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RESUMO

A analise de estruturas submetidas a cargas moveis exige procedimentos capazes de relacionar a posi¢éo da carga a resposta
estrutural. Nesse contexto, as linhas de influéncia permitem identificar posigdes criticas e avaliar a variagdo de reagdes de
apoio, esforgos internos e deslocamentos ao longo do elemento. A representagdo por vinculos idealizados, entretanto, nem
sempre reproduz o comportamento real, uma vez que estruturas frequentemente apresentam rigidez finita em apoios,
imposi¢des cinematicas e variagdes de temperatura que induzem deformagdes térmicas e agdes adicionais. Este trabalho
desenvolve uma abordagem analitica e numérica para avaliar os efeitos de apoios elasticos (molas) em linhas de influéncia
e para analisar, nas envoltérias, a influéncia de deslocamentos prescritos e de efeitos térmicos. A etapa analitica
fundamenta-se no principio dos trabalhos virtuais, empregando o método das forgas simplificado, e considera como agdes
externas um trem-tipo modelado por cargas concentradas, deslocamentos prescritos e efeitos térmicos. A verificagdo
numérica ¢ realizada com o software FTOOL. Por fim, evidenciam-se os impactos dos deslocamentos prescritos e dos
efeitos térmicos nas envoltdrias dos momentos fletores maximos e minimos.

Palavras-chave: Linhas de influéncia; Molas; Deslocamentos prescritos; Temperatura; Envoltorias.

ABSTRACT

The analysis of structures subjected to moving loads requires procedures capable of relating the load position to the
structural response. In this context, influence lines make it possible to identify critical positions and to evaluate the variation
of support reactions, internal forces, and displacements along the member. The representation using idealized restraints,
however, does not always reproduce actual behavior, since structures often exhibit finite support stiffness, kinematic
constraints, and temperature variations that induce thermal strains and additional actions. This work develops an analytical
and numerical approach to evaluate the effects of elastic supports (springs) on influence lines and to analyze, through
envelopes, the influence of prescribed displacements and thermal effects. The analytical stage is based on the principle of
virtual work, employing the simplified force method, and considers as external actions a design train modeled by
concentrated loads, prescribed displacements, and thermal effects. Numerical verification is performed using the FTOOL
software. Finally, the impacts of prescribed displacements and thermal effects are highlighted in the envelopes of maximum
and minimum bending moments.

Keywords: Influence lines; Springs; Prescribed displacements; Temperature; Envelopes.
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1. INTRODUCAO

O estudo de estruturas submetidas a agdes moveis
demanda procedimentos capazes de correlacionar a
posi¢do da carga ao longo do elemento estrutural com
a resposta desenvolvida no sistema. Essa correlagdo
permite reconhecer posigdes criticas de carregamento
e aprofundar a compreensdo do comportamento
global e local da estrutura, com reflexos diretos na
determinagdo de reacdes de apoio, esforgos internos,
rotacdes ¢ deslocamentos. Nesse contexto, as linhas
de influéncia (LI) assumem papel fundamental; delas
derivam as envoltdrias de momentos fletores.

Para fins de clareza, define-se LI como a variacdo de
um efeito elastico causada pelo deslocamento de uma
carga movel unitaria. Dessa defini¢do, percebe-se
imediatamente que a LI, por si sd, ndo estabelece
relacdo direta com deslocamentos prescritos nem com
efeitos térmicos; esses dois Ultimos refinamentos de
analise estdo associados as envoltdrias, porque
influenciam os valores maximos e minimos dos
esforgos ao longo da estrutura.

Este trabalho desenvolve uma simulagdo analitica e
numérica do efeito de molas nas LI, considerando
também os efeitos de deslocamentos prescritos e das
variagdes térmicas nas envoltdrias dos momentos
fletores. A etapa analitica utiliza o0 método das forcas
simplificado (MFS). A modelagem computacional ¢
realizada no software FTOOL, e os resultados
analiticos sdo comparados aos numéricos.

Ao longo do curso de Engenharia Civil da UFMS, o
tema das LI é abordado em trés disciplinas. Em
Estatica I, o tema ¢ aplicado a estruturas isostaticas.
Em Estatica II, a estruturas hiperestaticas. Em Pontes
de Concreto, retoma-se o assunto com apoio da
Tabela de Anger. Como aluno, estudei o uso de LI em
estruturas hiperestaticas de trechos de vigas na
disciplina de Estatica II. Nessa disciplina, as LI foram
obtidas a partir das linhas elasticas das vigas,
considerando conhecidos os deslocamentos nodais,
conforme a abordagem apresentada por Soriano
(2016). Posteriormente, o tema foi retomado em
Pontes de Concreto com o auxilio da Tabela de Anger
para avaliar a distribuicdo de efeitos; contudo,
percebeu-se que as disciplinas, de certo modo, nao
estabeleciam uma conexdo conceitual clara entre si.
Dessa forma, além das simulagdes dos efeitos,
construiu-se a propria Tabela de Anger de acordo com
a configuracdo do exemplo proposto, buscando
consolidar o entendimento e integrar o método a
aplicagdo pratica.
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2. FUNDAMENTOS TEORICOS

A revisdo bibliografica deste trabalho baseia-se em
Sousa (2025). A seguir apresentam-se os conceitos
utilizados.

2.1. Principio dos trabalhos virtuais (PTV)

O principio dos trabalhos virtuais (PTV) constitui
uma base energética para relacionar agoes e respostas
em estruturas em equilibrio, estabelecendo a
igualdade entre o trabalho virtual externo e o trabalho
virtual interno associado as deformacgdes, sob as
hipéteses usuais de compatibilidade cinematica e
comportamento elastico linear. A formulagdo permite
a adogdo de grandezas virtuais que ndo precisam
coincidir com os valores reais do problema, e pode ser
apresentada em duas formas: uma baseada em forgas
virtuais e outra em deslocamentos virtuais (SOUSA,
2025).

Neste trabalho, emprega-se a versao de forgas virtuais
no contexto do método das forcas simplificado
(MFS), conforme Sousa (2025), por possibilitar uma
solucdo mais direta do que o método das forgas (MF)
convencional; em ambos, as incdgnitas do problema
sao forgas.

2.1.1. Escalas de analise

Sousa (2025) apresenta o conceito de escalas de
analise, distinguindo trés niveis: global, local e
infinitesimal. Essa classificagdo contribui para
organizar a interpretacao fisica do problema. A escala
global estd associada as agles externas e aos
deslocamentos em pontos de interesse do sistema,
enquanto a escala local descreve os esforgos internos,
como esfor¢o normal, esfor¢o cortante e momento
fletor. A escala infinitesimal ndo é abordada neste
trabalho, por ndo ser de interesse para os objetivos
propostos.

2.1.2. Método das forgas simplificado (MFS)

Conforme Sousa (2025), o MFS ¢ definido a partir do
método das for¢as (MF) com o objetivo de tornar mais
pratica a constru¢do das compatibilidades de
deslocamento que reconstituem o problema original.
Nesse formato, o MFS é desenvolvido de maneira
detalhada a partir do conceito do principio dos
trabalhos virtuais (PTV) e da criagdo de sistemas
virtuais de forgas auto equilibrados.

O trabalho virtual externo resulta da soma dos
produtos entre agdes externas e deslocamentos
virtuais. Na formula¢do com forca virtual, a acdo
virtual multiplica o deslocamento real; na formulacao
com deslocamento virtual, a agdo real multiplica o
deslocamento virtual. Em ambos os casos, a coeréncia
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direcional ¢é fundamental, pois garante a
correspondéncia fisica entre a grandeza aplicada e a
resposta avaliada.

