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RESUMO 
A análise de estruturas submetidas a cargas móveis exige procedimentos capazes de relacionar a posição da carga à resposta 
estrutural. Nesse contexto, as linhas de influência permitem identificar posições críticas e avaliar a variação de reações de 
apoio, esforços internos e deslocamentos ao longo do elemento. A representação por vínculos idealizados, entretanto, nem 
sempre reproduz o comportamento real, uma vez que estruturas frequentemente apresentam rigidez finita em apoios, 
imposições cinemáticas e variações de temperatura que induzem deformações térmicas e ações adicionais. Este trabalho 
desenvolve uma abordagem analítica e numérica para avaliar os efeitos de apoios elásticos (molas) em linhas de influência 
e para analisar, nas envoltórias, a influência de deslocamentos prescritos e de efeitos térmicos. A etapa analítica 
fundamenta-se no princípio dos trabalhos virtuais, empregando o método das forças simplificado, e considera como ações 
externas um trem-tipo modelado por cargas concentradas, deslocamentos prescritos e efeitos térmicos. A verificação 
numérica é realizada com o software FTOOL. Por fim, evidenciam-se os impactos dos deslocamentos prescritos e dos 
efeitos térmicos nas envoltórias dos momentos fletores máximos e mínimos.  

Palavras-chave: Linhas de influência; Molas; Deslocamentos prescritos; Temperatura; Envoltórias. 

 

ABSTRACT 
The analysis of structures subjected to moving loads requires procedures capable of relating the load position to the 
structural response. In this context, influence lines make it possible to identify critical positions and to evaluate the variation 
of support reactions, internal forces, and displacements along the member. The representation using idealized restraints, 
however, does not always reproduce actual behavior, since structures often exhibit finite support stiffness, kinematic 
constraints, and temperature variations that induce thermal strains and additional actions. This work develops an analytical 
and numerical approach to evaluate the effects of elastic supports (springs) on influence lines and to analyze, through 
envelopes, the influence of prescribed displacements and thermal effects. The analytical stage is based on the principle of 
virtual work, employing the simplified force method, and considers as external actions a design train modeled by 
concentrated loads, prescribed displacements, and thermal effects. Numerical verification is performed using the FTOOL 
software. Finally, the impacts of prescribed displacements and thermal effects are highlighted in the envelopes of maximum 
and minimum bending moments.  

Keywords: Influence lines; Springs; Prescribed displacements; Temperature; Envelopes. 
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1. INTRODUÇÃO 

 O estudo de estruturas submetidas a ações móveis 
demanda procedimentos capazes de correlacionar a 
posição da carga ao longo do elemento estrutural com 
a resposta desenvolvida no sistema. Essa correlação 
permite reconhecer posições críticas de carregamento 
e aprofundar a compreensão do comportamento 
global e local da estrutura, com reflexos diretos na 
determinação de reações de apoio, esforços internos, 
rotações e deslocamentos. Nesse contexto, as linhas 
de influência (LI) assumem papel fundamental; delas 
derivam as envoltórias de momentos fletores. 

Para fins de clareza, define-se LI como a variação de 
um efeito elástico causada pelo deslocamento de uma 
carga móvel unitária. Dessa definição, percebe-se 
imediatamente que a LI, por si só, não estabelece 
relação direta com deslocamentos prescritos nem com 
efeitos térmicos; esses dois últimos refinamentos de 
análise estão associados às envoltórias, porque 
influenciam os valores máximos e mínimos dos 
esforços ao longo da estrutura. 

Este trabalho desenvolve uma simulação analítica e 
numérica do efeito de molas nas LI, considerando 
também os efeitos de deslocamentos prescritos e das 
variações térmicas nas envoltórias dos momentos 
fletores. A etapa analítica utiliza o método das forças 
simplificado (MFS). A modelagem computacional é 
realizada no software FTOOL, e os resultados 
analíticos são comparados aos numéricos.  

Ao longo do curso de Engenharia Civil da UFMS, o 
tema das LI é abordado em três disciplinas. Em 
Estática I, o tema é aplicado a estruturas isostáticas. 
Em Estática II, a estruturas hiperestáticas. Em Pontes 
de Concreto, retoma-se o assunto com apoio da 
Tabela de Anger. Como aluno, estudei o uso de LI em 
estruturas hiperestáticas de trechos de vigas na 
disciplina de Estática II. Nessa disciplina, as LI foram 
obtidas a partir das linhas elásticas das vigas, 
considerando conhecidos os deslocamentos nodais, 
conforme a abordagem apresentada por Soriano 
(2016). Posteriormente, o tema foi retomado em 
Pontes de Concreto com o auxílio da Tabela de Anger 
para avaliar a distribuição de efeitos; contudo, 
percebeu-se que as disciplinas, de certo modo, não 
estabeleciam uma conexão conceitual clara entre si. 
Dessa forma, além das simulações dos efeitos, 
construiu-se a própria Tabela de Anger de acordo com 
a configuração do exemplo proposto, buscando 
consolidar o entendimento e integrar o método à 
aplicação prática. 

2. FUNDAMENTOS TEÓRICOS  

A revisão bibliográfica deste trabalho baseia-se em 
Sousa (2025). A seguir apresentam-se os conceitos 
utilizados. 

2.1. Princípio dos trabalhos virtuais (PTV) 

O princípio dos trabalhos virtuais (PTV) constitui 
uma base energética para relacionar ações e respostas 
em estruturas em equilíbrio, estabelecendo a 
igualdade entre o trabalho virtual externo e o trabalho 
virtual interno associado às deformações, sob as 
hipóteses usuais de compatibilidade cinemática e 
comportamento elástico linear. A formulação permite 
a adoção de grandezas virtuais que não precisam 
coincidir com os valores reais do problema, e pode ser 
apresentada em duas formas: uma baseada em forças 
virtuais e outra em deslocamentos virtuais (SOUSA, 
2025).  

Neste trabalho, emprega-se a versão de forças virtuais 
no contexto do método das forças simplificado 
(MFS), conforme Sousa (2025), por possibilitar uma 
solução mais direta do que o método das forças (MF) 
convencional; em ambos, as incógnitas do problema 
são forças. 

2.1.1. Escalas de análise 

Sousa (2025) apresenta o conceito de escalas de 
análise, distinguindo três níveis: global, local e 
infinitesimal. Essa classificação contribui para 
organizar a interpretação física do problema. A escala 
global está associada às ações externas e aos 
deslocamentos em pontos de interesse do sistema, 
enquanto a escala local descreve os esforços internos, 
como esforço normal, esforço cortante e momento 
fletor. A escala infinitesimal não é abordada neste 
trabalho, por não ser de interesse para os objetivos 
propostos. 

2.1.2. Método das forças simplificado (MFS) 

Conforme Sousa (2025), o MFS é definido a partir do 
método das forças (MF) com o objetivo de tornar mais 
prática a construção das compatibilidades de 
deslocamento que reconstituem o problema original. 
Nesse formato, o MFS é desenvolvido de maneira 
detalhada a partir do conceito do princípio dos 
trabalhos virtuais (PTV) e da criação de sistemas 
virtuais de forças auto equilibrados. 

O trabalho virtual externo resulta da soma dos 
produtos entre ações externas e deslocamentos 
virtuais. Na formulação com força virtual, a ação 
virtual multiplica o deslocamento real; na formulação 
com deslocamento virtual, a ação real multiplica o 
deslocamento virtual. Em ambos os casos, a coerência 
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direcional é fundamental, pois garante a 
correspondência física entre a grandeza aplicada e a 
resposta avaliada.  

O trabalho virtual interno decorre do produto entre 
esforços internos e deformações associadas, 
integrados ao longo do domínio estrutural. Para vigas 
sob as hipóteses de Euler-Bernoulli, a parcela de 
flexão relaciona o momento fletor à curvatura, 
integrando-se ao longo do eixo do elemento. Quando 
relevantes, os efeitos axiais são representados pela 
relação entre força normal e alongamento unitário; e, 
em situações com torção, relaciona-se o torque à 
rotação específica, em formulação análoga. A 
linearidade do material permite a superposição, 
simplificando a relação entre os Estados reais e 
virtuais. 

2.1.3. Trem-tipo adotado nas simulações 

Em pontes, a carga móvel de projeto é usualmente 
representada por um trem-tipo normativo, cuja 
posição ao longo do tabuleiro é variada para a 
identificação de situações críticas, procedimento 
associado ao conceito de linhas de influência (LI) (EL 
DEBS; TAKEYA, 2007).  

No presente trabalho, entretanto, como o objetivo é 
obter as LI e comparar seus efeitos na presença de 
molas, deslocamentos prescritos e temperatura, a ação 
móvel considerada nas simulações é idealizada como 
uma carga concentrada móvel unitária, de valor igual 
a 1 (EL DEBS; TAKEYA, 2007). 

2.1.4. Refinamentos da análise 

Sousa (2025) e Soriano (2016) discutem, em detalhes, 
como considerar os efeitos de apoios elásticos, 
deslocamentos prescritos e efeitos térmicos no 
princípio dos trabalhos virtuais (PTV). Os efeitos de 
molas e de variações térmicas são incorporados de 
forma mais direta por meio da energia de deformação 
elástica virtual, enquanto os deslocamentos prescritos 
são considerados no trabalho virtual realizado pelas 
forças virtuais. 

Como um dos objetivos deste trabalho é conectar o 
conceito de linha de influência (LI) ao longo das 
disciplinas do curso de Engenharia Civil da 
Universidade Federal de Mato Grosso do Sul 
(UFMS), será construída a Tabela de Anger a partir 
do método das forças simplificado (MFS).  

2.3. Tabela de Anger 

A Tabela de Anger constitui um instrumento clássico 
empregado na análise de estruturas submetidas a 
cargas móveis, especialmente em vigas de pontes 
rodoviárias e ferroviárias. Seu objetivo é facilitar a 

determinação dos esforços máximos provocados por 
veículos-tipo ao longo do tabuleiro, por meio da 
combinação direta entre as ordenadas das linhas de 
influência (LI) e os carregamentos concentrados 
associados aos eixos do veículo. Conforme 
apresentado por Lima (1983), a tabela organiza, de 
forma sistemática, os valores de reação, esforço 
cortante ou momento fletor correspondentes a 
posições críticas do carregamento móvel. 

