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Resumo
A construção de compiladores é uma área de grande interesse na ciência da compu-
tação pois ela é responsável pela tradução de linguagens de alto nível para código de
máquina. No entanto, a complexidade dos compiladores modernos, como o GCC e o
Clang/LLVM, ou mesmo da literatura associada ao assunto, tornam seu aprendizado
e compreensão difíceis. Este trabalho busca minimizar essa dificuldade construindo
um compilador para uma linguagem de programação minimalista (um subconjunto
da linguagem de programação C) associando apenas o contexto teórico necessário
para a compreensão da construção do compilador. Dessa forma, o objetivo do tra-
balho é construir um compilador que implemente as fases de compilação, traduzindo
a linguagem definida, o Micro C, para código Assembly e, finalmente, um binário
executável. Por se tratar de um compilador para aprendizado, todas as etapas de
compilação são explícitas e podem ser executadas de forma independente seguindo
o pipeline de compilação. Dessa forma, é possível compreender como a linguagem é
convertida em seus artefatos intermediários a cada fase do processo. No compilador
desenvolvido para a linguagem Micro C, foi utilizado um projeto modular simples
dividido em front-end e back-end. O front-end está associado as fases de análise (lé-
xica, sintática e semântica) para converter o código fonte em objetos prontos para
conversão em linguagem de máquina. Por outro lado, o back-end realiza a conversão
desses objetos em códigos simplificados e, por fim, código Assembly, pronto para
serem convertidos em binários. Por fim, vários exemplos de teste foram disponibili-
zados para validar o compilador em diversos cenários como laços aninhados (Bubble
Sort, Peneira de Eratóstenes) e recursão múltipla (Fibonacci, Máximo Divisor Co-
mum). O compilador para a linguagem Micro C equivale, em linhas de código,
menos do que 0, 027% do compilador GCC, tornando-o uma ferramenta valiosa para
o aprendizado e ensino de compiladores. Além disso, o código fonte do compilador
e todos os seus artefatos estão disponíveis publicamente.

Palavras Chave: compilador, linguagem de programação, educação
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Capítulo 1

Introdução

The introduction of many minds into many fields of learning along a broad
spectrum keeps alive questions about the accessibility, if not the unity, of
knowledge.

– Edward Levi

Apesar de sua importância, os compiladores modernos, como o GNU Compi-
ler Collection (GCC) [15] e o framework LLVM (utilizado pelo Clang) [10, 11], são
sistemas muito complexos. Eles possuem milhões de linhas de código e décadas
de otimizações. Do ponto de vista de quem está aprendendo sobre compiladores,
são sistemas difíceis de serem compreendidos, estudados e entendidos. Consequen-
temente, a maioria dos estudos acadêmicos desenvolvidos sobre compiladores fica
restrita a algumas fases de compilação como análise sintática e semântica, e tópicos
teóricos como autômatos finitos, gramáticas livres de contexto e gerenciamento de
pilha de compilação.

A construção de um compilador com fins acadêmicos é um desafio em vários
níveis. Primeiro, escrever um compilador para uma linguagem (das análises iniciais
do código fonte até a geração de código de máquina) envolve inúmeros conceitos
de computação, tanto teóricos quanto de implementação. Este capítulo introduz o
trabalho, focando na construção de compiladores com o objetivo de criar um material
que permita que outros acadêmicos possam compreender, de forma prática, como
um compilador é construído, os desafios de implementação e os conceitos teóricos
envolvidos.

O desenvolvimento da linguagem Micro C, como um subconjunto de uma lingua-
gem conhecida, pode ajudar no aprendizado de programação e ainda permitir que
o conhecimento adquirido com essa micro linguagem possa ser aproveitado quando
do estudo da própria linguagem C. Além disso, pode servir como ferramenta para o
estudo de compiladores. Pois, como o código do compilador é reduzido e cada uma
das etapas de compilação é explícita, isso permite que seja compreendido como cada

1



Introdução 2

uma das etapas envolvidas na conversão do código fonte em linguagem de máquina
foi desenvolvida.

Por outro lado, o compilador do Micro C não está preocupado com performance
ou otimização de código. Seus fins são didáticos para o aprendizado sobre construção
de compiladores e conceitos necessários para o seu desenvolvimento. O objetivo é
utilizar os conceitos teóricos da ciência da computação de livros clássicos [1, 4, 13]
e utilizar apenas o necessário desses conceitos para implementar um compilador
completo e com código acessível [14] publicamente sob a licença GPLv3.

1.1 Compiladores vs. Interpretadores
Programas de software são escritos em linguagens de alto nível, como C ou Python,
pois são a forma como programadores conseguem expressar conjuntos de instruções
para que um computador possa executá-las. Contudo, um computador não compre-
ende a lógica e muito menos instruções textuais escritas em códigos de alto nível. O
que a CPU de um computador consegue executar são instruções binárias de baixo
nível, conhecidas como código de máquina.

Quem realiza a tradução do código que o programador desenvolveu em linguagem
de alto nível em instruções que o hardware consegue executar é o compilador que é
um tradutor entre as duas linguagens. Existem duas abordagens para esta tradução,
a compilação e a interpretação.

Um compilador é um programa que traduz um código-fonte de alto nível (ex:
Micro C ) para um código-alvo de baixo nível (ex: Assembly x86-64), antes de sua
execução. O resultado desse processo é um arquivo executável independente (ex:
programa.exe) que o sistema operacional pode carregar e executar diretamente no
processador.

A principal característica de um compilador é que a tradução ocorre apenas
uma vez. O programa final gerado é o código de máquina nativo pronto para ser
executado [1]. O compilador do Micro C é um exemplo dessa estratégia de tradução.

Um interpretador, por outro lado, não produz um arquivo executável. Em vez
disso, ele intepreta as instruções em tempo de execução. O interpretador lê o código-
fonte (ou um código intermediário chamado de bytecode) instrução por instrução e
executa a ação correspondente.

A principal característica de um interpretador é que ele atua como um processa-
dor virtual, simulando a execução do programa. Linguagens como Python ou Ruby
são exemplos de linguagens que dependem de um interpretador. Nystrom [13] mos-
tra que esta abordagem é muito portável (o mesmo código-fonte pode ser executado
em qualquer máquina que tenha o interpretador), mas incorre em penalidades de
performance, pois a tradução ocorre a cada execução.

As diferenças fundamentais entre as duas abordagens impactam diretamente a
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Introdução 3

performance, a portabilidade e a forma como os erros são tratados. Enquanto o
compilador traduz o programa uma única vez antes de sua execução, o interpretador
executa instrução por instrução durante a execução do programa.

Dessa forma, com o compilador, a tradução do código fonte para o código de
máquina é gerado apenas uma única vez para o sistema e arquitetura alvo, o que é
diferente do interpretador que geralmente interpreta o código fonte todas as vezes
ou, na melhor hipótese, gera um código intermediário (bytecode). Essa diferença no
processamento e execução faz com que o compilador gere códigos executáveis pelo
computador muito mais rápidos em relação aos códigos interpretados.

Além disso, a compilação consegue detectar vários erros antes da geração do
código binário, pois ele realiza uma verificação estática antes de traduzir, enquanto
o interpretador realiza verificações dinâmicas gerando erros e exceções em tempo
de execução. Por fim, do ponto de vista da portabilidade, os códigos compilados
ficam dependentes das arquiteturas e sistemas operacionais alvos da compilação
enquanto os códigos interpretados são muito mais portáveis pois dependem apenas
da existência do interpretador para o sistema desejado.

1.2 Estrutura do Trabalho
Este trabalho está organizado em seis capítulos, além da introdução. No Capítulo 2,
são detalhadas a Análise Léxica, a teoria dos autômatos finitos e a implementação
do scanner.c do compilador para converter texto em tokens. No Capítulo 3, é
abordada a Análise Sintática, explicando a gramática da linguagem do Micro C, a
implementação do parser recursivo descendente e a construção da Árvore Sintática
Abstrata (ASA). Em seguida, no Capítulo 4, aborda-se a Análise Semântica, de-
talhando a implementação da Tabela de Símbolos, o gerenciamento de escopos, a
checagem de tipos e o cálculo dos offsets de memória, garantindo que não existam
inconsistências entre o que foi programado e a linguagem. Encerrando, dessa forma,
a construção do front-end do compilador.

O próximo passo na construção do compilador é a construção do back-end, ou
seja, a conversão das estruturas lógicas em linguagem de máquina. Dessa forma,
no Capítulo 5 se inicia essa construção, explicando a arquitetura da Representação
Intermediária (RI) e a tradução da ASA gerada nos capítulos anteriores para o
Código de Três Endereços (CTE). Finalizando o back-end, no Capítulo 6 é feita a
implementação e o detalhamento dos modelos de memória (stack frame), convenções
de chamada (ABI) e a tradução final da RI para o código Assembly x86-64.

Vale destacar que, alinhado ao propósito didático do projeto, o compilador foi
implementado para permitir a execução passo-a-passo. A cada fase concluída
descrita nos parágrafos anteriores, a ferramenta é capaz de gerar um artefato cor-
respondente àquela etapa (como a lista de tokens, a visualização da ASA, a tabela
de símbolos, o código intermediário e o código em Assembly). Essa funcionalidade
permite que o usuário inspecione e valide os resultados parciais de cada processo
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Introdução 4

de compilação do Micro C antes de prosseguir para a próxima fase do compilador.
Além disso, a ferramenta também permite a execução de todas as etapas de uma
única vez para gerar o executável final diretamente, imprimindo a saída do código,
caso haja.

No Capítulo 7, são apresentados os resultados da implementação, discussão dos
principais desafios de implementação e trabalhos futuros. Por fim, são apresentados
quatro apêndices. O Apêndice A descreve a linguagem definida para o Micro C,
o O Apêndice B descreve a Gramática Livre de Contexto aceita pelo Micro C, o
Apêndice C apresenta alguns exemplos de códigos que podem ser implementados
e compilados e, finalmente, o Apêndice D mostrando um exemplo de compilação
completa passando por todas as etapas de compilação até a geração de um binário
para o Linux.

facom-ufms



Capítulo 2

Análise Léxica

It was the best of times, it was the worst of times, it was the age of wisdom,
it was the age of foolishness, it was the epoch of belief, it was the epoch of
incredulity, it was the season of Light, it was the season of Darkness, it was
the spring of hope, it was the winter of despair, we had everything before
us, we had nothing before us, we were all going direct to Heaven, we were
all going direct the other way.

– A Tale of Two Cities

Neste capítulo, vamos abordar a análise léxica (a primeira fase do processo de
compilação) do código e suas operações. A primeira fase da compilação de um pro-
grama tem como objetivo ler os caracteres do código fonte e identificar as sequências
de caracteres que correspondem a formatos esperados para os tokens (símbolos ou
elementos léxicos). Um token é uma categoria ou tipo de elemento no código que o
compilador reconhece e associa a um significado específico seguindo um padrão.

Suponha, por exemplo, um programa escrito em uma linguagem de programação,
com linhas de código como x = 5 ou y = 10. A análise léxica é a etapa inicial que
lê essas linhas de código e identifica as sequências de caracteres que correspondem a
operações aritméticas (como =), variáveis (como x e y) ou outros tipos de elementos.

A essa sequência é dado o nome de lexema, que é a sequência real de caracteres
encontrada no código fonte que o compilador identifica e associa a um token espe-
cífico. O token é uma unidade do código que o compilador reconhece e classifica.
Cada token possui um nome que indica sua função ou tipo (por exemplo, uma pa-
lavra reservada, um número inteiro, etc.) e, em alguns casos, um valor adicional
(como o valor de uma constante). Enquanto o token é a categoria abstrata (como
identificador ou operador de atribuição), o lexema é o texto concreto que se
encaixa nessa categoria (como x ou =), desde que corresponda a um padrão léxico
definido. A análise léxica é o processo de ler os lexemas do código e etiquetá-los com
seus respectivos tipos de token, preparando-os para as fases seguintes.
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Análise Léxica 6

Por outro lado, o padrão é a descrição do formato que os lexemas de um token
devem seguir. Em outras palavras, é o modelo que o compilador usa para identificar
qual tipo de token está sendo processado. Por exemplo, o padrão para um token
de número inteiro pode ser uma ou mais ocorrências de dígitos de 0 a 9. Esse
padrão faz o compilador distinguir entre diferentes tipos de tokens, como palavras
reservadas, operadores, identificadores e constantes, por exemplo.

Além de agrupar os lexemas em tokens, o analisador léxico frequentemente re-
aliza o escandimento1, que envolve a remoção de comentários e espaços em branco
desnecessários do código fonte para facilitar as próximas etapas.

2.1 Análise Léxica: A Primeira Validação
Embora as fases posteriores do compilador sejam responsáveis pela maior parte da
verificação de erros, o analisador léxico atua como a primeira linha de defesa. Ele
não apenas agrupa caracteres, mas também valida se esses agrupamentos formam
lexemas válidos. Se o scanner encontrar um caractere ou uma sequência de caracte-
res que não corresponde a nenhum padrão definido na linguagem, ele deve reportar
um erro léxico.

Um erro léxico ocorre quando o scanner não consegue formar um token válido
a partir da entrada. Por exemplo, na linguagem do Micro C, o caractere @ não
pertence a nenhum padrão válido. Se o scanner o encontrasse no código, ele geraria
um erro imediato.

int x = 10 @ 20; // Erro Léxico!

Neste caso, o scanner reconheceria int, x, =, 10, mas ao encontrar o @, ele não
conseguiria classificá-lo. Neste caso, o compilador iria interromper sua execução e
informar o programador com um erro como, por exemplo: Erro Léxico na linha
1: Caractere inválido ’@’ encontrado.

2.1.1 A Interação com as Fases Subsequentes

O analisador léxico não trabalha isoladamente; ele é a fonte de entrada para a pró-
xima fase do compilador. Existem duas arquiteturas principais para essa interação:
a sob demanda (em que o analisador sintático avalia um token de cada vez) ou a em
lote (em que o analisador léxico gera todos os tokens primeiro).

Embora a abordagem sob demanda seja comum e eficiente em termos de uso de
memória [1], no Micro C, optou-se pela abordagem em lote por ser mais simples de
implementar e mais fácil de depurar.

1Em compiladores, o escandimento é uma leitura inicial do código que apenas identifica os
elementos básicos, removendo comentários ou espaços em branco.
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No Micro C, o processo de compilação ocorre em duas etapas. Na primeira etapa
é realizada a análise léxica completa, em que a função executar_analise_lexica()
é invocada e entra em um laço de repetição executando a função proximo_token()
repetidamente, até que o token END_OF_FILE seja encontrado no código fonte. Cada
token gerado é armazenado em uma grande lista na memória (TokenList). A se-
gunda etapa é a entrega para a próxima fase, que ocorre somente após a análise
léxica estar concluída e a TokenList completa. Essa lista será então enviada para
o analisador sintático (parser).

O trecho de código a seguir ilustra a lógica de execução do Micro C. Primeiro,
ele executa a Fase 1 por completo:

// arquivo: src/main.c (trecho da Fase 1)

/fase 1: análise léxica
TokenList tokens;
inicializar_token_list(&tokens, 100);
if (executar_analise_lexica(nome_arquivo, &tokens) != 0) {

liberar_token_list(&tokens);
return -1; //encerra se houver erro léxico

}
if (strcmp(modo, "--scan") != 0) {

salvar_tokens_em_arquivo(&tokens, false);
}
printf("Fase 1 (Lexica) concluida: %d tokens
gerados.\n", tokens.tamanho);

Uma vez que a lista de tokens está completamente preenchida e validada, ela é
enviada para a Fase 2:

// arquivo: src/main.c (trecho da Fase 2)

//fase 2: análise sintática
PilhaTabelasSimbolos* pilha_simbolos = criar_pilha_tabelas();
Parser parser;
// A lista "tokens" completa é entregue ao parser de uma só vez:
inicializar_parser(&parser, &tokens, pilha_simbolos);
ASTNode* arvore = parse(&parser);
// ...

O uso da estratégia em lote como decisão de projeto, permitiu uma depura-
ção mais granular ao executar a análise léxica de forma independente (make scan).
Como o objetivo é aprender e entender como compiladores são construídos, o Micro
C permite que cada fase da compilação seja executada de forma incremental. Ou
seja, o make scan, quando utilizado de forma independente, imprime a lista com-
pleta de tokens e permite verificar se o vocabulário pré-determinado foi reconhecido
corretamente.

facom-ufms



Análise Léxica 8

2.1.2 A Análise Léxica como uma Fase Independente

Separar a análise léxica das outras fases em módulos distintos é uma decisão de
projeto na construção de um compilador e possui algumas vantagens como, por
exemplo:

• Simplicidade de Projeto: a separação torna cada módulo mais simples. O
scanner, por exemplo, fica dedicado apenas em reconhecer padrões de baixo
nível (caracteres), enquanto as próximas etapas podem se concentrar em como
esses tokens se combinam para formar estruturas maiores, sem se preocupar
com os detalhes da leitura de caracteres, espaços em branco ou comentários.

• Eficiência: o scanner é a parte do compilador que mais interage com o sistema
de arquivos. Técnicas de otimização de leitura, podem ser implementadas e
aprimoradas dentro do módulo do scanner sem afetar o resto do compilador.

• Portabilidade: A análise léxica é uma das partes mais portáveis de um com-
pilador. A lógica para reconhecer identificadores, números e palavras reser-
vadas é muito semelhante entre diferentes linguagens de programação. Um
scanner bem escrito pode ser mais facilmente adaptado para um novo projeto
de compilador.

O Micro C pode ser facilmente reproduzido ou expandido dado o seu caráter
modular com interfaces simples definidas em bibliotecas (.h) e implementações (ar-
quivos .c) do projeto.

2.2 Do Código Fonte aos Lexemas e Tokens
A Análise Léxica é o primeiro passo do processo de compilação, responsável por ler o
arquivo fonte caractere por caractere. Ela consiste em agrupar esses caracteres para
transformar o código fonte em elementos léxicos (tokens), gerando uma estrutura que
o compilador possa entender e utilizar. Essa transformação permite ao compilador
correlacionar o que o programador escreveu com a sua real intenção, preparando o
ambiente para as etapas subsequentes de análise.

