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"What we know is a drop; what we ignore is an ocean."
(Isaac Newton)



Resumo
O estudo das propriedades magnéticas em sistemas de muitos corpos continua sendo um
desafio fundamental na Física da Matéria Condensada, sobretudo devido à competição
entre correlações eletrônicas fortes, efeitos quânticos coletivos e restrições impostas pela
geometria espacial. Modelos simplificados, em particular arranjos finitos de spins, são
amplamente utilizados para investigar fenômenos essenciais como interações antiferro-
magnéticas, frustração magnética, formação de singletos e o acoplamento Kondo entre
momentos localizados e itinerantes.

Nesta dissertação analisamos um cluster hexagonal, tipo o do grafeno, composto por seis
sítios, estrutura que preserva simetrias relevantes e permite examinar de forma controlada
a influência de elétrons itinerantes no comportamento de spins localizados. Cada sítio
abriga um momento magnético fixo, enquanto elétrons itinerantes se movimentam pela
rede, possibilitando a investigação direta da competição entre mobilidade eletrônica e
interações de troca.

A descrição teórica é baseada nos hamiltonianos Ising-Kondo e Heisenberg-Kondo, que
incorporam termos de energia cinética, interação magnética entre os spins localizados e
acoplamento Kondo local. A base quântica do modelo é construída por uma representação
binária de estados, e a solução numérica é obtida mediante diagonalização exata e método
de Lanczos. Estas matrizes são grandes e crescem rapidamente em função do número de
elétrons itinerantes, por isso a necessidade do uso de recursos computacionais como o
CENAPAD (Centro Nacional de Processamento de Alto Desempenho), da UNICAMP,
permitindo calcular correlações magnéticas relevantes.

A análise foca nas grandezas D, F e S2, que caracterizam, respectivamente, a correlação
entre spins localizados, a correlação entre spins localizados e itinerantes e o spin total
do sistema. Os resultados mostram que a geometria hexagonal exerce papel crucial
na distribuição das correlações. Interações Kondo intensas promovem a blindagem dos
spins localizados, enquanto o aumento da temperatura tende a suprimir as correlações
magnéticas.

Assim, o cluster hexagonal revela-se uma plataforma eficaz para compreender, de maneira
controlada, a competição entre diferentes mecanismos magnéticos em sistemas correlacio-
nados, constituindo uma base sólida para estudos futuros em outras geometrias e regimes
de interação.

Palavras-chave: Frustração Magnética; Efeito Kondo; cluster de Spins; grafeno.



Abstract
The study of magnetic properties in many-body systems remains a fundamental challenge
in Condensed Matter Physics, mainly due to the competition between strong electronic
correlations, collective quantum effects, and constraints imposed by spatial geometry.
Simplified models, particularly finite spin arrangements, are widely used to investigate
essential phenomena such as antiferromagnetic interactions, magnetic frustration, singlet
formation, and the Kondo coupling between localized and itinerant moments.

In this dissertation, we analyze a hexagonal cluster similar to that found in graphene
composed of six sites, a structure that preserves relevant symmetries and enables a
controlled examination of the influence of itinerant electrons on the behavior of localized
spins. Each site hosts a fixed magnetic moment, while itinerant electrons move through
the lattice, allowing a direct investigation of the competition between electronic mobility
and exchange interactions.

The theoretical description is based on the Ising–Kondo and Heisenberg–Kondo Hamilto-
nians, which incorporate kinetic-energy terms, magnetic interactions between localized
spins, and local Kondo coupling. The quantum basis of the model is constructed using
a binary representation of states, and the numerical solution is obtained through exact
diagonalization and the Lanczos method. These matrices are large and grow rapidly with
the number of itinerant electrons, which motivates the use of high-performance computa-
tional resources such as CENAPAD (the National High-Performance Computing Center)
at UNICAMP, allowing the calculation of the relevant magnetic correlations.

The analysis focuses on the quantities D, F and S2, which characterize, respectively, the
correlation between localized spins, the correlation between localized and itinerant spins,
and the total spin of the system. The results show that the hexagonal geometry plays a
crucial role in shaping the distribution of correlations. Strong Kondo interactions promote
the screening of localized spins, while increasing temperature tends to suppress magnetic
correlations.

Thus, the hexagonal cluster proves to be an effective platform for understanding, in a
controlled manner, the competition between different magnetic mechanisms in correlated
systems, providing a solid foundation for future studies involving other geometries and
interaction regimes.

Keywords: Magnetic Frustration; Kondo Effect; cluster of Spins; Graphene.
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1 Introdução

As propriedades magnéticas da matéria sólida têm origem na escala atômica e
molecular. Nesta escala os elétrons e íons atômicos são os entes físicos fundamentais. Eles
podem ser tratados como unidades (partículas) em uma teoria física que se disponha a
descrever diferentes fenômenos como paramagnetismo, ferromagnetismo, antiferromag-
netismo, etc. Esta teoria deve considerar: a) a capacidade destas unidades interagirem
entre si devido às suas massas, cargas elétricas, momentos angulares, spins e momentos
magnéticos; b) a distância entre as partículas e a disposição espacial (rede cristalina ou
amorfa); c) a quantidade enorme destes constituintes (da ordem de 1023 unidades) e (d)
que as interações características de distâncias tão pequenas (da ordem de 10−9m) devem
obedecer às Leis da Mecânica Quântica.

Infelizmente uma abordagem teórica com o uso destas premissas (método ab initio),
não permite encontrar uma solução exata na maior parte das vezes. Por isso utilizam-
se abordagens simplificadoras que permitem, pelo menos, uma compreensão parcial do
magnetismo dos corpos materiais. Uma destas abordagens é o modelo de spins, método
que consiste em propor um sistema constituído de elétrons em uma configuração espacial
parecida com o sistema físico real que se deseja investigar, e com interações simplificadas
entre os elétrons (1).

Como exemplo desta abordagem teórica simplificada, considere o grafeno, alótropo
do elemento químico carbono: ele é uma rede cristalina bidimensional do tipo honeycomb,
que apresenta alta condutividade elétrica e propriedades magnéticas com possíveis aplica-
ções tecnológicas (2). Podemos imaginar como ponto de partida para o estudo teórico um
modelo simplificado constituído por um cluster com seis átomos dispostos na forma de
um hexágono - figura 1.

Figura 1 – (a) Ilustração do grafeno - Fonte: (autor). (b) Ilustração do cluster hexagonal
- Fonte: (autor)

Nesta dissertação analisamos um cluster de seis átomos, em posições fixas deno-
minadas de sítios (desconsidera-se a estrutura interna destes átomos). Cada sítio está
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posicionado no vértice de um polígono de formato hexagonal - figura 1. Em cada sítio existe
um elétron fixo e seu spin cria um momento magnético localizado, mas com orientação
espacial livre. Além disso, neste cluster poderão existir elétrons móveis (itinerantes). Cada
elétron itinerante também tem spin e momento magnético. Portanto, o sistema físico
artificial que estudamos é um cluster hexagonal com um elétron fixo em cada vértice e
com uma quantidade de elétrons itinerantes que arbitramos: um, dois ou três elétrons
itinerantes.

As interações entre os elétrons deste cluster podem ser ferromagnética ou antifer-
romagnética. A interação ferromagnética favorece o alinhamento paralelo dos spins dos
elétrons, reforçando o momento magnético total. Já a interação antiferromagnética induz
a um alinhamento antiparalelo dos spins dos elétrons, podendo causar um desequilíbrio ou
competição entre as várias partículas do sistema. Em nosso modelo, assumimos que a inte-
ração entre elétrons fixos pode ser ferromagnética ou antiferromagnética, mas a interação
entre um elétron fixo e um elétron itinerante foi definida apenas como antiferromagnética.

A interação antiferromagnética entre elétrons localizados pode forçar a mudança na
orientação dos spins. Se um dado elétron sofre a influência de outros elétrons vizinhos, pode
haver uma competição entre estas interações, resultando em uma frustração magnética
devido à orientação de seus spins (3). A frustração ocorre quando um momentos magnético
não consegue satisfazer todas as interações de maneira simultânea, devido à geometria da
rede ou às propriedades das interações. Este fenômeno pode impedir que estados quânticos
fiquem bem definidos, causando flutuação nos valores de energia e de spin total do sistema.

A interação antiferromagnética entre elétron localizado e elétron itinerante pode
resultar em spin total zero nesta posição, eliminando a frustração magnética que porventura
era causada neste sítio pelos elétrons nos sítios vizinhos. Esta interação, entre o elétron
fixo e o elétron itinerante no mesmo sítio, é denominada tipo Kondo por se assemelhar ao
Efeito Kondo de impurezas magnéticas em metais não-magnéticos (4, 5). O Efeito Kondo
é um fenômeno que ocorre em sistemas onde momentos magnéticos localizados (como
impurezas magnéticas em metais) interagem com os momentos de spin dos elétrons da
banda de condução do metal, via mecanismos de espalhamento de partículas, podendo
resultar na anulação total do momento magnético da impureza. Esse efeito tem implicações
para as propriedades elétricas e magnéticas do metal em baixas temperaturas.

Foram usados dois tipos de hamiltonianos para modelar este sistema artificial:
hamiltoniano tipo Ising–Kondo e hamiltoniano tipo Heisenberg–Kondo. Este sistema está
com uma temperatura pré-definida e existem parâmetros cujos valores determinam as
intensidades das interações entre spins, e se elas são do tipo ferro ou antiferromagnéticas.
Por isso o modelo permite várias configurações físicas possíveis.

Como a quantidade de estados quânticos do sistema é muito grande, os hamil-
tonianos foram solucionados numericamente usando um código computacional, com o
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auxílio do método de Lanczos, na maior parte das vezes. Foram determinadas correlações
(médias estatísticas no ensemble canônico) entre os spins localizados e itinerantes do
cluster. A correlação total entre os spins localizados (D), a correlação total entre spins
localizados e itinerantes (F ) e o valor esperado do spin total (S2) foram determinadas
para várias configurações diferentes. Nas situações possíveis, cálculos analíticos foram
realizados para validação dos resultados numéricos. A análise dos resultados apresenta a
riqueza de fenômenos causada pela reforço e/ou competição entre frustração magnética
e Efeito Kondo, além da importância da paridade do número de elétrons itinerantes em
determinadas situações.

Esta dissertação apresenta a seguinte estrutura: no capítulo 2 relatamos os objetivos
deste projeto de pesquisa; no capítulo 3 descrevemos conceitos físicos abordados: as
interações magnéticas entre os elétrons fixos e itinerantes, a frustração magnética, o efeito
Kondo e os hamiltonianos de spins utilizados; no capítulo 4 apresentamos a metodologia
utilizada, o programa computacional, as correlações e as definições magnéticas usadas; no
capítulo 5 apresentamos os resultados obtidos; no capítulo 6 apresentamos as conclusões.
Em anexo, abordamos o cálculo, para apenas 2 e 3 elétrons, da interação localizada D

em função da energia, as bibliotecas do Fortran utilizadas no programa computacional,
os equipamentos onde foram executados o programa e o método de Lanczos usado na
diagonalização das matrizes que representam os hamiltonianos junto com sua demonstração.
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2 Objetivos

O objetivo geral deste projeto de pesquisa é estudar as interações ferro e antiferro-
magnéticas em um cluster hexagonal de spins localizados e itinerantes e, consequentemente,
observar como a frustação magnética, o efeito Kondo e a temperatura afetam as correlações
entre os spins deste sistema. Para atingir este objetivo usaremos a Mecânica Estatística
para um sistema físico em banho térmico (ensemble canônico) e determinaremos os seguin-
tes objetivos específicos: (i) a correlação total entre spins localizados (D), (ii) a correlação
total entre spins localizados e itinerantes (F ), (iii) o valor esperado do spin quadrado total
S2, (iv) o comportamento destas grandezas com a variação da intensidade da interação
antiferromagnética entre spins localizados e intinerantes, e (v) o comportamento destas
grandezas com a variação da temperatura.
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3 Teoria

3.1 Propriedades magnéticas intrínsecas da matéria.
Segundo a Mecânica Quântica, elétrons são partículas idênticas indistinguíveis

com spin semi-inteiro (1/2) e por isso são identificados como férmions. Logo a interação
entre elétrons é determinada basicamente por dois fatores: a repulsão eletrostática e pelo
Princípio de Exclusão de Pauli, que impede férmions idênticos de ocuparem o mesmo
estado quântico. Sistemas físicos com mais de uma partícula em geral não apresentam
uma descrição analítica, pois as numerosas interações tornam o problema quase impossível
de ser solucionado. Uma alternativa é tentar compreender as propriedades coletivas das
partículas, como frustração magnética, efeito Kondo, etc. Indicamos como referência o
artigo de Campo et al (6) para revisão sobre comportamento de elétrons em átomos e
moléculas.

