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Abstract

Counting and locating objects are essential in different types of applica-

tions, as they allow performance improvements in the execution of manual

tasks. Deep learning methods are becoming more prominent in this type of

application because they can perform good object characterizations. However,

challenges such as overlapping, occlusion, scale variations and high density of

objects hinder the method’s performance, making this problem remains open.

Such methods usually use bounding box annotations, which hinder their per-

formance in high-density scenes with adjacent objects. To overcome these

limitations, advancing the state-of-the-art, we propose a method for counting

and locating objects using confidence maps. The first application allows for

the definition of a method based on convolutional neural networks that receive

a Multispectral image and detect objects from peaks on the confidence map.

In a second application, we insert global and local context information with

the Pyramid Pooling Module, to detect different scale objects. In addition we

improve the successive refinement of the confidence map with multiple sigma

values in the Multi-Sigma Stage phase. In the third application of the method,

we propose a band selection module to work with hyperspectral images. In

the fourth application, we evaluated the proposed method on high-density

objects RGB images and compared it with state-of-the-art methods: YOLO,

Faster R-CNN and RetinaNet. Finally, we expanded the method by proposing

a two-branched architecture enabling the exchange of information between

them. This improvement allows the method to simultaneously detect plants

and plantation-rows in different datasets. The results described in this thesis

show that the use of convolutional neural networks and confidence maps for

counting and locating objects allows high performance. The contributions of

this work should support significant advances in the areas of object detection

and deep learning.

Keywords: Deep Learning, Object Detection, Convolutional Neural Network,

Confidence Map Estimation.
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Resumo

Contagem e detecção automática de objetos são essenciais em diferentes

tipos de aplicações pois permitem melhorias desempenhos na execução das

tarefas manuais. Métodos de aprendizado profundo estão se destacando cada

vez mais nesse tipo de aplicação pois conseguem realizar boas caracterizações

dos objetos. Entretanto, desafios como a sobreposição, oclusão, diferentes de

escalas e alta densidade de objetos atrapalham o desempenho desses méto-

dos, fazendo com que esse problema permaneça aberto. Tais métodos normal-

mente usam anotações por caixas delimitadoras, o que prejudica seu desem-

penho em cenas de alta densidade com adjacência de objetos. Para superar

tais limitações, avançando o estado da arte, nós propomos um método de con-

tagem e detecção de objetos usando mapas de confiança. A primeira aplicação

permitiu definir um método baseado em redes neurais convolucionais que re-

cebem como entrada uma imagem multiespectral e detecta os objetos a partir

de picos no mapa de confiança. Em uma segunda aplicação, nós inserimos in-

formações de contexto global e local através do módulo PPM, para a detecção

de objetos em diferentes escalas. Além disso, melhoramos o refinamento su-

cessivo do mapa de confiança com múltiplos valores de sigma na fase MSS.

Na terceira aplicação do método, nós propomos um módulo de seleção de ban-

das para trabalhar com imagens hiperespectrais. Em uma quarta aplicação,

nós avaliamos o método proposto em imagens RGB de alta densidade de ob-

jetos e comparamos com métodos do estado da arte: YOLO, Faster R-CNN e

RetinaNet. Por último, expandimos o método propondo uma arquitetura de

duas ramificações permitindo a troca de informações entre eles. Essa melho-

ria permite que o método detecte simultaneamente plantas e linhas de plantio

em diferentes conjuntos de dados. Os resultados descritos nesta tese mostram

que a utilização de redes neurais convolucionais e mapas de confiança para

a detecção e contagem de objetos permite alto desempenho. As contribuições

descritas aqui, devem suportar avanços significativos nas áreas de detecção

de objetos e aprendizado profundo.
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CHAPTER

1
Introduction

1.1 Context and Motivation

Object counting and locating are decisive in different applications of com-

puter vision [Sindagi and Patel, 2018]. The performance increase has been

impressive in areas such as counting and controlling people [Hsieh et al.,

2017], wildlife monitoring [dos Santos de Arruda et al., 2018] and support car

detections [Hsieh et al., 2017]. The proposed methods vary from solutions with

Convolutional Neural Networks (Faster R-CNN [Ren et al., 2017], Mask-RCNN

[He et al., 2020], RetinaNet [Lin et al., 2020]), Multi-scale deep feature learn-

ing networks [Ma et al., 2020], Gated CNN [Yuan et al., 2019]), Multi-scale

variants (Multi-scale Structures [Ohn-Bar and Trivedi, 2017] and ensembles

of models [Xu et al., 2020]). Methods like VGG-GAP and VGG-GAP-HR [Aich

and Stavness, 2018], Layout Proposal Network (LPN) [Hsieh et al., 2017] and

Deep IoU CNN [Goldman et al., 2019] has obtained encouraging results in

high-density scenes. However, challenges such as scale variations, overlap-

ping, occlusions, and high-density of objects remain to impair the detection

performance.

Currently, many of these methods use Bounding Box (BBox) annotations

for counting and locating objects. The work developed by Hsieh et al. [2017]

is an example of the use of boxes. They propose spatial kernels with LPNs

for counting objects. However, in dense object scenarios, the bounding box

overlap makes adjacent regions to be detected as separate objects [Goldman

et al., 2019].

In addition, the need for large-scale detailed ground-truths is a challenge
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[Russakovsky et al., 2015], as acquisition and annotation are me-consuming

preprocess this has led researchers to propose simpler and faster annotation

methods [Zhang et al., 2018, Fiaschi et al., 2012]. In this sense, recent studies

have implemented point annotations to reduce the supervision task [Aich and

Stavness, 2018, Liu et al., 2019]. Besides, the similarity of color, texture and

shape of objects are important factors that assist in the object detection tasks,

and the use of points reduces the time of the annotation task [Liu et al., 2019,

Aich and Stavness, 2018].

Another challenge in object detection field is the high-object density sce-

narios. Methods of these annotations are not the most suitable for these

scenes [Goldman et al., 2019] since the overlap of objects makes it difficult

to correctly locate the coordinates of the BBoxes. For this reason, some object

counting approaches have been proposed based on density map estimation

[Goldman et al., 2019, Aich and Stavness, 2018]. Aich and Stavness [2018]

propose the Heatmap Regulation (HR) method that suppresses false detec-

tions using points annotations. This strategy regulates the activation maps

with coarse ground-thuth in maps generated with Gaussian kernels and point

annotations. In [Goldman et al., 2019], they proposed a detection method us-

ing CNN and BBox for densely packed scenes. They considered a quality score

and an Expectation-Maximization (EM) unit [Moon, 1996] to solve overlapping

ambiguities. However, counting and locating objects in high-density images is

still an open task.

Object counting applications depend on capturing images that deliver good

descriptions of the target object. The use of multispectral and hyperspec-

tral sensors improves the differentiation of vegetation species, health status,

and object description [Miyoshi et al., 2020, Takahashi Miyoshi et al., 2020,

Csillik et al., 2018, Ozdarici-Ok, 2015]. In this sense, it is common to use

higher spectral images in different applications [Takahashi Miyoshi et al.,

2020, Hartling et al., 2019, Weinstein et al., 2019]. Multispectral and hy-

perspectral images have been used in counting methods that combine Light

Detection and Ranging (LiDAR) and Red-Green-Blue (RGB) images to detect in-

dividual tree-crown with a self-supervised RetinaNet [Weinstein et al., 2019].

In [Hartling et al., 2019], the authors used the Dense Convolutional Net-

work (DenseNet) method on LiDAR and Multispectral images to classify urban

tree species. Still, high-resolution RGB sensors have been used in studies to

identify vegetation [Weinstein et al., 2019, Berveglieri et al., 2018, Cao et al.,

2018, Lobo Torres et al., 2020, Santos et al., 2019]. Despite the low cost of the

RGB sensors, they still offer low image information when compared to spectral

sensors.

The Hughes phenomenon is another important challenge faced by meth-
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ods applied to hyperspectral images. The high dimensionality of features can

impact performance by introducing noise and making data more sparser [Hen-

nessy et al., 2020]. For these cases, deep learning methods are usually ap-

plied with a dimensionality reduction approach [Alshehhi et al., 2017], such

as Principal Component Analysis (PCA) [Richards John and Xiuping, 1999]

or mutual information [Audebert et al., 2019]. The band selection technique

helps to identify the bands that best characterize objects [Bioucas-Dias et al.,

2013]. PCA are a widely used band selection technique that reduces the data

dimensionality [Tuominen et al., 2018, Maschler et al., 2018, Liu et al., 2017].

However, in the current scenario of the massive increase of data and spectral

bands, more efficient band selection techniques are needed.

In this thesis, we propose a model based on Convolutional Neural Net-

works (CNNs) and a confidence map estimation for counting and locating ob-

jects. The method was proposed and improved throughout real-world appli-

cations problems, to address the described problems. For high-object density

scenarios we based the method on a density map estimation and use point

annotations. Regarding the high dimensionality of hyperspectral images, we

proposed a band selection module to identify the best set of spectral bands.

Our method is divided into three phases (see Chapter 2): 1) the feature map

generation with the CNN, 2) the confidence map refinement with a Multi-Stage

Refinement (MSR) module, and 3) the object detection from confidence map

peaks. However, in proposed methods for real-world applications problems,

additional phases have been developed to improve the performance: 4) a Pyra-

mid Pooling Module phase to insert invariance to scale (see Chapter 4), 5) a

Multi-Sigma Stage phase to improve the MSR phase by inserting a multi-sigma

refinement approach along the MSR module (see Chapter 4), 6) a band selec-

tion module for hyperspectral images (see Chapter 5), and 7) a Multi-Stage

Module (MSM) that’s improve the MSS module with a two-branched architec-

ture to allow the simultaneous detection of plants and plantation-rows (see

Chapter 6).

1.2 Goals and Contributions

This thesis goal is to propose a method based on a Convolutional Neural

Network to locate and count objects using a 2D confidence map. We aim that

the proposed method can be applied to different object detection tasks and

image types. To reach this goal, we have proposed new methods that apply a

baseline method to RGB, Multispectral and Hyperspectral images. In addition,

we test the method with different datasets, such as eucalyptus and citrus-

trees groves, single tree species (Syagrus romanzoffiana), palm trees species
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(Mauritia flexuosa), cornfields (Zea mays L. recently planted, and mature-

stage) and vehicle count benchmarks [de Almeida et al., 2015]: Car Parking

Lot Dataset (CARPK) [Hsieh et al., 2017] and Pontifical Catholic University of

Parana+ Dataset (PUCPR+).

We focus on improving the approach to overcome some common issues in

the object detection field: high-dense object conditions, different object scales,

overlapping, occlusion, and different types of input images. Current methods

do not adapt well to these scenarios and generate missing predictions. Our

methods were compared with state-of-the-art and traditional counting and lo-

cating methods like: You Only Look Once (YOLO) [Redmon and Farhadi, 2017,

Jocher et al., 2022, Wang et al., 2022], Faster R-CNN [Ren et al., 2017], Reti-

naNet [Lin et al., 2020, Hsieh et al., 2017], LPN [Hsieh et al., 2017], VGG-GAP

[Aich and Stavness, 2018]. As is now in the text, besides the better perfor-

mance compared to traditional methods, the proposed method is suitable for

real-world applications.

Some contributions of the proposed method and its applications were:

• Proposal of an object detection method based on confidence map estima-

tion with good performance on regular and high-density images.

• Object detection method applied in different types of input images: RGB,

Multispectral and Hyperspectral.

• Detection of objects in different scales with a proposed module that in-

serts global and local information.

• Improved detection of overlapping and occlusion objects with successive

refinement stages.

• Proposal of a two-branch architecture with co-shared Information to im-

prove the object detection task.

• Proposal of a Band Selection phase for learning the best band combina-

tion to improve detections.

• Proposal of a method to detect and extract rows based on confidence map

estimation.

• Comparison with benchmarks and state-of-the-art methods in the object

detection field.

• Development of a multispectral image dataset of citrus trees with 2, 389

images and 37, 353 trees.

• Development of a dataset of RGB images of Eucalyptus with 3, 370 images

and approximately 232, 000 eucalyptus trees.
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• Development of a dataset of RGB images of corn plantations (V3 and ma-

ture) with 564 images and approximately 33, 360 plants and 224 plantation-

rows. 1

1.3 Structure of the Text

The thesis consists of works proposed for real-world applications in the

object detection field. The proposed method is improved to adapt to the chal-

lenges of each application, while the results influence the next steps of the

method. This thesis is divided into seven chapters:

Chapter 2 presents the baseline method modeled as a 2D confidence map

estimation problem for object detection applications. The Convolutional Neu-

ral Network structure and the confidence map generation are detailed. In ad-

dition, we describe the multi-stage refinement phase and the object detection

from the confidence map.

Chapter 3 presents the first application of the baseline method over the

citrus-trees multi-spectral dataset. We test and evaluate the main parameters

of the proposed method and compare it with state-of-the-art object detection

methods. The hits and the main challenges are discussed in the results.

In Chapter 4 we improve the baseline method to overcome the challenges

found in the citrus-trees application. The baseline multi-stage refinement

method is improved by the Multi-Sigma Stage phase. This phase refines the

object detections by considering a range of maximum and minimum values

of sigma. Besides, we proposed the PPM that inserts global and local context

learning. The proposed method is evaluated over three datasets, a proposed

dataset of eucalyptus trees and two well-known car datasets: CARPK and

PUCPR+.

Chapter 5 apply the improved method on hyperspectral images for single

tree species detection. To work with the high number of bands delivered by

the hyperspectral images, we propose a band learning module that selects the

best bands to characterize objects. The proposed method is compared with

the baseline method with two different inputs: all the 25 spectral bands and

the bands selected by the well-known technique PCA.

Chapter 6 propose an initial version of the method for line detection. We

modify the feature map extraction module with an upsampling step and the

PPM module that gives a better feature map for line detection. In addition, we

improve the Multi-Sigma Stage phase in an MSM refinement with co-shared

Information for lines and object detection. We evaluate the proposed method to

1Link to the proposed datasets: https://sites.google.com/view/geomatics-and-computer-
vision/home/datasets?authuser=0
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detect plants and plantation rows in cornfields and citrus orchards datasets.

We compare the method with state-of-the-art methods: HRNet, Faster R-CNN,

RetinaNet, YOLOv5 and YOLOv7.

Finally, the conclusion of the thesis and the next phases of the research

are presented in Chapter 7.
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CHAPTER

2
A New Approach to Object

Detection Based on Refinement of
Confidence Map using Convolutional

Neural Networks

The approach takes an image as input and produces the location of each

object. An image has w×h pixels and m bands, since we can apply the method

to different types of images (RGB, Multispectral, Hyperspectral). The problem

of object counting was modeled as a 2D confidence map estimation problem,

following Cao et al. [2017]. The map is a 2D representation of the confidence

that a particular object occurs in each pixel. Our proposed approach uses CNN

to estimate the 2D confidence map. We use the ground truth confidence map

by placing a 2D Gaussian kernel at each object location (manually labeled) to

train the CNN (Sections 2.1 and 2.2). Given the confidence map, predicted and

refined by a CNN, the location of each object is obtained from the peaks (local

maximum), as described in Section 2.3. If n objects occur in the image, there

should be a peak in the 2D confidence map corresponding to each object.

2.1 Generation of the 2D Confidence Map

Given an image with n objects, and locations L = l1, l2, ..., ln|lk ∈ <2, the

ground truth confidence map Ĉ is obtained by placing a 2D Gaussian kernel

at each center location (lk) of the labeled objects [Aich and Stavness, 2018]. To
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obtain Ĉ, a confidence map Ck is first calculated for each object k ∈ [0, n]. The

value of each location p ∈ <2 in Ck is defined by:

Ck(p) = exp(−|p− lk|
2
2

σ2
), (2.1)

where σ is the important parameter controlling the spread of the peak.

Ideally, σ is proportional to the size of the object. The ground truth confidence

map Ĉ is obtained by aggregating the individual maps via a maximum operator

(Equation 2.2).

Ĉ(p) = max
k
Ck(p) (2.2)

Figure 2.1 illustrates the confidence map for two images and three val-

ues of σ. The first column shows the images and locations of plants in red

dots. The next three columns present the confidence maps for σ = 1.5, 1.0, 0.5,

respectively. The ground truth confidence map is used to train a CNN.

(a) Input images (b) σt = 1.5 (c) σt = 1.0 (d) σt = 0.5

Figure 2.1: Example of input images of citrus and eucalyptus trees and their
corresponding ground truth confidence maps with different σt values.

2.2 Confidence Map Estimation and Multi-Stage Re-

finement (MSR)

The approach uses CNN to learn a regression function that receives an

image as input and returns a prediction of the confidence map as shown in
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Figure 2.2. The initial part of the CNN (Figure 2.2 (b)) is based on the VGG19

[Simonyan and Zisserman, 2014]. The first two convolutional layers have 64

filters of size 3 × 3, and they are followed by a 2 × 2 max-pooling layer. The

third and fourth convolutional layers have 128 filters of size 3 × 3, which are

also followed by a 2 × 2 max-pooling layer. Finally, the last two convolutional

layers have 256 filters of size 3× 3. All convolutional layers use Rectified Linear

Units (ReLU) as the activation function, with a stride of 1 and zero-padding,

returning an output with the same resolution as the input. If the first part

receives an image with 256 × 256 pixels with m bands, the model produces a

feature map F with a dimension of 64× 64 due to the max-pooling layers.

Co
nf
id
en

ce

64

128
256

Stage 1

128512

Stage t, (1 < t < T)

(b) Feature map extraction

128 128

Stage T

128 128

(d) Object detection (c) Multi-Stage Refinement (MSR)

(a) Input image
m bands

Width

Height

Feature Map F

Figure 2.2: The object detection method using a confidence map prediction
and a multi-stage refinement process. The initial part of CNN (b) extracts the
feature map from the input image (a). The feature map is refined by multiple
stages (c) that apply a standard deviation (σ) to the confidence map that is
used to locate the objects (d).

The feature map F generated by the first part of the CNN is given as input

to T stages of the Multi-Stage Refinement (MSR) that estimate the confidence

map. In the first stage (Figure 2.2 (c)), a series of convolutional layers generate

the confidence map C1. The first stage has five convolutional layers: three

layers with 128 filters of size 3 × 3, one layer with 512 filters of size 1 × 1, and

one layer with a single filter that corresponds to the confidence map.

At a subsequent stage t, the prediction returned by the previous stage Ct−1

and the feature map F are concatenated and used to produce a refined con-
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fidence map Ct. The T − 1 final stage consists of seven convolutional layers:

five layers with 128 filters of size 7× 7 and one layer with 128 filters with a 1× 1

size. The last layer has a sigmoid activation function so that each pixel repre-

sents the probability of the occurrence of an object (values between [0, 1]). The

remaining layers have a ReLU activation function.

To train the CNN, the loss function (Equation 2.3) is applied at the end of

each stage. This intermediate supervision addresses the vanishing gradient

problem as shown in Cao et al. [2017]. Since the model has max-pooling

layers, the predicted confidence map is downsampling across the network and

the ground truth confidence map is generated with the output size of the CNN.

The loss function is given by:

ft =
∑
p

‖ Ĉt(p)− Ct(p) ‖22, (2.3)

where Ĉt is the ground truth confidence map of the stage t (Section 2.1).

The overall loss f function is given by:

f =
T∑
t=1

ft (2.4)

2.3 Object Localization from the Confidence Map

Object locations are obtained from the confidence map of the last stage (CT ).

We estimate the peaks (local maximum) of the confidence map by analyzing the

4-pixel neighborhood of each given location of p. Thus, p = (xp, yp) is a local

maximum if CT (p) > CT (v) for all the neighbors v, where v is given by (xp±1, yp)

or (xp, yp±1). An example of the object location from the confidence map peaks

is shown in Figure 2.3 .