A linguagem definida para o Micro C é um subconjunto minimalista da lin-
guagem ANSI C. Embora sua sintaxe reduzida facilite a compreensão das etapas
internas do compilador, permitindo observar com clareza como cada etapa funciona,
isso não torna a linguagem menos poderosa. Ou seja, mesmo com uma linguagem
reduzida, vários algoritmos puderam ser implementados como, por exemplo, Bubble
Sort, Torre de Hanoi, Fibonnaci, etc (alguns exemplos estão no Apêndice C). A
descrição completa da linguagem está definida no Apêndice A.

facom-ufms



Análise Léxica 9

int é um lexema para 

palavra reservada

número é um identificador

; é um delimitador

= representa atribuição

45 é uma constante inteira

int numero = 45;

Figura 2.1: Uma expressão como int numero = 45; deve ser quebrada em vários
tokens e cada um será interpretado de uma maneira diferente na análise léxica.

Como mostrado na Figura 2.1, cada lexema cria um token. Por exemplo, int é
uma palavra reservada para números inteiros. numero é o nome de uma variável (um
identificador). O símbolo = é um operador que atribui um valor à variável que vem
antes dele, neste caso, numero. 45 é o valor inteiro que será guardado em numero.
Por fim, ; é um delimitador que marca o fim da instrução.

Quando o analisador léxico identifica um token do tipo ID, ele registra o lexema
correspondente. Por exemplo, na Figura 2.1, o lexema numero é classificado como
um ID. Embora o analisador léxico não associe esse nome a informações adicionais,
como seu tipo de dado (int) ou seu futuro endereço de memória, essa correlação
será feita posteriormente pelo analisador semântico. Dessa forma, o campo lexema
do token serve como ponte entre a fase da análise léxica e as etapas seguintes do
compilador.

Uma vez que o fluxo de tokens é gerado pela análise léxica, a primeira etapa
da compilação está finalizada. O texto bruto foi transformado em uma sequência
de unidades lógicas e estruturadas, permitindo que as fases seguintes do compilador
possam analisar a gramática e o significado do programa.

2.3 Os Tokens no Compilador do Micro C
Na introdução e na primeira seção, foram definidos os conceitos teóricos de token,
lexema e padrão. Em seguida, como a análise léxica atua transformando o código-
fonte em unidades lógicas.

O próximo passo é entender a especificação formal desses conceitos, mostrando
como eles foram traduzidos para estruturas de dados concretas no compilador. Esta
seção detalha o dicionário completo do vocabulário do compilador do Micro C e
como ele é implementado.
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2.3.1 Vocabulário Completo: tokens.h

O primeiro passo na construção de um scanner é definir o seu vocabulário. No caso
do Micro C, o arquivo tokens.h possui o dicionário central que é compartilhado
por todas as fases do compilador. Este arquivo define duas estruturas de dados
principais: a enumeração de todos os tipos de token e a estrutura que representa
um token individual.

Primeiro, definimos todas as categorias de tokens possíveis usando uma enumera-
ção TokenType. Esta é a lista completa de todos os tokens que o scanner do Micro
C é capaz de reconhecer. Eles são agrupados por funcionalidade para facilitar a
leitura e manutenção. Segue abaixo o trecho de código relativo aos tipos de tokens :

// arquivo: src/tokens/tokens.h (Parte 1: O Enum)
#ifndef TOKENS_H
#define TOKENS_H

typedef enum {
// Tokens Fundamentais
UNDEF, // token indefinido (para erros)
ID, // identificador (ex: x, minhaVariavel)
END_OF_FILE, // token especial para o fim do arquivo

// Constantes Literais
INTEGERCONST, // constante inteira (ex: 123)
CHARCONST, // constante de caractere (ex: ’a’)
STRINGCONST, // string de caracteres (ex: "ola")

// Operadores Aritméticos
PLUS, MINUS, MUL, DIV, MOD,

// Operadores Relacionais e Lógicos
EQ, NEQ, LT, GT, LEQ, GEQ, AND, OR, NOT,

// Símbolos de Atribuição e Pontuação
ASSIGN, SEMICOLON, COMMA, LPAREN, RPAREN,
LBRACE, RBRACE, LBRACKET, RBRACKET,

// Palavras reservadas
MAIN, IF, ELSE, FOR, RETURN, INT, CHAR, PRINT

} TokenType;

Cada valor dentro dessa enumeração representa um tipo diferente de token que
o analisador léxico será capaz de identificar no código. Além da categoria, o compi-
lador precisa armazenar as informações específicas daquele token, como o texto que
ele representa (o lexema) e onde ele foi encontrado.
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Esse comportamento é codificado na struct Token:

// arquivo: src/tokens/tokens.h (Parte 2: A Struct)
typedef struct {

TokenType tipo;
char lexema[100];
int linha;

} Token;

#endif //TOKENS_H

Com as categorias definidas, a struct Token agrupa todas as informações que
o scanner extrai do código para cada token. Esta estrutura é o pacote de dados
que é utilizado entre as fases do compilador. Segue a seguir uma descrição de cada
componente da estrutura:

• TokenType tipo: este é o campo mais importante para o analisador sintá-
tico. É a etiqueta que informa ao parser qual é a categoria do token (ex: IF,
LPAREN, ID). O parser usará essa informação para verificar se a sequência de
tokens obedece à gramática da linguagem.

• char lexema[100]: este é o atributo do token. Ele armazena o texto original
do lexema. Como veremos na próxima subseção, este campo é vital para
o analisador semântico (que o usará para inserir o nome da variável na
Tabela de Símbolos) e para o gerador de código (que precisa saber o valor
de uma constante, como 123).

• int linha: Este campo armazena o número da linha em que o token foi en-
contrado. Sua única finalidade é permitir que qualquer fase do compilador
(léxica, sintática ou semântica) possa reportar erros de forma clara e precisa
para o programador.

2.3.2 Atributos: O Valor por trás do Token

Um token pode ter um valor adicional ou atributo. No Micro C, o campo lexema é
o responsável por carregar esse atributo. Alguns tokens, como palavras reservadas
(IF) ou pontuadores (SEMICOLON), são autossuficientes. O tipo de token IF, por
exemplo, carrega todo o significado necessário.

Por outro lado, o lexema original (“if") é irrelevante para o resto do compilador,
pois uma vez que o scanner o classifica como o tipo IF, o analisador sintático só
precisa saber isso para validar as regras gramaticais (ex: IF seguido de LPAREN).
Sendo assim, a string “if"por si só não carrega valor adicional. O que é diferente,
por exemplo, para um ID ou um INTEGERCONST. No entanto, para outras categorias
de token, o tipo sozinho não é relevante.
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Considere o seguinte código:

int x = 10;
int y = 20;

Se o scanner gerasse tokens sem atributos (sem o campo lexema), o analisador
sintático receberia a seguinte sequência de tipos de token:

INT, ID, ASSIGN, INTEGERCONST, SEMICOLON, INT, ID, ASSIGN, INTEGERCONST, SEMICOLON

Do ponto de vista da gramática (análise sintática), essa sequência está correta.
O parser conseguiria validar que ambas são declarações válidas. No entanto, para
a análise semântica e a geração de código, essa informação é desastrosa porque não
seria possível determinar quais os nomes das variáveis que foram declaradas e nem
qual o valor atribuído para qual variável.

Isso exemplifica o porquê do lexema ser essencial. O fluxo de tokens real que o
scanner gera é, na verdade, uma sequência de struct Token, cada uma carregando
seu lexema, ou seja:

• Token 1: tipo: INT, lexema: “int", ...

• Token 2: tipo: ID, lexema: “x", ...

• Token 3: tipo: ASSIGN, lexema: “=", ...

• Token 4: tipo: INTEGERCONST, lexema: “10", ...

• Token 5: tipo: SEMICOLON, lexema: “;", ...

• ... e assim por diante para a variável y.

Cada token cumpre um papel específico no processo de tradução. O primeiro
indica ao compilador que será declarada uma variável inteira. O segundo fornece o
nome dessa variável, x, que será registrada na tabela de símbolos. O terceiro sinaliza
uma atribuição, enquanto o quarto entrega o valor literal 10, que será associado à
variável x e posteriormente carregado na memória. O quinto token, o delimitador
;, encerra a instrução, indicando ao compilador o fim lógico dessa declaração. Esse
mesmo processo se repete para a variável y. De forma geral, o campo lexema é o elo
entre o texto escrito pelo programador e as informações que o compilador realmente
entende e manipula.

2.3.3 Tratamento de Erros Léxicos

Como mencionado na Subseção 2.1, o scanner é responsável por identificar caracteres
que não pertencem a nenhum padrão. O Micro C utiliza uma abordagem direta para
tratar com situações em que um lexema não corresponde a nenhum token válido.
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Dessa forma, um token UNDEF pode ser gerado em dois cenários principais pelo
scanner :

1. Padrões Malformados: ocorre quando o scanner reconhece o início de um
padrão válido (como " para uma string ou ’ para um caractere), mas a sequên-
cia é terminada de forma inesperada. Como pode-se observar, uma string que
não é fechada antes de uma quebra de linha ou um caractere que não é fechado
corretamente são exemplos perfeitos. Nesses casos, o scanner identifica o erro
e retorna UNDEF.

2. Caracteres Inválidos: ocorre quando o caractere lido não inicia nenhum
padrão conhecido pela linguagem (como @ ou #).

A seguir, temos um trecho de código do ‘scanner.c’ para o reconhecimento de
strings. Ele ilustra apenas o primeiro cenário. Se o laço while parar por causa de
uma quebra de linha (\n) ou fim de arquivo (EOF) antes de encontrar a aspa de
fechamento da string, ele entra no bloco else e gera um erro. Para referência, toda
a estrutura léxica da linguagem Micro C, incluindo as definições e exemplos de todos
os tokens e seus lexemas correspondentes, é apresentada no Apêndice A.

// arquivo: src/scanner/scanner.c (trecho do reconhecimento
de string)
if (c == ’"’) {

char buffer[101];
int i = 0;
c = prox_char();

while (c != ’"’ && c != ’\n’ && c != EOF && i < 100) {
buffer[i++] = c;
c = prox_char();

}
buffer[i] = ’\0’;

if (c == ’"’) { // Sucesso
token.tipo = STRINGCONST;
strcpy(token.lexema, buffer);

} else { // Erro: Padrão malformado
token.tipo = UNDEF;
strcpy(token.lexema, "String nao terminada");

}
return token;

}

O segundo cenário (caractere inválido) é tratado pelo caso default no final da
função proximo_token.
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Abaixo, um trecho que respresenta o caso geral para qualquer caractere que não
iniciou nenhum dos padrões anteriores:

// arquivo: src/scanner/scanner.c (trecho do final do switch)
//... (após todas as outras verificações)

// Se nenhum padrão foi reconhecido, é um token indefinido
default:

token.lexema[0] = c;
token.lexema[1] = ’\0’;
token.tipo = UNDEF;
break;

}
return token;

É importante notar que a lógica de parada não está no scanner em si, mas
sim no orquestrador principal do compilador (o main.c). O main verifica cada token
recebido do scanner e, se ele for do tipo UNDEF, interrompe imediatamente o processo
de compilação.

// arquivo: src/main.c (trecho da função executar_analise_lexica)
do {

token = proximo_token();
adicionar_token(lista, token);
if (token.tipo == UNDEF) {

fprintf(stderr,
"Erro Lexico: Token indefinido ’%s’ na linha %d\n",
token.lexema, token.linha);

return -1; // Interrompe a compilação
}

} while (token.tipo != END_OF_FILE);

Essa estratégia de parada imediata evita que as fases seguintes (sintática e semân-
tica) tentem processar uma entrada corrompida. Como o Micro C é um compilador
didático, ele reporta o primeiro erro encontrado de forma clara e facilita a corre-
ção pelo usuário, sem a complexidade de algoritmos de modo de pânico que tentam
continuar a análise mesmo após um erro.

2.4 Relação da Prática com a Teoria Formal
Nas seções anteriores foi definido o vocabulário da linguagem, expresso nas estru-
turas tokens.h, e o papel do scanner em identificar lexemas e gerar tokens. O
próximo passo é fazer essas definições de modo mais formal.

A lógica por trás da implementação do scanner não é arbitrária. Ela repre-
senta uma aplicação de conceitos clássicos de teoria da computação. E, embora não
seja o objetivo aprofundar nos conceitos teóricos relacionados a implementação do
scanner.c, dois tópicos são importantes para compreender como ele é construído:
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as Expressões Regulares e os Autômatos Finitos.

2.4.1 Expressões Regulares para Especificação dos Tokens

Na introdução do capítulo, definiu-se o conceito de padrão como a regra que des-
creve os lexemas de um token. A ferramenta mais comum, poderosa e concisa para
descrever esses padrões é a Expressão Regular (Regex). Uma expressão regular
é uma notação formal que define um conjunto de strings (uma linguagem).

Para compreender o uso das expressões regulares, são necessários alguns meta-
caracteres básicos que servem como base para descrever regras de construção.:

• | (alternância): significa “ou". Ex: a|b significa o caractere ‘a’ ou o caractere
‘b’.

• * (fecho de Kleene): significa zero ou mais ocorrências do que veio antes. Ex:
a* significa “” (string vazia), “a", “aa", “aaa", etc.

• + (fecho positivo): significa uma ou mais ocorrências. Ex: a+ significa “a",
“aa", “aaa", etc.

• ? (opcional): significa zero ou uma ocorrência. Ex: -? significa um sinal de
menos opcional.

• [a-z]: define uma classe de caracteres, ou seja, qualquer caractere de ‘a’ a ‘z’.

• [^abc]: o ^ dentro de uma classe nega o conjunto, significando qualquer ca-
ractere que não seja ‘a’, ‘b’ ou ‘c’.

Com essas regras de construção, é possível descrever um conjunto de todos os
tokens de uma linguagem de programação. Isso forma o que é conhecido como uma
linguagem regular. Abaixo, estão listados os padrões formais para os tokens mais
importantes do Micro C e como eles se conectam ao código.

Identificadores (ID) O padrão para um identificador na linguagem é uma letra
ou underscore, seguido por zero ou mais letras, dígitos ou underscores.

[a-zA-Z_][a-zA-Z0-9_]*

Conexão com o Código:

Essa expressão regular é implementada diretamente no scanner.c. O primeiro
if da função proximo_token verifica a primeira classe de caracteres (isalpha(c) ||
c == ’_’) e o laço do-while subsequente implementa o * (zero ou mais) ao consumir
todos os caracteres seguintes que se encaixam na segunda classe (isalnum(c) || c
== ’_’).
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Constantes Inteiras (INTEGERCONST) O padrão para um inteiro na lin-
guagem é um ou mais dígitos, opcionalmente precedido por um sinal de menos para
representações de números negativos.

-?[0-9]+

Conexão com o Código:

A implementação foi realizada em duas partes: o bloco if (isdigit(c)) trata a
parte [0-9]+, e o case ’-’: (discutido em detalhes na próxima seção) usa lookahead
para tratar a parte opcional -?.

Constantes String (STRINGCONST) O padrão para uma string é um carac-
tere de aspas duplas, seguido por zero ou mais caracteres de qualquer tipo, exceto
outras aspas duplas ou uma quebra de linha, seguido por um caractere de aspas
duplas.

"[^"\n]*"

Conexão com o Código:

A classe [^"\n] (qualquer caractere que não seja aspa ou quebra de linha) é
implementada pelo laço: while (c != ’"’ && c != ’\n’ && c != EOF).

Essas são as principais expressões regulares para tokens no Micro C. As demais
expressões regulares estão documentadas no código do compilador e seguem o mesmo
padrão apresentado nos exemplos acima.

2.4.2 O Scanner como um Autômato Finito Determinístico

A construção das expressões regulares é o primeiro mecanismo. Contudo, para o
reconhecimento do texto do código, são necessários mecanismos capazes de capturar
a relação entre os caracteres de um token. Isso pode ser realizado por meio do uso
de Autômatos Finitos Determinísticos (AFD). Um AFD pode ser descrito,
empiricamente, como um jogo de tabuleiro simples. Ele consiste em um conjunto de
estados (círculos no diagrama, ou casas do tabuleiro). Um estado inicial (onde
o jogo começa). Um conjunto de estados de aceitação (casas que, se a jogada
encerrar nelas, o jogador vence, em outras palavras, um token é reconhecido). E
um conjunto de transições (vetores direcionais entre os estados). Cada vetor é
rotulado com um caractere ou classe de caracteres que precisam ser processados
para que aquele caminho seja percorrido.

Para concretizar esse conceito teórico, a Figura 2.2 apresenta o autômato finito
determinístico projetado para o reconhecimento de identificadores na linguagem
Micro C. A regra léxica define que um identificador deve iniciar obrigatoriamente
com uma letra ou sublinhado, podendo ser seguido por uma sequência de letras,
dígitos ou sublinhados.
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Figura 2.2: Autômato Finito Determinístico para reconhecimento de Identificado-
res.

Conforme ilustrado na Figura 2.2, o processo de reconhecimento inicia-se no
estado S0. Ao ler um caractere válido para o início de uma variável (letra ou _), o
autômato transita para o estado S1. Note que S1 possui borda dupla, indicando ser
um estado de aceitação, ou seja, a sequência processada até aquele momento já
constitui um token válido.

A partir de S1, existe uma transição de laço (loop) que permite ao autômato
consumir sucessivos caracteres alfanuméricos, permanecendo no estado de aceitação.
O reconhecimento do token é finalizado quando o scanner encontra um caractere
que não satisfaz a condição do laço (como um espaço em branco ou um operador),
momento em que o lexema acumulado é classificado como um ID.

A avaliação dos tokens por um AFD funciona de forma similar ao jogo descrito
anteriormente. O AFD processa a entrada um caractere de cada vez. Ele começa
no estado inicial, lê um caractere e percorre o vetor direcional correspondente até o
novo estado até consumir todos os caracteres do lexema. Se, ao final, ele terminar
em um estado de aceitação (estado final), o token é reconhecido. A palavra deter-
minístico, neste contexto, significa que para qualquer estado e qualquer caractere,
há no máximo um caminho possível. Não há ambiguidades.

A não ambiguidade é uma característica importante na construção de compila-
dores. Existem ferramentas automatizadas (ex: Lex2, Flex3, etc.) que transformam
expressões regulares (padrões) em AFD’s otimizados [9], além de gerar como saída
o código em C que implementa o AFD. Não é o caso com relação a implementação
do Micro C.

