

Serviço Público Federal Ministério da Educação

Fundação Universidade Federal de Mato Grosso do Sul

Classificação mecânica da madeira por meio de peças estruturais

Kayo Vinícius Chimenes Pinto ^a; Christiane Areias Trindade ^b

^a Aluno de Graduação em Engenharia Civil, <u>kayo.c@ufms.br</u> ^b Professora Orientadora, Doutora, <u>christiane.trindade@ufms.br</u>

Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia. Universidade Federal de Mato Grosso do Sul. Av. Costa e Silva, s/nº | Bairro Universitário | 79070-900 | Campo Grande, MS, Brasil.

RESUMO

A recente atualização da norma NBR 7190 (ABNT, 2022) estabeleceu mudanças nas classes de resistência das espécies de madeira, introduzindo a classificação por meio de peças estruturais, o que afeta diretamente a verificação de elementos estruturais de madeira. Para essa nova classificação é necessário a obtenção dos valores das propriedades mecânicas por meio de ensaios em peças estruturais. Entretanto, na literatura, há muitos resultados de ensaios realizados em corpos de prova, e supõe-se que há poucos resultados em peças estruturais. Deste modo, essa revisão integrativa tem como objetivo levantar os trabalhos já realizados com ensaios em peças estruturais de madeira de diversas espécies e organizar os resultados obtidos desses ensaios relacionando-os com as classes de resistência estabelecidas pela versão atual da NBR 7190 (ABNT, 2022). Como resultado, foram obtidos dados de diferentes espécies que possibilitaram a classificação das mesmas e criação de uma tabela de classes de resistência para peças estruturais. Com isso, conclui-se que há uma lacuna a ser preenchida em relação a resultados para mais espécies de ensaios de peças estruturais conforme a nova classificação da NBR 7190 (ABNT, 2022).

Palavras-chave: classificação estrutural de madeira, peças estruturais de madeira.

ABSTRACT

The recent update of the NBR 7190 standard (ABNT, 2022) has established changes in the strength classes of wood species, introducing classification through structural members, which directly impacts the verification of wooden structural elements. This new classification requires obtaining mechanical property values through tests on structural members. However, literature predominantly contains results from tests on small specimens, with fewer results available for structural members. Therefore, this integrative review aims to compile studies that have conducted tests on structural members of various wood species and to organize the obtained results in relation to the strength classes established by the current version of NBR 7190 (ABNT, 2022). As a result, data from different species were collected, enabling their classification and the creation of a strength class table for structural members. Consequently, it is concluded that there exists a gap in the availability of results for more species of structural member tests according to the new classification of NBR 7190 (ABNT, 2022).

Keywords: structural classification of wood, wooden structural members.

1. INTRODUÇÃO

A madeira se destaca como um material de construção milenar, sendo atualmente um material de construção economicamente competitivo, tendo o estudo sobre a mesma propiciado a expansão do seu uso em diferentes estruturas (PFEIL, 2003).

A NBR 7190 (ABNT, 2022) estabelece classes de resistência para as espécies de madeira de modo a facilitar ao projetista a especificação do material em função da classe e não necessariamente de uma

espécie específica. Assim, torna-se necessário classificar as espécies de madeira e enquadrá-las nas classes.

Com a recente atualização da norma NBR 7190 (ABNT, 2022) foram estabelecidas mudanças nas classes de resistência das espécies de madeira, introduzindo a classificação por meio de peças estruturais, o que afeta diretamente a verificação de elementos estruturais de madeira

Para essa nova classificação é necessário a obtenção dos valores das propriedades mecânicas por meio de ensaios de peças estruturais. Entretanto, na literatura,

há muitos resultados de ensaios realizados em corpos de prova, e supõe-se que há poucos resultados em peças estruturais.

Deste modo, essa revisão integrativa tem como objetivo levantar os trabalhos já realizados com ensaios em peças estruturais de madeira de diversas espécies e organizar os resultados obtidos desses ensaios relacionando-os com as classes de resistência estabelecidas pela versão atual da NBR 7190-1 (ABNT, 2022).

2. CLASSIFICAÇÃO DA MADEIRA

A classificação de madeira no Brasil atualmente é regida pela norma técnica NBR 7190 (ABNT, 2022) – Projeto de estruturas de madeira que é dividida em 7 partes:

NBR 7190-1: Critérios de dimensionamento.

NBR 7190-2: Métodos de ensaio para classificação visual e mecânica de peças estruturais de madeira.

