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RESUMO 
 
 

Sivieri, BB. Aplicabilidade da inteligência artificial no diagnóstico, 
planejamento e aquisição de imagens em Tomografia Computadorizada de 
Feixe Cônico: Revisão de literatura. Campo Grande; 2025. [Trabalho de 
conclusão de curso – Universidade Federal de Mato Grosso do Sul]. 
 

Nos últimos anos, a inteligência artificial (IA) tem se consolidado como um tema 

central na área da saúde, especialmente na odontologia, em que suas aplicações 

em tomografias computadorizadas de feixe cônico (TCFC) vêm sendo amplamente 

estudadas. Diante do crescente volume de pesquisas, o presente trabalho realizou 

uma revisão de literatura, analisando 101 artigos científicos indexados na base 

PubMed, publicados entre 2014 e 2025. A seleção priorizou estudos relacionados ao 

diagnóstico odontológico, ao planejamento de tratamentos orais e ao aprimoramento 

da qualidade das imagens tomográficas. Os resultados evidenciam uma integração 

progressiva da IA na interpretação de exames de TCFC, com ganhos significativos 

em acurácia diagnóstica e na elaboração de planos terapêuticos mais precisos. 

Embora ainda incipiente em contextos clínicos, a literatura indica que a IA pode 

aumentar a segurança e a agilidade das intervenções, mesmo sob supervisão 

profissional. Apesar do potencial para aprimorar a qualidade e a eficiência dos 

cuidados odontológicos, persistem desafios como os altos custos de implementação, 

a necessidade de capacitação profissional, a escassez de estudos com ampla 

aplicabilidade clínica e as limitações relacionadas à diversidade dos equipamentos 

utilizados. Pesquisas futuras devem concentrar-se na mitigação de vieses, na 

diversificação dos modelos de IA e na validação clínica dessas tecnologias, a fim de 

consolidar sua utilização prática. A adoção da IA nas tomografias odontológicas 

mostra-se promissora para a promoção de diagnósticos mais individualizados, 

precisos e seguros, representando um avanço transformador na prática 

odontológica. 

Palavras-chave: Tomografia Computadorizada de Feixe Cônico. Inteligência Artificial. 

Odontologia.  

 



ABSTRACT 
 

 

Sivieri, BB. Applicability of artificial intelligence in the diagnosis, planning, and 
image acquisition in cone-beam computed tomography: a literature review; 
2025. [Trabalho de conclusão de curso – Universidade Federal de Mato Grosso 
do Sul]. 
 

In recent years, artificial intelligence (AI) has become a central topic in healthcare, 

particularly in dentistry, where its applications in cone-beam computed tomography 

(CBCT) have been extensively investigated. Given the growing volume of research, 

the present study conducted a literature review analyzing 101 scientific articles 

indexed in the PubMed database, published between 2014 and 2025. The selection 

prioritized studies related to dental diagnosis, treatment planning, and the 

enhancement of tomographic image quality. The findings reveal a progressive 

integration of AI into the interpretation of CBCT examinations, resulting in significant 

improvements in diagnostic accuracy and in the development of more precise 

therapeutic plans. Although still incipient in clinical settings, the literature indicates 

that AI can enhance the safety and agility of interventions, even under professional 

supervision. Despite its potential to improve the quality and efficiency of dental care, 

challenges remain, such as high implementation costs, the need for professional 

training, the limited number of studies with broad clinical applicability, and constraints 

related to the diversity of imaging equipment. Future research should focus on bias 

mitigation, diversification of AI models, and clinical validation of these technologies to 

strengthen their practical implementation. The adoption of AI in dental tomography 

appears promising for promoting more individualized, accurate, and safe diagnoses, 

representing a transformative advancement in dental practice. 

 

Keywords: Computed Cone-Beam Tomography. Artificial Intelligence. Dentistry.
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1.​ INTRODUÇÃO 
 
A segunda década do século XXI consolidou a inteligência artificial (IA) como 

uma ferramenta de grande relevância para a odontologia. Nesse cenário, observa-se 

um movimento crescente da comunidade acadêmico-científica em compreender e 

promover o uso dessa tecnologia como recurso coadjuvante em diferentes 

especialidades odontológicas, com destaque para a radiologia e a imaginologia 

(VASEY et al., 2023). Entre os exames de imagem mais utilizados, a tomografia 

computadorizada de feixe cônico (TCFC) ocupa posição de destaque, apresentando 

grande potencial de aprimoramento quando associada a sistemas de deep learning 

ou machine learning (ABESI et al., 2023). Assim, a TCFC configura-se como um 

campo fértil para o desenvolvimento de aplicações baseadas em IA, que ampliam 

sua utilidade clínica e científica. 

 

A TCFC, por si só, já representou um marco no avanço da odontologia ao 

possibilitar a visualização tridimensional dos tecidos calcificados craniofaciais. Essa 

inovação introduziu a dimensão da profundidade, inexistente nos exames 

bidimensionais convencionais, permitindo diagnósticos mais precisos e 

planejamentos clínicos e cirúrgicos mais seguros. Por essas razões, o exame é 

frequentemente considerado o padrão-ouro em diversas situações clínicas 

(OUSEHAL et al., 2024). Com a consolidação desse papel central, torna-se 

compreensível a busca pela integração da IA em sua rotina, a fim de otimizar a 

interpretação das imagens e elevar ainda mais a confiabilidade dos laudos, o que 

também abre espaço para refletir sobre a aplicação mais ampla da inteligência 

artificial na saúde. 

 

A IA, diferentemente da TCFC, representa uma inovação mais recente no 

contexto da tecnologia aplicada à odontologia. Estruturada a partir de algoritmos 

interpretados por redes neurais artificiais alimentadas por grandes bases de dados, 

demonstra especial eficácia quando associada ao deep learning, modelo capaz de 

deduzir hipóteses diagnósticas e propor soluções clínicas com elevado grau de 

acurácia (PIANYKH et al., 2020). Essa característica desperta grande interesse na 

área médico-odontológica, pois o uso da IA em exames imaginológicos abre 

caminho para diagnósticos mais rápidos, consistentes e acessíveis. Nesse sentido, 
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sua integração com a TCFC representa uma das contribuições mais promissoras 

para a prática clínica contemporânea. 

 

A literatura científica recente apresenta inúmeras aplicações da IA voltadas 

especificamente à análise de exames de TCFC. Estudos relatam o uso de algoritmos 

de deep learning para segmentação de diferentes estruturas maxilofaciais, com 

valores de Dice superiores a 0,90 (CUI et al., 2022; FONTENELE et al., 2023), 

comparáveis à segmentação manual realizada por especialistas. Outras pesquisas 

demonstram o emprego da IA para detecção de canais radiculares desobturados, 

medição de altura e espessura óssea, identificação das articulações 

temporomandibulares e até mesmo classificação de patologias do seio maxilar 

(SANTOS-JUNIOR et al., 2025; VINAYAHALINGAM et al., 2023; ALTUN et al., 

2024). Além dessas aplicações, estudos recentes destacam a capacidade de 

segmentação de implantes dentários em menos de 30 segundos, mesmo em 

situações de presença de artefatos metálicos (ELGARBA et al., 2023). Essa 

diversidade de usos reforça o potencial da IA em expandir os limites da interpretação 

e da aplicabilidade da TCFC, criando perspectivas de diagnósticos mais ágeis e 

confiáveis. 

 

Esses avanços, entretanto, também trazem desafios e limitações. Diversos 

estudos apontam dificuldades relacionadas à necessidade de grandes volumes de 

dados de alta qualidade para o treinamento adequado dos modelos, além da 

heterogeneidade das bases de imagens, que pode comprometer a generalização 

dos resultados (CHEN, 2025; GÜRSES et al., 2023). Destacam-se, ainda, variações 

metodológicas significativas e riscos de viés nas pesquisas já publicadas (HUNG et 

al., 2020), evidenciando a necessidade de padronização e rigor metodológico. 

Questões éticas e regulatórias também emergem nesse contexto, especialmente no 

que se refere à transparência dos algoritmos, à validação clínica robusta e à 

utilização da IA como ferramenta assistiva — e não substitutiva — do julgamento 

humano (DIPALMA et al., 2023). Tais limitações não invalidam o potencial da 

tecnologia, mas indicam que sua adoção clínica deve ocorrer de forma progressiva, 

acompanhada de constante revisão crítica da literatura. 
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Dessa forma, ao considerar tanto os avanços quanto as limitações atuais, 

torna-se evidente a relevância de um estudo que busque analisar e descrever as 

aplicações contemporâneas da inteligência artificial em exames de tomografia 

computadorizada de feixe cônico. A síntese desse conhecimento é fundamental para 

os profissionais da odontologia, que encontram nesse recurso uma possibilidade 

concreta de aperfeiçoamento dos diagnósticos e planejamentos, com benefícios 

diretos à prática clínica e, principalmente, aos pacientes. 
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2. MATERIAIS E MÉTODOS 
 

Estratégia de busca 
 

A busca por artigos foi realizada exclusivamente na base de dados PubMed, 

abrangendo publicações no período de janeiro de 2014 a setembro de 2025. Como 

critério de idioma, foram incluídos apenas estudos publicados em inglês. Os termos 

de busca utilizados foram: “Artificial intelligence”, “Cone-beam computed 

tomography” e “Dentistry”, aplicados de forma combinada por meio de operadores 

booleanos, com o objetivo de refinar os resultados e garantir a relevância dos 

estudos recuperados. A pesquisa resultou em 429 artigos, que foram posteriormente 

triados conforme os critérios de inclusão e exclusão estabelecidos. 

 

Critérios de inclusão e exclusão 
 

Foram considerados elegíveis os estudos originais que apresentavam 

abordagens relacionadas ao uso da inteligência artificial — incluindo machine 

learning e deep learning — aplicadas diretamente a processos de diagnóstico, 

planejamento clínico ou à aquisição e interpretação de imagens obtidas por 

tomografia computadorizada de feixe cônico (TCFC) em contextos odontológicos. 

 

Foram excluídos da revisão: estudos de revisão da literatura (sistemáticas ou 

narrativas); artigos editoriais, cartas ao editor ou comunicações breves; pesquisas 

indisponíveis na íntegra; estudos que tratavam da fusão multimodal de imagens (por 

exemplo, TCFC associada à ressonância magnética ou a outros exames médicos 

complementares); e trabalhos cujo foco não se concentrava diretamente na 

aplicação da IA ou que se distanciavam da temática central proposta nesta revisão. 

 

A seleção dos estudos foi realizada em duas etapas. Na primeira, 

procedeu-se à triagem dos títulos e resumos, com o intuito de identificar 

preliminarmente os artigos potencialmente relevantes. Em seguida, os textos 

completos dos estudos considerados adequados foram acessados e analisados em 

profundidade. 
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Organização do material 
 

Os 101 estudos selecionados foram organizados em uma planilha do 

Microsoft Excel, dispostos em ordem alfabética. Nessa planilha, foram agrupadas 

informações referentes à autoria, objetivos, materiais e métodos utilizados, 

resultados quantitativos e conclusões de cada trabalho. Esses dados subsidiaram a 

elaboração da revisão, na qual os artigos com princípios metodológicos e temáticos 

semelhantes foram reunidos em grupos para análise comparativa e discussão 

integrada. 
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3. REVISÃO DE LITERATURA 

3.1 Qualidade da Imagem 

No estudo de Oliveira et al. (2025), foi analisado o desempenho de um modelo 

de deep learning aplicado à correção de artefatos metálicos decorrentes da 

exomassa em imagens de tomografia computadorizada de feixe cônico (TCFC) 

obtidas ex vivo. O modelo utilizado foi um conditional denoising diffusion probabilistic 

model (DDPM), técnica de image-to-image translation com arquitetura baseada em 

U-Net. As imagens resultantes foram avaliadas por três radiologistas, que realizaram 

comparações pareadas entre: (1) imagens originais com artefatos e imagens 

corrigidas por inteligência artificial (IA); e (2) imagens corrigidas por IA e o ground 

truth (imagens obtidas sem implantes). A análise subjetiva foi conduzida por meio de 

uma escala de cinco pontos (1 a 5), indicando o grau de superioridade visual entre 

as imagens comparadas. De modo geral, as imagens corrigidas pela IA 

apresentaram pontuação média superior a 4, o que indica que foram frequentemente 

consideradas possivelmente ou definitivamente superiores às imagens originais. A 

confiabilidade intraexaminador foi classificada como quase perfeita (coeficiente 

Kappa ≈ 0,94), enquanto a confiabilidade interexaminador foi considerada 

substancial (Kappa ≈ 0,79). Como parâmetro quantitativo, utilizou-se o 

Contrast-to-Noise Ratio (CNR), que demonstrou valores significativamente mais 

altos nas imagens corrigidas em comparação às originais — e, em diversos casos, 

até superiores ao ground truth. Esses resultados mostraram-se consistentes 

independentemente do equipamento de TCFC, do tipo de material dos implantes ou 

do número de implantes utilizados, indicando que o modelo de IA foi eficaz em 

restaurar o contraste e reduzir o ruído decorrente dos artefatos metálicos.  

No estudo conduzido por Kim et al. (2024), foi avaliado o impacto da aplicação 

de IA na qualidade de imagens de TCFC obtidas com protocolos de baixa dose, 

visando reduzir a exposição à radiação sem comprometer a qualidade diagnóstica. O 

modelo utilizado foi uma rede neural convolucional denominada EDCNN (Edge 

Enhancement–Densely Connected CNN), que incorpora um módulo específico para 

realce de bordas. As imagens analisadas (nove por dente) foram obtidas a partir de 
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um único dente de fantoma, utilizando quatro protocolos experimentais com IA e um 

protocolo controle (alta resolução, sem IA). Onze parâmetros anatômicos e 

diagnósticos foram avaliados por examinadores cegos quanto ao protocolo 

empregado, abrangendo estruturas como raízes, canais radiculares, lâmina dura, 

padrão trabecular e córtex mandibular, além da qualidade geral da imagem para o 

diagnóstico de lesões periapicais. A confiabilidade entre avaliadores foi considerada 

substancial (Fleiss’ kappa ≈ 0,621), enquanto a confiabilidade intraexaminador foi 

quase perfeita (ICC ≈ 0,995). Os protocolos que incorporaram IA apresentaram 

qualidade subjetiva comparável ou superior à do protocolo controle, dependendo do 

parâmetro avaliado, indicando que o uso de IA pode compensar a perda de 

qualidade resultante da redução da dose de radiação. 

Por fim, o estudo de Minnema et al. (2019) teve como foco a segmentação 

óssea em imagens de TCFC contendo artefatos metálicos, comparando o 

desempenho de diferentes redes neurais convolucionais. A arquitetura proposta, 

denominada Mixed-Scale Dense Network (MS-D), foi composta por 100 camadas 

convolucionais com o uso de convoluções dilatadas, o que permite capturar 

simultaneamente detalhes finos e estruturas de maior escala, com maior eficiência 

paramétrica. As performances das arquiteturas MS-D, U-Net, ResNet e de um 

algoritmo tradicional semi-automático (snake evolution) foram comparadas. Os 

resultados mostraram desempenho semelhante entre as redes modernas, com 

coeficiente de similaridade de Dice (DSC) médio de aproximadamente 0,87 para 

MS-D e U-Net, e 0,86 para ResNet. O método snake evolution apresentou DSC 

inferior (~0,78). No que se refere à eficiência, os modelos baseados em IA 

realizaram a segmentação de cada TCFC em menos de 5 minutos, enquanto o 

método tradicional demandou entre 20 minutos e 1 hora. A arquitetura MS-D 

destacou-se por atingir desempenho competitivo com um número menor de 

parâmetros treináveis, o que pode reduzir o risco de overfitting e acelerar o processo 

de treinamento. 

3.2 Dentes 

A revisão identificou 24 estudos que abordaram o uso de inteligência artificial 

(IA) aplicada à análise de dentes em exames de tomografia computadorizada de 

feixe cônico (TCFC). Os trabalhos se distribuíram em diferentes subtemas: 
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segmentação de dentes inteiros (n = 7), segmentação de estruturas dentais internas 

(n = 3), avaliação de reabsorções radiculares (n = 4), identificação de canais 

radiculares (n = 2), proximidade entre raízes e canal mandibular (n = 2), patologias 

dentárias (n = 3), identificação de fraturas dentárias (n = 2), além de um estudo 

combinando dentes e segmentação óssea. 

3.2.1 Segmentação de Dentes Inteiros e Classificação 

No estudo de Cui et al. (2022), foi utilizado um dos maiores conjuntos de dados 

já relatados na literatura, composto por 4.938 exames de tomografia 

computadorizada de feixe cônico (TCFC) provenientes de 4.215 pacientes atendidos 

em 15 centros distintos. O modelo proposto apresentou desempenho robusto na 

segmentação de dentes individuais, alcançando média de Dice Similarity Coefficient 

(DSC) de 94,1%, sensibilidade de 93,9% e Average Surface Distance (ASD) de 0,17 

mm. Com o auxílio da inteligência artificial (IA), o tempo necessário para correção 

manual foi reduzido em mais de 95%, passando a ser inferior a cinco minutos por 

exame. 