2Lex, abreviação de Lexical Analyzer Generator, é uma ferramenta que gera automaticamente o
código de um analisador léxico em linguagem C a partir de um arquivo onde o programador define
os padrões dos tokens usando expressões regulares.

3Flex, ou Fast Lexical Analyzer, é uma reimplementação mais rápida do Lex. Ele cumpre a
mesma função: gerar um scanner automaticamente a partir de um arquivo de regras e padrões.
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2.4.3 O Scanner como um AFD Manual

Embora o uso de ferramentas auxilie na conversão de expressões regulares em autô-
matos finitos determinísticos, o compilador do Micro C não os utiliza. O scanner
implementado em scanner.c é uma implementação simples e direta de um AFD
simulando um autômato finito. Isso permite que o compilador fique, embora mais
limitado a linguagem definida, mais simples de entender como o processamento dos
lexemas ocorre.

A função do código do Micro C que implementa o AFD é a proximo_token().
É nela que estão implementados os estados do autômato e suas transições. Iniciando
pelo estado inicial, após invocar a função ignora_espacos_e_comentarios(), ele
retorna com o primeiro caractere de um lexema. Cada estado é armazenado pela
variável c (o caractere atual) e por qual bloco de código está sendo executado no
momento (ex: if (isalpha...) ou case ’=’:). Caso o lexema seja consumido
e a transição encerre em um estado de aceitação, a função decide qual tipo o
token (ex: token.tipo = INT;) está relacionado e o retorna (return token;) para
recomeçar e avaliar o próximo token. Por outro lado, quando termina em um estado
de erro, que é o padrão, é retornado um token UNDEF (indefinido).

O exemplo a seguir demonstra como o AFD do Micro C reconhece os tokens <
(LT) e <= (LEQ).

1. Estado Inicial: A função proximo_token() lê um caractere. Ele é <.

2. Estado Avaliando um Menor Que: O AFD agora está em um estado que
consumiu um <. A única transição de saída deste estado depende do próximo
caractere. O código executa o lookahead invocando a função prox_char().

3. Transições:

• Se o próximo caractere for =, o AFD transita para o Estado de Acei-
tação LEQ. O scanner retorna o token LEQ.

• Se o próximo caractere for qualquer outra coisa, o AFD transita para o
Estado de Aceitação LT. O scanner usa ungetc() para retornar um
caractere (retorna o ponteiro ao estado anterior) e retorna o token LT.

Esse exemplo demonstra como o AFD é utilizado para consumir os lexemas apre-
sentados e determinar o que são os elementos sendo avaliados. O uso do lookahead é
necessário para determinar situações em que existem possíveis variações na ramifi-
cação de uma decisão, permitindo avaliar em qual estado, de fato, o autômato deve
terminar sua execução.

2.5 O Scanner da Linguagem Micro C
As estruturas de dados para representação formal dos tokens, definidas no arquivo
tokens.h, possibilitam iniciar a implementação do analisador léxico. Esta seção
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apresenta a parte mais extensa e detalhada deste capítulo, dedicando-se a uma
análise do arquivo scanner.c.

Embora ferramentas de automação, como Lex ou Flex, gerem analisadores léxicos
a partir de um arquivo de especificações contendo expressões regulares, o scanner
do Micro C foi feito manualmente. Essa metodologia, apesar de implicar um maior
esforço de desenvolvimento, proporciona uma compreensão mais profunda da análise
léxica.

2.5.1 Interface e Implementação do Scanner

A interface e implementação do scanner é simples e direta. Ele possui uma inter-
face pública (scanner.h) que possui uma interface acessível por qualquer parte
do compilador. Essa interface é simples e possui apenas duas ações possíveis: int
inicializar_scanner(const char* nome_arquivo), que requisita a abertura de
um novo arquivo de código; e Token proximo_token(), que requisita o próximo
token dentro do código fonte.

O scanner, no entanto, precisa guardar o estado de execução. Ou seja, ele pre-
cisa determinar o arquivo e linha que estava processando. Essa memória interna
(estado), é armazenado por duas variáveis no scanner.c:

• FILE *arquivo_fonte: armazena qual o arquivo aberto no momento.

• int linha_atual: armazena a linha que estava sendo avaliada, informação
utilizada para reportar erros de compilação apontando a linha aproximada do
erro.

A execução do compilador é dependente da correta captura de todos os tokens
de um código fonte. Dessa forma, ele vai requisitando tokens para o scanner até
que todo o código seja processado. Se o arquivo for escaneado até o fim sem erro,
signfica que todos os tokens foram corretamente processados e estão prontos para a
próxima etapa da compilação.

2.5.2 A Função proximo_token()

A função proximo_token() é o procedimento chave do analisador léxico. A cada
chamada é executado um ciclo completo de reconhecimento: consumir caracteres
do arquivo fonte, ignorar o que for irrelevante (espaços ou comentários) e, por fim,
identificar, construir e retornar o próximo Token válido. Essa função é, na prática,
uma implementação de um autômato finito determinístico. Ou seja, ela é uma
máquina de estados que executa três fases:

1. Chamada da função (estado inicial);

2. Invocação da função ignora_espacos_e_comentarios() para avançar até o
primeiro caractere de um potencial lexema.
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3. E, uma cadeia if-else if-switch para classificação dos caracteres e mudança
para o estado de reconhecimento correto ou um erro.

Além disso, a ordem das verificações determina se o scanner irá produzir os
resultados de forma correta. Dessa forma, ele precisa avaliar os tokens recebidos
começando pela verificação do EOF primeiro, para garantir que o programa pare
corretamente. Depois, verifica se é uma sequência de letras e _ (isalpha()). Isso
permite que o scanner entre no modo de reconhecimento de identificador, que é
capaz de processar letras e números (ex: var1). Na sequência, se não for uma
letra, verifica se é um dígito (isdigit()), o que faria o scanner entrar no modo
de reconhecimento de números. O passo seguinte é validar se estão sendo utilizados
delimitadores literais como ’ e ". Por fim, validar todos os caracteres importantes
da linguagem como os operadores (+, =, <) e delimitadores (;, ( ) ou { }). O caso
padrão, quando nenhum estado final válido é alcançado é encerrar o processamento
em um estado de erro, gerando um token UNDEF de erro.

Essa ordem garante que o scanner tente reconhecer o padrão mais longo possível.
Por exemplo, int é reconhecido como um ID primeiro, e só depois classificado como
INT, em vez de ser lido erroneamente como três tokens ID separados (i, n, t).

2.5.3 Desafios Práticos e Soluções no Código

Essa subseção detalha a estrutura do código scanner.c analisando e mostrando
como algumas soluções foram implementadas dependendo do desafio prático encon-
trado durante a compilação pelo analisador léxico.

O Ruído do Código: Ignorando Espaços e Comentários

A primeira tarefa do scanner a cada chamada de proximo_token() é remover o
ruído. Isso é feito pela função ignora_espacos_e_comentarios. Ela é construída
utilizando um laço while(1) (loop infinito) que só termina quando um caractere
válido é encontrado e retornado.

O primeiro passo dentro do laço é consumir todos os espaços em branco e quebras
de linha:

// arquivo: src/scanner/scanner.c (trecho 1)
static char ignora_espacos_e_comentarios() {

char c = prox_char();
while (1) {

//ignora espaços em branco
while (isspace(c)) {

if (c == ’\n’) linha_atual++;
c = prox_char();

}
//...
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A função isspace() (da biblioteca ctype.h) é usada para consumir rapida-
mente todos os caracteres de espaço (espaço, tab, etc.). Um fato importante é que é
necessário verificar se o caractere sendo avaliado é um ’\n’, pois é necessário incre-
mentar a variável global linha_atual de controle que auxilia quando é necessário
determinar em qual linha de código o erro ocorreu.

Após o término do laço, c não é um espaço em branco. Em seguida, a próxima
verificação é se ele é o início de um comentário (/). O if a seguir usa e estratégia
de lookahead (olhar o próximo caractere):

//... (continuação de ignora_espacos_e_comentarios)
//verifica comentários
if (c == ’/’) {

char next_c = prox_char();
//...

Ao verificar que o caractere é uma barra (/), o scanner precisa decidir se se trata
de um comentário ou uma operação de divisão. Essa decisão depende do próximo
caractere. O que acontece é que é avaliado o próximo caractere (que é armazenado
em next_c). Com esse caractere extra, o scanner consegue decidir se a sequência é
um comentário ou não.

O trecho de código a seguir, demonstra essa ideia:

//... (continuação)
if (next_c == ’/’) { //comentário de linha única

do {
c = prox_char();

} while (c != ’\n’ && c != EOF);
} else if (next_c == ’*’) { //comentário de
múltiplas linhas

char prev_c = ’\0’;
do {

prev_c = c;
c = prox_char();
if (c == ’\n’) linha_atual++;

} while (!(prev_c == ’*’ && c == ’/’) && c
!= EOF);
c = prox_char(); //consome o char após o
’*/’

//...

Se next_c for /, ele entra no modo de comentário de linha e processa tudo até
encontrar um ‘\n’ ou EOF. Por outro lado, se next_c for *, ele entra no modo
de comentário de bloco. Este modo é mais complexo e precisa de estado: ele usa
a variável prev_c para procurar a sequência de término ‘*/’, consumindo tudo
(incluindo quebras de linha) até encontrá-la.

Finalmente, se não for um comentário, ou se o caractere original não for /, o
scanner trata os casos restantes:
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//... (continuação)
} else {

//não é um comentário, devolve o caractere
e retorna a barra
ungetc(next_c, arquivo_fonte);
return c;

}
} else {

//não é espaço nem comentário, retorna o
caractere encontrado
return c;

}
}

}

O primeiro else é crucial. Se next_c não era / nem *, o scanner descobriu que
era o operador de divisão. Ele usa ungetc() para devolver o caractere avaliado e
retorna o / para a função proximo_token() processar. Por outro lado, o segundo
else interrompe o laço while(1). Ele retorna o caractere c (que pode ser uma
letra, dígito, =, etc.) para a função proximo_token(), que agora pode classificar o
lexema.

Identificadores vs. Palavras Reservadas: Uma Decisão em Duas Etapas

Um dos desafios centrais do scanner é diferenciar identificadores (ex: contador) de
palavras reservadas (ex: if). A abordagem utilizada no Micro C segue a estratégia
clássica. Ou seja, primeiro, o scanner reconhece o padrão mais genérico, o de ID,
e depois, após ter o lexema completo, ele o compara com uma lista de palavras
reservadas conhecidas.

Primeiro, o consumidor de identificadores:

// arquivo: src/scanner/scanner.c (trecho)
if (isalpha(c) || c == ’_’) {

char buffer[101];
int i = 0;
do {

buffer[i++] = c;
c = prox_char();

} while ((isalnum(c) || c == ’_’) && i < 100);

ungetc(c, arquivo_fonte);
buffer[i] = ’\0’;

//...

A primeira verificação é garantir que o caractere atual pode iniciar um identi-
ficador válido (O if (isalpha(c) || c == ’_’)). Em seguida, o laço do-while
constrói o lexema no buffer enquanto os caracteres seguintes forem alfanuméricos
ou _. E, por último, a chamada ungetc(c, arquivo_fonte); retorna um caractere
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para continuar o processamento de forma correta. O laço só para quando é lido um
caractere que não pertence ao identificador (ex: um espaço). Esse caractere precisa
ser devolvido ao fluxo para ser processado na próxima chamada.

Com o lexema completo no buffer, a pŕoxima fase é a de classificação:

//... (continuação: O Classificador)
//--- Início da Etapa 2: Classificação ---
if (strcmp(buffer, "main") == 0) token.tipo = MAIN;
else if (strcmp(buffer, "if") == 0) token.tipo = IF;
else if (strcmp(buffer, "else") == 0) token.tipo = ELSE;
else if (strcmp(buffer, "for") == 0) token.tipo = FOR;
else if (strcmp(buffer, "return") == 0) token.tipo =
RETURN;
else if (strcmp(buffer, "int") == 0) token.tipo = INT;
else if (strcmp(buffer, "char") == 0) token.tipo = CHAR;
else if (strcmp(buffer, "print") == 0) token.tipo =
PRINT;
else token.tipo = ID; // Se não for palavra reservada, é um ID

strcpy(token.lexema, buffer);
return token;

}

O bloco if-else if compara o lexema no buffer com todas as palavras reser-
vadas da linguagem. Se nenhuma delas corresponder, ele classifica o token como um
ID genérico.

Ambiguidade e a Técnica de Lookahead : Observando o Futuro

O lookahead é utilizado para tratar operadores que compartilham prefixos, como = e
==, por exemplo. O trecho de código a seguir demonstra como um trecho de código
de como o lookahead é implementado:

// arquivo: src/scanner/scanner.c (trecho do switch)
case ’=’:

next_c = prox_char(); // 1. "Observa" o próximo caractere
if (next_c == ’=’) { // 2. Compara

token.tipo = EQ; strcpy(token.lexema, "==");
} else {

ungetc(next_c, arquivo_fonte); // 3. Devolve se
não for
token.tipo = ASSIGN; strcpy(token.lexema, "=");

}
break;

// ... (casos similares para ’!’, ’<’, ’>’) ...

Este exemplo ilustra como funciona o padrão de avaliação. O scanner lê =, mas
observa antecipadamente (prox_char()) o caractere seguinte. Se for outro =, ele
consome ambos e gera o token EQ (==). Caso contrário, ele devolve o caractere
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observado antecipadamente (ungetc()) e gera o token ASSIGN (=).

O caso mais complexo é a desambiguação entre o operador de subtração (MINUS)
e um número negativo (INTEGERCONST). Ao encontrar o caractere -, é necessário
avaliar também o próximo caractere (next_c). Isso divide o fluxo em duas rotas
possíveis.

Rota 1: Reconhecimento de Número Negativo Se o caractere seguinte for
um dígito, o scanner entra no modo de reconhecimento de número. Esta é uma
mudança de estado, ou seja, o caractere - não é mais um operador, mas sim o prefixo
de um literal numérico. O processo de construção do token se inicia armazenando o
- em um buffer temporário. Em seguida, o scanner entra em um laço para consumir
o primeiro dígito (que foi observado) e todos os dígitos subsequentes, anexando cada
um ao buffer. O laço é interrompido apenas quando o primeiro caractere não-dígito
é encontrado. Finalmente, o token é classificado como INTEGERCONST e o lexema
completo (ex: -123) é salvo.

O bloco de código a seguir detalha esta implementação:

// arquivo: src/scanner/scanner.c (Rota 1: Número Negativo)
case ’-’:

next_c = prox_char(); // Espia o caractere após o ’-’
if (isdigit(next_c)) { // Se for um dígito...

// ...então é um número negativo.
char buffer[12];
buffer[0] = c; // c == ’-’
int i = 1;
// (Laço para consumir o restante dos dígitos)
do {

buffer[i++] = next_c;
next_c = prox_char();

} while (isdigit(next_c) && i < 11);

ungetc(next_c, arquivo_fonte); // Devolve o não-dígito
buffer[i] = ’\0’;
token.tipo = INTEGERCONST;
strcpy(token.lexema, buffer);

} else {
/* ... (trata operador MINUS, veja Rota 2) ... */

}
break;

Rota 2: Reconhecimento do Operador de Subtração Contudo, se o carac-
tere seguinte não for um dígito (como um espaço, uma letra ou outro operador), o
scanner identifica que se trata do operador MINUS. Ou seja, ele devolve o caractere
observado (next_c) de volta ao fluxo de entrada. O trecho de código a seguir detalha
esta implementação:
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// arquivo: src/scanner/scanner.c (Rota 2: Operador MINUS)
case ’-’:

next_c = prox_char(); // Espia o caractere após o ’-’
if (isdigit(next_c)) { // Se for um dígito...

/* ... (trata número negativo, veja Rota 1) ... */
} else { // Se não for um dígito...

// ...então é o operador MINUS.
ungetc(next_c, arquivo_fonte); // Devolve o não-dígito
token.tipo = MINUS;
strcpy(token.lexema, "-");

}
break;

Esta abordagem demonstra uma técnica central do analisador léxico: o uso de
lookahead (olhar à frente) com prox_char() para tomar uma decisão e, caso o
caractere observado não pertença ao token atual (como na Rota 2), devolvê-lo ao
fluxo de entrada com ungetc() para que seja processado na próxima iteração.

Reconhecimento de Literais: Strings e Caracteres

Finalmente, o scanner precisa reconhecer literais definidos por seus delimitadores (’
e "). Este é um tipo de reconhecimento que torna claro como são tratados os erros
léxicos pelo compilador Micro C. O trecho a seguir mostra como o scanner trata
essa situação:

// arquivo: src/scanner/scanner.c (trecho)
if (c == ’"’) {

char buffer[101];
int i = 0;
c = prox_char(); // Pula a aspa de abertura

// Consome caracteres até encontrar o fim, uma nova
linha ou EOF
while (c != ’"’ && c != ’\n’ && c != EOF && i < 100) {

buffer[i++] = c;
c = prox_char();

}
buffer[i] = ’\0’;

//...

Ao avaliar o ", o scanner entra no modo string e começa a salvar os caracteres no
buffer. O laço while será executado até encontrar a aspa de fechamento (") ou até
encontrar um erro como, por exemplo, uma quebra de linha (\n) ou o fim do arquivo
(EOF), pois strings na linguagem não podem ter múltiplas linhas. Continuando o
reconhecimento da string:
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//... (continuação do reconhecimento de string)
if (c == ’"’) { // Se parou por causa da aspa...

token.tipo = STRINGCONST;
strcpy(token.lexema, buffer);

} else { // Se parou por ’\n’ ou EOF...
token.tipo = UNDEF; // É um erro!
strcpy(token.lexema, "String nao terminada");

}
return token;

}

Após o laço, o if (c == ’"’) verifica por que o laço parou. Se foi por causa
da aspa, o token é um STRINGCONST válido. Se foi por qualquer outro motivo, é um
erro, e é retornado o token UNDEF com uma mensagem de erro. O processamento de
constantes de caracteres CHARCONST é processado de forma similar.

2.6 Sumário
Neste capítulo, iniciamos o processo de compilação com a primeira fase: a análise
léxica. Foram definidos os três conceitos centrais desta etapa: o token (categoria
abstrata), o lexema (texto do código fonte) e o padrão (a regra que descreve o
lexema).