To avoid noise or low probability of occurrence of the positions p, the peaks

need to be separated by at least δ pixels. This prevents two plants from being

detected very close to each other. Also, a peak in the confidence map is con-

sidered as an object only if CT (p) > τ , where τ is a threshold parameter. The

values of δ and τ are defined after preliminary experiments for each applica-

tion.
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Figure 2.3: Example of the localization of eucalyptus trees from a refined
confidence map.
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CHAPTER

3
A convolutional neural network

approach for counting and
geolocating citrus-trees in UAV

multispectral imagery

3.1 Introduction

Unmanned aerial vehicle (UAV) platforms allow the capture of high def-

inition images in adverse weather conditions, places of difficult access and

periodic capture of the same region [Varela et al., 2018]. Remote sensing has

helped farmers maintain their field in addition to other methods in precision

agriculture. However, several factors (e.g., plant and ground characteristics,

environmental factors) contribute to the increased complexity of the images

used in the analysis of plants [Leiva et al., 2017].

Deep Learning (DL) algorithms are benefiting remote sensing applications

[Alshehhi et al., 2017, Zhang et al., 2016, Ball et al., 2017, Liu et al., 2018, Liu

and Abd-Elrahman, 2018, Paoletti et al., 2018, Ma et al., 2019] and showed to

have high performance for different types of application in image data from

agricultural fields [Kamilaris and Prenafeta-Boldu, 2018, Wu et al., 2019].

Some applications of this type involve the analysis of wheat spikes [Hasan

et al., 2018], wheat-ear density estimation [Madec et al., 2019], rice seedlings

in the field [Wu et al., 2019] and the counting of fruits [Chen et al., 2017],

plants [Djerriri et al., 2018] and trees [Jiang et al., 2017, Li et al., 2017] in
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crop fields.

Plant number information is essential for farmers estimate productivity,

evaluate the density of their plantations and errors occurring during the seedling

process [Ampatzidis and Partel, 2019]. Several techniques have been proposed

to identify and count trees [Goldbergs et al., 2018], since the plant count-

ing process is a labor-intensive and time-consuming task [Leiva et al., 2017].

Some of these research investigates the potential of the CNN approach applied

to images obtained from UAV-borne sensors [Djerriri et al., 2018, Onishi and

Ise, 2018, Salami et al., 2019]. The automated detection and counting pro-

cess is being applied in counting trees in agricultural fields, such as citrus

plantations [Ozdarici-Ok, 2015]. Recently, the implementation of CNN in UAV

image produced high precision results, up to 99.9% [Ampatzidis and Partel,

2019] and 94.59% [Csillik et al., 2018].

Although studies have given high accuracy in counting citrus trees us-

ing CNN in UAV multispectral images, the current methodology [Csillik et al.,

2018, Ampatzidis and Partel, 2019] is based on object detection CNNs. These

CNNs use rectangles to detect each plant individually, but their detection and

performance decrease as the image becomes crowded and the plant size de-

creases [Kang et al., 2019]. In such cases, the boundaries of individual plants

may not be sufficiently visible to detect a rectangle, which may increase the

difficulty of discriminating individual plants. This chapter presents an appli-

cation [Osco et al., 2020a] of the proposed method, to cope with the challenge

of estimating the number of citrus trees in highly dense orchards from multi-

spectral UAV images.

3.2 Proposed Method

We take as input a UAV multispectral image, with w×h pixels and m bands,

and produces the location of each plant. The proposed method use a 2D

confidence map that represent the confidence of a plant occurs in each pixel

(see Sections 2.1, 2.2 and 2.3). The plant locations are obtained by the peaks

generated in the refined confidence map resulting from the CNN. Figure 3.1

shows the CNN used to generate de confidence map prediction.

To train the approach, we generate a ground truth confidence map Ĉ by

placing a 2D Gaussian kernel at each plant location. The ground truth gener-

ate process is applied for each stage of the network refinement stages. Finally,

the ground truth confidence map Ĉ is obtained by aggregating the individual

maps Ct via the maximum operator (this process are detailed in the Section

2.1).

This work was the first application of the baseline method for object detec-
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Figure 3.1: CNN used for confidence map prediction. It consists of an initial
part (a) to extract a feature map of the input image. This feature map is used
as input to the first stage (b). The concatenation of the feature map and the
prediction map of the previous stage is used as input for the remaining stages.

tion. The method receives an image with 256 × 256 pixels and m bands, and

produces a feature map F with 64 × 64 due to the max-pooling layers. Since

the size of the predicted confidence map is smaller than the image size, the

ground truth confidence map is generated with the output size of the CNN,

which in this work was 64× 64 pixels.

Besides, for the plant localization in the confidence map, we apply the val-

ues of δ = 3 and τ = 0.2 after preliminary experiments. Where δ prevents

two plants from being detected very close to each other and the threshold τ

defines the minimum confidence to consider a peak as a detected plant. Fig-

ure 3.2 shows an example of the confidence map, where the width and height

are the image dimensions and the blue peaks represent the regions with local

maximum confidence.

Figure 3.2: Example of the confidence map in three dimensions.

3.3 Experiments
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3.3.1 Studied Area

Figure 3.3 shows our studied area with planting lines of a Valencia-orange

tree orchard (Citrumelo Swingle rootstock), located in a property in Ubira-

jara, SP, Brazil. The area has approximately 70 ha, with Valencia-orange trees

planted at a 7× 1.9 mts spacing, with around 752 plants per ha. The UAV flight

took place on March 22, 2018, and the trees were in their vegetative state.

The trees were approximately 5 years old and about 3 mts high, reaching their

maturity and production stages.

Figure 3.3: Information of the study area: Figure (a) shows its location on the
map, the study area is shown through a combination of bands in figure (b),
and figures (c1) and (c2) show examples of the planting lines in the ground.

The images were acquired with a Parrot Sequoia camera (©Parrot-Drones

SAS, USA) onboard the eBee SenseFly UAV (©SenseFly, Parrot-Group, USA),
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which operates in the four spectral bands of green, red, red-edge, and Near-

Infrared (NIR), respectively. A total of 37, 353 trees were manually identified

in the orthophoto, which was generated using 2, 389 images, acquired in the

study area. Details describing the cameras and flight conditions are presented

in Table 3.1.

Table 3.1: Parrot Sequoia camera and eBee SenseFly flight details.
Spectral band Wavelength Bandwidth Spectral Resolution 10 bits Flight High 120 mts

Green 550 nm 40 (GSD) Spatial Resolution 12.9 cm Flight Time 01:30 P.M.
Red 660 nm 40 HFOV 70.6◦ Weather cloudy/partially-cloudy

Red-edge 735 nm 10 VFOV 52.6◦ Precipitation 0 mm
Near-Infrared 790 nm 40 DFOC 89.6◦ Wind at 1 to 2 mts/sec
Ground Sample Distance (GSD); Horizontal Field of View (HFOV); Vertical Field of View (VFOV); Displayed Field of

View (DFOC)

The orthorectification was performed with Pix4DMapper software using 9

Ground Control Points (GCPs) surveyed with dual-frequency Global Naviga-

tion Satellite System (GNSS) Leica Plus GS15 receiver, in Real-Time Kine-

matic (RTK) mode. The images were radiometrically corrected using the ra-

diance values of a calibrated reflectance plate, recorded with the camera prior

to the flight. An orthorectified surface reflectance image was generated, and

the tree locations were generated as point features using the photointerpreta-

tion technique.

3.3.2 Experimental Setup

The orthorectified surface reflectance image was split into 562 patches of

256× 256 non-overlapping pixels (with approximately 33× 33 meters). To evalu-

ate the proposed approach, the patches were randomly divided into training,

validation and testing sets made up of 80% (448 patches), 10% (56 patches),

and 10% (56 patches), respectively. For training, the Stochastic Gradient De-

scent (SGD) optimizer was used with a momentum of 0.9. Hyperparameter

tuning was performed on the learning rate and the number of epochs, using

the validation set to reduce the risk of overfitting. After a minimal hyper-

parameter tuning, the learning rate was 0.01 and the number of epochs was

300. Instead of training the proposed approach from scratch, the weights of

the first part were initialized with pre-trained weights in ImageNet. When the

multispectral image had more than three channels, an additional layer with

random weights in the first layer was included.

In the experiments, regression metrics are reported measuring the agree-

ment between the number of annotated and predicted plants. The metrics

were Mean Absolute Error (MAE), Mean Squared Error (MSE), Coefficient

of Determination (R2), and Normalized Root-Mean-Squared Error (NRMSE).

Given the number of annotated yj and predicted ŷj plants for patch j, MAE

calculates the average of the absolute errors, defined by Equation 3.1
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MAE =
1

n

n∑
j=1

|yj − ŷj| (3.1)

Similarly, MSE estimates the average of the squares of the errors, defined

by Equation 3.2.

MSE =
1

n

n∑
j=1

(yj − ŷj)2 (3.2)

NRMSE represents the square root of the normalized MSE. This metric

facilitates the comparison between methods that work at different scales.

Finally, the R2 estimates the correlation between the number of annotated

and predicted plants. To assess the quality of plant detection, we also used

classification metrics such as Precision (P), Recall (R), and F1-Measure (F1)

calculated according to Equation 3.3.

P = tp/(tp+ fp) R = tp/(tp+ fn) F1 = 2 ∗ P ∗R
(P +R)

(3.3)

We defined a true positive (tp) if the predicted and annotated position of the

plant is at less than a maximum distance distmax. False-positive (fp) and false

negative (fn) are calculated similarly using the distance distmax. In this work,

the distmax was defined as the size of the tree canopy (120 cm). We compared

our method to two object detection methods, RetinaNet and Faster R-CNN.

Training and testing were performed using a desktop computer with In-

tel(R) Xeon(R) CPU E3 − 1270@3.80 GHz, 64 GB memory, and NVIDIA Titan V

graphics card (5120 Compute Unified Device Architecture (CUDA) cores and 12

GB graphics memory). The methods were implemented using Keras-Tensorflow

on the Ubuntu 18.04 operating system. The computational cost for the different

number of stages (T ) considering this desktop had already been assessed.

3.4 Results and Discussion

3.4.1 Analysis of the Proposed Method Parameters

Table 3.2 presents the results for different bands and combinations among

them. The objective is to evaluate which bands are most appropriate for plant

counting using the proposed approach. These results were obtained using

T = 6 stages and σ = 1.0. Even considering only one spectral band (e.g.,

green), the proposed approach already presents satisfactory results. However,

a performance increase was obtained when combining the green, red and NIR

bands, giving an NRMSE of 0.038.

It can also be seen that using the Red-edge band did not imply good results
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Table 3.2: Results obtained with different bands and combinations.
Bands MAE MSE R2 NRMSE
Green 2.51 10.72 0.96 0.039
Red 2.74 13.09 0.95 0.046

Red-edge 3.65 40.56 0.85 0.077
Nir 2.98 18.11 0.93 0.052

Green, Red 2.40 13.32 0.95 0.046
Green, Red-edge 2.67 15.68 0.94 0.050

Green, Nir 2.93 16.09 0.94 0.051
Red, Red-edge 2.37 15.18 0.94 0.050

Red, Nir 2.82 17.35 0.93 0.052
Red-edge, Nir 2.96 17.74 0.93 0.052

Green, Red, Red-edge 2.65 15.67 0.94 0.050
Green, Red, Nir 2.28 9.82 0.96 0.038

Green, Red-edge, Nir 2.89 20.09 0.92 0.057
Red, Red-edge, Nir 2.68 14.44 0.95 0.047

Green, Red, Red-edge, Nir 2.56 13.47 0.95 0.046

compared to the other bands. We observed that the Red-edge band does not

have sufficient contrast regarding other targets. Red-edge parameters such

as curve slope and reflectance can be used to differentiate illuminated from

shaded canopies [Xu et al., 2019], and its usage is commonly known in remote

sensing applications. However, the evaluated region (735 ± 10 nm) in this study

presented a high similarity between other vegetation targets.

The spectral response from the citrus plants in comparison to other types

of land cover (bare soil, shallow grassland, and dense grassland) in the study

area is displayed in Figure 3.4. By collecting different samples (one hundred

for each land cover type), it could be seen that the orange-trees and dense

grassland presented similar surface reflectance at the Red-edge region. This

may be indicative of the reduced CNN performance for this band. In general,

similar studies implemented common RGB cameras in their analysis [Csillik

et al., 2018, Weinstein et al., 2019, Varela et al., 2018, Ampatzidis and Partel,

2019, Fan et al., 2018], so this type of problem was not perceptible. But the

CNN struggle in the Red-edge band in this study case is an important finding

since it directs towards adversity in using this band for the proposed task.

When increasing to two bands, the use of the Green and Red bands ob-

tained the best result, although it did not surpass the results obtained by the

Green band alone. On the other hand, using the Green, Red and NIR bands

obtained the best result. These bands achieved MAE, MSE, R2, and NRMSE

of 2.28, 9.82, 0.96 and 0.038, respectively. Considering the four bands as input

images, the results were satisfactory although it did not surpass the best re-

sult because of the inclusion of the Red-edge band, which does not help in

counting the plants.
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Figure 3.4: Spectral behavior of different types of landcover commonly present
in the study area.

The σ, which is responsible for generating the ground truth confidence

maps used in the training of the proposed approach, was also evaluated. In

these experiments, the green, red and NIR bands that achieved the best results

among all bands in the previous experiment were used. σ has a great influence

on the results (see Table 3.3) and the best result was obtained for σ = 1.0,

which, in this case, is better fitted to the size of the tree canopy.

Table 3.3: Evaluation of the σ responsible for generating ground truth confi-
dence maps to train the proposed approach.

σ MAE MSE R2 NRMSE
0.5 5.11 58.86 0.78 0.098
1.0 2.28 9.82 0.96 0.038
1.5 3.56 25.63 0.90 0.064

Finally, the number of stages that refine the confidence map predicted by

the proposed approach was evaluated (Table 3.4). As expected, the results

improve as the number of stages is increased. This shows that the refinement

of the confidence map helps in counting the plants. The proposed approach

achieved its best result with eight stages (T = 8).

The results show that the proposed approach provided accurate results for

counting plants and can be used to automate this task. This performance

approximates from the accuracy obtained in lesser difficult conditions, such

as a high-spaced citrus plantation [Csillik et al., 2018, Ampatzidis and Partel,
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Table 3.4: Evaluation of the number of stages T used to refine the confidence
map predicted by the proposed approach.

Stages (T) MAE MSE R2 NRMSE
1 3.61 21.05 0.92 0.057
2 2.86 17.39 0.93 0.052
4 2.56 14.42 0.95 0.047
6 2.28 9.82 0.96 0.038
8 2.05 8.75 0.97 0.036
10 2.21 11.79 0.96 0.043

2019]. A visually similar density condition was evaluated in a different crop

type [Fan et al., 2018], which achieve 93% accuracy on tobacco plant detection

using CNN.

3.4.2 Qualitative Results

To analyze the results qualitatively, a region around the annotated loca-

tions was considered to visualize the proximity of the prediction and the cen-

ter of the plants. Figure 3.5 shows the results using the best configuration

(three bands, σ = 1.0, and T = 8). The predicted locations are represented by

red dots in this figure and the plant regions are represented by yellow circles

whose center is the location annotated by the specialist. It can be seen that

the proposed approach can correctly predict most plant locations, with a 2.05

trees error per image, so that they are aligned with the annotated locations

and within the plant region.

Figure 3.5: Comparison of predicted locations (red dots) and plant regions
(yellow circles) in two images.

The results show that planting lines are also identified without the need for
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any annotation or additional procedure. Identifying planting lines is also an

important feature in remote sensing of agricultural fields since it can easily

detect missing trees and help optimize crop management [Bah et al., 2018,

Oliveira et al., 2018]. Nonetheless, some difficulties were observed considering

the characteristics of the area investigated here. Figure 3.6 shows examples

of the main challenges faced by our approach.

Figure 3.6: Examples of the challenges faced by the proposed approach.

It can be seen that far-center predictions occur in short planting lines (2

to 4 plants) or when much of the plant canopy is occluded. However, even in

images where these cases occur, the proposed approach is capable of predict-

ing the location of the vast majority of plants. Besides, different plantation

lines with spaced tree locations were identified by the CNN method without

difficulty (Figure 3.7). This indicates that our approach is also suitable for

estimating isolated trees with different plant spacing.

3.4.3 Comparison with Object Detection Methods

The proposed approach was compared with recent object detection methods

such as Faster R-CNN and RetinaNet. To train the object detection methods,

we used the plant position (x, y) as the center of the rectangle. The size of the

rectangle corresponds to the size of the plant canopy (240 cm). We considered

Green, Red, and NIR bands for this comparison. Similarly, an inverse process

was used during the testing stage, obtaining the plant position from the center

point of the rectangle predicted by the RetinaNet and Faster R-CNN methods.

Table 3.5 shows the results obtained by all methods using MAE, Precision,

Recall, and F1 metrics. We can see that the proposed approach achieved better

results for all metrics with 0.95 and 0.96 for Precision and Recall, respectively.
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Figure 3.7: Examples of spaced trees correctly identified with the proposed
approach.

In addition, the proposed approach achieved an MAE of 2.05 while RetinaNet

and Faster R-CNN provided values of 30.87 and 37.85, respectively. RetinaNet

and Faster R-CNN achieved only 0.74 and 0.54 for the F1-Measure, against 0.95

of the proposed approach. These results indicate that the proposed approach

can predict citrus trees with high precision, having a very low number of false

detections.

Table 3.5: Comparison of the proposed approach with recent object detection
methods.

Methods MAE Precision Recall F1-Measure
RetinaNet 30.87 0.62 0.92 0.74

Faster R-CNN 37.85 0.86 0.39 0.54
Proposed approach 2.05 0.95 0.96 0.95

Figure 3.8 shows the visual results of the predictions generated by the three

methods in two images. We can see that our approach has few errors in de-

tecting plants. Faster R-CNN is the most misleading method, failing to identify

plants in the images, while RetinaNet predicts more plants than those in the

image, generating many false predictions. Note that the Precision reflects this

behavior, being lower for RetinaNet than for Faster R-CNN since the number

of false positives is higher for RetinaNet.

3.4.4 Computational Cost

Table 3.6 presents the computational cost of the proposed approach using

different values for the number of stages, which is the main parameter influ-
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(a) Our approach (b) Faster R-CNN (c) RetinaNet

Figure 3.8: Examples of the predictions generated by the three methods: (a)
Our approach, (b) Faster R-CNN and (c) RetinaNet. Plant predictions are rep-
resented by red dots and plant regions are represented by yellow circles.

encing the size of the CNN. This table presents the average time in seconds

(sec) to process an image with 256×256 pixels and three bands. In addition, ta-

ble shows the estimated number of Frames Per Second (FPS) that the proposed

approach is capable of processing.

Table 3.6: Evaluation of the computational cost of the proposed approach for
different number of stages.

Stages (T) Time (sec) FPS
1 0.0039 (±0.0002) 258.26
2 0.0092 (±0.0006) 108.30
4 0.0215 (±0.0008) 46.49
6 0.0330 (±0.0010) 30.31
8 0.0401 (±0.0012) 24.93
10 0.0498 (±0.0015) 20.10

Still, one observation that must be noted is that, by increasing the number

of stages, the computational cost also increases. Considering the best result

that was obtained with eight stages (Table 3.4), the proposed approach is able

to process approximately 25 images per second. The speed/accuracy trade-off
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can be considered in the choice of the number of stages. If an application

needs to run in real-time with more than 30 images per second, then four or

six stages is a good alternative.

3.5 Remarks of the Chapter

In this chapter, we presented a CNN approach to estimate the number and

location of citrus trees from UAV multispectral imagery. Our results archived

0.97 for R2 and 0.036 trees for NRMSE. The combination of the spectral bands

green, red and Near-Infrared produced better performance than the use of

individual spectral bands. The method also demonstrated reasonable compu-

tational cost for embedded real-time applications. One of the advantages of

our approach is in estimating a dense map to detect individual trees in high-

density plantations, rather than the object-detection approach using rectan-

gles to represent trees. The comparison against object-based methods re-

turned a higher Precision (0.95) and lower MAE (2.05) for our method.
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CHAPTER

4
Counting and locating high-density
objects using convolutional neural

network

4.1 Introduction

High-object density scenes are one of the biggest challenges for counting

and locating objects. Object detection methods are, in general, not adequate

for high-density scenes [Goldman et al., 2019]. In this scenario, overlapping

objects are difficult to analyze due to the size of the instances and the stand-

point of the scene. Thus, approaches that model the problem of counting ob-

jects with a density estimation has been defined as state-of-the-art solutions,

and are providing interesting solutions for dense scenes such as crowds and

densely packed objects [Goldman et al., 2019, Aich and Stavness, 2018]. In

Goldman et al. [2019], the authors proposed a CNN-based detection method,

using the bounding box, to cope with densely packed scenes. They considered

a layer to estimate a quality score index and used a novel EM merging unit to

solve the overlap ambiguities with this score. However, handling high-density

objects in images is still a concerning issue, both in counting and locating

objects.