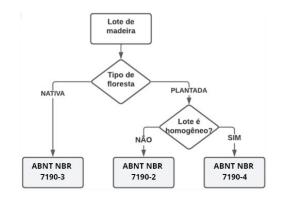
NBR 7190-3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas.

NBR 7190-4: Métodos de ensaio para caracterização peças estruturais.

NBR 7190-5: Métodos de ensaio para determinação da resistência e da rigidez de ligações com conectores mecânicos.

NBR 7190-6: Métodos de ensaio para caracterização de madeira lamelada colada estrutural.

NBR 7190-7: Métodos de ensaio para caracterização de madeira lamelada colada cruzada estrutural.


Com isso, a primeira parte trata dos procedimentos de cálculo e verificação das estruturas e as partes seguintes abrangem métodos de ensaio de um grupo específico.

A NBR 7190 (ABNT, 2022) também define como deve ser feita a classificação, como mostra o fluxograma da figura 1. Lotes de madeiras de florestas plantadas, do qual não se pode garantir homogeneidade, deve ser classificado conforme NBR 7190-2.

Lotes de madeiras de florestas plantadas, devem ser ensaiados conforme a NBR 7190-4. Lotes

homogêneos de florestas nativas podem ser ensaiados em dimensões estruturais conforme a NBR 7190-4 como também podem ser ensaiados como corpo de prova conforme a NBR 7190-3.

Figura 1. Fluxograma de caracterização das propriedades de resistência e rigidez das madeiras.

Fonte: NBR 7190 (ABNT, 2022)

2.1. Classes de Resistência

As classes de resistência das madeiras têm por objetivo a utilização de madeiras com propriedades padronizadas, orientando a escolha do material para elaboração de projetos estruturais conforme a NBR 7190 (ABNT, 2022).

Com a atualização da NBR 7190 (ABNT, 2022), foi estabelecida uma separação na classificação a partir de corpos de prova e a partir de peças estruturais de madeira:

As classes de resistência a partir de ensaios mecânicos de corpos de prova de madeira isentos de defeitos foram definidas na NBR 7190-1 (ABNT, 2022), conforme apresentado no quadro 1.

Quadro 1. Classes de resistência de espécies de florestas nativas definidas em ensaios de corpos de prova isentos de defeitos.

Classes	f _{c0k}	f_{v0k}	Eco, med	Densidade a 12%
	MPa	MPa	MPa	kg/m³
D20	20	4	10000	500
D30	30	5	12000	625
D40	40	6	14500	750
D50	50	7	16500	850
D60	60	8	19500	1000

Fonte: NBR 7190 (ABNT, 2022)

Com base nas classes do Quadro 1 e resultados de vários ensaios de corpos de prova, originou-se a tabela de classes de resistência para espécies de madeiras nativas no Brasil, conforme o Quadro 2.

Quadro 2. Classes de resistência para espécies de madeiras nativas do Brasil.

Classe de	Nome	Nome científico
Resistência	popular	
D20	Amescla	Trattimmocloa
D20	Caixeta	burserifolia Simarouba amara
D20	Cajueiro	Anacardium sp.
D20	Cambará Rosa	_
	Cambara Rosa Cedro Doce	Erisma sp.
D20		Cedrela sp.
D20	Cedro Amargo	Cedrela odorata
D20	Cedrinho	Erisma sp.
D20	Cedroarana	Cedrelinga
D20	Marupá	cataneformis Simarouba sp.
D30	Castanheira	Bertholletia excelsa
D30	Cedro Amazonense	Cedrela sp.
D30	Embireira	Guatteria sp.
D30	Quarubarana	Erisma uncinatum
D30	Tauari	Couratari sp.
D30	Umirana	Qualea retusa
D40	Abiú	Pouteria sp.
D40	Angelim	Vatairea fusca
D40	Amargoso	V-4-i
D40	Angelim Araroba	Vataireopis araroba
D40	Angico	Anaderanthera
	Branco	colubrina
D40	Bicuíba	Micropholis sp.
D40	Branquilho	Sebastiania
D40	Cafearana	commersoniana Andira stipulacea
D40	Canafistula	-
		Cassia ferruginea
D40	Canela Parda	Ocotea sp.
D40	Canelão	Ocotea sp.
D40	Catanudo	Micropholis sp.
D40	Copaíba	Copaifera sp.
D40	Copiúba	Goupia glabra
D40	Goiabão	Planchonella
D40	Louro Verde	pachycarpa Ocotea sp.
D40	Mirarema	Hymenolobium sp.
D40	Quaruba Rosinha	Vochysia sp.
	Teomina	ı