Foi possível observar que o analisador léxico, ou scanner, atua como a primeira
linha de processamento do compilador, sendo responsável por validar o texto de en-
trada e reportar erros léxicos, como caracteres inválidos (@) ou strings malformadas.

Além disso, foram discutidas decisões de projeto que deixam claro porque al-
gumas decisões de implementação foram tomadas ao desenvolver o scanner. Por
exemplo, optando pelo uso da abordagem em lote ao invés de outras mais comuns
que são utilizadas em compiladores clássicos.

Em seguida, discutiu-se a implementação do vocabulário (arquivo tokens.h) da
linguagem e como os tipos de tokens são processados com o uso de estruturas de
dados como a struct Token, que agrupa o tipo, o lexema e o número da linha
associada ao lexema. A estrutura dessa forma, permite que erros comuns sejam
informados ao programador apontando em qual linha de código o erro ocorreu.

Finalizando, foram abordados conceitos importantes que são utilizados na im-
plementação do scanner.c como o uso de expressões regulares e autômatos finitos
determinísticos. O Micro C segue os mesmos princípios e não utiliza mecanismos
automatizados de geração de AFD’s como Lex ou Flex. Isso tornou o scanner mais
simples, mas ao mesmo tempo, dependente da linguagem definida.
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Capítulo 3

Análise Sintática

Trees sprout up just about everywhere in computer science.

– Donald E. Knuth

Neste capítulo será discutida a construção do analisador sintático do compilador
da linguagem Micro C. Após a conversão do código fonte em uma sequência de
tokens pelo analisador léxico, o processo de compilação realiza a análise sintática.
Esta fase tem como objetivo verificar se a estrutura do código e as regras gramaticais
da linguagem estão em conformidade. Ou seja, o analisador sintático valida se
a sequência de tokens forma construções sintáticas válidas, tais como expressões,
comandos e declarações, em concordância com uma gramática formal previamente
definida.

Nesta fase da compilação é que a estrutura do programa começa a ganhar forma.
Além de simplesmente validar a gramática, a responsabilidade principal desta fase
é construir a estrutura de dados hierárquica que será usada por todas as fases
subsequentes. Essa estrutura, conhecida como Árvore Sintática Abstrata (ASA), é
o resultado da análise sintática e serve como a representação concreta da lógica do
programa, pronta para a análise de significado (semântica).

O analisador sintático recebe como entrada uma cadeia de tokens fornecida pelo
analisador léxico e verifica se essa cadeia pertence à linguagem definida pela gra-
mática do Micro C. Caso encontre erros de sintaxe, o analisador deve ser capaz
de reportá-los de forma clara e, sempre que possível, seguir adiante com a análise,
permitindo que outros erros também sejam detectados.

Existem três abordagens principais para a construção de analisadores sintáticos:
a abordagem universal, a descendente e a ascendente [1, 3, 13]. A abordagem uni-
versal é capaz de analisar qualquer gramática, mas seus algoritmos, como o clássico
algoritmo de Earley [7], são pouco eficientes. Eles precisam explorar múltiplas
árvores de derivação possíveis, um processo computacionalmente custoso que atinge
a complexidade de O(n3) em relação ao tamanho do programa e, por isso, raramente
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são usados em compiladores reais. As estratégias realmente utilizadas em compi-
ladores são as análises descendente e ascendente. A análise descendente constrói a
árvore de derivação do topo (raiz) até as folhas, enquanto a análise ascendente faz
o caminho inverso, começando das folhas em direção à raiz. Em ambos os casos, os
tokens são processados da esquerda para a direita. O Micro C utiliza a estratégia
descendente, por simplicidade.

Nas próximas seções serão discutidas como essas técnicas funcionam, usando
exemplos práticos da linguagem do Micro C. Também sera abordado como o anali-
sador sintático trata erros e como se conecta com as demais fases do compilador.

3.1 Expressões e Gramáticas
Grande parte da complexidade da análise sintática em linguagens de programação
está relacionada ao processamento de expressões, principalmente por causa das re-
gras de associação e precedência entre operadores. Enquanto construções iniciadas
por palavras reservadas como if, while ou int são relativamente fáceis de iden-
tificar e tratar, expressões exigem mais cuidado, já que podem gerar ambiguidade
dependendo da ordem em que os elementos são analisados.

Para tratar essa situação, são utilizadas gramáticas que incorporam essas regras.
Uma forma tradicional de representar expressões é por meio de uma estrutura em
árvore onde os operadores de menor precedência aparecem no topo da árvore, e os
de maior precedência mais próximo das folhas.

3.1.1 Hierarquia de Precedência em Expressões

Para que a gramática possa tratar corretamente a precedência e associatividade de
operadores, ela é dividida em três níveis hierárquicos, utilizando os símbolos não
terminais E (para Expressão), T (para Termo) e F (para Fator) para expressar essa
hierarquia. Essa estrutura é um padrão clássico no projeto de compiladores, que
garante a ordem correta de avaliação das operações matemáticas, por exemplo. A
estrutura lógica é construída do nível de maior para o de menor precedência. A
seguir uma descrição de cada um dos níveis hierárquicos definidos:

• Fator (F): representa a unidade de maior precedência em uma expressão.
Um fator é algo que pode ser avaliado imediatamente, como um identificador
(id), um número (num), ou uma expressão inteira entre parênteses (E). O
uso de parênteses altera a precedência natural, forçando a avaliação do que
está dentro antes de qualquer outra operação. Isso gera a regra para Fator1:
F → (E) | id | num.

1A leitura desta notação, adotada ao longo de todo este trabalho, deve ser realizada da seguinte
forma: a seta (→) deve ser interpretada como “pode ser formado por” e a barra vertical (|) como
um “ou”. Sendo assim, a regra define, especificamente, que um Fator pode ser formado por uma
expressão entre parênteses, ou por um identificador, ou por um número.
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• Termo (T): representa uma sequência de fatores conectados pelos operadores
de alta precedência: multiplicação (*) e divisão (/). Um termo pode ser um
único fator, ou uma multiplicação/divisão de um termo com outro fator. Isso
gera a regra para Termo: T → T ∗ F | T/F | F .

• Expressão (E): representa a forma mais geral, composta por uma sequência
de termos conectados pelos operadores de baixa precedência: soma (+) e sub-
tração (-). Uma expressão pode ser um único termo, ou uma soma/subtração
de uma expressão com outro termo. Isso gera a regra para Expressão: E →
E + T | E − T | T .

Dessa forma, é criada uma hierarquia bem definida, ou seja, uma Expressão é
feita de Termos, e um Termo é feito de Fatores. Como as operações de maior
precedência (*, /) estão “aninhadas"na regra de T, que está um nível abaixo de E, a
gramática determina que as multiplicações e divisões sejam reconhecidas e agrupadas
antes das somas e subtrações, garantindo a ordem correta da avaliação matemática.

3.1.2 Gramática como Especificação Formal da Linguagem

A gramática é a ferramenta formal que permite ao compilador entender qual a se-
quência de símbolos que forma um programa válido. Ela funciona como uma descri-
ção precisa da linguagem, definindo as regras que determinam a organização correta
dos elementos no código. Assim como a análise léxica identifica os tokens, a gramá-
tica define como esses tokens se combinam para formar construções sintaticamente
corretas, como expressões, comandos e blocos.

Em outras palavras, a gramática é um conjunto de instruções que explica ao com-
pilador o que é esperado na estrutura do programa. Qualquer código que não obe-
deça a essas regras será considerado inválido durante a análise sintática, garantindo
que erros estruturais sejam detectados o quanto antes no processo de compilação.

Dessa forma, a gramática atua como um contrato entre o programador e o com-
pilador, assegurando que o código esteja organizado conforme as convenções da
linguagem. Por isso, o estudo e a definição da gramática são essenciais para que o
compilador possa interpretar corretamente o código fonte e avançar para as etapas
seguintes da compilação.

Para ilustrar o papel da gramática, considere uma linguagem extremamente sim-
ples de expressões aritméticas que permite somar números e agrupar operações entre
parênteses. Essa linguagem pode ser descrita pela seguinte gramática:

E → E + T | T
T → (E) | num

Nessa gramática, o símbolo inicial é E, que representa uma expressão. A regra
diz que uma expressão pode ser a soma de outra expressão com um termo (E + T )
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ou apenas um termo (T ). O termo, por sua vez, pode ser uma expressão entre
parênteses, permitindo agrupamento, ou um número terminal, representado aqui
por num.

Assim, uma sequência válida nessa linguagem é 3 + (5 + 2), pois a gramática
especifica que números e somas entre expressões agrupadas são aceitos. Por outro
lado, uma sequência como 3 + + 5 não é válida, pois não existe regra na gramática
que permita dois operadores + consecutivos.

A gramática completa que representa essa hierarquia é a seguinte:

E → E + T | E − T | T
T → T ∗ F | T/F | F
F → (E) | id | num

Embora a gramática acima pareça expressar de forma natural a hierarquia das
operações aritméticas, ela apresenta um problema para a análise sintática descen-
dente: a recursão à esquerda. É importante destacar que, enquanto analisadores
ascendentes lidam bem com regras recursivas à esquerda, na abordagem descendente
essa estrutura inviabiliza o algoritmo. O exemplo a seguir deixará mais claro o por-
quê dessa situação ocorrer. Suponha a seguinte expressão, que será avaliada passo
a passo:

a + b * c

Ao tentar derivar essa expressão a partir do símbolo inicial E, a estratégia natural
seria expandir E de acordo com a produção:

E → E + T

No entanto, essa escolha faz com que o símbolo E apareça novamente no lado
direito da produção, logo na primeira posição. Assim, o analisador tentará expandir
E novamente por E + T , e em seguida mais uma vez, e assim sucessivamente, sem
processar nenhum símbolo de entrada. Isso gera um ciclo infinito de derivações,
como ilustrado abaixo:

E ⇒ E + T ⇒ E + T + T ⇒ E + T + T + T ⇒ . . .

Para a correta interpretação desta demonstração, deve-se notar a mudança na
simbologia: diferente da seta simples (→), que define uma regra estática, a seta
dupla (⇒) representa um passo de derivação. Ou seja, ela indica uma ação de
transformação. A sequência acima deve ser lida como: o símbolo E deriva em
E+T , que por sua vez deriva em E+T +T , e assim sucessivamente, demonstrando
a expansão infinita.
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Em outras palavras, o analisador continua expandindo E indefinidamente, sem
avançar na análise dos tokens do programa.

Esse comportamento caracteriza a recursão à esquerda direta, um padrão
em que um não terminal faz referência a si mesmo como o primeiro símbolo de seu
lado direito. A gramática apresentada contém esse tipo de recursão nas produções
de E e T :

E → E + T e T → T ∗ F

Esse problema impede o funcionamento correto de analisadores descendentes re-
cursivos, que baseiam suas decisões em chamadas de funções recursivas. Portanto,
antes de construir o analisador sintático propriamente dito, será necessário reformu-
lar essa gramática para eliminar a recursão à esquerda.

Para resolver o problema da recursão, transformamos a gramática eliminando a
recursão à esquerda e reestruturando as produções.

O resultado é uma gramática equivalente, mas adequada para análise descen-
dente:

E → TE ′

E ′ → +TE ′ | −TE ′ | ϵ
T → FT ′

T ′ → ∗FT ′ | /FT ′ | ϵ
F → (E) | id | num

Ao analisar novamente a expressão, é possível notar que o problema foi resolvido:

a + b * c

Na nova gramática, a derivação começa pelo símbolo E e segue pela produção:

E → TE ′

Primeiro, T consome o termo mais à esquerda, que é a:

T ⇒ FT ′ ⇒ idT ′

Em seguida, E ′ processa os operadores à direita. O próximo token é +, então é
aplicada a derivação:

E ′ ⇒ +TE ′
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O T seguinte processa b ∗ c de forma correta, utilizando T → FT ′ e T ′ → ∗FT ′.
Ao final, a gramática permite a derivação E ′ ⇒ ϵ, encerrando o processamento.

Dessa forma, cada operador e operando é processado na ordem correta, res-
peitando a precedência de multiplicação sobre adição, e o analisador descendente
consegue processar todos os tokens sem entrar em um ciclo infinito.

Contextualização da Implementação: Estruturas e Fluxo

Para compreender a implementação prática da análise sintática no Micro C é ne-
cessário, primeiramente, entender como o analisador é estruturado e quais dados ele
manipula. O compilador utiliza uma abordagem Descendente Recursiva (Recur-
sive Descent), onde a estrutura das funções em C espelha diretamente a hierarquia
da gramática.

Em alto nível, o fluxo de execução começa na regra mais geral (o Programa) e
desce, por meio de chamadas de funções, até atingir os elementos atômicos (Fatores
e Tokens), conforme ilustrado na Figura 3.1.

Figura 3.1: Fluxo de chamadas do Analisador Descendente Recursivo.

É importante notar a distinção entre o fluxo de controle e a construção da es-
trutura de dados. O analisador segue uma estratégia Top-Down (descendente),
navegando das regras gramaticais mais gerais (Programa) para as mais específicas
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(Fatores). No entanto, a Árvore Sintática Abstrata (ASA) é efetivamente mon-
tada de maneira Bottom-Up (ascendente): os nós folhas (números e variáveis) são
criados primeiro nas funções mais profundas da recursão e, à medida que as fun-
ções retornam, esses nós são capturados e agrupados por nós operadores (pais) nas
funções superiores.

Para sustentar esse processo, o analisador manipula duas estruturas de dados
fundamentais:

1. A Árvore Sintática (ASTNode)

Diferente de implementações simplificadas que utilizam vetores fixos, o Micro C
adota uma estrutura dinâmica baseada em listas encadeadas. Conforme definido em
ast.h, cada nó possui um ponteiro para seu primeiro filho (filho) e um ponteiro
para o seu próximo irmão (proximo_irmao). Essa flexibilidade permite que um nó
pai tenha quantidade variável de filhos.

2. O Estado do Analisador (Parser)

O controle do fluxo de tokens é encapsulado na estrutura Parser, que mantém
a referência para a lista completa de tokens carregada do arquivo e um cursor para
o elemento atual.

As definições reais dessas estruturas, utilizadas no código, são apresentadas
abaixo:

// --- Definições baseadas em ast.h e parser.h ---

//estrutura de um Nó da Árvore (ASA)
typedef struct ASTNode {

NodeType node_type; //tipo do nó (ex: NODE_BINARY_OP)
int linha; //linha de origem no código

struct ASTNode *filho; //ponteiro para o primeiro filho
struct ASTNode *proximo_irmao;//ponteiro para o próximo irmão (lista)

union {
long int_value; //para constantes inteiras
char* string_value; //para identificadores e strings
TokenType op_type; //para operadores (+, -, *, /)

} data;
} ASTNode;

//estrutura de controle do Parser
typedef struct {

TokenList *lista; //lista contendo todos os tokens lidos
int current; //índice numérico do token atual
Token *current_token; //ponteiro direto para o token atual
// ... outros campos (tabela de símbolos)

} Parser;
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Com o contexto das estruturas estabelecido, a implementação da função arith-
metic_expression pode ser analisada.

Para a implementação no Micro C, realiza-se uma otimização em relação à gra-
mática teórica. É essencial distinguir que, ao eliminar a recursão à esquerda (que
causa loops infinitos), a gramática teórica resultante passa a utilizar recursão à
direita no símbolo auxiliar E ′. Embora a recursão à direita seja válida para anali-
sadores descendentes, pois consome tokens antes da chamada recursiva, convertê-la
diretamente em código geraria uma função extra apenas para processar o resto da
expressão.

Por isso, na prática, não se cria uma função recursiva separada para E ′. A lógica
de repetição definida por E ′, que continuaria chamando a si mesma ao final da regra,
é substituída de forma equivalente e mais eficiente por um laço iterativo (while).
O laço continua rodando enquanto houver operadores (+,−), desempenhando exa-
tamente o mesmo papel lógico da recursão à direita, mas sem o custo de múltiplas
chamadas de função e uso excessivo da pilha. O código abaixo demonstra como a
árvore é construída de baixo para cima (bottom-up) dentro do laço, garantindo a
precedência correta:

ASTNode* arithmetic_expression(Parser* parser) {
//1. processa o termo da esquerda (maior precedência,
ex: multiplicações)
ASTNode* node = term(parser);

//2. loop para processar somas (+) e subtrações (-) sequencialmente
while (parser->current_token &&

(parser->current_token->tipo == PLUS ||
parser->current_token->tipo == MINUS)) {

TokenType op = parser->current_token->tipo;
int line = parser->current_token->linha;
match(parser, op); //consome o operador e avança

//cria o nó da operação binária
ASTNode* op_node = criar_no(NODE_BINARY_OP, line);
op_node->data.op_type = op;

//a árvore cresce para cima:
//o nó acumulado node vira o filho da esquerda do novo operador
adicionar_filho(op_node, node);

//o próximo termo vira o filho da direita
adicionar_filho(op_node, term(parser));

//atualiza a raiz da sub-árvore para o novo operador
node = op_node;

}
return node;

}
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Essa implementação garante que uma expressão como A + B + C seja estrutu-
rada corretamente. O laço processa primeiro A + B, criando um nó. Na próxima
iteração, esse nó torna-se filho da esquerda da soma com C. Isso respeita a associa-
tividade à esquerda da linguagem C e evita o estouro de pilha por recursão infinita.

3.2 Tratamento de Erros na Análise Sintática
Durante a análise sintática, é inevitável que erros de sintaxe apareçam no código
fonte. O papel do analisador sintático não é apenas detectar esses erros, mas também
tentar se recuperar deles para continuar a análise e identificar o máximo possível de
problemas em uma única execução. Para isso, diversas estratégias de recuperação
de erro podem ser utilizadas, cada uma com suas vantagens e limitações.

Modo de pânico. Essa é uma das estratégias mais comuns. Quando um erro é
detectado, o analisador descarta símbolos da entrada até encontrar um token que
pertença a um conjunto de sincronização (geralmente delimitadores como ponto e
vírgula ou chaves). Isso permite que o analisador pule instruções malformadas e
continue com o restante do código.

int a, 5abcd, sum, $2;

Neste exemplo, o parser reconhece o int a como uma declaração válida. Con-
tudo, quando encontra tokens inválidos como 5abcd ou $2, ele os ignora, sem inter-
romper a análise. A leitura continua até que seja encontrado o ; que indica o fim
da declaração, permitindo que o restante do código seja processado corretamente.

