Atividade Orientada a Ensino: Estudo da estabilidade de sistemas via LMI's

Pedro Henrique Acioly Amaral¹, Prof. Dr. Victor Leonardo Yoshimura²

¹¹Discente do Curso de Engenharia da Computação, UFMS pedro-h-a-amaral@ufms.br ²Faculdade de Computação, Universidade Federal de Mato Grosso do Sul (UFMS) Campo Grande – MS – Brasil victor.yoshimura@ufms.br

Abstract. This report addresses the design of controllers for linear time-invariant continuous (LTI-C) systems using the state-feedback methodology. The stability of the closed-loop system is analyzed from the perspective of Lyapunov's Theorem, which leads to a stability condition in the form of a matrix inequality. The inherent non-linearity of this inequality is overcome through a change of variables, transforming the controller design problem into a convex optimization problem involving Linear Matrix Inequalities (LMIs). This approach is then applied to a practical system of two communicating tanks, where a state-feedback controller is synthesized to regulate the tank level and to track a reference signal. Simulations of the controlled system, carried out in the Xcos/Scilab environment, validate the effectiveness of the designed controller.

Resumo. Este relatório aborda o projeto de controladores para sistemas lineares invariantes no tempo contínuos (SLIT-C) utilizando a metodologia de realimentação de estados. A estabilidade do sistema em malha fechada é analisada sob a ótica do Teorema de Lyapunov, que conduz a uma condição de estabilidade na forma de uma desigualdade matricial. A não linearidade intrínseca desta desigualdade é contornada através de uma mudança de variáveis, transformando o problema de projeto do controlador em um problema de otimização convexa envolvendo Desigualdades Matriciais Lineares (LMI). Esta abordagem é então aplicada a um sistema prático de dois tanques comunicantes, onde um controlador de realimentação de estados é sintetizado para regular o nível do tanque e para seguir um sinal de referência. As simulações do sistema controlado, realizadas no ambiente Xcos/Scilab, validam a eficácia do controlador projetado.

Controle por Realimentação de Estados, Estabilidade de Lyapunov, Desigualdades Matriciais Lineares (LMI), Sistemas de Tanques, Controle de Processos.

1. Introdução

Considere um sistema linear, invariante no tempo e contínuo (SLIT-C) com uma única entrada e uma única saída (SISO), representado no espaço de estados por [Ogata 2010]:

$$\dot{x} = Ax + Bu \tag{1}$$

$$y = Cx + Du \tag{2}$$

onde $x \in \mathbb{R}^n$ é o vetor de estados, $u \in \mathbb{R}$ é a entrada de controle, $y \in \mathbb{R}$ é a saída do sistema, e A, B, C, D são matrizes de dimensões apropriadas. O problema fundamental

do controle é escolher a lei de controle u de forma a garantir a estabilidade do sistema e, possivelmente, atender a outros critérios de desempenho.

2. Projeto do Controlador por Realimentação de Estados

Utilizaremos a técnica de realimentação de estados, que pressupõe que todos os estados x_1, x_2, \ldots, x_n são mensuráveis. O objetivo é projetar um vetor de ganhos $K = [k_1, k_2, \ldots, k_n]$ para compor o sinal de controle da seguinte forma:

$$u = -Kx = -(k_1x_1 + k_2x_2 + \cdots + k_nx_n)$$

A substituição desta lei de controle na equação de estados do sistema resulta no sistema em malha fechada:

$$\dot{x} = Ax + B(-Kx)$$
$$\dot{x} = (A - BK)x$$

Definindo a matriz de malha fechada como $A_f = (A - BK)$, o sistema se torna $\dot{x} = A_f x$. A estabilidade deste sistema autônomo depende dos autovalores da matriz A_f . Um procedimento para determinar K é a Fórmula de Ackerman, que permite alocar os polos de malha fechada em posições desejadas. Outra abordagem, mais robusta e explorada neste trabalho, baseia-se no Teorema de Lyapunov.

2.1. Estabilidade de Lyapunov e LMIs

O Teorema de Lyapunov estabelece que o sistema em malha fechada $\dot{x} = A_f x$ é assintoticamente estável se, e somente se, existe uma matriz P simétrica e definida positiva $(P = P^T > 0)$ tal que $A_f^T P + P A_f$ seja definida negativa $(A_f^T P + P A_f < 0)$.