Em um contexto clínico pediátrico, Ozudogru et al. (2025) aplicaram o modelo 

nnU-Net v2 em 49 exames de dentição mista. Apesar da complexidade anatômica 

característica dessa faixa etária, o modelo demonstrou acurácia de 0,99, precisão de 

0,86 e recall de 0,84. O coeficiente Dice (~0,81) indicou desempenho satisfatório 

mesmo em casos considerados desafiadores. 

Gerhardt et al. (2022) utilizaram a ferramenta automatizada Virtual Patient 

Creator, desenvolvida para detecção, rotulagem e segmentação dentária automática. 

Em uma amostra de 175 exames de TCFC, a ferramenta atingiu precisão de 99,7% 

em arcadas totalmente dentadas e 99% mesmo na presença de pequenas regiões 

edêntulas. A segmentação apresentou Intersection over Union (IoU) entre 0,96 e 

0,97, com redução expressiva no tempo de anotação — de 98 segundos no método 

manual para apenas 1,5 segundo com o uso da IA. 

Já Ayidh Alqahtani et al. (2023) propuseram uma abordagem multiclasse 

utilizando múltiplos modelos U-Net em diferentes resoluções. Em 215 exames, 

totalizando 1.780 dentes, a segmentação e classificação simultânea das 32 classes 
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dentárias foi realizada com IoU e DSC médios de aproximadamente 0,99. A 

Hausdorff Distance 95% foi de apenas 0,12 mm, e o tempo de processamento foi 

reduzido de 43,6 para 13,7 segundos por exame completo. 

Swaity et al. (2024) concentraram-se na segmentação de caninos impactados, 

empregando dois modelos 3D U-Net aplicados em etapas sucessivas. Em uma 

amostra de 200 exames de TCFC, o modelo alcançou DSC médio de 

aproximadamente 0,99 e IoU também próximo de 0,99, com tempo médio de 

segmentação de 21 segundos. O método automático demonstrou ser cerca de 24 

vezes mais rápido que o método semiautomático de referência. 

No estudo conduzido por Hsu et al. (2022), foram comparadas diferentes 

variações da U-Net (2D, 2.5D, 3D e combinações baseadas em votação majoritária). 

A melhor performance foi obtida com o modelo 3.5D v5, associado a um processo de 

pós-processamento envolvendo operações morfológicas de erosão e dilatação. Esse 

modelo atingiu DSC de aproximadamente 0,961 e acurácia de 98,6%, evidenciando 

que o uso de arquiteturas híbridas e estratégias de ensemble pode aprimorar ainda 

mais a segmentação dentária. 

Elsonbaty et al. (2025) aplicaram uma arquitetura dupla 3D U-Net para 

segmentação de 402 dentes decíduos em 37 exames de TCFC pediátricos. Os 

resultados foram expressivos, com DSC = 95 ± 2%, IoU = 91 ± 3%, acurácia = 98 ± 

1% e Hausdorff Distance 95% ≈ 0,27 mm. O tempo médio de segmentação por 

dente foi reduzido de aproximadamente 13 minutos (manual) para cerca de 24 

segundos com IA. Pequenos ajustes manuais foram necessários em cerca de 40% 

dos casos, geralmente localizados nas regiões apicais. 

Por fim, Li et al. (2024) utilizaram um modelo baseado em regional level set 

(Chan–Vese – CV) otimizado por Local Binary Fitting (CV-LBF), aplicado a 82 

exames pediátricos. A acurácia de segmentação alcançou 89,9%, superando 

métodos convencionais como region growing (78,6%) e Distance Regularized Level 

Set Evolution (DRLSE) (68,2%). As menores taxas de subsegmentação e as 

menores distâncias de superfície observadas indicaram maior fidelidade ao contorno 

anatômico real. 
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3.2.2 Segmentação de estruturas dentais internas 

No estudo conduzido por Dogan et al. (2024), foram analisadas 236 imagens de 

tomografia computadorizada de feixe cônico (TCFC) de indivíduos com idades entre 

18 e 70 anos, resultando em um total de 1.416 medições da profundidade da 

translucidez radicular (PTR) realizadas em seis dentes selecionados por indivíduo 

(de um mesmo lado da arcada dentária). O objetivo foi classificar os indivíduos em 

cinco faixas etárias por meio de três algoritmos de machine learning (ML): Support 

Vector Machine (SVM), Classification and Regression Tree (CART) e Random Forest 

(RF). Os resultados evidenciaram limitações na acurácia dos modelos, com 

desempenho variando em torno de 0,25 para CART e SVM, e 0,30 para RF, 

indicando que a translucidez radicular isoladamente pode não ser um preditor 

suficientemente robusto da idade cronológica. 

Por outro lado, Slim et al. (2024) investigaram a aplicabilidade de redes neurais 

convolucionais (Convolutional Neural Networks – CNNs) em um estudo retrospectivo 

com 66 exames de TCFC, focando na segmentação automática de molares 

inferiores. Foi empregada uma arquitetura do tipo 3D U-Net em duas etapas — uma 

de segmentação grosseira, seguida de refinamento —, treinada com segmentações 

manuais detalhadas realizadas por especialistas em endodontia e radiologia. O 

desempenho do modelo foi avaliado por meio de métricas como Dice Similarity 

Coefficient (DSC), Intersection over Union (IoU), precisão, sensibilidade (recall) e 

Hausdorff Distance. Para primeiros molares mandibulares, o modelo alcançou DSC 

≈ 88% ± 7% e IoU ≈ 80% ± 12%; já para segundos molares, os valores foram DSC ≈ 

90% ± 6% e IoU ≈ 82% ± 10%. Não houve diferença estatisticamente significativa 

entre o desempenho da IA e o da segmentação refinada por humanos (Refined-AI) 

para a maioria dos parâmetros avaliados. Destaca-se, contudo, que a IA superou o 

desempenho humano em algumas métricas, como recall e Hausdorff Distance, além 

de apresentar tempo de segmentação substancialmente menor — cerca de 4,3 ± 2 

segundos por molar, em comparação a 139 ± 93 segundos do Refined-AI e 2.349 ± 

444 segundos da segmentação manual completa. 

Por fim, Merdietio Boedi et al. (2024) realizaram um estudo voltado à predição da 

idade cronológica com base em segmentações volumétricas de 80 dentes anteriores 

superiores (incisivos centrais, laterais e caninos). A segmentação foi subdividida em 
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cinco regiões anatômicas — esmalte, dentina, câmara pulpar, raiz inferior e volume 

total —, sendo as razões volumétricas utilizadas como variáveis preditoras em 

diferentes modelos de regressão. Os algoritmos testados incluíram Support Vector 

Regression (SVR) com núcleos linear e polinomial, árvore de regressão e regressão 

linear múltipla. O melhor desempenho foi obtido com o SVR polinomial aplicado ao 

incisivo lateral superior, apresentando erro médio absoluto (Mean Absolute Error – 

MAE) de 4,86 anos, erro quadrático médio (Root Mean Square Error – RMSE) de 

6,05 anos e coeficiente de determinação (R²) de 0,73. Apesar dos resultados 

promissores, o processo de segmentação manual ainda demandava 

aproximadamente 45 minutos por dente, representando um obstáculo à 

aplicabilidade clínica imediata. 

3.2.3 Reabsorções radiculares 

Pirayesh et al. (2024) conduziram um estudo com 50 exames de tomografia 

computadorizada de feixe cônico (TCFC) de incisivos maxilares (n = 176), incluindo 

dentes saudáveis (n = 142) e com reabsorção radicular induzida por caninos 

impactados (n = 34). As imagens foram segmentadas manualmente por dois 

radiologistas, que também realizaram a rotulagem dos casos. Foram testados cinco 

modelos distintos, com destaque para arquiteturas híbridas que combinavam 

segmentação e classificação tridimensional. Os melhores resultados foram obtidos 

pelos modelos C (máscaras geradas por 3D U-Net + classificação com 3D ResNet) e 

E (U-Net com transfer learning e fine-tuning), ambos alcançando acurácia de 

aproximadamente 82% na detecção de reabsorção radicular induzida por caninos 

impactados (CIRR). A segmentação automática, realizada com um modelo 3D 

U-Net, apresentou Dice Similarity Coefficient (DSC) médio de ~0,901 e mean 

Intersection over Union (mIoU) de ~0,641, demonstrando elevada capacidade de 

identificação anatômica. O processo automático mostrou-se extremamente eficiente, 

exigindo apenas 7 a 30 milissegundos por volume, em contraste com os 11 a 12 

minutos por imagem necessários para a segmentação manual. 

Em um estudo clínico prospectivo, Estrella et al. (2025) avaliaram a perda de 

estrutura radicular associada à aplicação de diferentes forças ortodônticas. Foram 

comparados dois grupos de pacientes submetidos a fios convencionais e fios com 

forças individualizadas, com acompanhamento médio de 142 dias. A análise foi 
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realizada por meio de TCFC, com segmentações manuais e automáticas das raízes 

dos incisivos superiores. A IA foi implementada via software Diagnocat, e os 

resultados indicaram que, na maioria das regiões radiculares, não houve diferença 

estatisticamente significativa entre os métodos de segmentação. Entretanto, na 

região mais apical (1 mm do ápice), o método automático detectou uma perda 

volumétrica significativamente maior no grupo experimental (p = 0,011), sugerindo 

maior sensibilidade do algoritmo nessa área crítica. 

No estudo experimental de Reduwan et al. (2024), 88 pré-molares extraídos 

foram utilizados para simular reabsorções radiculares externas (External Root 

Resorptions – ERR) de diferentes profundidades (0,5 mm, 1,0 mm e 2,0 mm). Foram 

testadas combinações de redes convolucionais pré-treinadas (VGG16 e 

EfficientNetB4) com classificadores como Random Forest (RF) e Support Vector 

Machine (SVM), com e sem o uso de técnicas de seleção de características (feature 

selection). O modelo VGG16 + RF com feature selection (FST) apresentou o melhor 

desempenho geral, com acurácia de 81,9%, F1-score de 81,9% e Area Under the 

Curve (AUC) de 96%. De modo consistente, os modelos que utilizaram feature 

selection superaram significativamente os que não a empregaram, reforçando a 

importância dessa etapa na otimização de modelos preditivos. Além disso, 

observou-se que a acurácia aumentava proporcionalmente à profundidade da 

reabsorção, sendo as lesões mais profundas (2,0 mm) mais facilmente detectadas. 

Por fim, Xu et al. (2025) realizaram um estudo em larga escala com 2.146 fatias 

de TCFC contendo incisivos submetidos ou não a tratamento ortodôntico, com e sem 

sinais de reabsorção radicular. Foram testadas seis arquiteturas de redes 

convolucionais pré-treinadas (EfficientNet-B1 a B5 e MobileNet-V3), sendo o modelo 

EfficientNet-B1 aquele de melhor desempenho, com acurácia de 97%, precisão de 

98%, sensibilidade de 97%, especificidade de 98% e AUC de 0,99. Esse modelo 

superou significativamente o desempenho de dois ortodontistas com 

aproximadamente dois anos de experiência (acurácia média de 86%, F1-score de 

87%), com diferença estatisticamente significativa (p < 0,01). O uso de mapas de 

ativação (Grad-CAM) demonstrou que a rede neural concentrou sua atenção nas 

regiões apicais das raízes ao classificar casos positivos, o que corrobora a 
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localização típica das lesões de reabsorção radicular externa. O tempo médio de 

processamento também foi altamente eficiente, com 4,66 milissegundos por fatia. 

 

3.2.4 Canais radiculares 

Santos-Junior et al. (2025) investigaram a performance de um modelo de 

segmentação automática baseado na arquitetura 3D U-Net aplicado a imagens de 

tomografia computadorizada de feixe cônico (TCFC) de dentes unirradiculares. 

Foram analisados 69 exames obtidos em diferentes equipamentos e protocolos de 

aquisição, com o intuito de incluir variabilidade no conjunto de dados e avaliar a 

robustez do modelo. A segmentação manual, realizada por dois operadores e 

revisada em consenso, serviu como ground truth para o treinamento e validação. No 

conjunto de teste, foi também conduzida uma etapa de refinamento por especialista 

após a segmentação automática (Refined-AI – R-AI). O modelo automático 

apresentou excelente desempenho, com Dice Similarity Coefficient (DSC) variando 

entre ~89% e 93% e Hausdorff Distance (HD95) entre ~0,10 mm e 0,13 mm. Outras 

métricas, como Intersection over Union (IoU), precisão e acurácia, também 

mostraram valores elevados. O tipo de dente (incisivo, canino ou pré-molar) não 

influenciou significativamente a maioria das métricas, embora incisivos laterais 

superiores tenham apresentado leve decréscimo no recall, sugerindo que o modelo é 

robusto frente à variação anatômica dentro da categoria de dentes unirradiculares. A 

segmentação manual demandou cerca de 2.262 segundos (≈ 37–38 minutos) por 

dente, enquanto a segmentação automática foi substancialmente mais rápida (~ 41,8 

segundos). Quando associada ao refinamento humano (R-AI), o tempo aumentou 

para aproximadamente 94 segundos, ainda representando redução expressiva no 

tempo total de processamento, sendo que os ajustes necessários após a 

segmentação automática foram mínimos. 

No estudo de Shetty et al. (2025), o foco foi a detecção do canal MB2 em 

molares superiores utilizando modelos clássicos de classificação aplicados a 

imagens de TCFC. Foram avaliados 2.500 exames, com 277 casos rotulados por 

especialistas experientes (160 com presença do canal MB2 e 117 sem). Seis 

algoritmos foram comparados: Logistic Regression (LR), Naïve Bayes (NB), Support 
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Vector Machine (SVM), K-Nearest Neighbours (KNN), Random Forest (RF) e uma 

Neural Network (NN) de arquitetura simples. Os modelos que apresentaram melhor 

desempenho foram a rede neural (AUC = 0,903; acurácia = 0,838), a regressão 

logística (AUC = 0,885; acurácia = 0,841) e o SVM (AUC = 0,886; acurácia = 0,819), 

com métricas semelhantes entre si em termos de F1-score, precisão e sensibilidade. 

O modelo KNN apresentou o pior desempenho, sendo superado por todos os 

demais. Além dos resultados promissores dos modelos de IA, o estudo também 

evidenciou alta reprodutibilidade, com coeficientes de confiabilidade interobservador 

de 0,85 e intraobservador de 0,92 e 0,96 para os dois examinadores, 

respectivamente. 

3.2.5 Localização de raízes em relação ao canal mandibular 

No estudo de Yasin et al. (2025), foi proposto um sistema automatizado para 

classificar a relação entre as raízes dos molares mandibulares e o canal mandibular 

em exames de tomografia computadorizada de feixe cônico (TCFC). Foram 

analisados 305 cortes parasagitais, divididos em três categorias clínicas: sem 

contato, quase contato e em contato, com base na relação espacial entre a raiz e o 

canal mandibular. As imagens foram anotadas por especialistas em radiologia 

bucomaxilofacial com dupla verificação, assegurando alto nível de confiabilidade no 

ground truth. Diversas arquiteturas de redes neurais convolucionais (Convolutional 

Neural Networks – CNNs) foram avaliadas, incluindo MobileNet, Xception, 

DenseNet201, InceptionV3, VGG16 e VGG19. O modelo MobileNet apresentou o 

melhor desempenho global, alcançando acurácia de 99,44% sob as condições ideais 

de treinamento (taxa de aprendizado de 0,0001 e batch size de 16). Outras 

arquiteturas, como Xception e DenseNet201, também obtiveram resultados 

elevados, com acurácias de 98,74% e 98,73%, respectivamente. Além das altas 

taxas de acurácia, as métricas de precisão, recall e F1-score também apresentaram 

valores elevados, indicando excelente capacidade discriminativa. A análise de 

interpretabilidade, conduzida por meio de Grad-CAM, demonstrou que os modelos 

concentraram sua atenção em regiões anatômicas clinicamente relevantes — como 

a raiz molar, a cortical óssea e o canal mandibular — em consonância com o 

raciocínio diagnóstico humano. 
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Por sua vez, Picoli et al. (2023) avaliaram o desempenho de uma ferramenta 

tridimensional baseada em inteligência artificial (IA) para estimar o risco de lesão do 

nervo alveolar inferior (Inferior Alveolar Nerve – IAN) antes da remoção dos terceiros 

molares inferiores. O estudo incluiu 25 pacientes submetidos à remoção bilateral dos 

terceiros molares, dos quais apenas um lado apresentou lesão do IAN no 

pós-operatório. Foram comparadas três modalidades de imagem: panorâmica digital 

(PANO), TCFC e um modelo 3D gerado por IA (plataforma Virtual Patient Creator 

AI). Cinco examinadores, cegos quanto ao desfecho, atribuíram o risco de lesão em 

cada lado como baixo, médio ou alto. A sensibilidade — capacidade de identificar 

corretamente os casos com lesão — foi de 0,87 para o modelo 3D-IA, 0,89 para a 

TCFC e 0,73 para a PANO. A área sob a curva Receiver Operating Characteristic 

(AUC-ROC) foi maior para o modelo 3D-IA (0,63), em comparação à TCFC (0,58) e 

à PANO (0,57), indicando leve superioridade na capacidade global de discriminação. 

As especificidades foram relativamente baixas para todas as modalidades, sendo 

0,39 (3D-IA), 0,28 (TCFC) e 0,41 (PANO), o que sugere uma tendência dos 

avaliadores à superestimação do risco. Entretanto, as diferenças entre as 

modalidades não foram estatisticamente significativas (p > 0,05). 