D40	Rabo de	Vochysia haenkeana		
D.50	Arraia	77 11.		
D50	Angelim Pedra	Hymenolobium paetrum		
D50	Angelim Saia	Vatairea sp.		
D50	Casca Grossa	Pouteria pachycarpa		
D50	Castelo	Calycophyllum sp.		
D50	Envira	Xylopia sp.		
D50	Envira Branca	Xylopia nÃtida		
D50				
	Garrote	Bagassa sp.		
D50	Louro Preto	Ocotea sp.		
D50	Mirarema	Hymenolobium sp.		
D50	Parinari	Parinari excelsa		
D50	Peroba Mica	Aspidosperma sp.		
D50	Piolho	Tapirira sp.		
D50	Quina Rosa	Chinchona sp.		
D60	Angelim Ferro	Hymenolobium sp.		
D60	Angelim	Dinizia excelsa		
	Vermelho			
D60	Angico Preto	Anaderanthera		
D(0	D	macrocarpa		
D60	Breu Vermelho	Protium sp.		
D60	Champanhe	Dipteryx odorata		
D60	Cutiúba	Qualea paraensis		
D60	Garapa	Bagassa guianensis		
D60	Guaiçara	Luetzelburbia sp.		
D60	Guajará	Micropholis venulosa		
D60	Guanandi	Callophyllum		
		brasiliense		
D60	Guarucaia	Peltophorum		
D60	Ipê	vogelianum Tabeuia serratifolia		
D60	Itaúba	Mezilaurus itaÃoba		
D60	Jatobá	Hymenaea stilbocarpa		
D60		Manilkara sp.		
	Maçaranduba	_		
D60	Mandioqueira C60	Qualea paraensis		
D60	Oiticica	Clarisia racemosa		
	Amarela			
D60	Oiuchu	Pradosia sp.		
D60	Roxinho	Peltogyne leicointei		
D60	Sucupira	Bowdichia sp.		
D60	Tachi	Tachigali		
D(0	Tataint	mirmecophylla		
D60	Tatajuba	Bagassa guianensis		
D60	Umirana	Qualea retusa		

Fonte: NBR 7190 (ABNT, 2022)

As classes de resistência a partir de ensaios mecânicos de peças estruturais de madeira foram definidas na NBR 7190-1 (ABNT, 2022), conforme apresentado no Quadro 3.

Quadro 3. Classes de resistência definidas em ensaios de peças estruturais.

			Coníferas								Folhosas										
	Símbolo	C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D18	D24	D30	D35	D40	D50	D60	D70
	Propriedades de resistência MPa																				
Flexão	$f_{b,k}$	14	16	18	20	22	24	27	30	35	40	45	50	18	24	30	35	40	50	60	70
Tração paralela	f _{t,0,k}	8	10	11	12	13	14	16	18	21	24	27	30	11	14	18	21	24	30	36	42
Tração perperdicular	f _{t,90,k}	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Compressão paralela	f _{C,O,k}	16	17	18	19	20	21	22	23	25	26	27	29	18	21	23	25	26	29	32	34
Compressão perperdicular	f _{c,90,k}	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	7,5	7,8	8,0	8,1	8,3	9,3	11	13,5
Cisalhamento	$f_{V,k}$	3,0	3,2	3,4	3,6	3,8	4,0	4,0	4,0	4,0	4,0	4,0	4,0	3,4	4,0	4,0	4,0	4,0	4,0	4,5	5,0
	Propriedades de rigidez GPa																				
Módulo de elasticidade a 0° médio	E _{0,m}	7	8	9	9,5	10	11	12	12	13	14	15	16	9,5	10	11	12	13	14	17	20
Módulo de elasticidade a 0° caracterís ico	E _{0,05}	4,7	5,4	6,0	6,4	6,7	7,4	7,7	8,0	8,7	9,4	10	11	8	8,5	9,2	10	11	12	14	16,8
Módulo de elasticidade a 90° médio	E _{90,m}	0,2	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,5	0,5	0,5	0,6	0,7	0,7	0,8	0,9	0,9	1,1	1,33
Módulo de elasticidade transversal médio	G _m	0,4	0,5	0,6	0,6	0,6	0,7	0,7	0,8	0,8	0,9	0,9	1,0	0,6	0,6	0,7	0,8	0,8	0,9	1,1	1,25
							•	•	Densi										•		
Densidade característica	ρk	290	310	320	330	340	350	370	380	400	420	440	460	475	485	530	540	560	620	700	900
Densidade média	ρm	350	370	380	390	410	420	450	460	480	500	520	550	570	580	640	650	660	750	840	1080
	Nota 1 Valores obtidos conforme a ABNT NBR 7190-4.																				