O trabalho virtual interno decorre do produto entre
esforcos internos e deformagcdes associadas,
integrados ao longo do dominio estrutural. Para vigas
sob as hipoteses de Euler-Bernoulli, a parcela de
flexdo relaciona o momento fletor a curvatura,
integrando-se ao longo do eixo do elemento. Quando
relevantes, os efeitos axiais sdo representados pela
relacdo entre forca normal e alongamento unitario; e,
em situacdes com tor¢do, relaciona-se o torque a
rotagdo especifica, em formulagdo analoga. A
linearidade do material permite a superposicao,
simplificando a relagdo entre os Estados reais e
virtuais.

2.1.3. Trem-tipo adotado nas simulagdes

Em pontes, a carga movel de projeto € usualmente
representada por um trem-tipo normativo, cuja
posicdo ao longo do tabuleiro ¢ variada para a
identificacdo de situagdes criticas, procedimento
associado ao conceito de linhas de influéncia (LI) (EL
DEBS; TAKEYA, 2007).

No presente trabalho, entretanto, como o objetivo €
obter as LI e comparar seus efeitos na presenga de
molas, deslocamentos prescritos e temperatura, a agdo
movel considerada nas simulagdes ¢ idealizada como
uma carga concentrada mével unitaria, de valor igual
a 1 (EL DEBS; TAKEYA, 2007).

2.1.4. Refinamentos da analise

Sousa (2025) e Soriano (2016) discutem, em detalhes,
como considerar os efeitos de apoios -elasticos,
deslocamentos prescritos e efeitos térmicos no
principio dos trabalhos virtuais (PTV). Os efeitos de
molas e de variagdes térmicas sdo incorporados de
forma mais direta por meio da energia de deformagdo
elastica virtual, enquanto os deslocamentos prescritos
sdo considerados no trabalho virtual realizado pelas
forgas virtuais.

Como um dos objetivos deste trabalho é conectar o
conceito de linha de influéncia (LI) ao longo das
disciplinas do curso de Engenharia Civil da
Universidade Federal de Mato Grosso do Sul
(UFMS), sera construida a Tabela de Anger a partir
do método das forcas simplificado (MFS).

2.3. Tabela de Anger

A Tabela de Anger constitui um instrumento classico
empregado na andlise de estruturas submetidas a
cargas moveis, especialmente em vigas de pontes
rodoviarias e ferroviarias. Seu objetivo ¢é facilitar a
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determinacgdo dos esfor¢os maximos provocados por
veiculos-tipo ao longo do tabuleiro, por meio da
combinagdo direta entre as ordenadas das linhas de
influéncia (LI) e os carregamentos concentrados
associados aos eixos do veiculo. Conforme
apresentado por Lima (1983), a tabela organiza, de
forma sistematica, os valores de reagdo, esforgo
cortante ou momento fletor correspondentes a
posigdes criticas do carregamento moével.

Do ponto de vista metodologico, a Tabela de Anger
baseia-se diretamente no conceito de LI, sendo
aplicavel sobretudo a estruturas hiperestaticas de
pequena ordem, desde que o comportamento
permanega linear elastico. O procedimento consiste
em multiplicar as ordenadas da LI pelo valor das
cargas associadas a cada eixo do veiculo e somar os
resultados para obter o efeito total no ponto analisado.

Segundo Lima (1983), como em seu exemplo com
vdos da ordem de 1:1 do proprio material, essa
abordagem permite identificar com precisdo as
posicdes mais desfavoraveis do veiculo sobre a
estrutura, sendo amplamente utilizada em
verificagdes praticas de projeto e ensino de pontes.

2.4. Linha de influéncia (LI)

Linhas de influéncia sao representagdes que permitem
avaliar como um efeito estrutural especifico (reagdo,
esfor¢o interno ou deslocamento) se altera quando
uma acdo movel muda de posicdo ao longo do
elemento, sendo particularmente tteis para localizar
posicdes criticas de carregamento e, assim,
determinar valores extremos do efeito analisado; na
pratica, sua construgdo pode ser feita impondo-se uma
carga concentrada unitaria que percorre o Vvdo €
registrando-se, para cada posi¢do, a ordenada
correspondente ao efeito de interesse (EL DEBS;
TAKEYA, 2007).

A partir dessas ordenadas, e por superposi¢do, torna-
se possivel avaliar o efeito produzido por
carregamentos moveis reais, posicionando-os nas
regides mais desfavoraveis e calculando esforcos,
como momentos fletores com base nas respectivas LI
(EL DEBS; TAKEYA, 2007).
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3. METODOS

3.1. Ferramentas computacionais e tratamento de
dados

A metodologia adotada estruturou-se em duas etapas
complementares:  desenvolvimento analitico e
verificagdo numérica. O desenvolvimento analitico
foi realizado no ambiente PTC Mathcad Prime,
utilizado para a formulagdo, organizacdo e execucao
das expressdes matematicas associadas ao método das
forcas simplificado (MFS). Nesse ambiente,
obtiveram-se as fungdes analiticas das linhas de
influéncia (LI) com a incorporacdo de molas,
enquanto deslocamentos prescritos e agdes térmicas
foram considerados na construg¢do das envoltorias dos
momentos fletores. A verificagdo numérica foi
conduzida com auxilio do software FTOOL 4.00.00
Basic.

3.1.1. AutoCAD

No presente TCC, o AutoCAD subsidiou
detalhamento geométrico de vigas e representacao de
elementos associados a molas e condicdes de
contorno, inclusive em arranjos com necessidade de
melhor leitura espacial, servindo como base grafica
para padronizagdo dos exemplos antes das rotinas de
calculo e simulagdo.

3.1.2. Microsoft Excel

Neste trabalho, o Excel permaneceu restrito ao papel
de referéncia para criagdo e agrupamento de dados,
com finalidade direta na estrutura¢do de tabelas e
organizacdo da Tabela de Anger.

3.1.3. PTC Mathcad Prime

O Mathcad Prime apoiou a etapa analitica, com
implementacédo das expressdes necessarias a obtencao
de respostas estruturais e linhas de influéncia (LI) sob
presenca de molas, deslocamentos prescritos e
temperatura, estabelecendo base numérica para
confronto posterior com resultados de modelo
computacional.

3.1.4. FTOOL 4.00.00 Basic

No desenvolvimento das analises, o software FTOOL
foi adotado como a principal ferramenta da
metodologia numérica, sendo utilizado para a
modelagem estrutural e para o pds-processamento dos
resultados. A partir do modelo implementado, o
programa permitiu obter e visualizar as linhas de
influéncia (LI) associadas ao momento fletor nos
trechos de interesse, evidenciando de forma clara a
variacdo desse esforco em funcdo da posi¢do do
carregamento movel.
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Além da geragdo das LI, o FTOOL foi empregado
para extrair os diagramas de momentos fletores dos
casos estudados e, com isso, viabilizar a comparagao
entre diferentes parcelas de acdo. Em particular, os
resultados foram organizados para confrontar os
efeitos provenientes de deslocamentos prescritos com
aqueles associados a efeitos térmicos, avaliando-se
como cada contribuigdo modifica a distribuigdo de
esfor¢cos e influencia diretamente a envoltoria dos
momentos fletores.

4. RESULTADOS E DISCUSSOES

Nesta secdo apresentam-se os resultados obtidos a
partir dos diferentes exemplos analisados, com
exposicdo das equagdes desenvolvidas e breve
explicagdo do significado fisico e estrutural de cada
expressdo. A apresentacdo privilegia clareza e
objetividade, com énfase na interpretagdo das linhas
de influéncia (LI).

