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General Abstract

In this work Ecological Niche Models were built using the occurrence records of nine species of the 

endemic South American whip-spider genus Heterophrynus. With this dataset, we tested the use and 

compared performance and output similarity of three climatic datasets (BioClim, MERRAclim and 

ENVIREM) and eight algorithms (RF, BRT, SVM, MaxEnt, MaxLike, GLM, GLMNet and MARS) 

under three M sizes for each of the nine species. Furthermore, we used one of the climatic datasets, 

BioClim, to build and project models for two end-of-century SSP scenarios and quantify suitable area 

lying inside Protected Areas (National Parks and Indigenous Land) in each scenario. Our results 

suggest MERRAclim is the most dissimilar from other climatic datasets, and that the interpolation 

artifacts in both BioClim and ENVIREM dictate model output in the Amazon Basin. In our analyses, 

the algorithms RF and MARS overfitted models, while GLM, GLMNet and MaxLike underfitted 

models given tested settings. We further illustrate how AUC and TSS statistics are uninformative as 

evaluation methods for presence-background or presence-pseudoabsence models. We found that 

Indigenous Land or Territories cover as much suitable area as Integral Protection Areas on average. 

Some species are estimated to lose over two thirds of their current suitable area by the end of the 

century, while others to have their suitable area more than doubled. From our conclusions, we 

emphasize that the use of a single climatic dataset, GCM and/or algorithm should be avoided. 

Furthermore, we suggest that defining M should be based on building a few models a priori with 

different M sizes and selecting the one with the best performance and best fit for intended model use.
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Resumo Geral

Construímos Modelos de Nicho Ecológico utilizando os dados de ocorrência de nove espécies do 

amblipígeo Heterophrynus, endêmico da América do Sul. Testamos e comparamos a performance a a 

similaridade do output de três conjuntos de dados climáticos e nove algoritmos sob três tamanhos de 

M para cada espécie. Além disso, utilizamos um dos conjuntos de dados climáticos, BioClim, para 

construir e projetar modelos para dois cenários SSP ao final do século, e quantificamos a área com 

adequabilidade climática dentro de Áreas de Conservação em cada cenário. Nossos resultados 

sugerem que MERRAclim é o conjunto de dados climático mais dessemelhante dos outros testados, e 

que artefatos de interpolação em ambos os conjuntos BioClim e ENVIREM ditam o output dos 

modelos na bacia amazônica. Em nossas análises, os algoritmos RF e MARS sobreajustaram os 

modelos, enquanto GLM, GLMNet e MaxLike subajustaram os modelos dadas as configurações 

testadas. Nós demonstramos como as estatísticas AUC e TSS são pouco informativas como método de

avaliação de modelos presença-fundo ou presença-pseudoausência. Encontramos que Terras Indígenas

cobrem em média tanta área climaticamente adequada quanto Áreas de Proteção Integral. Algumas 

espécies perderão mais de dois terços da sua área de adequebilidade climátical atual, enquanto outras 

terão essa área mais do que duplicada até o final do século. De nossas conclusões, enfatizamos que o 

uso de um único conjunto de dados climático, modelo de circulação global e/ou algoritmo deve ser 

evitado. Além disso, sugerimos que a definição de M deve ser baseada na construção de alguns 

modelos a priori com diferentes tamanhos de M e selecionando o com melhor performance e que 

melhor se ajusta ao uso pretendido do modelo.
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General Introduction

The factors that shape species distributions have long been debated, and multiple efforts to 
elucidate this problem have been done since the first works on biogeography by Wallace (1858). 
Grinnell (1914, 1917) developed some of what are now considered the fundamental concepts of 
distributional species areas, such as the early niche concept, which was based solely on species’ 
habitat requirements. Others such as Elton, Gause and Hutchinson developed central ideas to the 
ecological niche theory and its relationship with distribution areas (Elton 1927, Gause 1934, 
Hutchinson 1957, Hutchinson 1978). It was not until the late twentieth century, however, that tools 
emerged to explore the ramifications and implications of these ideas, as well as standardized data to 
test them. As highlights are geographic information systems (GIS) software and GPS devices, and 
advances in computational capacity and programming languages. Major improvements regarding data 
acquisition are remote sensing technologies (e.g. satellite imaging), which are a source of climate data
at global scales (Farrell et al. 2013, Hijmans et al. 2005, Waltari et al. 2014), and online open access to
biodiversity data publishers (e.g. museums, herbaria).

The wide range of correlative (as opposed to mechanistic, Merow et al. 2011) methods for 
modeling species distributions are collectively called ecological niche modeling (ENMs). ENMs use 
environmental data and species’ occurrence records to infer species distribution based on ecological 
niche characteristics derived from these data. ENMs are sometimes interchangeably referred to as 
species distribution models (SDMs), yet these are not the same as SDMs focus solely on present 
species range, and not necessarily on the characterization of species’ niche limits and requirements, 
the potential range, and the range’s responses to different factors. Deep semantic and theoretic 
discussions are presented by Sillero (2011), Peterson & Sobeŕon (2012) and Warren (2012), but for 
simplicity, the methods will be collectively referred to as ENMs hereafter. ENMs have been used for a
wide variety of applications, e.g. predicting the range and impact of invasive species, predicting 
suitable sites for searching for new populations, predict the impact of climate change on species’ 
distributions, predicting past distributions and assessing niche similarity between species (Guisan & 
Thuiller 2005).

Environmental data is central to the ENM process, and there are several datasets available in 
the literature. These datasets are built from real-world data, and they can be classified by their data 
source. Most ENM literature uses the so-called bioclimatic variables, a dataset that contains global 
temperature and precipitation data in 19 variables, first developed by WorldClim (BioClim, Hijmans 
et al. 2005), built from interpolated weather-station data. Other datasets have been built from 
interpolated remote-sensing data (e.g. MOD11C3 v.6 and CHIRPS v.2, Deblauwe et al. 2016, 
MERRAclim, Vega et al. 2018), from complex Global Climate Models (e.g. CHELSA, Karger et al. 
2017), or from complex simulations spanning several time periods both past and future (e.g. 
ecoClimate, Lima-Ribeiro et al. 2015, PaleoClim, Brown et al. 2018). Most of these datasets represent
the 19 bioclimatic variables and differ by their source type. Yet, these are not the only data that can be 
predictors in ENMs as topography, landscape variables, other types of temperature and precipitation 
data, soil characteristics, geomorphology and hydrology data can and should be incorporated into 
models when relevant and available. Climate datasets that simulate past or future climates are built on 
Global Circulation Models (GCMs), and the ones that represent future climate are representative of 
the Shared Socioeconomic Pathways (SSPs, Riahi et al. 2017) coupled with the Representative 
Concentration Pathways (RCPs, Van Vuuren et al. 2011). These pathways aim to represent possible 
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future scenarios of carbon concentration in the atmosphere. The latest version of these simulations is 
CMIP6 (Coupled Model Intercomparison Project Phase 6, Eyring et al. 2016).

ENMs consist of using occurrence records to define the environmental characteristics of 
species’ niche, and project similar environments back into geographic space. It is a convoluted 
process, and recent literature have been published proposing sets of standards and guidelines to make 
it more robust and reproducible (Araújo et al. 2019, Feng et al. 2019, Fitzpatrick et al. 2017, Jiménez 
& Soberón 2020, Regos et al. 2019, Sillero & Barbosa 2021, Sofaer et al. 2019). Ecological niche 
modelling relies on key ecological concepts about species’ niches components and dimensions, as 
Hutchinson’s duality (Colwell & Rangel 2009), the different types of niches (Arckerly 2003, Guisan 
& Zimmerman 2000, Jackson & Overpeck 2000, Pulliam 2000, Silvertown 2004, Soberón & Peterson
2011), the BAM diagram theoretical framework (Barve et al. 2011, Saupe et al. 2012, Soberón & 
Peterson 2005), Hutchinson’s inequalities (Soberón & Arroyo-Peña 2017) and niche adaptation and 
conservatism (Liu et al. 2020, Pili et al. 2020, Pulliam 2000, Zhu et al. 2020). The output of an ENM 
depends on the input data and the algorithm used. Algorithms can be classified by their input 
requirements, some requiring presence-only data (e.g. BioClim, Euclidian Distance, Mahalanobis 
Distance, Gower Distance or Ecological Niche Factor Analysis – ENFA), others presence-background
data (e.g. Genetic Algorithm for Rule-Set Production – GARP, Maximum Entropy – MaxEnt, Support 
Vector Machine -SVM) or presence-absence data (e.g. Generalized Linear Models – GLMs, 
Generalized Additive Models – GAMs, Flexible Discriminant Analysis – FDA, Multivariate Adaptive 
Regression Splines – MARS, Boosted Regression Trees – BRT, Gradient Boosting Machine – GBM, 
Classification and Regression Trees – CART, Random Forest – RF, Neural Networks – NNET, 
Artificial Neural Networks – ANN), and each represents niche properties differently. A model and 
output terminology based on algorithm input requirement was proposed by Sillero (2011), the central 
conclusion being that correlative methods can only model species’ realized niche, not the fundamental
nor potential niches, and different inputs result in different portions of the realized niche: presence-
absence and presence-pseudoabsence methods are the most informative and accurate, and they model 
the suitability of those habitats strictly occupied by the species, as presence-only methods are the least
informative, and model all suitable habitat for the species. 

The technique has been popularized and improved over the past 20 years, with hundreds of 
papers being published every year (Lobo et al. 2010). Applications of ENMs have mostly been used to
terrestrial systems (Araújo et al. 2019), especially with vertebrate species (Titley et al. 2017), but 
rarely on marine environments (Melo-Merino et al. 2020), tree canopies (Burns et al. 2020) 
(environments in which three-dimensionality is a factor), and invertebrates (Mammola et al. 2021, 
Taucare-Ríos et al. 2018). This bias towards terrestrial vertebrates seems to be a trend in biodiversity 
research in general and has been reported by several authors (Leandro et al. 2017, Mammides 2019, 
Mammola et al. 2020). Evidence suggests this bias is partly derived from cognitive bias in terms of 
researchers’ subjective preferences for certain taxa over others (Clark & May 2002), also known as 
‘taxonomic chauvinism’ (Leather 2009).

On top of the taxonomic bias towards vertebrates, several other barriers hamper the application 
of ENMs to invertebrates, because of their immense diversity, small size, short and complex life 
cycles and lack of information about most species’ biology, ecology, phylogeny and physiology. This 
scarcity of knowledge turns decision-making about model inputs and methodological variables 
difficult, and greatly influences model performance (Peterson & Soberón 2012). Among arthropods, 
there is taxonomic bias towards certain megadiverse groups, e.g. bees and butterflies (Cardoso 2012, 
Leandro et al. 2017). A recent systematic literature review regarding terrestrial arthropods ENMs 
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(Mammola et al. 2021) showed that the most well represented invertebrates in ENM studies are 
butterflies (which may be due to a greater amount of information available, as well as their diversity), 
and species of economic interest such as flies and mosquitoes (vectors of diseases), beetles (crop 
pests), and pollinators.

Arachnids have 110.615 described species, and the estimated number is predicted to be far 
greater (Stork 2018). However, that diversity is not equally spread among the 16 Orders, most of it 
being represented by spiders (Araneae – 42,473 species) and mites (Acariformes and Parasitiformes – 
54.473 species collectively in 6 Orders), the remaining orders collectively accounting for circa of 12%
of the diversity within Arachnida (Harvey 2002, Stork 2018). The so-called Smaller Orders of 
Arachnida are not only less diverse, presenting 671 species collectively in 5 Orders, a little over one 
percent of the number of spider species (Stork 2018), but also have been historically less studied, and 
the early taxonomic works on the group have made it difficult to diagnose species and genera then 
described.

Whip spiders (Amblypygi) are no exception, but recent advances have been made in assigning 
new and relevant characters (e.g. Giupponi & Kury 2013) and several new species have been 
described over the last two decades. Amblypygids are poorly known and can be difficult to find in 
nature due to their nocturnal behavior, their tendency to live between rocks, cracks and caves, and 
inconspicuous colors (Harvey 2002). The first species described for the Order was Phalandium 
reniforme Linnaeus 1758, and the number of described species today is over 220 (Miranda et al. 
2018). Recent genetic evidence showed the presence of cryptic diversity in amblypygids (Reveillon et
al. 2020, Seifer et al. 2020), as has been suggested on taxonomic publications (Chiriví-Joya et al. 
2020), which is specially accentuated by these organisms’ conservative morphology. They have a 
dorsoventrally flattened body divided into prosoma and opisthosoma, connected by a pedicel, have 
eight eyes and four pair of legs, the first of which are sensorial and not used for walking. Amblypygi 
are mainly recognized by their pair of spine-covered pedipalps which are used for catching prey, in 
courtship and in territory defense (Chapin & Hebets 2016). Special attention has been given to their 
neuroanatomy, because they present the largest mushroom bodies known in any arthropod, a structure 
that has been shown to be associated with locomotion and navigation (Chapin & Hebets 2016), and is 
responsible for receiving olfactory and tactile inputs (Sinakevitch & Gronenberg 1989), which are the 
main components of whip spiders homing (i.e. the behavior of leaving to forage, mate or patrol 
territory, and returning to the original nest or refuge) (Ortega-Escobar 2020) followed by visual cues. 
The fragmented knowledge on homing in whip spiders was recently revised by Ortega-Escobar 
(2020). Individual recognition appears to be present, at least in one African species (Walsh & Rayor 
2008).

The oldest known whip spiders date to the Carboniferous circa 312 mya, known today as 
Weygoldtina scudderi Pocock 1911 and Weygoldtina anglicus Pocock 1911 (Dunlop 2018). The Order 
has a pantropical distribution, with a few genera in temperate zones (Weygoldt 2000). With the 
exception of one cosmopolitan genus, Charinus Simon 1892, most families or genera are restricted to 
certain parts of the world (Miranda et al. 2020). In the Neotropics, aside from Charinus, the families 
Phrynichidae and Phrynidae are present, the first represented by a single species Trichodamon 
princeps Mello-Leitão 1935 in this region, and the latter by 75 species (Chiriví-Joya 2018, Chiriví-
Joya et al 2020, Chiriví-Joya 2021) divided into two sub-families: i) Phryninae, which is further 
divided into 8 genera and ii) Heterophryninae which is represented by a single genus Heterophrynus 
Pocock 1894 and 18 species (Chiriví-Joya et al. 2020, Seiter & Gredler 2020).

|

88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131



6

Heterophrynus was traditionally considered restricted to the Amazon (Weygoldt 2000), but 
recent work have shown the genus to be present from the North and West of Colombia to the South of 
Pantanal, in Brazil, to the Western edge of the Amazon and even in refugia in the arid Brazilian 
Caatinga (Armas et al. 2015, Carvalho et al. 2011, Cordeiro et al. 2014, García et al. 2015, Víquez et 
al. 2014). Despite recent efforts (Armas et al. 2015, Armas et al. 2015, Chiriví-Joya et al. 2020, 
Chiriví-Joya 2018, Giupponi & Kury 2013, Giupponi 2002, Seiter & Gredler 2020), taxonomic 
problems in the group remain, and they are presented and discussed by Chiriví et al. (2020).