Fonte: NBR 7190 (ABNT, 2022)

A ausência de uma tabela que correlacione as espécies com as classes de resistência para peças estruturais, diferentemente do que ocorre para corpos de prova, foi a motivação da realização desse trabalho.

2.2. Métodos de ensaios para peças estruturais de madeira

Ensaios em peças estruturais podem ser realizados em corpo de prova de tamanho mínimo especificado em cada ensaio ou no tamanho original da peça. Para realização do mesmo, devem ser obedecidas as seguintes condições conforme a NBR 7190 (ABNT, 2022):

- A extração dos corpos de prova deve ser cortados uma amostra mínima de 40 unidades a partir de peças selecionadas para representar uma população de referência obtida por seleção aleatória.
- Temperatura de 20 °C e umidade relativa de 65%, com isso a umidade de equilíbrio da madeira deve ser aproximadamente 12%.
- A Taxa de carregamento deve ser aplicada de modo que ocorra a ruptura do elemento entre 1 min e 5 min.
- No momento do ensaio, o teor de umidade da madeira, a temperatura da madeira, e o tempo até a ruptura devem ser registrados.

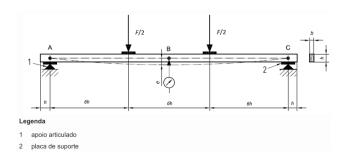
Sendo assim, a norma define os seguintes ensaios:

-Densidade

A densidade no momento do ensaio é calculada conforme a seguinte equação com medidas em mm:

$$\rho_{test} = \frac{m \cdot 10^9}{L \cdot b \cdot h}$$

A densidade a 12% de umidade (ρ_{12}) é calculada conforme a seguinte equação:


$$\rho_{12} = \rho_{test} (1-0.5(U-0.12))$$

onde "U" é o teor de umidade no momento do ensaio, como determinado pelo método de secagem na estufa.

-Resistência e rigidez à flexão

Uma viga de vão 18h deve receber carregamento em dois pontos, espaçados igualmente entre os apoios nas extremidades, com cada força igual a F/2, conforme o esquema da figura 2.

Figura 2. Esquema para o ensaio de flexão.

Fonte: NBR 7190-4 (ABNT, 2022)

O módulo de elasticidade na flexão (E₀) é calculado pela seguinte equação:

$$E_0 = \frac{23}{108} \left(\frac{L}{h}\right)^3 \left(\frac{\Delta F}{\Delta e}\right) \frac{1}{b}$$

Onde:

 Δ_e é o deslocamento incremental;

 Δ_f é a força incremental;

L é o vão livre entre os apoios, igual a 18 h;

b é a largura da seção transversal do corpo de prova;

h é a altura da seção transversal do corpo de prova.

Já a resistência convencional à flexão (f_m) deve ser calculada a partir de:

$$f_m = \frac{Frupt L}{bh^2}$$
; onde:

 F_{rupt} é o valor da força de ruptura aplicada (força última);

L é o vão livre entre os apoios, igual a 18 h;

b é a largura da seção transversal do corpo de prova;

h é a altura da seção transversal do corpo de prova.

-Tração paralela às fibras

A força deve ser aplicada até a ruptura da amostra. Conforme a figura 3, o comprimento da peça entre pegas deve ser de 8h + 2000mm.

Figura 3. Esquema para o ensaio de resistência à tração paralela às fibras.

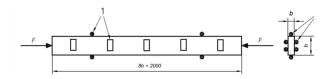
Fonte: NBR 7190-4 (ABNT, 2022)

A resistência à tração paralela às fibras $(f_{t,0})$ é calculada conforme a seguinte equação:

$$f_{t,0} = \frac{\text{Frupt}}{\text{bh}}$$

onde

 F_{rupt} é o valor da força de ruptura aplicada (força última);


b é a largura da seção transversal do corpo de prova;

h é a altura da seção transversal do corpo de prova.

-Compressão paralela às fibras

Na resistência à compressão paralela às fibras, a configuração de ensaio deve ser conforme a figura 4, sendo a força aplicada axialmente até a ruptura.

Figura 4. Esquema para o ensaio de resistência à compressão paralela às fibras.

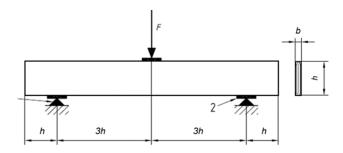
Fonte: NBR 7190-4 (ABNT, 2022)

A resistência à compressão paralela às fibras $(f_{c,0})$ é calculada conforme a seguinte equação:

$$f_{c,0} = \frac{Frupt}{bh}$$

onde

 F_{rupt} é o valor da força de ruptura aplicada (força última);


b é a largura da seção transversal do corpo de prova;

h é a altura da seção transversal do corpo de prova.