Another problem regarding object count from detection frameworks is the

need of detailed ground truth labeled data, which is hard to obtain at large-

scales [Russakovsky et al., 2015]. Acquiring a large-scale annotated data is

a time-consuming process. Because of that, approaches based on a lighter
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weight image label is something that researchers have previously proposed

[Zhang et al., 2018, Fiaschi et al., 2012]. Still, recent studies are implementing

point annotations to reduce the supervision task [Aich and Stavness, 2018,

Liu et al., 2019]. Point annotations are easier to obtain than BBoxs, and

many counting and locating approaches do not need to rely on them to identify

an object [Liu et al., 2019]. These types of approaches can rely on context

information, and, for most problems, object instances will share a similar

color, texture, and shape; meaning that the method will learn how to recognize

them even if only using dot annotations [Aich and Stavness, 2018].

Recently, state-of-the-art methods to count objects include the VGG-GAP

and VGG-GAP-HR [Aich and Stavness, 2018] approaches, LPN [Hsieh et al.,

2017] and Deep IoU CNN [Goldman et al., 2019]. These methods were applied

in counting and locating cars, crowds, biological cells and products from su-

permarket shelves, returning impressive performances in high-density scenes.

Despite the promising results, scale variations, clutter background, occlu-

sions, and especially high-density of objects are still challenges that hinder

methods of providing high-quality predictions. That way, in previous work,

we developed an initial model for the location and counting of Citrus-trees in

UAV multispectral images [Osco et al., 2020a]. This initial model significantly

surpassed methods for detecting objects such as RetinaNet and Faster-RCNN.

This chapter present a method for counting and locating objects based on

convolutional neural networks [de Arruda et al., 2022]. The method is based

on a density estimation map with the confidence that an object occurs in

each pixel, following [Aich and Stavness, 2018]. Unlike previous works that

estimate a bounding box for each object, the estimation of a density map

allows a better refinement of the occurrence of objects in each pixel of the

image. Different from previous work (Chapter 3), this method uses a feature

map enhancement with a PPM [Zhao et al., 2017] that allows to incorporate

global information at different scales. Consequently, the proposed method

incorporates sufficient global context information for a good characterization

of objects similarly to Zhang et al. [2019] with its hierarchical context module.

Thus, in this chapter, we hypothesize that this approach is most suitable for

situations of high object density, since it incorporates detection information

in each pixel with the density map and improves this learning with regional

information provided by the PPM module.

Another potential pitfall of previous methods is the missed detections due

to object occlusion and high-density scenes. To compensate for these prob-

lems, and produce the correct predictions, we also propose a Multi-Sigma

Stage (MSS) refinement over the ground truth to provide hierarchical learning

of the object positions. The MSS refinement phase starts from a initial predic-
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tion of the object position to a more refined on of the center of the object. Our

hypothesis is that this refinement allows the method to provide more assertive

predictions, decreasing the number of missed detections caused by occlusion

and high-density scenes.

To verify the performance of the proposed approach, we performed experi-

ments in three image datasets in two challenging applications. First, we per-

form a parameter evaluation in a tree counting dataset containing 3, 370 images

and approximately 232, 000 objects. This dataset presents trees with irregular

distribution and different growth stages, different from our previous research

(Chapter 3). Once the best parameters were defined, we evaluated the general-

ization of the method in two car-counting benchmarks: CARPK and PUCPR+.

For that, we evaluated the proposed method with 13 other state-of-the-art ob-

ject detection methods.

4.2 Proposed Method

This is a improved approach for the baseline method described in Chapter

2 that uses a three-channel image, with w×h pixels, as input.The object count-

ing and location is modeled after a 2D confidence map estimation, following

the procedures presented in [Aich and Stavness, 2018]. We improved the con-

fidence map estimation by including global and local information through a

PPM [Zhao et al., 2017]. We also proposed a multi-sigma prediction phase to

refine the confidence map to a more accurate prediction of the center of the

objects.

Figure 4.1 illustrates the phases of the proposed method, which are de-

tailed in the following section. Our approach is divided into four main phases:

1) feature map generation with a CNN (Section 4.2.1); 2) feature map enhance-

ment with the PPM (Section 4.2.2); 3) Multi-Sigma Stage refinement of the

confidence map (Sections 4.2.3 and 4.2.4); and, 4) object position obtention

by peaks in the confidence map (Section 4.2.4).

4.2.1 Feature Map using CNN

The first part of the proposed approach extract a feature map F with a CNN

based on the VGG19 [Simonyan and Zisserman, 2014], from a RGB input

image (Figure 4.1 (a)), following Sections 2.1 and 2.2. The feature map is used

to characterize the input image and allow the confidence map estimation for

the object detection task.

In this application, we evaluated two variations of our method for different

input images dimensions. The first variation receives an input image with

512× 512 resolution and produces a feature map in the final layer with 64× 64

29



64
128

256

Stage 1

128512

Stage t, (1 < t < T)

(b) Feature map extraction

128 128

POOL

CONV

U
PSAM

PLE

CONCAT

(c) Pyramid Pooling Module (PPM)

Stage T

minσ σmax

128 128

(e) Object detection
(d) Multi-Sigma Stages (MSS)

(a) Input image

CONV

CONV

CONV

Figure 4.1: Our method for the confidence map prediction using the PPM and
the MSS refinement approach. The initial part (b), based on VGG19 [Simonyan
and Zisserman, 2014], extracts a feature map from the input image (a). This
feature map is used as input for the PPM (c) [Zhao et al., 2017]. The resulting
volume is then used as input to the first stage of a MSS phase (d) [Aich and
Stavness, 2018]. The concatenation of the PPM and the prediction map of the
previous stage is used as input for the remaining stages. The T stages apply a
standard deviation (σ) for the confidence map peak, starting at maximum-to-
minimum so that values are spaced equally.
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resolution. Proportionally, the second variation receives an input images with

1024 × 1024 pixels, and the output feature map has a resolution of 128 × 128.

Despite the low resolution, this map can describe relevant features extracted

from the image.

4.2.2 Improving Feature Map with Pyramid Pooling Module

Many CNN cannot incorporate sufficient global context information to en-

sure a good performance in characterizing high-density objects. To solve this

issue, our method adopts a global and subregional context module called PPM

[Zhao et al., 2017]. This module allows CNN to be invariant to scale since it

associates subregional and global information in the feature map. Figure 4.1

(c) illustrates the PPM that combines the features of four pyramid scales, with

resolutions of 1× 1, 2× 2, 3× 3 and 6× 6, respectively.

The highest general level, shown in orange, applies a global max pooling

which creates a 1 × 1 feature map to describe the global image context, such

as the number of detected objects in the image. The other levels divide the

input map into subregions, forming a grouped representation of the image

with their subcontext information, as dense or sparse regions.

The levels of the PPM contain feature maps with various sizes. Because of

this, we used a 1× 1 convolution layer with 512 filters after each level. The fea-

ture maps are normalize with a Batch Normalization (BN) [Ioffe and Szegedy,

2015] step before the upsampling layer. We upsampled the feature maps to the

same size as the input map with bilinear interpolation. Lastly, these feature

maps are concatenated with the input map to form an improved description

of the image. This step ensures that small object information is not lost in the

PPM phase.

Although this module is proposed for semantic segmentation, it has proven

to be a robust method for counting objects according to our experiments. The

module allowed image information at different scales and its global context to

be grouped with the feature map for a better description of the input image,

improving the detection performance.

4.2.3 Refinement with Multi-Sigma Stages (MSS)

The Multi-Sigma Stage phase is based of the Section 2.2, where the im-

proved feature map obtained by PPM is used as input for the T stages that

estimates the confidence map. The first stage (Figure 4.1 (d)) receives the fea-

ture map and generates the confidence map C1 by using five convolutional

layers (described in Section 2.2). At a subsequent stage t (Figure 4.1 (d)), the

prediction returned by the previous stage Ct−1 and the feature map from the
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PPM phase are concatenated. They are used to produce a refined confidence

map Ct. The T − 1 final stages consist of seven convolutional layers (described

in Section 2.2).

Different from the baseline method, we proposed hierarchical learning of

the center of the object. For that we use different σ values for each stage. The

σ values varing from a maximum to a minimum value across the T stages (de-

scribed in Section 4.2.4). In this way, the first stage generates initial position

predictions, while the other stages refine the predictions (Figure 4.3). To avoid

the vanishing gradient problem during the training phase, we adopted a loss

function at the end of each stage as described in Section 2.2.

4.2.4 Generation of Confidence Maps and Object Localization

As mentioned in Sections 2.2 and 2.3, to train our method, a ground truth

confidence map Ĉt is generated by placing a 2D Gaussian kernel at each center

of the labeled objects [Aich and Stavness, 2018]. Besides, the Gaussian kernel

has a standard deviation (σ) that controls the spread of the confidence map

peak, as shown in Figure 2.1.

Different from our previous research (Chapter 3), this approach uses dif-

ferent values of σt for each stage t to refine the object center prediction during

each stage. The σ1 of the first stage is set to a maximum value (σmax) while the

σT of the last stage is set to a minimum value (σmin). The appropriate values of

σmax and σmin are evaluated in the experiments. The σt for each intermediate

stage is equally spaced between [σmax, σmin]. The early stages should return

a gross prediction of the center of the objects, and this prediction is refined

in the subsequent stages. In our experiment, the usage of different σ helped

refine the confidence map, improving its robustness.

Finally, the object locations are obtained from the confidence map of the

last stage (CT ). The peaks are estimate analyzing the 4-pixel neighborhood of

each given location in the confidence map (described in Section 2.1). After

preliminary experiment, we used τ = 0.35 and δ = 1 pixel, that’s allows the

detection of objects from two pixels of distances.

4.3 Experiments

4.3.1 Image Datasets

To test the robustness of our method, we evaluated it in a new and chal-

lenging dataset of eucalyptus tree images. We used this image dataset be-

cause there are different tree plantation densities, ranging from extreme cases

to more sparsed trees (Figure 4.2). This variation in density is a challenge for
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counting and locating objects. The trees were also at different growth stages.

This permitted to evaluate the proposed method in different scales (tree size)

and changes in appearance.

Figure 4.2: Examples of the tree dataset. The eucalyptus trees are at different
growth stages and plantation densities.

The images were captured by an UAV in a rural property in Mato Grosso

do Sul, Brazil, over four different areas of approximately 40 ha each. The

eucalyptus trees were planted at different spacing, the densest being at 1.25

meters from each other, with an average of 1, 750 trees per hectare. These trees

were at different growth stages, variating between high and canopy areas. The

images were acquired with an RGB sensor, which produced a pixel size of

4.15 cm. A total of four orthomosaic were generated from the area of interest.

Approximately 232, 000 eucalyptus trees were labeled as a point feature by a

specialist.

To evaluate the robustness and generability of the proposed approach,

we also compared the performance of our method in two well-known image

datasets for counting cars: CARPK and PUCPR+ benchmarks [Hsieh et al.,

2017]. We compare the prediction metrics with state-of-the-art methods such

One-Look Regression [Mundhenk et al., 2016], IEP Counting [Stahl et al.,

2019], YOLO [Redmon et al., 2016], YOLO9000 [Redmon and Farhadi, 2017],

Faster R-CNN [Ren et al., 2017], RetinaNet [Lin et al., 2020, Hsieh et al., 2017],

LPN [Hsieh et al., 2017], VGG-GAP [Aich and Stavness, 2018], VGG-GAP-HR

[Aich and Stavness, 2018] and Deep IoU CNN [Goldman et al., 2019].

4.3.2 Experimental Setup

The four orthomosaics were split into 3, 370 patches with 512 × 512 pix-

els without overlapping. These patches were randomly divided into training

(n = 2, 870), validation (n = 250) and testing (n = 250) sets. For training the

CNN, we applied a Stochastic Gradient Descent optimizer with a momentum
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of 0.9. To reduce the risk of overfitting, we used the validation set for the hy-

perparameter tuning on the learning rate and the number of epochs. After

minimal hyperparameter tuning, the learning rate was 0.01 and the number

of epochs was equal to 100. Instead of training the proposed approach from

scratch, we initialized the weights of the first part with pre-trained weights

in ImageNet. Six regression metrics, the MAE [Wackerly et al., 2014, Chai

and Draxler, 2014], Root Mean Squared Error (RMSE) [Wackerly et al., 2014,

Chai and Draxler, 2014], the R2 [Draper and Smith, 1998], the Precision, Re-

call, and the F1-Measure, were used to measure the performance. Training

and testing were perfomed in a deskop computer with Intel(R) Xeon(R) CPU

E3 − 1270@3.80 GHz, 64 GB memory, and NVIDIA Titan V Graphics Card (5120

CUDA cores and 12 GB graphics memory). The methods were implemented

using Keras-Tensorflow on the Ubuntu 18.04 operating system.

4.4 Results and Discussion

This section presents and discusses the results obtained by the proposed

method while comparing it with state-of-the-art methods. First, we demon-

strate the influence of different parameters, which includes the σ to generate

the ground truth confidence maps, the number of stages necessary to refine

the prediction, and the usage of PPM [Zhao et al., 2017] to include context

information based on multiple scales. Second, we compare the results with a

baseline of the proposed method. For this, we used the tree counting dataset

and the car counting datasets (CARPK and PUCPR+).

4.4.1 Parameter Analysis

We present the results of the proposed method in the validation set for a

different number of stages on the tree counting dataset. These stages are

responsible for refining the confidence map. We observed that by using two

stages (T = 2), the proposed method already returned satisfactory results (Ta-

ble 4.1). When increasing to T = 4 stages, we obtained the best result, with

MAE, RMSE, R2, Precision, Recall and F1-Measure of 2.69, 3.57, 0.977, 0.817,

0.831, and 0.823, respectively. These results indicate the multi-sigma refine-

ment affect the object counting tasks significantly. This is because the confi-

dence map is refined in later stages, increasing the chance of objects be detect

in high-density regions. Thus, we verified that the increase in the number of

stages is decisive for a good refinement of the predictions. With T = 6 or more

stages we see that the performance stabilizes and begins to decrease, due to

the deepening of the layers.

We evaluated the σmin and σmax responsible for generating the ground truth
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Table 4.1: Evaluation of the number of stages (T ) on the validation set of the
tree counting dataset using σmin = 1 and σmax = 3.

Stages (T) MAE RMSE R2 Precision Recall F1-Measure

2 2.86 3.82 0.974 0.809 0.825 0.816

4 2.69 3.57 0.977 0.817 0.831 0.823

6 3.48 4.61 0.962 0.805 0.836 0.819

8 2.90 3.79 0.974 0.816 0.823 0.818

10 3.32 4.25 0.967 0.789 0.796 0.790

confidence maps implemented in the T stages. In this experiment, we adopt

T = 4 stages that achieved the best results from the previous experiment.

The confidence map from the first stage is generated using σmax, while the

last stage uses σmin, and the intermediate stages are constructed from values

equally spaced between [σmax, σmin]. A low σ, relative to the object area (e.g.,

tree canopy) provides a confidence map without correctly covering the object’s

area. However, a high σ generates a confidence map that, while fully cov-

ers the object, may include nearby objects in high-density conditions. These

conditions make it difficult to spatially locate objects in the image.

The evaluation for σmax is presented in Table 4.2. The highest result was

obtained with σmax = 3, which best covers the tree-canopies without overlap-

ping them. Still, we observed that other values for σmax also returned good

results. Since σmax is used in the first stage, it does a small influence over the

final result, since the confidence map is refined in subsequent stages.

Table 4.2: Evaluation of the σmax in the validation set of the tree counting
dataset. We adopted the σmin = 1 and stages T = 4.

σmax MAE RMSE R2 Precision Recall F1-Measure

2 3.31 4.31 0.966 0.811 0.837 0.822

3 2.69 3.57 0.977 0.817 0.831 0.823

4 3.21 4.24 0.968 0.804 0.816 0.809

The results for the σmin are summarized in Table 4.3. The σmin has great

influence over the final result since it is responsible for the last confidence

map. The overall best result was obtained with a σmin = 1.0, which achieved

a MAE, RMSE, R2, Precision, Recall and F1-Measure of 2.69, 3.57, 0.977, 0.817,

0.831 and 0.823, respectively. This shows that the σmin = 1.0 is the best fit for

the size of the tree canopy. The conducted experiments showed that, with

appropriate values of σmax = 3 and σmin = 1, high performance for counting

trees can be obtained (Table 4.3).

To verify the potential of our method in real-time processing, we perform

a comparison of the processing time performance for different amounts of
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Table 4.3: Evaluation of the σmin in the validation set of the tree counting
dataset. We used σmax = 3 and stages T = 4.

σmin MAE RMSE R2 Precision Recall F1-Measure

0.5 11.01 13.77 0.658 0.868 0.721 0.783

0.75 2.93 3.89 0.972 0.820 0.831 0.824

1 2.69 3.57 0.977 0.817 0.831 0.823

1.25 3.05 4.01 0.970 0.815 0.822 0.817

1.5 2.94 3.73 0.975 0.818 0.810 0.813

stages (T ). Table 4.4 shows the processing time of the proposed method for

values of T = 2, 4, 6, 8 and 10. For this, we used 100 images from the tree

test set and extracted the average processing time and standard deviation. We

used the values of σmin = 1 and σmax = 3 that obtained the best performance

in the previous tests. The results showed that the proposed approach can

achieve real-time processing. For the best configuration with stages T = 4

the approach can deliver an image detection in 1.42 seconds with a standard

deviation of 0.028.

Table 4.4: Processing time evaluation of the proposed approach for different
amounts of T .

Stages (T ) Average Time (sec) Standard deviation

2 0.802 0.022

4 1.426 0.028

6 2.063 0.058

8 2.675 0.059

10 3.373 0.100

4.4.2 Tree Counting

To analyse the design of the proposed architecture, we compared it with a

baseline model that does not include the PPM and the MSS modules on tree-

counting dataset. The overall best result with just the baseline of the CNN

was obtained with a σ = 1, returning an MAE, RMSE, R2, Precision, Recall,

and F1-Measure equal to 2.85, 3.72, 0.977, 0.814, 0.833 and 0.822, respectively.

A gain in performance is observable when analyzing the results from the

inclusion of the PPM and MSS in the baseline (Table 4.5). The inclusion of

the PPM has no significant improvement for the results, while the baseline

with multi-sigma refinement achieves better results. One explanation for this

is that multiple stages provide hierarchical learning of the object position,

refining the prediction of the center of the object across stages. Examples

of the confidence map refinement across the stages are shown in Figure 4.3.
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Besides, when we implemented both these two modules, it outperformed all

the baselines results (Table 4.5). This performance gain can be explained by

the sharing of the benefits that the two modules deliver, on the one hand the

PPM module delivers subregional and global information in the feature map

and the multi-sigma refinement uses this information to refine the objects

predictions throughout the stages. The results shows that the combination of

these two modules is essential to object counting.

(a) RGB Image (b) Stage 1 (c) Stage 3 (d) Stage 4

Figure 4.3: Example of two images showing the confidence map refinement by
our method. The first column presents the Input image and the other columns
present the activation map obtained in Stages 1, 3 and 4, respectively.

Table 4.5: Results of the proposed method and its baseline for the tree couting
dataset.

