 2.400

STCN model overestimated water level for Wesenitz and Elbersdorf stations. In the

Wesenitz station, STCN model achieved similar results compared to Eltner et al. (2021), being

able to correctly follow trends in the water stage, especially for higher values. In Elbersdorf

station, we observed an overestimation especially for water levels below 40 cm. For water

level above 40 cm, we observed a better fit, further, the model was able to successfully track

the increase and decrease of the water level. For Lauenstein, the model produces a better fit for

the most part of the time series, and a good overall performance considering the LOWESS

model. During the end of Launstein time series, it can be observed low water stage

estimations. This happened during summer, especially between 14 and 16 pm, when the wall
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close to the river channel projected shadow on the river and the model was not able to adapt

itself. LOWESS regression reduces noises and decreases deviations

in the measurements (Figure 12 and 13). Figure 13 shows the exceedance curve for all

stations. The exceedance curve represents the water stage values and their relative exceedance

time. We observed an overall overestimation across all values for Wesenitz station. For

Elberdorf, the exceedance curve shows a trend of overestimation for low water stage values

that are exceeded by about 60%, and a better agreement for higher values. In Lauenstein, the

modeled exceedance curve is almost identical to the reference. In general, this approach was

able to detect temporal changes in water stage, especially for high flow.
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(a)

(b)

(c)

Figure 11: Water stage using STCN and STCN with LOWESS regression compared to reference data.
For the Wesenitz, we show the results considering only the LOWESS regression and values from
Eltner et al., (2021) for the same station. (a) Wesenitz; (b) Elbersdorf; (c) Lauenstein.
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(a)

(b)

(c)

Figure 12: Regression plot with histogram for the STCN model (in blue) and STCN with LOWESS
regression (in orange) for (a) Wesenitz; (b) Elbersdorf; and (c) Lauenstein stations.
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(a)

(b)

(c)

Figure 13: Exceedance curves (left column) and deviation (right column) for STCN and STCN with

LOWESS regression for (a) Wesenitz; (b) Elbersdorf; and (c) Lauenstein stations.

Table 4 presents results for all three stations using the two SAM variants, using

Grounding Dino and using points. Using these two approaches, we recognized two different
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behaviors. For Wesenitz station, both approaches overestimated the water stage, with a mean

error of 2.133 ± 1.385 and 1.659 ± 1.394, for SAM using points and SAM Dino, respectively.

Both models returned similar deviations in water stage, and reduced with the LOWESS

regression (Figure A2). Nevertheless, similar to STCN results, for higher water stages both

models produce a better fit as can bee seen on Figure A3. This overestimation can be also

seen in the exceedance curve (Figure A4). On the other hand, for Elberdorf and Lauenstein

both approaches underestimate the water stage, even though they were correct to detect

changes in water stage and higher water stages (Figure A3). Using SAM Dino, we detect

water stage values higher than 200 centimeters, caused by wrongly assigned bounding boxes,

that induce SAM to produce wrong water masks. When excluding these values, SAM Dino

produced similar results to SAM using points (Figure A5).

Table 4. Water stage metrics for using SAM using six points and SAM Dino model, with and without
using LOWESS regression, for all tree camera gauge stations.

Wesenitz Elbersdorf Lauenstein

6 points Dino 6 points Dino 6 points Dino

Lowess Lowess Lowess Lowess Lowess Lowess

MAPE 0.058 0.058 0.047 0.045 0.138 0.138 0.151 0.151 0.504 0.501 0.913 0.661

MAE 2.261 2.243 1.822 1.760 5.648 5.667 6.160 6.205 6.042 6.036 8.470 6.934

MSE 6.471 5.968 4.696 3.986 48.309 39.155 54.894 45.605 39.797 38.573 614.084 92.243

RMSE 2.544 2.443 2.167 1.996 6.950 6.257 7.409 6.753 6.309 6.211 24.781 9.604

pBias -5.435 -5.539 -4.226 -4.245 13.245 13.246 14.457 14.461 35.650 35.650 19.583 19.596