Heterophrynus species are all carnivorous, seemingly opportunist generalists, that have been 
recorded preying on spiders, orthopterans, moths, frogs, anole lizards (Chapin & Hebets 2016), bat 
carcasses (Prous et al. 2017), and have even been recorded fishing for freshwater prawn (Ladle & 
Velander 2003). On the other hand, species of Heterophyrnus have been seen being preyed upon by 
lycosid spiders (H. batesii), and confamiliar species also by a wide range of other arachnids and small 
vertebrates (Chapin & Hebets 2016). These interactions characterize symmetrical intraguild predation 
(Polis et al. 1989) happening in the ecosystems in which Heterophrynus occurs. Cannibalism has also 
been recorded, although it is apparently more common in adults as a resolution of conflicts (e.g. 
defending territory, fighting for partner). These territorial contests can often occur for most species, 
but some are notably more tolerant to conspecifics (Chapin 2014) and/or congeners (Weygoldt 1977), 
while others are even somewhat social (Carvalho et al. 2012). This tolerance is suggested to be 
microhabitat specific, as reported by Chapin (2015). They reproduce once to twice a year, displaying 
complex courtship patterns, and the females care for the young until their first molt (Weygoldt 2000). 
They are most commonly found on large, buttressing trees, or in trees with either burrows at their 
bases (Chapin 2014) or some other form of refuge, in trees with termite nests at their bases (Carvalho 
et al. 2012), crevices or caves. For H. longicornis the presence of a burrow has been showed to be 
more important than tree diameter (Porto & Peixoto 2013). Furthermore, Lehmann and Friedrich 
(2018) reported collecting H. elaphus on three different species of tree, namely Ceiba pentandra 
(Malvaceae), Dipteryx sp. (Fabaceae) and Ficus sp. (Moraceae), the latter being an exotic species, 
suggesting that at least H. elaphus is not dependent on any specific host plant. This reliance on large, 
old grown trees makes these large-tree-dwelling species especially vulnerable to selective logging 
(Bloch & Weiss 2002).

We argue that these ecological features, along with their wide distribution on different regions 
of South America, characterize Heterophrynus species as a reasonable choice to test different ENM 
approaches, as no strong biotic interactions appear to be significantly impacting species’ distribution. 
Instead, abiotic conditions and accessibility are probably more important in shaping these species’ 
distributions at present, following the Eltonian noise hypothesis (Saupe et al. 2012) which states that 
although local ecological processes define local presence they are diluted in larger scales, an 
information that increases model reliability (Qiao et al. 2015) and can seldom be assumed for 
arthropods (Mammola et al. 2021). This does not regard present Neotropical biogeographical 
hypotheses, which aim to explain the patterns that shaped biodiversity distribution in the continent 
especially in the Pleistocene (e.g. Rangel et al. 2008, Sacek 2014, Sobral-Souza et al. 2015, Werneck 
2011), which are ultimately one of the main drivers of species distributions. Rather, it is about the role
of biotic interactions in shaping species distributions, which we argue is smaller for the taxon than 
abiotic conditions or accessibility. Moreover, each species of the genus has its own caveats and 
considerations in modeling, for example two closely related species H. boterorum and H. silviae 
(Giupponi & Kury 2013), which occur in transandean areas of Colombia, have few occurrence 
records, but the records can be combined as their niche can be assumed to be similar (Qiao et al. 
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2017), an extreme opposite example would be H. longicornis, for which there are relatively many 
occurrence records.

This document is divided into two chapters. In the first chapter, we aimed to test a relatively 
new approach on evaluating Ecological Niche Models, and compare the output and performance of 
eight algorithms, under three climatic datasets, at three M sizes, for each of nine Heterophrynus 
species. In the second chapter, we use the findings of our first chapter and build models to assess 
Protected Areas coverage of the suitability maps for present-day climate and two end-of-century 
climate scenarios on projected models.
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Chapter 1

Abstract

Here ecological niche models for nine species of the South American whip-spider genus 

Heterophrynus are built. Performance and output similarity between climatic datasets and algorithmic

output under different M sizes for each species are evaluated. The Accumulation of Occurrences 

Curve approach recently proposed in the literature is used as a metric in evaluation. Our results imply

that RF and MARS overfit models, and GLM, GLMNet and MaxLike underfit models given tested 

settings. MERRAclim is the most dissimilar climatic dataset from the other two tested. Models that 

span most of the Amazon Basin are influenced by interpolation artifacts in BioClim and ENVIREM 

models. We illustrate how AUC and TSS are uninformative in presence-background or presence-

pseudoabsence models.

Key-words: Accumulation of Occurrences Curve; Amblypygi; Algorithm selection; Ecological 

Niche Models; South America
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Resumo

Aqui modelos de nicho ecológico para nove espécies do gênero de amblipígeo sul-americano 

Heterophrynus são construídos. A performance e a similaridade do output entre conjuntos de dados 

climáticos e do output de algoritmos sob diferentes tamanhos de M para cada espécie são avaliadas. A

abordagem da Curva de Acumulação de Ocorrências recentemente proposta na literatura como 

método de avaliação de modelos é utilizada como métrica de avaliação. Nossos resultados sugerem 

que os algoritmos RF e MARS sobreajustam modelos, e que os algoritmos GLM, GLMNet e 

MaxLike subajustam modelos, dadas as configurações testadas. MERRAclim é o conjunto de dados 

climáticos mais diferente dos demais testados. Modelos que abrangem a maior parte da bacia 

Amazônica são influenciados por artefatos de interpolação em modelos que utilizam BioClim ou 

ENVIREM como preditores. Demonstramos como AUC e TSS são estatísticas pouco informativas 

em modelos de presença-fundo ou presença-pseudoausência.

Palavras-chave: Amblypygi; América do Sul; Curva de Acumulação de Ocorrências; Modelos 

de Nicho Ecológico; Seleção de algoritmos
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1.0 - Introduction

Ecological Niche Modeling (ENM) are a suite of techniques that aim to predict species distributions 
or their niches based on characteristics of the environment in which they are found. It is a convoluted 
process, and literature have been published proposing sets of standards and guidelines to make it 
robust and reproducible (Araújo et al. 2019, Farrel et al. 2013, Ficetola et al. 2019, Jackson and 
Overpeck 2000, Qiao et al. 2017, Seiter et al. 2020, Soberón & Peterson 2011). The technique has 
been popularized and improved over the past 20 years, with hundreds of papers being published 
every year (Liu et al. 2020). Applications of ENMs have mostly been used on terrestrial systems 
(Araújo et al. 2019), especially with vertebrate species (Taucare-Ríos et al. 2018), but rarely on 
invertebrates (Mammides 2019, Mammola et al. 2021). Moreover, ENM literature is produced and 
tested on the Global North, while new techniques, GCMs, datasets and methods are seldomly tested 
outside of North America and Eurasia (Titley et al. 2017). A recent review of ENM literature in Latin 
America clearly shows that researchers from the region take part in few of the advances of the field, 
and also that there is great room for improvement in collaboration of research in the region (Urbina-
Cardona et al. 2019). 

In order to build an ENM, researchers must go through a plethora of decisions, all of which 
influence what is actually being modeled, and what can be interpreted from model outputs (Guillera-
Arroita et al. 2015). These decisions include: 1) careful choice of occurrence data, and how to split it, 
as different types of datasets can result on starkly different models (Konowalik & Nosol 2021); 2) 
choosing one or more environmental datasets, as they usually differ and its not well defined which 
one represent environmental conditions better (Moralez-Barbero & Vega-Álvarez 2018); 3) defining 
the area in which the model will be calibrated is of utmost importance (hereafter M, Barve et al. 
2011); 4) selecting the algorithms used in building the models as they seldom have similar outputs 
(Konowalik & Nosol 2021); and 5) defining how to assess model performance and evaluate their 
results, one of the most debated and active topics of discussion in ENM literature (Jiménez & 
Soberón 2020, Sillero & Barbosa 2021). All of these decisions introduce uncertainty to models, and 
the path of least uncertainty is anyone’s guess. Still, there are steps that can be taken in order to 
minimize or at least assess and quantify uncertainty: checking occurrence data quality (both presence 
and absence; Lobo et al. 2010, Oliveira et al. 2016), ensembling models (Breiner et al. 2015, 2018), 
accounting for predictor’s uncertainty or inconsistency (Morales-Barbero & Vega-Álvarez 2018), 
selecting algorithms suitable for the intended application and for the input data (Lobo et al. 2010), 
selecting a reasonable accessible area in order to minimize evaluation metrics inflation (Barve et al. 
2011), and avoiding common mistakes (see Sillero & Barbosa 2021).

The set of decisions in building ENMs comes with even larger set of available options. One 
can choose from several Environmental Datasets (or predictors) widely available online. These 
datasets are all built from different sources (e.g. weather station data in BioClim, Fick & Hijmas 
2017, remote sensing data in MERRAclim, Vega et al. 2018) using different methods (most 
commonly interpolation), that represent many distinct features of the geographic space (as opposed to
environmental space, hereafter G and E respectively, sensu Peterson & Soberón 2012). These 
variables range from temperature and precipitation data, through soil moisture and composition, 
potential evapotranspiration and up to topographic and geomorphological variables. The most 
commonly used variables in the literature are the nineteen WorldClim bioclimatic variables, that 
represent annual, seasonal, quarterly and monthly temperature and precipitation data (Fick and 
Hijmans 2017), and other datasets have been derived therefrom (e.g. ENVIREM, Title & Bemmels 
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2018). Another decision with many available options is selecting from a wide range of methods (or 
algorithms) that come from other fields and have been adapted to ENM use, and that have each their 
own assumptions, biases and requirements regarding input data (Sillero & Barbosa 2021). Some 
algorithms require presence-only data (e.g. BioClim, Euclidian Distance, Mahalanobis Distance, 
Gower Distance or Ecological Niche Factor Analysis – ENFA), others presence-background data (e.g.
Genetic Algorithm for Rule-Set Production – GARP, Maximum Entropy – MaxEnt, Support Vector 
Machine -SVM) or presence-absence data (e.g. Generalized Linear Models – GLMs, Generalized 
Additive Models – GAMs, Flexible Discriminant Analysis – FDA, Multivariate Adaptive Regression 
Splines – MARS, Boosted Regression Trees – BRT, Gradient Boosting Machine – GBM, 
Classification and Regression Trees – CART, Random Forest – RF, Neural Networks – NNET, 
Artificial Neural Networks – ANN), and each represents niche properties differently. Traditionally, 
the most common method of evaluation of ENMs, regardless of their input data, are statistics that 
assess how different from random models are. Notably, the Area Under the Receiver Operating 
Characteristic (ROC) Curve (AUC) and True Skills Statistics (TSS) have been used to assess model 
performance. These statistics are well known from other scientific fields, but their use in ENMs are 
problematic when having no absence data, as both rely on sensitivity and specificity, which is 
unknown in presence-only, presence-background or presence-pseudoabsence models.

It has been stated in the literature that there is no simple solution or formula for decision 
making, and each decision should be taken according to the data and the intended use of ENMs (Qiao
et al. 2015). Yet, there are still recurring examples of papers that suggest one method (e.g. Mi et al. 
2017, Zhang et al. 2019) to be superior to others. This is especially problematic when the conclusions
are based on the AUC and/or TSS values, which: i) are highly correlated (Jiménez & Soberón 2020), 
ii) are inflated by the M size (Lobo et al. 2008) and the number of occurrence records (Konowalik & 
Nosol 2021), iii) ignores the predicted probability values and the goodness-of-fit of the model (Lobo 
et al. 2008) and iv) using AUC as a metric for presence-pseudoabsence models violating AUC theory 
(Jimémez & Soberón 2020). Instead of using AUC and TSS, recent literature has pointed towards at 
least two possible solutions. The first is analyzing how models perform at each range of its suitability 
or probability predictions; examples are the Boyce Index and its corresponding P/E plots, which 
correlates sample predictions over study space with predictions coinciding with presence points; 
(Hirzel et al. 2006, Di Cola et al., 2017) and the Accumulation of Occurrences Curve (Jiménez & 
Soberón 2020). The second consists of having experts systematically evaluating and scoring the 
output of the models (Gastón et al. 2014, Konowalik & Nosol 2021, Sarquis et al. 2018). This last 
concept was discouraged in early ENM literature (e.g. Soberón & Peterson 2005) but seems to be 
taking the spotlight, specially with initiatives like BioModelos (Velásquez-Tibatá et al. 2019).

In this study, we assess model output similarity between BioClim, MERRAClim and 
ENVIREM datasets separately for nine species of South American whip spiders. We also analyze 
model performance for eight different algorithms (RF, BRT, GLM, MARS, GLMNet, MaxEnt, 
MaxLike and SVM) by analyzing the Accumulation of Occurrences Curve recently proposed by 
Jiménez & Soberón (2020). Besides, we test three different M sizes for each model/environmental 
dataset/algorithm, to understand the influence of accessible area size on each method. We present 
AUC and TSS results as an argument that they do not reflect model performance in any informative 
way.

2.0 – Methods
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2.1 – Taxon selection

For the purposes of this study, we chose to use species of the genus Heterophrynus Pocock 1894, 
which currently has 18 recognized species, to build our models. The reason we chose this taxa is that 
they are present in a wide area of South America. The genus used to be considered endemic to the 
Amazon Basin (Weygold 2000), but recent literature have shown it is present from the North and 
West of Colombia (de Armas 2015; de Armas, Contreras & García 2015) to the South of Pantanal in 
Brazil (Cordeiro et al. 2014), to the western edge of the Amazon and even in refugia in the semi-arid 
Brazilian Caatinga (Porto & Peixoto 2013). Despite that, all species live mostly on similar humid 
habitats, be it a humid forest, an altitude marsh, in caves or karstic areas, inhabiting burrows in trees 
and crevices or on rocky outcrops beside streams. These areas are known to have relatively higher 
uncertainty in predictors datasets because of relatively few weather stations monitoring the region 
(e.g. Fick and Hijmans 2017).

The second reason is that some species occur over wide areas and have many occurrence 
records available, while others (most species) do not and are more restricted. This allowed us to test 
the methods under different occurrence dataset sizes and areas, as well as exploring the effects of M 
size on each of them, and comparing the predictor datasets on different contexts. 

The third reason we chose these taxa is that there is no current knowledge on these species 
distribution ranges, or even a compilation of occurrence records, which makes this study a valuable 
contribution to the knowledge of this poorly-known whip-spider group. Moreover, the Amazon 
Rainforest where most species occur is also under great threats from mining, logging and intense 
deforestation under the current Brazilian administration, despite international efforts to stop it 
(Carvalho et al. 2019, Rapozo 2021). For this reason, we deem studying and gaining knowledge on 
the lesser known taxa of the region all the more urgent and important.

2.2 - Study area

Most Heterophrynus species occur in Northern South America, and their records are summarized in 
Fig. S11 and Table 1.  As other whip spiders, individuals usually remain in or close to a resourceful 
territory and seldom wander away (Weygoldt 2000).