Method MAE RMSE R2 Precision Recall F1-Measure
Baseline (σ = 0.5) 11.97 15.10 0.62 0.861 0.709 0.772
Baseline (σ = 1.0) 2.85 3.72 0.977 0.814 0.833 0.822
Baseline (σ = 2.0) 3.07 4.37 0.968 0.822 0.805 0.812
Baseline + PPM 2.44 3.38 0.981 0.825 0.836 0.829

Baseline + multi-sigma 2.78 3.64 0.978 0.808 0.833 0.819
Proposed Method 2.05 2.87 0.986 0.822 0.834 0.827

We considered a region around the labeled object position to analyze qual-

itatively the proximity of the prediction with the center of the object. The

results using the best configuration (σmin = 1.0, σmax = 3.0, and T = 4) is dis-

played in Figure 4.4. The predicted positions are represented by red dots,

and the tree-canopies regions are represented by yellow circles whose center
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is the labeled position. The proposed method can correctly predict most of the

tree positions. Another important contribution is that planting-lines are also

learned without the need for annotation or additional procedure (see Figure

4.4 (a) and the expanded research in Chapter 6). Furthermore, the proposed

method can correctly identify trees even outside the planting lines, in a non-

regular distribution (Figure 4.4 (b)).

(a) Planting Lines (b) Non-regular Planting

Figure 4.4: Comparison of predicted positions (red dots) in two images with
different tree density. Predicted positions are represent by red dots while the
tree-canopies regions are represent by yellow circles (centered in the labeled
position).

A comparison of the proposed method with both PPM and MSS modules

against the baseline is displayed in Figure 4.5. The baseline fails to detect

some trees while returning some false-positives. The proposed method is ca-

pable of detecting more difficult true-positives, not detected by the baseline

methods, with fewer false-negatives.

Although the proposed method returned a good performance for the tree

counting dataset, it also had some challenges (Figure 4.6). The "far-from-

center" predictions occurred in short planting-lines (Figure 4.6 (a)) or in dis-

perse vegetation. This also happened in highly dense areas (Figure 4.6 (b)),

although in fewer occurrences. Still, the proposed method was capable of

predicting the correct position of the majority of trees.
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(a) Proposed Method

(b) Baseline

Figure 4.5: Comparison of the predicted positions of (a) the proposed method
and (b) the baseline. Predicted positions are shown by red dots while tree-
canopies are represented by yellow circles. Blue circles show the challenges
faced by the methods.

(a) Short Planting Lines (b) Canopy Overlap

Figure 4.6: Examples of the challenges faced by the proposed method.

4.4.3 Density analysis

To verify the performance of the proposed approach for object detection in

different types of densities, we divided the tree dataset of 250 images into three

density groups: low, medium and high. For this, the images were ordered ac-
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cording to the number of trees annotated, then the three groups were defined

based on the quantities of trees in a balanced way. The low corresponds to the

images that have up to 52 plants, the medium between 53 and 78 plants, and

the high above 78 plants. Thus, the sets of low, medium and high test images

were left with 83, 90 and 77, respectively.

Table 4.6 presents the results obtained by the proposed approach at the

three density levels. We can see that the approach does equally well at each

density level, obtaining better results at the low level achieved an MAE, RMSE,

R2, Precision, Recall, and F1-Measure equal to 1.70, 2.34, 0.966, 0.818, 0.846 and

0.829, respectively.

Table 4.6: Results of the proposed method for different object densities.
Density Level MAE RMSE R2 Precision Recall F1-Measure

Low 1.70 2.34 0.966 0.818 0.846 0.829
Medium 2.10 2.85 0.865 0.824 0.829 0.826

High 2.38 3.36 0.843 0.823 0.826 0.824

Figure 4.7 shows the visual results for plant detection at the three density

levels. We can see that the proposed approach is able to correctly detect the

centers of the plants, even in irregular plantings (see Figure 4.7 (a) and (b)). In

addition, as shown in Table 4.6 we can see that at the low level the approach

detects the plants positions more easily, since there is not much overlap of the

tree-canopies.

4.4.4 Experiments on Cars Datasets

To generalize the proposed approach while comparing its robustness against

other state-of-the-art methods, we evaluated its performance in two well-

known benchmarks: CARPK and PUCPR+ [Hsieh et al., 2017]. These bench-

marks provide a large-scale aerial dataset for counting cars in parking lots.

We adopted the same protocols for the training and testing sets. The images

have been resized from 1280× 720 pixels to 1024× 1024 pixels since we obtained

similar performance when using full-resolution images in our approach.

To perform these experiments, we compare the proposed approach with

state-of-the-art methods: One-Look Regression [Mundhenk et al., 2016], IEP

Counting [Stahl et al., 2019], YOLO and YOLO9000 [Redmon et al., 2016,

Redmon and Farhadi, 2017], Faster R-CNN [Ren et al., 2017], RetinaNet [Lin

et al., 2020, Hsieh et al., 2017], LPN [Hsieh et al., 2017], VGG-GAP and VGG-

GAP-HR [Aich and Stavness, 2018], Deep IoU CNN [Goldman et al., 2019],

GSP [Aich and Stavness, 2019], Crowd-SDNet [Wang et al., 2021] and GAnet

[YuanQiang et al., 2020].
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(a) Low (b) Medium (c) High

Figure 4.7: Examples of the performance of the proposed approach at different
levels of object densities. Column (a) shows the results for low densities, (b)
for medium densities and (c) for high densities.

Experiments on CARPK dataset

The CARPK dataset [Hsieh et al., 2017] is composed of 989 training images

(42, 274 cars) and 459 test images (47, 500 cars). The number of cars per image

ranges from 1 to 87 in training images, and from 2 to 188 in test images.

Unlike the images of trees that we seek to cover its canopy, in the car

images the confidence map seeks to cover the surface of the vehicle to correctly

identify the objects. Table 4.7 presents the comparison with state-of-the-art

methods. We can see that recent approaches such as Crowd-SDNet [Wang

et al., 2021] and GAnet [YuanQiang et al., 2020] reached a MAE of 4.95 and

4.61, and an RMSE of 7.09 and 6.55, respectively. Traditional approaches such

as Faster R-CNN, YOLO and RetinaNet achieved a MAE of 24.32, 45.36 and

16.62, and an RMSE of 37.62, 52.02 and 22.30. The proposed approach reached

a MAE and an RMSE of 4.45 and 6.18, in addition it had a Precision, Recall and

F1-Measure of 0.767, 0.765 and 0.763, respectively.

Similar to this work, Global Sum Pooling (GSP) [Aich and Stavness, 2019]

also estimates an activation map indicating the positions of the objects. Al-
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Table 4.7: CARPK comparative results.
Method MAE RMSE R2 Precision Recall F1-Measure

One-Look Regression 59.46 66.84 - - - -

IEP Counting 51.83 - - - - -

YOLO v1 48.89 57.55 - - - -

YOLO9000 45.36 52.02 - - - -

Faster R-CNN 24.32 37.62 - - - -

RetinaNet 16.62 22.30 - - - -

LPN 13.72 21.77 - - - -

VGG-GAP 10.33 12.89 - - - -

VGG-GAP-HR 7.88 9.30 - - - -

Deep IoU CNN 6.77 8.52 - - - -

GSP 5.46 8.09 - - - -

Crowd-SDNet 4.95 7.09 - - - -

GAnet 4.61 6.55 - - - -

Proposed Method 4.45 6.18 0.975 0.767 0.765 0.763

though it obtains relevant results, the proposed method delivers a gain of 1.01

and 1.91 for MAE and RMSE, respectively. In Figure 4.8 the visual comparison

of the activations generated by the GSP and the proposed approach with its

refinement in multiple stages is presented. We can observe that following the

quantitative results the proposed approach delivers more refined predictions,

achieving greater performance.

We observed that the proposed method achieved state-of-the-art perfor-

mance in counting cars. As shown in Figure 4.9, the proposed method im-

proves the results by detecting more difficult true-positives. Some cars are

partially covered by trees or shadows (Figure 4.9 (a)) while others are partially

occluded (Figure 4.9 (b)) at the edge of the images. Our method was able to

detect such cases. The PPM helped improve the object representation, while

the MSS module refinement provided a better position in the center of the ob-

jects. These features, incorporated in our approach, provide to be important

additions for the detection of objects in these challenging scenarios.

Experiments on PUCPR+ dataset

PUCPR+ [Hsieh et al., 2017] is a subset of the PUCPR dataset [de Almeida

et al., 2015], and it is composed of 100 training images and 25 test images. The

training and test images contain respectively 12, 995 and 3, 920 car instances.

Table 4.8 presents the comparison with 12 state-of-the-art methods for the

PUCPR+ dataset. Again, we note that the approaches GAnet [YuanQiang et al.,

2020] and Crowd-SDNet [Wang et al., 2021] reached a MAE of 3.28 and 3.20,
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(a) GAP (b) GSP

(c) Ours (Stage 1) (d) Ours (Stage 3) (e) Ours (Stage 4)

Figure 4.8: Comparison of the activations generated by GAP and GSP ap-
proaches (first row) adapted from [Aich and Stavness, 2019], and by the mul-
tiple stages of refinement of the proposed approach (second row).

and an RMSE of 4.96 and 4.83, respectively. In the same way as observed for

the CARPK dataset, the traditional approaches Faster R-CNN, YOLO and Reti-

naNet achieved intermediate performances with MAE of 39.88, 130.40 and 24.58,

and an RMSE of 47.67, 172.46 and 4.58. This shows that traditional methods

of object detection are not suitable for dense scenes. The proposed approach

reached a MAE and an RMSE of 3.16 and 4.39, and obtained a Precision, Recall

and F1-Measure of 0.832, 0.829 and 0.830, respectively.

Figure 4.10 presents the detections obtained by the proposed approach on

the PUCPR+ dataset. Due to the point of view of the camera, the cars appear

closer and distant in the same image. Thus, the results help to assess the

generalization of the approach to recognize objects at different scales and with

overlap (Figure 4.10 (a)). Since PPM adds multi-scale information to objects

and multi-sigma refines detections, especially in highly dense areas, we see

that the proposed approach achieves good detections even in these challenging

scenes. Following the results in the CARPK dataset, the proposed approach

achieves good performance in occlusion situations (Figure 4.10 (b)).
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(a) Occlusion by trees and shadows (b) Partial occlusion

Figure 4.9: Car detection by the proposed method on the CARPK dataset. Fig-
ure (a) shows the detections in scenarios of occlusions by trees and shadows,
while figure (b) shows the cars partially hidden at the end of the image. Or-
ange circles highlight challenging cases.

Table 4.8: PUCPR+ comparative results.
Method MAE RMSE R2 Precision Recall F1-Measure

YOLO v1 156.00 200.42 - - - -

YOLO9000 130.40 172.46 - - - -

Faster R-CNN 39.88 47.67 - - - -

RetinaNet 24.58 33.12 - - - -

One-Look Regression 21.88 36.73 - - - -

IEP Counting 15.17 - - - - -

VGG-GAP 8.24 11.38 - - - -

LPN 8.04 12.06 - - - -

Deep IoU CNN 7.16 12.00 - - - -

VGG-GAP-HR 5.24 6.67 - - - -

GAnet 3.28 4.96 - - - -

Crowd-SDNet 3.20 4.83 - - - -

Proposed Method 3.16 4.39 0.999 0.832 0.829 0.830

4.5 Remarks of the Chapter

In this chapter, we proposed a new method based on a CNN which returned

state-of-the-art performance for counting and locating objects with a high-
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(a) Multiple distances (b) Partial occlusion

Figure 4.10: Car detection by the proposed method on the PUCPR+ dataset.
Figure (a) shows the detections in scenarios from multiple distances between
overlapping objects and figure (b) shows the cars partially hidden by trees and
at the end of the image. Orange circles highlight challenging cases.

density in images. The proposed approach is based on a density estimation

map with the confidence that an object occurs in each pixel. For this, our

approach produces a feature map generated by a CNN, and then apply an

enhancement with the PPM. To improve the predictions of each object, it uses

a Multi-Sigma Stage refinement process, and the object position is calculated

from the peaks of the refined confidence maps.

Experiments were performed in three datasets with images containing eu-

calyptus trees and cars. Despite the challenges, the proposed method ob-

tained better results than previous methods. Experimental results on the

CARPK and PUCPR+ indicate that the proposed method improves MAE, e.g.,

from 6.77 to 4.45 on CARPK and 5.24 to 3.16 on database PUCPR+. The proposed

method is suitable for dealing with high object-density in images, returning a

state-of-the-art performance for counting and locating objects.
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CHAPTER

5
A Novel Deep Learning Method to

Identify Single Tree Species in
UAV-Based Hyperspectral Images

5.1 Introduction

The rapid development of lightweight sensors has contributed to the de-

velopment of faster and more accurate techniques for the acquisition of sur-

face information [Aasen et al., 2018]. In the last years, UAV platforms have

been widely used for investigating forest health and monitoring [Nasi et al.,

2015], biodiversity [Saarinen et al., 2018], resource management [Reis et al.,

2019], and have become important tools for monitoring regions, improving

flexibility and cost compared to spaceborne and airborne platforms. Besides,

a recent review in forest remote sensing from UAV-based images showed that

only 7% of the reviewed studies applied hyperspectral sensors in their analysis

[Guimarães et al., 2020]. In the same study, the authors estimated that just

5% of the revised documents did make use of the spectral information of their

data. Obtaining images with high-spectral resolution allows better monitoring

of tree species, but can be challenging with individual trees, because adja-

cent branches and leaves can affect the individual tree recognition and their

spectral signatures [Colgan et al., 2012].

The feature extraction in hyperspectral data was performed with conven-

tional and machine learning algorithms like the Random Forest (RF), Decision

Trees (DT), Support Vector Machine (SVM), Artificial Neural Network (ANN),
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K-Nearest Neighbor (KNN), among others [Nevalainen et al., 2017, Xie et al.,

2019]. The performance of these techniques has been evaluated in several

studies and, for vegetation analysis, some achieved interesting results with

a combination between them and remote sensing data [Maxwell et al., 2018,

Pham et al., 2019]. For the individual tree detection and classification, a study

was able to provide accuracies up to 95% using only shallow learners (i.e.,

conventional machine learning algorithms) and a combination of point-clouds

with hyperspectral data [Nevalainen et al., 2017]. Another paper adopted

object-based classification models like SVM and KNN to map mangrove species

in hyperspectral and digital surface models achieving the best accuracy of al-

most 89% with SVM [Cao et al., 2018]. The CNN based approaches were re-

cently applied to classify tree species using hyperspectral and RGB images

[Nezami et al., 2020, Sothe et al., 2020]. Nezami et al. [2020] achieved 97.6%

of accuracy in detecting the three tree species most common in Finish forests

using CNN with hyperspectral, RGB, and structural data. Sothe et al. [2020]

showed accuracies of almost 84% in detecting tree species in Brazilian om-

brophilous forest with CNN and hyperspectral images only.

As the objects of interest in hyperspectral images usually have a greater

complexity of characteristics, the parametric or conventional machine learn-

ing algorithms may not be the most suitable option. Thus, some researches

started to implement deep learning in the remote sensing field [Nezami et al.,

2020, Safonova et al., 2019, Li et al., 2017]. Deep learning-based methods

are quickly gaining momentum in remote sensing approaches involving image

segmentation and classification, change and object detection [Ma et al., 2019].

Generally, deep learning provided more accurate results when compared to

traditional or shallow methods in situations in which a significant amount

of data is available [Sothe et al., 2020, Khamparia and Singh, 2019]. Deep

neural networks have been applied in environmental studies, some of which

included single-tree species identification. Recently, published studies inves-

tigated state-of-the-art networks like YOLO v3 [Redmon and Farhadi, 2018],

RetinaNet [Lin et al., 2017], and Faster-RCNN [Ren et al., 2015] to detect and

segment tree-species in RGB imagery [Lobo Torres et al., 2020, Santos et al.,

2019].

Despite the good performance of the methods mentioned above, some chal-

lenges of using hyperspectral images still remain. One of them is the Hughes

phenomenon (the curse of dimensionality), which persists when dealing with

small sample sizes [Belgiu and Dragut, 2016]. The high dimensionality of data

could be problematic because an increased number of features may decrease

its performance, as it introduces noise and sparsity in the feature space [Hen-

nessy et al., 2020]. When applying a CNN, which is one of the most commonly
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used deep learning architectures for image and pattern recognition [Alshe-

hhi et al., 2017], data dimensionality reduction approaches are sure to be

expected. For this purpose, either a PCA or mutual information is normally

used [Audebert et al., 2019].

The hyperspectral data can deliver highly detailed views of objects accord-

ing to their response to the analyzed spectral band. In many cases, it is com-

mon to use a band selection step to identify the bands that best characterize

the object of interest [Bioucas-Dias et al., 2013]. A PCA [Richards John and

Xiuping, 1999] is a common example of a band selection technique widely

used in data analysis [Tuominen et al., 2018, Maschler et al., 2018, Liu et al.,

2017]. The PCA is a linear scheme for reducing the dimensionality of high-

dimensional data [Johnson and Wichern, 2015]. Still, PCA learns to reduce

the spectral bands without considering the target position such as individ-

ual trees or any other information in a supervised manner. Therefore, with

the growth in data volumes due to the large increase of spectral bands, more

efficient methods are needed.

Another challenge related to remote sensing images of forested areas comes

from the high-density of their environment. Most of the spectral divergences

between trees and non-trees pixels are important because the brighter pix-

els are often recognized as the tree-crown, while darker pixels are viewed as

indicative of their boundary [Ozcan et al., 2017, Csillik et al., 2018]. In highly-

dense areas, this type of differentiation could be difficult, even for deep neural

network-based approaches as some of them rely on bounding box [Santos

et al., 2019, Ampatzidis and Partel, 2019]. In this manner, in a previous

study, we developed a CNN based method to deal with highly-dense vegetation

[Osco et al., 2020a]. In this study, however, we evaluated the performance of

a primary version of our network to identify citrus-trees in an orchard. This

method, implemented with data captured by a multispectral sensor in the

UAV platform, significantly outperformed object detection methods based on

Bounding Box estimation like RetinaNet and Faster-RCNN.

To fill part of the gap and challenges aforementioned, this chapter presents,

a variation of the propose method [Miyoshi et al., 2020] for detect and geolo-

cate single-tree species in a tropical forest with hyperspectral imagery. The

approach was constructed to cope with a highly-dense scene while implement-

ing a strategy to deal with the Hughes phenomenon. Differently from a PCA,

which is considered a pre-processing step, we aim to estimate a combination

of hyperspectral bands that most contribute to the mentioned task within the

network’s architecture. For this, we included the band selection phase as

the initial step of our network. The phase learns from multiple combinations

between bands which contributed the most for the tree identification task.
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This is followed by a feature map extraction and the MSS module to refine

the confidence map to produce an accurate result of the tree geolocation in a

highly-dense scene.

5.2 Proposed Method

The proposed CNN method takes a hyperspectral image as input and com-

putes the individual tree positions. The hyperspectral image has 25 bands

with w × h pixels each. The tree identification and location are modeled as a

2D confidence map estimation, following the procedures related in [Aich and

Stavness, 2018]. The confidence map is a 2D representation of the likeli-

hood of a tree occurring in each pixel of the image (describes in Section 2.1).

First, the hyperspectral images go through a band learning process before ex-

tracting the feature map. This allows the method to improve its accuracy by

learning the best band combination for the trees detection. We included the

Pyramid Pooling Module [Zhao et al., 2017] that uses global and local infor-

mation to improve the estimation of the confidence map (describe in Section

4.2.2). Besides, we implemented a Multi-Sigma Stage prediction that refines

the confidence map to a more accurate prediction of the center of the trees

(describe in Section 4.2.3).

Figure 5.1 presents the approach for tree detection and geolocation. The

method starts with a band-learning module that is responsible for learning

m new bands from the hyperspectral image (Figure 5.1 (b)). Additionally, a

feature map (Figure 5.1 (c)) is extracted using the output volume of the band-

learning module. This feature map obtains global and local neighborhood

information when passing through the PPM (Figure 5.1 (d)). The volume is

then processed by a Multi-Sigma Stage module (Figure 5.1 (e)) with T stages

to refine the tree detection. Finally, we obtain the tree’s positions (Figure 5.1

(f)) at the end of the method.

5.2.1 Band learning machine module

To improve the band selection process of our network, we propose an end-

to-end band learning module. This module receives a hyperspectral image

with w × h pixels and 25 bands and learns m filters with size 1 × 1 × 25 to

generate an output image with dimensions w × h × m. Figure 5.2 illustrates

an example of the application of the last filter, represented by the yellow color.