Do ponto de vista metodológico, a Tabela de Anger 
baseia-se diretamente no conceito de LI, sendo 
aplicável sobretudo a estruturas hiperestáticas de 
pequena ordem, desde que o comportamento 
permaneça linear elástico. O procedimento consiste 
em multiplicar as ordenadas da LI pelo valor das 
cargas associadas a cada eixo do veículo e somar os 
resultados para obter o efeito total no ponto analisado. 

Segundo Lima (1983), como em seu exemplo com 
vãos da ordem de 1:1 do próprio material, essa 
abordagem permite identificar com precisão as 
posições mais desfavoráveis do veículo sobre a 
estrutura, sendo amplamente utilizada em 
verificações práticas de projeto e ensino de pontes. 

2.4. Linha de influência (LI) 

Linhas de influência são representações que permitem 
avaliar como um efeito estrutural específico (reação, 
esforço interno ou deslocamento) se altera quando 
uma ação móvel muda de posição ao longo do 
elemento, sendo particularmente úteis para localizar 
posições críticas de carregamento e, assim, 
determinar valores extremos do efeito analisado; na 
prática, sua construção pode ser feita impondo-se uma 
carga concentrada unitária que percorre o vão e 
registrando-se, para cada posição, a ordenada 
correspondente ao efeito de interesse (EL DEBS; 
TAKEYA, 2007). 

A partir dessas ordenadas, e por superposição, torna-
se possível avaliar o efeito produzido por 
carregamentos móveis reais, posicionando-os nas 
regiões mais desfavoráveis e calculando esforços, 
como momentos fletores com base nas respectivas LI 
(EL DEBS; TAKEYA, 2007). 
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3. MÉTODOS 

3.1. Ferramentas computacionais e tratamento de 
dados 

A metodologia adotada estruturou-se em duas etapas 
complementares: desenvolvimento analítico e 
verificação numérica. O desenvolvimento analítico 
foi realizado no ambiente PTC Mathcad Prime, 
utilizado para a formulação, organização e execução 
das expressões matemáticas associadas ao método das 
forças simplificado (MFS). Nesse ambiente, 
obtiveram-se as funções analíticas das linhas de 
influência (LI) com a incorporação de molas, 
enquanto deslocamentos prescritos e ações térmicas 
foram considerados na construção das envoltórias dos 
momentos fletores. A verificação numérica foi 
conduzida com auxílio do software FTOOL 4.00.00 
Basic. 

3.1.1. AutoCAD 

No presente TCC, o AutoCAD subsidiou 
detalhamento geométrico de vigas e representação de 
elementos associados a molas e condições de 
contorno, inclusive em arranjos com necessidade de 
melhor leitura espacial, servindo como base gráfica 
para padronização dos exemplos antes das rotinas de 
cálculo e simulação. 

3.1.2. Microsoft Excel 

Neste trabalho, o Excel permaneceu restrito ao papel 
de referência para criação e agrupamento de dados, 
com finalidade direta na estruturação de tabelas e 
organização da Tabela de Anger. 

3.1.3. PTC Mathcad Prime 

O Mathcad Prime apoiou a etapa analítica, com 
implementação das expressões necessárias à obtenção 
de respostas estruturais e linhas de influência (LI) sob 
presença de molas, deslocamentos prescritos e 
temperatura, estabelecendo base numérica para 
confronto posterior com resultados de modelo 
computacional. 

3.1.4. FTOOL 4.00.00 Basic 

No desenvolvimento das análises, o software FTOOL 
foi adotado como a principal ferramenta da 
metodologia numérica, sendo utilizado para a 
modelagem estrutural e para o pós-processamento dos 
resultados. A partir do modelo implementado, o 
programa permitiu obter e visualizar as linhas de 
influência (LI) associadas ao momento fletor nos 
trechos de interesse, evidenciando de forma clara a 
variação desse esforço em função da posição do 
carregamento móvel.  

Além da geração das LI, o FTOOL foi empregado 
para extrair os diagramas de momentos fletores dos 
casos estudados e, com isso, viabilizar a comparação 
entre diferentes parcelas de ação. Em particular, os 
resultados foram organizados para confrontar os 
efeitos provenientes de deslocamentos prescritos com 
aqueles associados a efeitos térmicos, avaliando-se 
como cada contribuição modifica a distribuição de 
esforços e influencia diretamente a envoltória dos 
momentos fletores.  

 

4. RESULTADOS E DISCUSSÕES 

Nesta seção apresentam-se os resultados obtidos a 
partir dos diferentes exemplos analisados, com 
exposição das equações desenvolvidas e breve 
explicação do significado físico e estrutural de cada 
expressão. A apresentação privilegia clareza e 
objetividade, com ênfase na interpretação das linhas 
de influência (LI). 

As variáveis foram tratadas de forma algébrica, sem a 
adoção prévia de unidades do Sistema Internacional 
(SI), uma vez que o interesse inicial recai sobre a 
forma funcional das equações e a relação entre 
grandezas. A definição de unidades e a avaliação 
numérica ocorreram posteriormente, restritas à etapa 
comparativa, na qual cenários e posições específicas 
foram analisados para verificação e confronto dos 
resultados. 

Diante das análises, as equações em (1) representam 
as condições de equilíbrio estático do sistema. Em 
termos físicos e matemáticos, elas traduzem a 
condição necessária para que a estrutura permaneça 
em equilíbrio. 

 

∑𝐹𝐹𝑋𝑋 = 0     (1.1) 

∑𝐹𝐹𝑦𝑦 = 0      (1.2) 

∑𝑀𝑀 = 0      (1.3) 

 

Os exemplos a seguir apresentam as LI dos momentos 
fletores. Para o aprofundamento conceitual das 
equações e detalhamento teórico, recomenda-se a 
leitura do livro Sousa (2025). 
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4.1. Exemplo 01 – Viga simplesmente apoiada e 
engastada 

No primeiro exemplo analisou-se uma viga com as 
seguintes condições de contorno: simplesmente 
apoiada no extremo esquerdo, ponto A, e engastada 
no extremo direito, ponto B, conforme a Figura 1. O 
objetivo consiste em determinar a linha de influência 
(LI) do momento fletor na seção 𝑎𝑎, para uma viga de 
comprimento L e momento M, além da variável 
auxiliar  𝜉𝜉 para descrever as funções de crescimento e 
decrescimento. 

 

Figura 1 – Exemplo 01. Fonte: Autor. 

 
 

Considerando o caráter hiperestático da estrutura, 
adotou-se o método das forças simplificado (MFS), 
com introdução de uma rótula no nó de interesse para 
viabilizar a avaliação do esforço interno. Dessa forma 
foi adotado o seguinte sistema principal (SP) 
conforme a Figura 2. 

 

Figura 2 – Hiperestático X1. Fonte: Autor. 

 
 

Nessa formulação, o Estado correspondente às ações 
externas reais foi tratado em duas situações: situação 
1 quando a carga unitária está antes da seção de 
interesse a e situação 2 quando está depois. 

 

 

 

 

 

De acordo com a Figura 3 aplica-se a carga unitária a 
uma distância x do apoio A. 

 

Figura 3 – Situação 1. Fonte: Autor. 

 
 

A seguir, nas equações apresentadas em (2), são 
impostas as condições de equilíbrio e obtém-se os 
momentos fletores do Estado E0 e reações, 
considerando a situação 1. 

 

𝐻𝐻𝐴𝐴𝐴𝐴0𝑆𝑆1 = 0�������
𝑅𝑅𝑅𝑅𝑅𝑅çõ𝑒𝑒𝑒𝑒 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

    (2.1) 

𝑅𝑅𝐴𝐴𝐴𝐴0𝑆𝑆1 + 𝑅𝑅𝐵𝐵𝐵𝐵0𝑆𝑆1 = 1�������������
𝑅𝑅𝑅𝑅𝑅𝑅çõ𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

    (2.2) 

Σ𝑀𝑀ROT.ESQ.E0𝑆𝑆1 = 0�������������
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ó𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒.  𝑑𝑑𝑑𝑑 𝑟𝑟ó𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

    (2.3) 

𝑅𝑅𝐴𝐴𝐴𝐴0𝑆𝑆1 = 𝑎𝑎−𝑥𝑥
𝑎𝑎

     (2.4) 

𝑅𝑅BE0𝑆𝑆1 = 𝑥𝑥
𝑎𝑎
     (2.5) 

Σ𝑀𝑀ROT.DIR.E0𝑆𝑆1 = 0�������������
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ó𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑.  𝑑𝑑𝑑𝑑 𝑟𝑟ó𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

    (2.6) 

𝑀𝑀ROT.DIR.E0𝑆𝑆1 = − 𝑅𝑅BE0𝑆𝑆1 ∙ (𝐿𝐿 − 𝑎𝑎) − 𝑀𝑀BE0𝑆𝑆1���
𝑀𝑀.  𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒.

= 0 (2.7) 

𝑀𝑀BE0𝑆𝑆1 (𝑥𝑥, 𝑎𝑎, 𝐿𝐿)�����
𝑃𝑃𝑃𝑃𝑃𝑃â𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

= (𝐿𝐿−𝑎𝑎)∙ 𝑥𝑥
𝑎𝑎

   (2.8) 

 

As nomenclaturas em subscrito representam 
particularidades de posição e de Estados pertinentes à 
análise. Como exemplo Σ𝑀𝑀ROT.ESQ.E0𝑆𝑆1 significa: 
somatório de momento na rótula, pelo lado esquerdo, 
do Estado E0 para situação 1. Todas as equações 
apoiam-se nessa metodologia de identificação. 

Baseado nas equações apresentadas em (2), procede-
se à formulação das expressões condicionais 
associadas às diferentes posições da carga móvel da 
situação 1, demonstradas em (3). 

 

MA B

aa

L

A B

aa

L

x1

1A B

x

L

a
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𝑀𝑀1E0𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝜉𝜉) = 𝑎𝑎−𝑥𝑥
𝑎𝑎

    (3.1) 

𝑀𝑀2E0𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝜉𝜉) = �−𝑥𝑥
𝑎𝑎
� ∙  𝜉𝜉 + 𝑥𝑥   (3.2) 

 

Figura 4 – Situação 2. Fonte: Autor. 