3.2.6 Patologias dentárias 

No estudo de Ezhov et al. (2021), foram utilizados 1.346 exames de tomografia 

computadorizada de feixe cônico (TCFC) para o treinamento de um sistema 

automatizado voltado à detecção de múltiplas alterações dentárias e periodontais. A 

avaliação clínica envolveu 24 cirurgiões-dentistas, que analisaram 30 exames em 

dois grupos experimentais: com e sem o auxílio da inteligência artificial (IA). O uso 

da IA resultou em melhora significativa do desempenho diagnóstico dos 

profissionais: a sensibilidade média aumentou de 0,7672 (sem IA) para 0,8537 (com 

IA), enquanto a especificidade passou de 0,9616 para 0,9672 (p = 0,032). Além 

disso, a IA reduziu o tempo médio de avaliação por exame, automatizando tarefas 

como a detecção preliminar de lesões e a geração de mapas dentários. 

Quanto à performance técnica do sistema, os resultados foram igualmente 

expressivos: para lesões periapicais, sensibilidade = 0,903 e especificidade = 0,979; 

para periodontite/alveólise, sensibilidade = 0,878 e especificidade = 0,963; e para 

cáries moderadas a avançadas, sensibilidade ≈ 0,85 e especificidade > 0,95. A 
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segmentação dentária automática alcançou acurácia de 96,7% na identificação e 

numeração de dentes, mesmo em casos com restaurações ou reabsorções. 

Entretanto, o sistema apresentou limitações em situações mais complexas, como 

lesões iniciais de cárie, fraturas radiculares finas e reabsorções atípicas, além de 

sofrer impacto negativo de artefatos metálicos na acurácia das predições. 

Em outro estudo clínico, Kazimierczak et al. (2024) aplicaram a plataforma 

Diagnocat para avaliar parâmetros técnicos de tratamentos endodônticos em 55 

pacientes. A IA foi comparada ao julgamento de dois especialistas experientes, 

considerados padrão-ouro por consenso. O sistema apresentou desempenho 

excelente na detecção de obturações radiculares, com 100% de acurácia, precisão, 

sensibilidade e F1-score na identificação da presença de material obturador. Para 

parâmetros mais específicos — como densidade da obturação, sobrepreenchimento 

e presença de vacúolos —, o desempenho manteve-se elevado, com F1-scores 

variando entre 76% e 97%, dependendo do critério avaliado. A concordância com os 

especialistas humanos também foi alta na identificação do número de canais 

radiculares, demonstrando a confiabilidade da ferramenta. 

Complementando essa perspectiva, Amasya et al. (2023) investigaram o impacto 

do uso de IA na detecção de cáries em 500 volumes de TCFC, abrangendo mais de 

19.000 superfícies dentárias, das quais cerca de 6.000 apresentavam lesões 

cariosas. As imagens foram avaliadas por radiologistas dentomaxilofaciais em dois 

momentos: sem e com o auxílio da IA (Diagnocat). O uso da IA resultou em aumento 

significativo na acurácia diagnóstica — a área sob a curva Receiver Operating 

Characteristic (AUC-ROC) dos observadores passou de 0,747–0,863 (sem IA) para 

0,903–0,920 (com IA). A sensibilidade aumentou de forma consistente, enquanto a 

especificidade melhorou na maioria dos casos, apresentando queda discreta apenas 

em um observador. A concordância interobservador também foi positivamente 

impactada, com aumento do coeficiente Fleiss’ kappa de aproximadamente 0,325 

(sem IA) para 0,468 (com IA), tanto na escala de confiança quanto nas decisões 

binárias de presença ou ausência de cárie. 

3.2.7 Fraturas dentárias 



22 
 

No estudo conduzido por Johari et al. (2017), foram avaliados 240 dentes 

pré-molares com raiz única, distribuídos igualmente entre dentes com fraturas 

verticais induzidas artificialmente e dentes controle. Em cada grupo, metade dos 

dentes havia recebido tratamento endodôntico, enquanto a outra metade 

permaneceu intacta. Para a análise, foi utilizada uma rede neural do tipo Multilayer 

Perceptron (MLP), que apresentou desempenho elevado, com acurácia máxima de 

96,6%, sensibilidade de 93,3% e especificidade de 100%. Esses resultados 

demonstram que a abordagem baseada em inteligência artificial (IA) é altamente 

eficaz na identificação de fraturas, inclusive em dentes endodonticamente tratados 

— um cenário clínico tipicamente mais desafiador devido à presença de materiais 

obturadores e alterações morfológicas pós-tratamento. 

De forma complementar, Yang et al. (2023) aplicaram redes neurais 

convolucionais profundas (Deep Convolutional Neural Networks – CNNs) para a 

detecção de fraturas radiculares verticais (Vertical Root Fractures – VRFs) em 

imagens de tomografia computadorizada de feixe cônico (TCFC), utilizando dois 

conjuntos de dados distintos: um in vivo, composto por 1.641 cortes de TCFC de 28 

dentes de pacientes (14 com VRF e 14 controles), e outro in vitro, com 3.665 cortes 

de TCFC de 60 dentes humanos secos com fraturas induzidas. Foram comparadas 

três variantes da arquitetura ResNet (ResNet-18, ResNet-50 e ResNet-101), 

incluindo avaliação comparativa com radiologistas experientes. O modelo ResNet-50 

apresentou o melhor desempenho, alcançando, no conjunto misto (in vivo + in vitro), 

sensibilidade de aproximadamente 95,9%, especificidade de 74,1%, acurácia de 

84,0% e área sob a curva Receiver Operating Characteristic (AUC) de 0,936. 

Quando avaliado exclusivamente com dados clínicos (in vivo), os resultados 

permaneceram semelhantes, com sensibilidade de 94,5%, especificidade de 73,2% 

e AUC de 0,929, indicando boa capacidade de generalização do modelo entre 

diferentes contextos de aplicação. 

3.3 Ossos 

Foram selecionados 22 estudos que abordaram o uso de inteligência artificial 

(IA) aplicada à análise de ossos em exames de tomografia computadorizada de feixe 

cônico (TCFC). Os subtemas são: fendas palatinas (n = 2), identificação de 

osteonecrose (n = 1), lesões de furca (n = 1), segmentação do osso alveolar (n = 6), 
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segmentação do osso hioide (n = 1), avaliação da sutura palatina (n = 2), lesões 

periapicais (n = 4), densidade óssea (n = 3), segmentação da mandíbula (n = 1),  

além de um estudo combinando dentes e segmentação óssea. 

3.3.1 Fendas palatinas 

No estudo conduzido por Wang et al. (2021), cerca de 60 arquivos DICOM de 

pacientes portadores de fissura palatina foram utilizados para o desenvolvimento e 

avaliação de um modelo de segmentação automática baseado na arquitetura 3D 

U-Net. Os casos foram divididos em dois grupos, sendo o Grupo 1 segmentado 

manualmente e empregado como conjunto de treinamento do algoritmo. Os 

resultados evidenciaram alta concordância entre as segmentações automáticas e as 

referências manuais, com coeficiente de similaridade (Dice) de 0,92 ± 0,01 para a 

maxila e 0,77 ± 0,06 para o defeito ósseo. Além da elevada acurácia, observou-se 

uma redução expressiva no tempo de processamento, passando de 

aproximadamente 10 horas por imagem no processo manual para cerca de 1 minuto 

na etapa automática, acrescido de um refinamento manual médio de 5 minutos. 

Por sua vez, Miranda et al. (2023) empregaram 194 exames de tomografia 

computadorizada de feixe cônico (TCFC) de pacientes com fissura labiopalatina 

(Cleft Lip and Palate – CLP) para desenvolver um classificador multi-view voltado à 

avaliação da gravidade do defeito ósseo alveolar. As superfícies tridimensionais do 

maxilar foram segmentadas automaticamente, possibilitando a geração de modelos 

3D do defeito, a partir dos quais foram extraídas características de forma, altura e 

largura. Com base nesses parâmetros, foi estabelecido um índice de gravidade 

variando de 0 a 3. O modelo multi-view foi composto por renderizações 

bidimensionais (snapshots) dos modelos tridimensionais obtidas de múltiplos 

ângulos, processadas por uma rede neural convolucional 2D (2D CNN) equipada 

com camadas de atenção responsáveis pela integração das informações 

provenientes de cada vista. 

O desempenho do classificador foi considerado satisfatório, apresentando 

acurácia geral de 0,816, precisão de 0,823, recall de 0,816, F1-score de 0,817 e 

área sob a curva Receiver Operating Characteristic (AUC) de 0,948. A concordância 

entre as classificações automáticas e as avaliações de referência (ground truth) 



24 
 
mostrou-se elevada, variando entre 97,4% e 100% quando admitida discrepância de 

um nível no índice de gravidade. Além disso, os mapas de explicação 

(SurfGradCAM) demonstraram que o modelo concentrou sua atenção em regiões 

anatômicas compatíveis com a patologia, como a pré-maxila, o contorno palatal e as 

paredes bucal e palatina do defeito, reforçando a interpretabilidade clínica da 

abordagem. 

3.3.2 Segmentação de osso alveolar 

O estudo de Cui et al. (2022) avaliou um sistema de segmentação automática do 

osso alveolar utilizando 4.938 exames de tomografia computadorizada de feixe 

cônico (TCFC) provenientes de 4.215 pacientes, distribuídos em 15 centros clínicos 

distintos. Foram conduzidos testes em conjuntos internos (dados provenientes de 

hospitais incluídos no treinamento) e externos (novos centros e perfis populacionais 

diferentes), além de uma comparação direta com radiologistas experientes para 

validação clínica. O método apresentou coeficiente Dice médio de aproximadamente 

94,5% e distância média de superfície (Average Surface Distance – ASD) de 0,33 

mm, indicando alta precisão na delimitação do osso alveolar. O desempenho 

manteve-se robusto mesmo em situações desafiadoras, como ausência ou 

desalinhamento dentário, presença de artefatos metálicos (implantes e restaurações) 

e variações entre protocolos e equipamentos de TCFC. Em termos de eficiência, a 

diferença em relação à prática manual foi expressiva: enquanto os radiologistas 

demandavam entre 147 e 169 minutos por exame para a segmentação completa, o 

sistema automático realizava o mesmo processo em cerca de 17 segundos, com 

ajustes manuais inferiores a 5 minutos — correspondendo a uma redução média de 

96–97% no tempo total de anotação. 

No trabalho de Palkovics et al. (2025), uma rede SegResNet foi treinada com 70 

exames de TCFC (57 para treinamento e 13 para validação) e testada em 10 pares 

de exames pré e pós-operatórios de pacientes submetidos à regeneração óssea 

guiada (Guided Bone Regeneration – GBR) horizontal da mandíbula. A segmentação 

semiautomática (Semi-Automatic Segmentation – SA) realizada por avaliador 

calibrado serviu como referência (ground truth). Para a mandíbula completa, os 

resultados indicaram Dice Similarity Coefficient (DSC) ≈ 0,96 ± 0,01, Intersection 

over Union (IoU) ≈ 0,92 ± 0,02 e Hausdorff Distance 95% (HD95) ≈ 0,62–0,77 mm, 
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tanto no período pré quanto no pós-operatório. A diferença volumétrica entre as 

segmentações por Deep Learning (DL) e SA não foi estatisticamente significativa, 

demonstrando boa equivalência entre os métodos. Para o tecido ósseo regenerado, 

a sobreposição foi menor (DSC ≈ 0,85 ± 0,08; IoU ≈ 0,78 ± 0,07; HD95 ≈ 0,91 ± 0,92 

mm), mas sem diferença significativa no volume obtido (p ≈ 0,06). Em relação ao 

tempo, a segmentação por DL foi consideravelmente mais rápida (52–54 s) em 

comparação à SA (≈ 42 min). 

Kurt-Bayrakdar et al. (2025) utilizaram 502 volumes de TCFC provenientes de 

duas instituições, aplicando a arquitetura nnU-Net v2, ajustável automaticamente ao 

conjunto de dados. O modelo foi posteriormente treinado com 251 volumes de 

pacientes com doença periodontal, com 10% dos dados reservados para validação. 

As áreas sob a curva (AUCs) variaram conforme o tipo de lesão: perda óssea 

alveolar total ≈ 0,85; lesões perio-endo ≈ 0,89; defeitos supraósseos ≈ 0,51; 

infraósseos ≈ 0,56; defeitos em furca ≈ 0,63; e defeitos bucais ≈ 0,68. Na 

classificação geral entre pacientes saudáveis e com doença periodontal, o modelo 

apresentou precisão média de 80% e 76%, respectivamente, com sensibilidade, 

especificidade e F1-score variando entre 0,76 e 0,80. 

Em Fontenele et al. (2023), 141 exames de TCFC foram analisados para testar 

uma Convolutional Neural Network (CNN) de segmentação automática, com 

refinamento posterior por especialista (Refined-AI). Em cerca de 30% dos casos, 

também foi realizada segmentação manual para comparação. O método automático 

atingiu Hausdorff ≈ 0,27 ± 0,03 mm, IoU ≈ 92% ± 1% e DSC ≈ 96% ± 1%, resultados 

ligeiramente inferiores aos obtidos manualmente (Hausdorff ≈ 0,20 ± 0,05 mm; IoU ≈ 

95% ± 3%; DSC ≈ 97% ± 2%). O principal ganho, entretanto, foi em eficiência: o 

processamento automático consumiu aproximadamente 51,5 segundos por exame, 

contra cerca de 1 h 40 min (≈ 5.973 s) na segmentação manual — uma aceleração 

de aproximadamente 116 vezes. 

O estudo de Al-Asali et al. (2024) empregou 150 volumes de TCFC para treinar 

duas redes U-Net: uma voltada à segmentação do osso na região de dente ausente 

e outra à predição da região de interesse (Region of Interest – ROI) para implante. O 

desempenho foi elevado, com Dice ≈ 0,93, precisão ≈ 0,94 e recall ≈ 0,93, além de 

erro volumétrico médio de apenas 1%. 
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De forma semelhante, Moufti et al. (2023) utilizaram 43 exames de TCFC de 

mandíbulas parcialmente desdentadas, aplicando uma U-Net para segmentar o 

espaço ósseo entre dentes remanescentes. O modelo apresentou DSC médio de 

0,89 no treinamento e 0,78 no teste, com melhor desempenho nos casos unilaterais 

(DSC ≈ 0,91) em comparação aos bilaterais (DSC ≈ 0,73). 

Por fim, Al-Sarem et al. (2022) processaram 500 imagens de TCFC, convertendo 

os volumes tridimensionais em projeções bidimensionais (2D panorâmicas). Após 

anotações manuais por especialista, foram testados diferentes modelos CNN 

pré-treinados (AlexNet, VGG16, VGG19, ResNet50, DenseNet169 e MobileNetV3), 

com e sem segmentação prévia via U-Net. O DenseNet169, quando combinado à 

segmentação, apresentou o melhor desempenho, com acurácia de 

aproximadamente 93,3% e F1-score próximo de 0,94 na detecção de dentes 

ausentes. O uso da segmentação prévia melhorou significativamente as métricas de 

precisão, recall e F1-score em todos os modelos, evidenciando o impacto positivo da 

pré-segmentação automatizada na classificação de estruturas dentárias em imagens 

de TCFC. 

3.3.3 Osteonecrose dos maxilares associada a medicamentos (OMAM) 

No estudo de Gürses et al. (2023), foram analisados exames de tomografia 

computadorizada de feixe cônico (TCFC) de sete pacientes com osteonecrose dos 

maxilares associada a medicamentos (OMAM) em estágio 0 — caracterizado pela 

ausência de exposição óssea clínica — e de oito indivíduos saudáveis, utilizados 

como grupo controle. A amostra totalizou 55 fatias tomográficas (28 de pacientes 

com OMAM e 27 de controles). O processo de rotulagem foi conduzido por três 

radiologistas bucomaxilofaciais experientes, que identificaram manualmente quatro 

categorias anatômicas: osso saudável (controles), esclerose óssea (OMAM), 

necrose óssea (OMAM) e osso de aparência normal em pacientes com OMAM. 

A análise estatística dos momentos de textura revelou diferenças significativas 

entre os grupos saudáveis e doentes (esclerose + necrose), evidenciando alterações 

microestruturais detectáveis nas imagens mesmo em estágios iniciais da doença. 

Observou-se também diferença estatisticamente significativa entre o osso 

visualmente normal dos pacientes com OMAM e o osso saudável dos controles, 
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indicando que mudanças sutis, ainda não perceptíveis visualmente, já se manifestam 

nas propriedades estatísticas da imagem. 

O desempenho do modelo de classificação foi notavelmente elevado: utilizando 

apenas três medidas estatísticas simples (como média, moda e mediana), o sistema 

alcançou acurácia de aproximadamente 0,969 e área sob a curva Receiver 

Operating Characteristic (ROC AUC) de 0,995. Quando ampliado para oito 

parâmetros estatísticos, o desempenho atingiu acurácia, AUC, F1-score e 

sensibilidade de 0,99, demonstrando altíssimo poder discriminativo entre tecidos 

ósseos normais e alterados — inclusive em fases subclínicas da osteonecrose. 