NSE -0.068 0.015 0.225 0.342 0.322 0.451 0.219 0.351 0.558 0.572 -5.858 -0.030

KGE 0.835 0.859 0.835 0.877 0.802 0.856 0.784 0.845 0.641 0.643 -0.841 0.542

R² -0.068 0.015 0.225 0.342 0.322 0.451 0.219 0.351 0.558 0.572 -5.858 -0.030

Spearman's
correlation 0.871 0.876 0.864 0.871 0.953 0.964 0.951 0.960 0.979 0.982 0.923 0.674

Mean error 2.133 2.174 1.659 1.666 -5.631 -5.631 -6.144 -6.145 -5.945 -5.946 -3.320 -3.322

Error std 1.385 1.114 1.394 1.100 4.075 2.728 4.141 2.800 2.109 1.795 24.557
9.011

Camera gauges are an important and promising method to estimate water stage and

flow. There are two main sources of errors on this setup, mainly due to the photogrammetry

process and during the water line detection. The focus of our study is to assess the potential of
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methods that can automatically extract water masks from images with minimum input.

Challenging environmental conditions, especially light condition direct effect image

segmentation, and water stage retrieve. Further, when using Grounding Dino combined with

SAM, river bounding box detection was not always accurate, inducing SAM to produce no

wrong water masks. By fixing points along the river channel, SAM produced river borders few

pixels apart from where they should be, reflecting the overestimation of the water stage in

Wesenitz station and underestimation for the other two stations. Not considering any

photogrammetry errors, a perfect fit in the water stage could not be achieved once reference

values are 15 minutes average values, while water stage calculated using images represent the

water stage on the capture moment of a given image. Nonetheless, our approach could

consistently track change in water level value, with emphasis in high water stage values,

proving to be a valuable tool for flash flood monitoring.

Training of CNN demands powerful hardware and technical knowledge, a fact that can

limit the use of these techniques especially for developing countries. Our findings showed that

researchers can take advantage of pre-trained models and open-set models to accurately

produce water segmentation, being this easily adapted and it can be used in less powerful

hardware. Water stage results indicate that these models are notably useful in higher water

stages, therefore, can be a powerful tool to increase hydrological networks to monitor floods

and flash floods, with minimum to none input. These methods can represent a step forward for

hydrologists towards a cheaper, reliable and scalable network of camera gauges that would

help to increase resilience to extreme weather due to improved/densified monitoring and to

narrow the data gap in hydrology.

4. Conclusions

In this study, we proposed an approach for water stage measurement combining deep

learning and photogrammetry minimizing the labeling needed using video object

segmentation and pre-trained models for water segmentation. Stationary images were

collected in water stage measurement gauges, therefore, we assess the performance of

produced masks to retrieve the water stage. We found that for stationary images, models
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achieved similar results in terms of water pixel accuracy and IoU when compared to

traditional image segmentation networks, with difference in water IoU between -0.059 and

-0.024 for STCN and SAM Dino, respectively. Using UAV images, STCN and SAM Dino

achieved similar results, with water IoU higher than 0.6. Our findings suggest that when using

STCN in non-stationary images, the choice of the first frame impacts the model performance.

For SAM Dino, issues in segmentation on these images are caused by larger bounding boxes

detected by Grounding Dino. Qualitative analysis of images from the camera gauge stations

showed that STCN generally achieved a better result than SAM Dino and SAM using points,

especially for the river borders. Nevertheless, STCN suffers with shadows, especially during

summer, which can be caused by the lower frame rate and the sudden changes in illumination

from frame to frame. Performance could be increased by extending STCN memory size to

deal with sudden changes in image characteristics.