Each filter is convolved through the input image (Figure 5.2 (a)) with a stride

of 1 pixel, creating a corresponding output volume (Figure 5.2 (c)). During

training, each filter has its weights adjusted to combine the bands that have

more influence on the single-tree detection task. In this way, the layers that
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Figure 5.1: Proposed method for tree detection. The first layer (b) is respon-
sible for the selection of the m best bands of the input image (a). The initial
part of CNN (c) obtains the feature map of the input image. The feature map is
used as an input to the PPM enhancement module (d). The resulting volume
is used as input in the initial stages of the MSS phase (e). The T stages refine
prediction positions until objects (f) are detected.

have more response in detecting objects will be enhanced, while the others

will be discarded in the process.

5.2.2 Feature map extraction and tree localization

The Feature map extraction and tree localization follow the base method

describe in Section 2.2 and 2.3. In this way, we firts extract the feature map

using a CNN, based on VGG19, from the hyperspectral image. Then, we ap-

plied the PPM module (Section 4.2.2) that is responsible for characterize global

and local information from the image. We use this module to make our method

invariant to scale, because we expect improve the detection of the plants at

different growth stages.

The proposed approach estimates the confidence map from the improved

feature map generate by the PPM module. For that, the MSS phase refines

the feature map for T stages (describe in Section 4.2.3). The goal is refine

the confidence map with different values of σ in the T stages and improve the

robustness. For that we use values of σ ranging from a maximum σmax to a

minimum value σmin. In this aplication we addopted the minimum distance
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Figure 5.2: Band learning module structure. The multispectral image (a) is
convolved with m filters with size 1× 1× 25 (b) that generate an output volume
(c) with m bands.

δ = 1 pixel and the threshould τ = 0.35, after preliminary experiments.

5.3 Experiments

5.3.1 Studied Area

To assess the proposed method, we used a transect area inside a forest

fragment known as Ponte Branca (Figure 5.3). The Ponte Branca fragment is

composed of a submontane semideciduous forest, which is part of the Black-

Lion-Tamarin Ecological Station, in the countryside of the western region of

the São Paulo state, in Brazil. The area has been protected by governmen-

tal laws since 2002 [Brasil, 2002, 2004] and suffered illegal logging until the

end of the 1970s [Berveglieri et al., 2016]. From the 1970s to the 2000s, for-

est degradation was noticed in the northern part of Ponte Branca [Berveglieri

et al., 2018], where the transect is located. In the transect area, more than

20 tree species were encountered [Takahashi Miyoshi et al., 2020, Berveglieri

et al., 2018, 2016]. These species are considered as pioneers and secondaries

tree species, with their majority considered within the primary degree of a

regeneration state [Berveglieri et al., 2018].

From the tree species present in this area, Syagrus romanzoffiana is one

key species since it is one of the most common palm trees in the Brazilian

Atlantic forest [Giombini et al., 2017]. Palm trees can be considered as a key

species in tropical forests because of its abundance of fruits and seeds and its

importance for contributing to the forest structure [Elias et al., 2019, da Silva
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Figure 5.3: Study area in (a) Brazil, (b) São Paulo, (c) the western region of the
São Paulo state, and (d) Ponte Branca forest fragment.

et al., 2011]. Syagrus romanzoffiana is an evergreen tree, tolerant to shadows,

with great potential to be used for fauna restoration and conservation [Vieira

et al., 2019], as blooms it produces fruits almost the entire year [Giombini

et al., 2017, Lorenzi et al., 1992]. Its fruits are consumed by at least 60 dif-

ferent vertebrate species [Mendes et al., 2016], which may be an important

factor in its high productivity. Besides, Syagrus romanzoffiana density can be

related to the successional stage of forests in the area. According to the Brazil-

ian Ministry of the Environment [Vieira et al., 2019], there is a higher number

of Syagrus romanzoffiana samples in early secondary forests than in late sec-

ondary forests. In this manner, this tree species can be used as an indicator

of forest regeneration. Aside from that, a higher frequency of Syagrus roman-
zoffiana indicates that the Atlantic forest in the initial stage of regeneration,

where a lower frequency indicates a more preserved forest.

5.3.2 Image acquisition

The images that composed the dataset used were acquired on 16 August

2016, 01 July 2017, and 16 June 2018. They were acquired during the winter

and dry season using a Rikola hyperspectral camera (Senop Oy, Oulu, Fin-

land). The Rikola camera was onboard a UX4 UAV quadcopter (Nuvem UAV,

Presidente Prudente, Brazil). This camera produces 25 spectral bands ranging

from 506 nm to 820 nm, which were acquired over a transect area, presented
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in Section 5.3.1 (Figure 5.3). Each image datacube is acquired by the two

Complementary Metal Oxide Semiconductor (CMOS) sensors of the camera,

both with 5.5µm of pixel size and frame format with 1017× 648 pixels.

The flights were conducted 160 meters (mts) high above the ground with a

speed of 4 mts · sec−1, providing images with a Ground Sample Distance equal

to 10 cm, and forward and side overlaps higher than 70% and 50%, respec-

tively. After the image acquisition, the dark current correction was performed

with a dark image acquired before the flight campaign. In sequence, geomet-

ric processing was carried out in the Agisoft PhotoScan software (version 1.3)

(Agisoft LLC, St. Petersburg, Russia) using initial Interior Orientation Param-

eters (IOPs) and Exterior Orientation Parameters (EOPs) from the Global Posi-

tion Navigation (GPS) receiver of the camera. Additionally, during the bundle

block adjustment process, three GCPs were used for each flight. The geometric

process was carried out for the bands centered at 550.39 nm, 609.00 nm, 679.84

nm, and 769.89 nm of each dataset, being the remaining ones estimated by the

method developed in [Honkavaara et al., 2013, 2017]. The following products

were created during this process: refined EOPs and IOPs; a sparse point cloud

and a Digital Surface Model (DSM) of the area.

In a subsequent step, we used the EOPs, IOPs, sparse point cloud and

DSM of the area for the radiometric block adjustment. This step is based

on the methodology developed by [Honkavaara et al., 2013, Honkavaara and

Khoramshahi, 2018] and aims to reduce illumination differences among im-

ages and to correct them from the Bidirectional Reflectance Distribution Func-

tion (BRDF) effects. The radiometric process was carried out in the radBA soft-

ware [Honkavaara et al., 2013, Honkavaara and Khoramshahi, 2018] and uses

common points among the images, the Sun position (i.e., the Sun zenithal and

azimuthal angles), and the incident and reflected angles of each pixel. As the

final product, we obtained the orthomosaics of each year radiometrically cor-

rected. Moreover, the empirical line [Smith and Milton, 1999] was applied to

transform the Digital Numbers (DN) into reflectance factor values. The empir-

ical line parameters were calculated using three radiometric reference targets

colored in light-grey, grey and black.

5.3.3 Experimental setup

The images were split into patches with 256×256 pixels without overlapping.

The patches were randomly divided into training, validation and testing sets,

in a proportion of 50%, 25%, and 25%, respectively. Figure 5.4 shows the im-

ages used to extract the training, validation and test sets in each year (2016,

2017, and 2018) and Table 5.1 shows the number of samples. It is noted

the different number of samples for each year because of slight differences in
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Table 5.1: Number of training, validation and test samples used in each ex-
periment.

2016 2017 2018 Total
Training 106 174 175 455

Validation 81 112 112 305
Test 79 116 116 311

the images acquisition. For training, we initialized the first part weights of

our network with pre-trained weights on ImageNet and applied a stochastic

gradient descent optimizer with a moment of 0.9. The validation set was used

to adjust the learning rate and the number of epochs, reducing the risk of

overfitting in our method. After the adjustments, the learning rate was set

to 0.001 and the number of epochs was set to 100. The proposed approach

was implemented in Python on Ubuntu 18.04 operating system and used the

Keras-Tensorflow API. The workstation used for both training and testing has

an Intel (R) Xeon (E) E3 − 1270@3.80 GHz CPU, 64 GB memory and an NVIDIA

Titan V graphics card, that includes a 5120 CUDA cores and 12 GB of graphics

memory. Lastly, to evaluate the performance of the approaches, we adopted

three metrics: Precision, Recall, and F1-Measure [Story and Congalton, 1986].

5.4 Results and Discussion

5.4.1 Validation of the parameters

We first evaluate the influence of the proposed method parameters using

only the validation images and reported the average F1-Measure of the three

years. Parameters σmin, σmax and the number of stages, responsible for the

refinement task in the density map prediction, were evaluated in the data

displayed in Figure 5.5. From the F1-Measure shown in Figure 5.5 (a), σmin = 1

obtained the best result. As show in Figure 5.5 (b), the best result for σmax was

3, that is larger because it determines the density map of the first stage that

is refined in the subsequent stages. The number of stages T ranged from 2

to 8 as shown in Figure 5.5 (c). We found that T = 6 achieved the highest

overall F1-Measure. In this manner, the refinement step of our network used

the following parameters: σmin = 1, σmax = 3, and T = 6.

The input images in the experiment have a total of 25 spectral bands. Our

method can detect the combination of them contributed effectively to the tree

detection task. We then evaluated the proposed convolutional layer for learn-

ing m linear band combinations in Figure 5.6. The experiment showed that

the number of band combinations m = 5 reached the best F1-Measure of 0.939

against 0.892 when considering all the 25 spectral bands. The data shows that
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Figure 5.4: Image parts used for (a) training, (b) validation and (c) test in each
year (2016, 2017, and 2018). The green, yellow and red dots represent the
tree locations in the Train, Validation and Test dataset.

adding more linear combinations does not improve the results. These results

confirm that the proposed layer appropriately combines which bands should

be considered while avoiding the correlation and the scarcity that hinder most

deep learning methods.

Figure 5.7 shows an example of the m = 5 linear band combinations. As
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Figure 5.5: Evaluation of (a) σmin, (b) σmax, and (c) number of stages T respon-
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Figure 5.6: Evaluation of the number of linear band combination m.
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displayed, these 5 new bands highlighted in blue the target of interest. The

point in red represents the labeled ground truth. The values range from yellow

to blue in the colormap, and our object of interest presents the highest values.
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Figure 5.7: Example of the five linear band combinations obtained by the
proposed method. The red dots represent the annotated trees.

5.4.2 Band Analysis

To determine the robustness of the band selection module as an initial

step of our network, we performed a comparison with our network baseline

(i.e., every step beyond the feature map extraction, Figure 5.1) and different

inputs. One input consisted of all the 25 spectral bands, whereas the other

input was composed of spectral bands obtained through a PCA approach.

Table 5.2 displays the overall precision, recall, and F1-Measure for the test

images in the different scenarios described in the previous paragraph. By an-

alyzing the precision values, it is evident that the baseline of our method in

conjunction with the PCA spectral bands returned higher values when in com-

parison with the baseline plus all 25 bands. These precision values indicate

that they do not have many false positives (i.e., do not detect trees incorrectly).

When the recall values are analyzed, the proposed method with the band se-

lection module is better than both approaches.

When considering the F1-Measure, viewed as the harmonic mean of pre-

cision and recall, it is observed that the use of all 25 bands was exceeded by

the PCA (from 0.889 to 0.921). Compared to the baseline with the 25 spectral

bands, the proposed method using five linear band combinations significantly

58



Table 5.2: Comparative results between the proposed method and PCA in the
test images.

Method Precision Recall F1-Measure
Proposed method (25 bands) 0.898 0.881 0.889

Proposed method + PCA 0.979 0.871 0.921
Proposed method 0.973 0.945 0.959

improved the F1-Measure; from 0.889 to 0.956. Besides, the supervised reduc-

tion of bands proposed here proved to be superior to the PCA method, with

an increase of 3.8% in F1-Measure (from 0.921 to 0.959) and 7.4% in recall (from

0.871 to 0.945).

Figure 5.8 shows a qualitative results where the detected trees have a

yellow circle (meaning true-positive) while undetected trees have a red circle

(false-negative). The yellow dots indicate incorrect detection by both methods

(false-positive). By implementing all bands, the network returned the worst

results due to the redundancy of spectral information; corroborating with the

Hughes phenomenon. The PCA improved the detection of trees (Figure 5.8

(b)) although it failed to detect a portion of them, which explains the low re-

call values when compared to the proposed method. As showcased here, the

proposed method was able to detect the majority of trees correctly (Figure 5.8

(c)).

5.4.3 Discussion

The methodological contribution of our CNN based method is evident when

comparisons, both quantitatively and qualitatively, are made (Figure 5.8 and

Table 5.2). The implementation of a band selection module within our net-

work’s architecture not only reduces the amount of noise provoked by the

dimensionality of hyperspectral data but also achieved better performance in

the proposed task. A comparison with the PCA method, which is a common

practice to reduce the number of bands needed, demonstrates the importance

of adopting a method that considers the spectral information of the labeled

object to select the right number of bands. This feature is not a common pro-

cedure for deep neural networks to consider within their architectures, and

future methods could benefit from the module proposed here.

Although we have already applied the proposed approach on high-density

scene [Osco et al., 2020a] this was the first time that we have used a heavily-

dense forested environment and hyperspectral data. The PPM module and the

MSS stage refinement are important phases since they produce a high-quality

density map containing the object’s location. This returns high predictions

even when trees are located near each other. In this sense, these modules are
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Figure 5.8: Qualitative results of tree detection using (a) all 25 bands, (b)
PCA, and (c) proposed method for the years 2016 and 2018. The yellow circle
indicates a true-positive detected tree, while undetected trees have a red circle
(false-negative), and yellow dots indicate incorrect detection (false-positive).

important as they enable our method to predict both overlapping and isolated

trees (Figure 5.8 (c)).

Bearing the results of the proposed network baseline in the detecting Sya-
grus romanzoffiana, it is highlighted the high F1-Measure value achieved (0.959

as shown in Table 5.2). Moreover, besides the developed method, the Sya-
grus romanzoffiana characteristics may assist this tree species identification.

Results from Takahashi Miyoshi et al. [2020] showed the higher reflectance

factor of this tree species when compared with the other seven tree species

belonging to the transect area, especially in the near-infrared region of the

electromagnetic spectrum. In this region, the vegetation response is mainly
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affected by the leaf’s cell structure [Jensen, 2000] and is an important re-

gion to tree species identification [Clark and Roberts, 2012, Dalponte et al.,

2012]. Beyond that, there is the unique crown spatial distribution of Syagrus
romanzoffiana. Its crown shape is like a star, while the other tree species has

umbrella, oval, broad, or irregular shapes among others, not counting the dif-

ference in the existence of different layers in these crowns [Takahashi Miyoshi

et al., 2020].

Lastly, when comparing the results with different researches that applied

deep learning, it is noticed that they are consistent with ours. Sothe et al.

[2020] showed a better performance of CNN than SVM and RF when identifying

tree species from the ombrophilous dense forest. Safonova et al. [2019] found

values of F1-Measures up to almost 93% when applying data augmentation

and CNN in RGB images. Furthermore, Nezami et al. [2020] also achieved

high precision and recall values (i.e., higher than 0.9) when identifying three

tree species using a 3D-CNN. Using the Residual Neural Network (ResNet)

and RGB images acquired with UAV over three years, Natesan et al. [2019]

achieved an average F1-Measure value of 80% to identify three types of pine

trees. The use of deep learning in RGB images is also shown by Santos et al.

[2019] achieving an average precision of 92% in Dipteryx alata tree species

identification. These accuracies demonstrate that our method, with an F1-

Measure equal to 0.959 (Table 5.2), was also able to return state-of-the-art

performance for the detection of tree species in a forest environment.

5.5 Remarks of the Chapter

In this chapter we presented a deep learning method, based upon a CNN ar-

chitecture, to deal with high dimensionality data of hyperspectral UAV-based

images to detect single-tree species. Our approach was constructed with a

band selection feature in its initial step. This implementation within the net-

work proved to be appropriate to deal with high dimensionality and was supe-

rior when compared with the baseline method considering all the 25 spectral

bands and the PCA approach. Our CNN architecture is also followed by a fea-

ture map extraction and a MSS model refinement of the confidence map. The

constructed architecture considers the possibility of every pixel in the image to

be correspondent with an actual tree-species. This was important to produce

accurate results in a highly-dense scene.

The proposed method returned a state-of-the-art performance for detect-

ing and geolocating trees in UAV-based hyperspectral images, with an F1-

Measure, Precision and Recall values equal to 0.959, 0.973, and 0.945 respec-

tively. Differently from other current deep neural networks, our method esti-
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mates a combination of hyperspectral bands that most contribute to the men-

tioned task within the network’s architecture. The approach demonstrated

here is important to deal with forest environment monitoring while providing

accurate identification of single-trees.

62



CHAPTER

6
A CNN approach to simultaneously

count plants and detect
plantation-rows from UAV imagery

6.1 Introduction

Advances in both remote sensing and computational vision areas are im-

proving agricultural landscape mapping in the past years [Weiss et al., 2020].

This integration is benefiting precision farming in several applications, such

as environment control [Jr. and Daughtry, 2018]; phenology characteriza-

tion [Wang et al., 2019a] nutrition evaluation [Delloye et al., 2018, Prado Osco

et al., 2019, Osco et al., 2020b], yield-prediction [Chen et al., 2017, Hunt et al.,

2019, Jin et al., 2018, 2019, Sun et al., 2019]; temporal analysis [Zhong et al.,

2019], crop-management [Wang et al., 2019b] and others. With the intensi-

fication of food demand around the world, farmers are required to increase

their efficiency. However, this increase in productivity must come from tech-

nological advances and optimization of the production areas instead of their

expansion. An accurate estimation of the number of plants in crop fields is

important to predict the amount of yield while monitoring growth status [Ki-

tano et al., 2019]. Likewise, the detection of plantation-rows is essential since

this information can be used by a specialist to evaluate the number of missed

plants in each plantation-row and, consequently, the production rate of a crop

[Oliveira et al., 2018]. These practices can help improve precision farming ap-

plications, resulting in better management of the agricultural system.

63



The visual inspection of plants in agricultural fields is a complicated task

because it can be challenging and biased [Leiva et al., 2017]. Recently, data

obtained from UAV-based sensors have been used to assist its management

[Jiang et al., 2017, 2019, Deng et al., 2018]. Different sensing systems are

used to map plants in high-resolution images, like UAV-based RGB, multi and

hyperspectral cameras [Surovỳ et al., 2018, Ozdarici-Ok, 2015, Paoletti et al.,

2018], LiDAR [Verma et al., 2016, Hartling et al., 2019], Synthetic Aperture

Radar (SAR) [Ndikumana et al., 2018, Ho Tong Minh et al., 2018] and air-

borne imagery [Li et al., 2016]. Sensors such as LiDAR and SAR, although

returns a high performance in plant detection [Jakubowski et al., 2013, Tao

et al., 2015], are high-priced and difficult to reproduce in low-budget models.

To circumvent this, recent studies regarding plant or tree density estimation

have implemented RGB-based sensors in their applications [Weinstein et al.,

2019, Csillik et al., 2018, Fan et al., 2018, Varela et al., 2018, Ampatzidis and

Partel, 2019]. The low cost and high market availability associated with them

may justify this preference. Furthermore, in the computational vision context,

RGB images are enough for straightforward identification tasks such as plant

detection [Wu et al., 2019, Hassanein et al., 2019].

The automatic identification of plants is generally divided into two cate-

gories: detection and delineation [Ozcan et al., 2017]. For detection purposes,

both plant-size and spatial resolution of the image can be considered enough

features [Csillik et al., 2018]. Delineation, however, may require information

regarding spectral heterogeneity between the scene’s objects, shadow com-

plexity, and background effects (e.g. soil brightness) [Nevalainen et al., 2017].