3.3.4 Identificação de lesões de furca 

No estudo de Shetty et al. (2024), foram analisadas 285 tomografias 

computadorizadas de feixe cônico (TCFC), das quais 143 não apresentavam 

comprometimento de furca e 142 exibiam lesões nessa região. O objetivo foi 

desenvolver e avaliar um modelo de classificação automática do envolvimento de 

furca em imagens tomográficas. Foram testadas diferentes variantes da arquitetura 

ResNet — ResNet50, ResNet101 e ResNet101V2 —, sendo esta última selecionada 

como modelo final, empregando transfer learning e fine-tuning para otimização do 

desempenho. 

A rotulagem das imagens foi conduzida por dois periodontistas experientes, que 

analisaram as fatias axiais dos exames de TCFC e determinaram a presença ou 

ausência de comprometimento de furca. O modelo apresentou acurácia de 

aproximadamente 98% no treinamento, 97% na validação e 91% no conjunto de 

teste (dados não vistos). As demais métricas de desempenho também foram 

elevadas, incluindo precisão de 0,98, F1-score de 0,98, AUC de 0,98 e loss no teste 

de 0,2170. 

Em termos de desempenho clínico, o modelo demonstrou sensibilidade de 89%, 

identificando corretamente a maioria dos casos com lesão de furca (baixo índice de 

falsos negativos), e especificidade de 94%, reconhecendo adequadamente os casos 

sem envolvimento de furca (baixo índice de falsos positivos). 

3.3.5 Segmentação do osso hioide 
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No estudo de Gümüssoy et al. (2025), foram analisados 190 exames 

retrospectivos de tomografia computadorizada de feixe cônico (TCFC) com o 

objetivo de desenvolver um modelo de segmentação automática do osso hioide 

(OH). Foram incluídas apenas imagens que apresentavam margens anatômicas bem 

definidas do osso hioide, sendo excluídos casos com trauma cervical, artefatos 

metálicos ou processos estilóides fundidos ao hioide, bem como outras condições 

que pudessem comprometer a acurácia anatômica da estrutura. 

As imagens originais foram convertidas para o formato DICOM e submetidas à 

segmentação manual no software 3D Slicer por dois radiologistas experientes. As 

anotações divergentes foram resolvidas por consenso, estabelecendo o ground truth 

utilizado para o treinamento e validação do modelo. A rede nnU-Net v2 foi 

empregada, aproveitando sua capacidade de autoajuste aos parâmetros do conjunto 

de dados e sua arquitetura tridimensional baseada em U-Net. 

Os resultados demonstraram alto desempenho de segmentação, com coeficiente 

Dice (DC) de aproximadamente 0,94, Intersection over Union (IoU) de 0,89 e 

F1-score de 0,94. A distância Hausdorff a 95% (HD95) foi de cerca de 2,00 mm, 

indicando excelente correspondência espacial entre as segmentações automáticas e 

o ground truth. Além disso, a área sob a curva Receiver Operating Characteristic 

(AUC) atingiu 0,98, evidenciando forte capacidade discriminativa entre voxels 

pertencentes e não pertencentes ao osso hioide. O modelo também apresentou alta 

precisão (0,93) e recall (0,96), demonstrando baixo índice de falsos positivos e falsos 

negativos. 

3.3.6 Maturação da sutura palatina 

No estudo de Milani et al. (2025), foram analisados 618 cortes axiais de 

tomografia computadorizada de feixe cônico (TCFC), previamente rotulados por 

especialistas segundo os cinco estágios de maturação da sutura palatina média 

definidos pela classificação de Angelieri et al. (A–E), em que o estágio A representa 

o início do desenvolvimento e o estágio E indica a sutura completamente fusionada. 

Foram comparadas arquiteturas de redes neurais profundas amplamente utilizadas 

— ResNet18 e EfficientNet — com uma nova proposta denominada MFCRAN 

(Multi-Filter Convolutional Residual Attention Network). Essa arquitetura incorpora 
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camadas de atenção residual, filtros convolucionais múltiplos e uma camada de 

Discrete Cosine Transform (DCT), projetada para capturar componentes de 

frequência que auxiliam na diferenciação entre os estágios suturais. 

O modelo proposto (MFCRAN com camada DCT e função de perda marginada 

baseada em ranking) apresentou o melhor desempenho geral, alcançando acurácia 

de 79,02%, precisão de 78,95%, recall de 78,87% e F1-score de 78,79%. Os 

modelos comparativos apresentaram resultados inferiores: ResNet18 obteve 

acurácia de 73,33% e EfficientNet_b0, 71,87%. As principais confusões de 

classificação ocorreram entre estágios adjacentes (A–B e D–E), o que reflete a 

transição morfológica gradual entre essas fases e a dificuldade diagnóstica, mesmo 

em avaliações clínicas humanas. 

A análise de interpretabilidade das redes, realizada por meio da técnica 

Grad-CAM, revelou que o modelo concentrou sua atenção principalmente na sutura 

palatina média e em estruturas ósseas adjacentes, confirmando coerência com as 

regiões de interesse utilizadas por ortodontistas durante a avaliação manual. 

De forma complementar, Tang et al. (2024) desenvolveram um modelo de 

classificação baseado em Vision Transformer (ViT_B/16) aprimorado com blocos 

convolucionais multiescala e sobrepostos, com o objetivo de combinar a capacidade 

global de atenção dos Transformers com a extração local de características 

espaciais típica das CNNs. Foram utilizadas 2.518 imagens de TCFC do plano 

palatino contendo a região da sutura palatina média. O modelo híbrido proposto 

apresentou acurácia de aproximadamente 95,75% no conjunto de teste, AUC média 

global (Macro-AUC) de 97,89% e Micro-AUC de 98,36%, superando o desempenho 

dos modelos puramente convolucionais. 

Entre as arquiteturas CNN testadas — MobileNetV2, ResNet50, ResNet18, 

ResNet101, InceptionV3, EfficientNetV2_S, EfficientNet_B4 e VGG16 —, o melhor 

desempenho foi obtido pela EfficientNetV2_S, com acurácia de cerca de 93,76%, 

ainda assim inferior ao modelo baseado em Transformer. Em comparação, a 

avaliação clínica manual por ortodontistas atingiu acurácia média de 89,10%, 

demonstrando que o modelo ViT aprimorado superou tanto as CNNs convencionais 
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quanto o desempenho humano na classificação dos estágios de maturação da 

sutura palatina. 

3.3.7 Lesões periapicais  

No estudo de Calazans et al. (2022), foram utilizados 1.000 pares de cortes 

sagitais e coronais de imagens de tomografia computadorizada de feixe cônico 

(TCFC), classificados em três categorias: dentes saudáveis, dentes com lesões 

pequenas (0,5–1,9 mm) e dentes com lesões grandes (≥ 2,0 mm). Foram testados 

dois modelos de redes neurais profundas — VGG-16 e DenseNet-121 —, ambos 

com transfer learning, integrados em uma arquitetura Siamese Concatenation 

Network, que combina as duas projeções (sagital e coronal) de um mesmo dente 

para extrair características tridimensionais conjuntas. 

O desempenho foi avaliado em três cenários distintos. No cenário da base 

completa (todas as categorias), o modelo DenseNet-121 alcançou acurácia em torno 

de 70,00%, com métricas complementares (F1-score, especificidade e precisão) de 

valores semelhantes, enquanto o VGG-16 apresentou resultados ligeiramente 

inferiores. No cenário “saudável vs. grandes lesões”, o desempenho foi superior, 

atingindo acurácia de 81,25% com o VGG-16 e especificidade de 92,39% com o 

DenseNet-121, indicando boa capacidade para identificar corretamente dentes sem 

lesão. Já no cenário “saudável vs. pequenas lesões”, o desempenho foi mais 

modesto (acurácia ≈ 66,67% com DenseNet-121), com F1-score e recall menores, 

refletindo a maior dificuldade do modelo em distinguir lesões sutis. 

O estudo de Fu et al. (2024) propôs a rede PAL-Net, uma convolutional neural 

network (CNN) tridimensional desenvolvida para detecção e segmentação de lesões 

periapicais em TCFC, avaliada por meio de validação cruzada de cinco dobras 

(5-fold cross-validation) e validação externa em três regiões geográficas da China 

(Central, Leste e Norte). O conjunto de validação contou com 100 imagens de TCFC, 

avaliadas também por 20 dentistas de diferentes níveis de experiência, com e sem o 

auxílio da PAL-Net. O modelo apresentou AUC interna de 0,98 e coeficiente de 

similaridade (Dice) médio de 0,87 (variação 0,85–0,88), demonstrando excelente 

desempenho de segmentação. 



31 
 

O uso assistido do modelo resultou em melhora significativa do desempenho 

diagnóstico humano: dentistas juniores tiveram AUC aumentada de 0,89 para 0,94, e 

seniores, de 0,91 para 0,93. Além disso, observou-se redução expressiva no tempo 

de diagnóstico, com média de 69,3 minutos a menos para profissionais juniores e 

32,4 minutos a menos para seniores. A validação externa demonstrou boa 

generalização do modelo entre diferentes regiões. 

Em um estudo retrospectivo, Allihaibi et al. (2025) analisaram 134 molares (327 

raízes) obtidos por TCFC, comparando os resultados do software Diagnocat com a 

avaliação de dois endodontistas experientes, considerada o padrão de referência. 

Para molares não tratados, a ferramenta apresentou alta sensibilidade (93,9% por 

dente e 86,2% por raiz), especificidade moderada (65,2% e 79,9%, respectivamente) 

e acurácia geral de 79,1% (por dente) e 82,6% (por raiz). O valor preditivo positivo 

(VPP) foi de 71,8% (dente) e 75,8% (raiz), enquanto o valor preditivo negativo (VPN) 

atingiu 91,8% (dente) e 88,8% (raiz). O F1-score foi de 81,3% por dente e 80,7% por 

raiz, e a AUC-ROC foi de 0,76 e 0,79, respectivamente. Para dentes tratados 

(pós-operatórios), o desempenho diminuiu, especialmente nos valores de VPP 

(54,2% por dente; 46,9% por raiz) e F1-score (67,2% e 59,2%), sugerindo maior 

dificuldade na detecção de lesões residuais após o tratamento endodôntico. 

Por sua vez, Kazimierczak et al. (2024) avaliaram o desempenho do Diagnocat 

em 49 pacientes (1.223 dentes) que possuíam radiografias panorâmicas e TCFC 

obtidas com intervalo de até 30 dias. A avaliação humana, conduzida por um 

ortodontista e um radiologista, estabeleceu o padrão de verdade (ground truth) a 

partir do consenso entre ambas as modalidades de imagem. A inteligência artificial 

analisou as imagens panorâmicas e TCFC separadamente, classificando como 

“positivas” as detecções com probabilidade superior a 50% de lesão periapical. Os 

resultados mostraram que o desempenho da inteligência artificial foi 

substancialmente superior na TCFC, com sensibilidade de 77,78%, especificidade 

acima de 98%, acurácia geral de 99,35%, VPP de 91,30% e F1-score de 

aproximadamente 84,00%. 

3.3.8 Determinação da densidade óssea 
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No estudo de Namatevs et al. (2023), foram incluídas 188 mulheres 

pós-menopausa (54–87 anos; média de 69,1 ± 8,1 anos), edentadas ou parcialmente 

edentadas, submetidas à tomografia computadorizada de feixe cônico (TCFC) no 

contexto de planejamento para implantes. A densidade mineral óssea (DMO) de 

referência foi obtida por dual-energy X-ray absorptiometry (DEXA) nas regiões 

lombar (L2–L4) e colo femoral, sendo o pior T-score utilizado para classificar as 

pacientes como normais, osteopênicas ou osteoporóticas. O modelo proposto 

baseou-se na ResNet-101, utilizada para três tarefas sequenciais: (1) classificação 

dos slices corretos, (2) detecção de pontos anatômicos de referência e (3) estimação 

da espessura cortical mandibular. 

No Estágio 1 (classificação dos slices), o modelo alcançou acurácia de 

treinamento de 98,85% (no 39º epoch) e acurácia de validação de 93,99% (no 35º 

epoch), demonstrando alta consistência entre as fases. No Estágio 2 (detecção de 

pontos de referência) — incluindo cinco pontos mandibulares e dois pontos nos 

canais do nervo alveolar inferior —, a métrica de perda L1 (mean absolute error) foi 

de aproximadamente 1,02 pixel na validação, indicando precisão adequada na 

regressão espacial. Já no Estágio 3 (estimação da espessura cortical mandibular), 

considerando 180 observações rotuladas, a espessura média verdadeira foi de 2,97 

± 0,96 mm, e o erro médio quadrático (MSE) do algoritmo foi de 0,84, demonstrando 

boa correspondência entre os valores preditos e os dados de referência. 

No estudo de Xiao et al. (2022), foram avaliadas imagens de TCFC de 70 

pacientes com defeitos dentários mandibulares, rotuladas manualmente por quatro 

cirurgiões-dentistas experientes e revisadas por um especialista com mais de 20 

anos de prática clínica. As regiões de interesse foram classificadas em cinco tipos de 

densidade óssea, de acordo com os valores de unidades Hounsfield (HU): Tipo 1 

(1000–2000), Tipo 2 (700–1000), Tipo 3 (400–700), Tipo 4 (100–400) e Tipo 5 

(100–200). Foi empregada a arquitetura Nested U-Net para segmentação semântica, 

escolhida por sua capacidade de extrair e integrar informações em múltiplas escalas 

espaciais. 

No conjunto de teste (68 casos), o modelo alcançou coeficiente de similaridade 

Dice médio de aproximadamente 0,75 para as diferentes categorias. Os valores 

médios de HU estimados automaticamente mostraram-se muito próximos aos 
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valores rotulados pelos especialistas e dentro dos intervalos esperados para cada 

tipo. Por exemplo, para o Tipo 1, os especialistas indicaram média de cerca de 1519 

HU, enquanto o modelo previu aproximadamente 1520 HU; para o Tipo 5, a média 

foi de 195 HU (especialistas) e 136 HU (modelo). Além disso, os desvios-padrão 

intra-categoria foram semelhantes entre a rotulagem humana e a automática, 

indicando que o modelo conseguiu reproduzir adequadamente a variabilidade 

anatômica e de densidade observada nos tecidos ósseos mandibulares. 

O estudo de Yong et al. (2021) propôs o QCBCT-Net, uma arquitetura híbrida 

voltada à quantificação precisa da densidade mineral óssea (DMO) em TCFC. O 

experimento utilizou dois crânios-fantomas de acrílico — um sem restaurações 

metálicas (para treinamento e validação) e outro com restaurações (para teste). 

Foram adquiridas imagens por tomografia computadorizada convencional e por 

TCFC em diferentes condições de dose (80 kVp/8 mA e 90 kVp/10 mA). 

O QCBCT-Net combina um Cycle-GAN com blocos residuais, responsável por 

converter imagens de TCFC em representações semelhantes às QCT, e uma U-Net 

de múltiplos canais, que recebe simultaneamente a imagem original e a saída do 

Cycle-GAN para refinamento, redução de ruído e correção de artefatos. Quando 

comparado aos métodos de calibração tradicionais (CAL_CBCT, CYC_CBCT e 

U_CBCT), o QCBCT-Net apresentou ganhos substanciais de desempenho. Sob as 

condições de 80 kVp/8 mA, observaram-se, na maxila, aumentos de 38% em MAD, 

20% em PSNR, 45% em SSIM, 40% em NCC, 80% em SNU e 84% em Slope, 

enquanto na mandíbula os incrementos foram de 39%, 20%, 50%, 40%, 47% e 

102%, respectivamente. Em comparação ao modelo U_CBCT, as melhorias foram 

ainda mais expressivas (por exemplo, até +112% em SSIM e +167% em Slope). Em 

90 kVp/10 mA, o QCBCT-Net manteve desempenho superior em todos os 

parâmetros, demonstrando robustez frente a diferentes condições de aquisição. 

3.3.9 Segmentação da mandíbula 

No estudo de Hernandez et al. (2025), foram avaliadas 12 mandíbulas humanas 

secas, com imagens adquiridas por tomografia computadorizada de feixe cônico 

(TCFC) para obtenção dos arquivos DICOM, e por structured light scanner (GoSCAN 

Spark) para geração dos modelos de superfície de referência, considerados o 
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padrão-ouro. Três protocolos de segmentação foram comparados: (1) manual, 

realizada por operador experiente; (2) limiarização global, baseada na seleção de 

um limiar de intensidade para separar os tecidos ósseos do restante da imagem; e 

(3) segmentação automática baseada em inteligência artificial (Diagnocat). 

A avaliação consistiu na sobreposição dos modelos tridimensionais obtidos por 

cada método ao modelo de referência do scanner óptico, com cálculo do Root Mean 

Square (RMS) de erro entre as superfícies, utilizando o software de comparação de 

malhas Geomagic Design X. Valores menores de RMS indicam maior fidelidade da 

segmentação em relação ao padrão-ouro. As análises estatísticas foram realizadas 

por meio de ANOVA de medidas repetidas, considerando diferentes regiões 

anatômicas da mandíbula, incluindo corpo, ramo, côndilos, processo coronóide, 

sínfise e ângulo mandibular, entre outras. 