O estudo do magnetismo busca compreender as propriedades e as interações magné-
ticas. Materiais que apresentam momentos magnéticos permanentes são ditos magnéticos e
sua ordem, de longo alcance, pode se manifestar espontaneamente devido às interações de
troca. Essas interações podem ser de curto alcance, diretas, ou de longo alcance, indiretas,
como vistas nas págs. 16 a 19 de Nascimento(7).

A depender do tipo de interação e da estrutura do material, podem surgir diferentes
fases magnéticas, tais como:

• Ferromagnetismo: caracterizado pelo alinhamento paralelo dos momentos magné-
ticos.

• Antiferromagnetismo: em que os momentos se alinham antiparalelamente, anu-
lando a magnetização total.

• Paramagnetismo: na ausência de campo externo, os momentos estão desordenados
e a magnetização resultante é nula.

• Diamagnetismo: associado à indução de correntes que se opõem ao campo magné-
tico aplicado.

Em sistemas onde os graus de liberdade das interações magnéticas são incompatíveis
com a estrutura cristalina podem-se originar fases exóticas, como o gelo de spin(8) e o líquido
de spin(9). Nesta dissertação não apresentaremos resultados para fase paramagnética,
diamagnética e estas fases exóticas.
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3.1.1 Frustração magnética

No magnetismo o termo frustração refere-se à incapacidade dos spins de um sistema
de encontrar uma orientação que condiz com os spins vizinhos. Ou seja, o mínimo da
energia não corresponde ao mínimo de cada ligação (10).

A frustração magnética em dado ponto da rede pode ocorrer por duas razões
diferentes: (i) interações ferromagnéticas e antiferromagnéticas simultâneas, que podem
eventualmente competir neste ponto ou (ii) pela topologia da rede, com spins vizinhos
em número ímpar e correlações antiferromagnéticas (11). Cada átomo no vértice de
um cluster hexagonal possui dois vizinhos diretos, no cluster. Pequenas perturbações,
como dopagem com elétrons itinerantes ou a introdução de defeitos, podem modificar
substancialmente o comportamento magnético do sistema, induzindo transições de fase ou
fenômenos correlacionados (12). Vide exemplo de frustração por topologia na figura 2.

3.1.2 Interação antiferromagnética

O princípio de exclusão de Pauli estabelece que dois elétrons não podem ocupar o
mesmo estado quântico, ou seja, não podem ter os mesmos números quânticos. Logo, dois
elétrons suficientemente próximos precisam ter números quânticos do componente z de
spin contrários (13). Em cristais magnéticos iônicos, a interação entre os íons magnéticos
é devida às interações de troca originadas da simetrização das funções de onda (14).

O hamiltoniano efetivo simplificado para interação entre os spins de dois íons
magnéticos vizinhos é dado por:

Ĥ = −JM

∑
⟨i,j⟩

Si · Sj , (1)

sendo que para JM < 0 a energia do estado fundamental acontece quando os spins estão
antiparalelos. Isto é denominado de acoplamento antiferromagnético.

Nesse cenário, a energia é minimizada quando os spins estão antiparalelos. No
entanto, em estruturas como o grafeno, a geometria hexagonal pode impedir o anti-
alinhamento perfeito de todos os pares, levando à frustração magnética quando considera-
mos interações entre primeiros e segundos vizinhos.

Em baixas temperaturas se dois spins sofrerem simultaneamente interações antifer-
romagnéticas ocorre o efeito de superposição. Quando essa superposição se espalha na rede
podem ser gerados singletos, estados de spin zero, ou tripletos, estados de spin um, como
consequência gerar o líquido de spin. Vale notar que um leve aumento de temperatura
pode quebrar este estado de superposições e criar spins que flutuam livremente na rede.
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Figura 2 – frustração magnética

(15)

Figura 3 – singleto

(15)

3.1.3 Efeito Kondo

Esse fenômeno, estudado desde a década de 1930, foi explicado a partir de estudos
teóricos realizados por Jun Kondo em 1964 (4, 5). Ele analisou a condutividade elétrica
em metais não magnéticos, porém dopados com impurezas magnéticas. Kondo investigou a
interação entre os elétrons da banda de condução (itinerantes) com a impureza magnética.
O conjunto impureza e elétrons de condução tem seu spin total zerado e aumenta a
seção de choque em relação a outros elétrons de condução. Portanto, a inserção de
impurezas magnéticas em metais não magnéticos causa aumento da resistência elétrica em
baixas temperaturas. Esse comportamento contrasta com o esperado para metais puros,
onde a resistividade geralmente diminui com a redução da temperatura. O Efeito Kondo
ocorre porque os elétrons itinerantes se acoplam à impureza magnética localizada, de
forma que seus spins tendem a se anular, anulando os momentos magnéticos localizados.
Esse efeito fornece explicações sobre anomalias na resistividade elétrica, calor específico,
suscetibilidade magnética, entre outras propriedades físicas de ligas magnéticas diluídas
em baixas temperaturas (16).

3.2 Hamiltonianos de Ising-Kondo e Heisenberg-Kondo
Nesta dissertação consideramos que cada sítio tem um elétron fixo e comporta no

máximo dois elétrons itinerantes, desde que tenham spins antiparalelos. Admite-se que a
interação entre um spin (elétron) fixo e um spin (elétron) itinerante causa spin total zero,
e denominamos isso de acoplamento Kondo com amplitude JK > 0.

Para representar a energia cinética, que é uma das parcelas do hamiltoniano total,
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adicionamos um termo para indicar o “salto” do elétron de condução. O parâmetro tij é a
quantidade de energia cinética do elétron itinerante para “saltar” entre os sítios vizinhos,
como visto em Bittencourt pág. 34 (10). Na equação 2 apresentamos o termo de energia
cinética no hamiltoniano do “salto”,

Hsalto = −
∑

⟨i,j⟩,σ
tij(c†

iσcjσ + c†
jσciσ) , (2)

onde cjσ (ciσ) destrói o elétron itinerante com spin σ no sítio j (i) e c†
iσ (c†

jσ) cria o elétron
itinerante com spin σ no sítio i (j) com um custo de energia de valor tij . Assim, o resultado
final é o movimento do elétron itinerante do sítio j (i) para o sítio i (j), não há troca
de spin (preservação de σ). Por simplicidade vamos assumir tij = t = 1 constante. Este
termo do hamiltoniano do “salto” é uma soma sobre todos os processos em que o elétron
de condução “salta” entre sítios vizinhos i e j.

A interação entre o spin (elétron) localizado no sítio i e um spin (elétron) itinerante
no mesmo sítio é representado pelo termo hamiltoniano do efeito Kondo, dado por:

HKondo =
∑

i

JKSi · si , (3)

onde JK > 0 representa as interações de troca entre os spins dos elétrons localizados Si e dos
itinerantes si. Este acoplamento é antiferromagnético. O Efeito Kondo pode ser explorado
em sistemas físicos, magneticamente frustrados, onde a dopagem de elétrons reduz os
efeitos de frustração que decorrem das interações geradas pelos momentos localizados,
porque introduz interações de troca adicionais entre o spin itinerante e o spin localizado
(17).

Estes dois termos juntos e acrescidos de um termo para interação entre os spins
(elétrons) localizados resultam no hamiltoniano total do sistema. Para as interações
magnéticas de troca entre os spins localizados foram adotados dois tipos de modelos: um
com forte anisotropia em uma única direção e que denominamos de modelo de Ising-Kondo:

HIK = −t
∑

⟨i,j⟩,σ
(c†

iσcjσ + c†
jσciσ) + JK

∑
i

Si · si − Jz

∑
⟨i,j⟩

Sz
i Sz

j (4)

e outro tridimensional, que denominamos de modelo de Heisenberg-Kondo:

HHK = −t
∑

⟨i,j⟩,σ
(c†

iσcjσ + c†
jσciσ)+JK

∑
i

Si · si −Jz

∑
⟨i,j⟩

Sz
i Sz

j −Jxy

∑
⟨i,j⟩

(Sx
i Sx

j +Sy
i Sy

j ) , (5)

no primeiro termo temos c†
iσ, c†

jσ são operadores de criação e ciσ, cjσ são operadores de
destruição, com orientação σ, onde i e j estão em sítios próximos. A energia cinética do
termo de Hopping, "salto", tij é simplificado pelo termo t.

No segundo termo temos o acoplamento Kondo, relacionando os spins itinerantes
com os localizados em um mesmo sítio. O acoplamento é antiferromagnético, pois temos
JK > 0.
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O terceiro termo é interação magnética entre os momentos localizados, no caso de
Ising-Kondo é unidimensional e no de Heisenberg-Kondo é tridimensional (divididos em
dois termos, onde definimos JM = Jz + Jxy) (18).

Devido ao princípio de minimização da energia, o segundo termo nos hamiltonianos
dos modelos adotados tem que ser antiferromagnético. Esse acoplamento gera uma nuvem
eletrônica (nuvem Kondo) em torno do spin localizado, ocasionando uma blindagem
magnética nesse spin (19).

3.3 Fenômenos magnéticos não usuais.
Os fenômenos magnéticos são bastante variados, e não temos a pretensão que

os modelos simplificados usados nesta dissertação sejam capazes de reproduzir todos
eles. Discutimos a seguir dois fenômenos que são citados na literatura: o Efeito RKKY
e o Isolante de Mott. O detalhamento de tais conceitos não faz parte do escopo dessa
dissertação e para maiores detalhes consultem a bibliografia citada.

O Efeito RKKY (Ruderman-Kittel-Kasuya-Yosida) é uma interação indireta entre
momentos magnéticos localizados via elétrons de condução do material hospedeiro. É
um fenômeno dito de longo alcance quando comparado às interações magnéticas diretas
(20, 21).

O Isolante de Mott é um fenômeno da física da matéria condensada no qual um
material que, segundo a teoria de bandas deveria ser um condutor elétrico, se comporta
como um isolante elétrico devido a fortes interações eletrônicas. Na teoria de bandas
tradicional, se uma banda eletrônica estiver parcialmente preenchida, o material deve
conduzir eletricidade. No entanto, em alguns materiais, como no grafeno bicamada torcido,
isso não acontece. Eles se tornam isolantes mesmo com bandas parcialmente preenchidas.
(22)
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4 Metodologia

Propriedades magnéticas do cluster hexagonal são determinadas por correlações
espaciais dos momentos magnéticos, que em nosso caso são equivalentes às correlações entre
os spins dos elétrons. A correlação total entre os momentos localizados e a correlação total
entre os momentos localizados e os momentos itinerantes são afetadas pela densidade de
elétrons itinerantes no cluster. Estas correlações são determinadas por médias estatísticas
em que são usadas as energias dos autoestados quânticos do sistema físico. Por sua vez, o
sistema físico é representado matematicamente por um hamiltoniano de spins escrito em
linguagem de segunda quantização (operadores de criação e destruição de partículas). Nesta
dissertação utilizamos dois hamiltonianos: Ising-Kondo e Heisenberg-Kondo. Qualquer que
seja o hamiltoniano, é preciso escolher uma base de estados quânticos iniciais (vetores
de base), escrever a matriz que representa o hamiltoniano, diagonalizar esta matriz para
determinar autovalores e autovetores (autoestados), e usá-los para determinar as correlações
entre os spins. Este processo é realizado computacionalmente por um código baseado em
um construído para este problema pelo professor Fábio Zimmer - INFI/UFMS.

O programa computacional que utilizamos nesta dissertação realiza simulações de
um cluster hexagonal de seis sítios, com variações de 0 a 3 elétrons itinerantes. A quantidade
de memória computacional cresce exponencialmente com o número de elétrons itinerantes.
Para os casos de um ou dois elétrons itinerantes foi possível executar o programa em
notebook convencional. Para três elétrons itinerantes foi necessário usar um computador
científico de grande porte (CENAPAD/Unicamp).

O método numérico utilizado para representar os momentos magnéticos localizados
é a técnica conhecida como base de Ising, em que cada estado quântico é representado por
uma cadeia (string) de bits, cada bit podendo ter valor 0 ou 1.

Alguns bits representam os estados dos spins dos elétrons localizados e, para estes
bits, vale o código: bit 0 representa o spin localizado down, e bit 1 representa o spin
localizado up. Os outros bits do string representam, em pares, os estados/posição dos
elétrons itinerantes: no sítio que não há elétron itinerante seu respectivo par de bits será
(00), se neste sítio houver um elétron itinerante com spin down seu par será (01) ou se for
spin up seu par será (10) e (11) representa dois elétrons com os spins opostos.