In the past years, morphological operations and segmentation algorithms like

"Watershed", "Valley Following", and "Region Growing" were used to count

plants in both forested [Larsen et al., 2011] and cultivated areas [Ozcan et al.,

2017]. The aforementioned techniques rely mostly on the spectral divergence

between the pixels (plant and non-plant), indicating that a brighter pixel is

recognized as the plant, while dark pixels (viewed as shadows) represent their

boundary. In such cases, an Excess Greenness Index (ExG) could be applied

to individualize the green pixels with high saturation from the background

[Varela et al., 2018], or Object-Based Approaches (OBIA) [Hussain et al., 2013]

or the use of Fourier-transformations [Jensen, 1996] and Gray Level Co-

Occurrence Matrix (GLCM) textural metrics [Huang et al., 2014]. Another

technique could be the conversion from RGB to grayscale Hue-Saturation-

Value (HSV) image data [Oliveira et al., 2018]. These methodologies obtained

interesting results in the last decade. Still, in recent years, more robust and

intelligent algorithms are being created and tested in these applications, like

DL-based models to promote a more generalized approach.
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DL is one type of Machine Learning (ML) technique, based on ANN, adopting

a deep strategy for data representation [Ghamisi et al., 2017, Badrinarayanan

et al., 2015], resulting in a large learning capability and improved perfor-

mance [Ball et al., 2017], in which several components and types of lay-

ers constitute a DL architecture [Kamilaris and Prenafeta-Boldu, 2018]. The

most frequently used architectures in the past years are Unsupervised Pre-

Trained Networks (UPNs), Recurrent Neural Networkss (RNNs), and Convolu-

tional Neural Networks [LeCun et al., 2015, Khamparia and Singh, 2019]. In

recent years, the CNN architectures presented great performances for image

and pattern recognition, especially in remote sensing approaches [Alshehhi

et al., 2017]. These approaches can be majorly separated into spectral, spa-

tial, and spectral-spatial information extraction [Ghamisi et al., 2017, Li et al.,

2017, Zhang et al., 2017]. When considering both spectral and spatial infor-

mation, the model accuracy can significantly improve [Zhang et al., 2017],

which is important since it helps to address the appropriate approach to solve

specific problems.

In vegetation detection and delineation, DL models have been used to iden-

tify weed in bean and spinach fields [Bah et al., 2018], count palm trees in

plantation areas [Djerriri et al., 2018, Li et al., 2017], classify urban-trees

species [Santos et al., 2019, Hartling et al., 2019], tree crown prediction in for-

est areas [Weinstein et al., 2019], counting of rice seedlings [Wu et al., 2019],

identification of citrus-tree crowns [Osco et al., 2020a, Csillik et al., 2018],

tobacco plant detection [Fan et al., 2018], fir-trees insect-damage detection

[Safonova et al., 2019], and others. The models implemented in these studies

were mostly derived from the RNN and CNN architectures, some with modi-

fied versions of previously published algorithms, while others presenting an

entirely new model. Regardless, a recent revision paper indicated that proxi-

mally 42% of the implemented architectures in agricultural studies were based

on CNNs, as AlexNet, VGG16, and Inception-ResNet, compared to other deep

learning architectures, like Recurrent Neural Networks and Recursive Neural

Networks [Kamilaris and Prenafeta-Boldu, 2018].

For the detection of plants, different architectures and modifications were

applied in state-of-the-art studies. CNNs adopting the architectures AlexNet

[Krizhevsky, 2014] and Inception (v2, v3, and v4) [Szegedy et al., 2015, 2016,

Szegedy et al., 2017] had been recently used to count sorghum plants [Rib-

era et al., 2017]. The modification of the mentioned architectures allowed

them to estimate the number of plants using regression instead of classifi-

cation. A modified version of the VGG16 model [Simonyan and Zisserman,

2014] was used to identify tree health status [Sylvain et al., 2019]. Like-

wise, a U-Net [Ronneberger et al., 2015] modification was used to detect palm
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trees [Freudenberg et al., 2019]. A CNN region-based, YOLOv3 [Redmon and

Farhadi, 2018], was used to recognize citrus trees and classify its crown [Am-

patzidis and Partel, 2019]. The YOLOv3 architecture, alongside the RetinaNet

[Lin et al., 2020] and Faster R-CNN [Ren et al., 2015] were also used to clas-

sify tree species [Santos et al., 2019]. Lastly, a modified Deep Convolutional

Network (DCN), considering morphological operations and watershed segmen-

tation, was efficiently used to detect tobacco plants [Fan et al., 2018].

The aforementioned methods returned important information regarding the

tested approaches in a diverse number of agricultural fields. One type of crop

that is still not benefited by these methods is corn. Corn (Zea mays L.) is an

important crop and it is largely cultivated in countries like the United States of

America, Brazil, China, Canada, and others [Mohanty and Swain, 2019]. For

the detection of corn-plants in UAV imagery, few studies have been conducted

with this computer vision approach [Mochida et al., 2018]. An early-season

uniformity detection with a decision tree algorithm in an object-detection ap-

proach was used to identify corn plants in ultra-high-resolution imagery ac-

quired with UAVs [Varela et al., 2018]. Experiments related to drought stress

were evaluated through a DCN with images obtained from a stationary station

[An et al., 2019]. Regarding the use of CNN in UAV imagery, a study applied

the U-Net architecture to segment corn-plants from other field objects [Kitano

et al., 2019]. This study, however, comments on issues that should be ad-

dressed in future research, such as earlier growth stages and higher plant

density. Another unexplored issue, although not mentioned in these studies,

is the detection of plantation-rows.

Another type of agronomic culture that could benefit, both from counting

plants and detecting plantation-rows, is Citrus. Citrus tree detection is an

important prerequisite for farmers and technicians to estimate yield and even,

in some cases, compensate plantation gaps. Recently, studies already dis-

cussed the importance of DL in citrus tree counting and area estimation [Osco

et al., 2020a, Ampatzidis and Partel, 2019, Csillik et al., 2018]. Our previous

research (described in Chapter 3), conducted with UAV-based multispectral

imagery, as well as the others in RGB imagery, returned similar outcomes in

this task. However, to the best of our knowledge, a deep learning architec-

ture capable of counting plants and mapping plantation-rows simultaneously

for different cultivars is, still, a challenging and unproposed-task. A model

with these capabilities can be used as an alternative to the visual interpre-

tation task of crops-fields and could contribute to the sustainable manage-

ment of agricultural systems. Some crops, such as citrus plants, corn, and

many others, have a limited capacity to compensate for missing areas within

a row since they cannot occupy those areas or at least lean towards them, and
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this negatively impacts the yield per unit land area during the harvest season

[Primicerio et al., 2017, Varela et al., 2018, Oliveira et al., 2018, Hassanein

et al., 2019].

Additionally, performing the counting plant task in high-density areas is

a problem even more challenging for both visual inspection and automatic

analysis. Few investigations were conducted to solve counting plant tasks in

high-density plantations [Osco et al., 2020a, Fan et al., 2018], and in most of

these investigations, only one cultivar has been considered. It should also be

noted that the detection of plants and plantation-rows consists of an impor-

tant metric for the assessment of agricultural fields [Primicerio et al., 2017,

Hassanein et al., 2019]. The number of plants helps farmers and rural tech-

nicians to estimate the yield at the end of the crop cycle [Oliveira et al., 2018].

This type of assessment, when performed in the early stages of planting, is im-

portant for rapid decision making. For corn and other types of cultivars, the

decision window is brief, and a rapid detection may help to mitigate or prevent

problems with its production. In citrus orchards, the counting of trees is also

used to estimate yield and can help farmers to better monitor gaps in their

plantation-rows.

In this regard, aiming to contribute to the aforementioned issues, this

chapter present a new deep learning architecture to simultaneously count

plants and detect plantation-rows for distinct cultivars from UAV imagery

[Osco et al., 2021]. Our approach is based on a CNN in which its architecture

is formed by two processing branches that share information (concatenated)

for counting plants and detecting plantation-rows. This allows the refinement

of plant detections to the regions where the plantation lines were detected,

similarly, the plantation lines learn and adjust to the positions in which the

plants are. In our approach, we used RGB imagery to compose a dataset since

it is a lower-priced solution than most of the remaining remote sensing sys-

tems, being easily replicable in other situations. The framework discussed

demonstrates a viable solution with computer vision assistance to count and

detect plants and plantation-rows for different types of crops (i.e. corn and

citrus) and plantation densities while preserving their geolocation information

in UAV-based RGB imagery.

6.2 Materials and Method

The framework proposed in this chapter was composed of five steps: (1) The

acquisition of RGB images from corn and citrus fields with a camera embedded

in a UAV platform. (2) The pre-processing of images and their labeling by

a specialist in a Geographical Information System (GIS) environment. Here,
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the specialist defined the plantation-rows using a line-feature and the corn-

plants and the citrus-trees with point-features. (3) The data splitting into

training, validation, and testing datasets using the hold-out method. (4) The

model’s performance evaluation with the detection of the plantation-rows and

the number of plants. (5) The error metrics calculated for each task performed

by our CNN method.

6.2.1 Study Area and Data

The study was firstly conducted with corn (Zea mays L.) plants in an ex-

perimental area undertaken at "Fazenda Escola" at the Federal University of

Mato Grosso do Sul, in Campo Grande, MS, Brazil. The evaluated area has

approximately 7, 435 mts2, with corn-plants (both young and mature) planted

at a 30 × 50 cm spacing, resulting in 4-to-5 plants per square meter. The

plantation-rows consist of two different lengths and directions. We considered

plants in two growth stages: Corn Recently Planted (V3) and; mature-stage

with cobs. The processed image was labeled by a specialist in the QGIS 3.10

open-source software. Firstly, the plantation-rows were detected using a line

feature. Secondly, each line was scanned by the specialist and the corn plants

were manually identified by a point feature. Figure 6.1 shows a high-scale ex-

ample of the resulting process.

We collected the corn images with a Phantom 4 Advanced (ADV) UAV for two

days, using an RGB camera equipped with a 1-inch 20-megapixel CMOS sen-

sor. The images were obtained with 80% longitudinal and 60% lateral overlaps,

with a GSD of 1.55 cm. The images were processed with Pix4D commercial

software. We optimized the interior and exterior parameters of the acquired

images and generated the sparse point cloud based on the Structure-From-

Motion (SfM) method. We then create the dense point clouds using the Multi-

View Stereo (MVS) technique. The UAV flight was approved by the Department

of Airspace Control (DECEA), which is responsible for Brazilian airspace.

The second experiment was conducted in a citrus orchard (Citrus Sinensis
Pera), located in the countryside at the Boa Esperança do Sul municipality, SP,

Brazil. The area is composed of citrus-trees at their maturity phase, in which

the spacing in-line was initially around 3 meters from each-others and in the

later years, more recent trees were planted at a more approximate area; thus,

returning different spacing in-line and densities. The area has approximately

10.000 mts2. We used an X7 - Spire II UAV embedded with an RGB sensor at

80 meters flight altitude, returning a GSD equal to 2.28 cm. To preprocess

these images, we adopted the same strategy mentioned previously using the

Pix4DMapper software. Figure 6.2 illustrates both areas (corn and citrus) with

their respective locations and RGB imagery examples.
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Figure 6.1: High-scale examples of the RGB images used displaying the
plantation-rows, corn-plants, and citrus-trees that were manually identified.

Figure 6.2: Overall visualization of the study area. The cornfield (row-below)
is located at Campo Grande, MS, and the citrus orchard (row-above) is in Boa
Esperança, SP.
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6.2.2 Convolutional Neural Network

The UAV images with w × h pixels were processed using the proposed CNN

model to compute the positions of individual plants and plantation-rows. The

object counting and geolocation were modeled after a 2D confidence map es-

timation using the method presented in both [Aich and Stavness, 2018] and

our previous work (described in Chapter 4). The confidence map in this case

is a 2D representation of the likelihood of an object occurring in each pixel.

The PPM [Zhao et al., 2017] that inserts global and local neighborhood infor-

mation was included in the model to improve the estimation of the confidence

map. A MSM prediction that refines the confidence map was used to a more

accurate prediction of the center of the objects, similar to our previous work

to detect tree species in a national park with hyperspectral imagery [Miyoshi

et al., 2020].

Our latest addition to the aforementioned architecture was two detection-

branches inside the MSM. This addition was necessary to our model to un-

derstand how plantation-rows are displayed in the image and how they are

related to the plant’s position, and vice-versa. This construction permitted

our deep network to return both lines and point features simultaneously with

their respective geolocation information. It should be mentioned, however,

that since our method stores the coordinates of the Geographic Tagged Image

File Format (GeoTIFF) image format in a separated file, it does not necessarily

require this geographic information to perform the detection when analyzing

the input image. Regardless, this information is then added later at the final

prediction map, where it incorporates the coordinates X, Y from the sepa-

rated file and creates a geolocated predicted map. The concatenation process,

as well as the information exchanged between the two-branches during the

multiple stages, allows for the refinement of both confidence maps generated

("object-plant" detection and "line-plantation" detection). With this refinement,

the line or point feature is extracted from the center’s position of the highest

peaks on the map.

Figure 6.3 presents our method for detecting plants and plantation-rows.

The method starts by extracting the feature map as shown in Figure 6.3 (b)

from an RGB input image as viewed in Figure 6.3 (a). The feature map obtains

global and local neighborhood information when passing through the PPM

(see Figure 6.3 (c)). The volume is then processed by an MSM, see Figure

6.3 (d), with T stages, and is refined to detect plants and plantation-rows

in two branches. For this, the volume obtained from the PPM module, as

shown in Figure 6.3 (c), is used as an input for the T stages of MSM. Also,

both branches share their volumes between each stage of the MSM, obtaining

a more precise identification of the plants and plantation-rows. Finally, we
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obtain the detection of plants as shown in Figure 6.3 (e) and rows as shown in

Figure 6.3 (f) at the end of the processing of each branch.

Figure 6.3: Our method proposed for detecting objects and plant-rows: (a)
input UAV image, (b) the feature map obtained by CNN, (3) the PPM enhance-
ment module with the feature map as an input, (d) the two detection branches
of the MSM, (e) object detection (plants) and (f) line detection (plantation-rows).

The following subsections detail the four main phases of the proposed CNN:

(1) the generation of the feature map with CNN; (2) the feature map enhance-

ment with the PPM module; (3) The refinement of the confidence map by the

MSM module; and (4) how we obtain the positions of objects and rows through

peaks in the confidence map.

Feature Map Extraction

The feature map was extracted from an RGB input image with 256 × 256

pixels using a CNN based on the VGG19 [Simonyan and Zisserman, 2014] as

a feature extractor. The CNN has eight convolutional layers, two maximum

pooling layers, and one upsampling layer. The convolutional layers have 64,

128, and 256 filters, all with a size 3×3. The two max-pooling layers are inserted

after the second and fourth convolutional layers and use a window of 2 × 2.
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Also, after each convolutional layer, we have ReLU function. Finally, the last

layer consists of an upsampling layer that delivers an extracted map with

128× 128 resolution that can describe relevant features from the image.

Pyramid Pooling Module - PPM

The global and local image properties allow for the identification of the

plant’s position to be more accurate in high-density situations. On the other

hand, challenges in identifying plants at different scales and stages of growth

are very common in various applications. Thus, our method adopts the global

and local context module called PPM [Zhao et al., 2017], which allows it to

be scale-invariant and helps the network to deal with multiple sizes of the

canopy. The PPM module receives as input the feature map generated in the

previous step (Figure 6.3 (b)) and applies four parallel pooling layers (Figure

6.3 (c)), following the described in Section 4.2.2. Finally, the PPM delivers a

improved feature map of the image with global and sub-regional information.

Multi-Stage Module Refinement and Co-Shared Information

The MSM refinement phase estimates a confidence map from the improved

feature map obtained by the PPM. This phase includes two branches of detec-

tion with T refinement stages; the first is for plant detection and the second is

for plantation-row detection. The first stage contains five convolutional layers

and receives as input the improved feature map of the PPM module. The first

three layers have 128 filters with 3×3 sizes, the fourth layer has 512 filters with

1 × 1 size, and the last layer is composed of a single filter that corresponds

to the confidence map generated by the first stage of each branch, Cplant
1 and

Crow
1 , respectively.

The T − 1 final stages refine the positions predicted in the first stage, form-

ing one type of hierarchical learning of the object positions. Because of that,

in the stage t, where t = [2, 3, ..., T ], the prediction returned by the previous

stage of each branch (Cplant
t−1 , Crow

t−1) and the feature map from the PPM process

are concatenated. Later, they are used to produce a refined confidence map

for each branch of the stage t (Cplant
t and Crow

1 ). These stages have seven con-

volutional layers, in which: five layers with 128 filters with a 7 × 7 size; and

one layer with 128 filters with a 1× 1 size. The last layer has a sigmoid activa-

tion function so that each pixel represents the probability of the occurrence of

an object (values between [0, 1]). The remaining layers have a ReLU activation

function.

Sharing volumes between the branches at the end of a stage t allows the

learning of the plantation-rows, from the previous stage Crow
t−1, to influence the

plant prediction in the current stage of Cplant
t , refining object predictions for
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regions where plantation-rows have been identified. Similarly, learning the

positions of plants from a previous stage Cplant
t−1 helps the row detection branch

to predict more accurate plantation-rows in the current stage, Crow
t , because

they consider the object’s predictions for defining these rows. Also, the use of

the improved feature map obtained in the PPM phase at the entrance of each

stage allows for multi-scale features, obtained from both the global and local

context information, to be incorporated into the refinement process.

Lastly, to avoid the vanishing gradient problem during the training phase,

we adopted loss functions to be applied at the end of each stage of the branches.

Each branch (i.e. Cplant
t−1 , Crow

t−1) has its loss function (similar to Equation 2.3); so

while fplantt represents the loss function of the plant detection, f rowt represents

the loss function of the plantation-row itself (similar to Equation 2.4). By the

end of it, the general loss functions of each branch are also calculated.

Confidence Map

To train our approach, two confidence maps, Cplant
t and Crow

t are gener-

ated as ground truth for each stage t by using annotations of the plants and

plantation-rows in the image (see Section 6.2.1). The confidence map is gen-

erated by placing a 2D Gaussian kernel at the labeled plants and plantation-

rows. Thus, in the object detection (plant), we have high responses in their

centers, while in the row detection, we have high responses over the entire ex-

tension of the plantation-rows. The Gaussian kernel has a standard deviation

(σt) that controls the spread of the confidence map peak, as shown in Section

2.1.

Our approach uses different values of σt for each stage t to refine both the

plant and the row predictions during each stage. The σ1 of the first stage

is set to a maximum value (σmax) while the σT of the last stage is set to a

minimum value (σmin), following Section 4.2.3. Unlike previous research, this

approach has two branches and the values of σmax and σmin for each branch are

independent and could be different for plant and row detection. This generates

more accurate maps for each task, depending on the characteristics of the crop

and plantation pattern itself.

Figure 6.4 illustrates two examples of ground truth confidence maps with

three values of σ for the V3 corn dataset. The top line of the image shows

the confidence map for plant detection while the bottom line presents the

confidence map for row detection. Column (a) shows the RGB images and the

locations of each plant and row marked by red dots and lines, respectively. The

columns (b, c, and d) present the ground truth confidence maps for σ = 0.5,

1.0, and 1.5, respectively; which are responsible for controlling the spread in

the top values of our confidence maps. During our experiment, the usage of
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different σ helped us to refine the confidence map, improving its robustness.

Figure 6.4: Example of an RGB image and its corresponding ground truth
confidence maps for object and row detection with different σ values.

Object and Row Localization and Extraction

The location of plants and plantation-rows is obtained from the last stage of

each branch (Cplant
t , Crow

t ) of the MSM module. For the location of the objects,

we estimate the peaks (local maximum) of the confidence map by analyzing

the 4-pixel neighborhood of each given location of p, following Section 2.3.

To avoid noise or low probability of occurrence of the positions of p, a

peak in the confidence map is considered as a plant or plantation-row only

if Cplant−plantation−row
T (p) > τ . We set a minimum distance δ to prevent the detec-

tion of plants and rows very close to each other. After conducting a preliminary

experiment, we used as a minimum δ = 1 pixel and τ = 0.35.