As variaveis foram tratadas de forma algébrica, sem a
adog¢do prévia de unidades do Sistema Internacional
(SI), uma vez que o interesse inicial recai sobre a
forma funcional das equacgdes e a relagdo entre
grandezas. A defini¢do de unidades e a avaliagdo
numérica ocorreram posteriormente, restritas a etapa
comparativa, na qual cendarios e posi¢des especificas
foram analisados para verificacdo e confronto dos
resultados.

Diante das analises, as equagdes em (1) representam
as condig¢des de equilibrio estatico do sistema. Em
termos fisicos e matematicos, elas traduzem a
condi¢cdo necessdria para que a estrutura permaneca
em equilibrio.

XFx=0 (1.1)
YE =0 (1.2)
M =0 (1.3)

Os exemplos a seguir apresentam as LI dos momentos
fletores. Para o aprofundamento conceitual das
equacdes ¢ detalhamento tedrico, recomenda-se a
leitura do livro Sousa (2025).

Pagina 4 de 15



4.1. Exemplo 01 — Viga simplesmente apoiada e
engastada

No primeiro exemplo analisou-se uma viga com as
seguintes condicdes de contorno: simplesmente
apoiada no extremo esquerdo, ponto A, ¢ engastada
no extremo direito, ponto B, conforme a Figura 1. O
objetivo consiste em determinar a linha de influéncia
(LI) do momento fletor na se¢ao a, para uma viga de
comprimento L e momento M, além da variavel
auxiliar & para descrever as fungdes de crescimento e
decrescimento.

Figura 1 — Exemplo O1. Fonte: Autor.

A M

\‘
|
77 A~

Considerando o carater hiperestatico da estrutura,
adotou-se 0 método das forcas simplificado (MFS),
com introdu¢@o de uma rétula no né de interesse para
viabilizar a avalia¢do do esforco interno. Dessa forma
foi adotado o seguinte sistema principal (SP)
conforme a Figura 2.

Figura 2 — Hiperestatico X;. Fonte: Autor.
A Xy

(D
NP

o W

Nessa formulacdo, o Estado correspondente as agdes
externas reais foi tratado em duas situacdes: situagcdo
1 quando a carga unitdria estd antes da secdo de
interesse a ¢ situacdo 2 quando esta depois.
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De acordo com a Figura 3 aplica-se a carga unitaria a
uma distancia x do apoio A.

Figura 3 — Situacdo 1. Fonte: Autor.

%
77277 @

A seguir, nas equacdes apresentadas em (2), s@o
impostas as condi¢des de equilibrio e obtém-se os

momentos fletores do Estado E;, e reacdes,
considerando a situagdo 1.

Hppos1 =0 (2.1)
Reacgdes horizontais
Ryupos1 + Rppos1 = 1 (2.2)

Reacgdes verticais

EMgotEsqEost = 0 (2.3)
Somatorio a esq. da rétula

a—x
Rypos1 = o (2.4)
X

Rggos1 = 7 (2.5)

EMRotpirREos1 = 0 (2.6)
Somatoério a dir. da rétula
Mgotpireos1 = — Rpros1 * (L — @) — Mggosy =0 (2~7)

ol
M. no eng.
_ (L-a)x
Mggos1 (x,a,L) =—— (2.8)
| —
Parametros

As nomenclaturas em subscrito representam

particularidades de posica@o e de Estados pertinentes a
analise. Como exemplo EMporgsqros1 Significa:
somatorio de momento na rotula, pelo lado esquerdo,
do Estado Ej para situacdo 1. Todas as equagdes
apoiam-se nessa metodologia de identificagéo.

Baseado nas equagdes apresentadas em (2), procede-
se a formulacio das expressdes condicionais
associadas as diferentes posigdes da carga movel da
situacdo 1, demonstradas em (3).
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a—x
Migosi(x,a,§) = —

(3.1)
(3.2)

—-X

Mgos1(x,a,8) = (—) $+x

a

Figura 4 — Situagdo 2. Fonte: Autor.

44H
777 W

A Figura 4 corresponde quando a carga unitaria movel
estd depois da secdo a. As equagdes dos momentos
fletores do Estado Ey e reagdes, considerando a
situagdo 2, sdo vistos em (4).

EMpotEsqEos2 = 0 4.1)
Ragos2 = 0 (4.2)
Rpposz =1 4.3)
Mppp, =L —x (4.4)
M52 (x,§) = —(§ — x) (4.5)

Nessa se¢do aplicam-se os momentos unitarios na
rotula, indicado pela Figura 5 e resolve-se novamente
a parte estatica de acordo com as equacdes expressas
em (5).

Figura 5 — Estado E;. Fonte: Autor.

A 1

(.
NP

7277 W
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ZMROT.ESQ.El =0 (5.1)
Ragt == (5.2)
EMgotrpirer = 0 (5.3)
Repr(L — @) — Mgy —1=0 (5.4)
Rae1(@) =3 (5.5)
Ry (a) = — = (5.6)
Mggy(a,L) =< (5.7)
Mg (a,§) = (£) (5.8)

As equagdes em (6) apresentam o trabalho virtual
externo com os momentos virtuais realizando trabalho
para as diferentes situagdes.

(6.1)

Wios1 = (1) - 01085951 + (=1) - O10p1rs1 =
81051(x,a, L, EI)

(6.2)

WlO.SZ = (1) ' 910.E5Q.52 + (_1) ' 910.D1R.52 =
510.52 (x; a, L; EI)

As equacdes em (7) apresentam a energia de
deformacao elastica virtual para cada situagao.

(7.1)
Usoss == (Ji} Me1(a,€) - Mygos: (x, @, §)d +
[ M1 (a,€) - Magosa (x, @, §)d¢)

(7.2)

Uros2 = % (fo Mg (a, §) - Mgos, (x, f)df)
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Aplicando o PTV tém-se os coeficientes da agdo
externa demonstrados para cada situacao em (8).

(8.1)
81051060, L ) = —- (3 Mg1 (2, ©)
Migos: (x, @, §)d§ + f,f Mg1(a,§) -
MZEOSl(x' a, f)df)
(8.2)

810520, @, L ED) = —- ([ Mgy (a,8) -
Mggs2 (x, f)df)

Ambos os casos sdo estabelecidos de acordo com os
parametros das situagdes 1 e 2. Apds determinados
elabora-se o coeficiente de flexibilidade &;;1. Na
equacdo (9) € demonstrado o trabalho virtual externo.

©)

Wi = (1) - 011559 + (1) - O11pr =
611(0,, L; EI)

A equagdo (10) apresenta a energia de deformagdo
elastica virtual.

Uy = - (J3 M1 (@,) - Mg (0, ©)d)  (10)

Pelo PTV, temos em (11)

(1)
812(a, L, ED = =+ (f; M1 (a,€) - My (a,)d¢)

Ao utilizar a equagdo de compatibilidade obtém-se as
equacdes em (12) das as duas situagdes.

—610“5'1 (x,a,L,EI)

Xis1(x,a,LEI) = 811(a,LEI)

(12.1)

—610.52 (x,a,L,EI)

X15200 0, L ED = =500

(12.2)
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A condicional final para os valores do hiperestatico
X, , com dependéncia da posigdo da carga movel x, é
vista abaixo em (13)

(13)
Xi(x,a,L,EI) =sex<a
Xi51(x,a,L,EI)
sendo sex > a
Xi52(x,a,L,EI)
senao

0

Para a padronizacdo das variaveis adotou-se o modulo
de elasticidade igual E = 21.000 MPa e o momento
de inércia da secdo transversal I = 8,533 - 1073 m*
(0,20 m x 0,80 m), além disso o exemplo utilizado
trata-se da secdo 4 (S4), a igual a 4 metros.