-Resistência ao cisalhamento paralelo às fibras

A configuração deve seguir conforme a figura 5 com a força aplicada gradativa até a ruptura.

Figura 5. Esquema para o ensaio de resistência ao cisalhamento paralelo às fibras.

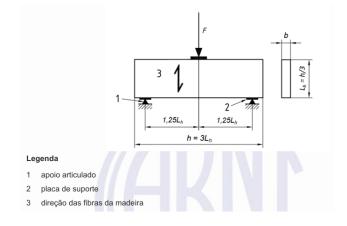
Fonte: NBR 7190-4 (ABNT, 2022)

A resistência ao cisalhamento (f_v) deve ser calculada a partir de:

$$f_v = \frac{0.75 \text{Frupt}}{\text{bh}}$$

onde

 F_{rupt} é o valor da força de ruptura aplicada (força última);


b é a largura da seção transversal do corpo de prova;

h é a altura da seção transversal do corpo de prova.

-Resistência à tração perpendicular às fibras

O corpo de prova deve ser carregado no ponto central, com dimensões conforme a figura 6.

Figura 6. Esquema para o ensaio de resistência à tração perpendicular às fibras.

Fonte: NBR 7190-4 (ABNT, 2022)

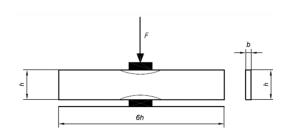
A resistência à tração perpendicular às fibras (f_{t,90}) é calculada a partir de:

$$f_{t,90} = \left(\frac{3,75 Frupt}{bh}\right) \left(\frac{0,3b L_h^2}{800^3}\right)^{0,2}$$

onde

 F_{rupt} é o valor da força de ruptura aplicada (força última);

 L_h é a altura da seção transversal do corpo de prova;


b é a largura da seção transversal do corpo de prova;

h é a altura da seção transversal do corpo de prova.

-Resistência e rigidez à compressão perpendicular às fibras

A configuração do ensaio segue conforme a figura 7:

Figura 7. Configuração para determinação da resistência e rigidez normal às fibras.

Fonte: NBR 7190-4 (ABNT, 2022)

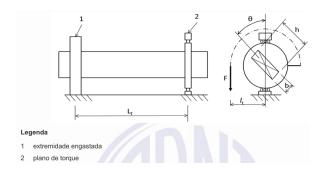
A resistência à compressão perpendicular às fibras ($f_{c,90}$) deve ser calculada pela equação:

$$f_{c,90} = \frac{Frupt}{90b}$$
 ou $f_{c,90} = \frac{F_{0,1h}}{90b}$

onde

 F_{rupt} é o valor da força de ruptura aplicada (força última);

 $F_{0,1h}$ é a força correspondente a um deslocamento de 0,1 h;


b é a largura da seção transversal do corpo de prova;

h é a altura da seção transversal do corpo de prova

-Módulo de Elasticidade Transversal.

A configuração do ensaio de torção deve seguir o modelo mostrado na figura 8.

Figura 8. Esquema de ensaio para medir a rigidez em torção.

Fonte: NBR 7190-4 (ABNT, 2022)

O módulo de elasticidade transversal $(G_{t,0})$ deve ser calculado pela seguinte equação:

$$G_{t,0} = \frac{3L_T l_t}{hb^3[1-0.63(b/h)]} (\Delta F / \Delta \theta)$$

onde

 L_T é o comprimento entre a extremidade engastada e o plano de torque. $L_T = 18b$;

l_t é o comprimento do braço de alavanca;

 $\Delta F \, / \, \Delta \theta \,$ é a inclinação do gráfico de forçadeslocamento;

 θ é o ângulo de torção;

b é a largura da seção transversal do corpo de prova;

h é a altura da seção transversal do corpo de prova.

3. METODOLOGIA

O trabalho é uma revisão integrativa, método de pesquisa que visa sintetizar e analisar os resultados de diferentes estudos sobre uma temática específica, a fim de apresentar um panorama e conclusão sobre a mesma.

Para seleção do material foram feitas buscas na base de dados do google acadêmico de trabalhos experimentais que satisfazem as condições de ensaio da NBR 7190-4. As palavras chave utilizadas foram: "NBR 7190"; "NBR 7190-4"; "peças estruturais de madeira"; "ensaio de madeira".