2.3 - Species data

We obtained occurrence records for all Heterophrynus species from four sources: i) from the Global 
Biodiversity Information Facility (GBIF); ii) the literature (e.g. Giupponi & Kury 2013, Palacios et al.
2019, Seiter & Gredler 2020); iii) from natural history museums and university collections (Instituto 
de Ciencias Naturales ICN-MHN; State Museum of Natural History Stuttgart SMNS; Universidade 
Federal de Minas Gerais UFMG; Universidade Federal da Paraíba UFPA; Universidade Federal de 
Mato Grosso do Sul ZUFMS; Museo Javeriano de Historia Natural MPUJ); and iv) directly from 
experts’ personal databases, namely A.P.L. Giupponi and G.S. de Miranda. As no single source had 
abundance of records for any single species, all records were merged in a single dataset, totaling 1036 
occurrence records for the 18 Heterophrynus species.
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After gathering the data, records were geo-referenced in the GEOLocate Web Client (Rios & 
Bart 2010), following the guidelines in Chapman & Wieczorek (2020) in order to obtain latitude and 
longitude, and uncertainty radius for each occurrence, which we later used to filter records with 
uncertainty >10km to match climatic variables’ resolution (uncertainty of coordinates by species 
summarized in Fig. S6). Other data cleaning was executed using the coordinateCleaner R package 
(Zizka et al. 2019) using the following parameters: records in capitals, centroids of countries and 
provinces, duplicates, equal records, records around GBIF facilities, records on water, zeros and 
records outside of the coordinate system. Records in or around biodiversity institutions and in urban 
areas were intentionally not removed, because Heterophrynus are known to be synantropic, given that
any dark and humid environment can be occupied, as some are found in or close to cities, or suburban
areas. Species with less than 10 occurrence records were dropped from the study, resulting in nine 
Heterophrynus species being kept in the study (Table S1). Finally, records were screened by G.S. de 
Miranda for possible dubious identifications, which were also removed. We intentionally did not 
perform records thinning (or spatial filtering; Sillero & Barbosa 2021, Steen et al. 2021) as it allowed 
us to assess record clustering effect on different methods and to follow cells with more than one 
occurrence record in the Accumulation Tables (from Jiménez & Soberón 2020).

The nine studied species of Heterophrynus are not evenly sampled, and most species have 
relatively few occurrence records (e.g. H. cervinus, n=17) and only two have over 50 records, not 
coincidentally the most widespread species H. batesii (n=117) and H. longicornis (n=238).
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Table 1: Heterophrynus species and the locality they have been recorded. 

Species Recorded Area

H. alces Pocock 1902 Guyana, Suriname, French Guiana and in the Brazilian states of Amapá and
Roraima

H. armiger Pocock 1902 Colombia and Ecuador

H. batesii Butler 1873 Ecuador, Colombia, Peru and Brazilian states of Acre, Amazonas, Rondônia,
Roraima and Pará

H. boterorum Giupponi & Kury 2013 Colombia

H. caribensis Armas, Torres-Contreras & Álvarez García,
2015

Colombia, with some dubious records available in Ecuador and Peru

H. cervinus Pocock 1894 Colombia and Ecuador

H. cheiracanthus Gervais 1842 Northern half of Venezuela

H. elaphus Pocock 1903 Peru, scarce records in Bolivia and Brazilian states of Acre and Amazonas

H. gorgo Wood 1869 Amazonian Peru

H. guacharo de Armas 2015 Colombian caves

H. javieri Seiter & Gredler 2020 Colombia

H. longicornis Butler 1873 Northern Bolivia, spanning the entire Amazon Basin, also in the Brazilian
Caatinga and Cerrado domains in refugia

H. origamii Chirivi-Joya, Moreno-González & Fagua 2020 Brazilian state of Rondônia

H. seriatus Mello-Leitão 1939 Mid-Western Brazilian state of Goiás

H. silviae Giuppony & Kury 2013 Colombia

H. vesanicus Mello-Leitão 1931 Mid-Western Brazil in caves and forest patches of the Cerrado domain

H. yarigui Álvarez García, Armas & Díaz Pérez, 2015 Northern Colombia

2.4 - Environmental data

In order to compare different environmental data, we obtained three sets of climatic predictors. The 
first dataset BioClim (WorldClim v2.1, Fick & Hijmans 2017; available at <www.worldclim.org>), 
which is by far the most widely used dataset of bioclimatic variables in the literature. Bioclim was 
generated using interpolated data of climate stations all over the globe (Hijmans et al. 2005). This 
dataset is known to present artifacts from interpolation, specially in areas where few weather stations 
are present such as the Amazon Basin (Fick & Hijmans 2017, Campbell et al. 2015), which directly 
impacts model output. 

The second dataset is MERRAClim (Vega, Pertierra & Olalla-Tárraga 2018; obtained from 
<https://datadryad.org/stash/dataset/doi:10.5061/dryad.s2v81>), generated using hourly data of 
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temperature and humidity from 1981 to 2010, from satellite data provided by NASA’s Modern-Era 
Retrospective Analysis for Research and Applications (MERRA). 

Finally, the third dataset tested is the Environmental Rasters for Ecological Modelling dataset 
(ENVIREM, Title & Bemmels 2018, obtained from <https://doi.org/10.7302/Z2BR8Q40>), a dataset 
of mixed interpolated climate variables derived from WorldClim, and elevation-derived topographic 
variables. This last dataset was originally intended to be used as a complementary dataset to BioClim 
(Title & Bemmels 2018), but we wanted to test if the dataset could be used by itself to model non-
plant species. All datasets were downloaded on August 19th, 2021.

We selected four variables from each dataset (Table 2) that we judged important to the species’ 
biology and that were uncorrelated (correlation values in Table S2) within datasets. Correlation among
datasets’ selected layers can be found in Table S3 and Fig. S7. Layers were cropped at the different M 
sizes for each model of each species. All climatic layers were obtained in a standard 5’ resolution 
(~10km), as finer grain would invalidate most occurrence records.

Table 2: response variables chosen from environmental datasets

BioClim MERRAclim ENVIREM

Bio 2
Mean diurnal

range
temperature

Bio 2
Mean diurnal

range
temperature

Annual
PET

Annual potential
evapotranspiration: a measure of
the ability of the atmosphere to

remove water through
evapotranspiration processes,

given unlimited moisture

Bio 3 Isothermality Bio 3 Isothermality Aridity
Index

Thornthwaite aridity index:
index of the degree of water

deficit below water need

Bio 5
Max

temperature
of warmest

month
Bio 5

Max
temperature of

warmest
month

Climatic
Moisture

Index
A metric of relative wetness

and aridity 

Bio
15

Precipitation
seasonality Bio 8

Mean
temperature of

the most
humid quarter

Thermicit
y Index

Compensated thermicity index:
sum of mean annual temp., min.

temp. of coldest month, max.
temp. of the coldest month, ffj 10,

with compensations for better
comparability across the globe

2.5 - Model built

We built 6480 models in total, one set of ten bootstrap replications for each of the eight algorithms, 
under three climatic datasets, at three different M sizes for each of nine species (Fig. 1). When we 
refer to any model, we refer to the mean of these bootstrap replications.
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2.5.1 - Accessible area (M)

To tackle the accessible area issue (Barve et al. 2011), separate models were calibrated within three 
different accessible areas (or Ms; Fig. 2), hereafter called SM, MM and LM (referring to small, 
medium and large Ms, respectively), that were defined as the bounding box of buffers created around 
the occurrence records at different sized radii for each species (Table S1). The values of buffer radius 
were arbitrarily defined based on how widespread were the occurrence records, ranging from 50km in
the SMs of the most localized species (e.g. H. alces), to up to 800km in the LMs in more widespread 
species (e.g. H. longicornis).

2.5.2 - Algorithm choice

We built our models for each species, M size and climatic dataset using eight different algorithms, as 
no single method can be blindly followed (Qiao et al. 2015). The different statistical methods can be 
segregated in three classes: i) tree-based methods, ii) machine-learning methods and iii) regression-
based methods. From the first class, we tested the Random Forest (RF) and the Boosted Regression 
Trees (BRT) algorithms. The main difference between these two is that RF generates independent 
trees, and BRT dependent trees that make decisions informed by the former trees. From the second 
class of algorithms (machine learning), we selected three algorithms: MaxEnt, a Maximum Entropy 
machine learning algorithm, widely used in ENMs; MaxLike, a Maximum Likelihood algorithm like 
the former; and Support Vector Machine (SVM), a machine learning algorithm based on classifiers to 
separate data. And from the third class of algorithms, we chose: a Generalized Linear Model (GLM), 
a well known statistical approach based on linear regressions; Multivariate Adaptive Regression 
Splines (MARS), a method that fits several regression lines to parts of the data and builds the model 

|

Fig. 1: accessible area (M) selection scheme. Three different accessible areas 
were defined for each species as the bounding box of different-sized radii 
buffers around the occurrence records. The bounding box of the smallest radius
buffers defines the small M (SM) (red), and the same follows for the medium M 
(MM) (blue) and large M (LM) (violet). Background is an elevation map of 
central Brazil.
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from them; and GLMNet, an algorithm based on custom linear models and elastic net regression via 
penalized maximum likelihood. All of these methods are available in the sdm package (Naimi & 
Araújo 2021), and were used in the standard settings of the sdm function.

Most of these algorithms require absence data, and in the lack thereof we randomly generated a
standard number of 200 pseudoabsences (Barbet-Massin et al. 2012) in geographic space for all 
models. From the methods listed above, only MaxEnt and SVM are meant to be used with pseudo-
absence data, and others treat pseudoabsences as proper absences, yet good results have been achieved
using pseudoabsences with them (Konowalik & Nosol 2021). We tested and compared the algorithms’
responses against the different climate datasets, Ms, and in the different scales and regions where 
Heterophrynus species occur.

2.5.3 - Model evaluation

We then compared algorithm performance under three evaluation metrics: i) the Area Under the ROC 
Curve (AUC), ii) true skill statistic (TSS); and iii) the accumulation of occurrences curve (hereafter 
AOcC), an evaluation method recently presented by Jiménez & Soberón (2020). The AUC is a 
threshold-independent evaluation method that quantifies the relationship of specificity and sensitivity 
under different thresholds compared to random, that should not be used with pseudo-absences, yet it is
the most used evaluation metric in ENMs to date despite its unrestricted use having been recently 
questioned by several authors (Jiménez-Valverde & Lobo 2007, Jiménez & Soberón 2020, Konowalik
& Nosol 2021). TSS is a threshold-dependent metric that calculates the values of sensitivity minus 
specificity of a model. 

The AOcCs take into account the accumulation of occurrences and number of cells predicted as
suitable needed to find them. The authors propose that the algorithm which correctly finds most 
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Fig. 2: model workflow. For each of nine Heterophrynus species three sized Ms were defined, on which we 
constructed models for each of three climatic datasets, using ten bootstrap replications of eight algorithms of 
three different classes
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occurrences (target) in the least number of high suitability prediction cells should be used, considering
Occam’s razor. In this study, we define a new metric and set the AOcC-target at the number of cells 
in which 90% of occurrences were found. We built AOcCs for all models to compare algorithm 
performance as their original intended use, and also built the same plots by algorithms to compare 
each algorithm’s performance on the different M sizes and Enviromental Datasets for each species.

2.5.4 - Model comparison

For quantifying the similarity of predictions based on the three climatic datasets, we used Schoener’s 
D statistic to compare the model output prediction of each climatic dataset under each algorithm. We 
also performed this analysis to compare each algorithm’s output to its pairs. For this purpose, the 
output of some of the models (particularly models for MERRAclim and/or under the GLMNet 
algorithm) had to be transformed not to include negative values, and this was done by adding the 
lowest negative value to all values, i.e. shifting the results to zero as the minimum.

2.5.5 - Software, codes and data

All analyses were performed in R (version 4.0.4). Models were built and projected using the sdm 
package version 1.1-3 (Naimi & Araújo 2021), spatial data was manipulated using the raster package 
version 3.5-2 (Hijmans 2022) to match extent and cell sizes of the three climatic datasets, the 
accumulation of occurrences curve and comparison were constructed using the accum.occ and 
comp.accplot functions presented by Jiménez & Soberón (2020) and obtained from 
<https://github.com/LauraJim/SDM-hyperTest>. Schoener’s D statistic was calculated using the 
nicheOverlap function in the dismo package version 1.3-5 (Hijmans et al. 2021), and plotted using the 
ggplot2 package version 3.3.5 (Wickham 2016). Some maps were post-processed in QGIS version 
3.16.9-Hannover for aesthetics. We provide an R script in <github.com/jfberner/ENMs> as a sample 
for the modeling process of H. alces, as the same process was repeated for all species.

To easily refer to a specific model, we hereafter refer to them by their composition of Climatic 
Data, M size, Algorithm and Species: for example the MERRAclim model, built under the large M 
(LM), using MARS as method, for the occurrence records of H. batesii will be referred to as the 
batesii-MERRA-LM-MARS model. Moreover, when we use this codification with missing 
information, we mean all models that are grouped by the same characteristics: the batesii-GLM 
models are the nine models built using GLM for H. batesii, three for each M size for each of three 
environmental datasets; and MaxEnt-MM models are the 27 models for the nine species times the 
three environmental datasets built only with this algorithm and M size.

3.0 - Results

3.1 - Model outputs

All models performed better than random regardless of M size, algorithm, predictors, sample size, 
species or geographic area of occurrence. All model outputs are presented in Figs. S3A-I.
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3.1.1 – Environmental Datasets

To assess output similarity between datasets, we analyzed Schoener’s D statistics for niche similarity 
(Table S5). We expected to find that BioClim and ENVIREM model outputs to be more similar to 
each other than to MERRAClim, as both were generated using the same method and original dataset, 
yet represent different climatic variables. This appears to be mostly true (Fig. 3), with exceptions (Fig.
4). As we used different layers representing different climatic variables in each dataset, we also 
expected outputs to have overall low similarity, but this was not the case. We present in Fig. S10 a plot
similar to Fig. 3, but the data was split by each species and M size, and in Fig. S8 split by each 
algorithm and M size.

The mean of all similarity tests between climate datasets were equal (Bioclim x ENVIREM, 
d=0.6515; Bioclim x MERRAclim, d=0.6519; ENVIREM x MERRAclim, d=0.6525), but these 
varied greatly among methods, M sizes and species. As the mean value is not informative of how 
similar individual models are, we present in Fig. 3 a box-and-violin-plot to better visualize the 
distribution of d-stat values when comparing the outputs of environmental datasets.

Fig. 3 suggests that although not significantly, BioClim and ENVIREM had more similar 
results in general, but this varied greatly in different geographical areas. For simplicity, we present the
d-stat results by species for MaxEnt-MM models in Fig. 4 (the complete Fig. for all methods and M 
sizes can be found on Fig. S8).

As shown in Fig. 4 similarity varied greatly between species, as model outputs for some 
species were very similar (e.g. H. elaphus) while others were not (e.g. H. boterorum). Some 
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Fig. 3: Box+violin-plot of d-stat results for Environmental 
Dataset comparison including all 648 models. Individual 
values in grey dots.
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algorithms retained the same similarity curves, or at least the same trends, between M sizes (e.g. 
MaxEnt column in Fig. S8), others have no clear trends (e.g. MaxLike column in Fig. S8). 