Os resultados numéricos apresentados foram obtidos
por meio do PTC Mathcad Prime, demonstrados na
Figura 6 e confrontados com os resultados fornecidos
pelo software FTOOL, Figura 7.

Figura 6 — LI momento fletor S4 (a = 4m). Fonte:
Autor.

0,058

0,00
0,25
0,50
0,75
1,00
1,25
1,50
1,75
2,00

Pagina 7 de 15



Figura 7 — LI momento fletor S4, (a = 4m). Fonte:
Autor e FTOOL.

N
R

Observou-se concordancia entre os resultados obtidos
pelos métodos analitico e numérico, corroborando a
adequacdo da modelagem numérica adotada e
evidenciando a reprodugdo consistente, pelo
procedimento computacional, da resposta estrutural
prevista teoricamente para as condi¢des analisadas.

4.2. Exemplo 02 — Construcido da Tabela de Anger
com molas translacionais.

O exemplo apresenta similaridade com o contetido
lecionado na disciplina de Pontes de Concreto. Neste
caso a estrutura é composta por 20 segmentos
discretizados em secdes de 1 metro. O modelo
considera a presenca de trés molas translacionais com

rijeza equivalente igual a k,, = 5 - 10* %N A Figura 8
apresenta os aspectos gerais do problema.

Figura 8 — Exemplo 02. Fonte: Autor.
A B C

y y ‘

Utilizando o método das forgas simplificado (MFS),
escolheu-se o sistema da Figura 9 como o principal.

Figura 9 — SP hiperestatico X;. Fonte: Autor.

A B C
|
Eﬁ/\/ky T ky 4
X1
| L
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Para gerar a Tabela de Anger desse modelo, adota-se
inicialmente a carga unitaria posicionada a x metros
do apoio A. A Figura 10 apresenta o Estado £y

Figura 10 — Ey. Fonte: Autor.

A | B C
3
——L‘«
- L -—

As equagdes de (14) demonstram as duas situagdes
para equa¢do do momento fletor Mgipo(x, L, &) ¢
Msogo(x, L, §).

SMcgo = 0 (14.1)
Rpgo- (L) —1-(L—x)=0 (14.2)
Rago(x, L) = == (14.3)
Rego(x, L) =7 (14.4)
Mgipo(x, L,§) = =2 4 ¢ (14.5)
Mgy, L, §) = =+ x (14.6)

Em (15) mostra-se a condi¢do final da equacgdo de
acordo com a posi¢do da carga unitaria movel x.

(15)

Mggo(x, L, &) =seé <x

MSlEO (x, L, f)

senao

Mgogo(x, L, §)
Abaixo na Figura 11 analisa-se o Estado £;.

Figura 11 — E;. Fonte: Autor.
A B C
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Posteriormente as equagdes de momento em (16) para
as situagoes 1 ¢ 2.

SMcg =0 (16.1)
~Rppr- (L) +1-2=0 (16.2)
Rag1 =5 (16.3)
Repr = 5 (16.4)
MSlEl(Lv §) = —Rpp1 - € (16.5)

Mgop1(L,§) = —Rpp1 - § + 1+ (f ——) (16.6)

De acordo com a condicional da equagéo (17) aborda-
se as duas possibilidades conforme o crescimento da
variavel ¢.

(17)
Mgg1 (L, &) =seé < %
Mgg1(L, §)

senao

Msg1 (L, §)

A equagdo (18) apresenta o trabalho virtual externo.

Wiy = - 810 (13)

A equagdo (19) apresenta a energia de deformagdo
elastica virtual, agora neste exemplo com a parcela do
efeito elastico das molas.

(19)
Upo = % [f; Msgo(x, L, §) - Msg1 (L, §)d§ +
f; Mggo(x, L, &) - Msgq (L, f)df] +
(—Rag1) - (—RAE;iix'L)> + (—Rcg1) - (—RCEz;x'L)> +1 -ki

Efeito elastico das molas
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Pelo PTV, temos na equacgao (20):

(20)

810(x, L) = [f Mggo(x, L, §) - Msgq (L, §)d§ +
fx Mggo(x, L, f) " Mg (L, f)df] + (=Ryg1)

(RAEO(X'L)) + (=Regy) - (M) +1 .9
ky ky ey

Ap6s conferéncia ¢ demonstrada a determinagdo do
coeficiente de flexibilidade em (21).

(21)
Wy = (1) 811 + (—Rpg1) - 0+ (=Rcg1) - 0

Cargas virtuais

Note o sinal negativo nas reagdes de E; dada a
convencdo. A equagdo (22) apresenta a energia de
deformagdo elastica virtual.

(22)
1 L
Uin =17 [f Mgy (L, &) - Mgg (L, f)df] +
R R
(—Rag1) - ( im) + (=Rcg1) - ( CEl) +1- —y
Efeito elastico das molas
Pelo PTV, temos em (23)
(23)

611(L) = i' [fLMsm(L §) - Mggy (L, f)df] +
(—Rag1) - ( Ri“) + (—Rcg1) - ( RCEl) +1-—

y

Efeito elastico das molas

Observa-se o efeito das 3 molas na equagdo (23) em
cada reagdo. Ao utilizar a equagdo de
compatibilidade, como abaixo na equacdo (24),
delimita-se o hiperestatico X;.

—510(X,L)

Xl(xl L) = 511(L)

(24)

Com o hiperestatico definido resolve-se a condigdo
real inicial do problema em (25).
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M =0 (25.1)
RaGe,L)-L+Rp(x,L)-Z—1-(L—x) =0(25.2)

—(2x)+(2-X1(x,L))-L
2L

Ry(x,L) = (25.3)
Rz(x,L) = X;(x,L) (25.4)

Re(x,L) =1 — (Rp(x, L) + Rp(x,L)) (25.5)

A partir das reagdes de apoio expressas na equagdo
(25) obtém-se a condicional final do momento fletor
em (26).

(26)
Mg(x,L,§) =se0 <& <

N |~

se0<&<«x

Ro(x,L)-¢
senéosexSfS%
Ry(x,L)-§—1-(§—x)
sendo
Ry(x,L)-§—1-(§—x) +
Rp(xL)- (£ %)

~ L
sendo se 5S€SL
L
se0<¢=<7

Ry(x,L)- ¢
sendo se %Sfﬁx

Ry(x,L) - &+ Rg(x,L)-

(¢-3)

senao

Ry(x,L)- &+ Rg(x,L)-
(-3)-1-¢-»
senao

0

Para comprovagao dos resultados numéricos utilizou-
se o software FTOOL e para se¢do de interesse a S1,
distante 1 metro do apoio A. Os resultados
encontrados foram equivalentes aos da Figura 12 e
para melhor visualizagdo foi elaborada a Tabela 01
com os resultados.
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Figura 12 — LI momento fletor S1, (a = 1m). Fonte:
Autor e FTOOL.

—0,036.062.088:088088 020.067.048,008
B et S S S S B ——

Tabela 01 — LI momento fletor S1, (a = 1m). Fonte:
Autor e Excel.

Posicao Posicao

da Carga da Carga
0 -0,005 11 -0,033
1 0,872 12 -0,063
2 0,751 13 -0,081
3 0,633 14 -0,089
4 0,520 15 -0,088
5 0412 16 -0,080
6 0311 17 -0,067
7 0,219 18 -0,049
8 0,138 19 -0,028
9 0,067 20 -0,005
10 0,010

Todos os calculos a titulo de conferéncia, assim como
a Tabela Anger, constam nos apéndices no final deste
trabalho.