4. TRABALHOS EXPERIMENTAIS PUBLICADOS

Neste item serão apresentados os artigos encontrados e que satisfazem as condições necessárias para realização correta de ensaios em peças estruturais, com descrição da metodologia realizada e resultados determinadas pelos autores.

4.1 Structural characterization of native species according to the new brazilian standard ABNT NBR 7190: 2022 – Part 4 (MORITANI ET AL., 2023)

Neste trabalho foram executados os ensaios de densidade e de resistência e rigidez à flexão em três espécies: Caixeta (*Simarouba amara*), Cedrinho (*Erisma sp.*) e Goiabão (*Planchonella pachycarpa*) e foram apresentados os resultados apresentados nas Tabelas 1,2 e 3.

Tabela 1. Resultados experimentais da espécie Caixeta (Simarouba amara).

Caixeta (Simarouba amara)					
Densidade média (kg/m³) ρm	424				
Módulo de Elasticidade longitudinal médio (GPa) E _{0,m}	10,7				
Flexão (MPa) f _{b,k}	40				
Tração paralela (MPa) f _{t,0,k}	18				
Tração perpendicular (MPa) f _{t,90,k}	0,3				
Compressão paralela (MPa) f _{c,0,k}	33				
Compressão perpendicular (MPa) f _{c,90,k}	5,7				
Cisalhamento (MPa) f _{v,k}	3				

Fonte: MORITANI ET AL., (2023)

Com os resultados obtidos a espécie Caixeta (*Simarouba amara*) recebe a classificação D40 para peças estruturais.

Tabela 2. Resultados experimentais da espécie Cedrinho (*Erisma sp.*).

Cedrinho (<i>Erisma sp.</i>)					
Densidade média (kg/m³) ρm	606				
Módulo de Elasticidade longitudinal médio (GPa) $E_{0,m}$	12				
Flexão (MPa) f _{b,k}	29				
Tração paralela (MPa) f _{t,0,k}	26				
Tração perpendicular (MPa) f _{t,90,k}	0,3				
Compressão paralela (MPa) f _{c,0,k}	35				
Compressão perpendicular (MPa) f _{c,90,k}	7,1				
Cisalhamento (MPa) f _{v,k}	4,3				

Fonte: MORITANI ET AL., (2023)

Com os resultados obtidos a espécie Cedrinho (*Erisma sp.*) recebe a classificação D24 para peças estruturais.

Tabela 3. Resultados experimentais da espécie Goiabão (*Planchonella pachycarpa*).

Goiabão (Planchonella pachycarpa)							
Densidade média (kg/m³) ρ _m	902						
Módulo de Elasticidade longitudinal							
médio (GPa) E _{0,m}	20,19						
Flexão (MPa) f _{b,k}	72						
Tração paralela (MPa) f _{t,0,k}	38						
Tração perpendicular (MPa) f _{t,90,k}	0,2						
Compressão paralela (MPa) f _{c,0,k}	49						
Compressão perpendicular (MPa) f _{c,90,k}	17,5						
Cisalhamento (MPa) f _{v,k}	6,1						

Fonte: MORITANI ET AL., (2023)

Com os resultados obtidos a espécie Goiabão (*Planchonella pachycarpa*) recebe a classificação D70 para peças estruturais.

4.2 Comparação entre o módulo de elasticidade da madeira Peroba do Norte na flexão de peças estruturais e na compressão em corpos de prova (PEREIRA, 2022)

Neste trabalho foram executados o ensaio de flexão de peças estruturais para obtenção do módulo de elasticidade, com os resultados obtidos na Tabela 4.

Tabela 4. Resultados experimentais da espécie Peroba do Norte (*Goupia glabra*).

Peroba do Norte (Goupia glabra)					
Flexão (MPa) f _{b,k}	54,09				
Módulo de Elasticidade longitudinal característico (GPa) E _{0,05}	12,2674				
Módulo de Elasticidade longitudinal médio (GPa) $E_{0,m}$	15,2881				

Fonte: PEREIRA (2022)

Com os resultados obtidos a espécie Peroba do Norte (*Goupia glabra*) recebe a classificação D50 para peças estruturais.

4.3 Proposta de classes de resistência para peças estruturais de madeira: *Eucalyptus urograndis, Pinus taeda e Schizolobium amazonicum* (Paricá) (MORITANI., 2018)

Neste trabalho foram executados ensaios para caracterização de resistência para peças em dimensões estruturais para as espécies: Eucaliptourograndis (*Eucalyptus urograndis*), Pinheiroamarelo (*Pinus taeda*) e Paricá (*Schizolobium amazonicum*). Com os resultados apresentados nas Tabelas 5,6 e 7.