Como nesta dissertação estamos interessados em estudar o cluster hexagonal com
a presença de elétrons itinerantes, geramos uma base de estados quânticos que represente
todos os possíveis estados de spin no sistema. Para o caso do cluster hexagonal (N = 6)
com um elétron itinerante, o número de estados de spin possíveis é 2N × 2N , onde 2N

é o número de estados para os spins localizados se não houvesse o itinerante e 2N a
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degenerescência causada pelo spin do elétron itinerante em cada um dos sítios. Este caso
de cluster hexagonal com um elétron itinerante usa uma string de 18 bits: b17...b1b0 . Os
bits nas posições de 0 a 5 (da direita para a esquerda) representam as configurações dos
spins localizados. Os demais bits são agrupados em pares para representar os possíveis
estados do spin itinerante em cada sítio. Assim a matriz que representa o hamiltoniano,
para um elétron itinerante, tem tamanho da ordem de 2 × 6 × 26. O acréscimo de mais
elétrons itinerantes no cluster hexagonal aumenta rapidamente o tamanho da matriz.

Com os resultados numéricos foram produzidos gráficos para análise do compor-
tamento do sistema em função da intensidade da interação tipo Kondo entre os elétrons
fixos e os elétrons itinerantes. Entre outras conclusões, observa-se que no regime antiferro-
magnético entre os spins localizados, as correlações entre os spins modificam-se conforme
a quantidade de elétrons itinerantes e a intensidade do acoplamento Kondo.

,

Estudamos sistemas magneticamente frustrados com interação Kondo em um cluster
hexagonal, ou seja, seis elétrons localizados e até três elétrons itinerantes. Obtivemos as
correlações entre os momentos localizados D, entre o momento localizado e o momento
itinerante F , e o momento quadrado total S2. Utilizamos os modelos de Ising-Kondo, útil
por sua simplicidade, devido à anisotropia no qual os momentos localizados se alinham
em uma direção, nele consideram-se apenas interações de curto alcance entre os spins. O
outro modelo é o de Heisenberg-Kondo, mais completo, que considera três dimensões e
uma troca isotrópica. Em ambos os casos recorremos ao cálculo numérico computacional.

4.1 Estrutura do programa
No código do programa, para 6 localizados, representamos inicialmente os valores

dos spins dos elétrons através de strings sendo 18 strings as 6 primeiras, da direita para a
esquerda, os spins localizados, sendo 1 para spin up e 0 para spin down, e as outras strings
são representações dos spins itinerantes agrupados em pares, da forma s17s16...s5s4s3s2s1s0.
As partes da string correspondente ao itinerante tomam valores de 1 ou 0, mas possui
significado distinto do localizado. A tabela 1 representa, à frente do estado de base a string
correspondente a cada estado.

Na tabela, para os elétrons localizados, temos 1 spin up, (↑), e 0 spin down, (↓)
sendo 6 spins, um para cada vértice do hexágono, a forma do cluster.

Já para elétrons itinerantes temos 6 sítios cada um comportando até 2 elétrons,
desde que tenham spins opostos, pelo princípio de exclusão de Pauli. Logo temos (10)
spin up (↑) e (01) spin down (↓) e caso exista mais de um elétron itinerante no sítio, (11)
representa os spins opostos (↑↓) ou (↓↑), enquanto (00) é a ausência de spins.
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Estados de base sítio 1 sítio 2 sítio 3 sítio 4 sítio 5 sítio 6 Localizados
|0⟩ 00 00 00 00 00 01 000000
|1⟩ 00 00 00 00 00 10 000000
|2⟩ 00 00 00 00 01 00 000000
:: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: ::

|766⟩ 01 00 00 00 00 00 111111
|767⟩ 10 00 00 00 00 00 111111

Tabela 1 – Tabela dos estados com 1 spin itinerante

Assim o programa associa cada estado a um número binário e este por sua vez é
associado a um número decimal.

Para encontrar o tamanho da base calculamos o número de possíveis estados
localizados 2ns , onde ns é o número de localizados, e a potência 2 vêm do fato de que
eles assumem 2 valores possíveis: 0 ou 1. E por fim calculamos as possibilidades dos spins
itinerantes, ou seja, a combinatória de 2ns posições (2 por cada sítio sendo ns o número
de sítios), pelo número de itinerantes ne: 2ns ∗ C(2ns, ne). Assim para calcular o número
de estados (N) temos a fórmula:

N = 2ns · (2ns)!
(2ns − ne)! · ne!

, (6)

onde ns é a quantidade de elétrons localizados, no nosso caso 6, e ne a quantidade de
elétrons itinerantes. Desse modo o aumento dos estados, aumentando os elétrons itinerantes,
é exponencial, o que dificulta a obtenção de resultados para mais de 2 elétrons itinerantes.

Durante o desenvolvimento desta dissertação, foram utilizadas as ferramentas de
inteligência artificial ChatGPT, desenvolvida pela OpenAI, com o objetivo de auxiliar
na elaboração e revisão de trechos textuais e esclarecimento de conceitos teóricos e
gramaticais relacionados ao tema abordado. Utilizamos a interface disponível em <https:
//chat.openai.com>, versão disponível plus em julho de 2025. Ainda foi utilizada para
organizar as fontes disponíveis a ferramenta GOOGLE NotebookLM disponível em: <https:
//notebooklm.google/>. Acesso em: 31 Agosto de 2025. Todas as contribuições das
ferramentas foram criteriosamente revisadas, adaptadas e validadas pelo autor, de forma
a garantir a originalidade, a correção científica e a conformidade com os objetivos do
trabalho acadêmico.

As simulações computacionais, para 2 e 3 elétrons itinerantes, foram realizadas
utilizando os recursos do Centro Nacional de Processamento de Alto Desempenho (CENA-
PAD), especificamente o CENAPAD-SP, vinculado à Universidade Estadual de Campinas
(UNICAMP).

https://chat.openai.com
https://chat.openai.com
https://notebooklm.google/
https://notebooklm.google/
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4.2 Programa computacional
Para resolver o problema foi desenvolvido um programa em Fortran 90 tendo como

base o algoritmo do professor Dr. Fábio Mallmann Zimmer (professor da UFMS), seguindo
o esquema da figura 4.

Figura 4 – Esquema do algoritmo

A diagonalização do hamiltoniano foi feita através das bibliotecas do Fortran Lapack
e Blas, (abordadas no anexo), pelo método de Lanczos. Onde D é a correlação de elétrons
localizados, F a interação entre os momentos localizados e itinerantes, S2 o spin quadrado
total. Os valores esperados são referentes a D, F, S2 e a energia, que são calculados durante
o processo. A interação Kondo é um laço interno que relaciona os valores esperados.

Foi observado que alterando a ordem das bases podemos obter uma matriz bloco
diagonal, facilitando os cálculos de autovalores e autovetores que representam as interações
e os autoestados respectivamente.

Os gráficos apresentados no corpo da dissertação, salvo indicação em contrário,
foram plotados no LibreOffice versão 25.2.5.2 (X86_64).
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4.3 Correlações das grandezas físicas
Para os cálculos a seguir consideramos o valor esperado de um observável A, dado

por (19):
⟨A⟩ = 1

Z
· Tr(Ae−βH) , (7)

sendo Z = Tr(e−βH) e β = 1
kBT

, Tr significa o traço (soma dos elementos da diagonal
da matriz que representa o operador hamiltoniano), T temperatura e kB a constante de
Boltzmann. Os cálculos dos valores esperados são:

Dij = ⟨Si · Sj⟩ , (8)

Fil = ⟨Si · sl⟩ , (9)

onde i = 1, .., ns, j = 1, .., ns , l = 1, .., ne (ns é o número de elétrons fixos e ne é o número
de elétrons itinerantes).

O valor esperado do spin quadrado total é obtido multiplicando:

S2 = (
∑

i

Si +
∑

l

sl)2 , (10)

logo:
⟨S2⟩ = ⟨

∑
i

S2
i ⟩ + ⟨

∑
l

s2
l ⟩ + ⟨2

∑
i,l

Si · sl + 2
∑
i<j

Si · Sj + 2
∑
l<p

sl · sp⟩ , (11)

sendo p = 1, .., ne.

Desconsiderando a interação entre spins itinerantes em sítios diferentes, por ser
considerada de valores muito baixos, temos a expressão:

S2 =
∑
ñs

⟨S2
ñs

⟩ +
∑
ñe

⟨s2
ñe

⟩ + 2(D + F ) , (12)

onde ñs é o contador de elétrons localizados, varia de 1 a ns, e ñe é o contador de elétrons
itinerantes, varia de 1 a ne.

D =
∑
i<j

Dij e F =
∑
i,l

Fil , (13)

no anexo A segue o método de cálculo de D para dois e três spins em função da energia e
temperatura.

Para simplificar os cálculos adotaremos como 1 os valores da constante de Boltzman
e ℏ.
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4.4 Valor de D em função de JM

Para determinar o valor exato de D em função de JM , para o limite de JK

t
no

infinito, recorremos à fórmula (28) e à relação (31). onde as iterações dos spins itinerantes
tendem à zero. Temos que:

S2 =
∑
ñs

⟨S2
ñs

⟩ + 2D , (14)

de onde podemos deduzir que a relação é:

D = 1
2

(
sT (sT + 1) − 3

4 · nr

)
, (15)

onde sT , spin total do sistema, varia de acordo com a interação e a geometria e nr é a
diferença entre o total de spins, no nosso caso 6, e o número de spins itinerantes (23).

Se JM > 0, logo ferromagnético, é possível satisfazer todos os pares simultane-
amente: basta alinhar todos os spins. Temos um estado totalmente polarizado que tem
spin total máximo de sT = nr

2 , logo D = 1
2

(
nr

2 (nr

2 + 1) − 3
4 · nr

)
= nr(nr−1)

8 .

Deste modo após o acoplamento, JK

t
tendendo ao infinito segue que para 0

itinerante temos D = 3, 75. Para 1 itinerante D = 2, 5. Para 2 itinerantes temos D = 1, 5.
Por fim, para 3 itinerantes temos D = 0, 75.

Para a interação antiferromagnética, JM < 0, cada par tenta ser singleto, mas
nem todos podem, devido a restrições quânticas (monogamia do emaranhamento) e/ou
geometria da rede. Deste modo, para os spins resultantes pós acoplamento,JK

t
tendendo ao

infinito, temos o comportamento de acordo com suas frustrações cada qual valendo 1
2 . Ou

seja se o número de spins livres for par sT vai será 0, se for ímpar e cada spin frustrado
valerá 1

2 , como podemos ver na tabela abaixo.

Tabela 2 – Valores de sT por número de itinerantes na interação antiferromagnética

nº de itinerantes sT

0 itinerante 0
1 itinerante 1

2
2 itinerantes 0
3 itinerantes 3

2

4.5 Valor de F
Para JK

t
tendendo ao infinito tendendo ao infinito segue a análise.

Para 0 itinerante o valor de F será sempre zero, pois não existe interação entre
spins localizados e itinerantes.

Para 1 itinerante o valor de F no sítio i, deduzidos da pg. 412 de Lacroix e das
págs. 15 a 17 de Júnior(3, 17);
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Fi ≡ Fi1 = ⟨Si · s1⟩ = ⟨Sx
i sx

1 + Sy
i sy

1 + Sz
i sz

1⟩ . (16)

Fz,i = ⟨Sz
i sz

i ⟩ , (17)

Fxy,i = ⟨Sx
i sx

i + Sy
i sy

i ⟩ , (18)

calculando 18 pelas equações 33 temos:

Sx
i sx

i = 1
4(S+ + S−)(s+ + s−) e Sy

i sy
i = −1

4 (S+ − S−)(s+ − s−) , (19)

Fxy,i = Sx
i · sx

i + Sy
i · sy

i = 1
4(S+ + S−)(s+ + s−) + −1

4 (S+ − S−)(s+ − s−) , (20)

logo
Fxy,i = 1

2(S+s− + S−s+) , (21)

e portanto:
Fi =< Fz,i + Fxy,i > , (22)

aplicamos no singleto-Kondo ↑↓−↓↑√
2 , logo:

Fi = ⟨↑↓ − ↓↑√
2

| Szsz + Sxsx + Sysy |↑↓ − ↓↑√
2

⟩ , (23)

assim, temos três partes:

⟨↑↓ − ↓↑√
2

| Szsz |↑↓ − ↓↑√
2

⟩ = 1√
2

⟨↑↓ − ↓↑√
2

| |− ↑↓
4 + ↓↑

4 ⟩ = 1
2

(−1
4 − 1

4

)
= −1

4 ; (24)

⟨↑↓ − ↓↑√
2

| S+s− |↑↓ − ↓↑√
2

⟩ = 1√
2

⟨↑↓ − ↓↑√
2

| |− ↑↓⟩ = −1
2 ; (25)

⟨↑↓ − ↓↑√
2

| S−s+ |↑↓ − ↓↑√
2

⟩ = 1√
2

⟨↑↓ − ↓↑√
2

| |↓↑⟩ = −1
2 , (26)

somando(24)(25) e (26) temos:

Fi = −1
4 + 1

2(−1
2 + −1

2 ) = −3
4 = −0, 75 . (27)

Assim para 1 itinerante existe uma única interação Fi, logo a soma será -0,75.