4.3. Exemplo 03 - Envoltéria dos momentos
fletores do Exemplo 01, com os efeitos
deslocamento prescrito e variacao térmica.

Este exemplo retoma o Exemplo 01, incorpora-se os
efeitos do deslocamento prescrito e variagdo térmica
na envoltoria dos momentos fletores. Para a
comparacao numérica, utilizou o FTOOL.

. . o 51
Dados: coeficiente de dilatagdo térmica @ = 1075 =,

variacdo do bordo superior Aty = 10°, variagao do
bordo inferior At; = 5°, Dp, = 0,001m. O modelo
deste exemplo € visto na Figura 13.

Figura 13 — Exemplo 03. Fonte: Autor e FTOOL.

£
3
&
WOSIWOQC 102 10C 10XC 102L 10X 10C 10X 10<C
@ @ & @ @ 0 @ 4 @
R
Y §V VYV VYV VYW VY
5 5L 5L 5L 5L 5L 5L 5L 5L 5«
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Estabelecidas as variagdes térmicas eclabora-se o
gradiente de temperatura ¢ a variagdo uniforme de
temperatura, vistos na equagao (27) respectivamente.

Ati—Atg
9e=—"5— (27.1)
A= (27.2)

O sistema principal (SP) serd o mesmo da Figura 2,
contudo no novo Estado E, as agdes externas sao:
deslocamento prescrito e variacdo de temperatura
como abaixo na Figura 14.

Figura 14 — Ey. Fonte: Autor e FTOOL.

IS
10‘9 WOﬁQZC WOﬁQZC 1(;2(2 W%ichﬂ;lc Wﬁc WOﬁQf Woﬁic Wﬁc @E
‘Y § § Y §§ § §V Yy §
5€C 5L HAL 5HXC 5eC HC Ho HXL H L HC

Enquanto o Estado E; € equivalente ao contido no
Exemplo 01 disponivel na Figura 5, desenvolvido nas
equacdes em (5). Por isso o coeficiente de
flexibilidade resulta no mesmo &;; explicito na
equagdo (28)

13
3-E-I'a?

611(a,L,EI) = (28)

A equacao (29) apresenta o trabalho virtual externo.

(29)

Wio = Rag1(@) - Dpy + (1) - 019 psgs1 + (1)
810.01r.s1 = 610(a, L, EI) + Rypq(a) - Dy,

Note a auséncia das situagdes 1 e 2 do antigo E,
devido ao carregamento da carga moével e logo
inexisténcia da varidvel x. A energia de deformagao
elastica do exemplo ¢ vista em (30).

Ug==+a-A-L-0+a-g.-L->=  (30)
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Pelo PTV, obtemos em (31) 0 novo 6.

(1)
810(00 L;EI) = _(RAEl(a) . Dpy) + a- gt - L -l. £

2 a
Efeito Térmico

Efeito D. Prescrito

Por ultimo a obtencdo do novo hiperestatico X; em
(32).

—610 (a,L,EI)

Xinovo(a, L, EI) = 811(a,L,EI)

(32)

De posse da funcdo do hiperestatico gera-se o
diagrama dos momentos fletores de acordo com a
Figura 15.

Figura 15 — Diagrama dos momentos fletores. Fonte:
Autor e FTOOL.
P!

\ 221760 KNm

™~

08801 3.3056 55553

77408 9 9554

22176 kN

Para elaborar a envoltéria dos momentos fletores,
organizam-se em (33) os valores maximos € minimos,
com inclusdo dos efeitos de deslocamento prescrito e
da temperatura. Adota-se trem-tipo carga concentrada
Tripo = 1.

(33.1)
Myiny = X1novo (@, L ED) + X1(x,a, L, EI) - Tryp,
LI Eq. (13)
(33.2)
My ix = X1.novo(a, L, EI) + X1 (x,a, L, EI) - Trip,
LI Eq. (13)

De forma genérica, os valores maximos e minimos
sdo obtidos somando-se aos resultados do novo
problema hiperestatico os efeitos do trem-tipo,
determinados por meio da superposi¢do a partir da
linha de influéncia (LI) do Exemplo 01.

O valor maximo (33.2) pode ser obtido de forma
direta, uma vez que, em geral, o maior valor positivo
da LI ocorre quando a carga € posicionada no ponto
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de maior ordenada, tipicamente sob a propria carga.
Ja o valor minimo (33.1) ndo é, necessariamente,
obtido de forma automatica, pois as ordenadas
disponiveis nem sempre coincidem exatamente com o
ponto de analise, sendo por vezes necessarias
interpolagdes para a sua determinagao.

Como a analise foi discretizada de metro em metro,
em conformidade com a modelagem no FTOOL, o
software sera utilizado para obter as ordenadas da
linha de influéncia quando houver necessidade de
interpolacdo. As ordenadas da se¢do distante a = 4m
sdo vistas na Figura 16.

Figura 16 — LI momento fletor (a = 4m). Fonte:
Autor e FTOOL.

< 1.0000 kN

~0.0010 §
b

1.7280

< 1.0000 KN

Observa-se igualdade em relagdo a Figura 7. Ainda
assim, com deslocamento prescrito, o FTOOL indica
ordenada de -0,0010 m no apoio A devido ao Dy, =
0,001m. Porém essa indicacdo nao se sustenta, pois a
ordenada no apoio deve ser nula.

Para comprovacdo do método analitico e prova de o
efeito do deslocamento prescrito promover diferentes
resultados, foram elaborados dois casos: um com a
presenca do deslocamento prescrito nas equagdes de
810(a, L, EI) e outro sem Dy, = 0. As envoltorias

correspondentes foram inseridas na Figura 17.
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Figura 17 — Envoltoria dos momentos fletores
maximos e minimos (a = 4m). Fonte: Autor.

o 1 2 3 4 5 6 7 8 9 10

0,00
5,00
10,00
15,00 —e— Mmin
Mmax
20,00 MminDP

A legenda ¢ representada por: Mmin e Mmax
correspondem & envoltéria sem deslocamento
prescrito; MminDP e MmaxDP correspondem a
envoltoria com deslocamento prescrito. Os resultados
do grafico estdo disponiveis para comparacdo e
dispostos na Tabela 02.

Tabela 02 — Envoltéria dos momentos fletores
maximos e minimos (a = 4m). Fonte: Autor e

Excel.
Ponto Mmin Mmax MminDP MmaxDP
0 0 0 -0,0010 0
1 1,6800 2,5305 22176 3,0681
2 3,3600 4,7680 4,4352 5,8432
3 5,0400 6,7305 6,0528 8,3433
4 6,7200 8,4480 8,8704 10,5984
5 8,4000 9,9625 11,0880 | 12,6505
6 10,0800 | 11,3280 [ 13,3056 | 14,5536
7 11,6873 | 12,6105 | 154505 | 16,3737
8 12,8957 | 13,8880 [ 17,1965 | 18,1888
9 13,9319 | 15,2505 | 18,7703 | 20,0889
10 14,8755 | 16,8000 [ 20,2515 | 22,1760

Com essa comparacdo, evidencia-se que o software
trata os resultados associados ao deslocamento
prescrito de forma incoerente. Na auséncia desse
efeito, contudo, observa-se concordancia entre os
resultados do método numérico e do método analitico.
Além das resolugdes apresentadas neste trabalho, todo
detalhamento dos exemplos consta nos apéndices.
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5. CONCLUSOES

O desenvolvimento apresentado consolidou uma
abordagem analitica e numérica para a obtengdo de
linhas de influéncia (LI) em vigas com apoios
elasticos (molas) e a avaliagdo de envoltdrias
considerando os efeitos de deslocamentos prescritos e
de variacdes de temperatura. A etapa analitica foi
estruturada com base no principio dos trabalhos
virtuais (PTV) e na aplicagdo do método das forgas
simplificado (MFS), enquanto a etapa numérica foi

conduzida no software FTOOL, permitindo
comparagdo direta entre resultados.
As comparacdes realizadas indicaram

compatibilidade entre a formulagdo analitica e a
modelagem numérica na determinacdo das LI do
momento fletor nos casos estudados, sustentando a
validade do procedimento adotado para estruturas
com rigidez finita em apoios.