 
 

A Figura 4 corresponde quando a carga unitária móvel 
está depois da seção 𝑎𝑎. As equações dos momentos 
fletores do Estado E0 e reações, considerando a 
situação 2, são vistos em (4). 

 

Σ𝑀𝑀ROT.ESQ.E0S2 = 0    (4.1) 

𝑅𝑅𝐴𝐴𝐴𝐴0S2 = 0      (4.2) 

𝑅𝑅𝐵𝐵𝐵𝐵0S2 = 1      (4.3) 

𝑀𝑀BE0S2 = 𝐿𝐿 − 𝑥𝑥     (4.4) 

𝑀𝑀E0S2(𝑥𝑥, 𝜉𝜉) = −(𝜉𝜉 − 𝑥𝑥)    (4.5) 

 

Nessa seção aplicam-se os momentos unitários na 
rótula, indicado pela Figura 5 e resolve-se novamente 
a parte estática de acordo com as equações expressas 
em (5). 

 

Figura 5 – Estado E1. Fonte: Autor. 

 
 

 

 

 

 

Σ𝑀𝑀ROT.ESQ.E1 = 0     (5.1) 

𝑅𝑅AE1 = 1
𝑎𝑎
     (5.2) 

Σ𝑀𝑀ROT.DIR.E1 = 0    (5.3) 

𝑅𝑅BE1(𝐿𝐿 − 𝑎𝑎) −𝑀𝑀B1 − 1 = 0   (5.4) 

𝑅𝑅AE1(𝑎𝑎) = 1
𝑎𝑎
     (5.5) 

𝑅𝑅BE1(𝑎𝑎) = − 1
𝑎𝑎
     (5.6) 

𝑀𝑀BE1(𝑎𝑎, 𝐿𝐿) = 𝐿𝐿
𝑎𝑎
     (5.7) 

𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) = �𝜉𝜉
𝑎𝑎
�    (5.8) 

 

As equações em (6) apresentam o trabalho virtual 
externo com os momentos virtuais realizando trabalho 
para as diferentes situações. 

 

(6.1) 

𝑊𝑊10.S1 =   (1) ∙ 𝜃𝜃10.𝐸𝐸𝐸𝐸𝐸𝐸.𝑆𝑆1 + (−1) ∙ 𝜃𝜃10.𝐷𝐷𝐷𝐷𝐷𝐷.𝑆𝑆1 =
𝛿𝛿10.𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸)  

(6.2) 

𝑊𝑊10.S2 =   (1) ∙ 𝜃𝜃10.𝐸𝐸𝐸𝐸𝐸𝐸.𝑆𝑆2 + (−1) ∙ 𝜃𝜃10.𝐷𝐷𝐷𝐷𝐷𝐷.𝑆𝑆2 =
𝛿𝛿10.𝑆𝑆2(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸)  

 

As equações em (7) apresentam a energia de 
deformação elástica virtual para cada situação. 

 

(7.1) 

𝑈𝑈10𝑆𝑆1 = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) ∙ 𝑀𝑀1E0𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝜉𝜉)𝑑𝑑𝑑𝑑 +𝑥𝑥

0

∫ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) ∙ 𝑀𝑀2E0𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝜉𝜉)𝑑𝑑𝑑𝑑𝐿𝐿
𝑥𝑥 �  

(7.2) 

𝑈𝑈10𝑆𝑆2 = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) ∙ 𝑀𝑀E0S2(𝑥𝑥, 𝜉𝜉)𝑑𝑑𝑑𝑑𝐿𝐿

𝑥𝑥 �  
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Aplicando o PTV têm-se os coeficientes da ação 
externa demonstrados para cada situação em (8). 

 

(8.1) 

𝛿𝛿10.𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) ∙𝑥𝑥

0

𝑀𝑀1E0𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝜉𝜉)𝑑𝑑𝑑𝑑 + ∫ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) ∙𝐿𝐿
𝑥𝑥

𝑀𝑀2E0𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝜉𝜉)𝑑𝑑𝑑𝑑�  

(8.2) 

𝛿𝛿10.𝑆𝑆2(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) ∙𝐿𝐿

𝑥𝑥

𝑀𝑀E0S2(𝑥𝑥, 𝜉𝜉)𝑑𝑑𝑑𝑑�  

 

Ambos os casos são estabelecidos de acordo com os 
parâmetros das situações 1 e 2. Após determinados 
elabora-se o coeficiente de flexibilidade 𝛿𝛿11. Na 
equação (9) é demonstrado o trabalho virtual externo. 

 

(9) 

𝑊𝑊11 =   (1) ∙ 𝜃𝜃11.𝐸𝐸𝐸𝐸𝐸𝐸 + (−1) ∙ 𝜃𝜃11.𝐷𝐷𝐷𝐷𝐷𝐷 =
𝛿𝛿11(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸)  

 

A equação (10) apresenta a energia de deformação 
elástica virtual. 

 

𝑈𝑈11 = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) ∙ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉)𝑑𝑑𝑑𝑑𝐿𝐿

0 �  (10) 

 

Pelo PTV, temos em (11) 

 

(11) 

𝛿𝛿11(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉) ∙ 𝑀𝑀E1(𝑎𝑎, 𝜉𝜉)𝑑𝑑𝑑𝑑𝐿𝐿

0 �  

 

Ao utilizar a equação de compatibilidade obtém-se as 
equações em (12) das as duas situações. 

 

𝑋𝑋1𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = −𝛿𝛿10.𝑆𝑆1(𝑥𝑥,𝑎𝑎,𝐿𝐿,𝐸𝐸𝐸𝐸)
𝛿𝛿11(𝑎𝑎,𝐿𝐿,𝐸𝐸𝐸𝐸)

  (12.1) 

𝑋𝑋1𝑆𝑆2(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = −𝛿𝛿10.𝑆𝑆2(𝑥𝑥,𝑎𝑎,𝐿𝐿,𝐸𝐸𝐸𝐸)
𝛿𝛿11(𝑎𝑎,𝐿𝐿,𝐸𝐸𝐸𝐸)

  (12.2) 

 

A condicional final para os valores do hiperestático 
𝑋𝑋1 , com dependência da posição da carga móvel 𝑥𝑥, é 
vista abaixo em (13) 

 

(13) 

𝑋𝑋1(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = 𝑠𝑠𝑠𝑠 𝑥𝑥 ≤ 𝑎𝑎  

𝑋𝑋1𝑆𝑆1(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸)  

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜 𝑠𝑠𝑠𝑠 𝑥𝑥 > 𝑎𝑎  

𝑋𝑋1𝑆𝑆2(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸)  

 𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜  

0  

 

Para a padronização das variáveis adotou-se o módulo 
de elasticidade igual 𝐸𝐸 = 21.000 𝑀𝑀𝑀𝑀𝑀𝑀 e o momento 
de inércia da seção transversal 𝐼𝐼 = 8,533 ∙ 10−3 𝑚𝑚4 
(0,20 𝑚𝑚 𝑥𝑥 0,80 𝑚𝑚), além disso o exemplo utilizado 
trata-se da seção 4 (S4), a igual a 4 metros. 

Os resultados numéricos apresentados foram obtidos 
por meio do PTC Mathcad Prime, demonstrados na 
Figura 6 e confrontados com os resultados fornecidos 
pelo software FTOOL, Figura 7.  

 

Figura 6 – LI momento fletor S4 (𝑎𝑎 = 4𝑚𝑚). Fonte: 
Autor. 
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Figura 7 – LI momento fletor S4, (𝑎𝑎 = 4𝑚𝑚). Fonte: 
Autor e FTOOL.

 
 

Observou-se concordância entre os resultados obtidos 
pelos métodos analítico e numérico, corroborando a 
adequação da modelagem numérica adotada e 
evidenciando a reprodução consistente, pelo 
procedimento computacional, da resposta estrutural 
prevista teoricamente para as condições analisadas. 

4.2. Exemplo 02 – Construção da Tabela de Anger 
com molas translacionais. 

O exemplo apresenta similaridade com o conteúdo 
lecionado na disciplina de Pontes de Concreto. Neste 
caso a estrutura é composta por 20 segmentos 
discretizados em seções de 1 metro. O modelo 
considera a presença de três molas translacionais com 
rijeza equivalente igual a 𝑘𝑘𝑦𝑦 = 5 ∙ 104 𝑘𝑘𝑘𝑘

𝑚𝑚
. A Figura 8 

apresenta os aspectos gerais do problema. 

 

Figura 8 – Exemplo 02. Fonte: Autor. 

 
 

Utilizando o método das forças simplificado (MFS), 
escolheu-se o sistema da Figura 9 como o principal. 

 

Figura 9 – SP hiperestático X1. Fonte: Autor. 

 
 

 

 

 

Para gerar a Tabela de Anger desse modelo, adota-se 
inicialmente a carga unitária posicionada a 𝑥𝑥 metros 
do apoio A. A Figura 10 apresenta o Estado E0 

 

Figura 10 – E0. Fonte: Autor. 

 
 

As equações de (14) demonstram as duas situações 
para equação do momento fletor 𝑀𝑀S1E0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) e 
𝑀𝑀S2E0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉). 

 

Σ𝑀𝑀CE0 = 0    (14.1) 

𝑅𝑅AE0 ∙ (𝐿𝐿) − 1 ∙ (𝐿𝐿 − 𝑥𝑥) = 0  (14.2) 

𝑅𝑅AE0(𝑥𝑥, 𝐿𝐿) = 𝐿𝐿−𝑥𝑥
𝐿𝐿

    (14.3) 

𝑅𝑅CE0(𝑥𝑥, 𝐿𝐿) = 𝑥𝑥
𝐿𝐿
     (14.4) 

𝑀𝑀S1E0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) = −𝑥𝑥∙𝜉𝜉
𝐿𝐿

+ 𝜉𝜉   (14.5) 

𝑀𝑀S2E0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) = −𝑥𝑥∙𝜉𝜉
𝐿𝐿

+ 𝑥𝑥   (14.6) 

 

Em (15) mostra-se a condição final da equação de 
acordo com a posição da carga unitária móvel 𝑥𝑥. 

 

(15) 

𝑀𝑀SE0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) = 𝑠𝑠𝑠𝑠 𝜉𝜉 ≤ 𝑥𝑥  

𝑀𝑀S1E0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉)  

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜  

𝑀𝑀S2E0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉)  

 

Abaixo na Figura 11 analisa-se o Estado E1. 