Os resultados mostraram que as segmentações baseadas em inteligência 

artificial apresentaram valores de RMS significativamente mais altos que as 

segmentações manuais para a mandíbula inteira (p < 0,001), processo alveolar (p < 

0,001) e corpo mandibular (p < 0,001), indicando menor precisão nessas regiões. 

Por outro lado, as segmentações por IA foram mais precisas que as manuais nos 

côndilos (p = 0,018) e no ramo mandibular (p = 0,013). Não foram observadas 

diferenças estatisticamente significativas entre IA e manual no processo coronóide (p 

= 0,275), sínfise (p = 0,346) e ângulo mandibular (p = 0,344). 

Em relação à limiarização global, os valores de RMS foram significativamente 

mais altos que os obtidos manualmente em praticamente todas as regiões avaliadas 

— incluindo processo alveolar, corpo, ramo, côndilos, coronóide, sínfise e mandíbula 

inteira (p < 0,05 em todos os casos) —, evidenciando precisão inferior desse 

método. Na comparação entre limiarização global e IA, a segmentação baseada em 

IA apresentou valores de RMS significativamente menores nas mesmas regiões, 

exceto nas áreas em que IA e manual não diferiram estatisticamente, demonstrando 

a superioridade da IA em relação à limiarização global, ainda que seu desempenho 

varie conforme a região anatômica. 

3.4 Forames e canais intraósseos 
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A revisão identificou 14 estudos que empregaram a inteligência artificial (IA) para 

a identificação e análise de forames e canais intraósseos em exames de tomografia 

computadorizada de feixe cônico (TCFC). Os trabalhos foram classificados nos 

seguintes subtemas: óstio acessório (n = 1), forame lingual (n = 1), canal mandibular 

(n = 8), forame infraorbitário (n = 1), canal nasolacrimal (n = 1) e canal incisivo 

mandibular (n = 2). 

3.4.1 Segmentação do canal mandibular 

No estudo de Issa et al. (2025), 150 exames de tomografia computadorizada de 

feixe cônico (TCFC) retrospectivos, totalizando 300 canais mandibulares, foram 

analisados. A segmentação de referência foi realizada de modo semiautomático no 

software Romexis, enquanto a segmentação automática foi gerada pela plataforma 

Diagnocat. A comparação entre os modelos tridimensionais foi feita por meio do 

Cloud Compare, calculando-se as distâncias surface-to-surface. A discrepância 

mediana entre a segmentação da IA e a referência foi de 0,29 mm (desvio-padrão 

0,25–0,37 mm), com 88% dos casos dentro do limite clínico aceitável (≤ 0,5 mm). A 

confiabilidade inter-rater foi de 84,5% e a intra-rater de 95,5%, indicando boa 

consistência entre avaliadores. A presença e o estado do terceiro molar 

influenciaram levemente a precisão: canais com terceiros molares impactados 

apresentaram discrepância mediana superior (0,32 mm) em relação aos 

erupcionados (0,28 mm) e ausentes (0,27 mm). 

Gümüssoy et al. (2025) utilizaram 69 exames de TCFC contendo variações 

bifurcadas do canal mandibular. As anotações manuais foram realizadas no 3D 

Slicer por radiologistas experientes, e o modelo aplicado foi o nnU-Net v2. Para 

canais normais (MaC), o desempenho foi elevado (Dice ≈ 0,82; IoU ≈ 0,70; AUC ≈ 

0,90), enquanto para canais bifurcados (BMaC) observou-se queda significativa 

(Dice ≈ 0,46; IoU ≈ 0,33; AUC ≈ 0,71), revelando maior dificuldade da IA em detectar 

ramificações anatômicas. 

Em Kwak et al. (2020), 102 exames de TCFC foram anotados manualmente a 

cada 1 mm, com interpolação tridimensional. Foram comparadas arquiteturas 

bidimensionais (U-Net, SegNet) e tridimensionais (3D U-Net). O modelo 

tridimensional apresentou os melhores resultados, com acurácia global de 
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aproximadamente 0,99 e class accuracy de 0,96, superando substancialmente os 

modelos bidimensionais, especialmente na continuidade estrutural do canal. 

De modo semelhante, Yang et al. (2025) testaram múltiplas arquiteturas 

(2D-ResUNet, 2D-AttUNet, 2.5D, 3D-UNet e 3D-Swin UNETR) em bases públicas 

(153 volumes de TCFC da Itália) e externas (30 volumes da Coreia). O 3D-UNet 

apresentou o melhor desempenho global (DSC ≈ 0,72; Jaccard ≈ 0,57; precisão ≈ 

0,66; sensibilidade ≈ 0,81), mantendo boa robustez em dados externos. O uso de 

estratégias como Image Cropping e Multi-Planar Dice Loss aprimorou a 

conectividade e reduziu falsos negativos. Os modelos 2.5D apresentaram precisão 

elevada, porém inferior em continuidade estrutural quando comparados aos modelos 

tridimensionais. 

No estudo de Pan et al. (2025), 836 exames de TCFC de um fabricante e 220 de 

outros quatro fabricantes foram utilizados para testar a capacidade de generalização 

do modelo. Uma rede do tipo 3D U-Net-like com perda híbrida (Dice + 

Cross-Entropy) atingiu ASSD ≈ 0,49 mm e SMCD ≈ 0,30 mm no teste interno. Em 

dados externos, 86,8% dos exames receberam pontuação visual ≥ 4/5 por 

radiologistas, indicando boa acurácia clínica. O tempo médio para segmentação 

automática foi de 8,5 s, contrastando com aproximadamente 10 min na segmentação 

manual, representando um ganho expressivo de eficiência. 

Usman et al. (2022) desenvolveram um pipeline em duas etapas. A primeira 

etapa, de localização grosseira, utilizou uma 3D Attention U-Net, enquanto a 

segunda, de segmentação fina, aplicou uma Residual U-Net com entrada multiescala 

(MSiR-UNet). O método alcançou Dice ≈ 0,75 e mIoU ≈ 0,80, com melhora 

consistente ao incorporar conexões residuais e entradas multiescala. Os resultados 

foram considerados clinicamente aceitáveis e robustos em diferentes conjuntos de 

dados. 

Em On et al. (2025), foram testadas abordagens single-label, pair-label e 

multi-label com o modelo 3D nnU-Net em exames de TCFC. O modelo multi-label 

apresentou desempenho superior (DSC ≈ 90% no teste interno e ≈ 86% no externo 

para o nervo alveolar inferior). Além disso, o uso de active learning reduziu o tempo 

de correção manual de 285 minutos para 20 minutos usando o multi-label. 
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Por fim, Järnstedt et al. (2023) avaliaram 165 exames de TCFC de 72 pacientes, 

abrangendo diferentes situações clínicas. O modelo convolucional tridimensional 

(DLS) obteve SMCD mediana de 0,64 mm, ASSD mediana de 0,35 mm e DSC 

médio de 0,55, com coeficiente de repetibilidade (RC) de 0,97 mm. Apesar do 

desempenho moderado em sobreposição, o modelo apresentou boa repetibilidade e 

avaliação qualitativa próxima à do radiologista especialista (pontuação média 3,84 ± 

0,65 vs. 3,94 ± 0,27). 

3.4.2 Identificação do óstio acessório  

No estudo de Shetty et al. (2025), foram analisados 856 exames de tomografia 

computadorizada de feixe cônico (TCFC) com campo de visão amplo (Large Field of 

View – FOV), com o objetivo de desenvolver um método de identificação automática 

de óstios acessórios. A partir desse conjunto, foram selecionadas 454 imagens de 

seções coronais, distribuídas equitativamente entre casos com óstio acessório (n = 

227) e sem óstio acessório (n = 227). 

Para a classificação automática, os autores empregaram modelos de redes 

neurais convolucionais pré-treinados, incluindo VGG16, MobileNetV2 e 

ResNet101V2. Após testes comparativos, o modelo ResNet101V2 foi selecionado 

por apresentar o melhor desempenho, sendo posteriormente ajustado por meio de 

fine-tuning e aplicação de regularização L1 (Lasso), com o intuito de reduzir o risco 

de overfitting. 

A análise descritiva indicou uma prevalência de óstio acessório de 

aproximadamente 24,18% entre os exames avaliados. No conjunto de teste, o 

modelo ResNet101V2 alcançou acurácia média de cerca de 0,81, com precisão 

(precision) de 0,82, sensibilidade (recall) de 0,81 e F1-score de 0,81, demonstrando 

desempenho equilibrado entre detecção e classificação correta das estruturas. 

Além disso, a avaliação da confiabilidade entre observadores humanos revelou 

boa concordância inter e intra-avaliador, indicando consistência na identificação 

manual dos óstios acessórios e reforçando a confiabilidade das anotações utilizadas 

como referência para o treinamento e validação do modelo. 

3.4.3 Análise do forame lingual 
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No estudo de Mahabob et al. (2025), foi conduzida uma análise retrospectiva de 

166 exames de tomografia computadorizada de feixe cônico (TCFC), com o objetivo 

de investigar variações anatômicas relacionadas ao forame mandibular e avaliar o 

potencial de métodos de inteligência artificial (IA) na estratificação de risco 

anatômico. Foram coletadas diversas medidas morfológicas, incluindo o número de 

foramina, a posição em relação ao tubérculo geniano, a distância até a crista 

alveolar e o diâmetro do forame, entre outros parâmetros. 

Dois modelos de IA foram empregados de maneira complementar. Inicialmente, 

utilizou-se o algoritmo de clustering K-means, que permitiu agrupar os casos com 

base nas características anatômicas, formando três categorias de risco distintas: 

Low, Moderate e High. Em seguida, aplicou-se um modelo de árvore de decisão 

(decision tree), cujo objetivo foi determinar quais variáveis anatômicas apresentavam 

maior poder preditivo para a classificação de risco estabelecida pelo agrupamento 

anterior. 

O modelo de árvore de decisão apresentou acurácia global de aproximadamente 

92,6%, demonstrando alta capacidade de previsão das categorias de risco. Quando 

comparadas às classificações manuais realizadas por especialistas, as predições do 

modelo mostraram concordância de cerca de 89,4%, evidenciando bom alinhamento 

entre a análise automatizada e a avaliação humana. 

3.4.4 Identificação do canal incisivo mandibular 

No estudo de Jindanil et al. (2025), foi conduzida uma análise de 10 casos 

clínicos de pacientes do University Hospitals Leuven submetidos a cirurgias de 

implantes dentários, com documentação de exames de tomografia computadorizada 

de feixe cônico (TCFC) pré e pós-operatórios, além de registros clínicos de lesões 

nervosas decorrentes dos procedimentos. A segmentação foi realizada por meio de 

uma arquitetura de rede neural convolucional do tipo U-Net, previamente treinada 

para ambas as estruturas anatômicas. 

Dois radiologistas orais compararam visualmente os canais segmentados pela IA 

com aqueles observados nas imagens originais sem processamento, enquanto cinco 

observadores (cirurgiões, protodontistas e residentes) avaliaram a identificação do 
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canal incisivo mandibular e a detecção de lesões nervosas em imagens pré e 

pós-operatórias. 

A ferramenta de IA demonstrou desempenho significativamente superior no 

pré-operatório, com acurácia média de 95%, em comparação aos 70% obtidos nas 

análises sem IA (p = 0,025). Além disso, observou-se um aumento de 25% na 

detecção correta do canal incisivo mandibular e uma elevação de aproximadamente 

8% no nível de confiança dos observadores (p = 0,038). No pós-operatório, a 

acurácia na detecção de lesões nervosas também foi maior com o uso da IA (92,5% 

versus 87,5%), embora sem significância estatística. Em termos qualitativos, a IA 

permitiu a visualização clara e bilateral dos canais incisivos, evidenciando relações 

anatômicas entre implantes e canais condizentes com os sintomas clínicos de dor e 

alterações neurossensoriais relatadas pelos pacientes. 

De forma semelhante, Da Andrade-Bortoletto et al. (2025) avaliaram o 

desempenho de um modelo aprimorado de IA para segmentação automática do 

canal mandibular em 140 exames de TCFC, com 40 exames adicionais utilizados 

para validação externa. O modelo baseou-se em uma arquitetura tridimensional 

U-Net com múltiplas camadas convolucionais e uso de técnicas de data 

augmentation para aumentar a robustez do treinamento. Os resultados da 

segmentação foram revisados por radiologistas experientes, com refinamentos 

manuais aplicados em casos de subsegmentação e validação final conduzida por um 

radiologista sênior. 

O modelo aprimorado (enhanced AI) apresentou desempenho quantitativo de 

destaque: IoU ≈ 93%, Dice Similarity Coefficient (DSC) ≈ 93%, recall ≈ 94%, precisão 

≈ 93%, acurácia global ≈ 99% e erro médio de superfície (RMSE) ≈ 0,23 mm. Todas 

as métricas foram significativamente superiores às do modelo anterior e, em 

diversos aspectos, também às segmentações manuais realizadas por especialistas 

— especialmente em IoU, DSC e acurácia global. O tempo médio de processamento 

foi de 17,6 segundos por exame, contrastando com o tempo substancialmente maior 

das segmentações manuais, tornando o método aproximadamente 125 vezes mais 

rápido. 
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3.4.5 Segmentação do canal infraorbitário 

No estudo de Gümüssoy et al. (2025), foram analisadas 220 imagens de 

tomografia computadorizada de feixe cônico (TCFC), correspondentes aos canais 

infraorbitários de 110 pacientes (considerando ambos os lados). As imagens foram 

anotadas manualmente por radiologistas experientes utilizando o software 3D Slicer, 

com verificação independente por um segundo e, quando necessário, um terceiro 

especialista, garantindo alta confiabilidade nas segmentações de referência. 

Para a segmentação automática, os autores empregaram o modelo nnU-Net v2, 

uma rede neural profunda tridimensional amplamente reconhecida por sua 

capacidade de adaptação a diferentes tarefas de segmentação em imagens 

médicas. O desempenho do modelo foi avaliado por meio de múltiplas métricas 

quantitativas, demonstrando resultados promissores: Dice Coefficient (DC) = 0,7792, 

Intersection over Union (IoU) = 0,6402, F1-score ≈ 0,7837 e Hausdorff Distance a 

95% (HD95) = 0,7661 (em milímetros ou voxels, conforme a parametrização do 

estudo). Além disso, a área sob a curva ROC (AUC) foi de 0,91, indicando excelente 

poder discriminativo do modelo na identificação e delimitação do canal infraorbitário. 

3.4.6 Segmentação do canal nasolacrimal  

No estudo de Haylaz et al. (2025), foi analisada uma amostra composta por 100 

pacientes, cujos exames de tomografia computadorizada de feixe cônico (TCFC) 

foram selecionados aleatoriamente. As imagens foram convertidas para o formato 

DICOM e processadas no software 3D Slicer, onde o canal nasolacrimal foi anotado 

manualmente por meio de um método poligonal, servindo como referência (ground 

truth) para o treinamento e validação do modelo de inteligência artificial. 

A arquitetura de aprendizado profundo utilizada foi o nnU-Net v2, uma rede 

neural convolucional tridimensional adaptável, amplamente empregada em tarefas 

de segmentação automática de imagens médicas. O modelo apresentou 

desempenho quantitativo consistente e de alta qualidade, com os seguintes 

resultados médios: precisão (precision) ≈ 0,79, sensibilidade (recall) ≈ 0,92, Dice 

Coefficient (DC) ≈ 0,85, Intersection over Union (IoU) ≈ 0,73, F1-score ≈ 0,85 e 
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Hausdorff Distance a 95% (HD95) ≈ 0,95 mm. A área sob a curva ROC (AUC) foi de 

aproximadamente 0,96, refletindo excelente capacidade discriminativa do modelo na 

diferenciação entre as estruturas segmentadas e os tecidos adjacentes. 

3.5 Seios paranasais 

Foram identificados, na revisão, 10 estudos que empregaram a inteligência 

artificial (IA) para a detecção e análise dos seios paranasais em exames de 

tomografia computadorizada de feixe cônico (TCFC). Esses trabalhos foram 

classificados nos seguintes subtemas: segmentação dos seios maxilares (n = 7) e 

determinação de sexo (n = 3). 

3.5.1 Segmentação dos seios maxilares 

No estudo de Bayrakdar et al. (2024), a base de dados foi composta por 101 

exames de tomografia computadorizada de feixe cônico (TCFC) com seios maxilares 

saudáveis, sem achados inflamatórios. A rotulação (ground truth) foi realizada por 

dois especialistas em radiologia bucomaxilofacial e posteriormente revisada por 

radiologistas mais experientes, assegurando elevada precisão nas anotações. O 

modelo de inteligência artificial (IA) utilizado foi o nnU-Net v2, uma rede 

convolucional voltada à segmentação automática. O desempenho obtido foi elevado, 

com F1-score ≈ 0,96, acurácia ≈ 0,99, sensibilidade ≈ 0,96, precisão ≈ 0,96, AUC ≈ 

0,97, Dice Coefficient (DC) ≈ 0,96, Intersection over Union (IoU) ≈ 0,93 e Hausdorff 

Distance a 95% (HD95) ≈ 1,19. O modelo demonstrou alta confiabilidade e precisão 

na segmentação automática dos seios maxilares, com interseção superior a 50% 

entre as previsões e o ground truth em praticamente todos os casos de teste. 