Na construg¢do das envoltorias, verificou-se que
deslocamentos prescritos e efeitos térmicos produzem
alteracdes relevantes nos valores extremos dos
momentos fletores maximos e minimos. Além disso,
a analise evidenciou uma limitagdo no pods-
processamento do FTOOL para o caso com
deslocamento prescrito, devido a indicagdo de
ordenada ndo nula da linha de influéncia no apoio,
comportamento ndo reproduzido pela formulagdo
analitica. Sem deslocamento prescrito, a concordancia
entre as abordagens foi restabelecida. Esses resultados
permitem concluir que o trabalho alcangou os
objetivos de validar a formulagdo proposta e de
qualificar os efeitos considerados nas envoltorias,
bem como de delimitar restricdes praticas de uso do
software para a situacao investigada.

Como continuidade, recomenda-se ampliar o
conjunto de exemplos para maiores graus de
hiperestaticidade, discretizar mais para reduzir a
necessidade de interpolagdes na determinagdo de
minimos e realizar verificagdo cruzada com outras
ferramentas computacionais para os casos envolvendo
deslocamentos prescritos e temperatura.
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APENDICES
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; 0] 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 |20
0 0/-0,005(-0,010(-0,016(-0,021{-0,026|-0,031{-0,037]|-0,042]-0,047| -0,052|-0,047|-0,042 | -0,037(-0,031-0,026{-0,021]-0,016]-0,010] -0,005| O
1 0] 0,872 | 0,745 | 0,617 | 0,490 | 0,362 | 0,234 | 0,107 | -0,021]-0,149]-0,276|-0,249-0,221-0,193[-0,166-0,138|-0,111]-0,083]-0,055]|-0,028| O
2 0] 0,751 | 1,503 | 1,254 | 1,006 | 0,757 | 0,509 | 0,260 | 0,011 | -0,237|-0,486|-0,437-0,389-0,340(-0,292-0,243{-0,194|-0,146]-0,097|-0,049| 0
3 0] 0,633 | 1,267 | 1,900 | 1,533 | 1,167 | 0,800 | 0,434 | 0,067 | -0,300-0,666]-0,600-0,533|-0,467| -0,400|-0,333 |-0,267|-0,200| -0,133|-0,067| 0
4 0/ 0,520 | 1,039 | 1,559 | 2,079 1,598 | 1,118 | 0,638 | 0,157 ]-0,323|-0,803|-0,723|-0,643|-0,562-0,482-0,402{-0,321|-0,241]-0,161]-0,080| O
5 0]0,412 | 0,824 | 1,235 [ 1,647 | 2,059 | 1,471 | 0,883 | 0,294 | -0,294|-0,882-0,794|-0,706 -0,618[-0,529-0,441|-0,353]-0,265]-0,176| -0,088| O
6 0/0,311 0,622 | 0,934 | 1,245| 1,556 | 1,867 | 1,178 | 0,489 |-0,200|-0,888|-0,800(-0,711 | -0,622-0,533-0,444|-0,355|-0,267|-0,178]-0,089| O
7 0] 0,219 | 0,439 | 0,658 | 0,877 | 1,096 | 1,316 | 1,535 0,754 -0,027]|-0,807|-0,727-0,646 -0,565 [ -0,484| -0,404|-0,323]-0,242]-0,162] -0,081| O
8 0/ 0,138 | 0,275 | 0,413 | 0,550 | 0,688 | 0,825 0,963 | 1,100 | 0,238 | -0,625|-0,562|-0,500{ -0,437(-0,375[-0,312{-0,250|-0,187]-0,125]|-0,063| O
9 0] 0,067 | 0,135 0,202 | 0,270 | 0,337 | 0,405 | 0,472 | 0,540 | 0,607 |-0,326|-0,293|-0,261|-0,228|-0,195|-0,163 |-0,130|-0,098| -0,065|-0,033| 0
10 0/ 0,010 | 0,021 | 0,031 | 0,042 | 0,052 | 0,063 | 0,073 | 0,083 | 0,094 | 0,104 | 0,094 | 0,083 | 0,073 [ 0,063 | 0,052 | 0,042 ] 0,031 | 0,021 | 0,010 | O
11 0]-0,033{-0,065]-0,098-0,130]-0,163|-0,195|-0,228 | -0,261|-0,293 |-0,326| 0,607 | 0,540 | 0,472 | 0,405 | 0,337 | 0,270 | 0,202 | 0,135 | 0,067 | O
12 0/-0,063|-0,125|-0,187-0,250{-0,312|-0,375|-0,437|-0,500| -0,562| -0,625| 0,238 | 1,100 | 0,963 [ 0,825 | 0,688 | 0,550 | 0,413 ] 0,275 0,138 | O
13 0/-0,081-0,162|-0,242-0,323-0,404|-0,484|-0,565| -0,646|-0,727|-0,807|-0,027| 0,754 | 1,535 [ 1,316 | 1,096 | 0,877 | 0,658 | 0,439 0,219 | O
14 0/-0,089-0,178-0,267-0,355(-0,444-0,533|-0,622|-0,711]-0,800| -0,888 | -0,200| 0,489 | 1,178 [ 1,867 | 1,556 | 1,245] 0,934 ] 0,622 | 0,311 | O
15 0/-0,088(-0,176|-0,265(-0,353[-0,441-0,529|-0,618| -0,706| -0,794| -0,882|-0,294| 0,294 | 0,883 [ 1,471 | 2,059 | 1,647 | 1,235] 0,824 0,412 | O
16 0/-0,080(-0,161|-0,241{-0,321-0,402|-0,482|-0,562|-0,643]-0,723|-0,803|-0,323| 0,157 | 0,638 [ 1,118 | 1,598 | 2,079 | 1,559 1,039 0,520 | O
17 0]-0,067{-0,133]-0,200(-0,267|-0,333|-0,400]| -0,467 | -0,533|-0,600 | -0,666| -0,300| 0,067 | 0,434 | 0,800 | 1,167 | 1,533 | 1,900 | 1,267 | 0,633 | 0
18 0/-0,049(-0,097-0,146-0,194-0,243|-0,292|-0,340|-0,389|-0,437| -0,486|-0,237| 0,011 | 0,260 [ 0,509 | 0,757 | 1,006 | 1,254 | 1,503 ] 0,751 | O
19 0[-0,028-0,055|-0,083|-0,111]-0,138]-0,166|-0,193|-0,221-0,249(-0,276(-0,149|-0,021| 0,107 | 0,234 ] 0,362 | 0,490 | 0,617 | 0,745 | 0,872 | 0
20 0]-0,005[-0,010]-0,016-0,021]-0,026|-0,031]-0,037|-0,042]-0,047|-0,052| -0,047 | -0,042|-0,037]| -0,031|-0,026 | -0,021|-0,016| -0,010{-0,005]| 0
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Exemplo 01