Para 2 itinerantes, temos dois valores a serem somados, logo o valor será o dobro
da energia máxima para estabilizar o sistema F = Fi1 + Fi2 = −1, 5.

Para 3 itinerantes, temos três valores a serem somados, logo o valor será o triplo
da energia máxima para estabilizar o sistema F = Fi1 + Fi2 + Fi3 = −2, 25.
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4.6 Valor de S2

De acordo com a equação 28 temos

S2 =
∑
ñs

⟨S2
ñs

⟩ +
∑
ñe

⟨S2
ñe

⟩ + 2(D + F ) , (28)

e assim chegamos na expressão

S2 = 6 ∗ 3
4 + ne ∗ 3

4 + 2(D + F ) . (29)

Utilizando os possíveis valores de D e F , abordados nas seções 4.4 e 4.5, temos as
seguintes tabelas de valores para S2:

Tabela 3 – Valores de S2 por número de itinerantes na interação ferromagnética

nº de itinerantes S2

0 itinerante 12
1 itinerante 8, 75
2 itinerantes 6
3 itinerantes 3, 75

Tabela 4 – Valores de S2 por número de itinerantes na interação antiferromagnética

nº de itinerantes S2

0 itinerante 0
1 itinerante 0, 75
2 itinerantes 0
3 itinerantes 3, 75

Importante ressaltar que os resultados acima são válidos para o caso assintótico
JK → +∞, isto é, a interação antiferromagnética entre spin localizado e spin itinerante
prepondera sobre a interação entre spins localizados, qualquer que seja ela.
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4.7 Definições magnéticas (análise de JM)
Não há relação entre os estados fundamentais do ferromagneto e do antiferromagneto.

O significado disso fica mais claro se considerarmos um modelo de Heisenberg-Kondo:

Se Jxy = 0 e Jz > 0 reduzimos ao modelo de Ising-Kondo (24).

Se |Jz| = |Jxy| temos o modelo de Heisenberg-Kondo isotrópico. Todos os compo-
nentes do spin interagem igualmente.Ver pág. 54 de Troyer(24).

Se |Jz|> |Jxy| a ordem, quando ocorre, é na direção z. Ver na pág. 2 de Schindelin(25).

Se |Jxy| >|Jz| todas as direções estão no plano xy e correlações na direção z são de
curto alcance.Ver na págs. 2-3 de Fornoville(26).

Tomando JM = Jz + Jxy, temos, devido ao sinal, que para JM > 0 interação
ferromagnética e para JM < 0 interação antiferromagnética.

Dado que a matriz hamiltoniana é esparsa, grande e simétrica, utilizou-se o método
de Lanczos visando tridiagonalizar a matriz, facilitando a sua manipulação e posterior
obtenção dos autovalores e autovetores utilizados no escopo do programa. O método de
Lanczos e sua demonstração constam em anexo neste trabalho.
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5 Resultados

Neste capítulo, como já dito anteriormente, apresentamos os resultados numéricos,
com o objetivo de simplificar as informações, adotamos como 1 os valores de ℏ, constante
de Plank, e kB, constante de Boltzmann.

Inicialmente vamos apresentar o resultado para 1 itinerante sem interações de troca,
ou seja Jz = 0 = Jxy. A seguir vamos apresentar os gráficos com interação ferromagnética
do tipo Ising-Kondo para o valor de Jz = 0, 2 e Jxy = 0.

Em sequência apresentaremos, para os valores de JM = 0,45 as correlações D, F e
S2 de 0 a 3 itinerantes.

Prosseguindo iremos abordar as interações de troca antiferromagnéticos, para o
modelo isotrópico de valor JM = -0,4 tanto para os momentos de D, F e S2, como variando
em 1, 2 e 3 elétrons itinerantes.

Para concluir, temos os gráficos da variação de temperatura com 1 elétron itinerante
e efeito Kondo elevado (JK

t
= 300) e baixo (JK

t
=0,01).
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5.1 Sem interação de troca
Dizemos que a interação está sem interação de troca, ou seja, quando Jz = 0 = Jxy,

(JM = 0).

Figura 5 – Dependência das correlações entre spins em função da amplitude JK normali-
zada pela energia cinética t, com parâmetros Jz = 0 = Jxy (autor)

Na figura 5, temos um comportamento final idêntico ao comportamento das corre-
lações ferromagnéticas, visto nos cálculos numéricos das seções 4.4, 4.5 e 4.6. Assim para
valores de JK

t
muito altos temos D = 2, 5, F = −0, 75 e S2 = 8, 75, para um itinerante.
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Figura 6 – Jz = 0 = Jxy zoom da figura 5 nos valores iniciais de JK

t
(autor)

Para Jk próximo a zero, figura 6 o elétron itinerante e os spins locais estão basica-
mente desacoplados, sem correlação, em completo estado de isolante de Mott.

Após um leve aumento do valor de JK

t
formam-se picos que marcam a escala

característica de Kondo, onde o elétron itinerante começa a formar um singleto local e, ao
mesmo tempo, ainda “visita” virtualmente os outros sítios, gerando correlações extras e
flutuações de spin acima do caso livre. A partir de JK

t
= 0, 5 temos o singleto estabelecido,

correlações e flutuações diminuem e se estabilizam em valores assintóticos, descritos acima.

5.2 Tipo Ising-Kondo
Dizemos que a interação é do tipo Ising-Kondo quando Jxy = 0 e Jz > 0.

A interação possui forte anisotropia. No exemplo apresentado a seguir figuras 7 e
8, utilizamos Jz = 0, 2.
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Figura 7 – Jz=0,2 e Jxy=0 Ising-Kondo. Variação das correlações D, F e S2 em função de
JK

t
(autor)

O comportamento para valores de JK

t
altos, figura 7, é idêntico ao caso anterior,

ou seja ferromagnético assumindo valores de D = 2, 5, F = −0, 75 e S2 = 8, 75, para um
itinerante.

Figura 8 – Jz=0,2 e Jxy=0 Ising-Kondo zoom da figura 7 nos valores iniciais (autor)
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Para valores de JK

t
próximos de zero, figura 8, a correlação D inicia sem interação

de troca, funcionando como se não houvesse itinerantes no sistema. Inicialmente o efeito
RKKY compete com o efeito Kondo, mas devido às energias do modelo Ising-Kondo a
correlação alcança o equilíbrio tendendo ao acoplamento. Já para a correlação F temos, para
JK

t
próximo a zero, o elétron itinerante e os spins locais estão basicamente desacoplados.

Após um leve aumento do valor de
JK

t

forma-se um pico negativo que marca a escala característica de Kondo.

Como vimos a diferença essencial entre o comportamento sem interação de troca
e o modelo de Ising-Kondo se concentra nos valores iniciais, como veremos a seguir
esse comportamento dos valores iniciais em Ising-Kondo será o mesmo para o sistema
ferromagnético Heisenberg-Kondo.

5.3 Tipo Heisenberg-Kondo ferromanético
Temos uma interação Heisenberg-Kondo ferromagnético quando JM > 0, ou seja a

soma Jz + Jxy > 0. No exemplo utilizamos Jz = 0, 25 e Jxy = 0, 2. Os valores abaixo, para
altos valores de JK

t
são calculados nas seções 4.4, 4.5 e 4.6. Portanto, apresentarei apenas

os valores correspondentes.

Figura 9 – As curvas representam a variação da correlação D de zero à três spins para os
valores Jz=0,25 e Jxy=0,2 em função de JK

t
, logo uma interação Heisenberg-

Kondo na direção horizontal. (autor)
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Para valores altos de JK

t
, figura 9, temos uma correlação ferromagnética de onde,

pela seção 4.4 obtemos os valores de D para zero itinerantes 3,75, um itinerante 2,5, dois
itinerantes 1,5 e para três itinerantes 0,75.

Figura 10 – Jz=0,25 e Jxy=0,2 Heisenberg-Kondo de direção horizontal. Zoom da figura 9,
nos valores iniciais de JK

t
(autor)

Para valores de JK

t
próximos de zero, figura 10, temos os seis elétrons localizados,

sem influência dos elétrons itinerantes obtendo assim o valor de 3,75. Após o valor JK

t
= 0, 5

um decaimento à medida que os elétrons vão se acoplando, esses decaimentos são mais
intensos à medida que temos mais elétrons itinerantes.
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Figura 11 – Variação da correlação F com os valores Jz=0,25 e Jxy=0,2 Heisenberg-Kondo
na direção horizontal (autor)

Para valores altos de JK

t
, figura 11, temos, pela seção 4.5, os valores de F para zero

itinerantes 0, um itinerante -0,75, dois itinerantes -1,5 e para três itinerantes -2,25.

Figura 12 – Jz=0,25 e Jxy=0,2 direção horizontal. Zoom da figura 11, nos valores iniciais
de JK

t
(autor)



Capítulo 5. Resultados 36

Inicialmente, para JK

t
próximo de zero, figura 12, não existem interações entre

spins localizados e itinerantes. Com 1, 2 e 3 elétrons itinerantes, para JK

t
próximo de zero,

temos uma forte queda devido à competição com as interações RKKY e Kondo, pois aqui
os elétrons “visitam” virtualmente vários sítios antes de se fixar em singletos, gerando uma
correlação momentaneamente mais negativa do que no regime de forte acoplamento, de
onde temos uma sobressaturação. Após esse instante o sistema se estabiliza, o que significa
que os elétrons itinerantes se equilibram em um estado de estabilidade.

Figura 13 – Variação da correlação S2 em função dos valores Jz = 0, 25 e Jxy=0,2, ou
seja Heisenberg-Kondo na direção horizontal e do valor de JK

t
(autor)

Para JK

t
elevado, figura 13, S2 é dado pelos valores da tabela 3. Ou seja 0 itinerante

S2 = 12, 1 itinerante S2 = 8, 75, 2 itinerantes S2 = 6 e 3 itinerantes S2 = 3, 75.
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Figura 14 – Jz = 0, 25 e Jxy = 0, 2 Heisenberg-Kondo na direção horizontal. Zoom da
figura 13 para valores iniciais de JK

t
(autor)

Para correlação S2, com JK próximo do zero, figura 14, temos o valor de F = 0,
logo pela fórmula 28 deduzimos os valores de 12 para zero itinerante, 12,75 para um
itinerante, 13,5 para dois itinerantes e 14,25 para três itinerantes.

Observando o comportamento das curvas podemos deduzir que tanto o modelo de
Ising-Kondo como o modelo de Heisenberg-Kondo, no caso ferromagnético, se comportam
de forma idêntica nos valores extremos, ou seja JK

t
tendendo à zero e tendendo ao infinito.

5.4 Tipo Heisenberg-Kondo antiferromagnético
Uma interação Heisenberg-Kondo é antiferromagnética quando Jz + Jxy < 0, ou

seja JM < 0. Nesta seção apenas apresentamos um modelo com forte isotropia. Os valores
das correlações abaixo, para altos valores de JK

t
são calculados nas seções 4.4, 4.5 e 4.6.

Portanto apresentam apenas os valores correspondentes.
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Figura 15 – Jz=-0,2 = Jxy Heisenberg-Kondo isotrópico, com um elétron itinerante. Cor-
relações D, F e S2 variando em função do efeito Kondo dividido pela energia
cinética do movimento dos elétrons de condução. (autor)

Na figura 15 observa-se quando o acoplamento acontece, ou seja, elétron itinerante
blinda o elétron localizado. No caso de apenas um itinerante, com interação antiferromag-
nética, temos os valores D = −1, 5, F = −0, 75 e S2 = 0, 75.
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Figura 16 – Jz=-0,2 = Jxy Heisenberg-Kondo isotrópico. Zoom da figura 15 para os valores
iniciais de JK

t
(autor)

As curvas de D e F são espelhados em torno de um valor de intensidade de -1,25,
enquanto S2 é constante, como na figura 16. Com valores de JK

t
baixos D e F estão em

estado de isolante de Mott, sem interferência dos elétrons itinerantes, logo com o valor de
D = −2, 25 e F = 0.