 

Figura 11 – E1. Fonte: Autor. 
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Posteriormente as equações de momento em (16) para 
as situações 1 e 2. 

 

Σ𝑀𝑀CE1 = 0    (16.1) 

−𝑅𝑅AE1 ∙ (𝐿𝐿) + 1 ∙ 𝐿𝐿
2

= 0   (16.2) 

𝑅𝑅AE1 = 1
2
    (16.3) 

𝑅𝑅CE1 = 1
2
    (16.4) 

𝑀𝑀S1E1(𝐿𝐿, 𝜉𝜉) = −𝑅𝑅AE1 ∙ 𝜉𝜉  (16.5) 

𝑀𝑀S2E1(𝐿𝐿, 𝜉𝜉) = −𝑅𝑅AE1 ∙ 𝜉𝜉 + 1 ∙ �𝜉𝜉 − 𝐿𝐿
2
� (16.6) 

 

De acordo com a condicional da equação (17) aborda-
se as duas possibilidades conforme o crescimento da 
variável 𝜉𝜉. 

 

(17) 

𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉) = 𝑠𝑠𝑠𝑠 𝜉𝜉 ≤ 𝐿𝐿
2
  

𝑀𝑀S1E1(𝐿𝐿, 𝜉𝜉)  

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜  

𝑀𝑀S2E1(𝐿𝐿, 𝜉𝜉)  

 

A equação (18) apresenta o trabalho virtual externo. 

 

𝑊𝑊10 = (1) ∙ 𝛿𝛿10     (18) 

 

A equação (19) apresenta a energia de deformação 
elástica virtual, agora neste exemplo com a parcela do 
efeito elástico das molas. 

 

(19) 

𝑈𝑈10 = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀SE0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) ∙ 𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉)𝑑𝑑𝑑𝑑𝑥𝑥

0 +

∫ 𝑀𝑀SE0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) ∙ 𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉)𝑑𝑑𝑑𝑑𝐿𝐿
𝑥𝑥 � +

(−𝑅𝑅AE1) ∙ �𝑅𝑅AE0(𝑥𝑥,𝐿𝐿)
𝑘𝑘𝑦𝑦

� + (−𝑅𝑅CE1) ∙ �𝑅𝑅CE0(𝑥𝑥,𝐿𝐿)
𝑘𝑘𝑦𝑦

� + 1 ∙ 0
𝑘𝑘𝑦𝑦���������������������������������

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒á𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

  

 

 

 

 

Pelo PTV, temos na equação (20): 

 

(20) 

𝛿𝛿10(𝑥𝑥, 𝐿𝐿) = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀SE0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) ∙ 𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉)𝑑𝑑𝑑𝑑𝑥𝑥

0 +

∫ 𝑀𝑀SE0(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) ∙ 𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉)𝑑𝑑𝑑𝑑𝐿𝐿
𝑥𝑥 � + (−𝑅𝑅AE1) ∙

�𝑅𝑅AE0(𝑥𝑥,𝐿𝐿)
𝑘𝑘𝑦𝑦

� + (−𝑅𝑅CE1) ∙ �𝑅𝑅CE0(𝑥𝑥,𝐿𝐿)
𝑘𝑘𝑦𝑦

� + 1 ∙ 0
𝑘𝑘𝑦𝑦

  

 

Após conferência é demonstrada a determinação do 
coeficiente de flexibilidade em (21). 

 

(21) 

𝑊𝑊11 = (1) ∙ 𝛿𝛿11 + (−𝑅𝑅AE1) ∙ 0 + (−𝑅𝑅CE1) ∙ 0�������������������������
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 

 

Note o sinal negativo nas reações de E1 dada a 
convenção. A equação (22) apresenta a energia de 
deformação elástica virtual. 

 

(22) 

𝑈𝑈11 = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉) ∙ 𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉)𝑑𝑑𝑑𝑑𝐿𝐿

0 � +

(−𝑅𝑅AE1) ∙ �−𝑅𝑅AE1
𝑘𝑘𝑦𝑦

� + (−𝑅𝑅CE1) ∙ �−𝑅𝑅CE1
𝑘𝑘𝑦𝑦

� + 1 ∙ 1
𝑘𝑘𝑦𝑦�������������������������������

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒á𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

  

 

Pelo PTV, temos em (23) 

(23) 

𝛿𝛿11(𝐿𝐿) = 1
𝐸𝐸∙𝐼𝐼
∙ �∫ 𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉) ∙ 𝑀𝑀SE1(𝐿𝐿, 𝜉𝜉)𝑑𝑑𝑑𝑑𝐿𝐿

0 � +

(−𝑅𝑅AE1) ∙ �−𝑅𝑅AE1
𝑘𝑘𝑦𝑦

� + (−𝑅𝑅CE1) ∙ �−𝑅𝑅CE1
𝑘𝑘𝑦𝑦

� + 1 ∙ 1
𝑘𝑘𝑦𝑦�������������������������������

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑒𝑒𝑒𝑒á𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

  

 

Observa-se o efeito das 3 molas na equação (23) em 
cada reação. Ao utilizar a equação de 
compatibilidade, como abaixo na equação (24), 
delimita-se o hiperestático 𝑋𝑋1. 

 

𝑋𝑋1(𝑥𝑥, 𝐿𝐿) = −𝛿𝛿10(𝑥𝑥,𝐿𝐿)
𝛿𝛿11(𝐿𝐿)     (24) 

 

Com o hiperestático definido resolve-se a condição 
real inicial do problema em (25). 
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Σ𝑀𝑀C = 0    (25.1) 

𝑅𝑅A(𝑥𝑥, 𝐿𝐿) ∙ 𝐿𝐿 + 𝑅𝑅𝐵𝐵(𝑥𝑥, 𝐿𝐿) ∙ 𝐿𝐿
2
− 1 ∙ (𝐿𝐿 − 𝑥𝑥) = 0 (25.2) 

𝑅𝑅A(𝑥𝑥, 𝐿𝐿) = −(2∙𝑥𝑥)+�2−𝑋𝑋1(𝑥𝑥,𝐿𝐿)�∙𝐿𝐿
2∙𝐿𝐿

  (25.3) 

𝑅𝑅𝐵𝐵(𝑥𝑥, 𝐿𝐿) = 𝑋𝑋1(𝑥𝑥, 𝐿𝐿)   (25.4) 

𝑅𝑅C(𝑥𝑥, 𝐿𝐿) = 1 − �𝑅𝑅A(𝑥𝑥, 𝐿𝐿) + 𝑅𝑅𝐵𝐵(𝑥𝑥, 𝐿𝐿)� (25.5) 

 

A partir das reações de apoio expressas na equação 
(25) obtém-se a condicional final do momento fletor 
em (26). 

 

(26) 

𝑀𝑀S(𝑥𝑥, 𝐿𝐿, 𝜉𝜉) = 𝑠𝑠𝑠𝑠 0 ≤ 𝜉𝜉 ≤ 𝐿𝐿
2
  

𝑠𝑠𝑠𝑠 0 ≤ 𝜉𝜉 ≤ 𝑥𝑥  

𝑅𝑅𝐴𝐴(𝑥𝑥, 𝐿𝐿) ∙ 𝜉𝜉  

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜 𝑠𝑠𝑠𝑠 𝑥𝑥 ≤ 𝜉𝜉 ≤ 𝐿𝐿
2
 

𝑅𝑅𝐴𝐴(𝑥𝑥, 𝐿𝐿) ∙ 𝜉𝜉 − 1 ∙ (𝜉𝜉 − 𝑥𝑥) 

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜 

𝑅𝑅𝐴𝐴(𝑥𝑥, 𝐿𝐿) ∙ 𝜉𝜉 − 1 ∙ (𝜉𝜉 − 𝑥𝑥) +
𝑅𝑅𝐵𝐵(𝑥𝑥, 𝐿𝐿) ∙ �𝜉𝜉 − 𝐿𝐿

2
�  

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜 𝑠𝑠𝑠𝑠 𝐿𝐿
2
≤ 𝜉𝜉 ≤ 𝐿𝐿  

𝑠𝑠𝑠𝑠 0 ≤ 𝜉𝜉 ≤ 𝐿𝐿
2
  

𝑅𝑅𝐴𝐴(𝑥𝑥, 𝐿𝐿) ∙ 𝜉𝜉  

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜 𝑠𝑠𝑠𝑠 𝐿𝐿
2
≤ 𝜉𝜉 ≤ 𝑥𝑥  

𝑅𝑅𝐴𝐴(𝑥𝑥, 𝐿𝐿) ∙ 𝜉𝜉 + 𝑅𝑅𝐵𝐵(𝑥𝑥, 𝐿𝐿) ∙
�𝜉𝜉 − 𝐿𝐿

2
�  

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜 

𝑅𝑅𝐴𝐴(𝑥𝑥, 𝐿𝐿) ∙ 𝜉𝜉 + 𝑅𝑅𝐵𝐵(𝑥𝑥, 𝐿𝐿) ∙
�𝜉𝜉 − 𝐿𝐿

2
� − 1 ∙ (𝜉𝜉 − 𝑥𝑥)  

𝑠𝑠𝑠𝑠𝑠𝑠ã𝑜𝑜  

0 

 

Para comprovação dos resultados numéricos utilizou-
se o software FTOOL e para seção de interesse a S1, 
distante 1 metro do apoio A. Os resultados 
encontrados foram equivalentes aos da Figura 12 e 
para melhor visualização foi elaborada a Tabela 01 
com os resultados. 

Figura 12 – LI momento fletor S1, (𝑎𝑎 = 1𝑚𝑚). Fonte: 
Autor e FTOOL. 

 
 

Tabela 01 – LI momento fletor S1, (𝑎𝑎 = 1𝑚𝑚). Fonte: 
Autor e Excel. 

 
 

Todos os cálculos a título de conferência, assim como 
a Tabela Anger, constam nos apêndices no final deste 
trabalho. 

4.3. Exemplo 03 – Envoltória dos momentos 
fletores do Exemplo 01, com os efeitos 
deslocamento prescrito e variação térmica. 