A M B
G
é S,
a
Sistema principal - SP
A Xy B
£ " B
5 e B
E ‘
Reagdes de apoio - EOQ - Situagao 1
A 1 B
| ﬁ .
i ",
4
a 1
JF,=0 XF,=0 XM=0
YF,=0 Hypy=Hpp=0
2Fy=0 Ryposi+Rprosi—1=0 Ryposi +Rpros1 =1
solve, R jpos1 T
—T+a
XMpor.esg.ros1=0 Raposica—1- (a— 93) =0 a

solve, Rppg, T

+Rppos1 =1 —
a

—xr+a




T
Mpor pir.Eos1 =0 Z g (L - a) —Mpgpos1 =0

solve ,Mppos1 (—a+L)-x

=. (L - a) —Mpposi
a a

Rprosi (37 ) a,L) ’:%

Ryposi (z,a,L):= (a—2)

M, os: (,a,€) = (a;az) & Mypysi(z,a,€)= (_Tx)'§+a:

Reacgoes de apoio - EQ - Situagao 2

A 1 B
l “
Pl ? K
; |
: |
L

YF,=0 SF,=0 XM=0
2F,=0 Hyp,=Hpg=0
2F,=0 Rypos2t+Rpposa—1=0 Ryposa+Rprose=1

solve , R 4pog2
X Mpor.esg.eos2=0 Ryposeca=0 0 Rppose=1

solve , M ppss
Mporpirpos2=0 0=1- (L - a,) -1 (l’ - a,) —Mpgposo —x+L

Ruposa=0 Rpposai=1 Mpposy(x,L):=L—x Mppys,(5,10)=5

M g2 (33 5 5) = —(f - 33)



Estado - E1

(e
T
0 I

SF,=0 XF,=0 XM=0
2F,=0 Hup=Hpp =0
2F,=0 Ryp—Rpp1=0 Ryp=Rgg

solve,Ryp 1 1
ZMROT.ESQ.El =0 Rypra—1=0————— Rpp=—

1 solve,Mp,

XMgor.prr.p1 =0 P (L—a) +Mp,—1=0 —— —
1 1 L
Ryp: (a) = Rpp: (a)= T Mg, (a,L) S

a

Mg, (CL ’ 5) = (é)
Condicionais para Situagado 1 e 2

simplify —(z-(a-2*+(2.L° =3.L* -a)))

. L
1
1051 (z,a,L,EI) ;E.(ij (ﬂ,f)']\'fwob'l (z,a,f) d§+jME1 (u,§)-1\/1w051 (w,a,f) df] 6-El-a’
) J El-a

(X- <a-X2 +<2-L3 —3.1° -a>>>

S1051(x,a, L, El):=— o 517

simplify —((z—L)?+(z+2+L))

L
1
510’52(x,a,L,EI) :_E'UMEl(aaf)'MEOSQ(xaf) df] 6-El-a

stmplify L3
3-EI-a’

L
1
611 (a,L,EI) ::E- fMEl(a,m)-MEl(a,x) dx
0



Hiperestatico X1 para Situagées 1 e 2

—0d10.51 (fBaaaL,EI)
611 (a,L,EI)

X1g(z,a,L,EI):=

—810.52(7,a,L,EI)

Xlg,(x,a,L,EI):=

611 (a,L,EI)
Dados do problema
3

E:=210-10° [:=92"08" EI:=E.-I z:=0,1..10 i i
12 0.000
0.402
X1(z,a,L,El):=if z<a 0.816
1.254

X1g,(z,a,L,EI
|l (202,50 1728
esell r>a X1(x,4,10,EI)=|1.250
XlSQ(iL’,(I,L,EI) 0.832
else 0.486
0 0.224
0.058
0.000 |




Exemplo 02

|
Ii_,.,k}_ : H}.J‘—Eﬁ
b
L
Estado EO
= : 3

B .
Reacoes de apoio - EO
YF,.=0 YF,=0 XM=0
2F,=0 Hppy=0
EF?J=O RAE0+RCEU_]- =0 RAEU+RCE0= 1

solve,Rypy _ 441,
SMegy=0  Ragye(1)~1+(E-2)=0 3
—z+L solve,Ropy
+Repp=1——— 7
L—x €T
RAEO (IL',L) = RCEO (:Ij,L) ::f
simplify £ox
2Mgipo=0 Mgipo=Rypo (93 ) L) E——— Mgipo=— L +&
simplify £ox

X Mgopy=0 MS’2E0=RAEO(:C’L)'5_1'(5_53) —>M52E0=x—T



Reacoes de apoio - E1

A B
[=
. H
5 T
-1
L
YF,=0 2Fy=0 YXM=0
YF,=0 Rpp1+Rep1—1=0 Ryp+Rep =1

=0———

2

L) solve, R p 1

1
RAEl::E RC’EI ::5

SMg1p1=0 Mgipi=—Ryp €

L
SMgop1 =0 Mgop =—Ryp+€+1- (5—5)




Dados do problema

_0.2.0.8°
12

E:=210-10°  I: EIl:=E-I  k,=5-10"

Trabalho virtual externo

Wio= (1) 010t Ryp1°0+Rep -0

Energia de deformacao elastica

Um%-HMSEU(I’L@%MW (L,€) ds+IMm(z,L,s)-Msm (L,€)de +(—RAE1)-(%:”’L) +(—RCE1)-[RCE“:; L) “'k%
Pelo PTV, temos
5.0(3%14)::%’ !IA'ISEtl(w7L55)']VISE1(L15) (1§+£LMSE!!(J;7Lv§)'AISEl(Lag) d¢ +<_RAE|)‘(RAEU(:’L) +<—RCE|)-(%:’L)]+I ]z—)v
Trabalho virtual externo
Wy, = (1) 011+ Ry 0+Rep -0
Energia de deformacao elastica
1 - R 1
—ficpl
611 (L) =—=+ fMSEl (L,€)*Mgg, (L,€)dé |+ (—Rep) + +——
EI ) k, k,
1 - R 1
—AlAFE1 —AWCE1
Up=—- stm (L,€) Mgp, (L,&)dé |+ (—Rup) * +(—Rcp) —
EI / Y k, k,

Pelo PTV, temos

b (“Rap) (‘IZ“El ] ¥ (“Rep)- (ﬂ] L

L
o1 (L) ’=é' fMSEl (Laf) *Mgg, (Laf) d¢

—d10 (ac , L)

X1 (a:,L) = 5 (L)



Reacoes de apoio - Reais
JF,=0 XYF,=0 XM=0
YF,=0 Hg=0

EFy=0 RA+RB+RC—1=O RA+RB+RC=]-

solve, R, ~(L-Ry(z,L))+(2-L—2-2)

SMy =0 RA-L+RB(m,L).§_1.(L_m)=o 2

2-z)+(2—X1(z,L))-L
2.L

Ry(z,L):= m Rp(z,L)=X1(z,L)

Re(z,L):=1—(Ry(x,L)+Rg(z,L))

My(a,L,€)=it 0<E<

if 0<é<x
RA($,L)°£

else if a:gggg

RA(m,L)-f—lo({{—m)

else

RA(w,L)-E—l-(§—$)+RB(:v,L).(5_3)

else if %g&gL

. L
if OSfSE
| B, 1)
else if£§£§w
2
L
RA(ac,L)-§+RB(ac,L)-(§—E)

else

RA(.CC,L)‘5_1‘(§_$)+RB(x’L).(g_g)




z:=0,1..20
[ —0.005 |
0.872
0.751
0.633
0.520
0.412
0.311
0.219
0.138
0.067
Mg(z,20,1)=| 0.010
—0.033
—0.062
—0.081
—0.089
—0.088
—0.080
—0.067
—0.049
—0.028
| —0.005 |