Essa abordagem é simples e evita que o compilador entre em ciclos infinitos.
No entanto, pode mascarar erros posteriores, levando a interpretações incorretas na
análise semântica ou na geração de código.

Recuperação de nível de frase. Essa técnica tenta realizar correções locais.
Quando um erro é detectado, o analisador tenta fazer ajustes simples na entrada,
como inserir um ponto e vírgula ausente ou corrigir uma vírgula no lugar errado.

Exemplo: int a, b ⇒ int a, b;
(O compilador insere o ponto e vírgula faltando.)

É uma abordagem eficiente e adotada por diversos compiladores, mas exige cui-
dado para evitar correções em cascata que causem ciclos ou novos erros.

Produções de erro. Nesse método, a própria gramática é enriquecida com produ-
ções específicas para reconhecer construções comuns incorretas. Quando uma dessas
produções é acionada, uma mensagem de erro personalizada pode ser gerada. Isso
exige conhecimento prévio sobre os tipos de erro que os programadores geralmente
cometem.

facom-ufms



Análise Sintática 36

Exemplo: Se a gramática original não reconhece uma entrada como
abcd, pode ser introduza uma produção auxiliar para aceitar esse padrão
e indicar o erro:

E → S B
S → A
A → aA | bA | a | b
B → cd

Apesar de poderosa, essa estratégia é de difícil manutenção, pois qualquer mu-
dança na gramática principal exige ajustes nas produções de erro.

Correção global. É uma abordagem teórica que tenta transformar a cadeia de
entrada incorreta na mais próxima possível de uma entrada válida, realizando o
menor número de alterações (inserções, remoções ou substituições de tokens). Em-
bora seja um conceito interessante, não é aplicável na prática devido ao alto custo
computacional.

Verificação de Tipos e Coerção. Embora o gerenciamento de tipos seja de
responsabilidade da análise semântica, o analisador sintático pode interagir com a
tabela de símbolos para validar operações básicas. É importante distinguir erro de
conversão. Quando ocorre uma incompatibilidade de tipos que a linguagem suporta
(como atribuir um valor real a um inteiro), não se trata de um erro, mas sim de uma
coerção (conversão implícita). Nesses casos, o compilador utiliza as informações da
tabela de símbolos para ajustar o valor automaticamente, garantindo a continuidade
da compilação sem emitir falhas.

Exemplo de Coerção: int x = 5.2; ⇒ int x = (int)5.2;
(O compilador trunca o valor para 5)

A tabela de símbolos torna-se essencial para a recuperação de erros apenas
quando essa conversão não é possível (por exemplo, tentar atribuir uma string a
uma variável numérica), momento em que o compilador deve, efetivamente, repor-
tar a incompatibilidade e tentar sincronizar a análise.

No Micro C, o analisador sintático não implementa estratégias de recuperação de
erro avançadas, como modo de pânico, correção de nível de frase, produções de erro
ou correção global. O propósito do compilador é didático: ele interrompe a análise
ao encontrar o primeiro erro sintático, garantindo que a compreensão da estrutura
da gramática e da árvore sintática abstrata seja clara e simples.

3.3 Leitura dos Tokens
Após a etapa de análise léxica, o compilador gera uma sequência de tokens que
representa os elementos significativos do código fonte. O analisador sintático, por sua
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vez, trabalha diretamente com essa sequência de tokens para verificar se a estrutura
do programa está correta de acordo com a gramática da linguagem.

Neste estágio, a entrada para o analisador sintático não é mais o código fonte
original, mas uma lista de tokens previamente gerados pelo analisador léxico. Cada
token contém informações essenciais, como o tipo (representando a categoria do
lexema), o lexema (que e a sequência de caracteres que corresponde ao token), e a
linha do código onde o token foi encontrado. Com esses dados, o analisador sintático
consegue construir a árvore de derivação e verificar se a construção sintática do
programa está de acordo com as regras definidas pela gramática da linguagem.

O objetivo desta seção é descrever o processo de leitura e armazenamento desses
tokens para que possam ser usados pelo analisador sintático. O arquivo de entrada
utilizado para esse processo, o tokens.txt, contém os tokens gerados pela fase de
análise léxica, e é a partir deste arquivo que o analisador sintático vai realizar sua
análise. Um exemplo real da estrutura interna desse arquivo, gerado a partir do
código fonte soma.mcc, pode ser consultado no Apêndice D.2 Análise Léxica.

A seguir, será discutida a implementação que permite a leitura desse arquivo e
o armazenamento dos tokens em uma estrutura apropriada para posterior uso no
processo de análise sintática.

3.3.1 Estrutura para Armazenamento de Tokens

Antes de prosseguir, é importante entender como os dados são organizados. Para
isso, é utilizada a estrutura TokenList que mantém um vetor dinâmico de tokens e
garante que a memória seja gerenciada de forma eficiente e todos os tokens gerados
pela análise léxica sejam acessíveis, pelo analisador sintático.

A estrutura TokenList é definida como segue:

typedef struct {
Token *tokens;
int tamanho;
int capacidade;

} TokenList;

A estrutura TokenList é formada por três membros: tokens, que é um ponteiro
para o vetor de tokens ; tamanho, que é o número atual de tokens armazenados; e,
capacidade, que é a quantidade máxima de tokens que a estrutura pode armazenar
antes de precisar ser redimensionada.

3.3.2 Leitura do Arquivo tokens.txt

A leitura do arquivo tokens.txt é realizada pela função carregar_tokens no Micro
C. Essa função abre o arquivo e processa cada linha usando a função sscanf que
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faz a leitura formatada de uma linha extraindo tipo, lexema e número de cada linha
para cada token.

O trecho abaixo ilustra a leitura dos tokens do arquivo tokens.txt:

int carregar_tokens(const char *nome_arquivo, TokenList *lista){
FILE *arquivo = fopen(nome_arquivo, "r");
if (arquivo == NULL) {

return -1; }

char linha_str[256];
while (fgets(linha_str, sizeof(linha_str), arquivo)) {
int tipo, linha_num;
char lexema[100];

//extrai os dados da linha formatada
if (sscanf(linha_str, "Token: tipo = %d, lexema = ’%[^’]’,
linha = %d", &tipo, lexema, &linha_num) != 3) {

continue; }

//verifica se é necessário redimensionar a lista
if (lista->tamanho >= lista->capacidade) {

lista->capacidade *= 2;
Token *nova_lista = realloc(lista->tokens,

lista->capacidade * sizeof(Token));
if (nova_lista == NULL) {

fclose(arquivo);
return -1; //falha de memória

}
lista->tokens = nova_lista;

}

//armazena o token na lista
lista->tokens[lista->tamanho].tipo = (TokenType)tipo;
strncpy(lista->tokens[lista->tamanho].lexema, lexema, 100);
lista->tokens[lista->tamanho].linha = linha_num;
lista->tamanho++;
}
fclose(arquivo);
return 0;

}

A função lê o arquivo linha a linha utilizando um buffer temporário (linha_str).
O formato esperado para cada linha segue o padrão definido na etapa léxica:

Token: tipo = <tipo do token>, lexema = <texto>, linha = <número da linha>

Esta função abre o arquivo tokens.txt e lê cada linha, que contém as informações
do token. Caso a leitura da linha seja bem sucedida, as informações do token são
extraídas e armazenadas na lista de tokens. Se a lista estiver cheia, ela é redimensi-
onada dinamicamente para comportar novos tokens.

Notem que, ao lidar com a lista de tokens, é importante garantir que a memória
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seja gerida de forma eficiente, redimensionando o vetor conforme necessário para
evitar desperdício ou falta de espaço. O uso da função realloc garante que a lista
de tokens possa crescer dinamicamente durante o processamento do arquivo.

3.3.3 Conectando as Fases Léxica e Sintática

Neste estágio do compilador, a leitura dos tokens serve como uma ponte entre a fase
de análise léxica e a análise sintática. A fase de análise léxica, que ocorre primeiro,
tem como objetivo identificar os tokens no código fonte. Esses tokens são, então,
carregados no analisador sintático para que a estrutura do programa seja verificada
e processada.

É importante notar que, nesta etapa de leitura dos tokens, ainda não há validação
sintática. Ou seja, o objetivo não é verificar se a sequência de tokens segue as regras
da gramática da linguagem de programação. Em vez disso, estamos simplesmente
carregando e organizando os tokens identificados pela análise léxica para que possam
ser usados na próxima fase de análise sintática. Esse processo garante que o com-
pilador tenha acesso à sequência de tokens que será analisada mais detalhadamente
na fase subsequente.

Dessa forma, a etapa de leitura dos tokens fornece uma entrada organizada e
estruturada ao analisador sintático, permitindo que ele realize suas operações com
eficiência, sem precisar se preocupar com a identificação e categorização de tokens,
uma vez que isso já foi feito pela análise léxica. Ou seja, os tokens armazenados
no arquivo representam a única interface entre a análise léxica e a análise sintática,
portanto qualquer erro nessa transição pode comprometer toda a compilação.

Para facilitar o acesso sequencial e ordenado a essas informações, utilizamos uma
estrutura em C chamada TokenList, que é um vetor dinâmico de estruturas Token.
Cada elemento dessa lista contém três informações: o tipo do token (valor numérico),
seu lexema (texto associado) e a linha do código fonte onde ele foi encontrado.

Essa organização em forma de lista permite que o analisador sintático percorra os
tokens de maneira eficiente, respeitando a ordem em que foram identificados. Além
disso, ao manter o número da linha, facilita-se a geração de mensagens de erro mais
informativas durante a análise sintática, contribuindo para uma melhor depuração
do código fonte pelo programador.

Observem que a separação entre a análise léxica e a sintática permite que cada
fase seja desenvolvida, testada e mantida de forma independente. A estrutura de
dados escolhida para armazenar os tokens serve como uma ponte entre essas fases,
garantindo que os dados sejam compartilhados de forma clara e organizada.

O trecho abaixo mostra um exemplo do arquivo tokens.txt:
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// Conteúdo exemplo de um arquivo tokens.txt
Token: tipo = 31, lexema = ’int’, linha = 1
Token: tipo = 1, lexema = ’x’, linha = 1
Token: tipo = 19, lexema = ’=’, linha = 1
Token: tipo = 2, lexema = ’10’, linha = 1
Token: tipo = 20, lexema = ’;’, linha = 1

Esse trecho simula a saída do analisador léxico para uma linha simples de decla-
ração e atribuição. Cada linha representa um token com seu tipo, conteúdo textual
e a linha correspondente do código-fonte. Ao serem carregados em uma estrutura
TokenList, esses dados são organizados sequencialmente, mantendo a integridade
da ordem original do programa, o que é essencial para a análise sintática.

Compreender como os tokens são lidos e organizados pelo scanner nos permite
preparar o parser para a análise sintática. Na seção a seguir, será introduzida a
Gramática da Linguagem, que define formalmente as regras que o parser seguirá
para validar a estrutura do programa. Serão descritos os símbolos terminais e não
terminais, bem como as convenções adotadas para representar expressões, funções e
instruções do Micro C, garantindo que a análise sintática esteja totalmente alinhada
com a implementação prática do compilador.

3.4 Gramática da Linguagem
Gramáticas são manuais de regras que definem a estrutura de uma linguagem de
programação. No Micro C, elas descrevem como funções, declarações, expressões e
instruções devem ser organizadas, sendo essenciais para a construção do compilador
e para a geração da Árvore Sintática Abstrata (ASA).

Uma Gramática Livre de Contexto (GLC) é um tipo especial de gramática que
expressa estruturas hierárquicas. No Micro C, ela permite representar funções, blo-
cos, expressões aninhadas, laços e comandos condicionais, refletindo diretamente a
implementação do parser recursivo descendente.

Além disso, cada tipo de construção sintática possui correspondência direta com
funções do parser. Por exemplo, as funções function(), var_declaration(),
expression(), arithmetic_expression(), term() e factor() representam não
terminais que estruturam a linguagem e determinam a hierarquia de operações e
regras de escopo. Esse mapeamento garante que a gramática esteja alinhada com
a implementação prática da linguagem, considerando que os tokens são fornecidos
pelo scanner.

3.4.1 Notações de Gramática

Para evitar ambiguidades e facilitar a leitura, foram adotadas convenções claras para
representar os símbolos e produções da gramática do Micro C :

facom-ufms



Análise Sintática 41

1. Símbolos terminais: representam tokens reconhecidos pelo scanner, como:

• Palavras reservadas: int, char, if, else, for, return, print.

• Operadores e símbolos de pontuação: +, -, *, /, %, =, ==, <, >, <=, >=, !=,
;, ,, (, ), {, }, [, ].

• Literais e identificadores: id, num, char_const, string_const.

2. Símbolos não terminais: representam construções sintáticas do Micro C :

• program → representa o ponto de entrada do compilador, contendo uma
sequência de funções.

• function → definição completa de função, incluindo tipo de retorno,
nome, parâmetros e corpo.

• type → especificador de tipo (int ou char).

• var_declaration → declaração de variáveis locais ou parâmetros.

• expression, arithmetic_expression, term, factor → hierarquia de
expressões, determinando precedência e associatividade de operadores.

• arg_list e param_list → listas de argumentos em chamadas de função
e parâmetros de funções, respectivamente.

• statement → representa instruções individuais, como atribuições, laços
(for), condicionais (if-else) e comandos de saída (print).

3. Produções: uma regra genérica da gramática é escrita como:

A → α

onde A é um não terminal e α é uma sequência de símbolos terminais e/ou
não terminais. Alternativas podem ser representadas com o operador |:

A → α1 | α2 | · · · | αn

4. Símbolo inicial: o não terminal da primeira produção é o símbolo inicial da
gramática, que no Micro C é program.

Pelas convenções adotadas, E, T e F são não terminais. O símbolo E é o símbolo
inicial. Por outro lado, o id, os operadores aritméticos e os parênteses são todos
terminais.

Com as notações e convenções estabelecidas, torna-se possível definir formal-
mente a estrutura sintática da linguagem. O Apêndice B possui a Especificação
da Gramática Livre de Contexto (GLC) completa do Micro C. Esta especificação
fundamenta a implementação do analisador sintático, detalhando como os tokens de-
vem ser combinados para formar estruturas válidas, abrangendo desde a declaração
da função principal (main) até as regras de precedência em expressões aritméticas e
lógicas.
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3.4.2 Relação entre Gramática e Analisador Sintático

Após a análise léxica, que transforma o código fonte em uma sequência de tokens,
o compilador precisa verificar se essa sequência está organizada de forma sintatica-
mente correta. É nesse momento que o analisador sintático, ou parser, entra em
ação.

O analisador sintático utiliza a gramática da linguagem como um guia para
reconhecer se a sequência de tokens pode ser derivada a partir do símbolo inicial
da gramática. Em outras palavras, o parser verifica se os tokens seguem as regras
formais definidas pela gramática, confirmando que o programa obedece à estrutura
sintática esperada. Caso a sequência não se encaixe nas regras, o analisador sintático
sinaliza um erro indicando que o código está mal estruturado.

Além de validar a sequência de tokens, o analisador sintático constrói uma re-
presentação intermediária chamada árvore sintática ou árvore de derivação. Essa
árvore mostra a estrutura hierárquica das construções do programa, evidenciando
como as regras da gramática foram aplicadas para gerar a sequência de tokens. Cada
nó da árvore representa um símbolo da gramática, e as ramificações indicam como
as produções foram usadas para decompor a entrada.

A gramática, portanto, influencia diretamente a forma da árvore sintática. De-
pendendo das regras e da organização das produções, a árvore pode ter diferentes
formatos, o que afeta etapas posteriores do compilador, como análise semântica e
geração de código. Assim, é fundamental que a gramática seja projetada de forma
cuidadosa para garantir que o analisador sintático funcione corretamente e produza
estruturas que facilitem as fases seguintes da compilação.

Considere a expressão aritmética simples:

3 + (5 + 2)

Supondo a gramática para expressões aritméticas vista anteriormente:

E → E + T | E − T | T
T → T ∗ F | T/F | F
F → (E) | id | num

Neste exemplo, num representa um número, que é um terminal da gramática. A
análise sintática verifica se a sequência de tokens correspondente à expressão acima
pode ser derivada a partir do símbolo inicial E.

Na Figura 3.2 (árvore sintática para a expressão 3 + (5 + 2)), cada nó re-
presenta um símbolo não terminal ou terminal da gramática, mostrando como a
expressão foi decomposta seguindo as regras sintáticas. O analisador sintático cons-
trói essa estrutura para garantir que a entrada está correta e facilitar as etapas
seguintes, como a geração de código ou a análise semântica.
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Figura 3.2: Árvore Sintática para a expressão 3 + (5 + 2).

Assim, é possível notar que a gramática orienta e guia o analisador sintático e
a construção da árvore sintática. Isso estabelece uma ligação direta entre as regras
formais da linguagem e a representação estrutural do programa.

3.5 Análise Sintática Descendente
A análise sintática descendente é uma técnica que constrói a árvore de derivação
do código-fonte de forma top-down, ou seja, da raiz até as folhas. Nesse tipo de
abordagem, a estrutura da árvore é criada em ordem pré-fixada (ou pré-ordem [5]),
seguindo o mesmo raciocínio de uma busca em profundidade. O objetivo é derivar
a cadeia de entrada de acordo com as regras da gramática, partindo do símbolo
inicial e aplicando sucessivamente produções até gerar uma sequência de símbolos
terminais que coincida com a sequência de tokens gerada pela análise léxica.

Essa estratégia corresponde a uma derivação mais à esquerda, pois a cada etapa
o analisador foca na substituição da subárvore mais à esquerda que ainda contém
um não terminal. A escolha da produção correta a ser aplicada em cada passo é o
principal desafio desse método, especialmente em gramáticas que oferecem múltiplas
alternativas para um mesmo símbolo não terminal.

3.5.1 Descida Recursiva

Um dos métodos mais utilizados na implementação da análise descendente é a des-
cida recursiva. Ele é baseado em um conjunto de procedimentos recursivos, um
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para cada não terminal da gramática. A execução tem início no procedimento cor-
respondente ao símbolo inicial e avança por chamadas recursivas até que todos os
tokens sejam reconhecidos corretamente.