What can be interpreted from these plots is that some species had more similar models than 
others (regarding the datasets’ response comparison), namely H. armiger, H. elaphus, H. batesii and 
H. longicornis. The first is present in a narrow region West of the Andes in Ecuador and Colombia. 
The second species, H. elaphus, occurs East of the Andes mainly in the Peruvian Amazon, and as both
these regions are areas of low uncertainty in the weather datasets that generated both BioClim and 
ENVIREM, the similarity was to be expected. The latter two species are the most widespread, H. 
batesii is present mainly in the Western Amazon Basin (Fig. 5, Fig. S11), while H. longicornis mainly 
in the Eastern half (Fig. S3-H), and their distributions overlap in the middle of the Amazon, which is 
the area with greatest amount of uncertainty in the BioClim and ENVIREM datasets. 

3.1.2 – M size

Model output (suitability maps) varied considerably among algorithms (section 3.1.3), but very little 
among M sizes (Fig. S3). Considering occurrence location of each species is crucial to model 
interpretation: species H. longicornis, H. batesii, H. alces and H. cheiracanthus all occur in areas of 
high uncertainty for the BioClim dataset (and therefore, ENVIREM as well), given that few weather 
stations exist in Central and West Amazon (Fick & Hijmans 2017). For this reason, we will look 
closely at the outputs of the models for three of these species: H. batesii, H. alces, and H. 
cheiracanthus. In this section we briefly mention evaluation for context, but present M size impact on
model performance and evaluation in detail in section 3.2.2.

3.1.2.1 – Heterophrynus batesii

|

Fig. 4: D-stat results for the comparison of environmental datasets under 
Maxent-MM models for all modeled species.
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This is a widespread species with 117 records which SM, MM and LM sizes are 127395, 155043 and 
185283 cells in size respectively. We increased M size in steps of 150 km, starting at a 400 km buffer 
around occurrence points for SM. The LM models spanned over most of South America. Increasing 
M did not greatly change predicted areas of suitability for any given method or predictors (Fig. S3-
C), meaning that algorithms retained mostly the same prediction regardless of M size. For example, 
the Bioclim-MaxEnt SM, MM and LM models for this species look very similar (Fig. 5), and the 
same is true for any other combination of same method/predictors.

AUC values increased very slightly (0.83 SM, 0.83 MM and 0.84 LM), and the same is true 
for TSS values (0.57, 0.57 and 0.58 for SM, MM and LM respectively). The number of cells at 
AOcC-target occurrences for this example remained relatively stable at 45072 (35.38% of SM area), 
51557 (33.25% of MM area) and 50935 cells (27.49% of LM area), indicating that increasing M in 
this case did nothing to enhance the model or predictions. This is true for all models of this species 
(Table S1, Fig. S3), but that’s not the case for other species we modeled.

3.1.2.2 – Heterophrynus alces

For this species we had 21 records narrowly distributed in N-Western South America (in Guyana, 
Suriname, French Guiana and parts of Brazil), with M sizes spanning 9576, 12180 and 15072 cells. 
For this species, we increased M size in steps of 50 km, starting at a 50 km buffer around occurrence 
points for SM. To allow some comparability to the former example, we’ll look at the BioClim-
MaxEnt models for the species (Fig. 6).

The number of cells at AOcC-target occurrences in this case are 4261 (44.5% of total area) in 
the SM, 4122 (33.84%) in the MM model, and 4600 (30.52%) in the LM model. AUC values 
decreased slightly as M was increased (0.79 in SM, 0.76 in MM and 0.77 in LM), as well as TSS 
values (0.58 in SM model, 0.54 in MM and 0.56 in LM). In this example, although SM has the “best”
AUC and TSS scores, only in MM and LM models a definite suitable range for the species can be 
seen, something that may be desirable in most ENM applications. Moreover, increasing M led the 
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Fig. 5: batesii-BioClim-Maxent model outputs for SM (A), MM (B) and LM (C). 

Fig. 6: alces-BioClim-Maxent model outputs for SM (A), MM (B) and LM(C).
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model to discard the western areas of the map as suitable, and concentrate suitable cells in mostly a 
single range. 

3.1.2.3 – Heterophrynus cheiracanthus

This species occurs mostly in the northern half of Venezuela and in Tobago, with 23 records spread 
over this area, which SM, MM and LM sizes are 15036, 29964 and 73644 cells in size respectively. 
We doubled M size at each step starting at a 200 km buffer around the occurrence records for SM. 
Again, we present the BioClim-MaxEnt models for the species (Fig. 7), to allow some degree of 
comparability with the last two examples.

The number of cells at AOcC-target occurrences for these models are 2221 in SM (14.77% of 
area), 3502 in MM (11.69%) and 6423 in LM (8.72%). As the species’ suitability range is very small 
compared to the whole area, AUC and TSS scores are significantly greater than the previous two 
examples (0.9 AUC and 0.74 TSS in SM; 0.93 AUC and 0.80 TSS in MM; 0.88 AUC and 0.74 TSS 
in LM). The case of H. cheiracanthus is an example that mixes the former two: i) as with H. batesii 
the entirety of the suitable range predicted in the SM model is fully present in MM and LM models, 
and only new areas were added as M increased; ii) as was the case in H. alces, increasing M revealed 
a somewhat continuous distribution westward that was unrepresented in SM.

3.1.3 – Algorithm

To assess the similarity between algorithms’ output, we present the mean of all models Schoener’s D-
Stat in Fig.8 (for the results of any particular model please refer to Fig. S5). The highest output 
similarity is between BRT and MaxEnt (d=0.86), and the lowest is between BRT and MARS 
(d=0.49). 

Other highly similar outputs are between GLM with both MaxEnt and GLMNet, and GLMNet 
with MaxEnt, BRT and GLM. Although the final output is somewhat similar according to d-stat 
results, the AOcCs clearly suggest that neither GLM or GLMNet perform satisfactorily in high-
suitability cells (further discussed in section 3.3.3; Fig. 10), which suggests that for similar output and
better performance, both BRT or MaxEnt should be preffered over GLM or GLMNet. 

Moreover, analyzing outputs for each model, we observed that GLMNet and MaxLike tend to 
overpredict suitability ranges when compared to other algorithms, sometimes predicting almost the 
entire given area as suitable for the species (e.g. the cheiracanthus-BioClim-SM-GLMNet model 
output in Fig. S3-F). This can be the reason why GLMNet’s output appears to be similar to the 
algorithms previously mentioned in this paragraph. Moreover, this high GLMNet similarity with 
other model outputs could be influenced by the transformation we did in order to apply the 
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Fig. 7: cheiracanthus-BioClim-Maxent model outputs for SM (A), MM (B)and LM(C).
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nicheOverlap function from the dismo package, which does not accept negative values, but it remains
unclear whether this is the case.

3.2 – Model Performance and Evaluation

3.2.1 – Environmental Datasets

To compare environmental dataset by their performance, we built AOcCs for each species by 
algorithm (Fig. S2). In Fig. 9 we present three examples of the most common patterns we found. In 
Fig. 9-A, the AOcC for the longicornis-RF models, in which there is no clear distinction on 
performance of the three environmental datasets or M sizes, all reaching target occurrences in ~40 
thousand cells. This was the case in all RF and MARS models, and most BRT, MaxEnt and SVM 
models. In Fig. 9-B we present the AOcC for the batesii-GLM models, in which a clear distinction is 
made between the three environmental datasets, where BioClim (shades of yellow) reached target 
occurrences first, followed by ENVIREM (shades of blue) and lastly MERRAclim (shades of brown). 
In Fig. 9-C we present the third type of trend we observed in these AOcCs using the elaphus-GLM as 
an example of an AOcC in which no clear distinction can be made between the best performing 
environmental dataset or M size.
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Fig. 8: mean D-Stat values (below diagonal) for model output 
comparison between algorithms. Highest values indicate 
more similar outputs.
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Overall, MERRAclim tended to reach target occurrences in more cells than its counterparts, 
and its outputs were also less similar to other datasets as shown in section 3.1.1.

3.2.2 – M size

We expected to find increasing AUC and TSS values as M size increased, and although this happened
in several cases it is not a definite pattern. AUC and TSS scores for all models are summarized in Fig.
S12A-B.

M size did have an impact on the performance of some algorithms. To illustrate it, we present 
the example of alces-MERRA models SM through LM (Fig. 10): GLM, MaxLike and GLMNet 
performed close to or worse than random up until 4~5 thousand cells in the SM model. The curves 
shifted above random in fewer cells in larger M models (under 2000 cells in MM and under 1600 
cells in LM). This means that increasing M size can increase model performance using these 
algorithms. Still, it had little to no effect on initial performance of the other tested algorithms (e.g. the
MARS or SVM AOcCs in Fig.S2 for all species). Understandably, all methods reached target in more
cells in the LM models than in their respective SM models (Figs. 9, 10 and 11), simply because more 
suitable cells were included. 

Moreover, focusing on how each algorithm performed under any given M size and predictors, 
we analyzed the AOcC for the three algorithms above-mentioned as low-performing (GLM, GLMNet 
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Fig. 9: AOcCs for longicornis-RF (A), batesii-GLM (B) and elaphus-GLM (C) models. 

Fig. 10: AOcCs for alces-MERRA models. As M increases, the curve of low performing algorithms crosses the 
random counts curve in fewer cells
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and MaxLike; Fig. 11). We found that it is not as simple as increasing M: the left plot on Fig. 11 
(GLM) shows that although MERRA-BM performed better than its SM and MM counterparts 
initially, it had the worst performance at AOcC-target (11208 cells at 19 occurrences). The same 
happened for MERRA-BM on MaxLike models (right plot, Fig. 11). Still at the left plot, even though 
the MERRA-SM and MERRA-MM (the worst initial performance) lines do not follow the same path, 
they reach target at roughly the same number of cells (SM: 8050 and MM: 8104; Table S1), which 
indicates that increasing M had little effect on both performance and output (Fig. S3-A), at least for 
the MERRA models for this species. We found this same pattern for GLMNet models outputs for this 
species (middle plot, Fig. 11).

3.3.3 – Algorithm

In general, algorithms performed well for all tested settings, but some tended to overfit models (RF 
and MARS) and others underfit them (GLMNet and MaxLike) regardless of species, predictors or M 
size (see Figs. S3A-I for an output comparison by species). AUC and TSS scores indicate that all 
models performed better than random (Table S1), and AOcCs suggest that most do too, but not at the 
entire range of predictions. 

First, we focus on the “worst performing” algorithms. Fig. 12 the AOcC shows an example of 
the algorithms that perform overall better than random, but do not do so for the highest ranked 40~50 
thousand cells, performing poorly when compared to the other tested algorithms (MaxLike, GLMNet 
and GLM specifically).

This is an extreme case where there is a clear distinction between the best performing 
algorithms (generally RF, MARS, MaxEnt, SVM and BRT) from their worst performing counterparts 
cited above, but this segregation is not always clear (e.g. Fig. 10).

Shifting the focus to the “best performing” algorithms, RF and MARS are the algorithms that 
invariably reached AocC-target in the least number of cells. To illustrate this, we present in Table 3 a 
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Fig. 11: AOcCs for H.alces models for GLM, GLMNet and MaxLike. The plot shows how occurrences were 
accumulated in each H.alces model for the algorithms. MERRA-SM models are not below the random counts 
line as in the previous Fig. because the scale of the X axis here is the LM scale. SM=50km buffer around 
occurrence points or 9576 cells, MM=100km or 12180 cells, LM=150km or 15072 cells. Target at 19 
occurrences.

409
410
411
412
413
414
415
416
417

418

419
420
421
422
423
424
425
426
427
428
429
430
431
432



26

table of accumulation of occurrences for RF, MaxEnt and MARS, for the species with the least 
number of occurrences for simplicity (H. cervinus, n=17), under the widely used BioClim climatic 
dataset, and under the smallest M tested for the species. We also present the AOcC that corresponds to
Table 3 in Fig. 13, which further illustrates this repeating pattern: RF identifies all occurrences with 
very few cells, and is followed by MARS.

|

Fig. 12: AOcCs for longicornis-BioClim SM (A) and LM (B) models.
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Table 3: Table of accumulation of occurrences for cervinus-Bioclim-SM models (10920 cells 
in total) of three algorithms: RF, MaxEnt and MARS. Occurrence target = 15 (88.24%) in 
bold. Bottom row is the raw output of each model with occurrence records for reference.

RF MaxEnt MARS

No.occurrenc
es No.cells %Gained

Occ
%Ar
ea

No.occurrenc
es No.cells %Gained

Occ
%Ar
ea

No.occurrenc
es No.cells %Gained

Occ
%Are

a

0 0 0 0 0 0 0 0 0 0 0 0

6 1 35.29 0.01 6 10 35.29 0.09 6 52 35.29 0.48

7 2 41.18 0.02 7 216 41.18 1.98 9 74 52.94 0.68

8 3 47.06 0.03 8 401 47.06 3.67 10 77 58.82 0.71

11 5 64.71 0.05 9 787 52.94 7.21 11 256 64.71 2.34

13 12 76.47 0.11 10 898 58.82 8.22 12 288 70.59 2.64

14 32 82.35 0.29 11 984 64.71 9.01 14 326 82.35 2.99

15 66 88.24 0.6 12 1092 70.59 10 15 337 88.24 3.09

16 82 94.12 0.75 15 1306 88.24 11.9
6 16 407 94.12 3.73

17 8593 100 78.6
9 17 3058 100 28 17 8820 100 80.7

7
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To further explore the extent of this trend, Fig. 14 presents a chart that shows the number of 
cells at target occurrence for each algorithm, for all H. alces models. We chose this as a clear example,
for similar plots for the other species and models in our study please refer to Fig. S4.

Moreover, RF seems to have overfitted all models we generated, which is best observed in the 
suitability regions plotted in Environmental Space (Figs. S9A-I). We expected this to perhaps be the 
case in the species with the least number of records (H. cervinus, n=17, Fig. 15C-D), because we 
generated more pseudo-absences than the number of occurrences, but we observed overfitting even in 
the species where occurrence records outnumbered pseudo-absences (H. longicornis, n=238, Fig. 
15A-B). 

|

Fig. 13: AOcC for cervinus-Bioclim-SM model (SM = 
200km radius, 10920 cells)

Fig. 14: Line plot of the number of cells at AOcC-target by algorithm for H. 
alces models, under each climatic dataset, at each M size.
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There are seven exceptions (out of 648 models) to this: models armiger-Bioclim-LM, 
boterorum-Bioclim-MM, boterorum-MERRAclim-MM, boterorum-MERRAclim-LM, cervinus -
MERRAclim-SM, cervinus -MERRAclim-MM, and elaphus-MERRAclim-LM had MARS reach 
target in fewer cells than RF (Table S1; Figures S1 and S2). All AOcCs are presented in Figures S1 by
climatic dataset and S2 by algorithm, Table S1 contains the number of cells at target for all models 
and Tables S4 A-I presents every individual accumulation table.