Este exemplo retoma o Exemplo 01, incorpora-se os 
efeitos do deslocamento prescrito e variação térmica 
na envoltória dos momentos fletores. Para a 
comparação numérica, utilizou o FTOOL. 

Dados: coeficiente de dilatação térmica 𝛼𝛼 = 10−5  1
°
, 

variação do bordo superior ∆𝑡𝑡𝑠𝑠 = 10°, variação do 
bordo inferior ∆𝑡𝑡𝑖𝑖 = 5°, 𝐷𝐷𝑝𝑝𝑝𝑝 = 0,001𝑚𝑚. O modelo 
deste exemplo é visto na Figura 13. 

 

Figura 13 – Exemplo 03. Fonte: Autor e FTOOL. 

 

0 -0,005 11 -0,033
1 0,872 12 -0,063
2 0,751 13 -0,081
3 0,633 14 -0,089
4 0,520 15 -0,088
5 0,412 16 -0,080
6 0,311 17 -0,067
7 0,219 18 -0,049
8 0,138 19 -0,028
9 0,067 20 -0,005

10 0,010

S1
Posição 

da Carga S1
Posição 

da Carga
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Estabelecidas as variações térmicas elabora-se o 
gradiente de temperatura e a variação uniforme de 
temperatura, vistos na equação (27) respectivamente. 

 

𝑔𝑔𝑡𝑡 = ∆𝑡𝑡𝑖𝑖−∆𝑡𝑡𝑠𝑠
ℎ

    (27.1) 

∆𝑡𝑡=
∆𝑡𝑡𝑖𝑖+∆𝑡𝑡𝑠𝑠

2
    (27.2) 

 

O sistema principal (SP) será o mesmo da Figura 2, 
contudo no novo Estado E0 as ações externas são: 
deslocamento prescrito e variação de temperatura 
como abaixo na Figura 14. 

 

Figura 14 – E0. Fonte: Autor e FTOOL. 

 
 

Enquanto o Estado 𝐸𝐸1 é equivalente ao contido no 
Exemplo 01 disponível na Figura 5, desenvolvido nas 
equações em (5). Por isso o coeficiente de 
flexibilidade resulta no mesmo 𝛿𝛿11 explícito na 
equação (28) 

 

𝛿𝛿11(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = 𝐿𝐿3

3∙𝐸𝐸∙𝐼𝐼∙𝑎𝑎2
    (28) 

 

A equação (29) apresenta o trabalho virtual externo. 

 

(29) 

𝑊𝑊10 =   𝑅𝑅𝐴𝐴𝐴𝐴1(𝑎𝑎) ∙ 𝐷𝐷𝑝𝑝𝑝𝑝 + (1) ∙ 𝜃𝜃10.𝐸𝐸𝐸𝐸𝐸𝐸.𝑆𝑆1 + (−1) ∙
𝜃𝜃10.𝐷𝐷𝐷𝐷𝐷𝐷.𝑆𝑆1 = 𝛿𝛿10(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) + 𝑅𝑅𝐴𝐴𝐴𝐴1(𝑎𝑎) ∙ 𝐷𝐷𝑝𝑝𝑝𝑝  

 

Note a ausência das situações 1 e 2 do antigo 𝐸𝐸0, 
devido ao carregamento da carga móvel e logo 
inexistência da variável 𝑥𝑥. A energia de deformação 
elástica do exemplo é vista em (30). 

 

𝑈𝑈10 = 0
𝐸𝐸∙𝐼𝐼

+ 𝛼𝛼 ∙ ∆𝑡𝑡 ∙ 𝐿𝐿 ∙ 0 + 𝛼𝛼 ∙ 𝑔𝑔𝑡𝑡 ∙ 𝐿𝐿 ∙
1
2
∙ 𝐿𝐿
𝑎𝑎
 (30) 

 

 

Pelo PTV, obtemos em (31) o novo 𝛿𝛿10. 

 

(31) 

𝛿𝛿10(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = −�𝑅𝑅𝐴𝐴𝐴𝐴1(𝑎𝑎) ∙ 𝐷𝐷𝑝𝑝𝑝𝑝������������
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷.  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝛼𝛼 ∙ 𝑔𝑔𝑡𝑡 ∙ 𝐿𝐿 ∙
1
2
∙ 𝐿𝐿
𝑎𝑎���������

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑇𝑇é𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

  

 

Por último a obtenção do novo hiperestático 𝑋𝑋1 em 
(32). 

 

𝑋𝑋1.𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) = −𝛿𝛿10(𝑎𝑎,𝐿𝐿,𝐸𝐸𝐸𝐸)
𝛿𝛿11(𝑎𝑎,𝐿𝐿,𝐸𝐸𝐸𝐸)

   (32) 

 

De posse da função do hiperestático gera-se o 
diagrama dos momentos fletores de acordo com a 
Figura 15. 

 

Figura 15 – Diagrama dos momentos fletores. Fonte: 
Autor e FTOOL. 

 
 

Para elaborar a envoltória dos momentos fletores, 
organizam-se em (33) os valores máximos e mínimos, 
com inclusão dos efeitos de deslocamento prescrito e 
da temperatura. Adota-se trem-tipo carga concentrada 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1. 

 

(33.1) 

𝑀𝑀𝑀𝑀Í𝑁𝑁 = 𝑋𝑋1.𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) + 𝑋𝑋1(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸)���������
𝐿𝐿𝐿𝐿 𝐸𝐸𝐸𝐸.  (13)

∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

(33.2) 

𝑀𝑀𝑀𝑀Á𝑋𝑋 = 𝑋𝑋1.𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) + 𝑋𝑋1(𝑥𝑥,𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸)���������
𝐿𝐿𝐿𝐿 𝐸𝐸𝐸𝐸.  (13)

∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

 

De forma genérica, os valores máximos e mínimos 
são obtidos somando-se aos resultados do novo 
problema hiperestático os efeitos do trem-tipo, 
determinados por meio da superposição a partir da 
linha de influência (LI) do Exemplo 01. 

O valor máximo (33.2) pode ser obtido de forma 
direta, uma vez que, em geral, o maior valor positivo 
da LI ocorre quando a carga é posicionada no ponto 
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de maior ordenada, tipicamente sob a própria carga. 
Já o valor mínimo (33.1) não é, necessariamente, 
obtido de forma automática, pois as ordenadas 
disponíveis nem sempre coincidem exatamente com o 
ponto de análise, sendo por vezes necessárias 
interpolações para a sua determinação. 

Como a análise foi discretizada de metro em metro, 
em conformidade com a modelagem no FTOOL, o 
software será utilizado para obter as ordenadas da 
linha de influência quando houver necessidade de 
interpolação. As ordenadas da seção distante 𝑎𝑎 = 4𝑚𝑚 
são vistas na Figura 16. 

 

Figura 16 – LI momento fletor (𝑎𝑎 = 4𝑚𝑚). Fonte: 
Autor e FTOOL. 

 
 

Observa-se igualdade em relação à Figura 7. Ainda 
assim, com deslocamento prescrito, o FTOOL indica 
ordenada de -0,0010 m no apoio A devido ao 𝐷𝐷𝑝𝑝𝑝𝑝 =
0,001𝑚𝑚. Porém essa indicação não se sustenta, pois a 
ordenada no apoio deve ser nula. 

Para comprovação do método analítico e prova de o 
efeito do deslocamento prescrito promover diferentes 
resultados, foram elaborados dois casos: um com a 
presença do deslocamento prescrito nas equações de 
𝛿𝛿10(𝑎𝑎, 𝐿𝐿,𝐸𝐸𝐸𝐸) e outro sem 𝐷𝐷𝑝𝑝𝑝𝑝 = 0. As envoltórias 
correspondentes foram inseridas na Figura 17. 

 

 

 

 

 

 

 

Figura 17 – Envoltória dos momentos fletores 
máximos e mínimos (𝑎𝑎 = 4𝑚𝑚). Fonte: Autor. 

 
 

A legenda é representada por: Mmín e Mmáx 
correspondem à envoltória sem deslocamento 
prescrito; MmínDP e MmáxDP correspondem à 
envoltória com deslocamento prescrito. Os resultados 
do gráfico estão disponíveis para comparação e 
dispostos na Tabela 02. 

 

Tabela 02 – Envoltória dos momentos fletores 
máximos e mínimos (𝑎𝑎 = 4𝑚𝑚). Fonte: Autor e 

Excel. 

 
 

Com essa comparação, evidencia-se que o software 
trata os resultados associados ao deslocamento 
prescrito de forma incoerente. Na ausência desse 
efeito, contudo, observa-se concordância entre os 
resultados do método numérico e do método analítico. 
Além das resoluções apresentadas neste trabalho, todo 
detalhamento dos exemplos consta nos apêndices. 

  

0,00

5,00

10,00

15,00

20,00

25,00

0 1 2 3 4 5 6 7 8 9 10

Mmín

Mmáx

MmínDP

MmáxDP

Ponto Mmín Mmáx MmínDP MmáxDP
0 0 0 -0,0010 0
1 1,6800 2,5305 2,2176 3,0681
2 3,3600 4,7680 4,4352 5,8432
3 5,0400 6,7305 6,6528 8,3433
4 6,7200 8,4480 8,8704 10,5984
5 8,4000 9,9625 11,0880 12,6505
6 10,0800 11,3280 13,3056 14,5536
7 11,6873 12,6105 15,4505 16,3737
8 12,8957 13,8880 17,1965 18,1888
9 13,9319 15,2505 18,7703 20,0889

10 14,8755 16,8000 20,2515 22,1760
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5. CONCLUSÕES 

O desenvolvimento apresentado consolidou uma 
abordagem analítica e numérica para a obtenção de 
linhas de influência (LI) em vigas com apoios 
elásticos (molas) e a avaliação de envoltórias 
considerando os efeitos de deslocamentos prescritos e 
de variações de temperatura. A etapa analítica foi 
estruturada com base no princípio dos trabalhos 
virtuais (PTV) e na aplicação do método das forças 
simplificado (MFS), enquanto a etapa numérica foi 
conduzida no software FTOOL, permitindo 
comparação direta entre resultados. 

As comparações realizadas indicaram 
compatibilidade entre a formulação analítica e a 
modelagem numérica na determinação das LI do 
momento fletor nos casos estudados, sustentando a 
validade do procedimento adotado para estruturas 
com rigidez finita em apoios. 