O funcionamento básico pode ser esquematizado da seguinte forma: para cada
não terminal da gramática, existe uma função associada que tenta reconhecer a
produção correta. Essa função pode invocar outras funções (recursivamente) para
reconhecer os símbolos não terminais do lado direito da produção. Finalmente, para
cada símbolo terminal, verifica-se se ele corresponde com o símbolo atual da entrada.

No entanto, esse método, em sua forma geral, pode exigir retrocesso, isto é, pode
ser necessário tentar diversas alternativas para um mesmo não terminal até encon-
trar aquela que corresponde corretamente à entrada. Essa tentativa e erro é pouco
eficiente e raramente usada em compiladores reais [1, 3, 9], especialmente porque
muitas construções em linguagens de programação não exigem essa complexidade.

Exemplo: Considere a seguinte gramática:

S → xBz

B → y | w

Suponha a cadeia de entrada x w z que será analisada utilizando a análise sin-
tática descendente. Inicialmente, a descida começa do símbolo inicial S e aplica-se
a produção S → xBz. Em seguida, tenta-se expandir o não terminal B para que
ele reconheça o símbolo intermediário da entrada. Como o próximo símbolo é w, a
produção B → w é escolhida. A derivação é bem-sucedida, pois todos os símbo-
los da entrada são consumidos corretamente, resultando na árvore de derivação da
Figura 3.3.

S

x B

w

z

Figura 3.3: Árvore de Derivação da gramática.

Neste ponto, é experimentado a primeira alternativa para B, que é B → y. Como
o símbolo y não corresponde ao próximo símbolo da entrada, que é w, ocorre um erro.
O analisador então realiza o retrocesso: retorna ao ponto em que B foi invocado e
tenta a próxima alternativa. Utilizando B → w, ocorre uma validação bem-sucedida
com a entrada, permitindo o avanço para o símbolo final z, completando a derivação
com sucesso.
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3.5.2 Problemas com Recursão à Esquerda

Um dos desafios clássicos ao implementar analisadores descendentes recursivos é a
presença de recursão à esquerda [1]. Quando uma função recursiva chama a si mesma
de forma direta sem computar nenhum símbolo da entrada, o parser pode entrar
em um ciclo infinito, impedindo que a análise avance.

Com o objetivo de reforçar a compreensão mas com enfoque na mecânica da des-
cida recursiva, considere o seguinte analisador descendente recursivo para comandos
de repetição simples a seguir:

• Função repetir_comando() tenta processar qualquer comando que comece
com a palavra reservada repeat.

Se implementada de forma recursiva e direta, sem consumir a palavra repeat
antes da chamada recursiva, a função poderia se auto invocar repetidamente sem
avançar na entrada. Por exemplo, a sequência de chamadas poderia ocorrer da
seguinte forma:

repetir_comando() ⇒ repetir_comando() ⇒ repetir_comando() ⇒ . . .

O parser nunca chega a processar a palavra repeat, resultando em um laço
infinito, mesmo que a entrada contenha comandos válidos.

Para evitar isso, cada chamada recursiva precisa processar, pelo menos, um token
da entrada antes de se invocar recursivamente. Alternativamente, é possível rees-
truturar a função para tratar a repetição de maneira iterativa ou dividir a produção
em partes que garantam avanço da análise. Assim, o parser consegue processar
corretamente os comandos e avançar pela entrada sem problemas adicionais.

O exemplo apresentado reforça que a recursão à esquerda precisa ser cuidadosa-
mente tratada em analisadores descendentes recursivos. Ao compreender e aplicar
esta técnica, é possível garantir que o parser funcione, reconhecendo sequências de
tokens corretamente e evitando ciclos infinitos.

3.5.3 Implementação Sem Recursão

Além da versão recursiva, também é possível implementar um analisador descen-
dente com uma pilha explícita, simulando o comportamento das chamadas recur-
sivas. Essa técnica é particularmente útil em situações em que o uso de recursão na
linguagem de implementação não é desejado.

A pilha mantém os símbolos que ainda precisam ser analisados. A cada passo, o
analisador consulta o topo da pilha e o símbolo corrente da entrada. Se o topo da
pilha for um terminal que casa com a entrada, ambos são processados. Se for um não
terminal, usa-se a tabela preditiva para decidir qual produção aplicar, substituindo
o não terminal por seus componentes. Por fim, se não houver regra aplicável, ocorre
um erro de sintaxe.
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3.6 Conjuntos FIRST e FOLLOW
Na construção de analisadores sintáticos descendentes especialmente os preditivos
e também na análise sintática ascendente, os conjuntos FIRST e FOLLOW de-
sempenham um papel fundamental. Essas duas funções, associadas aos símbolos de
uma gramática livre de contexto, ajudam a decidir qual produção deve ser utilizada
em cada etapa da análise.

Durante a análise descendente, por exemplo, o conjunto FIRST permite prever
qual produção aplicar com base no próximo símbolo da entrada. Já o conjunto
FOLLOW é especialmente útil em momentos de recuperação de erro e no tratamento
de produções que podem derivar a cadeia vazia (ε).

O conjunto FIRST de uma cadeia α, denotado por FIRST(α), é o conjunto de
símbolos terminais que podem iniciar alguma cadeia derivada a partir de α. Em
outras palavras, é o conjunto de possíveis primeiros símbolos da entrada quando
aplicadas as produções da gramática a partir de α. Se α ⇒∗ ε, então ε ∈ FIRST(α).

Por outro lado, o conjunto FOLLOW de um não terminal A, denotado por
FOLLOW(A), é o conjunto de símbolos terminais que podem aparecer imediatamente
à direita de A em alguma derivação da gramática. Ou seja, se houver uma derivação
do tipo S ⇒∗ αAaβ, então a ∈ FOLLOW(A). Além disso, o marcador de fim de
entrada, representado por $, também pertence a FOLLOW(S), onde S é o símbolo
inicial da gramática.

Para computar o conjunto FIRST para todos os símbolos da gramática, são apli-
cadas as regras a seguir repetidamente, até que o conjunto se torne estável, ou seja,
não ocorram mais mudanças:

1. Se X é um terminal, então FIRST(X) = {X}.

2. Se X é um não terminal e há uma produção X → Y1Y2 . . . Yk, então:

• Inclua todos os símbolos não-ε de FIRST(Y1) em FIRST(X);

• Se ε ∈ FIRST(Y1), então também inclua os símbolos não-ε de FIRST(Y2),
e assim por diante;

• Se ε ∈ FIRST(Yi) para todo i = 1, . . . , k, então ε ∈ FIRST(X).

3. Se X → ε é uma produção, então ε ∈ FIRST(X).

Por outro lado, para calcular o conjunto FOLLOW para todos os não terminais,
são utilizadas as seguintes regras:

1. Inclua $ em FOLLOW(S), onde S é o símbolo inicial da gramática.

2. Se houver uma produção A → αBβ, então todos os símbolos de FIRST(β)
exceto ε devem estar em FOLLOW(B).
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3. Se ε ∈ FIRST(β) ou β = ε, então tudo que estiver em FOLLOW(A) deve estar
também em FOLLOW(B).

E os procedimentos seguem o mesmo padrão do conjunto FIRST, até que o con-
junto estabilize.

3.6.1 Exemplo de Cálculo dos Conjuntos

Nesta seção é apresentado um exemplo prático de cálculo dos conjuntos FIRST e
FOLLOW, utilizando uma gramática para aritmética simples ajustada para não conter
recursões à esquerda. O objetivo é compreender como esses conjuntos são construí-
dos e como eles auxiliam o parser a tomar decisões durante a análise sintática.

Considere a seguinte gramática sem recursão à esquerda:

E → T E ′

E ′ → +T E ′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → (E ) | id

As reapresentações a seguir demonstram a execução dos passos utilizados para
calcular e construir os conjuntos FIRST e FOLLOW:

FIRST(F) = { (, id }

FIRST(T) = FIRST(F) = { (, id }

FIRST(E) = FIRST(T) = { (, id }

FIRST(E’) = { +, ε }

FIRST(T’) = { *, ε }

FOLLOW(E) = { ), $ }

FOLLOW(E’) = FOLLOW(E) = { ), $ }

FOLLOW(T) = { +, ), $ }

FOLLOW(T’) = FOLLOW(T) = { +, ), $ }

FOLLOW(F) = { *, +, ), $ }

Este exemplo mostra, de forma concreta, como os conjuntos FIRST e FOLLOW
são determinados para cada não terminal. Ao calcular esses conjuntos, é possível
garantir que o parser do Micro C consiga prever corretamente quais produções
devem ser aplicadas em cada situação, facilitando a construção da árvore sintática
e evitando erros durante a compilação.
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3.6.2 Gramáticas LL(1)

Os conjuntos FIRST e FOLLOW são as ferramentas formais que permitem responder
a uma pergunta importante sobre a gramática. Ou seja, é necessário determinar se
uma gramática é simples o suficiente para ser analisada por um parser preditivo.
E esses conjuntos auxiliam nesse processo.

Um parser preditivo, como o nome sugere, tenta prever qual regra gramatical
aplicar olhando apenas um token à frente na entrada. Esta é a abordagem mais
rápida e eficiente. A alternativa seria um parser com retrocesso (ou backtracking):
um método onde o parser adivinha uma regra. Se essa regra falhar (ex: 50 tokens
depois), ele deve voltar atrás (retroceder) e tentar outra regra. O backtracking é
extremamente lento e complexo [1, 13] de implementar e por isso não foi utilizado
no compilador do Micro C.

Para garantir que o parser possa ser preditivo e não precise de backtracking, a
gramática deve atender a uma propriedade especial. Essa propriedade é conhecida
como LL (Left-to-right, Leftmost), onde o primeiro “L"indica que a entrada é lida
da esquerda para a direita, e o segundo “L"indica que a análise constrói uma de-
rivação mais à esquerda. Usando uma gramática LL(1), é possível construir um
analisador sintático preditivo que reconhece a cadeia de entrada (da esquerda para
a direita), produzindo uma derivação mais à esquerda, e que decide qual produção
usar examinando apenas um símbolo à frente da entrada, o “1"da notação LL(1)
indica exatamente essa quantidade de lookahead.

Para que uma gramática G seja LL(1), ela deve satisfazer as seguintes condições,
para toda par de produções A → α e A → β:

1. FIRST(α) ∩ FIRST(β) = ∅

2. No máximo uma entre α ou β pode derivar ε

3. Se ε ∈ FIRST(β), então FIRST( α) ∩ FOLLOW(A) = ∅

Essas condições garantem que a produção correta pode ser escolhida apenas com
base no próximo símbolo da entrada.

3.6.3 Gramáticas que não são LL(1)

A definição de LL(1) é estrita, e nem toda gramática pode ser transformada para
satisfazer suas condições. Uma gramática falha em ser LL(1) se for intrinsecamente
ambígua ou se requerer mais de um símbolo de antecipação (lookahead) para decidir
qual produção aplicar. Quando uma gramática viola as condições (por exemplo, se
FIRST(α) ∩ FIRST(β) ̸= ∅), a tabela de análise preditiva resultante conteria múltiplas
produções, indicando que o parser não pode tomar uma decisão determinística.

Exemplo: Considere a gramática abaixo, que simula a ambiguidade do uso de
else:
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S → if E then S S ′ | a
S ′ → else S | ε
E → b

Essa gramática não é LL(1), pois a entrada da tabela para S ′ com símbolo
else contém duas produções possíveis, o que causa ambiguidade. A resolução mais
comum para esse tipo de problema é adotar a convenção de associar o else ao then
mais próximo, que corresponde a escolher a produção S ′ → else S.

3.6.4 Análise Preditiva

Uma variação eficiente da descida recursiva é o analisador preditivo, que evita o
uso de retrocesso. Nessa abordagem, a escolha da produção correta para um não
terminal é feita de forma determinística, com base no próximo símbolo da entrada
(ou nos próximos k símbolos, no caso geral de uma gramática LL(k). Na prática,
costuma-se usar k = 1, dando origem às gramáticas LL(1).

A partir desses conjuntos, é possível construir uma tabela preditiva que relaci-
ona não terminais e símbolos de entrada às produções apropriadas. Com essa tabela,
o analisador preditivo pode decidir, com base no próximo símbolo, qual produção
utilizar sem necessidade de retrocesso.

Exemplo: Suponha que temos a seguinte gramática transformada:

E → TE ′

E ′ → +TE ′ | ϵ
T → id

Com base nos conjuntos FIRST e FOLLOW, a tabela preditiva pode ser cons-
truída para guiar o analisador na escolha correta das produções para E ′ com base
no símbolo seguinte na entrada. Se o próximo símbolo for +, é escolhida a derivação
E ′ → +TE ′. Se for um símbolo do conjunto FOLLOW de E ′, é aplicada a derivação
E ′ → ϵ.

3.6.5 Recuperação de Erros

Assim como discutido anteriormente, analisadores descendentes também podem ado-
tar estratégias de recuperação de erros. Mesmo que a análise falhe em um determi-
nado ponto, é desejável que o compilador continue examinando o restante do código,
reportando múltiplos erros em uma única execução. Para isso, é comum utilizar o
modo de pânico, onde símbolos da entrada são descartados até que se encontre um
símbolo seguro que pertença ao conjunto FOLLOW de algum não terminal relevante.
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Essa abordagem simples permite que o compilador avance a análise e retome a
derivação a partir de pontos bem definidos, como o final de uma instrução ou um
delimitador importante.

3.7 A Árvore Sintática Abstrata (ASA)
Enquanto a árvore de derivação é uma representação literal de como a gramática
gera uma sequência de tokens, na prática, os compiladores utilizam uma estrutura
mais otimizada e informativa: a Árvore Sintática Abstrata (ASA), ou AST (do
inglês, Abstract Syntax Tree). A ASA é o principal resultado da análise sintática e
serve como a estrutura de dados central para todas as fases subsequentes.

Diferente da árvore de derivação, a ASA condensa a estrutura do programa,
removendo nós intermediários e tokens que não carregam significado essencial, como
parênteses para agrupamento ou pontos e vírgulas como terminadores de instrução.
Ela captura a estrutura hierárquica e lógica do código de uma forma muito mais
direta. Por exemplo, uma expressão como a + b * c seria representada em uma
árvore que reflete diretamente a precedência dos operadores, com a multiplicação
com um nó folha mais profundo que o da adição.

3.7.1 Estrutura de um Nó da ASA no Micro C

Para construir a ASA, primeiro foi definida a estrutura de um nó individual no
arquivo ast.h. Cada nó na árvore representa um conceito gramatical, como uma
declaração, uma expressão ou um laço, e precisa de uma etiqueta para que o com-
pilador saiba o que ele representa. Esta etiqueta é a informação central que as fases
subsequentes (como a análise semântica e a geração de código) usarão para decidir
qual ação tomar.

Para implementar este sistema de etiquetas, foi utilizado um enumerador (enum)
chamado NodeType. Este enum é, essencialmente, o vocabulário da ASA. Ele define
formalmente todo tipo de construção que o analisador sintático é capaz de reconhecer
e armazenar. Cada membro deste enum (como NODE_PROGRAM ou NODE_BINARY_OP)
atua como um tipo de nó, permitindo que a estrutura ASTNode (que será visto
a seguir) saiba como interpretar os dados que armazena em sua union, definida
dentro da estrutura.
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O trecho de código a seguir, extraído do ast.h, detalha alguns tipos de nós que
o compilador Micro C utiliza:

//arquivo: src/ast/ast.h (trecho)
typedef enum {

NODE_UNDEFINED,
NODE_PROGRAM, // Nó raiz da AST
NODE_FUNCTION_DEF, // Definição de uma função
NODE_VAR_DECL, // Declaração de uma variável
NODE_ASSIGN, // Operação de atribuição
NODE_IF, // Estrutura condicional ’if-else’
NODE_FOR, // Laço ’for’
NODE_RETURN, // Comando ’return’
NODE_CALL, // Chamada de função
NODE_BINARY_OP, // Operação binária (ex: +, <, ==)
NODE_ID, // Um identificador
NODE_INTEGER_CONST, // Uma constante inteira
//... outros tipos de nós

} NodeType;

Com os tipos de nós definidos, a estrutura principal, ASTNode, é criada. Ela
contém o tipo do nó, a linha do código para facilitar mensagens de erro, ponteiros
para conectar os nós e formar a árvore e uma estrutura do tipo union para armazenar
dados específicos de forma eficiente.

A forma como os nós são conectados é um detalhe de implementação importante.
Em vez de cada nó ter um número fixo de filhos (o que seria inflexível), foi utilizada
a representação primeiro filho, próximo irmão. Ou seja, o filho tem um ponteiro
que aponta para o primeiro filho do nó atual e o proximo_irmao um ponteiro que
aponta para o próximo filho do mesmo nó pai. Os filhos de um nó formam uma
lista encadeada por meio deste ponteiro.

Essa técnica é poderosa, pois permite que um nó tenha um número variável de
filhos. Um nó de atribuição (NODE_ASSIGN) sempre terá dois filhos (o lado esquerdo
e o direito), mas um nó de bloco (NODE_BLOCK) pode ter dezenas de filhos, um para
cada instrução.
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O trecho de código abaixo mostra a estrutura do ASTNode:

//arquivo: src/ast/ast.h (trecho)
typedef struct ASTNode {

NodeType node_type;
int linha;
struct ASTNode *filho;
struct ASTNode *proximo_irmao;

union {
long int_value;
char char_value;
char* string_value;
TokenType op_type;

} data;
} ASTNode;

3.7.2 Construindo e Manipulando a Árvore

Uma vez que o objetivo era que o código do parser fosse simples para facilitar
a compreensão de sua implementação, a alocação de memória e conexão entre os
nós foi encapsulada em funções auxiliares (em ast.c). A função criar_no(), por
exemplo, foi usada para alocação e inicialização de um novo ASTNode:

//arquivo: src/ast/ast.c (trecho)
ASTNode* criar_no(NodeType type, int linha) {

ASTNode* no = (ASTNode*) malloc(sizeof(ASTNode));
if (no == NULL) { /*...*/ exit(EXIT_FAILURE); }

no->node_type = type;
no->linha = linha;
no->filho = NULL;
no->proximo_irmao = NULL;
memset(&no->data, 0, sizeof(no->data));

return no;
}

A função mais importante para a construção da árvore é a adicionar_filho().
Ela implementa a lógica da representação primeiro filho, próximo irmão, garantindo
que novos filhos sejam adicionados ao final da lista de irmãos, preservando a ordem
das instruções do código.
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O trecho de código que implementa a função adicionar_filho está abaixo:

//arquivo: src/ast/ast.c (trecho)
void adicionar_filho(ASTNode* pai, ASTNode* filho) {

if (pai == NULL || filho == NULL) return;

if (pai->filho == NULL) {
//Se for o primeiro filho
pai->filho = filho;

} else {
//Se já existem filhos, percorre a lista de irmãos até o final
ASTNode* irmao_atual = pai->filho;
while (irmao_atual->proximo_irmao != NULL) {

irmao_atual = irmao_atual->proximo_irmao;
}
//Adiciona o novo filho no final da lista
irmao_atual->proximo_irmao = filho;

}
}

Com essas estruturas e funções, o analisador sintático pode construir uma re-
presentação fiel do programa. Por exemplo, para a instrução v[i] = 47;, o parser
executaria uma sequência de chamadas como:

1. criar_no(NODE_ASSIGN, ...) para criar o nó de atribuição.