4.0 - Discussion

4.1 – Environmental Datasets

This study showed that all three environmental datasets produced reasonable, useful and informative 
models. However, for some species (and therefore some regions of South America), the three 
datasets’ outputs were more dissimilar than in others (Fig. S10). This conclusion comes with a grain 
of salt, as each predictors’ similarity was also influenced by the algorithms we tested (Fig. S11), and 
different algorithms responded very differently. The algorithms BRT, RF and GLMNet notably 
retained more similar model outputs among predictor datasets than other algorithms, even though the 
latter two algorithm’s outputs are barely useful or informative for under- and overpredicting, 
respectively.

Knowing how much each predictor dataset differs from the other two could allow us to use this
information as a proxy for model uncertainty, as we expected that model similarity would not be low 
among predictors for two reasons. The first reason is that the ENVIREM dataset was generated using 
the same layers as BioClim. The second is that MERRAclim (satellite data) and BioClim (weather 
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Fig. 15: Models in Environmental Space (A, C, E, G) and in Geographical Space (B, D, F, H). longicornis-
BioClim-LM RF (A-B) and MaxEnt (C-D), cervinus-BioClim-LM RF(E-F) MaxEnt (G-H) for comparison of the 
overfitting under RF models.
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station data) models had three layers out of the four representing the same variables. Our results 
suggest that the first of these reasons is true, while the other is not, as the MERRAclim models were 
the least similar to their BioClim and ENVIREM counterparts. This finding is in accordance, from 
completely different evaluation methods, with the results in Morales-Barbero & Vega-Álvarez (2018),
in which they find MERRAclim to be the least congruent with other tested datasets. Unfortunately, 
they tested only RF as a method, which can be problematic for reasons discussed in this study, and 
further research could better explore this congruence under different methods.

4.2 – M size

Our findings indicate that there is no simple rule to define M size, and we defend that fitting a few 
models and trying different M sizes before defining M should be standard practice. Comparing 
models with different M sizes both in G and in E can clarify what type of environment is being 
introduced with larger Ms and what impacts that has on the model in G, and it can help modelers to 
choose the most suitable M size for their applications. For simple suitability maps to project species’ 
distribution (a standard SDM), the best M size could be the one that encompasses one or more clearly
defined ranges. As for modelers interested in niche models and projecting in any region in space or 
time different from the one the model was trained in (ENMs), the best M size may be the one that 
most clearly defines suitability in E, rather than G, meaning the M size that has sufficient 
heterogeneity in E for a model to be useful when projected to a new environment (Peterson & 
Soberón 2012).

4.3 – Algorithm

The same is true for algorithm choice: selecting what algorithm to use is crucial, as our results show. 
Three out of the eight algorithms we chose, all easily accessible in the sdm package, performed 
poorly in all regions, under any predictors. Ease of access and of reproducibility is what made 
MaxEnt ubiquitous in ENMs (Liu et al. 2020), and with these new tools freely and easily available in 
CRAN we expect their use to become more popular. That’s why knowing each of these algorithms’ 
bias and limitations is so important.

Algorithms GLM, GLMNet and MaxLike under-fitted nearly all models, regardless of 
geographical context, occurrence sample size, M size or predictors dataset. Moreover, these 
algorithms worked very close to or under the AOcCs’ random baseline in many cases for the first 
third or half of the highest-ranking suitable cells. We argue that if an algorithm is under-performing in
the highest ranking cells under any given input, it should be avoided in ENMs, as these are the cells 
that are usually retained when selecting a threshold for presence/absence maps.

Algorithms RF and MARS typically overfitted models, but were the “best” at correctly 
identifying occurrence records in the AOcCs, meaning they did so in the least number of cells. From 
our study design, we cannot infer whether these two algorithms are being influenced more by spatial 
clustering or to the number of pseudo-absences, but these two factors are certainly causing overfitting
on these two algorithms’ performance. We can state however, that they are the most sensible to these 
factors from the eight algorithms we tested. Jiménez & Soberón (2020) propose when presenting their
method that when comparing algorithms using the AOcCs, the one that finds “target” occurrences (in 
our case, ~90%) in the least number of cells should be used. Our analyses suggest that this should not
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always be the case, as it would favor overfitting models and retained models would invariably be the 
most overfit.

We therefore argue that algorithms should be chosen based on the characteristics of what is to 
be modeled on top of reasonable AOcC performance: RF and MARS could potentially be used with 
excellency for fitting models of endemic species narrowly distributed in G, and with relatively few 
numbers of records. For example, the cheiracanthus-BioClim-SM-RF model output is reasonable, but
its MM and LM counterparts are not (Fig. S3-F).

Our findings of RF being suitable for localized species modeling is in accordance with the 
literature in Mi et al. (2017), but for starkly different reasons. We highly disagree with the authors’ 
conclusions, especially because they drew their conclusions mainly from RF having the highest AUC 
and TSS scores, and we’ve shown with our results that this is almost certainly because of a 
combination of RF overfitting models and the statistics being inflated by M and sample sizes. 

Of all the tested algorithms, MaxEnt, BRT and SVM had the most reasonable outputs and 
performance, and delivered informative models under all tested circumstances without over- or 
under-fitting models.

4.4 – Evaluation

We intentionally disregarded AUC and TSS scores in our evaluation of models, and presented them 
precisely to show that they have little to no meaning in evaluating models. The first reason we chose 
to do so is that these statistics, the most widely used in ENMs literature, have been shown to be 
heavily influenced and inflated by M size (Barve et al. 2011, Castellanos et al. 2019), an 
unquantifiable effect that was not clear in our results. The second reason is that these two statistics are
correlated (Konowalik & Nosol 2021). Third and foremost, these evaluation metrics should not be 
used with pseudoabsences, as it violates their underlying theory (Jiménez & Soberón 2020). Several 
authors have pointed towards the misuse of the AUC as an evaluation metric, and it has been 
suggested more than once in the literature that it should at least be used alongside another metric 
(Lobo et al. 2008, Konowalik & Nosol 2021).

We instead chose to solely use the interpretation of the AOcCs as a performance measure, and 
we advocate for its use instead of these metrics. They allow clear and intuitive interpretation of how 
models are ranking suitability cells, and how well that defines a truly suitable environment as it finds 
occurrences. The original intended use of AUC and TSS statistics (and most other metrics) is to define
how different from random a model is, not the quality of the model, especially not at each step of the 
model. The P/E plots and Boyce index (Hirzel et al. 2006, Di Cola et al. 2017) were a first step a 
tackling the performance of a model across different sections of suitability outputs. We argue that 
Jiménez & Soberón’s AOcCs are the next step in the interpretation of models built using pseudo-
absences, for they are simple, straightforward and flexible, yet accurate and powerful.

5.0 - Conclusions

The main conclusions drawn from this study are: i) that MERRAclim models are the most dissimilar 
to BioClim and ENVIREM; ii) M size should be tested during model design in accordance to the 
intended model use; iii) RF and MARS algorithms are very sensible to spatial clustering and overfit 
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models and their use should be constrained to endemic or locally restricted species; iv) GLM, 
GLMNet and MaxLike overpredict models regardless of predictors or geographic region; v) AUC and
TSS do not inform on model performance, and AOcCs should be used to evaluate presence-only or 
presence-background models instead.

The main limitations of our study are firstly that we only had presence data for the species. 
Secondly, that our design did not allow us to isolate what factors drove RF and MARS to overfit 
models. We propose that future work should build on Jiménez & Soberón’s (2020) AOcC use 
combined with Morales-Barbero & Vega-Álvarez’s (2018) Consistency Maps, and that their 
combined use, along with testing different M sizes a priori should become standard in ecological 
niche modeling.
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Chapter 2

Abstract

In this work, ecological niche models for nine species of the South American whip-spider 

Heterophrynus (Phrynidae) are built, present in most of the northern half of the continent. We project 

models on present-day climate, and on two end-of-century SSP scenarios, and assess protection area 

overlap based on the suitability maps from projections. In building our models, we test three M sizes 

and eight algorithms for each species a priori, and select the best performing ones to build the final 

models, based on the Accumulation of Occurrences Curve. This analysis resonate with the last 

chapter in indicating that RF and MARS overfit models. Our results show that Indigenous Land or 

Territories cover overall the same area as Integral Protection (IUCN Categories Ia, Ib and II) areas. 

We show that while some species have up to three quarters of their predicted suitable area inside 

Protected Areas, others have less than 10% of their suitable area protected. Moreover, even for 

species with high coverage of suitable area protection, only a small fraction of this protection falls 

within Indigenous Land or Integral Protection areas.
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Resumo

Neste trabalho, modelos de nicho ecológico para nove espécies do amblipígeo sul-americano 

Heterophrynus (Phrynidae) são construídos, que ocorre na maior parte da porção norte do continente. 

Projetamos os modelos para o clima presente, e para dois cenários SSP ao fim do século, e avaliamos 

a sobreposição de áreas de proteção com as projeções dos mapas de adequabilidade climática. Ao 

construir nossos modelos, nós testamos três tamanhos de M e nove algoritmos para cada espécie a 

priori, e selecionamos os que performaram melhor para construir os modelos finais, com base na 

Curva de Acumulação de Ocorrências. Esta análise ressoa com o último capítulo ao mostrar que os 

algoritmos RF e MARS sobreajustam os modelos. Nossos resultados mostram que Terras Indígenas 

cobrem no geral a mesma área que Áreas de Proteção Integral (Categorias IUCN Ia, Ib e II). 

Demonstramos que enquanto algumas espécies têm até três quartos da sua área adequada dentro de 

Áreas de Proteção, outras têm menos de 10% desta área protegida. Além disso, mesmo para as 

espécies com maior cobertura de Áreas de Proteção, apenas uma pequena fração desta proteção é 

dentro de Terras Indígenas ou Áreas de Proteção Integral.
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1.0 – Introduction

The climate is changing due to human release of greenhouse gases in the atmosphere, and the weather
patterns that have mostly held for the last ten millennia are rapidly changing. The latest version of the
Coupled Model Intercomparison Project (Phase 6, CMIP6) suggests considerable disruption in both 
precipitation and temperatures patterns over South America, according to ensembled Global Climate 
Models (GCMs, Almazroui et al. 2021). The models indicate that under any given Shared 
Socioeconomic Pathway (SSP, Riahi et al. 2017) scenario, current annual precipitation and 
temperature patterns will change, though to a different degree in different regions of the continent 
(Almazroui et al. 2021). Mean annual South American temperature is suggested to increase by a 
minimum of 1.7ºC in a best case scenario under SSP1-2.6 by the end of the century, up to over 5ºC in
a worst case scenario under SSP5-8.5. The strongest warming across all future scenarios is over the 
Amazon. Precipitation changes however, stay mostly within baseline (i.e. present-day) variability and
only start becoming greater than it in the late century under SSP3-7.0 and SSP5-8.5 scenarios, 
showing significant decrease in central-southern Chile, parts of the Amazon and the central tropical 
belt (Almazroui et al. 2021).

The Amazon biome notoriously hosts a great portion of the word's biodiversity (WWF 2016). 
It also hosts circa 47 GtC (gigatons of carbon) in Brazil alone (Nepstad et al. 2009). Area-based 
conservation measures are by far the larger portion of conservation efforts in the region, although 
others stand out (see Tollefson 2015). Of these areas, Indigenous Land or Territories (hereafter ITs), 
which cover approximately 25% of the biome (RAISG 2019), contribute far more to Reducing 
Emissions from Deforestation and Degradation (REDD) than other types of nature reserves (Rickletts
et al. 2010). This is relevant because Amazon deforestation rates have been increasing over the last 
few years (Silva Junior et al. 2021). Indeed, ITs are not only an effective measure to curb 
deforestation, it has also been estimated that these areas host most of the world’s Intact Forest 
Landscapes (Fa et al. 2020), having been actively shaped and managed by Indigenous Peoples over 
millennia (Barlow et al. 2012), and still presenting ecological intactness (Schleicher et al. 2017, Prada
& Xavante 2021, Sanabria & Achuri 2021).

Our purpose in this study was to assess how relevant are current ITs for a given taxon 
preservation under different SSP scenarios through the use Ecological Niche Models (ENMs). Given 
the uneven and disproportionate impacts of Climate Change over South America, with special 
concerns lying over the Amazon regarding rising temperature and decreasing precipitation, and over 
North-Western South America regarding decreasing precipitation anomalies (Almazroui et al. 2021), 
we selected a taxon that spans both of these areas. The whip-spider genus Heterophrynus was once 
deemed to be restricted to the Amazon (Weygoldt 2000), but recent work have shown the genus to be 
present from the north and west of Colombia to the south of Pantanal, in Brazil, to the western edge 
of the Amazon and even in refugia in the arid Brazilian Caatinga (de Armas et al. 2015, Carvalho et 
al. 2011, Cordeiro et al. 2014, García et al. 2015, Víquez et al. 2014).

In this study, we use ENMs to build habitat suitability maps for nine species of the South 
American whip-spider genus Heterophrynus for present-day and two future emission scenarios 
(SSP2-4.5 and SSP5-8.5) for the 2081-2100 period. We also analyze the species’ suitability areas 
intersection with the World Database on Protected Areas (WDPA, UNEP-WCMC & IUCN 2017). We
further quantify how much of this area falls under IUCN types Ia, Ib and II Protected Areas (hereafter
IPs, for Integral Protection) and under currently recognized ITs from the same dataset.
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2.0 – Methods

2.1 – Species data

We used the same dataset with the same acquisition and record cleaning as Chapter 1 (see page 9 for
more details). Species kept in the study after occurrence data cleaning and filtering are: H. alces (21
occurrence  records),  H.  armiger  (20),  H.  batesii (117),  H.  boterorum (34),  H.  cervinus (17),  H.
cheiracanthus (23), H. elaphus (28), H. longicornis (238) and H. vesanicus (35).

We purposefully decided to not include  records, distributions or suitable area in detail in the
text in fear of poachers using our work for the Pet Trade in North America, Europe and Asia, as whip-
spiders are commonly found in the invertebrate black market. These results will only be shared with
South American researchers directly to hopefully guide field expeditions, such as the one that resulted
in the discovery of two new Heterophrynus species in 2011 (Giupponi & Kury 2013).

2.2 – Climate Data

We acquired the 19 bioclimatic variables from WorldClim v2.1 (Fick & Hijmans 2017) to construct 
the model for the present-day projections, and the same bioclimatic variables for the 2070 period 
under two emission CMIP6 scenarios under the MIROC6 GCM for future projections. The first 
scenario, SSP2-4.5, reflects the impacts of warming if societies rapidly reduce emissions, but fail to 
mitigate fast enough to limit warming to below 2ºC. The second scenario, SSP5-8.5, marks the upper 
edge of the SSP scenario spectrum with a high reference scenario in a high fossil-fuel development 
world throughout the 21st century. All layers were obtained in a standardized 5 arc min resolution 
(~10km), under the WGS84 geographic projection, from <www.worldclim.org>. Variables retained 
after considering the species’ biology and checking for collinearity (Table S2) were Bio2, Bio3, Bio5 
and Bio15 (mean diurnal range temperature, isothermality, max temperature of the warmest month 
and precipitation seasonality, respectively).