Em Altun et al. (2024), foram analisados 307 exames de TCFC anônimos, com 

cortes coronais selecionados em intervalos de 1 mm. As imagens foram 

classificadas em quatro categorias: seios maxilares saudáveis, espessamento de 

mucosa, cistos de retenção de muco e sinusite (opacificação total ou parcial). A 

segmentação manual foi realizada por dois radiologistas bucomaxilofaciais, 

apresentando excelente concordância interobservador (κ ≈ 0,96). O modelo adotado 

foi uma YOLOv5x modificada, com transfer learning a partir de pesos pré-treinados. 

O desempenho para a segmentação do seio maxilar total foi excelente (recall = 1,00; 
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precisão = 0,99; F1-score = 0,99; mAP ≈ 0,99; AUC ≈ 0,98). Entre as classes 

patológicas, a IA apresentou maior acurácia para sinusite (F1-score = 0,97) e cistos 

de retenção mucosa (F1-score = 0,92), e desempenho ligeiramente inferior para 

espessamento de mucosa (F1-score = 0,89), o que foi atribuído à dificuldade de 

delimitação de contornos sutis e áreas reduzidas. 

O estudo de Yoo et al. (2023) avaliou 67 exames de TCFC, com segmentações 

manuais realizadas por radiologista bucomaxilofacial. Foram comparadas redes 

bidimensionais (U-Net, U-Net++), 2.5D e tridimensionais (U-Net, V-Net). O modelo 

2.5D, que integra informações simultâneas dos planos axial, sagital e coronal por 

meio de um ensemble de previsões, apresentou os melhores resultados. Para o seio 

maxilar (MS), obteve Jaccard ≈ 0,95, Dice ≈ 0,97, precisão ≈ 0,97 e recall ≈ 0,97; 

para a região MSL, os valores foram Jaccard ≈ 0,79 e Dice ≈ 0,88. As redes 

tridimensionais apresentaram limitações de memória e menor capacidade de 

generalização, enquanto o método de votação majoritária nas redes 2.5D mostrou 

desempenho superior. 

No estudo de Chen (2025), a amostra foi composta por 300 imagens de TCFC 

de 100 pacientes chineses, analisadas nos planos axial, coronal e sagital. Utilizando 

a U-Net clássica, o modelo apresentou excelente desempenho em todos os planos: 

axial – IoU ≈ 0,94; F1-score ≈ 0,97; acurácia ≈ 0,99; sagital – IoU ≈ 0,94; F1-score ≈ 

0,97; acurácia ≈ 0,99; coronal – IoU ≈ 0,92; F1-score ≈ 0,96; acurácia ≈ 0,99. 

Embora o plano coronal tenha apresentado desempenho ligeiramente inferior, o 

modelo demonstrou robustez tanto para seios regulares quanto para aqueles com 

septos internos. 

Em Morgan et al. (2022), foram avaliados 132 exames de TCFC (264 seios 

maxilares) utilizando uma 3D U-Net. A segmentação automática apresentou Dice ≈ 

98,4% em comparação à segmentação semiautomática de referência, com tempo 

médio de processamento de apenas 24,4 segundos por seio, em contraste com 60,8 

minutos no método semiautomático. O refinamento manual, quando necessário, 

levou cerca de 7,1 minutos, mantendo DSC ≈ 99,6% e RMS ≈ 0,21 mm. 

Clinicamente, cerca de 70% das segmentações automáticas foram classificadas 

como “perfeitas”, evidenciando alto grau de aplicabilidade prática. 
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O estudo de Choi et al. (2022) analisou 19.350 imagens de TCFC de 90 seios 

maxilares (34 claros e 56 turvos). A segmentação manual foi realizada em cortes 

axiais por meio do software 3D Slicer, e a rede U-Net foi aplicada para segmentação 

automática. Antes do pós-processamento, o desempenho médio foi de DSC = 0,91 ± 

0,19 e HD = 2,70 ± 4,62; após o pós-processamento, observou-se melhora para 

DSC = 0,91 ± 0,19 e HD = 2,15 ± 2,28. O tempo de segmentação automática foi 

significativamente menor (≈ 46 s) em comparação ao método manual (≈ 48,7 min), 

sem diferença relevante de desempenho entre seios claros e turvos. 

Por fim, Serindere et al. (2022) avaliaram 296 imagens (148 de seios maxilares 

saudáveis e 148 com sinusite), obtidas por meio de TCFC e radiografia panorâmica 

(panoramic radiograph – PR). Utilizando uma convolutional neural network (CNN) 

implementada em PyTorch, observaram desempenho excepcional com TCFC 

(acurácia ≈ 99,7%; sensibilidade ≈ 100%; especificidade ≈ 99,3%; AUC ≈ 0,99–1,00), 

significativamente superior ao obtido com PR. 

3.5.2 Determinação de sexo 

No estudo conduzido por Şenol et al. (2024), foram analisados 160 exames de 

tomografia computadorizada de feixe cônico (TCFC) de indivíduos adultos. Os 

autores excluíram da amostra participantes que apresentavam patologias ou 

histórico de intervenções cirúrgicas no ramo da mandíbula, assegurando a 

integridade anatômica da região de interesse. Foram realizadas medições bilaterais 

(direita e esquerda) de oito parâmetros antropométricos relacionados à língula 

mandibular, incluindo distâncias entre o ponto superior da língula e referências 

anatômicas como a incisura mandibular, as bordas anterior e posterior da mandíbula, 

a base mandibular e o gônio, além da altura da própria língula. 

Para a estimativa do sexo, diferentes modelos de machine learning foram 

avaliados, com destaque para os algoritmos Random Forest e Gaussian Naive 

Bayes, que apresentaram as maiores acurácias observadas, atingindo 0,88 (88%). 

Outras combinações e parâmetros testados obtiveram acurácias variando entre 0,78 

e 0,88, demonstrando desempenho consistente. Os autores também reportaram 

valores equilibrados de sensibilidade, especificidade e F1-score, indicando boa 

capacidade discriminatória dos modelos empregados. 
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Por sua vez, Da Silva et al. (2024) utilizaram uma base composta por 310 

exames de TCFC, propondo uma arquitetura de rede neural profunda denominada 

SDetNet, estruturada em duas etapas principais: FSNet, uma rede bidimensional de 

segmentação dos seios frontais, responsável por delinear precisamente o contorno 

anatômico dessa estrutura; e SDNet, uma rede tridimensional de classificação, que 

utiliza as regiões de interesse (ROIs) segmentadas para prever o sexo. O modelo faz 

uso de entradas multicanais (MSI/MCI), combinando imagens originais e mapas de 

máscara, e incorpora o Anatomy-Guided Attention Module (AGAM), um módulo de 

atenção projetado para direcionar o foco da rede a contextos anatômicos relevantes 

dos seios frontais. 

O desempenho da etapa de segmentação foi expressivo, com a backbone 

DenseNet201 alcançando Jaccard Index (JI) = 0,878 ± 0,042, F1-score = 0,935 ± 

0,024 e recall = 0,930 ± 0,038. Na etapa de determinação do sexo, a arquitetura 

completa (DenseNet201 + AGAM + MSI) apresentou AUC ≈ 0,98, acurácia ≈ 0,92 e 

especificidade ≈ 0,96, além de Brier Score e sensibilidade igualmente favoráveis. 

Estudos de ablação demonstraram que a remoção dos mapas de máscara ou do 

AGAM reduziu significativamente o desempenho, reforçando a importância desses 

componentes na extração de informações morfológicas discriminantes entre os 

sexos. 

Já no estudo de Hamidi et al. (2024), foram analisadas 240 imagens de TCFC de 

pacientes iranianos, com foco na mensuração de parâmetros lineares e volumétricos 

dos seios frontal e maxilar (altura, largura, comprimento e volume). Os autores 

desenvolveram um método denominado GADNN (Genetic Algorithm-based Deep 

Neural Network), que combina redes neurais profundas (DNN) com um algoritmo 

genético (GA) para seleção de características e otimização do modelo, além de 

empregar a técnica SMOTE para balanceamento das classes. 

A variável idade foi abordada de duas formas: como variável contínua, para 

regressão, e em faixas etárias, para classificação multiclasse. O modelo GADNN 

apresentou acurácia de 86% na determinação do sexo, superando modelos 

comparativos como Logistic Regression, Random Forest e Multilayer Perceptron 

(MLP), e atingiu 68% de acurácia na classificação etária. 
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3.6  Articulação temporomandibular 

A revisão identificou sete estudos que empregaram a inteligência artificial (IA) na 

análise das condições da articulação temporomandibular (ATM) e de seus 

componentes em exames de tomografia computadorizada de feixe cônico (TCFC). 

Esses trabalhos foram agrupados em três subtemas principais: osteoartrite (n = 3), 

segmentação do côndilo mandibular (n = 3) e articulação temporomandibular 

propriamente dita (n = 1). 

3.6.1 Identificação de osteoartrite na ATM 

No estudo de De Dumast et al. (2018), foram empregados modelos de superfície 

tridimensionais (meshes) de côndilos mandibulares obtidos a partir de exames de 

tomografia computadorizada de feixe cônico (TCFC). O conjunto de treinamento foi 

composto por 259 côndilos, sendo 105 provenientes de indivíduos saudáveis e 154 

de pacientes com diagnóstico de osteoartrite da articulação temporomandibular 

(ATM). Para o grupo de teste, foram aplicados questionários clínicos padronizados e 

coletadas amostras de sangue e saliva. Dois sistemas integrados foram 

desenvolvidos: o Shape Variation Analyzer (SVA), módulo voltado à análise da 

variabilidade tridimensional da forma condilar e à classificação automática do grau 

de degeneração, e o Data Storage for Computation and Integration (DSCI), 

plataforma web destinada ao armazenamento e integração de dados clínicos, 

biológicos e de imagem, além da execução remota de tarefas computacionais 

complexas. 

As características morfológicas tridimensionais foram descritas a partir de 

vetores, curvaturas, distâncias e posições de vértices, além do índice de forma. A 

rede neural empregada possuía camadas ocultas com função softmax na saída, 

permitindo a classificação dos côndilos em cinco estágios distintos de degeneração 

estrutural. O sistema apresentou 91% de concordância entre a classificação 

automática do SVA e o consenso clínico obtido por avaliadores experientes, 

indicando alta confiabilidade do modelo. Além disso, as análises integradas 

revelaram correlações significativas entre a morfologia condilar, níveis de dor e 

marcadores biológicos, demonstrando o potencial da integração multimodal de 

dados. 
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No estudo conduzido por Talaat et al. (2023), uma base composta por 2.737 

imagens de TCFC provenientes de 943 pacientes foi utilizada para o treinamento e 

validação de um modelo de rede neural convolucional com detecção de objetos 

(object detection), empregando regressão para localizar sinais patológicos. Como 

referência diagnóstica (gold standard), dois avaliadores experientes aplicaram os 

critérios DC/TMD em 350 imagens de um conjunto de teste independente. O 

consenso entre os avaliadores foi utilizado para comparação com os resultados do 

modelo de IA e com o diagnóstico fornecido por um radiologista humano. 

Os resultados demonstraram que a IA apresentou maior concordância com o 

padrão de referência em relação ao radiologista, com coeficiente Kappa de Cohen 

de 0,815 (versus 0,709). Essa diferença foi estatisticamente significativa para os 

sinais patológicos em conjunto (p = 0,0079) e, em especial, para cistos subcorticais 

(p = 0,0214). Para outros achados, como achatamento, erosão e osteófitos, não 

houve diferença estatística relevante. A IA também apresentou elevados valores de 

sensibilidade e especificidade, variando entre 86% e 95% e 88% e 93%, 

respectivamente, dependendo do tipo de alteração avaliada. 

Por fim, o estudo de Eşer et al. (2023) utilizou 2.000 cortes sagitais de TCFC de 

290 pacientes, empregando a arquitetura YOLOv5, reconhecida por sua alta 

velocidade e precisão na detecção de imagens. O modelo foi configurado para 

realizar simultaneamente a segmentação da região da ATM e a classificação da 

condição óssea condilar em quatro categorias: normal, erosão, osteófitos e 

achatamento. 

O modelo alcançou excelente desempenho na segmentação, com sensibilidade 

de 100%, precisão de 99,53%, F1-score de 99,76% e AUC de 0,9723, evidenciando 

praticamente ausência de falsos positivos e negativos. Na classificação das 

condições ósseas, o desempenho geral foi satisfatório, com acurácia média de 

86,86%, apresentando melhores resultados para os grupos “normal” (88%) e 

“erosão” (95%), e desempenho ligeiramente inferior para “achatamento” (70%). A 

sensibilidade geral de 100% confirmou a capacidade do modelo em detectar 

corretamente todos os casos de osteoartrite, sem ocorrência de falsos negativos. 
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3.6.2 Segmentação de côndilos mandibulares 

No estudo de Orhan et al. (2023), foram analisados 432 exames retrospectivos 

de tomografia computadorizada de feixe cônico (TCFC) provenientes de quatro 

universidades, totalizando 864 côndilos mandibulares. Seis radiologistas 

especialistas em imagem dentomaxilofacial avaliaram, de forma independente e às 

cegas, os exames originais no formato DICOM, classificando cinco tipos de 

alterações ósseas: achatamento, erosão, formação de osteófitos, osteosclerose e 

côndilo bífido. As divergências diagnósticas foram resolvidas em reunião de 

consenso, estabelecendo o diagnóstico de referência (ground truth – GT). 

Paralelamente, o software de inteligência artificial (Diagnocat) foi utilizado para gerar 

modelos tridimensionais (arquivos STL) a partir dos exames de TCFC, os quais 

foram avaliados por dois outros radiologistas com o objetivo de verificar se as 

mesmas alterações ósseas poderiam ser identificadas a partir desses modelos 

tridimensionais. 

Do total de 864 côndilos avaliados, foram observados 372 casos de 

achatamento, 185 de erosão, 70 de osteófitos, 117 de osteosclerose e 15 de côndilo 

bífido. A confiabilidade interobservador entre os radiologistas na leitura dos TCFCs 

originais foi excelente, com coeficientes de correlação intraclasse (ICC) variando de 

0,927 a 0,971 para todas as alterações ósseas. Quando comparado o diagnóstico 

obtido nos modelos STL com o ground truth, os resultados indicaram concordância 

perfeita (ICC = 1,000) para achatamento, formação de osteófitos e côndilo bífido, e 

boa concordância (ICC = 0,782) para erosão. Apenas o diagnóstico de osteosclerose 

apresentou baixa confiabilidade (ICC = 0,000), sugerindo limitação do modelo 

tridimensional gerado pela IA para detectar esse tipo de alteração. 

No estudo de Kim et al. (2021), foram utilizadas 12.800 imagens de TCFC 

obtidas de 25 indivíduos sem alterações patológicas, com o objetivo de desenvolver 

um modelo de segmentação automática da cortical e da medular óssea do côndilo 

mandibular. As imagens foram manualmente anotadas por um radiologista 

bucomaxilofacial experiente, servindo como padrão de referência (gold standard). O 

sistema proposto combinou uma U-Net modificada, responsável pela separação 

entre os ossos cortical e medular, e uma convolutional neural network (CNN) de 

classificação, empregada para identificar se cada corte continha ou não a cabeça do 
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côndilo mandibular. Os resultados demonstraram alto desempenho na segmentação, 

com IoU médio de 0,87 e Hausdorff Distance (HD) de 0,93 mm para o osso medular, 

e IoU de 0,73 e HD de 1,25 mm para o osso cortical. As distribuições de espessura 

determinadas automaticamente apresentaram forte correlação com as medidas 

manuais, principalmente nas regiões de cortical mais delgada, e os mapas de cores 

tridimensionais gerados pelo modelo reproduziram de forma semelhante o padrão 

visual observado nas anotações de referência. O tempo médio de processamento foi 

de 10 a 15 segundos por exame completo em GPU de alto desempenho, 

demonstrando significativa eficiência computacional. 

Já o estudo de Jha et al. (2022) avaliou o desempenho de duas arquiteturas 

distintas de redes neurais tridimensionais na segmentação automática do côndilo 

mandibular. Foram utilizadas 234 imagens de TCFC provenientes de 117 indivíduos, 

coletadas em duas instituições diferentes. As segmentações manuais serviram como 

ground truth para o treinamento e validação dos modelos. Os autores compararam 

uma Basic 3D U-Net, responsável pela segmentação direta do côndilo na imagem 

completa, e uma Cascaded 3D U-Net, composta por duas etapas: uma primeira 

U-Net para detecção grosseira da região de interesse (ROI) e uma segunda, 

aplicada sobre o recorte da ROI, para refinar a segmentação. 

Em testes progressivos com diferentes tamanhos de conjunto de dados, 

observou-se melhora consistente do desempenho com o aumento do número de 

amostras de treinamento. No estágio com maior volume de dados, o coeficiente Dice 

(DSC) foi de aproximadamente 0,922 ± 0,021 para a Basic 3D U-Net e 0,932 ± 0,023 

para a Cascaded 3D U-Net, indicando segmentação mais precisa no modelo em 

cascata. A Hausdorff Distance também foi menor na arquitetura cascaded 

(~2,45–2,60 mm) em comparação à básica (~2,56–3,10 mm). O tempo médio de 

segmentação manual foi de 14,75 ± 3,63 minutos por exame, enquanto o 

processamento automático reduziu esse tempo para 4,13 ± 1,94 minutos com a rede 

básica e 2,31 ± 1,54 minutos com a cascaded, demonstrando expressiva economia 

de tempo e alta eficiência computacional. 