2. criar_no(NODE_ARRAY_ACCESS, ...) para o lado esquerdo, v[i].

3. criar_no(NODE_INTEGER_CONST, ...) para o lado direito, 47.

4. adicionar_filho(no_assign, no_array_access).

5. adicionar_filho(no_assign, no_integer_const).

O resultado é uma sub-árvore que captura a operação e a deixa pronta para ser
validada pelo analisador semântico.

3.8 Analisador Sintático
O analisador sintático, ou parser, é a etapa responsável por verificar se a sequência
de tokens produzida pelo analisador léxico está estruturada conforme as regras da
gramática da linguagem. Em outras palavras, ele garante que o código fonte siga a
sintaxe correta da linguagem.

No compilador do Micro C, foi implementado um analisador sintático do tipo
descendente recursivo, onde cada regra gramatical é representada por uma função
em C que processa os tokens na ordem correta. Essa abordagem permite um con-
trole detalhado do processo de análise e facilita a detecção de erros sintáticos e sua
localização no código.
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3.8.1 Processamento de tokens esperados

Uma operação fundamental do analisador sintático é a verificação e o processamento
do token atual para garantir que ele corresponda ao símbolo esperado conforme
as regras da gramática. Para isso, foi utilizada a função match, que recebe dois
argumentos: um ponteiro para o parser e o tipo do token que se espera encontrar
na entrada.

Se o tipo do token atual coincidir com o esperado, o analisador avança para o
próximo token, processando-o com a função advance. Caso contrário, a função error
é acionada para reportar uma mensagem de erro sintático e encerrar o processo de
compilação.

Esse procedimento garante que o código-fonte está sintaticamente correto e ade-
rente à estrutura da linguagem, facilitando a detecção precoce de desvios e incon-
sistências durante a análise.

A implementação da função match é dividida em duas partes. A primeira parte,
mostrada abaixo, trata se o token atual é o esperado, ele é processado:

void match(Parser *parser, TokenType esperado) {
if (parser->current_token && parser->current_token->tipo == esperado) {

advance(parser);
} else {

A segunda parte da função é o bloco else, que trata o erro sintático quando o
token é inesperado. A função constrói uma mensagem de erro clara e interrompe a
compilação:

//... (continuação da função match)
} else {

char msg[100];
snprintf(msg, sizeof(msg), "Token inesperado. Esperado: %s",

token_name(esperado));
error(parser, msg);

}
}

A função match encapsula uma operação de verificação simples, porém crítica.
Ela compara o tipo do token atual armazenado em parser->current_token com
o tipo especificado como argumento. Havendo correspondência, o analisador chama
a função advance, que realiza a leitura do próximo token da lista encadeada de
entrada.

Quando há discrepância entre o tipo atual e o esperado, a função monta uma
mensagem de erro que informa o que era esperado, utilizando a função token_name
para converter o tipo do token em uma representação textual amigável. Essa men-
sagem é repassada à função error, que imprime o erro com o número da linha e
interrompe a compilação.
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Esse mecanismo é aplicado sistematicamente em todas as funções de análise,
servindo como um verificador local que reforça a precisão e previsibilidade do parser.
Como resultado, erros de sintaxe são detectados no ponto exato de ocorrência, com
mensagens explicativas que auxiliam na correção rápida do código-fonte.

Além disso, a centralização da verificação na função match é uma prática de
projeto importante. Ela promove a clareza, evita duplicação de código nas funções
de análise e assegura uma resposta uniforme para erros sintáticos, o que torna o
analisador mais robusto e de fácil manutenção.

3.8.2 Avanço para o próximo token

A cada vez que um token esperado é encontrado e corretamente processado, o ana-
lisador sintático precisa avançar para o próximo elemento da sequência léxica. Essa
transição é realizada pela função advance, que atualiza o ponteiro current_token
do parser para apontar para o próximo nó da lista de tokens gerada pelo analisador
léxico.

A implementação é simples, mas desempenha um papel essencial na análise sintá-
tica, pois garante que o parser esteja sempre posicionado corretamente na sequência
de entrada. A seguir o código da função advance:

void advance(Parser *parser) {
if (parser->current_token != NULL) {

parser->current_token = parser->current_token->proximo;
}

}

O funcionamento da função advance é simples: ele apenas atualiza o campo
current_token para apontar para o próximo elemento da lista de tokens. Isso supõe
que os tokens foram previamente organizados em uma lista encadeada simples, na
qual cada token aponta para o próximo por meio do campo proximo.

Esse mecanismo sequencial reflete o fluxo natural da leitura de um programa
fonte, permitindo ao analisador percorrer token por token enquanto valida a estru-
tura sintática com base nas regras da gramática.

É importante destacar que, ao projetar a estrutura de tokens, deve-se garantir
que o último elemento da lista aponte para NULL, marcando assim o final da entrada.
Isso permite à função advance lidar corretamente com o fim do fluxo de entrada,
evitando acessos inválidos à memória.

Por outro lado, a função advance implementa o avanço linear da entrada e atua
em conjunto com a função match para controlar o fluxo de reconhecimento de tokens.
Juntas, essas duas funções formam a base do controle sintático sobre a leitura da
entrada.
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3.9 Sumário
Neste capítulo, avançamos para a segunda fase da compilação: a análise sintática.
Foi explicado como o parser recebe uma sequência linear de tokens da análise léxica
e valida se essa sequência obedece à estrutura gramatical da linguagem do Micro C.

Inicialmente foi discutida a teoria sobre Gramáticas Livres de Contexto
(GLC), que são a especificação formal para linguagens de programação. Aém disso,
foi detalhado como a hierarquia clássica de expressões (Expressão, Termo, Fator) é
usada para garantir a precedência de operadores. Em seguida, foram identificados
os problemas que a recursão à esquerda (ex: E → E + T ) pode causar e o
porquê isso impede o uso de parsers descendentes. Em seguida, apresentou-se como
o compilador do Micro C implementa o seu parser descendente recursivo.

O próximo passo foi discutir a importância da Árvore Sintática Abstrata
(ASA) como o principal produto desta fase de compilação, em contraste com a
árvore de derivação teórica. E foi comparada a implementação da ASA do Micro C
com a representação primeiro filho, próximo irmão (filho e proximo_irmao), que
permite que nós como NODE_BLOCK tenham um número variável de filhos.

Por fim, foram revisadas as funções auxiliares que encapsulam a lógica de cons-
trução da árvore, mantendo o código do parser limpo e concentrado na gramática.
Dessa forma, com a lista linear de tokens e a estrutura de árvore hierárquica (a
ASA), o código está pronto para a próxima etapa que será explorada no próximo
capítulo: a análise de significado (semântica).
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Análise Semântica

Get the habit of analysis - analysis will in time enable synthesis to become
your habit of mind.

– Frank Lloyd Wright

No Capítulo 3, exploramos a análise sintática e como o compilador constrói a
Árvore Sintática Abstrata (ASA) a partir das regras da gramática. Essa estrutura
é essencial, mas não é suficiente, pois a análise sintática apenas valida a forma do
código, não o seu significado. Um programa pode ser gramaticalmente perfeito e,
ainda assim, ser semanticamente inválido, por exemplo, ao tentar somar um número
inteiro a um vetor.

Neste capítulo, será abordada a seguinte fase: a análise semântica. Esta é
a etapa responsável por interpretar a ASA e verificar se ela faz sentido dentro do
contexto da linguagem Micro C. Nesta etapa de compilação serão explorados como
o compilador utiliza uma Tabela de Símbolos para rastrear variáveis, checar tipos,
validar escopos e garantir que as construções feitas pelo programador sejam lógicas
e coerentes.

4.1 Além da Gramática: Sentido e Contexto
A melhor analogia para a diferença entre a análise sintática e a semântica vem da
linguística. Por exemplo, a frase: ideias verdes incolores dormem furiosamente. É
possível observar que do ponto de vista sintático, a frase está correta pois segue a
estrutura convencional de sujeito + verbo + advérbio. No entanto, a frase não
tem significado coerente e, por isso, está semanticamente incorreta.

Da mesma forma, um programa pode seguir todas as regras gramaticais de uma
linguagem e ainda assim ser semanticamente inválida.
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Considere o seguinte trecho de código em Micro C :

int a[10];
int b[10];
int c;

c = a * b; // Erro Semântico!

Para o analisador sintático, a linha c = a * b; é perfeitamente válida. Ele a
enxerga como a estrutura ID = ID * ID;, que corresponde a uma regra gramatical
de atribuição e expressão. O parser não sabe (e nem precisa saber) o que a, b e c
realmente são.

A análise semântica, por outro lado, adiciona o contexto. Ela consulta a Tabela
de Símbolos e descobre que a e b não são números, mas sim vetores. A regra
semântica da linguagem determina que o operador de multiplicação (*) não é definido
para operandos do tipo vetor. Portanto, é o analisador semântico que identifica e
reporta este erro.

4.1.1 Verificação Estática vs. Dinâmica

A análise semântica é a principal responsável pela verificação estática. Verifi-
cações estáticas são aquelas que o compilador pode realizar antes da execução do
programa, apenas analisando o código fonte. A checagem de tipos, a verificação de
declaração de variáveis e a validação de parâmetros de funções são todos exemplos
de verificações estáticas. O objetivo é capturar o maior número possível de erros.

No entanto, nem todos os erros podem ser detectados estaticamente. Existem
erros que só podem ser identificados durante a execução, pois dependem dos valores
que as variáveis assumem. Estes são erros de verificação dinâmica.

Exemplos clássicos incluem:

• Acesso a um vetor fora dos limites: em uma expressão como v[i], se i
for uma variável, o compilador não tem como saber em tempo de compilação
se o valor de i será válido.

• Divisão por zero: em x / y, o compilador não pode garantir que o valor de
y nunca será zero durante a execução.

• Desreferência de ponteiro nulo: o compilador não pode prever se um
ponteiro terá o valor NULL em um determinado ponto da execução.

Linguagens como C e, por consequência, do Micro C, priorizam a performance
e, portanto, realizam um número limitado de verificações dinâmicas. A responsa-
bilidade de evitar esses erros de execução é de responsabilidade do programador.
Linguagens como Java ou Python, por outro lado, inserem automaticamente verifi-
cações dinâmicas em seu ambiente de execução (como a Java Virtual Machine ou o
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interpretador Python), o que as torna mais seguras, mas com um custo de perfor-
mance. Esse custo se deve aos ciclos extras de CPU gastos para realizar checagens
de segurança, por exemplo, verificar se um índice está dentro dos limites de um vetor
em cada execução, algo que linguagens como C não fazem.

4.1.2 Atributos, Regras Semânticas e a Tabela de Símbolos

Para realizar suas tarefas, o analisador semântico trabalha com o conceito de atri-
butos, que são informações associadas aos nós da ASA. O atributo mais importante
é o tipo de uma expressão. O trabalho do analisador é percorrer a árvore e calcular
os atributos para cada nó.

Esse processo é guiado por regras semânticas. Cada produção da gramática
(representada por um tipo de nó na ASA) tem uma ou mais regras semânticas
associadas. Por exemplo, para um nó de operação binária que representa a regra
expr -> expr1 + expr2, a regra semântica seria:

“O tipo de expr será inteiro se os tipos de expr1 e expr2 forem ambos
inteiro. Caso contrário, reporte um erro de tipo."

Para aplicar essa regra, o analisador precisa saber os tipos de expr1 e expr2.
Se eles forem identificadores (variáveis), o analisador consulta a Tabela de Símbolos
para obter seus tipos declarados. Se forem outras expressões, ele calcula seus tipos
recursivamente.

Dessa forma, a ASA fornece a estrutura, a Tabela de Símbolos fornece o contexto
inicial, e as regras semânticas guiam o processo de validação e de enriquecimento
da Tabela de Símbolos com os atributos calculados. Este processo não se limita
à verificação de tipos, mas inclui o registro de informações vitais para o back-end,
como o cálculo do desvio de memória (offset) na pilha de execução para cada variável
e parâmetro.

4.2 Objetivos da Análise Semântica
Enquanto a análise sintática se preocupa com a forma do código: esta frase está
gramaticalmente correta?, a análise semântica se preocupa com o significado: esta
frase, embora gramaticalmente correta, faz algum sentido? ou seja, ela atua como
uma camada de verificação profunda, utilizando a ASA gerada pelo parser como
sua principal estrutura de entrada.

Para realizar suas tarefas, o analisador semântico percorre a árvore e, com o
auxílio da Tabela de Símbolos, valida a coerência do programa, respondendo a per-
guntas como esta variável já foi declarada? ou é possível somar um inteiro com um
caractere?

A análise semântica tem como principais objetivos: verificar se todos os identifi-
cadores usados foram devidamente declarados; garantir que operadores e operandos
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sejam compatíveis em termos de tipo; detectar usos incorretos de variáveis, funções e
estruturas; controlar escopos e visibilidade de símbolos em blocos de código; validar
chamadas de funções quanto ao número e tipos dos argumentos; e, finalmente, gerar
anotações semânticas na árvore de sintaxe para uso na tradução posterior.

Por meio dessas tarefas, a análise semântica atua como uma ponte entre a forma
(sintaxe) e o comportamento (execução), consolidando a informação necessária para
transformar código fonte em passos executáveis pelo computador com segurança e
precisão.

Considere o exemplo abaixo com um erro semântico:

int x;
x = ‘P’; // Erro: atribuição de caractere a uma variável inteira

Esse trecho é sintaticamente válido: a atribuição x = ‘P’; está de acordo com
a gramática da linguagem. No entanto, semanticamente ele está incorreto, pois em
C não é permitido atribuir um valor booleano diretamente a uma variável do tipo
int sem conversão explícita. Esse tipo de erro não pode ser capturado pela análise
sintática apenas pela análise semântica.

Como foi possível observar, a análise semântica atua sobre a árvore gerada pela
análise sintática, enriquecendo-a com informações contextuais: tipos, escopos, de-
clarações, coerência de uso e outros atributos. Além disso, ela também prepara a
árvore para a próxima fase do compilador: a geração de código intermediário que
será o tema do Capítulo 5.

4.3 O Papel da Tabela de Símbolos
Um dos elementos centrais da análise semântica é a Tabela de Símbolos. Essa
estrutura de dados armazena informações relevantes sobre cada identificador do
programa: tipo, categoria (variável, função, constante), escopo, entre outros.

Sempre que uma nova declaração é encontrada, um símbolo correspondente é
inserido na tabela. Quando um identificador é utilizado, o compilador consulta essa
tabela para verificar se ele foi declarado corretamente, se está acessível no escopo
atual e se está sendo usado de maneira coerente com seu tipo.

A Tabela de Símbolos é fundamental para a verificação semântica, pois permite
rastrear e validar o uso de nomes ao longo do programa, garantindo consistência e
evitando ambiguidades.

4.3.1 Exemplos de Erros Semânticos

A seguir, serão apresentados exemplos de erros semânticos comuns, que não seriam
detectados por um analisador sintático.

facom-ufms



Análise Semântica 61

Uso de variável não declarada

y = 10; // Erro: ’y’ não foi declarada

Incompatibilidade de tipos

int x;
x = "abc"; // Erro: tentativa de atribuir string a inteiro

Chamada de função com número incorreto de argumentos

int soma(int a, int b);
soma(10); // Erro: número de argumentos incompatível

Acesso a identificadores fora de escopo

int funcao() {
int z = 5;

}
z = 6; // Erro: ’z’ não está mais em escopo

É possível observar que esses erros envolvem significado e contexto e não apenas
forma. Por isso, a análise semântica é a única fase capaz de detectá-los adequada-
mente, completando o processo de validação do programa.

4.4 Estrutura da Tabela de Símbolos
Como discutido na Seção 4.3, a Tabela de Símbolos é uma estrutura essencial no
processo de compilação, especialmente durante a análise semântica. Ela armazena
informações sobre os identificadores presentes no código fonte, como variáveis e fun-
ções, incluindo seus tipos e propriedades. Por meio dessa estrutura, o compilador
assegura a coerência semântica do programa, verificando, por exemplo, se uma vari-
ável foi declarada antes de seu uso, se há redeclarações indevidas no mesmo escopo
ou se os tipos envolvidos em uma operação são compatíveis.

Além disso, a Tabela de Símbolos precisa tratar corretamente com os escopos
de variável, permitindo que blocos de código, como funções ou estruturas de con-
trole, mantenham declarações independentes. Essa característica é essencial para
respeitar as regras de visibilidade definidas pela linguagem, onde variáveis locais
têm precedência sobre variáveis globais.

O objetivo desta seção é apresentar a implementação da Tabela de Símbolos no
compilador do Micro C, detalhando sua organização, as operações realizadas sobre
ela e sua integração com o analisador sintático. A solução adotada utiliza uma pilha
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de tabelas de símbolos para gerenciar escopos aninhados, garantindo uma análise
semântica robusta e eficiente.

4.4.1 Organização em Pilha de Escopos

Para gerenciar escopos, a Tabela de Símbolos é organizada como uma pilha de
tabelas, representada pela estrutura PilhaTabelasSimbolos. Cada tabela na pilha
corresponde a um escopo específico, com o escopo mais interno localizado no topo.
Ao entrar em um novo bloco (como o corpo de uma função), uma nova tabela é
empilhada. Ao sair do bloco, a tabela é desempilhada, descartando os identificadores
locais e preservando a hierarquia de escopos.