À medida que aumenta o valor de JK

t
, D e F se aproximam e temos uma concorrência

entre os efeitos Kondo e RKKY, até por fim termos uma sobressaturação e o sistema se
estabilizar.
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Figura 17 – Jz=-0,2 = Jxy Heisenberg-Kondo isotrópico, com dois elétrons itinerantes.
Correlações D, F e S2 variando em função do efeito Kondo dividido pela
energia cinética do movimento dos elétrons de condução (autor)

Na figura 17 temos análise semelhante ao caso da figura 15, para dois itinerantes
com interações em estado antiferromagnético. Obtém-se os valores D = −1, 5, F = −1, 5
e S2 = 0.
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Figura 18 – Jz=-0,2 = Jxy Heisenberg-Kondo isotrópico. Zoom da figura 17 para os valores
iniciais de JK

t
(autor)

Para valores de JK

t
até 0,5 as curvas se comportam como se não houvesse itinerante,

como visto na figura 18.

À medida que aumenta o valor de JK

t
, D e F se aproximam, por influência da

concorrência entre o efeito Kondo e o RKKY. Próximo a JK

t
= 2, existe uma sobressaturação

e o sistema se estabiliza, devido ao acoplamento dos elétrons itinerantes.
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Figura 19 – Jz=-0,2 = Jxy Heisenberg-Kondo isotrópico, com três elétrons itinerantes.
Correlações D, F e S2 variando em função do efeito Kondo dividido pela
energia cinética do movimento dos elétrons de condução (autor)

Na figura 19 temos o acomplamento para três itinerantes com interações em estado
antiferromagnético. Obtém-se os valores D = 0, 75, F = −2, 25 e S2 = 3, 75.
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Figura 20 – Jz=-0,2 = Jxy Heisenberg-Kondo isotrópico. Zoom da figura 19 para os valores
iniciais de JK

t
(autor)

Para valores de JK

t
até 0,5 as curvas se comportam como se não houvesse itinerante,

como visto na figura 20.

Para JK

t
há um pequeno predomínio da correlação D, negativa. Já spins locais e

itinerante flutuam sem correlacionar.

À medida que aumenta o valor de JK

t
, D e F se aproximam até se oscularem.

Próximo a 1,25 existe um sobressaturação e a interação RKKY se torna elevada até atingir
um pico próximo do valor 1,5. Então o sistema se estabiliza, devido ao acoplamento dos
elétrons itinerantes.

As curvas se comportam de forma parecida, mas com intensidades distintas para
um, dois ou três itinerantes. podemos ver que a interação antiferromagnética se comporta
com os valores esperados deduzidos dos cálculos de D, F e S2 visto nos capítulos anteriores.
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Figura 21 – Correlação D, para um, dois e três itinerantes com valores Jz=-0,2 = Jxy, ou
seja Heisenberg-Kondo isotrópico (autor)

Quando o acoplamento acontece,figura 21, em estado antiferromagnético, temos
para JK

t
elevado, os valores de D são de acordo com a fórmula (15) e pela tabela 2.

Assim, seguindo o cálculo teremos para zero itinerante D = −2, 25, para um
itinerante D = −1, 5, para dois itinerantes D = −1, 5 e para três itinerantes D = 0, 75.
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Figura 22 – Correlação D, para um, dois e três itinerantes com valores Jz=-0,2 = Jxy, ou
seja Heisenberg-Kondo isotrópico. Zoom da figura 21 nos valores iniciais de
JK

t
(autor)

Pela figura 22, temos que para valores pequenos de JK

t
os elétrons itinerantes

flutuam sem qualquer correlação, em isolante de Mott.

Após JK

t
= 0, 5 a energia de ligação antiferromagnética do efeito Kondo começa

a quebrar ativamente o alinhamento antiferromagnético entre spins locais. As “visitas
virtuais” do itinerante ampliam momentaneamente a fragilidade do ordenamento antes
da consolidação do singleto (interação RKKY). Por fim cada itinerante emparelha-se
firmemente a um spin local, removendo-o das flutuações.

Para 3 itinerantes as oscilações são de magnitudes muito maiores e a sobressaturação
forma um platô, por volta de JK

t
= 1, 5 ela se dissipa com o acoplamento Kondo.
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Figura 23 – Correlação F , para um, dois e três itinerantes com valores Jz=-0,2 = Jxy, ou
seja Heisenberg-Kondo isotrópico (autor)

Quando o equilíbrio acontece,figura 23, em estado antiferromagnético, temos para
JK

t
elevado, os valores de F são de acordo com a fórmula dos cálculos da seção 4.5. Logo

para zero itinerante F = 0, um itinerante F = −0, 75, para dois itinerantes F = −1, 5 e
para três itinerantes F = −2, 25
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Figura 24 – Correlação F , para um, dois e três itinerantes com valores Jz=-0,2 = Jxy, ou
seja Heisenberg-Kondo isotrópico. Zoom da figura 23 nos valores iniciais de
JK

t
(autor)

Para 0 itinerante F=0. Para 1, 2 e 3 itinerantes a interação começa a ser observada
a partir de JK

t
próximo de 0,5. O itinerante “visita” vários spins locais antes de se fixar,

gerando uma correlação momentaneamente mais fraca do que no regime de singleto já
consolidado. Com 3 itinerantes temos a interação RKKY forçando uma nova queda drástica.

Posteriormente o sistema mantém flutuações quânticas e uma pequena sobressatu-
ração, mas vai lentamente se estabilizando à medida que os itinerantes vão se acoplando,
como visto na figura 24.
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Figura 25 – Correlação S2, para um, dois e três itinerantes com valores Jz=-0,2 = Jxy, ou
seja Heisenberg-Kondo isotrópico com interação de troca antiferromagnético
(autor)

Quando o acoplamento acontece,figura 25, em interação de troca antiferromagnética,
temos para JK

t
elevado, os valores de S2 são de acordo com os resultados da tabela 4. Logo

para zero itinerante S2 = 0, um itinerante S2 = 0, 75, para dois itinerantes S2 = 0 e para
três itinerantes S2 = 3, 75
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Figura 26 – Correlação S2, para um, dois e três itinerantes com valores Jz=-0,2 = Jxy, ou
seja Heisenberg-Kondo isotrópico. Zoom da figura 25 nos valores iniciais de
JK

t
(autor)

A figura 26 enfatiza a dependência de S2 com os valores iniciais de D, F e ne. Este
comportamento não é fácil de ser compreendido.

As curvas no modelo Heisenberg-Kondo antiferromagnético se comportam inici-
almente, para valores JK

t
próximos de zero, como se não existisse elétron itinerante no

sistema, mas logo uma série de efeitos forçam suas oscilações. Ao atingir um ponto extremo,
para altos valores de JK

t
, as curvas tendem a valor numérico, previsto na parte analítica

da dissertação apresentada nas seções 4.4, 4.5 e 4.6.

5.5 Temperatura
Nesta seção apresentamos os resultados de variação das correlações D, F e S2

variando a temperatura e mantendo JK

t
constante para um elétron itinerante e interação

Heisenberg-Kondo e sem a utilização do método de Lanczos. Temos duas variações uma
com forte interação Kondo e outra com fraca interação Kondo.
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Figura 27 – Comportamento das correlações D, F e S2, com interação de troca antifer-
romagnético Heisenberg-Kondo isotrópico, em função da temperatura com
efeito Kondo constante igual a 300 em um sistema com 1 elétron itinerante
(autor)

Quando a temperatura tende ao infinito, figura 27, D tende a zero, como visto nos
cálculos de D no anexo A.
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Figura 28 – com 1 itinerante zoom (autor)

Para D, com temperatura próximo de zero, figura 28, pelo gráfico apresentado na
figura 31 temos o valor de D como -1 devido a uma forte correlação antiferromagnética ao
longo do eixo z, formando singletos dominados pelo acoplamento Kondo. Posteriormente
as flutuações térmicas começam a quebrar os singletos. Por fim o valor médio de D tende
a zero, característica de um estado paramagnético.
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Figura 29 – Variação das correlações, em estado antiferromagnético Heisenberg-Kondo
isotrópico, em função da temperatura com efeito Kondo constante igual a
0,01, próximo de zero, em um sistema com 1 elétron itinerante (autor)

Quando a temperatura tende ao infinito, figura 29, D tende a zero, como visto nos
cálculos de D no anexo A.

O valor de F é zero devido a baixa interação Kondo e o valor de S2 é dado por
(28).
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Figura 30 – Zoom da figura 29 com os valores pequenos de temperatura (autor)

A figura 30 apresenta ampliada a região de baixa temperatura da figura 29. Podemos
observar o comportamento das correlações com baixa influência do efeito Kondo. O valor
de D apresenta interação antiferromagnética, sinalizando que vizinhos tendem a alinhar-
se antiparalelamente, tendo como valor inicial D = −2, 25. A interação com elétrons
itinerantes é desprezível, F = 0.

Aumentando a temperatura as flutuações térmicas vão “quebrando” os pares
antiferromagnéticos, reduzindo o módulo da correlação D até zera-lo.
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6 Conclusão

Nesta dissertação investigamos o comportamento dos spins de elétrons em uma
configuração espacial de um hexágono, que denominamos de cluster hexagonal. Em cada
vértice existe um elétron fixo (spin localizado). Elétrons móveis (spins itinerantes), variando
de zero a três, podem saltar entre vértices vizinhos. Considera-se que as interações entre
os elétrons são apenas de caráter magnético, dependendo apenas do alinhamento entre
seus spins. Entre spins localizados vizinhos permite-se que a interação seja ferro ou
antiferromagnética. Entre um spin localizado e um spin itinerante na mesma posição
considera-se que a interação seja antiferromagnética. Neste sistema simples já foi possível
observar fenômenos como frustração magnética e Efeito Kondo.

Este cluster foi modelado por dois tipos de hamiltonianos: (i) tipo Ising–Kondo
e (ii) tipo Heisenberg–Kondo. O primeiro considera que o alinhamento entre os spins
só pode ocorrer em uma única direção (paralela ou antiparalela), enquanto o segundo
permite o alinhamento também em outras direções. Foi considerado que este sistema
físico está em contato com um banho térmico com uma temperatura conhecida. Nestes
hamiltonianos existem parâmetros cujos valores determinam as intensidades das interações
entre spins, e se elas são do tipo ferro ou antiferromagnéticas. Por isso o sistema permite
várias configurações físicas possíveis.

Os hamiltonianos foram solucionados numericamente usando um código compu-
tacional. Como a base de vetores dos estados quânticos do sistema é muito grande, a
diagonalização usou o método de Lanczos na maior parte das vezes. Foram determina-
das correlações (médias estatísticas no ensemble canônico) entre os spins localizados e
itinerantes do cluster. A correlação total entre os spins localizados (D), a correlação total
entre spins localizados e itinerantes (F ) e o valor esperado do spin quadrado total (S2)
foram determinadas para várias configurações diferentes. Nas situações possíveis, cálculos
analíticos foram realizados para validação dos resultados numéricos.

Os resultados numéricos foram apresentados em forma de gráficos, em que o eixo
horizontal representa a intensidade da interação antiferromagnética entre spin localizado
e spin itinerante (JK > 0). Verificou-se que os comportamentos de D, F e S2 tendem
para valores exatos quando JK → ∞, e estes valores dependem do número de spins
itinerantes. É importante observar que estes valores nos gráficos também foram obtidos por
cálculos analíticos que consideram a ocorrência de Efeito Kondo e de frustração magnética,
equação 29. Os casos mais simples são aqueles em que a interação entre spins localizados
é ferromagnética, como pode ser observado no comportamento de S2 na figura 13 e na
tabela 3. Já os casos mais complexos são aqueles em que a interação entre spins localizados
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é antiferromagnética, como pode ser observado na figura 25 e na tabela 4. Nestes últimos
casos aparece o fenômeno da frustração magnética com dependência do número de spins
itinerantes ser par (0 ou 2) ou ímpar (1 ou 3) nestas situações. Em todas as configurações,
ferro ou antiferromagnético, os cálculos analíticos não são capazes de descrever as curvas
dos gráficos para valores pequenos de JK (JK ∼ 0). Nesta região fica evidente a presença
de outras forças e efeitos que competem com o Efeito Kondo e a frustração magnética,
sendo que este último depende do número par ou ímpar de spins itinerantes.

Por fim analisou-se o comportamento das correlações D, F e S2 com a variação
da temperatura para casos de interação antiferromagnética entre spins localizados. Estes
resultados também foram apresentados em forma de gráficos para diferentes configurações.
O comportamento das curvas modifica-se de acordo com a intensidade de JK . Em baixas
temperaturas os acoplamentos entre os spins ainda prevalecem e as correlações dependem
da intensidade das interações. À medida que a temperatura aumenta, as flutuações térmicas
tendem a anular progressivamente as correlações D e F .