Na construção das envoltórias, verificou-se que 
deslocamentos prescritos e efeitos térmicos produzem 
alterações relevantes nos valores extremos dos 
momentos fletores máximos e mínimos. Além disso, 
a análise evidenciou uma limitação no pós-
processamento do FTOOL para o caso com 
deslocamento prescrito, devido à indicação de 
ordenada não nula da linha de influência no apoio, 
comportamento não reproduzido pela formulação 
analítica. Sem deslocamento prescrito, a concordância 
entre as abordagens foi restabelecida. Esses resultados 
permitem concluir que o trabalho alcançou os 
objetivos de validar a formulação proposta e de 
qualificar os efeitos considerados nas envoltórias, 
bem como de delimitar restrições práticas de uso do 
software para a situação investigada. 

Como continuidade, recomenda-se ampliar o 
conjunto de exemplos para maiores graus de 
hiperestaticidade, discretizar mais para reduzir a 
necessidade de interpolações na determinação de 
mínimos e realizar verificação cruzada com outras 
ferramentas computacionais para os casos envolvendo 
deslocamentos prescritos e temperatura. 
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APÊNDICES 

 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 -0,005 -0,010 -0,016 -0,021 -0,026 -0,031 -0,037 -0,042 -0,047 -0,052 -0,047 -0,042 -0,037 -0,031 -0,026 -0,021 -0,016 -0,010 -0,005 0
1 0 0,872 0,745 0,617 0,490 0,362 0,234 0,107 -0,021 -0,149 -0,276 -0,249 -0,221 -0,193 -0,166 -0,138 -0,111 -0,083 -0,055 -0,028 0
2 0 0,751 1,503 1,254 1,006 0,757 0,509 0,260 0,011 -0,237 -0,486 -0,437 -0,389 -0,340 -0,292 -0,243 -0,194 -0,146 -0,097 -0,049 0
3 0 0,633 1,267 1,900 1,533 1,167 0,800 0,434 0,067 -0,300 -0,666 -0,600 -0,533 -0,467 -0,400 -0,333 -0,267 -0,200 -0,133 -0,067 0
4 0 0,520 1,039 1,559 2,079 1,598 1,118 0,638 0,157 -0,323 -0,803 -0,723 -0,643 -0,562 -0,482 -0,402 -0,321 -0,241 -0,161 -0,080 0
5 0 0,412 0,824 1,235 1,647 2,059 1,471 0,883 0,294 -0,294 -0,882 -0,794 -0,706 -0,618 -0,529 -0,441 -0,353 -0,265 -0,176 -0,088 0
6 0 0,311 0,622 0,934 1,245 1,556 1,867 1,178 0,489 -0,200 -0,888 -0,800 -0,711 -0,622 -0,533 -0,444 -0,355 -0,267 -0,178 -0,089 0
7 0 0,219 0,439 0,658 0,877 1,096 1,316 1,535 0,754 -0,027 -0,807 -0,727 -0,646 -0,565 -0,484 -0,404 -0,323 -0,242 -0,162 -0,081 0
8 0 0,138 0,275 0,413 0,550 0,688 0,825 0,963 1,100 0,238 -0,625 -0,562 -0,500 -0,437 -0,375 -0,312 -0,250 -0,187 -0,125 -0,063 0
9 0 0,067 0,135 0,202 0,270 0,337 0,405 0,472 0,540 0,607 -0,326 -0,293 -0,261 -0,228 -0,195 -0,163 -0,130 -0,098 -0,065 -0,033 0

10 0 0,010 0,021 0,031 0,042 0,052 0,063 0,073 0,083 0,094 0,104 0,094 0,083 0,073 0,063 0,052 0,042 0,031 0,021 0,010 0
11 0 -0,033 -0,065 -0,098 -0,130 -0,163 -0,195 -0,228 -0,261 -0,293 -0,326 0,607 0,540 0,472 0,405 0,337 0,270 0,202 0,135 0,067 0
12 0 -0,063 -0,125 -0,187 -0,250 -0,312 -0,375 -0,437 -0,500 -0,562 -0,625 0,238 1,100 0,963 0,825 0,688 0,550 0,413 0,275 0,138 0
13 0 -0,081 -0,162 -0,242 -0,323 -0,404 -0,484 -0,565 -0,646 -0,727 -0,807 -0,027 0,754 1,535 1,316 1,096 0,877 0,658 0,439 0,219 0
14 0 -0,089 -0,178 -0,267 -0,355 -0,444 -0,533 -0,622 -0,711 -0,800 -0,888 -0,200 0,489 1,178 1,867 1,556 1,245 0,934 0,622 0,311 0
15 0 -0,088 -0,176 -0,265 -0,353 -0,441 -0,529 -0,618 -0,706 -0,794 -0,882 -0,294 0,294 0,883 1,471 2,059 1,647 1,235 0,824 0,412 0
16 0 -0,080 -0,161 -0,241 -0,321 -0,402 -0,482 -0,562 -0,643 -0,723 -0,803 -0,323 0,157 0,638 1,118 1,598 2,079 1,559 1,039 0,520 0
17 0 -0,067 -0,133 -0,200 -0,267 -0,333 -0,400 -0,467 -0,533 -0,600 -0,666 -0,300 0,067 0,434 0,800 1,167 1,533 1,900 1,267 0,633 0
18 0 -0,049 -0,097 -0,146 -0,194 -0,243 -0,292 -0,340 -0,389 -0,437 -0,486 -0,237 0,011 0,260 0,509 0,757 1,006 1,254 1,503 0,751 0
19 0 -0,028 -0,055 -0,083 -0,111 -0,138 -0,166 -0,193 -0,221 -0,249 -0,276 -0,149 -0,021 0,107 0,234 0,362 0,490 0,617 0,745 0,872 0
20 0 -0,005 -0,010 -0,016 -0,021 -0,026 -0,031 -0,037 -0,042 -0,047 -0,052 -0,047 -0,042 -0,037 -0,031 -0,026 -0,021 -0,016 -0,010 -0,005 0

Posição 
da Carga

Tabela de Anger - Momentos Fletores
E

st
an
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ce

nt
ra

da
 n
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Exemplo 01

Sistema principal - SP

Reações de apoio - E0 - Situação 1

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝＝HAE0 HBE0 0

＝ΣFy 0 ＝-+RAE0S1 RBE0S1 1 0 ＝+RAE0S1 RBE0S1 1

＝ΣMROT.ESQ.E0S1 0 ――――→＝-⋅RAE0S1 a ⋅1 (( -a x)) 0
,solve RAE0S1

―――
+-x a
a

――――→＝+―――
+-x a
a

RBE0S1 1
,solve RBE0S1

―
x
a

＝-⋅―
x
a

(( -L a)) MBE0S1 0＝MROT.DIR.E0S1 0



＝MROT.DIR.E0S1 0 ＝-⋅―
x
a

(( -L a)) MBE0S1 0

――――→-⋅―
x
a

(( -L a)) MBE0S1

,solve MBE0S1
――――

⋅(( +-a L)) x
a

≔RAE0S1 (( ,,x a L)) ―――
(( -a x))

a
≔RBE0S1 (( ,,x a L)) ―

x
a

≔M1E0S1 (( ,,x a ξ)) ⋅―――
(( -a x))

a
ξ ≔M2E0S1 (( ,,x a ξ)) +⋅

⎛
⎜
⎝
――
-x
a

⎞
⎟
⎠
ξ x

Reações de apoio - E0 - Situação 2

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝＝HAE12 HBE12 0

＝ΣFy 0 ＝-+RAE0S2 RBE0S2 1 0 ＝+RAE0S2 RBE0S2 1

＝ΣMROT.ESQ.E0S2 0 ――――→＝⋅RAE0S2 a 0
,solve RAE0S2

0 ＝RBE0S2 1

＝MROT.DIR.E0S2 0 ――――→＝0 --⋅1 (( -L a)) ⋅1 (( -x a)) MBE0S2

,solve MBE0S2
+-x L

≔RAE0S2 0 ≔RBE0S2 1 ≔MBE0S2 (( ,x L)) -L x =MBE0S2 (( ,5 10)) 5

≔ME0S2 (( ,x ξ)) -(( -ξ x))

Estado - E1



Estado - E1

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝＝HAE1 HBE1 0

＝ΣFy 0 ＝-RAE1 RBE1 0 ＝RAE1 RBE1

＝ΣMROT.ESQ.E1 0 ――――→＝-⋅RAE1 a 1 0
,solve RAE1

―
1
a

＝RBE1 ―
1
a

＝ΣMROT.DIR.E1 0 ―――→＝-+⋅-―
1
a

(( -L a)) MB1 1 0
,solve MB1

―
L
a

≔RAE1 ((a)) ―
1
a

≔RBE1 ((a)) -―
1
a

≔MB1 (( ,a L)) ―
L
a

≔ME1 (( ,a ξ))
⎛
⎜
⎝
―
ξ
a

⎞
⎟
⎠

Condicionais para Situação 1 e 2

≔δ10.S1 (( ,,,x a L EI)) ―――→⋅――
1

EI

⎛
⎜
⎜⎝

+⌠
⌡ d
0

x

⋅ME1 (( ,a ξ)) M1E0S1 (( ,,x a ξ)) ξ ⌠
⌡ d
x

L

⋅ME1 (( ,a ξ)) M2E0S1 (( ,,x a ξ)) ξ
⎞
⎟
⎟⎠

simplify
――――――――――――
-⎛⎝ ⋅x ⎛⎝ +⋅a x 2 ⎛⎝ -⋅2 L 3 ⋅⋅3 L 2 a⎞⎠⎞⎠⎞⎠

⋅⋅6 EI a 2

≔δ10.S1 (( ,,,x a L EI)) ――――――――――
-⎛⎝ ⋅x ⎛⎝ +⋅a x2 ⎛⎝ -⋅2 L3 ⋅⋅3 L2 a⎞⎠⎞⎠⎞⎠

⋅⋅6 EI a2

≔δ10.S2 (( ,,,x a L EI)) ―――→⋅――
1
EI

⎛
⎜
⎜⎝

⌠
⌡ d
x

L

⋅ME1 (( ,a ξ)) ME0S2 (( ,x ξ)) ξ
⎞
⎟
⎟⎠

simplify
―――――――
-⎛⎝ ⋅(( -x L))2 (( +x ⋅2 L))⎞⎠

⋅⋅6 EI a

≔δ11 (( ,,a L EI)) ―――→⋅―
1
EI

⎛
⎜
⎜⎝

⌠
⌡ d
0

L

⋅ME1 (( ,a x)) ME1 (( ,a x)) x
⎞
⎟
⎟⎠

simplify
―――

L3

⋅⋅3 EI a2

Hiperestático X1 para Situações 1 e 2



Hiperestático X1 para Situações 1 e 2

≔X1S1 (( ,,,x a L EI)) ――――――
-δ10.S1 (( ,,,x a L EI))