3.6.3 Segmentação da ATM  
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No estudo de Vinayahalingam et al. (2023), foi desenvolvida uma abordagem 

automatizada de três etapas baseada em rede neural tridimensional U-Net para 

análise da articulação temporomandibular (ATM) em exames de tomografia 

computadorizada de feixe cônico (TCFC). O método compreendeu: (1) determinação 

da região de interesse (ROI), com o objetivo de localizar os côndilos mandibulares e 

as fossas glenoides nas imagens; (2) segmentação óssea propriamente dita das 

estruturas localizadas; e (3) classificação da ATM (TMJ classification), distinguindo 

as estruturas segmentadas como pertencentes ou não à articulação. 

O conjunto de dados foi composto por 154 exames de TCFC, previamente 

segmentados manualmente por especialistas, utilizados para o treinamento e 

validação dos modelos. O desempenho do algoritmo foi avaliado pelo índice de 

interseção sobre união (Intersection over Union – IoU), que alcançou 0,955 para os 

côndilos mandibulares e 0,935 para as fossas glenoides, indicando alta precisão na 

segmentação das estruturas. 

Quando comparado ao desempenho de dois observadores humanos realizando 

a segmentação manual dos côndilos, os valores de IoU foram inferiores (0,895 e 

0,928, respectivamente), demonstrando que o modelo de IA obteve desempenho 

igual ou superior ao de especialistas humanos. 

O tempo médio de segmentação também evidenciou expressiva vantagem da 

abordagem automatizada: o algoritmo executou a tarefa em aproximadamente 3,6 ± 

0,9 segundos por exame, enquanto os observadores humanos demandaram, em 

média, 379 ± 205 segundos e 572 ± 257 segundos, respectivamente. Esses 

resultados reforçam a eficiência e a robustez do modelo, capaz de produzir 

segmentações de alta qualidade em tempo significativamente reduzido. 

3.7 Landmarks 

No estudo de Tang et al. (2025), foi proposto um método semissupervisionado 

baseado na arquitetura Mean Teacher, utilizando 192 tomografias computadorizadas 

de feixe cônico (TCFC) tridimensionais de pacientes candidatos à cirurgia 

ortognática. Essa estrutura envolve dois modelos — teacher (professor) e student 

(aluno) —, em que o aluno aprende tanto com dados rotulados quanto com dados 
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não rotulados, supervisionado pelo modelo professor, que gera pseudo-labels. A 

consistência entre ambos, mesmo sob perturbações e ruídos, garante melhor 

generalização e estabilidade de aprendizado. 

Para a segmentação da maxila e da mandíbula, foi utilizada uma rede 

tridimensional V-Net, enquanto a detecção dos landmarks anatômicos foi realizada 

por meio de regressão de heatmaps 3D, que indicam as probabilidades espaciais de 

cada ponto anatômico. O sistema incorporou ainda um módulo de estimação de 

incerteza, permitindo ao modelo professor filtrar apenas os pseudo-labels 

considerados confiáveis. O desempenho obtido foi expressivo, com coeficiente Dice 

de 93,41% para a maxila e 96,89% para a mandíbula. Na detecção de 18 landmarks 

anatômicos, o erro médio foi de 1,908 ± 1,166 mm, desempenho superior ao de um 

modelo puramente supervisionado, evidenciando a eficácia da abordagem 

semissupervisionada para análise crânio-facial. 

No estudo de Deng et al. (2023), foram avaliados 61 conjuntos de TCFC de 

pacientes também indicados para cirurgia ortognática. O sistema desenvolvido, 

denominado SkullEngine, baseia-se em uma rede neural convolucional multiestágio 

voltada à segmentação e detecção automática de marcos anatômicos 

tridimensionais. O modelo executa a segmentação automática da face média, 

mandíbula e arcadas dentárias, além de identificar automaticamente marcos 

anatômicos de referência utilizados no planejamento cirúrgico. Em comparação com 

o padrão-ouro (segmentações e marcações manuais realizadas por especialistas), o 

sistema alcançou coeficiente Dice médio de 96%, com distância média simétrica de 

0,1 mm, demonstrando elevada precisão geométrica. 

A segmentação automática foi considerada clinicamente utilizável sem 

necessidade de ajustes manuais em 98,4% da face média, 70,5% da mandíbula, 

98,4% dos dentes superiores e 93,4% dos dentes inferiores. A diferença média entre 

as posições dos marcos automáticos e manuais foi de 2,3 mm para a face média e 

2,4 mm para a mandíbula, valores dentro dos limites clínicos aceitáveis. O tempo 

médio de segmentação automática foi de 4 minutos por exame, sendo que eventuais 

ajustes manuais adicionaram cerca de 10 minutos, representando expressiva 

redução do tempo total de processamento em comparação com o método manual. 
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O estudo de Park et al. (2024) investigou a detecção automática de landmarks 

cefalométricos tridimensionais em 80 exames de TCFC, divididos em três grupos: 

pacientes sem cirurgia ortognática (n = 39), pós-cirurgia sem hardware (n = 9) e 

pós-cirurgia com hardware (n = 32). Foram identificados 65 landmarks e realizadas 

53 medições cefalométricas (27 lineares, 21 angulares e 5 proporcionais), 

comparando resultados manuais e automáticos. O algoritmo, baseado em uma 

abordagem coarse-to-fine, apresentou erro médio de 1,7 ± 0,1 mm entre os 

landmarks automáticos e manuais, com taxas de detecção de 88,16% (erro ≤ 3 mm) 

e 94,35% (erro ≤ 4 mm), ambas dentro da faixa de tolerância clínica. 

Das 53 medidas avaliadas, apenas seis apresentaram diferenças 

estatisticamente significativas entre os métodos. O grupo pós-cirurgia sem hardware 

apresentou os menores erros, indicando melhor concordância geral. Mesmo em 

casos com placas e parafusos metálicos, o algoritmo manteve desempenho robusto. 

O tempo de marcação foi substancialmente reduzido: a identificação manual de 

landmarks exigia entre 40 e 60 minutos por exame, enquanto o método automático 

executou a tarefa em cerca de 10,9 segundos por volume, evidenciando grande 

eficiência e aplicabilidade clínica. 

No estudo de Tanikawa et al. (2025), foram analisados 185 exames de TCFC de 

adultos japoneses, com o objetivo de desenvolver um modelo de identificação 

automática de landmarks tridimensionais e reconstrução padronizada da morfologia 

craniofacial. As superfícies do crânio e da mandíbula foram reconstruídas a partir 

das imagens TCFC e validadas com 64 landmarks manuais (19 cranianos e 45 

mandibulares) definidos por especialistas. O modelo proposto utilizou a arquitetura 

PointNet++, que processa nuvens de pontos e vetores normais das superfícies, 

aprendendo a predizer as coordenadas dos landmarks. 

Após a marcação automática, aplicou-se uma etapa de homologous mesh fitting, 

ajustando um modelo template às posições preditas para gerar malhas 

tridimensionais padronizadas, úteis para comparações interindividuais. Os erros 

médios de localização dos landmarks foram de 3,07 mm para a maxila e 2,15 mm 

para a mandíbula, com maiores discrepâncias na direção vertical. Após o ajuste de 

malha, os erros foram substancialmente reduzidos (0,80 ± 0,57 mm para a maxila e 

1,45 ± 0,34 mm para a mandíbula), demonstrando o potencial da técnica em refinar 
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a acurácia geométrica. O tempo médio de identificação automática foi de 

aproximadamente 2 segundos, confirmando alto desempenho e aplicabilidade 

prática da abordagem. 

No estudo de Chung et al. (2022), foram analisados 30 indivíduos para comparar 

medições obtidas em três tipos de imagens: cefalogramas convencionais, 

cefalogramas reconstruídos de TCFC (software OnDemand 3D) e cefalogramas 

reconstruídos de TCFC (software Invivo5). O programa WebCeph foi utilizado para 

marcação automática de 17 landmarks e cálculo de 11 medidas cefalométricas 

(distâncias e ângulos). Não foram observadas diferenças estatisticamente 

significativas entre os três métodos, e as pequenas variações encontradas — como 

na medida upper lip–E line — permaneceram dentro de limites clínicos aceitáveis, 

confirmando a equivalência diagnóstica entre radiografias convencionais e 

reconstruções TCFC processadas por IA. 

Em outro estudo de Chung et al. (2024), com 16 participantes, foram 

comparadas radiografias cefalométricas convencionais, imagens reconstruídas de 

TCFC padrão e TCFC de baixa dose processadas por IA. As médias dos parâmetros 

angulares (SNA, SNB, ANB, entre outros) foram muito próximas entre os grupos, 

sem diferenças estatísticas (p > 0,05), exceto para a medida linear nasion–menton 

(p < 0,05). Os resultados mostraram que as imagens de baixa dose processadas por 

IA mantêm acurácia diagnóstica e qualidade suficiente para análise cefalométrica, 

com a vantagem de reduzir significativamente a dose de radiação. 

Por fim, o estudo de Chen et al. (2020) utilizou o algoritmo LINKS 

(Learning-based Multi-source Integration Framework for Segmentation) para realizar 

a segmentação automática do osso maxilar e a detecção de landmarks anatômicos 

(Basión, Násion e Espinha Nasal Anterior). A amostra incluiu 60 pacientes (30 com 

canino impactado e 30 controles). O modelo alcançou coeficiente Dice médio de 

0,800 ± 0,029 na segmentação tridimensional e diferença média de cerca de dois 

voxels entre os landmarks automáticos e manuais. A confiabilidade foi altíssima, com 

ICC = 0,994 para segmentação e ICC = 0,999 para detecção de landmarks. O tempo 

de processamento foi de aproximadamente 15 minutos por TCFC em uma CPU 

convencional. 
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3.8 Lesões orais 

No estudo de Mahdavifar et al. (2025), foram analisados 1.134 laudos de 

tomografias computadorizadas de feixe cônico (TCFC) provenientes do banco de 

dados da Shiraz University of Medical Sciences. Três especialistas — um protesista, 

um radiologista bucomaxilofacial e um médico bucomaxilofacial — realizaram a 

rotulagem manual dos exames, classificando-os segundo diferentes níveis de 

severidade clínica, que variavam desde condições críticas com potencial risco à 

vida, como tumores malignos e cistos agressivos, até achados de menor relevância 

clínica ou ausência de alterações significativas. 

Com o objetivo de ampliar a aplicabilidade do modelo, os autores também 

propuseram uma versão binária da classificação, agrupando os casos em duas 

categorias principais: alto risco, que incluía as condições mais graves ou que 

demandavam atenção clínica imediata, e baixo risco, que abrangia os achados de 

menor urgência. 

Para a análise automatizada, foi desenvolvida uma arquitetura híbrida de 

aprendizado profundo, combinando redes neurais convolucionais (Convolutional 

Neural Networks – CNN) e redes recorrentes do tipo Long Short-Term Memory 

(LSTM). Essa abordagem permitiu integrar a capacidade da CNN em extrair 

características espaciais complexas das imagens com a habilidade da LSTM em 

modelar dependências contextuais e temporais entre os dados. O desempenho do 

modelo foi comparado com diferentes algoritmos convencionais de aprendizado de 

máquina, como Support Vector Machine (SVM), Decision Tree (DT), Random Forest 

e Logistic Regression. 

Os resultados demonstraram superioridade consistente do modelo CNN–LSTM 

em todas as métricas avaliadas, incluindo acurácia, precisão, sensibilidade (recall) e 

F1-score. Na classificação em quatro níveis de severidade, o modelo alcançou 

acurácia média de aproximadamente 97,3%, enquanto na tarefa de classificação 

binária obteve valores iguais ou superiores a 95% para todas as métricas. Além 

disso, a análise da área sob a curva ROC (ROC–AUC) confirmou a alta capacidade 

discriminativa do sistema, evidenciando excelente sensibilidade e especificidade na 

diferenciação entre casos de alto e baixo risco. 
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3.9 Marcadores radiográficos 

No estudo de Alsomali et al. (2022), foram utilizados 34 conjuntos de dados de 

tomografia computadorizada de feixe cônico (TCFC) de pacientes submetidos a 

exames com o uso de estênceis radiográficos contendo marcadores de guta-percha 

(GP), empregados no planejamento de implantes dentários. O conjunto total de 

imagens axiais provenientes desses casos compreendeu 16.272 fatias, utilizadas 

para o treinamento e validação do modelo. 

O sistema proposto baseou-se na arquitetura Mask R-CNN, uma rede neural 

convolucional profunda amplamente reconhecida por sua capacidade de realizar 

detecção e segmentação precisa de objetos em imagens médicas e não médicas. O 

desempenho do modelo foi avaliado em um conjunto de teste independente, 

composto por quatro casos clínicos, totalizando 193 imagens contendo marcadores 

GP e 2.284 imagens sem marcadores. 

Os resultados demonstraram uma taxa de verdadeiros positivos de 83%, 

indicando que o modelo foi capaz de identificar corretamente a maioria dos 

marcadores presentes nas imagens. A taxa de falsos positivos foi relativamente 

baixa, correspondendo a 2,8% quando consideradas todas as fatias sem marcador 

como potenciais fontes de erro. Por outro lado, observou-se que 17% dos 

marcadores reais não foram detectados (falsos negativos), representando os casos 

em que o algoritmo não reconheceu corretamente a presença do marcador. 

3.10 Segmentação das vias aéreas faríngeas 

No estudo de Sin et al. (2021), foram incluídas retrospectivamente 306 imagens 

de tomografia computadorizada de feixe cônico (TCFC) contendo a via aérea 

faríngea, com o objetivo de avaliar a segmentação automática utilizando um 

algoritmo baseado em Convolutional Neural Network (CNN). A segmentação 

manual, realizada com o software semiautomático ITK-SNAP, serviu como referência 

(padrão-ouro). A arquitetura aplicada foi baseada em U-Net, um modelo do tipo 

encoder–decoder amplamente utilizado em segmentação médica, no qual o caminho 

encoder realiza o downsampling para capturar o contexto global, enquanto o 

decoder realiza o upsampling para restaurar os detalhes espaciais. Os resultados 
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demonstraram excelente desempenho do modelo: o volume médio da via aérea 

estimado manualmente foi de 18,08 cm³, enquanto a IA estimou 17,32 cm³. O 

coeficiente Dice Similarity Coefficient (DSC) atingiu 0,919 e o Intersection over Union 

(IoU) ponderado foi de 0,993, evidenciando alta precisão da segmentação 

automática. A reprodutibilidade entre as medições humanas e automáticas também 

foi elevada, com coeficiente de correlação intraclasse (ICC) variando entre 0,985 e 

0,986. 

No estudo de Orhan et al. (2022), foram analisadas imagens de 200 pacientes — 

100 com apneia obstrutiva do sono (Obstructive Sleep Apnea, OSA) e 100 controles 

— obtidas em três diferentes aparelhos de TCFC, com resolução isotrópica de 

voxels entre 0,1 e 0,2 mm³. O algoritmo automático (Diagnocat associado a uma 

rede neural convolucional) utilizou uma abordagem coarse-to-fine, composta por 

duas fases: a fase coarse, que processa a imagem inteira com voxel de 

aproximadamente 1 mm para estimativa geral, e a fase fine, que processa patches 

com voxel de cerca de 0,25 mm, utilizando como referência os resultados da fase 

inicial. 

As comparações entre medições manuais, semiautomáticas e automáticas 

incluíram parâmetros como volume total da via aérea, ponto mais estreito e área da 

seção transversal mínima. Não foram observadas diferenças estatisticamente 

significativas entre os métodos em nenhum dos subgrupos de OSA (mínima, leve, 

moderada e grave) ou nos controles. A concordância entre medições foi elevada: 

ICC entre segmentação manual e automática ≈ 0,954; ICC entre Diagnocat e 

automática ≈ 0,956; e ICC entre Diagnocat e manual ≈ 0,972. Nos pacientes sem 

OSA, o volume médio da via aérea foi de aproximadamente 17,95 cm³ (manual) e 

18,50 cm³ (Diagnocat), enquanto, nos pacientes com OSA, a diferença média entre 

as medições automática e manual foi de cerca de 1,36 cm³. 

3.11 Implantes dentários 

No estudo de Elgarba et al. (2023), foi utilizado um conjunto de 280 exames de 

tomografia computadorizada de feixe cônico (TCFC) de maxila e mandíbula de 

pacientes com implantes dentários, incluindo casos com e sem restauração coronal. 

A segmentação de referência (ground truth) foi realizada por especialistas utilizando 
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método semiautomático. A segmentação automática, baseada em Convolutional 

Neural Network (CNN), apresentou tempo médio inferior a 30 segundos — 

aproximadamente 60 vezes mais rápida que o método de referência. O Dice 

Similarity Coefficient (DSC) foi de aproximadamente 0,92 ± 0,02 para implantes sem 

coroa e 0,91 ± 0,03 para implantes com coroa, enquanto o desvio médio das 

superfícies (Root Mean Square – RMS) manteve-se baixo, sendo 0,08 ± 0,09 mm 

para implantes simples e 0,11 ± 0,07 mm para implantes com restauração. 