To detect rows, we use the skeleton topological algorithm [Quan et al.,

2019] on the row confidence map, Crow
t , to obtain the central activations that

represent the plantation-rows. The skeletonization algorithm makes succes-

sive passes over the map, removing the activation borders. This process is

repeated until there is no border to be removed, and only the skeleton (center-

line) of the confidence map remains. Thus, the algorithm delivers a thin ver-

sion of the shape that is equidistant to its boundaries. Figure 6.5 shows an

example of the confidence map and the skeleton generated by this approach.
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Figure 6.5: Example of skeletonization process on the confidence map. (a)
confidence map Crow

t and its 3D representation, (b) skeletonization process
over the confidence map, and (c) predicted rows over the image.

6.2.3 Experimental Setup

The collected corn images described in Section 6.2.1 were split into 1157

patches with 256 × 256 pixels without overlapping, were 564 and 593 patches

corresponding to V3 and mature corn plantations, respectively. The citrus

plantation images were split into 635 patches with 256 × 256 pixels without

overlapping. The point and line features identified as image-samples were also

split between both (corn and citrus) patches. For the corn plantations (V3 and

mature), 33, 360 plants and 224 plantation-rows were considered in the training

phase. As for the citrus-orchard, 14, 810 trees and 213 citrus plantation-rows

were used in our experiment. As previously stated, this type of characteri-

zation with different plant phonologies, sites, and sensor characteristics was

essential to ascertain the generalization and robustness of our approach.

The training, validation, and testing sets of each dataset were formed through

a random division of the patches in 60%, 20%, and 20%, respectively. This al-

lows the network to not consider the same patch for any of the subsets. For

training, we initialize our network with the weights of the first part pre-trained

on ImageNet, and apply a SGD optimizer with a moment of 0.9. The vali-

dation set was used to adjust the learning rate and the number of epochs,

reducing the risk of overfitting. After the initial adjustments, the learning

rate was set to 0.001 and the number of epochs was set to 100. We also

performed additional comparisons with our CNN against state-of-the-art deep

neural networks, like High-Resolution Network (HRNet), Faster R-CNN, Reti-

naNet, YOLOv5 and YOLOv7. These networks were implemented considering

the same dataset characteristics and sampling conditions.

Both our CNN and the other deep networks methods were implemented in

Python language on the Ubuntu 18.04 operating system and used the Keras-
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TensorFlow API. The computer used for training and testing has an Intel (R)

Xeon (E) E3 − 1270@3.80 GHz CPU, 64 GB memory, and an NVIDIA Titan V

graphics card, that includes a 5120 CUDA cores and 12 GB of graphics mem-

ory. Finally, to evaluate the performance of our approach, we adopted five

regression metrics: MAE, Mean Relative Error (MRE), the MSE, P, R, and

F1. The regression metrics, MAE, MRE, and MSE, were also adopted in this

problem since they estimate the comparison between a given number of la-

beled corn plants and citrus trees against the predicted positions returned by

the network for each image patch. This strategy was also adopted in related

work [de Arruda et al., 2022] and helped to better explain the estimative and

performance of the method.

6.3 Results

This section is organized as follows: First, we present the results from an

analysis of the parameters to refine the prediction, following the analysis of

the σ values for the generation of the ground truth confidence maps of each

detection branch. Later, we compare the results from our corn plantation

dataset with a baseline method of our CNN as well as other deep learning ar-

chitectures. Finally, we explore the generalization of our method by evaluating

its performance on an entirely different agricultural crop (citrus).

6.3.1 Corn Plantation Dataset

Parameter Analysis in Plant and Plantation-Row Detection

Here, we present the results of the proposed method in the validation set

for a different number of stages on the corn-crop dataset. These stages are

responsible for refining the confidence map. We observed that, by using two

stages (T = 2), the proposed method already returned the following results

(Table 6.1). When increasing to T = 6 stages, we obtained the following results

in detecting plants: MAE = 7.778, MRE = 0.1360, MSE = 100.132, P = 0.865, R =

0.937, and F1 = 0.894. These results indicate that the MSM phase affects the

plant detection/counting tasks significantly. This is because the confidence

map is refined in later stages, increasing the chance of plants to be detected in

hard-to-detect regions of the image, associated with a highly-dense plantation.

Similarly, we can observe that the performance in predicting plantation-rows

is improved with T = 6 stages, reaching P, R, and F1 of 0.934, 0.983, and 0.956,

respectively. Although the result for eight stages (T = 8) is slightly better than

T = 6 (Table 6.1), the computational cost significantly increases, not justifying

its adoption in later experiments.
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Table 6.1: Evaluation of the number of stages T on the validation set using
σmin = 1 and σmax = 3 for both branches.
Stages (T ) Plant Row

MAE MRE MSE P R F1 P R F 1
2 7.991 0.1398 102.769 0.862 0.928 0.888 0.926 0.985 0.952
4 7.672 0.1342 98.89 0.866 0.931 0.892 0.924 0.985 0.951
6 7.778 0.1360 100.132 0.865 0.937 0.894 0.934 0.983 0.956
8 7.867 0.1376 100.575 0.866 0.936 0.895 0.936 0.984 0.957

We also evaluated the σmin and σmax responsible for generating the ground

truth confidence maps implemented in the T stages of the MSM phase. In the

first stage, the confidence map is generated with σmax, while the last stage uses

σmin and the intermediate stages adopt values equally spaced between [σmax,

σmin]. The σ value concerning the plant influences the predicted location of

their locations by the model. A low σ provides a confidence map that does not

correctly cover the plant’s whole area, while a σ too high can include nearby

plants in high-density conditions. In both cases, these conditions make it

difficult to spatially locate the plants in the image.

To evaluate σmin and σmax we adopted the stages T = 6 that obtained the

best results in the previous phase of the experiment, and we use the same

value of σmin and σmax in the two detection branches (plant and plantation-

row). Table 6.2 shows the evaluation of σmax in the validation set. The highest

result was obtained with σmax = 3, indicating that the confidence map peak,

by adopting this value, covers correctly each plant without overlapping nearby

plants. On the other hand, as the confidence map is refined by the T stages,

and σmax is applied in the first stage, it has a small influence on the final

result, evidenced by the results of the other σmax.

Table 6.2: Evaluation of the σmax in the validation set. We adopted stages T = 6
and σmin = 1 for both branches.

σmax
Plant Row

MAE MRE MSE P R F1 P R F1
2 7.867 0.1376 100.592 0.863 0.934 0.892 0.939 0.984 0.959
3 7.778 0.1360 100.132 0.865 0.937 0.894 0.934 0.983 0.956
4 7.734 0.1353 96.867 0.865 0.931 0.891 0.935 0.984 0.957

Table 6.3 presents the results of the σmin evaluation with the validation

set. In this experiment, we set the σmax = 3 for the two branches and the

stages T = 6 because they obtained the best performances in the previous

experiments. In this phase, we observe that σmin has a great influence on the

method performance since it is used to generate the ground truth confidence

maps at the last stage of the MSM phase. The best result was obtained with

σmin = 1.0, indicating a better fit for the plant canopy size. The experiments

showed that the best results for counting plants were achieved with σmax = 3
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and σmin = 1, delivering F1-Measure of 0.894 and MAE of 7.778 plants per patch,

respectively.

Table 6.3: Evaluation of the σmin in the validation set. We used stages T = 6
and σmax = 3 for both branches.

σmin
Plant Row

MAE MRE MSE P R F1 P R F1
0.5 21.362 0.3737 552.070 0.949 0.597 0.723 0.944 0.984 0.962
1 7.778 0.1360 100.132 0.865 0.937 0.894 0.934 0.983 0.956

1.5 8.230 0.1440 111.115 0.857 0.938 0.890 0.921 0.981 0.948
2 7.840 0.1371 98.902 0.860 0.929 0.888 0.900 0.963 0.928

Regardless of the aforementioned observations, we noticed that the plantation-

row detection performance was better with σmax = 2 and σmin = 0.5, reaching

P, R and F1 of 0.939, 0.984 and 0.959, respectively, for σmax = 2 (see Table 6.2)

and 0.944, 0.984 and 0.962, respectively, for σmin = 0.5 (see Table 6.3). There-

fore, we evaluated the variation of σ between the two branches, which so far

were considered the same. To solve this, we defined a σ pair for each branch,

σplantmin , σplantmax and σrowmin, σ
row
max for plant and plantation-row detection branches,

respectively. For the plant detection branch, we set σplantmin = 1.0 and σplantmax = 3.0

that had the best results in the previous experiments, and we varied the σ of

the plantation-row detection branch according to Table 6.4. The experiments

showed that the best results were obtained with σrowmin = 0.5 and σrowmax = 3.0,

reaching P , R, and F1 of 0.950, 0.983, and 0.965, respectively.

Table 6.4: Evaluation of σ for planting row detection. We adopted the σplantmin = 1,
σplantmax = 3 and stages T = 6.

σrow
min σrow

max
Plant Row

MAE MRE MSE P R F1 P R F1
1 3 7.778 0.1360 100.132 0.865 0.937 0.894 0.934 0.983 0.956

0.5 3 7.672 0.1342 97.283 0.866 0.935 0.894 0.950 0.983 0.965
0.5 2 7.831 0.1370 101.725 0.864 0.934 0.893 0.945 0.983 0.962

Plant and Plantation-Rows Extraction

To analyze the design of the proposed architecture, we compared it with

a baseline model that does not include the plantation-row detection branch.

The overall best result with the baseline method was obtained with σ = 1.0,

returning an MAE, MRE, MSE, P, R, and F1 equal to 6.345, 0.1051, 71.637, 0.870,

0.940, and 0.899, respectively (Table 6.5). Although the result of σ = 0.5 and 2.0

has higher precision value, we observed that in the first case (σ = 0.5), has a

very low recall value, indicating that the number of false-negative predictions

is high. Still, for σ = 2.0, we observe that the recall value decreases while the

F1-Measure maintains the same, indicating a stabilization in the results.
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We analyzed the plant and plantation-row detection branches indepen-

dently to evaluate their performance over the complete method. In both cases,

the results of the proposed approach were better, mainly in the precision

metric. This indicates that the proposed approach benefits from informa-

tion exchange between the branches in the MSM phase. Regardless, these

results also indicate that both branches can be applied independently, with-

out much loss of performance, as in situations where the plantation-rows are

not well defined or in other problems involving a row or centerline detection

(e.g., roads).

Table 6.5: Results of the proposed method and its baselines.
Methods Plant Row

MAE MRE MSE P R F1 P R F1
Baseline (σ = 0.5) 23.849 0.3950 738.876 0.946 0.536 0.685
Baseline (σ = 1.0) 6.345 0.1051 71.637 0.870 0.940 0.899
Baseline (σ = 2.0) 5.991 0.0992 68.132 0.872 0.938 0.899

Proposed Approach 5.486 0.0908 55.982 0.878 0.934 0.901 0.950 0.979 0.963
σplant
min = 1 σplant

max = 3 5.778 0.0957 61.619 0.872 0.939 0.901
σrow
min = 0.5 σrow

max = 3 0.945 0.980 0.961

Regarding the different growth periods of the corn plants (V3 and mature),

our neural network produced similar performance metrics (Table 6.6). The V3

detection was slightly better than mature plant’s detection when evaluating

the classification metrics (P, R, and F1). The V3 detection was also better in

plantation-row detection. This could be related to the smaller size of V3 plants,

and therefore the occurrence of fewer occlusions in the neural network’s pre-

diction. As for the better plantation-row identification, since the information

is exchanged between both CNNs branches (Figure 6.3 (d)), where the con-

catenation from the multi-stage feature extraction is refined with information

from both plant and row locations. So, an improved plant detection will often

result in an improved plantation row detection. It should be noted that the

MAE, MRE, and MSE metrics, which indicate the amount of error produced in

each image patch, were slightly worse for the V3 plants than mature plants. It

should be highlighted that is hard-to-detect plants located mostly at the edges

of the patches (Figures 6.9 and 6.10), implying the increase of MAE, MSR, and

MSE values.

Table 6.6: Performance of the proposed CNN according to the different growth
periods of the corn plantation

Trained over: Tested over: Plant Row
MAE MRE MSE P R F1 P R F1

V3 + Mature V3 + Mature 6.224 0.1038 66.706 0.856 0.905 0.876 0.914 0.941 0.926
V3 + Mature V3 7.504 0.1243 92.530 0.870 0.924 0.891 0.947 0.980 0.961
V3 + Mature Mature 5.008 0.0840 42.184 0.843 0.887 0.862 0.884 0.904 0.893

V3 V3 5.486 0.0908 55.982 0.878 0.934 0.901 0.950 0.979 0.963
Mature Mature 4.378 0.0734 36.848 0.872 0.872 0.870 0.887 0.918 0.901

Figure 6.6 presents some examples of the results obtained with the pro-

posed method for the V3 corn-crop dataset when adopting the best configu-
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ration predefined during the phase of the experiment, σplantmin = 1.0, σplantmax = 3.0,

σrowmin = 0.5, σrowmax = 3.0, and T = 6. We considered a region around the labeled

plant position to analyze qualitatively the prediction within the plant center.

The correctly predicted positions are represented by blue dots in the image,

and the regions are represented by see-through yellow-circles whose center is

the labeled position of the plant. The blue and red dots represent the true

and false plant predictions, respectively, while yellow and red circles identify

whether the annotated plants were detected or not by the method. The pro-

posed CNN can correctly predict most of the plant’s positions. Even in overlap-

ping plants, the proposed approach can correctly identify the plant’s position.

We also observed that the method achieves high performance in plantations

at different density conditions.

Figure 6.6: Visual results of the proposed method for object detection. Pre-
dicted positions are shown by dots while tree-canopies are represented by
circles.

Although the proposed method is appropriate for most of the corn plant

detection and counting tasks, it also faces some challenges (Figure 6.7). The

two main challenges are the plant detection at the borders of the image-patch

(see Figure 6.7 (a)) when most of the plant is occluded, and when we have high-

density regions with plants overlapping each other in the plantation-rows (see

Figure 6.7 (b)). Nonetheless, even in these cases, we observed that our method

can correctly predict the position of the majority of the plants. Moreover, the

predicted positions of the plants have a high level of accuracy, with most of

the predictions (blue-dots) close to the center of the annotations (center of the

yellowish circles).

Figure 6.8 shows the performance of the proposed approach in detecting

plant-rows. The predicted rows (yellow) fits with the annotated rows exten-

sion (red). The three main challenges in the detection of planting rows are

the prediction of rows that correctly adapt the curves of the plantation, the

identification of rows with large spacing between plants, and the identification

of isolated plants outside the correct plant-row.
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Figure 6.7: Examples of the challenges faced by the proposed method for plant
detection. The orange circles show the challenges faced by the method. The
blue dots and the yellow circles represent a correct prediction and the tree-
canopies of the annotated plants. The red-pink dots and red circles represent
the false-positives detections and the missing annotated plants, respectively.

As shown in Figure 6.8 (a), the approach can correctly identify the curves

of the plant-rows, highlighted by the blue circles. This happens because when

exchanging information between the detection branches, the positions of the

detected plants influence the shape of predicted rows. Also, Figure 6.8 (b)

shows that the approach predicted plantation-rows with large spacing between

the plants (blue circles). Finally, the identification of outside plants in the

plant-rows is a challenge, because they may define plant-rows incorrectly. In

this case, the proposed approach can identify them (see Figure 6.8 (c)) without

attributing them to a true plant-row definition.

Comparative Results with State-of-the-Art Deep Networks

Our CNN method obtained better performance when compared to some

state-of-the-art object detection methods, like HRNet, Faster R-CNN, Reti-

naNet, YOLOv5 [Jocher et al., 2022] and YOLOv7 [Wang et al., 2022]. In YOLO

comparison we adopted two subvariations and the use of transfer learning.

For YOLOv5 we use the Large (YOLOv5l) and the xLarge (YOLOv5x) model,

and for YOLOv7 we use the models for normal GPU (YOLOv7) and Cloud GPU

(YOLOv7-W6) proposed by the authors. In additional, we evaluate the method

training from scrat and using transfer learning, represented by "*".

Table 6.7 shows the results of this comparison for the MAE, MRE, MSE,

P, R, and F1 metrics. We observe that the best variations of YOLOv5 and
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Figure 6.8: Examples of planting row detection by proposed method and its
challenges. The blue circles highlight the challenges described. Yellow lines
correspond to the lines identified by the network, while red lines under it
correspond to the labeled example.

YOLOv7 methods were YOLOv5x and YOLOv7*, reaching a 6.590 and 7.017 for

MAE and 0.855 and 0.850 for F1. Our approach obtained better values of MAE,

MRE, MSE, P, and F1 when compared with the evaluated methods, reaching

important differences in the P (+9.5% of HRNet, +12% of Faster R-CNN, +16.3%

of RetinaNet, +1.3% of YOLOv5x and +2, 6% of YOLOv7*) and MAE (−8.665
from HRNet, −11.021 from Faster R-CNN, −14.026 from RetinaNet, −0.366 from

YOLOv5x and −0.773 from YOLOv7*) metrics. This indicates that the proposed

method delivers more accurate detections than the other evaluated deep net-

works while generating fewer false detections.

Table 6.7: Results of the proposed method and the object detection methods
HRNet, Faster R-CNN, RetinaNet, YOLOv5 and YOLOv7 for the corn plantation
(V3 and matures) datasets. The "*" indicates the use of transfer learning in
YOLO methods.

Methods Plant Row
MAE MRE MSE P R F1 P R F1

HRNet 14.879 0.2481 319.258 0.761 0.955 0.840
Faster R-CNN 17.245 0.2876 392.754 0.736 0.952 0.825

RetinaNet 20.250 0.3377 558.025 0.693 0.940 0.786
YOLOv5l 7.896 0.1407 92.258 0.832 0.868 0.849
YOLOv5l* 8.633 0.1516 99.021 0.822 0.856 0.838
YOLOv5x 6.590 0.1176 65.702 0.843 0.867 0.855
YOLOv5x* 8.323 0.1463 97.107 0.823 0.853 0.837
YOLOv7 7.948 0.1418 100.224 0.832 0.867 0.849
YOLOv7* 7.017 0.1247 72.189 0.826 0.876 0.850

YOLOv7-W6 8.952 0.1693 111.314 0.627 0.834 0.716
YOLOv7-W6* 6.905 0.1239 76.000 0.821 0.880 0.849

Proposed Approach 6.224 0.1038 66.706 0.856 0.905 0.876 0.914 0.941 0.926

Despite the proposed method obtaining slightly lower results for R, when

we analyze the F1, which considers P and R, we observed that the approach

still obtains better performance with a difference of +3.6% from HRNet, +5.1%

from Faster R-CNN, +9% from RetinaNet, +2.1% from YOLOv5x and +2.6%

from YOLOv7*. Since the HRNet, Faster R-CNN, RetinaNet and YOLO baseline
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methods implemented in this study require Bounding Box instead of line or

point features, we were not able to evaluate its metrics into the plantation-

rows properly. Nonetheless, our method achieves high-performance metrics

in the detection of plantation-rows, reaching 0.914, 0.941, 0.926 for P, R, and

F1, respectively. This is an important observation since our method can per-

form this type of analysis (simultaneously counting and detecting plants and

plantation-rows) within a one-step architecture.

To verify the potential of the proposed approach in real-time processing,

we compared its performance with the other investigated methods in terms of

computational cost. Table 6.8 shows the average processing time and stan-

dard deviation for the detection in the test set. The values of σplantmin = 1,

σplantmax = 3, σrowmin = 0.5 and σrowmax = 3 and T = 6, which obtained the best per-

formance in previous experiments, were used in this evaluation. The re-

sults show that the approach can achieve real-time processing, offering im-

age detection in 0.582 seconds with a standard deviation of 0.001. Similarly,

the HRNet, Faster R-CNN, RetinaNet, and the best variations of YOLOv5 and

YOLOv7 methods (showed in Table 6.7) obtained an average detection time

and standard deviation of 0.070, 0.053, 0.050, 0.013, 0.012, and 0.009, 0.010, 0.010,

0.0002, 0.005, respectively. The processing time was calculated considering the

workstation described previously (see section 6.2.3).