δ11 (( ,,a L EI))

≔X1S2 (( ,,,x a L EI)) ――――――
-δ10.S2 (( ,,,x a L EI))

δ11 (( ,,a L EI))

Dados do problema

≔E ⋅210 105 ≔I ―――
⋅0.2 0.83

12
≔EI ⋅E I ≔x , ‥0 1 10

≔X1 (( ,,,x a L EI)) |
|
|
|
|
|
|
|
||

if

else if

else

≤x a
‖
‖X1S1 (( ,,,x a L EI))

>x a
‖
‖X1S2 (( ,,,x a L EI))

‖
‖ 0

=X1 (( ,,,x 4 10 EI))

0.000
0.402
0.816
1.254
1.728
1.250
0.832
0.486
0.224
0.058
0.000

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦



Exemplo 02

Sistema principal - SP

Estado E0

Reações de apoio - E0

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝HBE0 0

＝ΣFy 0 ＝-+RAE0 RCE0 1 0 ＝+RAE0 RCE0 1

＝ΣMCE0 0 ――――→＝-⋅RAE0 ((L)) ⋅1 (( -L x)) 0
,solve RAE0

―――
+-x L
L

――――→＝+―――
+-x L
L

RCE0 1
,solve RCE0

―
x
L

≔RAE0 (( ,x L)) ――
-L x
L

≔RCE0 (( ,x L)) ―
x
L

＝ΣMS1E0 0 ―――→＝MS1E0 ⋅RAE0 (( ,x L)) ξ
simplify

＝MS1E0 +-――
⋅ξ x
L

ξ

＝ΣMS2E0 0 ―――→＝MS2E0 -⋅RAE0 (( ,x L)) ξ ⋅1 (( -ξ x))
simplify

＝MS2E0 -x ――
⋅ξ x
L

≔MSE0 (( ,,x L ξ)) |
|
|
|
|
|
|
|
|

if

else

≤ξ x
‖
‖
‖‖

+-――
⋅ξ x
L

ξ

‖
‖
‖‖

-x ――
⋅ξ x
L



≔MSE0 (( ,,x L ξ)) |
|
|
|
|
|
|
|
|

if

else

≤ξ x
‖
‖
‖‖

+-――
⋅ξ x
L

ξ

‖
‖
‖‖

-x ――
⋅ξ x
L

Reações de apoio - E1

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝HBE1 0

＝ΣFy 0 ＝-+RAE1 RCE1 1 0 ＝+RAE1 RCE1 1

＝ΣMCE1 0 ――――→＝+⋅-RAE1 ((L)) ⋅1
⎛
⎜
⎝
―
L
2

⎞
⎟
⎠

0
,solve RAE1

―
1
2

――――→＝+―
1
2

RCE1 1
,solve RCE1

―
1
2

≔RAE1 ―
1
2

≔RCE1 ―
1
2

＝ΣMS1E1 0 ＝MS1E1 ⋅-RAE1 ξ

＝ΣMS2E1 0 ＝MS2E1 +⋅-RAE1 ξ ⋅1
⎛
⎜
⎝

-ξ ―
L
2

⎞
⎟
⎠

≔MSE1 (( ,L ξ))
|
|
|
|
|
|
|
|
|
||

if

else

≤ξ ―
L
2

‖
‖
‖‖

――
-ξ
2

‖
‖
‖‖

――
-ξ L
2

Dados do problema



Dados do problema

≔E ⋅210 105 ≔I ―――
⋅0.2 0.83

12
≔EI ⋅E I ≔ky ⋅5 104

Trabalho virtual externo

＝W10 ++⋅((1)) δ10 ⋅RAE1 0 ⋅RCE1 0

Energia de deformação elástica

＝U10 +++⋅――
1

EI
+⌠

⌡ d
0

x

⋅MSE0 (( ,,x L ξ)) MSE1 (( ,L ξ)) ξ ⌠
⌡ d
x

L

⋅MSE0 (( ,,x L ξ)) MSE1 (( ,L ξ)) ξ
⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

⋅⎛⎝-RAE1⎞⎠
⎛
⎜
⎜⎝
――――
RAE0 (( ,x L))

ky

⎞
⎟
⎟⎠

⋅⎛⎝-RCE1⎞⎠
⎛
⎜
⎜⎝
――――
RCE0 (( ,x L))

ky

⎞
⎟
⎟⎠

⋅1 ――
0

ky

Pelo PTV, temos

≔δ10 (( ,x L)) +++⋅――
1

EI
+⌠

⌡ d
0

x

⋅MSE0 (( ,,x L ξ)) MSE1 (( ,L ξ)) ξ ⌠
⌡ d
x

L

⋅MSE0 (( ,,x L ξ)) MSE1 (( ,L ξ)) ξ
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅⎛⎝-RAE1⎞⎠
⎛
⎜
⎜⎝
――――
RAE0 (( ,x L))

ky

⎞
⎟
⎟⎠

⋅⎛⎝-RCE1⎞⎠
⎛
⎜
⎜⎝
――――
RCE0 (( ,x L))

ky

⎞
⎟
⎟⎠

⋅1 ――
0

ky

Trabalho virtual externo

＝W11 ++⋅((1)) δ11 ⋅RAE1 0 ⋅RCE1 0

Energia de deformação elástica

≔δ11 ((L)) ++⋅――
1
EI

⌠
⌡ d
0

L

⋅MSE1 (( ,L ξ)) MSE1 (( ,L ξ)) ξ
⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

⋅⎛⎝-RCE1⎞⎠
⎛
⎜
⎝
―――
-RCE1

ky

⎞
⎟
⎠

―
1
ky

＝U11 +++⋅――
1
EI

⌠
⌡ d
0

L

⋅MSE1 (( ,L ξ)) MSE1 (( ,L ξ)) ξ
⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

⋅⎛⎝-RAE1⎞⎠
⎛
⎜
⎝
―――
-RAE1

ky

⎞
⎟
⎠

⋅⎛⎝-RCE1⎞⎠
⎛
⎜
⎝
―――
-RCE1

ky

⎞
⎟
⎠

―
1
ky

Pelo PTV, temos

≔δ11 ((L)) +++⋅――
1
EI

⌠
⌡ d
0

L

⋅MSE1 (( ,L ξ)) MSE1 (( ,L ξ)) ξ
⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

⋅⎛⎝-RAE1⎞⎠
⎛
⎜
⎝
―――
-RAE1

ky

⎞
⎟
⎠

⋅⎛⎝-RCE1⎞⎠
⎛
⎜
⎝
―――
-RCE1

ky

⎞
⎟
⎠

―
1
ky

≔X1 (( ,x L)) ――――
-δ10 (( ,x L))

δ11 ((L))

Reações de apoio - Reais



Reações de apoio - Reais

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝HB 0

＝ΣFy 0 ＝-++RA RB RC 1 0 ＝++RA RB RC 1

＝ΣMC 0 ―――→＝-+⋅RA L ⋅RB (( ,x L)) ―
L
2

⋅1 (( -L x)) 0
,solve RA

――――――――――
+-⎛⎝ ⋅L RB (( ,x L))⎞⎠ (( -⋅2 L ⋅2 x))

⋅2 L

≔RA (( ,x L)) ―――――――――
+-(( ⋅2 x)) ⋅(( -2 X1 (( ,x L)))) L

⋅2 L
≔RB (( ,x L)) X1 (( ,x L))

≔RC (( ,x L)) -1 ⎛⎝ +RA (( ,x L)) RB (( ,x L))⎞⎠

≔MS (( ,,x L ξ))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

if

else if

≤≤0 ξ ―
L
2

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
||

if

else if

else

≤≤0 ξ x
‖
‖ ⋅RA (( ,x L)) ξ

≤≤x ξ ―
L
2

‖
‖ -⋅RA (( ,x L)) ξ ⋅1 (( -ξ x))

‖
‖
‖‖

+-⋅RA (( ,x L)) ξ ⋅1 (( -ξ x)) ⋅RB (( ,x L))
⎛
⎜
⎝

-ξ ―
L
2

⎞
⎟
⎠

≤≤―
L
2

ξ L

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if

else if

else

≤≤0 ξ ―
L
2

‖
‖ ⋅RA (( ,x L)) ξ

≤≤―
L
2

ξ x

‖
‖
‖‖

+⋅RA (( ,x L)) ξ ⋅RB (( ,x L))
⎛
⎜
⎝

-ξ ―
L
2

⎞
⎟
⎠

‖
‖
‖‖

+-⋅RA (( ,x L)) ξ ⋅1 (( -ξ x)) ⋅RB (( ,x L))
⎛
⎜
⎝

-ξ ―
L
2

⎞
⎟
⎠

≔x , ‥0 1 20



≔x , ‥0 1 20

=MS (( ,,x 20 1))