No estudo de Sakai et al. (2023), foram analisados exames TCFC anonimizados 

de 60 pacientes, a partir dos quais foram extraídas 1.200 imagens da região óssea 

destinada à colocação do implante. Cada imagem foi classificada segundo três 

protocolos de perfuração distintos utilizados na cirurgia: convencional com broca 

tapping, convencional sem broca tapping e undersized. A classificação automática 

foi realizada por meio de uma rede LeNet-5, que obteve acurácia global de 

aproximadamente 93,8%. As sensibilidades variaram entre 85,0% e 97,5%, as 

precisões entre 86,7% e 100%, e os valores de F1-score entre 91,8% e 93,8%. As 

áreas sob a curva Receiver Operating Characteristic (ROC-AUC) foram elevadas 

para todos os protocolos, variando de 98,6% a 99,4%, indicando excelente 

capacidade discriminativa do modelo. 

Em Kurt Bayrakdar et al. (2021), foram incluídas 75 imagens de TCFC, 

totalizando 508 regiões com indicação para implante. As medições manuais de 

altura e espessura óssea foram comparadas às avaliações automatizadas realizadas 

pelo sistema Diagnocat. Não foram observadas diferenças estatisticamente 

significativas na altura óssea em regiões específicas da maxila e mandíbula (p > 

0,05), enquanto a espessura óssea apresentou diferenças significativas em todas as 

regiões avaliadas (p < 0,001). A detecção de estruturas anatômicas apresentou 

taxas de acerto variando de 66,4% (seios/fossas) a 95,3% (regiões com dentes 

ausentes), com 72,2% de acerto na identificação dos canais mandibulares. 

O estudo de Roongruangsilp et al. (2025) analisou 332 imagens de posições de 

implante derivadas de 184 exames de TCFC, processadas por quatro softwares 

distintos. A anotação de referência foi realizada por um implantologista experiente, 

que definiu bounding boxes para cada local de implante. A comparação entre os 

modelos Faster R-CNN e YOLOv7 demonstrou que, em imagens seccionais obtidas 
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com o DentiPlan Pro 3.7, o YOLOv7 apresentou taxa de detecção mais alta (≈ 

93,75%) em relação ao Faster R-CNN (≈ 59,38%), porém com menor precisão 

(maior número de falsos positivos), enquanto a acurácia geral foi superior para o 

Faster R-CNN (≈ 84,21% vs. 46,67%). O desempenho dos modelos variou conforme 

o software de visualização, refletindo diferenças na renderização, contraste e 

algoritmos proprietários, embora não tenham sido observadas diferenças 

estatisticamente significativas entre os modelos (p > 0,05) nas análises globais. 

3.12 Múltiplas segmentações  

No estudo de Nogueira-Reis et al. (2024), foram avaliados 30 exames de 

tomografia computadorizada de feixe cônico (TCFC) contendo múltiplas estruturas 

anatômicas. A segmentação automatizada integrada, realizada por meio de um 

pipeline composto por redes neurais convolucionais (CNNs) previamente validadas, 

apresentou tempo médio de 1,1 minuto, enquanto a abordagem semiautomatizada, 

baseada em threshold e refinamento manual, demandou aproximadamente 48,4 

minutos. A similaridade em relação ao referencial refinado foi de 99,6% para a 

abordagem automática e 88,3% para a semiautomatizada, evidenciando alta 

precisão e consistência da segmentação automática. Pequenas subsegmentações e 

sobre-segmentações foram observadas em regiões complexas, como espessamento 

mucoso, raízes dentárias e canais mandibulares. Em outro estudo conduzido por 

Nogueira-Reis et al. (2023), envolvendo 40 exames de TCFC, a avaliação qualitativa 

realizada por radiologistas indicou que 85% dos exames receberam notas entre 7 e 

10 quanto à qualidade da segmentação. O tempo médio de processamento 

automático foi de 1,7 minuto e o coeficiente Dice Similarity Coefficient (DSC) foi de 

aproximadamente 99,3% em relação às segmentações refinadas manualmente, 

demonstrando excelente concordância entre os avaliadores. 

Liu et al. (2024) empregaram 451 exames de TCFC provenientes de diferentes 

instituições e fabricantes, utilizando redes especializadas para segmentação óssea, 

segmentação individualizada de dentes e identificação do canal mandibular. O 

desempenho foi elevado, com DSC médio de aproximadamente 96,5% para dentes, 

95,4% para osso alveolar, 93,6% para seio maxilar e 94,8% para o canal mandibular, 

além de mean Intersection over Union (mIoU) de 88,4% para dentes. O 

pré-processamento adaptativo melhorou significativamente os resultados em 
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comparação ao método genérico, e o modelo superou abordagens concorrentes, 

mantendo baixos valores de erro de superfície e de distância de Hausdorff. 

No estudo de Wang et al. (2021), realizado com 30 exames de TCFC de 

pacientes ortodônticos, a rede Multi-Scale Dense Network (MS-D) alcançou DSC 

médio de 0,934 ± 0,019 para mandíbula e 0,945 ± 0,021 para dentes, com desvio 

médio absoluto de superfície (Mean Absolute Deviation – MAD) de 0,390 ± 0,093 

mm e 0,204 ± 0,061 mm, respectivamente. O tempo médio de segmentação 

automática foi de 25 segundos, em contraste com as 5 horas necessárias para a 

segmentação manual, demonstrando expressivo ganho em eficiência sem perda de 

acurácia, mesmo na segmentação multiclasse em comparação à binária. 

Em Huang et al. (2024), o modelo Bayesian U-Net com Monte Carlo Dropout foi 

aplicado a volumes de TCFC de 20 pacientes, segmentando múltiplas classes, 

incluindo lesões periapicais. O uso de aprendizado ativo (Active Learning – AL), com 

a função Bayesian Active Learning by Disagreement (BALD), aumentou 

significativamente a sensibilidade na detecção de lesões para 84%, em comparação 

a 32% sem AL (p < 0,0001). O coeficiente Dice médio após AL foi de 0,703 ± 0,166 

para todas as classes, enquanto, especificamente para a classe “lesão”, os métodos 

BALD e Maximum Entropy (ME) alcançaram valores próximos a 0,504 e 0,501, 

respectivamente, evidenciando melhoria substancial no desempenho da IA quando 

orientada por seleção ativa de amostras. 

3.13 Comparação entre modelos de inteligência artificial 

Fernandes et al. (2025) avaliaram a aplicação de modelos de inteligência 

artificial (IA) para classificação em imagens radiográficas derivadas de tomografias 

computadorizadas de feixe cônico (TCFC), totalizando 3.600 imagens distribuídas 

entre quatro diferentes tarefas. As tarefas incluíram: classificação da aparência dos 

seios maxilares, análise do formato de incisivos maxilares e mandibulares, detecção 

da presença do forame mentual em seções pré-molares mandibulares e avaliação 

da relação posicional do terceiro molar mandibular com o canal do nervo alveolar 

inferior (Inferior Alveolar Nerve Canal – IANC). 
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Foram comparadas três arquiteturas de aprendizado profundo: uma 

Convolutional Neural Network (CNN) clássica, um Vision Transformer (ViT) e um 

gated Multi-Layer Perceptron (gMLP). A CNN apresentou acurácia variando 

aproximadamente entre 0,71 e 0,99, enquanto o ViT alcançou desempenho 

semelhante, entre 0,74 e 0,98, mostrando vantagem marginal em algumas tarefas — 

especialmente na detecção de contato entre o terceiro molar e o IANC —, com área 

sob a curva (AUC) de aproximadamente 0,80–0,83, em comparação com 0,77–0,79 

da CNN. O gMLP apresentou desempenho ligeiramente inferior, com acurácia 

variando entre 0,65 e 0,98. 

As métricas de discriminação, incluindo as curvas Receiver Operating 

Characteristic (ROC) e precision-recall, foram elevadas para a maioria das tarefas: 

CNN (~0,77–1,00), ViT (~0,80–1,00) e gMLP (~0,73–1,00). O reconhecimento de 

incisivos foi realizado com alto desempenho por todos os modelos, sendo o ViT 

marginalmente superior em algumas métricas de AUC. Em contraste, a tarefa de 

determinar o contato entre o terceiro molar mandibular e o canal do nervo alveolar 

inferior apresentou os menores valores de desempenho geral, refletindo a maior 

complexidade dessa análise e a dificuldade dos modelos em captar detalhes 

anatômicos sutis necessários para essa avaliação. 
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4. DISCUSSÃO 

Os resultados do presente estudo reforçam a tendência crescente observada na 

literatura quanto à eficácia das abordagens baseadas em inteligência artificial (IA) 

para a segmentação automática de imagens obtidas por tomografia 

computadorizada de feixe cônico (TCFC). Protocolos que combinam arquiteturas 

tridimensionais, como a 3D U-Net, com etapas de refinamento manual, têm 

demonstrado alta precisão na delimitação da maxila e de defeitos ósseos (WANG et 

al., 2021), confirmando o potencial dessas ferramentas para aplicações clínicas em 

larga escala. A identificação de hipoplasia significativa no lado da fissura, 

especialmente nas regiões da abertura piriforme e da crista alveolar, corrobora 

achados prévios que apontam a assimetria estrutural como característica marcante 

em pacientes com fissura labiopalatina. Além disso, verificou-se que parâmetros 

morfológicos — como altura, largura e volume do defeito — influenciam diretamente 

a variabilidade anatômica da maxila (MIRANDA et al., 2023), sugerindo que modelos 

tridimensionais automatizados podem fornecer métricas objetivas e padronizadas 

para o diagnóstico e acompanhamento desses casos. 

 

De maneira geral, os estudos revisados evidenciam avanços expressivos no uso 

de IA e aprendizado profundo (deep learning) na análise e segmentação de 

estruturas ósseas da face, como maxila e mandíbula. Esse progresso, associado à 

expressiva redução no tempo de processamento, representa um salto qualitativo 

para a prática clínica, sobretudo em contextos que envolvem grandes volumes de 

dados (XU et al., 2025). O uso de arquiteturas tridimensionais mostra-se 

especialmente vantajoso para estruturas complexas — como seios maxilares, 

côndilos mandibulares e canais mandibulares —, pois permite capturar de forma 

mais eficiente a continuidade espacial e o contexto volumétrico. 

 

Diversos estudos apontam que a aplicação da IA na análise de TCFC pode 

transformar significativamente o fluxo clínico em diferentes especialidades 

odontológicas, incluindo ortodontia, implantodontia, cirurgia bucomaxilofacial e 

periodontia (TANG et al., 2025; FU et al., 2024; AL-ASALI et al., 2024). Ferramentas 

automáticas baseadas em redes convolucionais têm apresentado resultados 

excelentes em tarefas como segmentação de dentes com brackets, caninos 
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impactados, fossas glenoides e seios maxilares, reduzindo o tempo de 

processamento de horas para segundos (AYIDH ALQAHTANI et al., 2023; SWAITY 

et al., 2024; BAYRAKDAR et al., 2024). Essa eficiência reforça o potencial das 

tecnologias para otimizar o planejamento de implantes, cirurgias ortognáticas e 

reconstruções ósseas, além de aprimorar o diagnóstico de defeitos periodontais, 

fraturas e patologias periapicais. 

 

No campo da implantodontia, a IA tem se mostrado eficaz na detecção e 

segmentação de implantes, na localização do canal mandibular e na delimitação de 

áreas edêntulas, promovendo maior segurança cirúrgica e padronização nos 

planejamentos virtuais (KURT BAYRAKDAR et al., 2021; KWAK et al., 2020). 

Modelos de aprendizado profundo vêm apresentando desempenho equivalente ou 

até superior ao de especialistas humanos, com tempos de execução até 60 vezes 

menores (ELGARBA et al., 2023). 

 

Em termos diagnósticos, soluções comerciais como o Diagnocat e o 

DentalSegmentator demonstraram alta sensibilidade e especificidade na detecção 

de lesões periapicais, alterações condilares e lesões de cárie dentária, 

consolidando-se como sistemas de apoio à decisão clínica (ALLIHAIBI et al., 2025; 

ORHAN et al., 2023; EZHOV et al., 2021). Contudo, o desempenho desses modelos 

ainda depende fortemente da qualidade da imagem e da padronização dos 

protocolos de aquisição, reforçando a necessidade de supervisão e validação por 

especialistas (AMASYA et al., 2023). A aplicação da IA também tem se expandido 

para análises morfológicas, cefalométricas e forenses, com modelos híbridos — 

combinando Convolutional Neural Networks (CNNs) e Vision Transformers — 

superando especialistas humanos na classificação da maturação da sutura palatina 

média e na estimativa de idade e sexo por medidas cefalométricas, evidenciando o 

caráter multidisciplinar e crescente da tecnologia (HAMIDI et al., 2024). 

 

Apesar dos avanços, persistem desafios importantes. A generalização dos 

modelos ainda é limitada, pois muitos estudos utilizam dados provenientes de uma 

única instituição ou equipamento de TCFC, com protocolos homogêneos e amostras 

restritas a determinadas faixas etárias ou populações (VINAYAHALINGAM et al., 

2023; MOUFTI et al., 2023). Essa limitação reduz a robustez dos algoritmos diante 
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da variabilidade clínica real, caracterizada por diferenças anatômicas, artefatos 

metálicos, variações de densidade e condições patológicas diversas. Diversas 

pesquisas demonstram queda de desempenho dos modelos em imagens com 

restaurações metálicas, edentulismo ou anatomias atípicas, reforçando a 

necessidade de validações multicêntricas e de bancos de dados mais heterogêneos 

(ELSONBATY et al., 2025; KAZIMIERCZAK et al., 2024). 

 

Outro aspecto relevante é a dependência de refinamentos manuais para atingir 

precisão ideal. Embora as segmentações automáticas sejam altamente confiáveis, 

ajustes ainda se fazem necessários em regiões de borda ou baixo contraste, 

demonstrando que a automação plena ainda não foi alcançada (FERNANDES et al., 

2025; TANG et al., 2025). Modelos baseados em deformação de TCFCs de 

referência também enfrentam limitações em pacientes jovens, devido às variações 

anatômicas associadas ao crescimento. Além disso, diferenças entre imagens 

simuladas e radiografias reais exigem etapas adicionais de pré-processamento, 

como correção de alinhamento e equalização de histograma (REDUWAN et al., 

2024). 

 

A dependência de hardware e recursos computacionais de alta performance 

constitui outra barreira à adoção ampla dessas ferramentas (KWAK et al., 2020; 

YANG et al., 2025). Arquiteturas robustas, como Vision Transformers e modelos 

híbridos tridimensionais, demandam elevado poder de processamento e longos 

tempos de treinamento, o que limita sua implementação em clínicas de pequeno e 

médio porte. Nesse cenário, o desenvolvimento de modelos mais leves e otimizados, 

capazes de manter desempenho satisfatório em dispositivos com menor capacidade 

computacional, surge como uma prioridade emergente. 

 

Embora os resultados atuais sejam altamente promissores, a consolidação da IA 

na odontologia requer esforços voltados à validação multicêntrica, à padronização de 

protocolos e à interoperabilidade entre plataformas. A criação de bancos de dados 

amplos, diversificados e devidamente anotados é essencial para reduzir vieses 

regionais e ampliar a generalização dos algoritmos. Além disso, a adoção clínica 

plena dessas tecnologias depende do treinamento dos profissionais, do 
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desenvolvimento de interfaces intuitivas e da integração com sistemas de 

planejamento e diagnóstico já consolidados. 

 

Por fim, a literatura converge para a compreensão de que a IA deve ser 

encarada como uma ferramenta de suporte, e não como substituta do julgamento 

clínico. A supervisão humana permanece indispensável, sobretudo em casos 

complexos ou com artefatos intensos. Futuras pesquisas devem priorizar o 

aprimoramento das arquiteturas de rede, o uso de aprendizado multimodal e o 

desenvolvimento de algoritmos de pós-processamento mais avançados, de modo a 

ampliar a precisão, a confiabilidade e a aplicabilidade dos modelos em cenários 

clínicos reais. Assim, a inteligência artificial consolida-se como uma aliada 

promissora e cada vez mais indispensável à odontologia digital contemporânea.
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5. CONCLUSÃO 

 
​ A análise dos estudos revisados evidência que a inteligência artificial (IA), 

especialmente por meio de arquiteturas de aprendizado profundo como a 3D U-Net, 

representa um avanço substancial na segmentação automática e na análise 

tridimensional de imagens obtidas por tomografia computadorizada de feixe cônico 

(TCFC), alcançando desempenho comparável ao de especialistas humanos e 

reduzindo significativamente o tempo de processamento. Modelos tridimensionais 

demonstram alta eficácia na caracterização volumétrica de estruturas complexas e 

na identificação de assimetrias, enquanto a integração entre segmentação 

automática e refinamento manual equilibra precisão anatômica e eficiência 

operacional. Apesar de desafios persistentes — como a limitação de bases de dados 

heterogêneas, a necessidade de ajustes manuais e a dependência de hardware de 

alto desempenho —, a IA consolida-se como ferramenta indispensável de apoio à 

decisão clínica, promovendo diagnósticos mais precisos, padronizados e ágeis, e 

reafirmando que a integração entre tecnologia e expertise humana é essencial para 

o futuro da odontologia digital. 
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