Table 6.8: Processing time evaluation of the compared approaches.
Method Average Time (sec) Standard deviation
HRNet 0.070949 0.009826

Faster R-CNN 0.053500 0.010663
RetinaNet 0.050697 0.010225
YOLOv5x 0.013122 0.000297
YOLOv7* 0.012188 0.005262

Proposed Approach 0.582698 0.001175

Figure 6.9 shows the visual comparison of object detection methods ap-

plied here to the corn plants dataset in the advanced growth stage (mature

stage with cobs). The proposed approach also returns more accurate detec-

tion than the compared methods. The orange circles show the areas where

our method stands out in comparison to the other CNNs. We can observe that

the evaluated methods generate false detections in denser planting regions.

Regardless, in some cases, they detect corn plants outside the planting lines

or in empty regions. On the other hand, even in challenging situations high-

lighted by the blue circles, we notice that our approach delivers more accurate

detection than the evaluated methods, with a lower number of false detections

(represented by the red dots).

Figure 6.10 shows the performance of the four methods in detecting corn
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Figure 6.9: Comparison of the object detection methods HRNet, Faster R-CNN,
RetinaNet, YOLOv5x and YOLOv7* in the corn plants dataset with a higher
growth stage (mature with cobs). The orange and blue circles highlight usual
and challenging detections, respectively.
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plants in their initial growth stage (V3). In the usual detection situations (high-

lighted by orange circles), where there is no overlap and occlusion, our method

outperforms the compared methods. Also, the compared methods (Figure 6.10

(b), (c), (d), (e) and (f)) fail more at the limits of the planting lines and generate

nearby false detections. In challenging detections (highlighted by blue circles),

our approach delivers more accurate detections than the evaluated methods.

Figure 6.10: Comparison of the object detection methods: HRNet, Faster R-
CNN, RetinaNet YOLOv5x and YOLOv7* in the corn plants dataset with an
earlier growth stage (V3). The orange and blue circles highlight usual and
challenging detections, respectively.

6.3.2 Experiments in the Citrus Plantation Dataset

The parameters used for the citrus plants are the same as the ones adopted

for the corn plants (σplantmin = 1, σplantmax = 3, σrowmin = 0.5 and σrowmax = 3 and T =

6), except for the maximum pixel distance between the prediction and the

ground truth annotation (15 pixels for the citrus radius, while in corn we used

8 pixels), which is justified due to the difference in size between the corn

plants and citrus trees canopies areas. The achieved results show that our
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approach can be generalized into different types of plantations with minimal

adjustments to the model (Table 6.9). Also, even in high-density plantations

such as citrus, our method maintains high performance, delivering highly

accurate predictions. This shows that the MSM module helps not only by

learning information related to plant growth in the multiple stages but also by

learning other plantation types with more challenging canopies (high-density).

Table 6.9: Results of the proposed method for the citrus orchard dataset.

Method Plant Row
MAE MRE MSE P R F1 P R F1

Proposed Approach 1.409 0.0615 3.724 0.922 0.905 0.911 0.965 0.970 0.964

Figure 6.11 shows the performance of the proposed method on the cit-

rus dataset. Different from the corn dataset, these plants have a much more

complex delimitation, with a large canopy and a lot of overlap between more

than one plant. However, following the quantitative results, we found that

the proposed approach detections are accurate, delivering centralized detec-

tions to the plantation-rows. In the plant detection task (Figure 6.11, top row)

the blue-dots and yellow-circles represent the correct detections and the tree-

canopies of the labeled plants, annotated by a specialist. In the plantation-

rows detection (Figure 6.11, bottom row) the red-lines represent the anno-

tations by the specialist and the green lines represent the detections by the

proposed method. Here, our method overcomes different challenges such as

the highly vegetated cover area, that generates overlapping trees canopies (Fig-

ure 6.11 (a)), the detection with plants and plantation-rows occlusion (Figure

6.11 (b)), and the detection of single plants in the limits of the plantation-rows

(Figure 6.11 (c)).

6.4 Discussion

The contribution of our study is to demonstrate a feasible alternative to

correctly predict the actual number of plants while simultaneously detecting

plantation-rows in UAV-based RGB imagery. Upon our evaluation with differ-

ent sets, the method presented here for estimating plants and plantation-rows

may be replicated in other crops, not being only restricted to the ones pre-

sented here. Another important contribution of this method is the detection of

high-dense canopies plantations. The usage of a confidence map boosted by

the refinement between the two architecture branches helped our network to

better detect both overlapped plants and individual plants with high accuracy.

Also, another contribution of our method is the plantation-rows refinement,

which can help farms to correct problems that occurred during the seedling

process at early stages in corn, or compensate for plantation gaps in its area.
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Figure 6.11: Examples of plant and plantation-rows detections in the citrus
dataset. Plant and plantation-rows detections are shown in the top and bottom
row of the image, respectively. The blue-dots and the yellow-circles represent
a correct prediction and the tree-canopies of the labeled plants. The red and
green lines represent the annotated and detected plantation-rows. Orange
circles highlight the challenges overcome by the approach in each scene.
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This form of contribution (plantation-row detection) is also viewed as feasible

by similar studies [Primicerio et al., 2017, Fan et al., 2018, Kitano et al., 2019,

Salami et al., 2019, Ampatzidis and Partel, 2019].

In our corn-field experimental dataset, up to 4 or 5 plants were estimated

per square meter (mts2) through the photo-interpretation point feature extrac-

tion, and our method was capable of detecting these plants with high accu-

racy levels (F1-Measure of 0.876 and MAE of 6.224). An important issue is that

the proposed network only needs points and line features, as opposed to the

bounding box type of label needed for the other neural networks. This de-

creases the time and effort required for the annotation task. Also, our CNN

method achieved interesting results with RGB imagery. This tendency to mi-

grate to RGB sensors achieved important outcomes, enough to be a reliable

alternative from more expensive equipment such as LiDAR or multi and hy-

perspectral sensors. RGB images have a relatively low cost to obtain since

most conventional UAVs come equipped with them. The tendency to adopt

RGB images is not unique to our study [Chen et al., 2017, Wu et al., 2019,

Safonova et al., 2019, Salami et al., 2019]. Even so, we intend to implement

other types of sensors and methods into our research to take advantage of the

proposed method. We believe that this could assist our network in discrim-

inable count plants and detect plantation-rows in other types of environments.

Regardless, both datasets evaluated here (corn and citrus) can be considered

a high challenge, as they not only are highly-dense types of plantations, with

different canopies sizes and pixel-types, but they also represent different plant

characteristics.

In cornfields, studies contributed to plant detection in remote sensing im-

agery. In early-season detection, a decision tree algorithm was able to de-

tect with 0.93 accuracy corn plants with two-to-three leaves [Varela et al.,

2018]. The closest study to our approach comes from Kitano et al. [2019].

Their method used a U-Net architecture modification capable of counting corn

plants in different growth stages and flying heights. The best overall re-

sult had a 2.6% residual percentage, while the worst scenario resulted in a

53.3% residual percentage. Another paper [Gnädinger and Schmidhalter, 2017]

performed a digital counting in maize cultivars in aerial images from UAVs,

achieving correlations up to 0.89 (R2) and demonstrating the feasibility of their

method. One type of deep neural network (DeepSeedling) was also recently de-

veloped based upon a Faster R-CNN model and achieved F1 scores of 0.727 (at

IOUall) and 0.969 (at IOU0.5). In this regard, another research also implemented

the Faster R-CNN model modification to detect maize in terrestrial imagery,

achieving similar scores [Quan et al., 2019]. In this manner, we also adopted

the Faster R-CNN into our model’s comparison; but it returned an inferior
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F1-Measure than the proposed CNN for the same dataset. Our approach,

however, presents a lower R value, which may be associated with the presence

of False-Negatives in our method’s prediction. But, since it resulted in higher

P values than the others, the harmonic metric F1 was overall better. Lastly, a

study that aimed at segmenting individually maize plants with also the Faster

R-CNN and LiDAR imagery returned an accurate model also identifying the

measured height with impressive results (R2 higher than 0.9). In this manner,

another related work developed a method based on an integrated skeleton ex-

traction and pruning approach, also resulting in interesting outcomes [Zhou

et al., 2018].

To show the generalization capability of our model, we also performed ad-

ditional experiments in a citrus orchard. Citrus-tree crowns, in contrast to

the corn plants, are planted in a much denser condition. This highly-density

system is commonly implemented in multiple regions around Brazil and other

countries, as it helps farmers to maintain a high production set and still not

expand their farmlands to new areas. Regardless, this type of system is impos-

ing a new difficulty for the deep learning object detection approach, and our

CNN method, based upon a confidence map extraction, appears to be suitable

to deal with this condition. As not only citrus orchards possess the mentioned

characteristic, other types of crops are also planted at much denser states.

Thus, it is important to consider this dataset as an interesting challenge to

the proposed approach. Regardless, our method was able to return high ac-

curacies even when considering these characteristics (Table 6.9).

Still, regarding citrus orchards, our previous research (described in Chap-

ter 3), with a simpler conception of a CNN, was able to predict citrus-trees

in a different dataset composed only from multispectral imagery; returning

an MAE equal to 2.28 trees and an F1-Measure score of 0.950. Other studies

conducted in RGB based imagery [Ampatzidis and Partel, 2019, Csillik et al.,

2018] were also able to perform well with CNN based architectures (YOLOv3

and a basic CNN), returning classification metrics above 90.0%. Still, since

they evaluated datasets with different characteristics than ours, it is difficult

to perform such comparisons. Besides, plantation-row identification is also

a not commonly found task in the literature. Recently, a novel deep neural

network (CRowNet) was proposed for this task alone [Bah et al., 2020], where

the authors showed their approach to detect rows in different crops.

Another issue that could be further explored with our network is the addi-

tion of datasets with a high variety of weeds and other related problems into

our plantation-rows. In our area, weeds were not mainly a concern. How-

ever, as we concatenated these branches at the end of each stage, the network

can handle the target plant detections with more precision, since it determines
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that, for a plant to exist within a certain position, it needs to share information

with its plantation-line. This reduces the possibility of the neural network de-

tecting additional objects with similar spectral information (like weeds) aside

from the plantation pattern. Besides, the given patterns of weeds are spa-

tially different from the target plants, so this information is also considered by

the CNN when learning the labeled data. Still, the performance of a similar

network was evaluated in a previous study with a much higher weed density

plantation [Osco et al., 2020a], and returned a similar performance. In this

manner, another study demonstrated how an advanced encoder-decoder net-

work was able to outperform other approaches into automatically detecting

both crop-rows and weed within the lines [Adhikari et al., 2019]. This type

of approach could be also considered in our network. Regardless, our neural

network, by accurately identifying plants and plantation-rows in both dense

and sparse environments, with a one-step type of approach, may still help

future research to solve part of this generalization problem when considering

both plant and plantation-row identification in one single step.

As previously stated, other crops may benefit from the approach presented

here. Whether in counting plants, as well as detecting existing plantation-

rows. Since it uses a confidence map where it is calculated the probability

that the plant or tree will occur at each pixel, it differs from common object

detection deep learning methods that need labeling rectangles to detect a tar-

get. In densified plantations, this characteristic of a common object detection

deep neural network can be problematic since overlapping plants may reduce

the performance of the used model [Ampatzidis and Partel, 2019]. Regard-

less, the highest benefit from the method presented here is the incorporation

of a two-branched architecture to deal with plant and plantation-row detec-

tion simultaneously on a one-step basis. Since the multiple stage refinement

branches are concatenated with each other, both detection approaches (plant

and plantation-row) are beneficiated from the knowledge extracted in the other

counterpart. In short, as the networks update the branch of the plantation-

row with information from the plant branch, the plant branch predictions

are refined with information from the plantation-row branch; and vice-versa.

Although we also proved, by evaluating each branch prediction individually

during our experimental phase in our results section, the overall accuracy of

both predictions was higher when considering this strategy.

The proposed CNN is modified to return a prediction map instead of clas-

sification. For this reason, the R2, MAE, and MSE metrics differ from the

commonly found metrics used in this situation. However, studies that ap-

proached plant detection and counting as a classification problem obtained

93.3% accuracy for rice seedlings using a combined deep network [Wu et al.,
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2019], 96.2% for citrus-tree detection [Csillik et al., 2018], and more than 96.0%

to count oil palm trees [Li et al., 2017]. In a study that addressed this prob-

lem as a prediction, the authors evaluated palm-trees and stated that their

AlexNet CNN architecture returned 0.99 R2 predictions, with 2.6% to 9.2% rel-

ative error, depending on the evaluated dataset [Djerriri et al., 2018]. Thus,

it is evident that the CNN proposed in our study achieved results similar to

or better than those existing in the current literature. It should also be con-

sidered the adverse situations evaluated here; as it presented more plants per

area than the usual. Also, none of these studies implemented a plantation-

row detection in their methods; which is another differential of our approach.

Although many object detection deep networks can be used to detect plants

and rows, they require several modifications to simultaneously perform both

tasks. As mentioned, our approach uses a two-branched architecture, and

one branch benefits from the other. This interaction between both branches is

an important feature and does come in handy when both problems are being

considered.

Currently, applications involving UAVs, RGB sensors, and deep learning

models are contributing to addressing the aforementioned issues here dis-

cussed [Weinstein et al., 2019, Csillik et al., 2018, Fan et al., 2018, Ampatzidis

and Partel, 2019]. But a disadvantage of deep learning, in general, is the need

to label thousands of plants for the training process, as well as a high-end

computer to process these data [Goldman et al., 2019]. One of the reasons for

reducing accuracy in our approach was plant-occlusion and high-proximity

between plants (Figure 6.7) and the occurrence of single-plants outside the

plantation-rows, an uncommon spacing between plants, and some "curves"

in the plantation-rows (Figure 6.8). Another issue is related to the consumed

time of our approach concerning other methods (Table 6.8). This occurred

mainly because our neural network computes both plants and plantation-

lines, while the other compared Bounding Box methods only account for plant

detection. Also, on this matter, the usage of object detectors architectures

is an alternative to the adoption of confidence maps and point-labeling over

the input image, but the annotation of the plants with bounding boxes, as

required by neural networks such as Faster R-CNN, is more laborious when

compared to a single point annotation, as required by our approach. Besides,

object detectors have higher difficulties in detecting plants in dense areas as

shown in previous works [Osco et al., 2020b]. Also, the method presented

here can be fed with other data sources, as demonstrated with the variated

dataset tested, and will require less prior information than before. In this

way, where new information is incorporated into the method, more accuracy

and new learning patterns can be expected to be achieved.
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6.5 Remarks of the Chapter

This Chapter introduces a CNN approach to simultaneously detect plants

and plantation-rows in different datasets (cornfields and citrus orchards), de-

rived from RGB imagery acquired with a UAV-based remote system. The pre-

sented method is a feasible alternative from visual inspection and should as-

sist in precision farming practices. It proved highly accurate results, achieving

a MAE of 6.224 plants per image patch, MRE of 0.1038, Precision and Recall val-

ues of 0.856 and 0.905, respectively, and an F1-Measure equal to 0.876. These

results were superior to the results from other deep networks (HRNet, Faster

R-CNN, RetinaNet, YIOLOv5 and YOLOv7) evaluated with the same task and

dataset. For the plantation-row detection, our approach returned precision,

recall, and F1-Measure scores of 0.914, 0.941, and 0.926, respectively. To test

the robustness of our model with a different type of crop, we performed the

same task in the citrus orchard dataset. It returned an MAE equal to 1.409

citrus-trees per image patch, MRE of 0.0615, Precision of 0.922, Recall of 0.911,

and F1-Measure of 0.965. For the citrus plantation-row detection, our ap-

proach resulted in Precision, Recall, and F1-Measure scores equal to 0.965,

0.970, and 0.964, respectively. The proposed method also has a reasonable cost

alternative, since it uses an RGB-based sensor.

Another contribution of our CNN approach is that, by applying a two-

branched architecture and enabling information to be exchanged between

them, our approach can benefit from the results of one detection to the other.

Besides, instead of using a common bounding box object-detection approach,

it estimates a confidence map to detect individual plants. This presents an

advantage when evaluating high-density plantations, since it does not rely on

target boundaries, but it uses the probability of a unique pixel being rec-

ognized as the plant. This architecture is also beneficiated from the two

branche’s approach as their refinement is linked to the information exchanged

between them. As some plants are naturally limited to compensate for missing

areas, we recommend the method here to count and detect plantation-rows si-

multaneously, in a one-step architecture, since it helps to estimate plantation

patterns and errors. We trust that, in the current state, the method provides

an enhancement in decision-making tasks while contributing to the more sus-

tainable management of agricultural areas by remote sensing systems. We

hope that the approach presented here may assist in research regarding re-

mote sensing technologies and precision farming applications.
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CHAPTER

7
Conclusion

In this work we propose a computer vision approach to locate and count

objects using a 2D confidence map. We present different applications of the

method in object detection tasks and image types. We proposed a baseline

method for working with RGB, Multispectral and Hyperspectral images. The

method was tested with different datasets, such as eucalyptus and citrus-trees

orchards, single tree species, palm trees species, cornfields (recently planted

and mature-stage) and vehicle count benchmarks. Datasets have different

conditions like low and high-density objects, uniform and sparse locations,

and different sizes and shapes. In addition, the different types of images

test the approach performance to work with different amounts of data across

channels.

These applications bring improved features to the model to extract better

performance in each object detection task. The first application (Chapter 3)

shows that the method can estimate the number and location of citrus trees

from UAV multispectral imagery. In addition, the method demonstrated rea-

sonable computational costs for embedded real-time applications. Finally,

the method was capable to detect individual trees in high-density plantations

achieving a higher Precision (0.95) and a lower MAE (2.05) than object-based

methods.

In the second application (Chapter 4) we present an improved model for

counting and locating objects with high-density in images. Unlike the first ap-

plication, we have introduced a feature map enhancement (PPM) to provide a

better description of the image with global and sub-regional information. Fur-

thermore, we propose a Multi-Sigma Stage refinement module to improve the

object prediction. Different from the first application, we tested the method in
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two challenging applications (tree and car counting tasks) with RGB images.

The results show that the proposed method generalizes well when applied for

different object detection tasks and is suitable for dealing with high object den-

sity in images, as it achieved an MAE of 4.45 and 3.16 on CARPK and PUCPR+

datasets.

The third application (Chapter 5) shows the detection of single tree species

in dense scenarious. The application works with hyperspectral UAV-based

images and the fourth application uses aerial RGB imagery. To handle hy-

perspectral images of 25 bans, we proposed a band selection module in the

first stage of the network. We show that the proposed approach can handle

with high (hyperspectral) amount of information and returns state-of-the-art

performance to detect and locate single trees in dense scenarios.

In the most recent application (Chapter 6), we introduce a model improve-

ment for the object counting task. We propose a CNN to simultaneously detect

plants and plantation-rows in different RGB datasets (cornfields and citrus

orchards). The approach presents a two-branch refinement phase with co-

sharing information for the detection task, in a one-step architecture. This

model shows that the information exchanged between them improves perfor-

mance in object and line detection individually. The results show that the

methods are suitable for counting and detecting plantation-rows. We evaluate

the method with state-of-the-art methods: HRNet, Faster R-CNN, RetinaNet,

YOLOv5 and YOLOv7. In the object detection task, the method achieves a

MAE of 6.224 plants per image patch and a F1-Measure equal to 0.876. In the

plantation row detection the method achieves a F1-Measure scores of 0.925.

In addition to the applications and improvements presented in this thesis,

the proposed method was used in other counting applications such as Arce

et al. [2021]. In this paper the proposed method with the PPM and MSS mod-

ules is applied over RGB images of palm trees. The method was able to iden-

tify and geolocate single species in a high-complex forested environment. The

method was evaluated with counting methods: Faster R-CNN and RetinaNet,

and returned an MAE of 0.75 trees and F1-Measure of 86.9%.

In future steps we intend to improve the object detection method, insert-

ing features to assist more real applications tasks. In addition, since this

thesis unifies the applications published over the doctorate, we intend to ex-

pand comparision with other recent CNNs and arquitectures. For this, we

are working in adapting the proposed method to use the open-source object

detection toolbox MMDetection [Chen et al., 2019], to test more backbones in

the Feature Map extraction phase.

Finally, we intent to verify the impact of noise and reduced annotations

for training networks. For this, we will systematically reduce the number of
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images and the number of annotations for object detection problems, following

the previous work by [Rolnick et al., 2017, Thulasidasan et al., 2019].
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