Substituindo $A_f = A - BK$ na desigualdade, obtemos:

$$(A - BK)^T P + P(A - BK) < 0$$

 $(A^T - K^T B^T) P + PA - PBK < 0$
 $A^T P + PA - K^T B^T P - PBK < 0$

Esta desigualdade é uma Desigualdade Matricial Bilinear (BMI), pois envolve produtos das variáveis de decisão P e K, o que a torna um problema não convexo e de difícil solução no entanto conversão desta condição em uma forma tratável numericamente pode ser feita via Desigualdades Matriciais Lineares (LMIs) [Scherer and Weiland 2000].

Para linearizar o problema, realizamos uma transformação de congruência. Pré e pós-multiplicando a desigualdade por P^{-1} (que existe e é definida positiva, pois P>0), a desigualdade não se altera. Definimos uma nova variável $Q=P^{-1}$ e uma variável auxiliar W=KQ. Isso nos leva a:

$$QA^T + AQ - W^TB^T - BW < 0$$

O problema de projeto do controlador se resume a encontrar matrizes Q e W que solucionem o seguinte conjunto de Desigualdades Matriciais Lineares (LMIs):

1.
$$Q > 0$$

2. $AQ + QA^T - BW - W^TB^T < 0$

Este é um problema de otimização convexa que pode ser eficientemente resolvido por solvers numéricos. Uma vez encontradas as soluções para Q e W, o ganho do controlador K é recuperado através da relação $K=WQ^{-1}$.

3. Aplicação ao Sistema de Tanques Comunicantes

O método LMI será aplicado para projetar um controlador para o sistema de tanques comunicantes ilustrado na Figura 1.

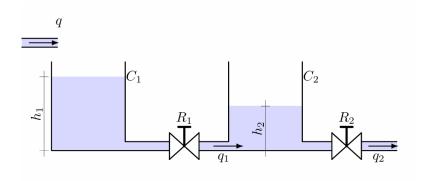


Figura 1. Sistema de tanques comunicantes.

Os parâmetros do sistema são: $R_1=1\,s/m^2,\,R_2=0.4\,s/m^2,\,C_1=2\,m^2$ e $C_2=5\,m^2$. As matrizes do sistema em espaço de estados são:

$$A = \begin{bmatrix} -0.5 & 0.5 \\ 0.2 & -0.7 \end{bmatrix}, \quad B = \begin{bmatrix} 0.5 \\ 0 \end{bmatrix}$$

A saída de interesse é a altura do segundo tanque, portanto:

$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

3.1. Cálculo do Ganho K via LMI

Um script em Python, utilizando CVXPY com o solver MOSEK, foi implementado para resolver as LMIs (Listagem 30).

```
import numpy as np
  import cvxpy as cp
  def lyapunov_solver():
      # Valores fixos fornecidos
      r1 = 1.0
      r2 = 0.4
      c1 = 2.0
      c2 = 5.0
      # Matriz A fixa
10
11
      A = np.array([
          [-1 / (r1 * c1), 1 / (r1 * c1)],
[ 1 / (r1 * c2), -(r1 + r2) / (r1 * r2 * c2)]
12
13
14
      ])
      # Matriz B fixa
15
      B = np.array([[1 / c1], [0]])
16
      # Matriz C fixa
18
      C = np.array([0, 1])
19
      # Matriz D fixa
20
      D = np.array([0])
      # Vari veis matriciais
21
      P = cp.Variable((2, 2), symmetric=True)
      Q = cp.Variable((2, 2), symmetric=True)
23
      W = cp.Variable((1, 2)) # 1x2
24
25
      # Vari vel auxiliar Z para a express o da inequa o de Lyapunov
      Z = cp.Variable((2, 2), symmetric=True)
26
      # Express o da inequa o de Lyapunov modificada
27
lyap_expr = Q @ A.T + A @ Q + W.T @ B.T + B @ W + Z
```

```
# Problema de otimiza o
29
      objective = cp.Minimize(0)
30
      problem = cp.Problem(objective, [
          P >> 0,
32
           0 >> 0.
           Z \gg 0,
34
           lyap_expr << 0
35
36
37
      # Resolver com MOSEK
      problem.solve(solver=cp.MOSEK,verbose=True)
38
39
       # Calcular K = W @ Q^{-1}
      Q_val = Q.value
40
      W_val = W.value
41
      K = W_val @ np.linalg.inv(Q_val)
42
43 # Retornar os resultados
44
      return {
45
           "K": K,
46 }
47 # Executar e exibir resultados
48 result = lyapunov_solver()
49 print("K =\n", result["K"])
```

Listing 1. Código Python para solução das LMIs e cálculo de K.