Do ponto de vista físico, esta pesquisa contribuiu para uma melhor compreensão
dos fenômenos quânticos e magnéticos de um sistema finito de spins fixos e itineran-
tes. A correlação D positiva indica que os spins localizados estão, em média, alinhados
paralelamente (comportamento ferromagnético). É interessante observar que isto pode
acontecer mesmo em configurações em que se atribuiu interação antiferromagnética entre
os spins localizados. Isto acontece nos regimes em que a interação antiferromagnética entre
spin localizado e spin itinerante, JK , prevalece sobre a interação antiferromagnética entre
spins localizados vizinhos: estes spins vizinhos, forçados a serem antiparalelos com o spin
itinerante, acabam sendo paralelos entre si (ver figura 22, caso 03 itinerantes). Apesar de
termos usado um cluster hexagonal, é razoável esperar que tal comportamento também
aconteça com clusters em outros formatos espaciais. Esta pesquisa permite extrapolações
para outros sistemas com geometrias e interações semelhantes.

Compreender os movimentos abruptos que aparecem nos limites iniciais do efeito
Kondo ainda carece de uma pesquisa aprofundada e uma análise mais intensa sobre os
conceitos físicos como isolante de Mott, sobressaturação magnética e interação RKKY,
que embasam as possíveis interações que competem com o efeito Kondo no sistema. Isto
caracteriza um possível tema para pesquisas futuras.
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Este anexo descreve os cálculos, para dois e três spins, do momento D, interação
dos spins localizados. Em sequência se demonstrara a diagonalização da matriz D em
uma base ortonormal e o cálculo do valor esperado de D e a interação de D em função da
temperatura e energia.

Ainda temos uma seção sobre as bibliotecas e funções utilizadas no programa, bem
como as configurações das máquinas utilizadas.

Por fim temos o algoritmo do método de Lanczos e sua demonstração.
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ANEXO A – Cálculo de D

Por motivo de simplicidade usaremos o nome O para reservar aos cálculos dos
parâmetros D da dissertação e T , maiúsculo, para se referir a temperatura.

[Sz, Sx] = iℏSy (30)

S2 |sm⟩ = ℏ2s(s + 1) |sm⟩ Sz |sm⟩ = ℏm |sm⟩ (31)

S± |sm⟩ = ℏ
√

s(s + 1) − m(m ± 1) |s(m ± 1)⟩ (32)

S± = Sx ± iSy Sx = (1
2)(S+ + S−) Sy = ( 1

2i
)(S+ − S−) (33)

s = 1
2; m = +1

2 , −1
2 S+(↓) = ℏ(↑); S−(↑) = ℏ(↓) (34)

Sx(↓) = ℏ
2(↑); Sx(↑) = ℏ

2(↓); (35)

Sy(↓) = ℏ
2i

(↑); Sy(↑) = − ℏ
2i

(↓); (36)

Sz(↓) = −ℏ
2 (↓); Sz(↑) = ℏ

2(↑), (37)

considere dois spins 1
2 , −→

S (1) e −→
S (2) cuja interação é descrita por:

Ĥ

−J
= −→

S (1) ·
−→
S (2) = S(1)

x S(2)
x + S(1)

y S(2)
y + S(1)

z S(2)
z

−→
S =

−−→
S(1) +

−−→
S(2) , (38)

esta interação para dois spins é antiferromagnética se J < 0 teremos:

|s = 1
2 , m = 1

2⟩ = |↑⟩ = (↑) |s = 1
2 , m = −1

2 ⟩ = |↓⟩ = (↓) (39)

−→
S (1) ·

−→
S (2)(↑↑) = S(1)

x S(2)
x (↑↑) + S(1)

y S(2)
y (↑↑) + S(1)

z S(2)
z (↑↑) (40)

−→
S (1) ·

−→
S (2)(↑↑) = S(1)

x (↑)S(2)
x (↑) + S(1)

y (↑)S(2)
y (↑) + S(1)

z (↑)S(2)
z (↑) (41)

−→
S (1) ·

−→
S (2)(↑↑) = ℏ

2(↓)ℏ2(↓) + −ℏ
2i

(↓)−ℏ
2i

(↓) + ℏ
2(↑)ℏ2(↑) (42)

−→
S (1) ·

−→
S (2)(↑↑) = ℏ2

4 (↑↑) , (43)

logo:

⟨↑↑ |
−→
S (1) ·

−→
S (2)| ↑↑⟩ = ℏ2

4 , (44)

analogamente:
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⟨↓↓ |
−→
S (1) ·

−→
S (2)| ↓↓⟩ = ℏ2

4 , (45)

segue:
−→
S (1) ·

−→
S (2)(↑↓) = S(1)

x S(2)
x (↑↓) + S(1)

y S(2)
y (↑↓) + S(1)

z S(2)
z (↑↓) (46)

−→
S (1) ·

−→
S (2)(↑↓) = S(1)

x (↑)S(2)
x (↓) + S(1)

y (↑)S(2)
y (↓) + S(1)

z (↑)S(2)
z (↓) (47)

−→
S (1) ·

−→
S (2)(↑↓) = ℏ

2(↓)ℏ2(↑) + −ℏ
2i

(↓) ℏ2i
(↑) + ℏ

2(↑)−ℏ
2 (↓) , (48)

portanto:

−→
S (1) ·

−→
S (2)(↑↓) = ℏ2

4 (2 ↓↑ − ↑↓) , (49)

ou seja:

⟨↑↓ |
−→
S (1) ·

−→
S (2)| ↑↓⟩ = −ℏ2

4 ; ⟨↓↑ |
−→
S (1) ·

−→
S (2)| ↑↓⟩ = 2ℏ2

4 , (50)

analogamente:
−→
S (1) ·

−→
S (2)(↓↑) = ℏ2

4 (2 ↑↓ − ↓↑) , (51)

de onde temos:

⟨↓↑ |
−→
S (1) ·

−→
S (2)| ↓↑⟩ = −ℏ2

4 ; ⟨↑↓ |
−→
S (1) ·

−→
S (2)| ↓↑⟩ = 2ℏ2

4 , (52)

em resumo:

⟨↑↑ |
−→
S (1) ·

−→
S (2)| ↑↑⟩ = ℏ2

4 ; ⟨↓↓ |
−→
S (1) ·

−→
S (2)| ↓↓⟩ = ℏ2

4 ; (53)

⟨↑↓ |
−→
S (1) ·

−→
S (2)| ↑↓⟩ = −ℏ2

4 ; ⟨↓↑ |
−→
S (1) ·

−→
S (2)| ↑↓⟩ = 2ℏ2

4 ; (54)

⟨↓↑ |
−→
S (1) ·

−→
S (2)| ↓↑⟩ = −ℏ2

4 ; ⟨↑↓ |
−→
S (1) ·

−→
S (2)| ↓↑⟩ = 2ℏ2

4 . (55)

as outras combinações resultam em zero. Assim temos a representação matricial:

|↑↑⟩ =


1
0
0
0

 ; |↑↓⟩ =


0
1
0
0

 ; |↓↑⟩ =


0
0
1
0

 ; |↓↓⟩ =


0
0
0
1

 .

−→
S (1) ·

−→
S (2) = ℏ2

4

↑↑ ↑↓ ↓↑ ↓↓
↑↑ 1 0 0 0
↑↓ 0 −1 2 0
↓↑ 0 2 −1 0
↓↓ 0 0 0 1
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diagonalizando a matriz obtemos:

Autovalores = 1, 1, 1, -3

Autovetores ortogonais =


1
0
0
0

,


1
1√
2

1√
2

0

,


0
0
0
1

,


0
1√
2

− 1√
2

0


de onde temos a matriz diagonalizada:

−→
S (1) ·

−→
S (2) = ℏ2

4

|A⟩ |B⟩ |C⟩ |D⟩
|A⟩ 1 0 0 0
|B⟩ 0 1 0 0
|C⟩ 0 0 1 0
|D⟩ 0 0 0 −3

associando os autovetores:

|A⟩=


1
0
0
0

= |↑↑⟩ ; |B⟩ =


0
1√
2

1√
2

0

 = 1√
2(|↑↓⟩ + |↓↑⟩);

|C⟩=


0
0
0
1

= |↓↓⟩ ; |D⟩ =


0
1√
2

− 1√
2

0

 = 1√
2(|↑↓⟩ − |↓↑⟩).

Resumindo:

|A⟩ ≡ |↑↑⟩ ; |B⟩ ≡ 1√
2

(|↑↓⟩ + |↓↑⟩); |C⟩ ≡ |↓↓⟩ ; |D⟩ ≡ 1√
2

(|↑↓⟩ − |↓↑⟩). (56)

Sabemos que:

−→
S2 = (

−−→
S(1) +

−−→
S(2))2 =

−−→
S(1)2 +

−−→
S(2)2 + 2−→

S (1) ·
−→
S (2) −→

Sz =
−−→
S(1)

z +
−−→
S(2)

z , (57)

agora vamos deduzir s e m para os autoestados |A⟩ , |B⟩ , |C⟩ e |D⟩(por simplicidade vamos
omitir o carácter vetorial de S):

S2 |A⟩ = S2 |↑↑⟩ = S(1)2 |↑↑⟩ + S(2)2 |↑↑⟩ + 2S(1) · S(2) |↑↑⟩ (58)

ℏ2s(s + 1) |A⟩ = ℏ2 1
2(1

2 + 1) |↑↑⟩ + ℏ2 1
2(1

2 + 1) |↑↑⟩ + 2ℏ
2

4 |↑↑⟩ = 2ℏ2 |↑↑⟩ (59)
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= ℏ21(1 + 1) |↑↑⟩ (60)

s=1

Sz |A⟩ = S(1)
z |↑↑⟩ + S(2)

z |↑↑⟩ = ℏ
1
2 |↑↑⟩ + ℏ

1
2 |↑↑⟩ = ℏ1 |↑↑⟩ (61)

ℏm |A⟩ = ℏ |↑↑⟩ (62)

m = 1

Conclusão: |A⟩ = |11⟩.

Agora vamos deduzir o autoestado |B⟩:

S2 |B⟩ = S2
(

|↑↓⟩ + |↓↑⟩√
2

)
= (S(1)2 + S(2)2 + 2S(1) · S(2))

(
|↑↓⟩ + |↓↑⟩√

2

)
(63)

S2 |B⟩ =
(
ℏ

3
4

)( |↑↓⟩ + |↓↑⟩√
2

)
+
(
ℏ

3
4

)( |↑↓⟩ + |↓↑⟩√
2

)
+ 2ℏ2

4
√

2
(2 |↓↑⟩ − |↑↓⟩ + 2 |↑↓⟩ − |↓↑⟩)

(64)

ℏ2s(s + 1) |B⟩ = ℏ22
(

|↑↓⟩ + |↓↑⟩√
2

)
= ℏ21(1 + 1)

(
|↑↓⟩ + |↓↑⟩√

2

)
(65)

s = 1

Sz |B⟩ = S(1)
z

(
|↑↓⟩ + |↓↑⟩√

2

)
+ S(2)

z

(
|↑↓⟩ + |↓↑⟩√

2

)
(66)

Sz |B⟩ = ℏ
2
√

2
(|↑↓⟩ − |↓↑⟩ − |↑↓⟩ + |↓↑⟩) = 0 (67)

ℏm |B⟩=0

m=0

Conclusão: |B⟩ = |10⟩.

Agora vamos deduzir o autoestado |C⟩:

S2 |C⟩ = S2 |↓↓⟩ = S(1)2 |↓↓⟩ + S(2)2 |↓↓⟩ + 2S(1)S(2) |↓↓⟩ (68)
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ℏ2 |C⟩ = ℏ2 1
2

(1
2 + 1

)
|↓↓⟩ + ℏ2 1

2

(1
2 + 1

)
|↓↓⟩ + 2ℏ

2

4 |↓↓⟩ = 2ℏ2 |↓↓⟩ (69)

ℏ2s(s + 1) |C⟩ = ℏ21(1 + 1) |↓↓⟩ (70)

s = 1

Sz |C⟩ = ℏ
−1
2 |↓↓⟩ + ℏ

−1
2 |↓↓⟩ = −ℏ |↓↓⟩ (71)

ℏm |C⟩ = −ℏ |↓↓⟩

m = −1

Conclusão: |C⟩ = |1 − 1⟩.