-0.005
0.872
0.751
0.633
0.520
0.412
0.311
0.219
0.138
0.067
0.010

-0.033
-0.062
-0.081
-0.089
-0.088
-0.080
-0.067
-0.049
-0.028
-0.005

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦



Exemplo 03

Retomada do Exemplo 01

Sistema principal - SP

Reações de apoio - E0 - Situação 1

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝＝HAE0 HBE0 0

＝ΣFy 0 ＝-+RAE0S1 RBE0S1 1 0 ＝+RAE0S1 RBE0S1 1

＝ΣMROT.ESQ.E0S1 0 ――――→＝-⋅RAE0S1 a ⋅1 (( -a x)) 0
,solve RAE0S1

―――
+-x a
a

――――→＝+―――
+-x a
a

RBE0S1 1
,solve RBE0S1

―
x
a

＝-⋅―
x
a

(( -L a)) MBE0S1 0



＝MROT.DIR.E0S1 0 ＝-⋅―
x
a

(( -L a)) MBE0S1 0

――――→-⋅―
x
a

(( -L a)) MBE0S1

,solve MBE0S1
――――

⋅(( +-a L)) x
a

≔RAE0S1 (( ,,x a L)) ―――
(( -a x))

a
≔RBE0S1 (( ,,x a L)) ―

x
a

≔M1E0S1 (( ,,x a ξ)) ⋅―――
(( -a x))

a
ξ ≔M2E0S1 (( ,,x a ξ)) +⋅

⎛
⎜
⎝
――
-x
a

⎞
⎟
⎠
ξ x

Reações de apoio - E0 - Situação 2

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝＝HAE12 HBE12 0

＝ΣFy 0 ＝-+RAE0S2 RBE0S2 1 0 ＝+RAE0S2 RBE0S2 1

＝ΣMROT.ESQ.E0S2 0 ――――→＝⋅RAE0S2 a 0
,solve RAE0S2

0 ＝RBE0S2 1

＝MROT.DIR.E0S2 0 ――――→＝0 --⋅1 (( -L a)) ⋅1 (( -x a)) MBE0S2

,solve MBE0S2
+-x L

≔RAE0S2 0 ≔RBE0S2 1 ≔MBE0S2 (( ,x L)) -L x =MBE0S2 (( ,5 10)) 5

≔ME0S2 (( ,x ξ)) -(( -ξ x))

Estado - E1



Estado - E1

＝ΣFx 0 ＝ΣFy 0 ＝ΣM 0

＝ΣFx 0 ＝＝HAE1 HBE1 0

＝ΣFy 0 ＝-RAE1 RBE1 0 ＝RAE1 RBE1

＝ΣMROT.ESQ.E1 0 ――――→＝-⋅RAE1 a 1 0
,solve RAE1

―
1
a

＝RBE1 ―
1
a

＝ΣMROT.DIR.E1 0 ―――→＝-+⋅-―
1
a

(( -L a)) MB1 1 0
,solve MB1

―
L
a

≔RAE1 ((a)) ―
1
a

≔RBE1 ((a)) -―
1
a

≔MB1 (( ,a L)) ―
L
a

≔ME1 (( ,a ξ))
⎛
⎜
⎝
―
ξ
a

⎞
⎟
⎠

Condicionais para Situação 1 e 2

≔δ10.S1 (( ,,,x a L EI)) ―――→⋅――
1

EI

⎛
⎜
⎜⎝

+⌠
⌡ d
0

x

⋅ME1 (( ,a ξ)) M1E0S1 (( ,,x a ξ)) ξ ⌠
⌡ d
x

L

⋅ME1 (( ,a ξ)) M2E0S1 (( ,,x a ξ)) ξ
⎞
⎟
⎟⎠

simplify
――――――――――――
-⎛⎝ ⋅x ⎛⎝ +⋅a x 2 ⎛⎝ -⋅2 L 3 ⋅⋅3 L 2 a⎞⎠⎞⎠⎞⎠

⋅⋅6 EI a 2

≔δ10.S1 (( ,,,x a L EI)) ――――――――――
-⎛⎝ ⋅x ⎛⎝ +⋅a x2 ⎛⎝ -⋅2 L3 ⋅⋅3 L2 a⎞⎠⎞⎠⎞⎠

⋅⋅6 EI a2

≔δ10.S2 (( ,,,x a L EI)) ―――→⋅――
1
EI

⎛
⎜
⎜⎝

⌠
⌡ d
x

L

⋅ME1 (( ,a ξ)) ME0S2 (( ,x ξ)) ξ
⎞
⎟
⎟⎠

simplify
――――――――
-⎛⎝ ⋅(( -x L))2 (( +x ⋅2 L))⎞⎠

⋅⋅6 EI a

≔δ11 (( ,,a L EI)) ―――→⋅―
1
EI

⎛
⎜
⎜⎝

⌠
⌡ d
0

L

⋅ME1 (( ,a x)) ME1 (( ,a x)) x
⎞
⎟
⎟⎠

simplify
―――

L3

⋅⋅3 EI a2

Hiperestático X1 para Situações 1 e 2



Hiperestático X1 para Situações 1 e 2

≔X1S1 (( ,,,x a L EI)) ――――――
-δ10.S1 (( ,,,x a L EI))

δ11 (( ,,a L EI))

≔X1S2 (( ,,,x a L EI)) ――――――
-δ10.S2 (( ,,,x a L EI))

δ11 (( ,,a L EI))

≔LIM (( ,,,x a L EI)) |
|
|
|
|
|
|
|
||

if

else if

else

≤x a
‖
‖X1S1 (( ,,,x a L EI))

>x a
‖
‖X1S2 (( ,,,x a L EI))

‖
‖ 0

Dados efeitos térmicos e deslocamento prescrito

≔h 0.8 ≔b 0.2 ≔I =――
⋅b h3

12
⋅8.533 10-3 ≔E ⋅210 105 ≔EI ⋅E I

≔Δts 10 ≔Δti 5 ≔Δt ―――
+Δts Δti

2
≔gt ―――

-Δti Δts

h
≔α 10-5 ≔L 10

≔Dpy 0.001 ≔TTipo 1

Para o cálculo da envoltória obtemos um novo Estado E0

Reações de Apoio - E0 

Não geram esforços = 0

Trabalho virtual externo



Trabalho virtual externo

＝＝w10 +⋅RAE1 ((a)) Dpy ⋅⎛⎝ -θESQ.ROT.E0 θDIR.ROT.E0⎞⎠ 1 +⋅RAE1 ((a)) Dpy ⋅δ10 1

Energia de deformação elástica

＝U10 ++―
0
EI

⋅⋅⋅α Δt L 0 ⋅⋅⋅⋅α gt L ―
1
2

―
L
a

Pelo PTV

≔δ10.DP (( ,,a L EI)) +-⎛⎝ ⋅RAE1 ((a)) Dpy⎞⎠ ⋅⋅⋅⋅α gt L ―
1
2

―
L
a

≔δ10 (( ,,a L EI)) ⋅⋅⋅⋅α gt L ―
1
2

―
L
a

Hiperestático X1 sem e com o efeito do deslocamento prescrito

≔X1NOVO (( ,,a L EI)) ―――――
-δ10 (( ,,a L EI))

δ11 (( ,,a L EI))

≔X1NOVO.DP (( ,,a L EI)) ――――――
-δ10.DP (( ,,a L EI))

δ11 (( ,,a L EI))

Determinação envoltória dos momentos fletores mínimos sem Dpy

≔MMIN.0 =+0 ⋅0 TTipo 0.0000

≔MMIN.1 =+X1NOVO (( ,,1 L EI)) ⋅0 TTipo 1.6800

≔MMIN.2 =+X1NOVO (( ,,2 L EI)) ⋅0 TTipo 3.3600

≔MMIN.3 =+X1NOVO (( ,,3 L EI)) ⋅0 TTipo 5.0400

≔MMIN.4 =+X1NOVO (( ,,4 L EI)) ⋅0 TTipo 6.7200

≔MMIN.5 =+X1NOVO (( ,,5 L EI)) ⋅0 TTipo 8.4000

≔MMIN.6 =+X1NOVO (( ,,6 L EI)) ⋅0 TTipo 10.0800

≔MMIN.7 =+X1NOVO (( ,,7 L EI)) ⋅((-0.0727)) TTipo 11.6873

≔MMIN.8 =+X1NOVO (( ,,8 L EI)) ⋅((-0.5443)) TTipo 12.8957

≔MMIN.9 =+X1NOVO (( ,,9 L EI)) ⋅((-1.1881)) TTipo 13.9319



≔MMIN.9 =+X1NOVO (( ,,9 L EI)) ⋅((-1.1881)) TTipo 13.9319

≔MMIN.10 =+X1NOVO (( ,,10 L EI)) ⋅((-1.9245)) TTipo 14.8755

Determinação envoltória dos momentos fletores mínimos com Dpy

≔MMIN.0 =+0 ⋅0 TTipo 0.0000

≔MMIN.1 =+X1NOVO.DP (( ,,1 L EI)) ⋅0 TTipo 2.2176

≔MMIN.2 =+X1NOVO.DP (( ,,2 L EI)) ⋅0 TTipo 4.4352

≔MMIN.3 =+X1NOVO.DP (( ,,3 L EI)) ⋅0 TTipo 6.6528

≔MMIN.4 =+X1NOVO.DP (( ,,4 L EI)) ⋅0 TTipo 8.8704

≔MMIN.5 =+X1NOVO.DP (( ,,5 L EI)) ⋅0 TTipo 11.0880

≔MMIN.6 =+X1NOVO.DP (( ,,6 L EI)) ⋅0 TTipo 13.3056

≔MMIN.7 =+X1NOVO.DP (( ,,7 L EI)) ⋅((-0.0727)) TTipo 15.4505

≔MMIN.8 =+X1NOVO.DP (( ,,8 L EI)) ⋅((-0.5443)) TTipo 17.1965

≔MMIN.9 =+X1NOVO.DP (( ,,9 L EI)) ⋅((-1.1881)) TTipo 18.7703

≔MMIN.10 =+X1NOVO.DP (( ,,10 L EI)) ⋅((-1.9245)) TTipo 20.2515

Determinação envoltória dos momentos fletores máximos

≔MMAX (( ,,a L EI)) |
|
|
|
|
|

if

else

≠a 0
‖
‖ +LIM (( ,,,a a L EI)) X1NOVO (( ,,a L EI))

‖
‖ 0

≔MMAX.DP (( ,,a L EI)) |
|
|
|
|
|

if

else

≠a 0
‖
‖ +LIM (( ,,,a a L EI)) X1NOVO.DP (( ,,a L EI))

‖
‖ 0

≔a , ‥1 2 10



≔a , ‥1 2 10

=MMAX (( ,,a L EI))

2.5305
4.7680
6.7305
8.4480
9.9625

11.3280
12.6105
13.8880
15.2505
16.8000

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=MMAX.DP (( ,,a L EI))

3.0681
5.8432
8.3433

10.5984
12.6505
14.5536
16.3737
18.1888
20.0889
22.1760

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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