O valor do ganho K calculado foi:

$$K = \begin{bmatrix} -1.01271145 & -1.41709803 \end{bmatrix}$$

4. Simulação e Resultados

A fim de validar o desempenho do controlador por realimentação de estados obtido via LMIs, foram realizadas simulações no ambiente Xcos/Scilab, considerando dois cenários distintos: um problema de regulação e um problema de rastreamento de referência. As simulações visam verificar a estabilidade do sistema e o comportamento dinâmico das variáveis de estado e do sinal de controle frente aos objetivos propostos.

4.1. Caso 1: Problema de Regulação

Neste primeiro caso, o objetivo é levar o sistema a um ponto de equilíbrio nulo (r=0) partindo de condições iniciais $x_0=[0.1,0.2]^T$, usando a lei de controle u=-Kx. O diagrama de simulação implementado no Xcos é ilustrado na Figura 2. A resposta da saída de interesse $y=x_2(t)$, que decai exponencialmente para zero, confirmando a estabilização do sistema como previsto pela teoria [Ogata 2010], está representada na Figura 3.

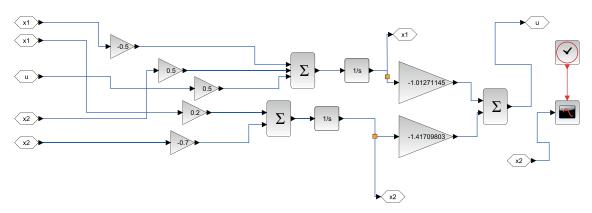


Figura 2. Diagrama X \cos para o problema de regulação (u=-Kx).

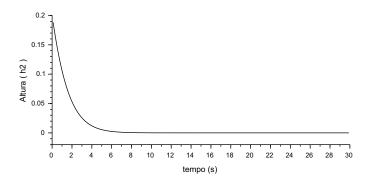


Figura 3. Resposta da saída $y = x_2(t)$ na regulação.

4.2. Caso 2: Problema de Rastreamento de Referência

Neste cenário, a saída $y=x_2$ deve seguir uma referência constante r=1, partindo de $x_0=[0,0]^T$. A lei de controle é modificada para incluir um ganho de pré-compensação M: u=-Kx+Mr. O cálculo de M foi implementado em Python, conforme demonstrado na Listagem 30). O valor encontrado garante erro nulo em regime permanente para uma referência constante.

$$M = \frac{1}{[\mathbf{D} - (\mathbf{C} + \mathbf{D}\mathbf{K})(\mathbf{A} + \mathbf{B}\mathbf{K})^{-1}\mathbf{B}] \cdot ||\mathbf{K}'||^2} \mathbf{K}'$$

```
# Passo 1: Calcular C_DK = C + DK
      C_DK = C + D @ K
      # Passo 2: Calcular A_BK = A + BK
      A BK = A + B @ K
      # Passo 3: Calcular (A_BK)^-1
     # Isso requer que A_BK seja quadrada e invert vel
10
11
     A_BK_inv = np.linalg.inv(A_BK)
12
     # Passo 4: Calcular Termo_Intermediario = (C + DK)(A + BK)^-1 B
14
     Termo_Intermediario = C_DK @ A_BK_inv @ B
15
      \# Extrai o valor escalar se for uma matriz 1x1
17
      val_D = D.item() if hasattr(D, 'item') and D.size == 1 else D
      Denom_Termo1 = D - Termo_Intermediario
18
      \# Passo 6: Calcular o segundo termo do denominador: ||K'||^2
19
             a transposta de K. A norma ao quadrado cp.sum_squares.
20
2.1
      Norm_K_T_sq = cp.sum_squares(K.T)
     M = (1 / (Denom_Termol * Norm_K_T_sq)) * K.T
23 return {
          "K": K,
24
          "M": M.value
25
26
     }
27 # Executar e exibir resultados
28 print("M =\n", result["M"])
```

Listing 2. Código Python para cálculo de M.