2.3 – Protected Areas Dataset

For  assessing  the  species’ placement  under  protected  areas,  we  obtained  the  World  Database  on
Protected Areas (WDPA 2021) and measured the area in km² that overlaps with the predicted species
climatic suitability on the three climatic scenarios. For this, we subsetted the WDPA dataset in three
based on the IUCN categories of protected areas (Dudley 2008). First, we retained the entire WDPA
dataset (hereafter PA-Full). Second, we selected a dataset that only contains the strictest categories of
protected  areas,  IUCN Ia,  Ib  and  II  (hereafter  PA-Integral).  And  third,  we  isolated  one  dataset
containing the territories marked as Indigenous Land or Territory, a type of protected area strictly
reserved for indigenous peoples living in traditional lifestyles, which are not categorized in IUCN
standards (hereafter PA-Indigenous).
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2.4 – M selection

We used the same M selection method and criteria as in Chapter 1 (see page 12 for more details). 
To select an M size, we then analyzed the performance of algorithms under each M size (see

below), to see if M size increased algorithm performance.  We further analyzed model outputs to
distinguish under and over-fitted models. The last step in selecting M consisted in analyzing if the
output maps represented a well-defined suitable area, as opposed to an incomplete suitable area.

2.5 – Algorithm selection

As there is  no single  best  algorithm to be chosen  a priori for  ecological  niche modelling,  eight
algorithms (GLM, SVM, RF,  BRT,  MARS, MaxEnt,  MaxLike  and GLMNet)  commonly  used  in
ENMs were tested in the same manner as  M using the accum.occ function in Jiménez & Soberón
(2020).  This  method  of  using  the  Accumulation  Tables  and  corresponding  Accumulation  of
Occurrences Curves are hereafter referred to as AOcT and AOcC, respectively.

To avoid using under- or overfitting algorithms, we selected the two algorithms to  reach a
target (the smallest number of cells that retains ~90% of records, hereafter AocC-target; Jiménez &
Soberón 2020) in the smallest number of cells. For this reason, MARS and RF models were discarded
(overfit),  as  well  as  GLM,  MaxLike  and  GLMNet  (underfit).  Algorithms  retained  and  used  in
ensembling for each species are summarized in Table 2. Ensemble was built by the PA (presence-
absence) method, that uses the mean of predicted presence-absence values (predicted probability of
occurrences  are  first  converted  to  presence-absence  using  a  threshold,  then  they  are  averaged),
available in the ensemble function in the R-package sdm (Naimi & Araujo 2021), which was used in
default settings.

2.6 – Software, Code and Data

All analyses and steps were performed in R version 4.0.4, except the spatial overlap analysis and
some maps’ post-processing for aesthetics, both done in QGIS version 3.16.9-Hannover. A script for
the steps in creating and analyzing H. alces models is provided in <github.com/jfberner/ENMs> as a
sample, as the same process was repeated for each species. The occurrence dataset is intentionally not
provided in this paper due to the interest of poachers in the animals for the pet trade in the northern
hemisphere (particularly the U.S., E.U and Asia). Interested researchers can contact the authors for the
data for research purposes.
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Table 4: Retained M and respective buffer sizes, and retained algorithms

Species H. alces H.
armiger

H.
batesii

H.
boterorum

H.
cervinus

H.
cheiracanthus

H.
elaphus

H.
longicornis

H.
vesanicus

M size SM LM SM SM SM SM SM SM SM

Buffer
Size –

Number
of cells

50km -
9576
cells

200km -
8470
cells

400km
-

127395
cells

200km -
4800 cells

200km -
10920
cells

200km - 15036
cells

200km -
27745
cells

200km -
123624 cells

200km -
27495
cells

1st
Algorith

m
BRT MaxEnt BRT BRT SVM BRT BRT BRT SVM

2nd
Algorith

m
MaxE

nt BRT MaxE
nt MaxEnt BRT SVM SVM SVM BRT

2.7 – Model Workflow

With  each  species’ predictors  cropped  at  their  different  M  sizes,  background  (n=200)  data  was
generated, and we constructed  the three models for each species, with 10 bootstrap replications for
each. The best deemed M sizes (further explained below) and their respective two best performing
algorithms were retained. 

Then,  another  model  was  built  from  retained  algorithms  and  M  size  with  100  bootstrap
replications for each algorithm, which were then ensembled by the previously mentioned PA-method.
Models were then projected back into geographic space in the three climatic scenarios (Present, SSP2-
4.5 and SSP5-8.5 for 2070 period) using the same variables used in model construction, and turned
into presence/absence maps by applying a standardized 0.4 threshold. The presence/absence maps
were then projected with the three protected areas datasets (PA-full, PA-integral and PA-indigenous),
and the area of overlap was analyzed. This entire process is summarized in Fig. 16.

|

133

134

135

136
137
138
139
140
141
142
143
144
145
146



39

3.0 – Results

3.1 – Model Results

Species’ target for model evaluation, and results of algorithm performance (number of cells at
AoOc-target)  are  presented in  Table  S1.  Algorithms  and  M  sizes  retained  for  each  species  are
summarized in  Table  4.  The accumulation of occurrences  curve for each model  and algorithm is
presented in Fig. 17. 

All algorithms performed better than random, at all M sizes, and we kept the smallest M for
all species with one exception. We selected LM for H. armiger, as SM and MM left out a contiguous
suitable area of the Colombian coast where there are no clear geographical barriers. Total protection
area and protection percentage under the three climatic scenarios, for each protected areas dataset and
for each species is presented in Table 5.
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Our projections show that suitable area will increase in size for some species under both of the
tested SSP scenarios. Namely:  H. alces  (doubling suitable area under SSP2-4.5 and increasing it by
148% under SSP5-8.5), H. armiger (+28% under SSP2-4.5 and +35% under SSP5-8.5) and H. batesii
(+28% under SSP2-4.5 and +33% under SSP5-8.5). For other species however, projections show a
dramatic decrease in suitable area: H. boterorum (-34% under SSP2-4.5 and -13% under SSP5-8.5),
H. cervinus (-43% under SSP2-4.5 and -66% under SSP5-8.5), H. cheiracanthus (-41% under SSP2-
4.5 and -65% under SSP5-8.5), H. longicornis (-72% under SSP2-4.5 and -94% under SSP5-8.5) and
H. vesanicus (-10% under both scenarios). One of the nine species, H. elaphus, showed mixed results
in the projections (-0.81% area under SSP2-4.5 and +35% under SSP5-8.5).

It  is  worth  noting  that  our  approach  to  ensembling  models  by  presence/absence  has  its
downside. We chose this method of ensembling for we deem it to be one of the most straightforward
ways to do so. Ensembling worked perfectly well for some species where model outputs presented
similar outputs (e.g. H. batesii on Fig. 22 or H. armiger on Fig. 18).

For other species however, most notably  H. longicornis, the selected algorithms had highly
dissimilar outputs and the P/A ensembling method resulted in a minimal, scattered distribution (Fig.
33). This also happened to some extent to H. cervinus and H. cheiracanthus ensembled models (Figs.
25 and 29 respectively). Both H. longicornis and H. cheiracanthus occur in the Amazon Basin, and H.
cervinus occurs in the Western portion of the Andean Valleys in Ecuador and Colombia, with some
occurrences down the far Eastern Amazon. These two regions have relatively few weather stations
collecting data and BioClim, which uses this type of data to generate its layers, has known uncertainty
and artifacts  from interpolation in  these areas  (Fick & Hijmans 2017).  This  could be the reason
algorithm outputs are so dissimilar, but it doesn’t solely explain the dissimilarity as other species in
this  study occur  in relatively close or even overlapping areas  but did not  present such problems.
Whatever the reason, H. longicornis ensembled models are useless, and no conclusions can be made
from them.  Regardless,  we  present  the  results  of  model  build  and  ensemble,  and protected  area
datasets overlap for all species.

|

Fig. 17: AOcCs for the first round of models (10 bootstrap replications), with all tested algorithms. These 
Figures are the same as the BioClim columns in Figs. S1 A-J.
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Table 5: Predicted Ensembled Suitable Area in million hectares, and the corresponding 
overlap percentage with the three Protected Area Datasets.

Species Projection Predicted Area
(Mha)

PA-Full
Overlap
(Mha) 

PA-Integral
Overlap (Mha) 

PA-Indigenous
Overlap (Mha) 

H. alces

Present 20.47 9.76
(47.68%)

1.10
(5.37%)

0.47
(2.30%)

SSP2-45 40.85 19.98
(48.92%)

0.97
(2.37%)

1.47
(3.60%)

SSP5-85 50.74 26.73
(52.68%)

1.85
(3.65%)

1.99
(3.92%)

H. armiger

Present 5.68 0.70
(12.26%)

0.01
(0.13%)

0.00

SSP2-45 7.29 0.87
(11.99%)

0.02
(0.34%)

0.00

SSP5-85 7.69 0.97
(12.56%)

0.05
(0.60%)

0.00

H. batesii

Present 278.92 138.15
(49.53%)

9.92
(3.56%)

14.1
(5.06%)

SSP2-45 359.18 180.76
(50.33%)

12.43
(3.46%)

16.32
(4.54%)

SSP5-85 372.67 200.53
(53.81%)

15.67
(4.20%)

16.8
(4.51%)

H. boterorum

Present 6.38 0.55
(8.57%)

0.09
(1.49%)

0.00

SSP2-45 4.24 0.33
(7.70%)

0.07
(1.74%)

0.00

SSP5-85 5.55 0.55
(9.98%)

0.18
(3.20%)

0.00

H. cervinus

Present 7.32 1.52
(20.74%)

0.26
(3.48%)

0.00

SSP2-45 4.15 1.06
(25.55%)

0.15
(3.52%)

0.00

SSP5-85 2.52 0.64
(25.56%)

0.26
(10.34%)

0.00

H. cheiracanthus

Present 10.00 6.85
(68.50%)

0.56
(5.60%)

0.00

SSP2-45 5.89 4.47
(75.86%)

0.58
(9.87%)

0.00

SSP5-85 3.49 2.69
(77.17%)

0.44
(12.65%)

0.00
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Species Projection Predicted Area
(Mha)

PA-Full
Overlap
(Mha) 

PA-Integral
Overlap (Mha) 

PA-Indigenous
Overlap (Mha) 

H. elaphus Present 36.61 11.88
(32.46%)

0.22
(0.60%)

0.00

H. elaphus
SSP2-45 36.31 9.37

(25.81%)
0.25

(0.70%)
0.01

(0.02%)

SSP5-85 49.56 10.09
(20.36%)

0.53
(1.07%)

0.11
(0.22%)

H. longicornis

Present 96.48 51.21
(53.07%)

3.91
(4.05%)

4.82
(4.99%)

SSP2-45 27.22 15.94
(58.55%)

0.60
(2.21%)

1.43
(5.25%)

SSP5-85 5.58 2.22
(39.79%)

0.05
(0.86%)

0.32
(5.75%)

H. vesanicus Present 31.72 4.03
(12.72%)

0.34
(1.07%)

0.09
(0.29%)

SSP2-45 28.50 2.99
(10.47%)

0.29
(1.01%)

0.08
(0.28%)

SSP5-85 28.58 3.76
(13.17%)

0.28
(0.99%)

0.08
(0.30%)

3.2 – Heterophrynus alces Pocock, 1902

The final  H. alces model was constructed using an M built from a 50km radius around the
occurrence  records  (amounting  to  9576  cells),  and  BRT  and  MaxEnt  algorithms  were  used  in
ensembling.  Suitability projections are presented in Fig.  18.  Ensembled P/A projections and their
overlap with the PA-datasets are presented in Fig. 19.

Present  day ensembled projections  indicate  a  highly suitable climate close to  the coast  in
French Guiana, Suriname and Guyana, as well as in the eastern half of the Brazilian state of Amapá.
Ensembled projections  under  SSP2-4.5 scenario show a shrinking of  suitable  area where  Present
projections were appointed, specially along the coast of Suriname, but it also shows the appearance of
a  suitable  climate  corridor  with  the  interior  of  the  Amazon  Basin  through  French  Guiana  and
Suriname.  SSP5-8.5 projections  further  expand this  connection  and the  suitable  area  towards  the
interior of the continent, yet the suitable area close to the coast is further diminished. This indicates a
shift in suitable climate conditions, that may or may not be followed by the species, as dispersal is
limited and theorized only to occur by juvenile propagules as adults are, in theory, committed to their
territories (Weygoldt 2000).
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Despite having almost half of its projected suitable area inside Protected Areas, only a small
part of it is under strict Protection (IUCN categories IA, IB and II). For this species, PA-Indigenous
covers more area than PA-Integral under both SSP2-4.5 and SSP5-8.5, still  collectively these two
datasets cover less than 8% of predicted suitable area under any scenario. This means that despite
having almost half its projected suitable area under protection (Fig. 19 F-I), most of it can still suffer
from anthropogenic pressures over time.

|

Fig. 18: H. alces model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records.
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Fig. 19: H. alces Ensembled Presence/Absence maps for the three climatic scenarios and their overlap with the
Protected Areas Datasets. A: occurrence records. B: present-day presence/absence ensembled projections. C:
presence/absence ensembled projections under SSP2-4.5 scenario. D: presence/absence ensembled 
projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full protected areas dataset 
overlayed with occurrence records. G: Full protected areas dataset overlayed with B. H: Full protected areas 
dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral Protection Areas dataset 
overlayed with occurrence records. K: Integral Protection Areas dataset overlayed with B. L: Integral Protection
Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed with D. N: Indigenous Areas 
dataset overlayed with occurrence records. O: Indigenous Areas dataset overlayed with B. P: Indigenous Areas
dataset overlayed with C. Q: Indigenous Areas dataset overlayed with D.
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3.3 – Heterophrynus armiger Pocock, 1902

The final H. armiger model was constructed using an M built from a 200km radius around the
occurrence records (amounting to  8470 cells),  and BRT and MaxEnt algorithms were ensembled.
Suitability projections are presented in Fig. 20. Ensembled P/A projections and their overlap with the
PA-datasets are presented in Fig. 21.

Present day ensembled projections indicate climatic suitability for the species in west Ecuador,
where it is currently found. Both other tested scenarios show a similar suitability map, suggesting that
this regions’ climate is expected to remain largely similar to present-day, even under high emission
scenarios.