Tabela 5. Resultados experimentais da espécie Eucaliptourograndis (*Eucalyptus urograndis*).

Eucalipto-urograndis (Eucalyptus 1	(rograndis		
Densidade média (kg/m³) ρ _m	645		
Módulo de Elasticidade longitudinal			
médio (GPa) E _{0,m}	11,95		
Flexão (MPa) f _{b,k}	59,65		
Tração paralela (MPa) f _{t,0,k}	55,91		
Tração perpendicular (MPa) f _{t,90,k}	0,221		
Compressão paralela (MPa) f _{e,0,k}	43,82		
Compressão perpendicular (MPa) f _{c,90,k}	12,87		
Cisalhamento (MPa) f _{v,k}	9,59		

Fonte: MORITANI (2018)

Com os resultados obtidos a espécie *Eucalyptus urograndis* recebe a classificação D50 para peças estruturais.

Tabela 6. Resultados experimentais da espécie Paricá (*Schizolobium amazonicum*).

Paricá (Schizolobium amazonicum)					
Densidade média (kg/m³) ρm	325				
Módulo de Elasticidade longitudinal médio (GPa) $E_{0,m}$	9,01				
Flexão (MPa) f _{b,k}	47,32				
Tração paralela (MPa) f _{t,0,k}	25,54				
Tração perpendicular (MPa) f _{t,90,k}	0,099				
Compressão paralela (MPa) f _{c,0,k}	25,51				
Compressão perpendicular (MPa) f _{c,90,k}	5,85				
Cisalhamento (MPa) f _{v,k}	4,02				

Fonte: MORITANI (2018)

Com os resultados obtidos a espécie *Schizolobium amazonicum* recebe a classificação D40 para peças estruturais.

Tabela 7. Resultados experimentais da espécie Pinheiroamarelo (*Pinus taeda*).

Pinheiro-amarelo (<i>Pinus taeda</i>)						
Densidade média (kg/m³) ρ _m	497					
Módulo de Elasticidade longitudinal						
médio (GPa) E _{0,m}	7,413					
Flexão (MPa) f _{b,k}	31,55					
Tração paralela (MPa) f _{t,0,k}	20,74					
Tração perpendicular (MPa) f _{t,90,k}	0,128					
Compressão paralela (MPa) f _{c,0,k}	33,31					
Compressão perpendicular (MPa) $f_{c,90,k}$	10,54					
Cisalhamento (MPa) f _{v,k}	7,89					

Fonte: MORITANI (2018)

Com os resultados obtidos a espécie *Pinus taeda* recebe a classificação C30 para peças estruturais.

5. DISCUSSÃO DE RESULTADOS

Visto as classificações obtidas, foi possível a criação da seguinte tabela:

Tabela 8. Classes de resistência em ensaios de peças estruturais para espécies de madeira nativa do Brasil.

Classe	Nome Popular	Nome científico
C30	Pinheiro-amarelo	Pinus taeda
D24	Cedrinho	Erisma sp
D40	Caixeta	Simarouba amara
D40	Paricá	Schizolobium amazonicum
D50	Eucalipto- urograndis	Eucalyptus urograndis
D50	Peroba do Norte	Goupia glabra
D70	Goiabão	Planchonella pachycarpa

Fonte: Autor (2024)

Com a Tabela 9 podemos comparar as classes de resistência para peças estruturais e para corpos de prova das espécies que estão presentes no Quadro 2.

Tabela 9. Comparação de classes de resistência em ensaios de corpos de prova e de peças estruturais para mesma espécie de madeira nativa do Brasil.

Nome Popular	Nome Científico	Classe para Corpo de prova	Classe para Peça Estrutural
Cedrinho	Erisma sp	D20	D24
Caixeta	Simarouba amara	D20	D40
Peroba do Norte	Goupia glabra	D40	D50
Goiabão	Planchonella pachycarpa	D40	D70

Fonte: Autor (2024)

Os resultados na Tabela 9. expõem uma diferença de classes para classificação entre corpo de prova e peça estrutural de mesma espécie para as espécies Cedrinho, Caixeta, Peroba do Norte e Goiabão.

A espécie Cedrinho (*Erisma sp.*) é classificada como D20 para corpos de prova, porém recebeu a classificação D24 devido a resistência à flexão de 29MPa para peças estruturais. Seu módulo de elasticidade (E_{0, m}) calculado foi de 12 GPa, valor superior ao módulo de elasticidade pela classificação de corpos de prova, o qual é 10GPa.