Agora vamos deduzir o autoestado |D⟩:

S2 |D⟩ = S2 |↑↓⟩ − |↓↑⟩√
2

= S(1)2 |↑↓⟩ − |↓↑⟩√
2

+ S(2)2 |↑↓⟩ − |↓↑⟩√
2

+ 2S(1)S(2) |↑↓⟩ − |↓↑⟩√
2

(72)

S2 |D⟩ =
(
ℏ2 3

4

) |↑↓⟩ − |↓↑⟩√
2

+
(
ℏ2 3

4

) |↑↓⟩ − |↓↑⟩√
2

+
(

2ℏ2

4
√

2

)
(2 |↓↑⟩ − |↑↓⟩ − 2 |↑↓⟩ + |↓↑⟩)

(73)

ℏ2s(s + 1) |D⟩ =
(
ℏ2 6

4

) |↑↓⟩ − |↓↑⟩√
2

+
(

−ℏ2 6
4

) |↑↓⟩ − |↓↑⟩√
2

= 0 (74)

s = 0

Sz |D⟩ = ℏ
2
√

2
(|↑↓⟩ + |↓↑⟩ − |↑↓⟩ − |↓↑⟩) = 0 (75)

ℏm |D⟩=0

m = 0

Conclusão: |D⟩ = |00⟩.

Assim temos a matriz diagonalizada:
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−→
S (1) ·

−→
S (2) = ℏ2

4

|11⟩ |10⟩ |1 − 1⟩ |00⟩
|11⟩ 1 0 0 0
|10⟩ 0 1 0 0

|1 − 1⟩ 0 0 1 0
|00⟩ 0 0 0 −3

Desta forma temos(14):


|11⟩ = ↑↑
|10⟩ = 1√

2(↑↓ + ↓↑)
|1 − 1⟩ = ↓↓

 s = 1(Tripleto)

{
|00⟩ = 1√

2(↑↓ − ↓↑)
}

s = 0(singleto)

Pela equação (53) e pelo calculo que se segue:

1√
2

(↑↓ + ↓↑) = ℏ2

4 |10⟩ , (76)

temos que para a interação ferromagnética o valor esperado é 0,25 ℏ2.

Para a interação antiferromagnética temos a formação do singleto logo o valor é dado
por:

1√
2

(↑↓ − ↓↑) = −3ℏ2

4 |00⟩ , (77)

ou seja -0,75 ℏ2.

Por definição temos (19):

⟨O⟩ = 1
Z

∑
n

⟨n|e−βHO|n⟩ = 1
Z

∑
n

e−βEn ⟨n|O|n⟩ , (78)

com n sendo os auto-estados |A⟩, |B⟩, |C⟩ e |D⟩.

Onde a função de partição:

Z = ∑
n e−βEn e β = 1

kBT
, onde kB é a constante de Boltzmann

O(i)(j) = ⟨S(i) · S(j)⟩ . (79)

Logo teremos a equação:
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O(1)(2) = ⟨S(1) · S(2)⟩ = 1
Z

4∑
1

e−βEn ⟨n|S(1) · S(2)|n⟩ . (80)

Pelos cálculos deduzidos em 53, 54 e 55 temos:

⟨A|S(1) · S(2)|A⟩ = ℏ2

4 ; ⟨B|S(1) · S(2)|B⟩ = ℏ2

4 ; (81)

⟨C|S(1) · S(2)|C⟩ = ℏ2

4 ; ⟨D|S(1) · S(2)|D⟩ = −3ℏ2

4 . (82)

Para o cálculo de energia, temos os autovalores En, com n correspondendo aos
autoestados A, B, C e D:

e−βEA = e−β ℏ2
4 ≡ e−β̃ (83)

e−β̃EA = e−β̃ e−β̃EB = e−β̃ e−β̃EC = e−β̃ e−β̃ED = e3β̃ (84)

aplicando os resultados de 81, 82 e 84 na equação 91 teremos:

Z = e−β̃ + e−β̃ + e−β̃ + e3β̃ = 3e−β̃ + e3β̃ (85)

⟨S(1) · S(2)⟩ = 1
3e−β̃ + e3β̃

(e−β̃ ℏ2

4 + e−β̃ ℏ2

4 + e−β̃ ℏ2

4 − e3β̃ 3ℏ2

4 ) (86)

⟨S(1) · S(2)⟩ = 3ℏ2

4

 e−β̃ − e3β̃

3e−β̃ + e3β̃

 , (87)

simplificando os cálculos deduzimos:

O(1)(2) = 3ℏ2

4

1 − e4β̃

3 + e4β̃

 , (88)

Utilizando propriedades das funções hiperbólicas deduzimos o resultado:

Tomando 3ℏ2

4 como uma constante e ℏ2

kB
como outra constante e sabendo que β̃ = ℏ2

kβT
, a

equação pode ser rescrita como:

O(1)(2) = c1

(
1 − e

c2
T

3 + e
c2
T

)
, (89)

temos o gráfico:
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Figura 31 – O(1)(2) em função da temperatura (gerado no site <https://www.geogebra.
org>)

https://www.geogebra.org
https://www.geogebra.org
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Agora vamos apresentar o cálculo para 3 spins:

Ĥ

−J
= (−→S (1) ·

−→
S (2) + −→

S (1) ·
−→
S (3) + −→

S (2) ·
−→
S (3)). (90)

Em unidades de ℏ2

4

Dada a matriz do hamiltoniano:

|↑↑↑⟩ |↑↑↓⟩ |↑↓↑⟩ |↑↓↓⟩ |↓↑↑⟩ |↓↑↓⟩ |↓↓↑⟩ |↓↓↓⟩
⟨↑↑↑| 3 0 0 0 0 0 0 0
⟨↑↑↓| 0 −1 2 2 0 0 0 0
⟨↑↓↑| 0 2 −1 2 0 0 0 0
⟨↑↓↓| 0 2 2 −1 0 0 0 0
⟨↓↑↑| 0 0 0 0 −1 2 2 0
⟨↓↑↓| 0 0 0 0 2 −1 2 0
⟨↓↓↑| 0 0 0 0 2 2 −1 0
⟨↓↓↓| 0 0 0 0 0 0 0 3

Diagonalizando:

|B⟩ |C⟩ |D⟩ |E⟩ |F ⟩ |G⟩ |H⟩ |I⟩
⟨B| 3 0 0 0 0 0 0 0
⟨C| 0 3 0 0 0 0 0 0
⟨D| 0 0 3 0 0 0 0 0
⟨E| 0 0 0 3 0 0 0 0
⟨F | 0 0 0 0 −3 0 0 0
⟨G| 0 0 0 0 0 −3 0 0
⟨H| 0 0 0 0 0 0 −3 0
⟨I| 0 0 0 0 0 0 0 −3

O12 == 1
Z

∑
n

e−βEn ⟨n|
−→
S (1) ·

−→
S (2)|n⟩ (91)

O12 = e−βEB ⟨B| S⃗(1) · S⃗(2) |B⟩ + e−βEC ⟨C| S⃗(1) · S⃗(2) |C⟩ + . . . + e−βEI ⟨I| S⃗(1) · S⃗(2) |I⟩
4 (e−3β + e3β)

(92)
de onde temos:

O(1)(2) = ℏ2

4

e−3β̃ − e3β̃

e−3β̃ + e3β̃

 = −ℏ2

4 tanh(3β̃) , (93)

temos o gráfico:
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Figura 32 – O(1)(2) em função da temperatura para 3 spins (gerado no site <https://www.
geogebra.org>)

https://www.geogebra.org
https://www.geogebra.org
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ANEXO B – Instalação das bibliotecas

Para instalar as bibliotecas de álgebra linear no sistema Unix/Linux execute o comando:

sudo apt update

sudo apt install liblapack-dev libblas-dev

Para compilar usamos o comando:

gfortran -o executável programa.f90 -llapack -lblas

onde o programa executável foi compilado do código programa.f90

As funções utilizadas são:

DSYTRD: Reduz uma matriz simétrica a uma forma tridiagonal;

DORGTR: Recupera uma matriz ortogonal utilizada no processo de tridiagonalização;

DSTEQR: Retorna os autovalores e autovetores da matriz tridiagonal.(27)
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ANEXO C – Máquinas

•Máquina virtual interna do Notebook:

Sistema: Ubuntu 24.04.1 LTS

memória: 7.6G

Processador: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz

tempo de processamento para 1 elétron itinerante: 1 minuto e 47 segundos.

•Máquina Lovelace pertencente ao INFI:

Sistema: Debian GNU/Linux 12 (bookworml)

memória: 7.8G

Processador: Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz

tempo de processamento para 1 elétron itinerante: 1 minuto e 29 segundos.

•Máquina lovelace do CENAPAD:

Sistema: Oracle Linux Server 8.8

memória: 60G

Processador: AMD EPYC 7282 16-Core Processador

tempo de processamento para 1 elétron itinerante: 1,5 segundos.

Os processamentos foram medidos para valores antiferromagnéticos de
Heisenberg-Kondo isotrópico com Jz = −0, 2 = Jxy



70

ANEXO D – Método de Lanczos

O método de Lanczos, apresentado por Cornelius Lanczos, (1893–1974) um matemático
e físico teórico húngaro-americano, publicado em 1950 (28), se trata de um método
interativo para transformar uma matriz esparsa, grande e simétrica em uma matriz
tridiagonal, que em tese é mais simples que a matriz original e deste modo obter os
autovalores, que são os mesmos da matriz original, e autovetores. Para tal utilizamos as
funções da biblioteca Lapack e Blas, responsável por métodos da álgebra linear, do
Fortran, já abordadas no anexo anterior.

Abaixo descrevo o algoritmo do método passo a passo:

Passo 1: Considere H a matriz original, esparsa e simétrica.

Tome v0 um vetor aleatório normalizado

Passo 2: Defina v1 = H |v0⟩ − |α0v0⟩

onde α0 = ⟨v0|H|v0⟩
⟨v0|v0⟩

Passo 3: Defina, por recorrência: vn = H |vn−1⟩ − αn−1 |vn−1⟩ − βn−2 |vn−2⟩

Onde β2
n−2 = ⟨vn−1|vn−1⟩

⟨vn−2|vn−2⟩

e αn−1 = ⟨vn−1|H|vn−1⟩
⟨vn−1|vn−1⟩

A recorrência continua até βi = 0, para algum i ≥ 0

Passo 4: Obtendo a matriz tridiagonal: A matriz tridiagonal Trd será dada pela relação:
Trd(i,i) = αi

Trd(i,i-1)=Trd(i-1,i)=
√

βi

Todos os outros valores da matriz tridiagonal Trd são zeros. Como pode ser visto nas págs.
9 a 18 de Alves(29) .

Passo 5: Durante o processo anterior obtemos a matriz ortogonal Q como sendo
QT HQ = Trd

Passo 6: Obter os autovalores e autovetores. Utilizamos a função DSTEQR que opera
Trd = ZAZT , onde A é a matriz diagonal contendo os autovalores e Z é a matriz cujas
colunas são os autovetores ortonormais de Trd.
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ANEXO E – Demonstração do método de
Lanczos

Passo 1:

Dada uma matriz H simétrica e hermitiana, escolhemos um vetor não nulo v0

normalizado.

Definimos v1 = Hv0 − α0v0

Logo

v1 = (H − α0I)v0

De onde

v1v1 = [(H − α0I)v0][(H − α0I)v0] = [Hv0 − α0v0]2

= v0H
2v0 − α0v0Hv0 − α0v0Hv0 + α2

0v0v0

= v0H
2v0 − 2α0v0Hv0 + α2

0v0v0

Assim o menor valor de α0 é quando a derivada se anula, ou seja:
∂v1v1
∂α0

= 0 = −2v0Hv0 + 2α0v0v0

Portanto α0 = 2v0Hv0
2v0v0

= v0Hv0
v0v0

Passo 2:

Observar que:

I) v0v1 = 0, pois: v0v1 = v0Hv0 − α0v0v0 = v0Hv0 − v0Hv0
v0v0

v0v0 = 0

II) v0Hv1 = v1v1:

Basta notar que: v1v1 = v1[Hv0 − α0v0] = v1Hv0 − v0Hv0
v0v0

v1v0 = v0Hv1

Deduzido nas págs. 12 e 13 de Dagotto(30).

III) Considere v2 = Hv1 − α1v1 − β0v0 = (H − α1I)v1 − β0v0

v2v2 = [(H − α1I)v1 − β0v0][(H − α1I)v1 − β0v0]

v2v2 = v1H
2v1 − 2α1v1Hv1 + α2

1 − β0v1Hv0 + β0α1v1v0 − 2β0v0Hv1 + β0α1v0v1 + β2
0v0v0

Como em I) demonstramos que v0v1 = v1v0 = 0, para encontrar o mínimo de α1eβ0

devemos zerar a derivada nos respectivos termos então teremos após a derivação e
igualando a zero:

α1 = 2v1Hv1
2v1v1

= v1Hv1
v1v1
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e incluindo o demonstrado em II)

β0 = 2v0Hv1
2v0v0

= v1v1
v0v0

Passo 3:

Por simplicidade usaremos αn = α e βn−1 = β.

Generalizando, considere o vetor não nulo definido por vn+1 = Hvn − αvn − βvn−1 − γ.
Vamos mostrar que γ = 0.