4.3. Implementação no Xcos e Análise das Respostas

Para simular o cenário de rastreamento de referência com a nova lei de controle u=-Kx+Mr. foi necessário atualizar o diagrama de blocos no ambiente Xcos. As modificações envolveram a inclusão de um bloco somador para incorporar o termo Mr, além

do ajuste do sinal de referência e da conexão adequada com os blocos de ganho e planta. A Figura 4 ilustra o diagrama atualizado.

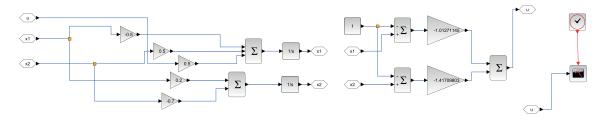


Figura 4. Diagrama Xcos para o rastreamento de referência.

As respostas obtidas com essa configuração são apresentadas nas Figuras 5, 6 e 7. que mostram, respectivamente, a altura do segundo tanque $x_2(t)$, a evolução do estado $x_1(t)$, e o sinal de controle u(t) aplicado ao sistema.

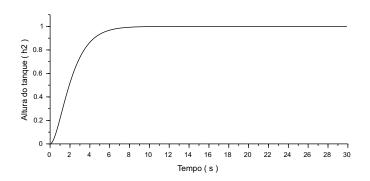


Figura 5. Resposta da saída $y=x_2(t)$ para referência constante 1.

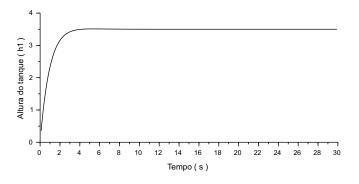


Figura 6. Resposta do estado $x_1(t)$ para referência constante 1.

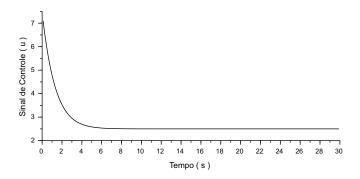


Figura 7. Sinal de controle u(t) para referência constante 1.

As simulações confirmam que a estratégia de controle proposta atinge com êxito os objetivos de rastreamento. A saída $x_2(t)$ converge para o valor de referência com erro nulo em regime permanente, enquanto o estado $x_1(t)$ e o controle u(t) também se estabilizam de forma suave, demonstrando a robustez do controlador mesmo diante da introdução de uma referência não nula.

5. Conclusão

Este trabalho demonstrou com sucesso o projeto de um controlador por realimentação de estados utilizando uma abordagem baseada em Desigualdades Matriciais Lineares. A metodologia fundamentada em teorias bem estabelecidas [Scherer and Weiland 2000, Ogata 2010], foi aplicada a um sistema de tanques comunicantes, e os resultados de simulação confirmaram a eficácia do controlador tanto para tarefas de regulação quanto para rastreamento de referência. As simulações realizadas no ambiente Xcos/Scilab comprovaram a eficácia da metodologia, apresentando respostas estáveis e com ótimo desempenho dinâmico. Além disso, o uso de ferramentas computacionais como Python, CVXPY e o solver MOSEK demonstrou ser uma estratégia eficiente para resolver o problema de projeto de forma automatizada, precisa e reprodutível. A técnica LMI prova ser uma ferramenta poderosa e sistemática para o projeto de controladores para sistemas lineares, convertendo um problema de estabilização em um problema de otimização convexa numericamente tratável.

Referências

[Ogata 2010] Ogata, K. (2010). *Modern Control Engineering*. Prentice Hall, 5th edition. Um dos livros-texto mais utilizados em engenharia de controle.

[Scherer and Weiland 2000] Scherer, C. and Weiland, S. (2000). *Linear Matrix Inequalities in Control*. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, PA. Referência fundamental para o estudo de LMIs aplicadas a controle, tema central do seu trabalho.