Regarding water stage, our findings shows that all methods were capable of tracking

stage changes, with emphasis for high values. Furthermore, results indicate that STCN is a

more suitable option for sub-hour monitoring, achieving best results for all tree camera gauges

stations. Our work advances camera gauge technologies, reducing the effort to deploy this

system towards large hydrological monitoring networks.
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6. Appendix

STCN SAM Dino SAM six points

Figure A1: Example of masks and bounding box for the Elberdosf dataset. First row: 2021-12-03
10:45:00; second row: 2021-12-10 12:30:00, third row: 2022-03-12 15:00:00; last row: 2022-05-18
06:45:00
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SAM Dino SAM six points

(a)

(b)

(c)

Figure A2: Water stage deviation using SAM Dino and SAM using points, with and without LOWESS
regression, compared to reference data. In (a) Wesenitz; (b) Elbersdorf; and (c) Lauenstein stations.
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SAM Dino SAM using points

(a)

(b)

(c)

Figure A3: Water stage using SAM Dino and SAM using points, with and without LOWESS
regression, compared to reference data. In (a) Wesenitz; (b) Elbersdorf; and (c) Lauenstein stations.
For the Wesenitz, we show the results considering only the LOWESS regression and values from
Eltner et al., (2021) for the same station.
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SAM Dino SAM using points

(a)

(b)

(c)

Figure A4: Exceedance curves using SAM Dino and SAM using points, with and without LOWESS
regression, compared to reference data. In (a) Wesenitz; (b) Elbersdorf; and (c) Lauenstein stations.
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(a)

(b)

(c)

Figure A5: Results for Lauenstein using SAM Dino considering LOWESS regression for water stage
lower than 200 cm. In (a) water level, (b) deviation, and (c) exceedance.
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GENERAL CONCLUSIONS

The results of Chapter 1 show the potential of deep learning approaches to increase

the understating of the runoff, showing the capability of deep learning to segment water in

very challenging scenarios. Results show the importance of considering label imbalance and

uncertainty during the training of the deep learning approaches, with a significant impact in

models performance. Moreover, presented results show that model ensembling produced better

results compared to single models prediction. We also presented results with the impact of the

spatial correlation among sample and model transferability to unseen images. By using the

best model, we were able to measure, in spatial and time, the water pixel area on each rainfall

simulation, directly quantifying the number of the ponds and its connectivity. Further, by

comparing water area results with measure discharge we were able to identify different

behavior in runoff generation.

In Chapter 2, we evaluated deep learning methods that use minimum to non labeled

data in water segmentation of camera gauges images for water stage estimation, and uncrewed

aerial vehicles (UAV). For the camera gauges, models achieved similar performance during

water area segmentation. Qualitative analysis showed that segmentation tends to be worst

close to the river shores; further, shadows can influence the performance of these methods. In

the case of the UAV dataset, results are promising, although in this case of dynamic images

these models should be carefully applied. Regarding the water stage measurement, results

indicate that tested approaches can produce a good fit compared to reference water stage data,

being able to capture changes in water stage. Our findings further suggest that results are

better for high flow, indicating that these methods can be used as an ad hoc solution in areas

prone to floods.

Overall, we can conclude that the thesis meets its general objectives. Our results show

the potential of deep learning and photogrammetry as tools in soil science and hydrology,

unlocking a new frontier in the observation, measurement, and monitoring of environmental

systems. The development and results of the chapters provides tools that can lead to a better

understanding of some components of the hydrological cycles (runoff generation and

streamflow). Limitations of this thesis should be acknowledged to provide direction for future

works. Firstly, a greeted dataset should be tested, as well data augmentation strategies and
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newer deep learning methods (i.e. transformers based models) for the water ponding

segmentation on the first chapter. Still in the first chapter, we considered the rainfall

simulation plot area as a plane, therefore, only providing a rough estimation of the water area.

In the future, plot water areas can be intersected with high resolution terrain models to

produce better water area measurements, furthermore, water volume estimation. These terrain

models can be also used with RGB frames to train and inference deep learning approaches,

possibly leading to better results in terms of water segmentation. Finally, in the second

chapter, the most important limitations were on the intersection between 2D water coordinates

and the 3D model. Alignment between 2D and 3D spaces requires the use of the ground

control points, therefore, these points should be also detected in all images. Misaligned leads

to high error in water stage measurment. Regarding the 3D model, changes on the river bed

and surrounding lead to the need of updating the 3D model. A further step to deal with these

limitations is the use of two or more cameras to utilize stereo-photogrammetry.
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