Exemplo 03
Retomada do Exemplo 01

A M B

£

=

Sistema principal - SP

A X4 B
E " R
L NP 4
E ‘
Reagodes de apoio - EOQ - Situagao 1
A 1 B
} ) .
_& ™
A
a 1
YF, =0 ZFy=O XYM =0
YF,=0 Hypy=Hpp=0
YF,=0  Rjposi+Rpposi—1=0 Ryposi+Rpposi =1
solve , R 4ros1 -
—r+a
YMporesoposi=0 Rapsira—1+(a—z)=0 a

solve, Rppg, T

+Rppos1 = 1 —
a

—xr+a




T
Mpor pir.pos1 =0 E g (L - a) —Mpgpos1 =0

solve ,Mppos, (—a+L)-x

Z. (L - a) —Mpposi
a a

Rprost (x,a,L) ::%

(a—z)

R Apos1 (:IZ y @y L) =

(a—2)

M ips: (z,a,€):= £ M2EOSI($aaa$)::(_T$)°£+$

a

Reacodes de apoio - EQ - Situagao 2

A 1 B
l “
Pl ? K
: |
: |
L

YF, =0 EFy=O XM=0
2F,=0 Hyp,=Hpp»=0
2Fy=0 RyposotRprose—1=0 Ryposo+Rpposa=1

solve , R 4pog2
X Mpor.esg.eos2=0 Ryposeca=0 0 Rppose=1

solve , M pps,
Mporpirpos2=0 0=1- (L - a) -1 (l’ - a,) —Mpgposo —x+L

Ruposa=0 Rpposai=1 Mpposs(x,L):=L—x Mppys,(5,10)=5

Mpgs (&) =—(£—x)



Estado - E1

(e
T
0 I

SF,=0 XF,=0 XM=0
2F,=0 Hup=Hpp =0
2F,=0 Ryp—Rpp1=0 Ryp=Rgg

solve,Ryp 1 1
ZMROT.ESQ.El =0 Rypra—1=0————— Rpp=—

1 solve,Mp,

XMgor.prr.p1 =0 P (L—a) +Mp,—1=0 —— —
1 1 L
Ryp: (a) = Rpp: (a)= T Mg, (a,L) S

a

Mg, (CL ’ 5) = (é)
Condicionais para Situagado 1 e 2

simplify —(z-(a-2*+(2.L° =3.L* -a)))

. L
1
1051 (z,a,L,EI) ;E.(ij (ﬂ,f)']\'fwob'l (z,a,f) d§+jME1 (u,§)-1\/1w051 (w,a,f) df] 6-El-a’
) J El-a

_<:c-<a-zc2 +<2°L3 —3.L° -a,>>>

510.51(33aaaL7EI)‘= 6-El 0>

simplify —((x—L)2 S(z+2 L)>
6-FEl-a

L
1
610.52(z,a,L,EI) =T [JMEI (a,€) Mpgsy (,€) dﬁ]

stmplify L3
3-EI-a’

L
1
611 (a,L,EI) ::E- fMEl(a,m)-MEl(a,x) dx
0



Hiperestatico X1 para Situagées 1 e 2

—0 ) ,L,EI
XlS]_ (x7a’7LaEI) = 1:5)51((G$1;1’EI) )
11 gLy

_5 ’ aL El
XlSZ (x7a’,LaEI) = 1;)52((ax; EI’) )
11 gLy

LI (z,a,L,El):=if z<a
X1g(z,a,L,EI)
elseif r>a
X1g,(x,a,L,EI)
else

0

Dados efeitos térmicos e deslocamento prescrito

3
h=08 b=02 =2 _g533.10° E=210.10° EI:=E-I
A+ Ay A=Ay 5
A =10 A,:=5 At::T gt::T a:=10 L:=10

D,,:=0.001 T'rp;,,:=1

Para o calculo da envoltoria obtemos um novo Estado EOQ

Reacodes de Apoio - EO

10 grﬂ

KON 108 1080 102 1022 105 10X N

d & 4 & & 4 & 4 & @,
“H ¥ ¥y VSNY § §§§
S5 HE B SX S S X S5XL S B

Nao geram esforgos =0



Trabalho virtual externo

w19 =Ryp1 (@) Dyy+ (Orsq.ror.60—Opir.ror.po) * 1 = Rap1 (@) « Dpy 4019+ 1

Energia de deformagao elastica

0 1 L
U =—+a-A ‘L'O“"a' oo —e—
10 El t ¢ 2

Pelo PTV

1 L
b10.op(a,L,EI) ‘:—<RAE1(CL)'Dpy>+a-gt-L-5-;
51(a,L,EI)i=a~g, - L- .2

a

5'
Hiperestatico X1 sem e com o efeito do deslocamento prescrito

—8,9(a,L,EI)

X1novol(a,L,EI):= 5.1 (@1 )
11 9 9

—610.0r(a,L,EI)

X1yovopp(a,L,EI):= 5, (@, )
nlae,L,

Determinacgao envoltéria dos momentos fletores minimos sem D,
My .0:=0+0+Tr;,,=0.0000

My =X1yovo(1,L,EI)+0+Tx;,,=1.6800
Myn2=X1novo(2,L,EI)+0+ Ty, =3.3600

My s=X1novo(3,L,EI)+0+Tr,,=5.0400

Myin.a=X1novo 4, L, EI)+0+Tp;,,=6.7200

Myune=X1novol6,L,EIL)+0+Trp;,,=10.0800

)
( )
( )
( )
My s5:=X1novo (5, L,EI)+0+Tp;,,=8.4000
( )
My 7:=X1novo (7, L, EI)+(—0.0727) + Ty, = 11.6873
( )

Myn.s=X1novo (8, L, EI)+(—0.5443) « Ty, = 12.8957



Myino=X1novo(9,L,EI)+(—1.1881) « Ty, = 13.9319

My 10:=X1yovo(10,L, EI)+(—1.9245) « Ty, = 14.8755
Determinagao envoltéria dos momentos fletores minimos com D,
Myn.0:=0+0+Tr;,,=0.0000
Myn=X1yovo.pp(1,L,EI)+0+Tr;,,=2.2176
Myn.2=X1novo.pp(2,L,EI)+0+ Ty, =4.4352
Myins=X1novo.pp(3,L,EI)+0+Tr;,,=6.6528

Myn.4=X1novo.pp\4, L, EI) +0-Trp;,,=8.8704

(
(
(
(
Myins=X1novo.pp(5,L,EI)+0+Tr;,,=11.0880
Myin.e=X1novo.pp(6,L,EI)+0+Ty;,,=13.3056

Myan7=X1novo.pp(7,L,EI)+(—0.0727) « Ty, = 15.4505
My s:=X1novo.pp(8,L,EI)+(—0.5443) « Ty, ,,=17.1965
Myn.o:=X1novo.pp(9,L,EI)+(—1.1881)+ Ty, =18.7703

Myn10=X1novo.pp(10, L, EI)+(—1.9245) - Ty, =20.2515

Determinagao envoltéria dos momentos fletores maximos

Myux(a,L,EI):=if a#0
” LI, (a,a,L,EI)+Xlyoyo(a,L,EI)
else
o

Myax.pp(a, L, EI):=if a#0
HLIM(a,a,,L,EI) + Xlyovopr(a, L, EI)
else
o



a:=1,2..10

Myax(a,L,EI)=

[ 2.5305

4.7680
6.7305
8.4480
9.9625
11.3280
12.6105
13.8880
15.2505

| 16.8000

Myax.pp(a,L,EI)=

[ 3.0681]

5.8432

8.3433
10.5984
12.6505
14.5536
16.3737
18.1888
20.0889

| 22.1760 |
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