A espécie Caixeta (*Simarouba amara*) é classificada como D20 para corpos de prova, porém recebeu a classificação D40 devido a resistência à flexão de 40MPa no ensaio de peças estruturais. Seu módulo de

elasticidade ($E_{0,m}$) calculado foi de 10,7 GPa, valor superior ao módulo de elasticidade pela classificação de corpos de prova, o qual é 10GPa.

A espécie Peroba do Norte (*Goupia glabra*) é classificada como D40 para corpos de prova, porém recebeu a classificação D50 devido a resistência à flexão de 54,09MPa no ensaio de peças estruturais. Seu módulo de elasticidade (E_{0,m}) calculado foi de 15,28 GPa, valor superior ao módulo de elasticidade pela classificação de corpos de prova, o qual é 14,5GPa.

A espécie Goiabão (*Planchonella pachycarpa*) é classificada como D40 para corpos de prova, porém recebeu a classificação D70 devido a resistência à flexão de 72MPa no ensaio de peças estruturais. Seu módulo de elasticidade (E_{0,m}) calculado foi de 20,19 GPa, valor superior ao módulo de elasticidade pela classificação de corpos de prova, o qual é 14,5GPa.

Sendo assim, para o dimensionamento de um projeto estrutural, a escolha entre o uso das propriedades da classificação por peças estruturais ou das propriedades da classificação por corpo de prova, pode resultar em diferentes deformações para uma mesma peça.

Com isso, resultados obtidos evidenciam que nos ensaios para peças estruturais obtêm-se uma classificação de resistência maior para algumas espécies, o que possibilita na fase de projeto a escolha de uma mesma espécie para resistir à maiores solicitações de esforços, resultando em um dimensionamento mais otimizado e econômico da estrutura.

6. CONCLUSÃO

Considerando os resultados obtidos, conclui-se que ainda há poucos ensaios para classificação de peças estruturais de acordo com a NBR 7190-4 (2022): Métodos de ensaio para caracterização peças estruturais.

Isso dificulta a especificação em projeto das classes de resistência definidas por meio de ensaios em peças estruturais, uma vez que não facilita a escolha da espécie para utilização na obra.

Os ensaios em peças estruturais podem proporcionar uma classificação mais precisa para seu uso, otimizando assim a utilização das propriedades de resistência da peça de madeira para uso estrutural.

Como sugestão para trabalhos futuros, pode-se realizar ensaios de peças estruturais da demais espécies para inclusão das mesmas na Tabela 9. Classes de resistência em ensaios de peças estruturais para espécies de madeira nativa do Brasil.

PFEIL, W.; PFEIL, M. Estruturas de Madeira, 6^a Edição. Editora LTC, Rio de Janeiro, 2003.

7. REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7190-1**: Projeto de estruturas de madeira. Parte 1: Critérios de dimensionamento. Rio de Janeiro, ABNT, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7190-2: Projeto de estruturas de madeira. Parte 2: Métodos de ensaio para classificação visual e mecânica de peças estruturais de madeira. Rio de Janeiro, ABNT, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7190-3**: Projeto de estruturas de madeira. Parte 3: Métodos de ensaio para corpos de prova isentos de defeitos para madeiras de florestas nativas. Rio de Janeiro, ABNT, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7190-4: Projeto de estruturas de madeira. Parte 4: Métodos de ensaio para caracterização peças estruturais. Rio de Janeiro, ABNT, 2022.

MORITANI, F. Y. Proposta de classes de resistência para peças estruturais de madeira: *Eucalyptus urograndis, Pinus taeda e Schizolobium amazonicum* (Paricá). 2018. 176f. Dissertação (Mestrado em Engenharia Civil (Estruturas)) — Departamento de Engenharia Civil, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2018.

MORITANI, F. Y., ICIMOTO, F. H., NOGUEIRA, R. S., CALIL JUNIOR, C., LUBE DOS SANTOS, L., & BALLARIN, A. W. (2022). Caracterização estrutural de espécies nativas de acordo com a nova norma brasileira ABNT NBR 7190: 2022 - Parte 41. Revista Brasileira de Ciências da Madeira, 13(4), 3084-3090. DOI: 10.52202/069179-0402.

PEREIRA, Custódia Anttonia Bispo. COMPARAÇÃO ENTRE O MÓDULO DE ELASTICIDADE DA MADEIRA PEROBA DO NORTE NA FLEXÃO DE PEÇAS ESTRUTURAIS E NA COMPRESSÃO EM CORPOS DE PROVA, Universidade Federal do Mato Grosso do Sul, Curso de Engenharia Civil, 2023.