De fato:

vn+1vn+1=[Hvn − αvn − βvn−1 − γ]2

vn+1vn+1 = [(H − αI)vn − (βvn−1 + γ)]2

= vnH2vn − 2αvnHvn + α2vnvn − 2βvnHvn−1 − 2γvnH + 2αβvnvn−1 + 2αγvn +
β2vn−1vn−1 + 2βγvn−1 + γ2

Logo derivando em relação a γ e igualando a zero temos: γ = Hvn − αvn − βvn−1

Porém vn ̸= 0, assim γ é nulo por vacuidade

Por outro lado podemos facilmente deduzir que:

α = vnHvn−βvnvn−1−2γvn

vnvn
= vnHvn

vnvn

e

β = vnHvn−1−2αvnvn−1−2γvn−1
vn−1vn−1

= vnvn

vn−1vn−1



73

Referências

1 URAGA, S.; TADA, Y. Spin nematic order and superconductivity in J1−J2 kondo lattice
model on the square lattice. Phys. Rev. B, American Physical Society, v. 111, p. 075110,
Feb 2025. Disponível em: <https://link.aps.org/doi/10.1103/PhysRevB.111.075110>.

2 BRAZ, L. B.; NAG, T.; BLACK-SCHAFFER, A. M. Competing magnetic states
on the surface of multilayer abc-stacked graphene. Phys. Rev. B, American Physical
Society, v. 110, p. L241401, Dec 2024. Disponível em: <https://link.aps.org/doi/10.1103/
PhysRevB.110.L241401>.

3 LACROIX C.; MENDELS, P.; MILA, F. Introduction to Frustrated Magnetism:
Materials, Experiments, Theory. 1. ed. Heidelberg, Alemanha: Springer, 2011.
ISBN 978-3-642-10588-3. Disponível em: <https://link.springer.com/book/10.1007/
978-3-642-10589-0>.

4 KONDO, J. Resistance minimum in dilute magnetic alloys. Progress of Theoretical
Physics, v. 32, n. 1, p. 37–49, 1964. Disponível em: <http://ptp.oxfordjournals.org/
content/32/1/37.abstract>.

5 CHANDRASEKHAR V.;HAESENDONCK, C. V. A. (Ed.). Kondo Effect and
Dephasing in Low-Dimensional Metallic Systems. Pécs, Hungria: Springer Netherlands,
2001. Disponível em: <https://link.springer.com/book/10.1007/978-94-010-0427-5>.

6 CAPELLE, K.; CAMPO, V. L. Density functionals and model hamiltonians: Pillars of
many-particle physics. Physics Reports, v. 528, n. 3, 2013. ISSN 0370-1573. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0370157313000975>.

7 NASCIMENTO, R. M. L.
Frustração magnética em um modelo de Ising triangular com anisotropia ro-
tacional — UFGO, UNIVERSIDADE FEDERAL DE GOIÁS, 2020. Dis-
ponível em: <https://repositorio.bc.ufg.br/tedeserver/api/core/bitstreams/
b478b12e-049e-4acd-82e4-042896f4b7bb/content>.

8 GINGRAS, M. J. P. Spin ice. Department of Physics and Astronomy, University of
Waterloo, 2009. Disponível em: <https://www.researchgate.net/publication/24164782_
Spin_Ice>.

9 SHIMIZU, Y. et al. Spin liquid state in an organic mott insulator with a triangular
lattice. Physical Review Letters, American Physical Society (APS), v. 91, n. 10, set. 2003.
ISSN 1079-7114. Disponível em: <http://dx.doi.org/10.1103/PhysRevLett.91.107001>.

10 BITTENCOURT, R. C. d. A.
Nanomolécula frustrada com interação Kondo — UFMS, Universidade de Mato Grosso do
Sul., 2023. Disponível em: <https://repositorio.ufms.br/handle/123456789/9078>.

11 KITTEL, C. Introduction to Solid State Physics. 8. ed. New York: Wiley, 2005.
Disponível em: <http://metal.elte.hu/~groma/Anyagtudomany/kittel.pdf>.

https://link.aps.org/doi/10.1103/PhysRevB.111.075110
https://link.aps.org/doi/10.1103/PhysRevB.110.L241401
https://link.aps.org/doi/10.1103/PhysRevB.110.L241401
https://link.springer.com/book/10.1007/978-3-642-10589-0
https://link.springer.com/book/10.1007/978-3-642-10589-0
http://ptp.oxfordjournals.org/content/32/1/37.abstract
http://ptp.oxfordjournals.org/content/32/1/37.abstract
https://link.springer.com/book/10.1007/978-94-010-0427-5
https://www.sciencedirect.com/science/article/pii/S0370157313000975
https://repositorio.bc.ufg.br/tedeserver/api/core/bitstreams/b478b12e-049e-4acd-82e4-042896f4b7bb/content
https://repositorio.bc.ufg.br/tedeserver/api/core/bitstreams/b478b12e-049e-4acd-82e4-042896f4b7bb/content
https://www.researchgate.net/publication/24164782_Spin_Ice
https://www.researchgate.net/publication/24164782_Spin_Ice
http://dx.doi.org/10.1103/PhysRevLett.91.107001
https://repositorio.ufms.br/handle/123456789/9078
http://metal.elte.hu/~groma/Anyagtudomany/kittel.pdf


Referências 74

12 NETO, A. H. C. et al. The Electronic Properties of Graphene. Reviews
of Modern Physics, v. 81, n. 1, p. 109–162, 2009. Disponível em: <https:
//journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109>.

13 OLIVEIRA, I. Introdução à Física do Estado Sólido. LIVRARIA DA FISICA,
2005. ISBN 9788588325456. Disponível em: <https://books.google.com.br/books?id=
LsI3naqT7ZYC>.

14 GRIFFITHS, D. J. Mecânica Quântica. 2. ed. São Paulo, Brasil: Pearson, 2011.
ISBN 9788576059271. Disponível em: <http://wigner.elte.hu/koltai/griffiths_quantum_
mechanics_2nd_edition.pdf>.

15 Quantummadesimple. Frustrated magnets. 2021. Acessado em 23 de Julho de 2025.
Disponível em: <https://toutestquantique.fr/en/frustrated-magnets/>.

16 FERREIRA J. V. B.; PEREIRA, L. C. Determinação da temperatura kondo
a partir de curvas de susceptibilidade magnética em regime não líquido de
fermi. Revista Matéria, p. 2–4, 2013. ISSN 1517-7076. Disponível em: <https:
//www.scielo.br/j/rmat/a/5kQfqPqyqDmDpKwBZqWV4jp/?format=pdf&lang=pt>.

17 JUNIOR, J. L. F. S.
Efeito Kondo e magnetismo em uma rede Kagome — UFRS, Universidade do Rio Grande
do Sul., 2012. Disponível em: <http://hdl.handle.net/10183/53142>.

18 XIE, N.; YANG, Y.-f. Interplay of localized and itinerant behavior in
the one-dimensional kondo-heisenberg model. Physical Review B, American
Physical Society (APS), v. 91, n. 19, maio 2015. ISSN 1550-235X. Disponível em:
<http://dx.doi.org/10.1103/PhysRevB.91.195116>.

19 SANDVIK, A. W.; AVELLA, A.; MANCINI, F. Computational studies
of quantum spin systems. AIP, 2010. ISSN 0094-243X. Disponível em: <http:
//dx.doi.org/10.1063/1.3518900>.

20 BLACK-SCHAFFER, A. M. Rkky coupling in graphene. Physical Review B,
American Physical Society (APS), v. 81, n. 20, maio 2010. ISSN 1550-235X. Disponível
em: <http://dx.doi.org/10.1103/PhysRevB.81.205416>.

21 SHERAFATI, M.; SATPATHY, S. Analytical expression for the rkky interaction in
doped graphene. Phys. Rev. B, American Physical Society, v. 84, p. 125416, Sep 2011.
Disponível em: <https://link.aps.org/doi/10.1103/PhysRevB.84.125416>.

22 MOTT, N. F. Metal-insulator transition. Rev. Mod. Phys., American Physical
Society, v. 40, p. 677–683, Oct 1968. Disponível em: <https://link.aps.org/doi/10.1103/
RevModPhys.40.677>.

23 LIN, A. 8.051: Quantum Physics II — Lecture Notes. 2020. <https://web.stanford.
edu/~lindrew/8.051.pdf>. Lecturer: Barton Zwiebach. Spring 2020. Acesso em: 30 set.
2025.

24 TROYER, M. Computational Quantum Physics. 2005. Lecture notes, ETH Zürich.
Disponível em: <https://share.phys.ethz.ch/~alps/cqp.pdf>.

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
https://books.google.com.br/books?id=LsI3naqT7ZYC
https://books.google.com.br/books?id=LsI3naqT7ZYC
http://wigner.elte.hu/koltai/griffiths_quantum_mechanics_2nd_edition.pdf
http://wigner.elte.hu/koltai/griffiths_quantum_mechanics_2nd_edition.pdf
https://toutestquantique.fr/en/frustrated-magnets/
https://www.scielo.br/j/rmat/a/5kQfqPqyqDmDpKwBZqWV4jp/?format=pdf&lang=pt
https://www.scielo.br/j/rmat/a/5kQfqPqyqDmDpKwBZqWV4jp/?format=pdf&lang=pt
http://hdl.handle.net/10183/53142
http://dx.doi.org/10.1103/PhysRevB.91.195116
http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1103/PhysRevB.81.205416
https://link.aps.org/doi/10.1103/PhysRevB.84.125416
https://link.aps.org/doi/10.1103/RevModPhys.40.677
https://link.aps.org/doi/10.1103/RevModPhys.40.677
https://web.stanford.edu/~lindrew/8.051.pdf
https://web.stanford.edu/~lindrew/8.051.pdf
https://share.phys.ethz.ch/~alps/cqp.pdf


Referências 75

25 SCHINDELIN, J. et al. Spin correlation functions and susceptibilities
in the easy-plane xxz chain. arXiv preprint, 1999. Disponível em: <https:
//arxiv.org/abs/cond-mat/9911447>.

26 FORNOVILLE, M. et al. Easy-axis and easy-plane anisotropies in the xxz model.
Physical Review B, v. 111, p. 115428, 2025.

27 ISO/IEC Committee. Programming Languages — Fortran (ISO/IEC 1539-1:2018).
Geneva: [s.n.], 2018. ISO/IEC Standard 1539-1:2018, 3rd ed. Disponível em:
<https://www.iso.org/standard/82170.html>.

28 LANCZOS, C. An iteration method for the solution of the eigenvalue i problem. of
linear differential and integral operators. Journal of Research of the National Bureau of
Standards, 1950. Disponível em: <https://ia800204.us.archive.org/9/items/jresv45n4p255/
jresv45n4p255_A1b.pdf>.

29 ALVES, D.
O método de Lanczos e a sua comparação com a Teoria de Pertubações em
Mecânica Quântica — Universidade Estadual de Campinas., 1993. Disponível em:
<https://repositorio.unicamp.br/Acervo/Detalhe/69739>.

30 DAGOTTO, E. Correlated electrons in high-temperature superconductors. Reviews
of modern Physics, American Physical Society, v. 66, p. 774, jul 1994. Disponível em:
<https://link.aps.org/doi/10.1103/RevModPhys.66.763>.

https://arxiv.org/abs/cond-mat/9911447
https://arxiv.org/abs/cond-mat/9911447
https://www.iso.org/standard/82170.html
https://ia800204.us.archive.org/9/items/jresv45n4p255/jresv45n4p255_A1b.pdf
https://ia800204.us.archive.org/9/items/jresv45n4p255/jresv45n4p255_A1b.pdf
https://repositorio.unicamp.br/Acervo/Detalhe/69739
https://link.aps.org/doi/10.1103/RevModPhys.66.763

	Folha de rosto
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Sumário
	Lista de ilustrações
	Lista de ilustrações
	Introdução
	Objetivos
	Teoria 
	Propriedades magnéticas intrínsecas da matéria.
	Frustração magnética
	Interação antiferromagnética
	Efeito Kondo

	Hamiltonianos de Ising-Kondo e Heisenberg-Kondo
	Fenômenos magnéticos não usuais.

	Metodologia
	Estrutura do programa 
	Programa computacional 
	Correlações das grandezas físicas 
	Valor de D em função de JM
	Valor de F
	Valor de S2
	Definições magnéticas (análise de JM)

	Resultados
	Sem interação de troca 
	Tipo Ising-Kondo
	Tipo Heisenberg-Kondo ferromanético
	Tipo Heisenberg-Kondo antiferromagnético
	Temperatura

	Conclusão
	Anexos
	Cálculo de D
	Instalação das bibliotecas
	Máquinas
	Método de Lanczos
	Demonstração do método de Lanczos

	Referências