This is the species with the least amount of suitable area falling under any type of Protected
Area under Present Projections. Integral Protection areas under any climate scenario do not ammount
to one percent of suitable area. Fortunately, projections show that suitable area will not shift or shrink
in G,  so even though this  species  is  not  currently protected by Protection Areas,  our  projections
indicate that climate change will not affect the species by a lot.

|

Fig. 20: H. armiger model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records. 
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Fig. 21: H. armiger Ensembled Presence/Absence maps for the three climatic scenarios and their overlap with 
the Protected Areas Datasets. A: occurrence records. B: present-day presence/absence ensembled 
projections. C: presence/absence ensembled projections under SSP2-4.5 scenario. D: presence/absence 
ensembled projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full protected areas 
dataset overlayed with occurrence records. G: Full protected areas dataset overlayed with B. H: Full protected 
areas dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral Protection Areas 
dataset overlayed with occurrence records. K: Integral Protection Areas dataset overlayed with B. L: Integral 
Protection Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed with D. N: 
Indigenous Areas dataset overlayed with occurrence records. O: Indigenous Areas dataset overlayed with B. P:
Indigenous Areas dataset overlayed with C. Q: Indigenous Areas dataset overlayed with D.
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3.4 – Heterophrynus batesii Butler, 1873

The final H. batesii model was constructed using an M built from a 400km radius around the
occurrence records  (amounting to  127,395 cells),  and BRT and MaxEnt  algorithms were used in
ensembling.  Suitability projections are presented in Fig.  22.  Ensembled P/A projections and their
overlap with the PA-datasets are presented in Fig. 23.

Present day ensembled projections (Figs. 22-D and 23-B) indicate climatic suitability in the
central and western parts of the Amazon Basin, advancing well into the Northern Andes to the West,
with suitable areas in most of Colombia.  The projection also shows an unconnected suitable area
where today H. alces is present in Guyana, Suriname and the French Guiana. Moreover, both SSP2-
4.5 and SSP5-8.5 show the connection toward the coast  through Suriname, same as the  H. alces
projections (Fig. 23 C-D). Moreover, the Northern tip of Bolivia seems to present a suitable climate
that is present in both present-day and SSP2-4.5 scenarios, but the area is deemed unsuitable in the
SSP5-8.5 scenario,  and suitability remains only over the border with Brazil.  Overall,  the species’
suitability maps highly agree on the three scenarios, suggesting that climate change could have little
impact on the taxon. Of course there can be several sources of error in the models and this finding
should be taken with a grain of salt.

Like H. alces, almost half of predicted suitable area lies within the PA-Full dataset in the three
climatic  scenarios.  Also  like  H.  alces however,  PA-Integral  only  covers  around  3.5-4%  of  the
predicted suitable area, even less than PA-Indigenous which covers 4.5-5% of the area depending on
the scenario. This means that in a high emission scenario (SSP5-8.5), indigenous land can help protect
over a million hectares of suitable area more than current Integral Protection Areas.

|

Fig. 22: H. batesii model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records. 

223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

239
240
241
242
243
244



48

|

Fig. 23: H. batesii Ensembled Presence/Absence maps for the three climatic scenarios and their overlap with 
the Protected Areas Datasets. A: occurrence records. B: present-day presence/absence ensembled 
projections. C: presence/absence ensembled projections under SSP2-4.5 scenario. D: presence/absence 
ensembled projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full protected areas 
dataset overlayed with occurrence records. G: Full protected areas dataset overlayed with B. H: Full 
protected areas dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral 
Protection Areas dataset overlayed with occurrence records. K: Integral Protection Areas dataset overlayed 
with B. L: Integral Protection Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed 
with D. N: Indigenous Areas dataset overlayed with occurrence records. O: Indigenous Areas dataset 
overlayed with B. P: Indigenous Areas dataset overlayed with C. Q: Indigenous Areas dataset overlayed with 
D.
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3.5 – Heterophrynus boterorum Giupponi & Kury, 2013

The final H. boterorum model was constructed using an M built from a 200km radius around
the occurrence records  (amounting  to  4800 cells),  and BRT and MaxEnt algorithms were  use in
ensembling.  Suitability projections are presented in Fig.  24.  Ensembled P/A projections and their
overlap with the PA-datasets are presented in Fig. 25.

Present  day  ensembled  projections  show  suitability  restricted  to  the  Andean  valleys  of
Colombia. Suitability largely remains the same under the SSP2-4.5 and SSP5-8.5 climate scenarios,
with one notable exception in the Chaparral/Tuluni area, where the species is present today, and where
suitability is lost under both emission scenarios. This is the southernmost population of the species,
and it is isolated from other populations by large mountain chains on all sides. This means not only
that the population in this area could be endangered, but also that genetic diversity may be at risk. The
same suitability loss and observations apply to the population in Ibagué.

Merely 8.6% of present day predicted suitable areas lie within the PA-Full dataset. The high
emission scenario SSP5-8.5 has a smaller suitable area than Present-day, but 10% of this area lies
within PA-Full, a third of which is composed by Integral Protection Areas. The SSP2-4.5 scenario has
both the smallest predicted suitable area and the smallest percentage of Protection Area coverage.

|

Fig. 24: H. boterorum model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records. 
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Fig. 25: H. boterorum Ensembled Presence/Absence maps for the three climatic scenarios and their overlap 
with the Protected Areas Datasets. A: occurrence records. B: present-day presence/absence ensembled 
projections. C: presence/absence ensembled projections under SSP2-4.5 scenario. D: presence/absence 
ensembled projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full protected areas 
dataset overlayed with occurrence records. G: Full protected areas dataset overlayed with B. H: Full protected
areas dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral Protection Areas 
dataset overlayed with occurrence records. K: Integral Protection Areas dataset overlayed with B. L: Integral 
Protection Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed with D. N: 
Indigenous Areas dataset overlayed with occurrence records. O: Indigenous Areas dataset overlayed with B. 
P: Indigenous Areas dataset overlayed with C. Q: Indigenous Areas dataset overlayed with D.
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3.6 – Heterophrynus cervinus Pocock, 1894

The final H. cervinus model was constructed using an M built from a 200km radius around the
occurrence  records  (amounting  to  10920  cells),  and  BRT  and  SVM  algorithms  were  used  in
ensembling.  Suitability projections are presented in Fig.  26.  Ensembled P/A projections and their
overlap with the PA-datasets are presented in Fig. 27.

Present day ensembled projections show habitat  suitability in Ecuador,  mainly East of the
mountains and into the Amazon Basin, as well as in Colombian valleys. Both SSP2-4.5 and SSP5-8.5
show a retraction in  suitable  areas,  with one exception in  the  area consisting of  two Colombian
National Parks, Parque Nacional Cueva de los Guacharos and Parque Nacional Natural de Puracé,
where suitability  remains somewhat stable.  Other  areas,  especially  East of the Andes in Ecuador,
where most occurrence records are and which is the largest contiguous area predicted to be suitable in
the present, largely lose suitability in both analyzed scenarios.

Present-day  projection  shows  20%  of  predicted  suitable  area  being  covered  by  PA-Full.
Scenarios  SSP2-4.5  and SSP5-8.5  project  a  little  over  half  and a  little  under  a  third  of  original
predicted  suitable  area,  respectively.  Both  of  these  last  two scenarios  have  a  quarter  of  the  area
overlapping with PA-Full. Integral protection areas cover 3.5% of present and SSP2-4.5 projections,
and 10% of SSP5-8.5 scenario. This percentage is deceptive however, as it does not mean that the
species will be more protected in a high emission scenario: predicted suitable area overlap with PA-
Integral under present day is 0.26 Mha, the same value as SSP5-8.5 scenario.

|

Fig. 26: H. cervinus model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records.
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Fig. 27: H. cervinus Ensembled Presence/Absence maps for the three climatic scenarios and their overlap with 
the Protected Areas Datasets. A: occurrence records. B: present-day presence/absence ensembled 
projections. C: presence/absence ensembled projections under SSP2-4.5 scenario. D: presence/absence 
ensembled projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full protected areas 
dataset overlayed with occurrence records. G: Full protected areas dataset overlayed with B. H: Full protected 
areas dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral Protection Areas 
dataset overlayed with occurrence records. K: Integral Protection Areas dataset overlayed with B. L: Integral 
Protection Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed with D. N: 
Indigenous Areas dataset overlayed with occurrence records. O: Indigenous Areas dataset overlayed with B. P:
Indigenous Areas dataset overlayed with C. Q: Indigenous Areas dataset overlayed with D.
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3.7 – Heterophrynus cheiracanthus Gervais, 1842

The final  H. cheiracanthus model was constructed using an M built from a 200km radius
around the occurrence records (amounting to 15036 cells), and BRT and SVM algorithms were used
in ensembling. Suitability projections are presented in Fig. 28. Ensembled P/A projections and their
overlap with the PA-datasets are presented in Fig. 29.

Present day ensembled projections show large, almost contiguous coastal areas as suitable for
the species, mainly in Venezuela. Outside of Venezuela, some areas are deemed suitable in Guyana
and Colombia. In Venezuela, a complex present-day scenario is found: habitat suitability follows the
mountain chains from the West, up to the coastal hills around Valencia and Caracas, as well as the
altitude  areas  East  of  Barcelona.  The  suitability  map  spans  over  several  National  Parks:  Parque
Nacional  Juan Pablo Peñaloza,  Parque Nacional  Tapo-Caparo,  Parque Nacional  Sierra  La  Culata,
Parque  Nacional  Tirgua,  Parque  Nacional  Cerro  Saroche,  Parque  Nacional  Morrocoy,  Parque
Nacional Henri Pitter and Parque Nacional Guatopo. Suitable areas are also present in many of the
islands off the coast of Venezuela, from Aruba to Barbados, where the species hasn’t been recorded.
SSP2-4.5 scenario shows an overall loss in suitable area, specially in the hills West of Barcelona and
in the lower areas of Northern Venezuela, around El Congal. SSP5-8.5 scenario follows the same
trend, and few areas remain under this  scenario,  mainly in the region around Caracas and in  the
western mountains in Sierra Nevada and Sierra La Culata National Parks. 

The present-day ensembled projection shows 10 Mha of suitable area for the species, and
much like H. cervinus this value shrinks by half under SSP2-4.5 scenario and by two thirds under the
high emission  scenario.  This  is  the  species  with  the  highest  percentage  of  present-day predicted
suitable area under protection found in this study, as almost 70% of this area lies within PA-Full (Fig.
29-G). Integral protection however lies around 0.5 Mha for the three climatic scenarios.

|

Fig. 28: H. cheiracanthus model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records. 
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Fig. 29: H. cheiracanthus Ensembled Presence/Absence maps for the three climatic scenarios and their 
overlap with the Protected Areas Datasets. A: occurrence records. B: present-day presence/absence 
ensembled projections. C: presence/absence ensembled projections under SSP2-4.5 scenario. D: 
presence/absence ensembled projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full 
protected areas dataset overlayed with occurrence records. G: Full protected areas dataset overlayed with B. 
H: Full protected areas dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral 
Protection Areas dataset overlayed with occurrence records. K: Integral Protection Areas dataset overlayed 
with B. L: Integral Protection Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed 
with D. N: Indigenous Areas dataset overlayed with occurrence records. O: Indigenous Areas dataset 
overlayed with B. P: Indigenous Areas dataset overlayed with C. Q: Indigenous Areas dataset overlayed with 
D.
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3.8 – Heterophrynus elaphus Pocock, 1903

The final H. elaphus model was constructed using an M built from a 200km radius around the
occurrence  records  (amounting  to  27745  cells),  and  BRT  and  SVM  algorithms  were  used  in
ensembling.  Suitability projections are presented in Fig.  30.  Ensembled P/A projections and their
overlap with the PA-datasets are presented in Fig. 31.

Present day ensembled projections show suitable areas for the species in central Peru, East of
the  Andes,  with  suitability  extending  southward  into  Bolivia.  SSP2-4.5  scenario  shows  a  stable
scenario in which suitability area is maintained, and SSP5-8.5 suggests an increase in suitable area for
the species in all directions, possibly due to the high altitude areas in the Andean Mountains shifting
towards a hotter and more humid climate. 

With the increase in suitable area follows an increase in suitable Integral-Protection area. The
predicted suitable area overlap with the PA-Full dataset decreases however, most notably on Manu
National Park, on Bahuaja – Sonene National Park and on Tambopata National Reserve, all areas
where the species has been recorded and where our predictions show will lose suitability under both
tested scenarios. The PA-Indigenous dataset contributes to little protection under any scenario.

|

Fig. 30: H. elaphus model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records. 
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Fig. 31: H. elaphus Ensembled Presence/Absence maps for the three climatic scenarios and their overlap with 
the Protected Areas Datasets. A: occurrence records. B: present-day presence/absence ensembled 
projections. C: presence/absence ensembled projections under SSP2-4.5 scenario. D: presence/absence 
ensembled projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full protected areas 
dataset overlayed with occurrence records. G: Full protected areas dataset overlayed with B. H: Full protected 
areas dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral Protection Areas 
dataset overlayed with occurrence records. K: Integral Protection Areas dataset overlayed with B. L: Integral 
Protection Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed with D. N: 
Indigenous Areas dataset overlayed with occurrence records. O: Indigenous Areas dataset overlayed with B. P:
Indigenous Areas dataset overlayed with C. Q: Indigenous Areas dataset overlayed with D.
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3.9 – Heterophrynus longicornis Butler 1873

The final H. longicornis model was constructed using an M built from a 200km radius around
the occurrence records (amounting to 123624 cells),  and BRT and SVM algorithms were used in
ensembling.  Suitability projections are presented in Fig.  32.  Ensembled P/A projections and their
overlap with the PA-datasets are presented in Fig. 33.

Present day ensembled projections show few regions being suitable for the species, mostly in
the western part of the Amazon Rainforest even though it is highly sampled throughout the Amazon
Basin,  with records  even in the Brazilian Cerrado and Caatinga Biomes.  The last  two are highly
different from the Amazon Rainforest, the Cerrado being a tropical savanna and the Caatinga being a
predominantly arid biome. H. longicornis occurs in these biomes in refugia, altitude marshes, caves
and  karstic  areas,  which  can  be  a  problem  for  models  particularly  at  the  broad  scale  we  used
(Carvalho et  al.  2011).  These populations are perhaps reminiscent  of past  distributions,  when the
Amazon and Atlantic Rainforests dominated most of what is now central and eastern Brazil (Sobral-
Souza et al. 2015). As discussed before, the two algorithms used show many highly suitable areas in
the  central  Amazon,  but  as  the  algorithms  are  divergent  in  predictions,  the  ensembled
Presence/Absence maps do not represent many of such areas (Fig. 33 C, D and G).

The ensembled maps are biased and dictated by artifacts  (Fig.  32 C, G and K),  and their
overlap with the PA datasets are uninformative. Both future climate scenario models retained almost
no suitable area for the species (Fig. 32 H and L), amounting to virtually no overlap with Protected
Areas (Fig. 33 H and I).

|

Fig. 32: H. longicornis model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records. 
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Fig. 33: H. longicornis Ensembled Presence/Absence maps for the three climatic scenarios and their overlap 
with the Protected Areas Datasets. A: occurrence records. B: present-day presence/absence ensembled 
projections. C: presence/absence ensembled projections under SSP2-4.5 scenario. D: presence/absence 
ensembled projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full protected areas 
dataset overlayed with occurrence records. G: Full protected areas dataset overlayed with B. H: Full protected 
areas dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral Protection Areas 
dataset overlayed with occurrence records. K: Integral Protection Areas dataset overlayed with B. L: Integral 
Protection Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed with D. N: 
Indigenous Areas dataset overlayed with occurrence records. O: Indigenous Areas dataset overlayed with B. P:
Indigenous Areas dataset overlayed with C. Q: Indigenous Areas dataset overlayed with D.
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3.10 – Heterophrynus vesanicus Mello-Leitão 1931

The final H. vesanicus model was constructed using an M built from a 200km radius around
the  occurrence  records  (amounting  to  27495 cells),  and BRT and SVM algorithms were  used  in
ensembling.  Suitability projections are presented in Fig.  34.  Ensembled P/A projections and their
overlap with the PA-datasets are presented in Fig. 35.

Present day ensembled model projections show few suitable areas, but as in the last case it can
be seen that both algorithms predicted highly suitable areas in the Brazilian Cerrado and even some
connection to the Atlantic Rainforest to the East. However, there is a clear sampling bias here, as most
of the species’ records fall in the Serra da Bodoquena region (18 out of 35), a karstic area where the
vegetation resembles more the Atlantic Rainforest than its surrounding Cerrado (Cardoso da Silva et
al.  2004),  and  most  of  these  records  are  from caves.  Moreover,  other  records  are  placed  in  the
highlands and plateaus that surround the Pantanal Wetland Basin, but the species hasn’t been recorded
in the Basin itself,  and although the  ensemble doesn’t  show it  as  being suitable,  each algorithm
predicts the region to be suitable in the present. 

Future climate scenarios diverge significantly from one another, as BRT projections show a
maintenance  of  suitability  and  even  an  increase  in  suitable  area,  and  SVM shows an  extremely
different prediction where present day suitable area is almost entirely lost and there is a shift towards
the East toward the Atlantic Rainforest and to the North towards the Cerrado and the Amazon. The
only areas that both algorithms agree are presented in the ensemble map, that shows most of the
Brazilian state of Mato Grosso do Sul as suitable in present day climate, Pantanal excluded. Both
future  climate  ensemble  projections  show  a  loss  of  suitability  in  the  karstic  area  of  Serra  da
Bodoquena, presenting a shift in suitability towards the states of São Paulo to the East, and toward
Paraná to the South, following present-day Atlantic Rainforest domains.

Like the former species, as algorithms projections diverge few suitable areas can be assessed
in ensemble maps,  but the areas that  can are poorly protected,  even under the scope of PA-Full.
Integral Protection areas cover one percent of suitable area in all scenarios. Indigenous Areas cover
less than third of a percent of predicted suitable area in all scenarios. Moreover, as the two algorithms
show opposite suitability exactly where the species has been mostly sampled, we are not able to truly
trust any of these conclusions.

|
Fig. 34: H. vesanicus model and ensemble outputs for the three climate scenarios. Purple dots represent 
occurrence records. 
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Fig. 35: H. vesanicus Ensembled Presence/Absence maps for the three climatic scenarios and their overlap 
with the Protected Areas Datasets. A: occurrence records. B: present-day presence/absence ensembled 
projections. C: presence/absence ensembled projections under SSP2-4.5 scenario. D: presence/absence 
ensembled projections under SSP5-8.5 scenario. E: A-C overlayed in a single map. F: Full protected areas 
dataset overlayed with occurrence records. G: Full protected areas dataset overlayed with B. H: Full protected 
areas dataset overlayed with C. I: Full protected areas dataset overlayed with D. J: Integral Protection Areas 
dataset overlayed with occurrence records. K: Integral Protection Areas dataset overlayed with B. L: Integral 
Protection Areas dataset overlayed with C. M: Integral Protection Areas dataset overlayed with D. N: 
Indigenous Areas dataset overlayed with occurrence records. O: Indigenous Areas dataset overlayed with B. P:
Indigenous Areas dataset overlayed with C. Q: Indigenous Areas dataset overlayed with D.
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In summary, our results show that some species will lose total suitable area, namely H. boterorum, H.
cervinus  and H. cheiracanthus, while others will have its suitable area increase under both future
emission scenarios (H. alces, H. armiger, H. batesii  and H. elaphus). For the remaining two species
(H. longicornis and H. vesanicus) ensembled models were inconclusive mainly due to our ensembling
approach. Roughly a third of all species’ collective suitable area in this study fall within some kind of
Protected Area under any of the tested climate scenarios, on average.

Moreover, from the PA-Full overlap analysis we verify that species H. boterorum, H. cervinus,
H. cheiracanthus and H. vesanicus will lose suitability in Protected Areas, while H. alces, H. armiger,
H. batesii and H. elaphus will have an increase in suitable area inside Protected Areas. 

From the PA-Integral overlap perspective, our results indicate that species are to lose or gain
suitable area depending on the climate scenario:  H. alces  and H. boterorum  will lose suitable area
inside Integral Protection areas under SSP2-4.5 scenario, but will gain it under the SSP5-8.5 scenario.
The opposite is true for  H. cheiracanthus,  that will lose suitable area inside PA-Integral under an
SSP5-8.5 scenario, but gain area under an SSP2-4.5 scenario. Species H. cervinus will lose suitable
area inside PA-Integral under an SSP2-4.5 scenario, but the area will remain stable under an SSP5-8.5
scenario. H. vesanicus will simply lose suitable area inside PA-Integral, and H. elaphus will have it
increased, under any scenario.

Finally, from the PA-Indigenous overlap analysis only a few species’ suitable areas fell inside
the dataset. Species  H. alces, H. batesii  and H. elaphus will see an increase in suitable area inside
Indigenous Land or Territory, and the opposite is true for H. vesanicus.

On an average of all eight species (H. longicornis disregarded), PA-Full overlaps with 31.55%
of present-day suitable area, 32.07% of SSP2-4.5 suitable area and 33.16% of SSP5-8.5 suitable area.
PA-Integral overlaps with merely 2.66% of present-day suitable area, 2.87% of SSP2-4.5 suitable area
and 4.58% of SSP5-8.5 suitable area. For species that have its suitable area overlapping with PA-
Indigenous (i.e.  H. alces, H. batesii,  H. elaphus  and  H. vesanicus),  these areas cover on average
2.54% of present-day suitable area, 2.81% of SSP2-4.5 suitable area and 2.90% of SSP5-8.5 suitable
area. These figures suggest that on average, Indigenous Land or Territory cover roughly the same area
as Integral Protection Areas for our tested species both in present-day projections and in an SSP2-4.5
projections,  but  Integral  Protection  Areas  seem  to  cover  more  relative  area  under  an  SSP5-8.5
scenario.  Currently,  Indigenous  Land  and Territory  accounts  for  more  protection  area  as  Integral
Protection Areas (IUCN Categories Ia, Ib and II) only for H. batesii, and this will remain true under
both of the tested SSP scenarios.

4.0 – Discussion

Our  work provides  another  example  of  taxa  for  which  ITs  have  a  great  potential  in  conserving
diversity. Current demarcated ITs play as big as a role in the conservation of our studied whip-spider
species as Integral Protection Areas under almost all tested climatic scenarios for almost all species.
Moreover, being one of the least diverse arachnid groups, data on whip-spiders are usually scarce and
there is almost no knowledge on these taxa’s population size, biology, ecology, and their sensibility to
neither anthropogenic nor climate-change related threats. As with most invertebrates, this lack of data
translates  into  a  complete  vacuum  of  information  regarding  their  protection  status  and  their
susceptibility to extinction under man-made threats, and conservation of these species is not typically
tackled or mentioned in the literature.
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There are currently only two whip-spider species listed in the IUCN Red List (IUCN 2021),
neither from the whip-spider Family in this study. This is concerning because our models suggest that
for at least one of the species (H. cheiracanthus), habitat suitability will decrease to a half or a third of
present-day suitable area under an SSP2-4.5 or SSP5-8.5 scenarios respectively, and to the best of our
knowledge there are no conservation efforts focused on whip-spiders in South America. Moreover,
even though some species will even see an increase in suitable area under the tested scenarios (namely
H. alces, H. armiger, H. batesii  and H. elaphus), these suitable areas will only stay roughly in the
same place as present-day suitable area for three of them (H. armiger, H. batesii, and H. elaphus). All
other species will see a shrinking and/or shifting in present-day suitable area where these species
currently occur.

Adding to the concern mentioned on the last paragraph, our models are based on climate only,
and they are completely blind to habitat degradation, fragmentation and/or destruction, which is a
major threat especially in the Amazon, that has seen increasing levels of deforestation in recent years
(Silva  et  al.  2022,  Deutsch  & Fletcher  2022),  and  even  indigenous  peoples  and  their  lands  are
themselves under current threat given the current Brazilian Administration’s environmental policies
(Atahyde et  al.  2022). Moreover, this is yet another reason why ITs can play a major role in the
conservation of whip-spiders, as deforestation is significantly smaller in these areas than in other
types of PA (Nepstad et al. 2006, Begotti & Peres 2019), and intact forests are more common in ITs
than anywhere else (Fa et al. 2020). Some studies have found that amazonian ITs can even retain a
higher level of diversity than other PAs (Fernández-Llamarazes et al. 2021, Sanabria & Achuri 2021)
in some cases, or at least the same level in others (Prada & Xavante 2021). 

One unexpected pattern that arose in two independent models (H. alces and H. batesii) under
both future scenarios is the appearance of a suitable area corridor through Guyana and Suriname
towards the Brazilian states of Pará and Roraima.  These findings are reminiscent  to the work of
Sobral-Souza et al. (2015), in which the authors modeled past connections between the Amazon and
Atlantic  Rainforests,  where  a  similar  corridor  towards  the  coast  appeared  in  the  Last  Glacial
Maximum (LGM,  ca.  21Kya).  Their  study  classifies  this  area  as  suitable  for  both  the  Northern
Atlantic Forest and the Western Amazon in that time period. Yet, one of the species only occurs North
of the “corridor” (H. alces) while the other to the South and West of it (H. batesii), which makes the
convergence in the models even more intriguing. Our models were not designed to further explore this
pattern. Regardless, the area seems to be of an immense importance under future climate scenarios as
it could become a bridge and/or harbor refugia for species which suitable area are shrinking both to
the North and to the South. We also note that the area where the connection appears hosts relatively
few Protected Areas when comparing to its surroundings in Northern Brazil and Venezuela (Fig. 24-
F), none of which are of Integral Protection or an IT (Figs. 24-J and -N respectively). Moreover,
Heterophrynus diversity  seem to  be  greater  in  the  Western  Amazon,  at  least  given the  currently
recognized species, which could be explained by the cradles-and-graves biogeographical hypothesis
(Rangel et al. 2008), but our models were not designed to test whether this is the case.

Given  that  our  models  were  truncated  (i.e.  they  did  not  extrapolate  suitability  beyond  the
training range) we were surprised to find that our models show the suitability range for  H. batesii
increase,  even  in  the  highest  carbon-fueled-development  scenario  (SSP5-8.5),  in  which  the  areas
where the species occurs are supposed to be both hotter (2.8 to >5ºC) and drier by the end of the
century (Almazroui et al.  2021). One of the reasons for this could be the use of the single GCM
MIROC6,  which  diverges  from the  mean  of  ensembled  GCMs in  all  regions  of  South  America
(Almazroui et al. 2021).
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5.0 – Conclusions

The  little  known and  widespread  genus  Heterophrynus  have  been  focus  of  small  ecological  and
taxonomic studies. This is the first time the group is treated in its entirety and this work provides
information that potentially will guide future collecting and conservation efforts. The first main result
of this work is the production of suitability maps for Heterophrynus species, a novelty for the Family.
These maps allowed us to compile possible trends in the distribution of the species, and will give
researchers a list  of areas with the potential  presence of new populations,  and perhaps even new
species. 

This work also presents further evidence of the current and future roles of ITs in preserving
biodiversity in South America. Presently recognized Protected Areas cover almost half of the Amazon,
and ITs nearly a quarter of it. However, IT networks in the Amazon have been demonstrated to be of
immense importance in flying mammal conservation (Fernández-Llamazares et al. 2021), even greater
than  regular  PAs.  We  think  more  evidence  needs  to  be  gathered  on  the  importance  of  ITs  for
biodiversity conservation,  as Indigenous Peoples  and ITs have been suffering increasing pressure,
invasions and outright attacks, and their protection has not been guarantied because of socio-political
trends in South America over the last few years. We state that increasing the effective protection of
Indigenous Peoples from miners, loggers and agribusiness interests, and further implementing and
recognizing new ITs can be one of the most cost-effective conservation strategies at hand if the South
American developing countries are  to  uphold the Conservation Strategies  of the Paris  Agreement
(Garnett et al. 2018).

Finally, we list some limitations of our work we deem important and direct future research in
the area of ENM for possible solutions. First, the use of a single GCM as previously mentioned should
be avoided when possible (Almazroui et al.  2021), as well as the use of a single climatic dataset
(WorldClim; Morales-Barbero & Vega-Álvarez 2018). Second, many of the species had relatively few
occurrence  records  over  wide  areas  (see  Pearson  et  al.  2006  for  steps  in  assessing  small  model
performance). Third, ensembling by the PA method has its downsides, but we chose this method over
weighted by any statistic as the most commonly used are AUC and TSS, and these statistics mean
little  to  nothing in  presence-background or  presence-absence  models  (Jiménez & Soberón 2020).
Fourth, the taxa we chose are known to occur in caves and other types of refugia, and we used cave
entrance coordinates in these cases, which is problematic at best in ecological niche modeling (see
Mammola et al. 2018 for steps that can be taken to minimize these problems). Fifth, more algorithms
could have been tested, especially ‘simpler’ ones as DOMAIN or BIOCLIM for reference (Konowalik
& Nosol 2021). Sixth and finally, a systematization of the tested M sizes would be desirable in any
future studies. It is worth mentioning that pends further investigation whether the WDPA dataset is
complete with all the ITs that the Rede Amazônica de Informação Socioambiental Georreferenciada
dataset (RAISG 2019) contains, which might be of better use in Amazonian areas.
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General Conclusion

This study explored the feasibility and restraints in building ENMs for a terrestrial arthropod in South 
America. We showed the limitations of BioClim especially in the Amazon Basin, as well as the 
dissimilarity between its outputs and other climatic datasets. Our results suggest that RF and MARS 
overfit models and GLM, GLMNet and MaxLike underfit models given tested settings, regardless of 
the species, geographical context or model size. Moreover, our approach further demostrates the 
shortcomings of AUC and TSS statistics as an evaluation method of presence-absence and presence-
background ENMs. Our study also demonstrates that selecting M should be done by fitting a few 
models a priori and selecting the desired size based on the intended purpose of model use (e.g. does 
one need to exhaust all suitable area or are more localized patterns the focus).

We built, projected and ensembled models for Heterophrynus species under two end-of-century
SSP scenarios, from which we assessed suitable area overlap with Protected Areas. Our results show 
that suitable area gain, loss, or shift varies widely between species, as well as protection area overlap. 
We show that currently, most of the protection comes from IUCN categories III-VI areas, and that 
Indigenous Land or Territories cover roughly the same suitable area as IUCN categories Ia, Ib and II 
areas overall.

Future research should, therefore, apply new advances in ENM’s algorithms and expand on this
study by adding more distribution points strengthening analysis. We also expect that our findings 
guide decision makers in defining new conservartion areas and increasing protection of existing ones.
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