A estrutura PilhaTabelasSimbolos é definida como segue:

/*representa a pilha de tabelas de símbolos para controle de escopo. */
typedef struct {

TabelaSimbolos *tabelas[MAX_SIMBOLOS];
int topo;

} PilhaTabelasSimbolos;

Os campos da estrutura são representados por: tabelas, que é um vetor de
ponteiros para as estruturas TabelaSimbolos, responsável por armazenar os escopos
aninhados até o limite de MAX_SIMBOLOS; e topo, um número inteiro que indica o
índice da tabela atualmente ativa (o escopo corrente no topo da pilha).

O uso de uma pilha para gerenciar escopos é uma técnica consagrada em compi-
ladores [1,4,13], pois reflete a natureza hierárquica da análise sintática e semântica,
garantindo que os identificadores sejam acessados conforme as regras de visibilidade
da linguagem.

4.4.2 Estrutura dos Símbolos e Tabelas

Cada Tabela de Símbolos, representada pela estrutura TabelaSimbolos, armazena
um conjunto de identificadores, cada um descrito pela estrutura Simbolo. Essas
estruturas são definidas como segue:

/** @brief armazena informações sobre um único símbolo. */
typedef struct {

char nome[100];
TokenType tipo;
int is_function;
TokenType param_tipos[MAX_PARAMETROS];
int num_parametros;
int is_array;
int array_size;
int memory_offset;
int is_parameter;

} Simbolo;
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/* representa uma tabela de símbolos para um único escopo. */
typedef struct {

Simbolo simbolos[MAX_SIMBOLOS];
int tamanho;

} TabelaSimbolos;

Os campos da estrutura Simbolo armazenam os dados essenciais para a análise
semântica e geração de código: nome (o lexema do identificador); tipo (categoria
de dado, ex: INT); flags booleanas como is_function, is_array e is_parameter
para categorizar o identificador; dados específicos como array_size e assinatura
de funções (param_tipos, num_parametros); e o memory_offset, que determina o
endereço relativo da variável na pilha de execução.

Já a estrutura TabelaSimbolos gerencia o escopo individual através dos cam-
pos: simbolos, que é um vetor estático responsável por armazenar as definições
do escopo; e tamanho, um contador inteiro que indica a quantidade de símbolos
atualmente registrados na tabela.

Essa organização permite que cada escopo mantenha um conjunto independente
de identificadores, com suporte a crescimento dinâmico para acomodar programas
de tamanho variável.

4.4.3 Inserção e Busca de Símbolos

As operações principais na Tabela de Símbolos são a inserção e a busca de identifi-
cadores, implementadas pelas funções:

adicionar_simbolo

buscar_simbolo_no_escopo_atual

buscar_simbolo_em_todos_escopos

A função adicionar_simbolo é o principal método para popular uma tabela.
Ela insere um novo identificador no escopo atual (o topo da pilha), gerenciando
a alocação de memória do vetor de símbolos dinamicamente, como demonstra sua
implementação:

Simbolo* adicionar_simbolo(PilhaTabelasSimbolos *pilha,
const char *nome, TokenType tipo, int is_function, int is_array,
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/*...continuação...*/
int array_size, int is_parameter) {

if (pilha->topo < 0) {
printf("Erro: Nenhuma tabela de símbolos disponível\n");
return NULL;

}
TabelaSimbolos *tabela = pilha->tabelas[pilha->topo];
if (tabela->tamanho >= MAX_SIMBOLOS) {

printf("Erro: Tabela de símbolos cheia\n");
return NULL;

}
Simbolo *s = &tabela->simbolos[tabela->tamanho];
strncpy(s->nome, nome, 100);
s->tipo = tipo;
s->is_function = is_function;
s->num_parametros = 0;
//salva as novas informações do array
s->is_array = is_array;
s->array_size = array_size;

s->is_parameter = is_parameter;
s->memory_offset = 0; //será calculado pelo semantic.c

tabela->tamanho++;

return s;
}

Para evitar a redeclaração de um símbolo no mesmo escopo, o analisador semân-
tico utiliza a função buscar_simbolo_no_escopo_atual. Conforme detalhado no
código abaixo, esta função realiza uma busca linear simples apenas na tabela que
está no topo da pilha:

Simbolo* buscar_simbolo_no_escopo_atual(PilhaTabelasSimbolos
*pilha, const char *nome) {

if (pilha->topo < 0) {
return NULL;

}
TabelaSimbolos *tabela = pilha->tabelas[pilha->topo];
for (int i = 0; i < tabela->tamanho; i++) {

if (strcmp(tabela->simbolos[i].nome, nome) == 0) {
return &tabela->simbolos[i];

}
}
return NULL;

}

De forma complementar, para validar o uso de um identificador (garantindo que
ele foi declarado), o analisador utiliza a função buscar_simbolo_em_todos_escopos.
Esta implementação demonstra a lógica de busca em escopos aninhados, iterando
do topo da pilha (pilha->topo) até a base (o escopo global):

facom-ufms



Análise Semântica 65

Simbolo* buscar_simbolo_em_todos_escopos(PilhaTabelasSimbolos
*pilha, const char *nome) {

//itera da tabela do topo (escopo local) para a base (escopo global)
for (int i = pilha->topo; i >= 0; i--) {

TabelaSimbolos *tabela = pilha->tabelas[i];
for (int j = 0; j < tabela->tamanho; j++) {

if (strcmp(tabela->simbolos[j].nome, nome) == 0) {
return &tabela->simbolos[j];

}
}

}
return NULL;

}

4.4.4 Gerenciamento de Escopos

O gerenciamento de escopos é realizado pelas funções:

empilhar_tabela

desempilhar_tabela

Essas funções implementam a semântica de pilha para o controle de escopos. A
função empilhar_tabela é invocada sempre que o analisador entra em um novo
bloco (como o corpo de uma função), alocando dinamicamente uma nova estrutura
TabelaSimbolos na memória, desde que o limite máximo da pilha fixa não tenha
sido atingido.

Abaixo a implementação da função:

void empilhar_tabela(PilhaTabelasSimbolos *pilha) {
if (pilha->topo + 1 >= MAX_SIMBOLOS) {

printf("Erro: Pilha de tabelas cheia\n");
exit(EXIT_FAILURE);

}
TabelaSimbolos *nova_tabela = malloc(sizeof(TabelaSimbolos));
if (nova_tabela == NULL) {

printf("Erro: Falha ao alocar memória para nova tabela\n");
exit(EXIT_FAILURE);

}
nova_tabela->tamanho = 0;
pilha->tabelas[++pilha->topo] = nova_tabela;

}

De forma simétrica, a função desempilhar_tabela é chamada ao sair do bloco.
Nesta implementação didática, a função apenas decrementa o índice do topo, fe-
chando logicamente o escopo e impedindo o acesso a variáveis locais fora de seu
contexto. A memória alocada é preservada temporariamente para permitir a gera-
ção de relatórios de depuração ao final da compilação. Abaixo o código relativo à
função:
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void desempilhar_tabela(PilhaTabelasSimbolos *pilha) {
if (pilha->topo < 0) {

printf("Erro: Pilha de tabelas vazia\n");
exit(EXIT_FAILURE);

}

pilha->topo--;
}

Vale ressaltar que, embora a memória não seja liberada no momento do desempi-
lhamento, o ciclo de vida dos dados é gerido corretamente: a liberação física de todos
os recursos é delegada à função destruir_pilha_tabelas, executada ao término
do processo de análise.

4.4.5 Processamento da Árvore Sintática e Validação

Diferente de compiladores de passagem única, a implementação do Micro C realiza
a análise semântica de forma sequencial à sintática. O módulo semântico percorre
a Árvore Sintática Abstrata (ASA) gerada anteriormente, utilizando a Tabela de
Símbolos para validar regras de contexto e escopo. O percurso da árvore ocorre em
profundidade (Tree Walking), interagindo com a tabela em três momentos-chave:

1. Declaração de identificadores: ao visitar nós de declaração (ex: NODE
_VAR_DECL), o analisador verifica se o identificador já existe no escopo corrente
antes de invocar a função adicionar_simbolo.

2. Uso de identificadores: em nós de expressão ou atribuição, utiliza-se buscar
_simbolo_em_todos_escopos para garantir que a variável foi declarada e para
recuperar seu tipo para checagem.

3. Gerenciamento de escopos: ao descer em nós de bloco ou função, o ana-
lisador invoca empilhar_tabela, e ao retornar da visita aos filhos, executa
desempilhar_tabela, garantindo o isolamento das variáveis locais.
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O trecho abaixo, extraído da função analisar_no do módulo semântico, ilustra
como essa validação é aplicada na prática ao encontrar uma declaração de variável
na ASA:

case NODE_VAR_DECL: {
ASTNode* tipo_no = no->filho;
ASTNode* id_no = tipo_no->proximo_irmao;
char* nome_var = id_no->data.string_value;

//1. verifica duplicidade no escopo atual
if (buscar_simbolo_no_escopo_atual(pilha, nome_var)) {

char msg[200];
snprintf(msg, sizeof(msg), "Variavel ‘%s’ ja foi declarada.",

nome_var);
erro_semantico(msg, id_no->linha);

}

//2. adiciona à Tabela de Símbolos
adicionar_simbolo(pilha, nome_var, tipo_var, 0, is_array, ...);

//3. linkagem: Salva o ponteiro do símbolo no nó da árvore
id_no->symbol = buscar_simbolo_no_escopo_atual(pilha, nome_var);
break;

}

Como foi possível observar, essa abordagem permite que o compilador trate
escopos complexos e recursão, validando os tipos antes da geração de código.

Vale ressaltar que a implementação da Tabela de Símbolos utilizou vetores com
busca linear. Em cenários de produção, essa abordagem é considerada ineficiente
devido à complexidade O(n) nas operações de busca [5], sendo preferível o uso de
Tabelas Hash O(1) [1].

No entanto, para o escopo do Micro C, a escolha pelos vetores foi intencional
e pedagógica. Essa abstração simplificada reduz a sobrecarga de código (como o
tratamento de colisões), tornando a implementação mais legível e facilitando a com-
preensão dos conceitos fundamentais de escopo e tipagem.

4.4.6 Importância da Tabela na Análise Semântica

Se a Árvore Sintática Abstrata (ASA) é o esqueleto do programa, a Tabela de
Símbolos é o seu cérebro e memória. A ASA, por si só, não tem contexto; um nó de
identificador x em uma expressão (ex: y = x + 5;) é apenas um nó, sem conexão
com a sua declaração, int x;, que pode ter ocorrido muitas linhas antes, no início
do bloco. Para que o compilador possa determinar que esses dois usos x se referem à
mesma entidade, que é uma variável inteira, ele precisa de uma estrutura que, neste
caso, é a Tabela de Símbolos.

Essa tabela funciona como um banco de dados para todos os identificadores do
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programa. Durante o percurso da ASA, o analisador semântico interage constante-
mente com a Tabela de Símbolos para realizar suas verificações, permitindo valida-
ções como: a declaração prévia de variáveis antes de seu uso, por exemplo,
em x = 10; se x não foi declarado; compatibilidade de tipos em atribuições,
por exemplo, em int x = ‘a’;; e, finalmente, a validação de funções, como a
existência de main e a ausência de redeclarações.

Além disso, a Tabela de Símbolos não apenas suporta a análise semântica, mas
também é a base para etapas posteriores de compilação, como a geração de código
e otimização, onde informações sobre tipos e escopos são importantes.

Por esses motivos, essa tabela é um componente indispensável do compilador,
facilitando a análise semântica por meio do armazenamento e gerenciamento de
identificadores. Sua implementação, baseada em uma pilha de tabelas dinâmicas,
suporta escopos aninhados de forma eficiente, respeitando as regras de visibilidade
da linguagem.

4.5 Sumário
Neste capítulo, exploramos a terceira fase do processo de compilação, a análise
semântica, que é responsável por verificar o significado e a coerência do código-
fonte. Dessa forma, embora um programa possa estar sintaticamente correto, ele
ainda pode conter erros de lógica, como incompatibilidade de tipos ou o uso de
variáveis não declaradas.

Para realizar essa validação, foi introduzida uma estrutura de dados chamada
de Tabela de Símbolos. Durante a avaliação de funções importantes e do uso da
tabela no processo de compilação, foram explorados detalhes da implementação
de uma pilha de tabelas, que é a estratégia fundamental para gerenciar os escopos
aninhados da linguagem. Em seguida, analisados os códigos das principais funções
que manipulam essa pilha e como elas colaboram no processo de resolução de erros
semânticos no código do Micro C.

Por fim, foram avaliados os cenários de como o analisador semântico interage
com essa Tabela de Símbolos ao percorrer a ASA para validar o código e suas re-
gras de contexto. Com a conclusão desta fase, o compilador não apenas tem uma
representação estrutural do programa que é a Árvore Sintática Abstrata, mas tam-
bém uma compreensão completa do contexto e do significado de cada identificador,
deixando o caminho preparado para as fases de back-end de compilação (geração de
intercode e código em Assembly).
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Geração de Código Intermediário

The greatest revolution of our generation is the discovery that human be-
ings, by changing the inner attitudes of their minds, can change the outer
aspects of their lives.

– William James

Os capítulos anteriores abordaram a parte do compilador conhecida como front-
end, ou seja, a compilação ocorria em torno da análise léxica, sintática e semântica
do código fonte. Na análise léxica (Capítulo 2), foram validados os lexemas e proces-
samento correto de tokens, na análise sintática (Capítulo 3) foi construida a Árvore
Sintática Abstrata (ASA) e, finalmente, na análise semântica (Capítulo 4) validou-se
essa árvore, verificando tipos, escopos e preenchendo a Tabela de Símbolos. Con-
tudo, somente a validação da ASA, embora essencial, não era suficiente porque ela
ainda representa o programa em um formato hierárquico e de alto nível, muito dis-
tante do que um processador pode executar. A análise semântica apenas confirmou
que o programa faz sentido, mas não definiu como ele deve ser executado.

Neste capítulo se iniciará a implementação do back-end do compilador, abor-
dando, inicialmente, a geração de código intermediário. Esta fase em si inicia
no processo de síntese, traduzindo a ASA hierárquica e, previamente verificada, em
uma nova representação: uma sequência linear de instruções simples, independente
da máquina, conhecida como Código Intermediário. Esta fase do processamento
realiza a conexão entre a análise (o o quê) e a geração de código final (o como).

5.1 A Transição da Análise para a Síntese
Com a conclusão da análise semântica, se encerra a construção do front-end do
compilador. Dessa forma, o compilador agora sabe o que cada variável significa,
qual o seu tipo, onde ela está armazeanda e se as operações fazem sentido.
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A partir deste ponto, a função do compilador muda da análise para a síntese,
marcando o início da construção do back-end. O back-end não questiona mais o
significado do programa; ele aceita a representação validada pelo front-end como
correta. Sua nova missão é construir um novo artefato funcional a partir dessa
representação. Essa construção é o programa executável, ou uma representação que
pode ser facilmente convertida em um. A primeira etapa desse processo de síntese
é a geração de código intermediário.

5.1.1 O que é um Código Intermediário?

Um Código ou Representação Intermediária (RI) (Intermediate Representation - IR)
é uma linguagem “no meio do caminho". Ela é mais baixo nível e mais explícita que
a linguagem fonte (como a descrita para o compilador do Micro C ), mas é mais alto
nível e mais abstrata que a linguagem de máquina (ex.: Assembly x86-64).

Ou seja, o RI é um idioma universal para compiladores. Em vez de escrever um
tradutor direto de Português para Japonês e outro de Português para Alemão, é mais
eficiente traduzir o Português para uma língua intermediária, como o Esperanto, e
depois criar tradutores menores de Esperanto para Japonês e de Esperanto para
Alemão. Tornando o exemplo mais concreto:

• A ASA é a linguagem de alto nível, complexa e hierárquica.

• O RI é a linguagem intermediária, simples, linear e independente de máquina.

• O Assembly é a linguagem de baixo nível, específica para um processador.

Uma boa RI deve possuir algumas características para torná-lo mais eficiente.
A primeira é a Independência de Máquina: A RI não deve conter nenhuma
informação específica de um processador, como o nome de um registrador (ex: %eax).
Isso garante que a primeira metade do back-end (gerador de RI) seja portável. E
a segunda é a Linearidade e Explicitude: Ela representa o programa como uma
longa sequência de instruções muito simples, onde todo o fluxo de controle (como
os saltos de um if) e a ordem de avaliação de expressões se tornam explícitos.
Existem muitos tipos de RI. Na implementação do compilador do Micro C, optou-se
pela construção clássica utilizando Códigos de Três Endereços(CTE).

5.1.2 Front-End vs. Back-End : Onde Traçar a Linha?

A fronteira precisa entre o front-end e o back-end de um compilador é um tema
controverso. Em geral, entende-se que o front-end é responsável pela análise do
programa-fonte e pela geração de uma representação intermediária (RI), enquanto o
back-end converte essa RI em código de máquina. No modelo clássico [1], a geração
de código intermediário é tratada como a etapa final do front-end, uma vez que
a RI ainda é uma forma abstrata e independente de máquina. Por outro lado,
abordagens mais modernas [4] propõem uma divisão em três grandes fases: o front-
end, responsável pela análise; o middle-end, dedicado à geração e otimização da RI;
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e o back-end, encarregado da geração de código para a arquitetura alvo.

No entanto, no compilador do Micro C, foi adotada uma divisão conceitual li-
geiramente diferente, com foco na intenção da fase. No Front-End (Fases de
Análise), a missão é exclusivamente entender e validar o código fonte. Todas as
operações são feitas sobre representações diretas do código original (tokens, ASA,
tabela de símbolos). Essa fase termina quando o compilador pode afirmar com 100%
de certeza: “Eu entendo este programa e ele está semanticamente correto". Por ou-
tro lado, para o Back-End (Fases de Síntese), o objetivo é construir e traduzir.
Essa fase começa no momento em que o compilador, pela primeira vez, gera uma
nova representação do programa que não é mais um reflexo da estrutura do có-
digo fonte, mas sim um passo em direção à lógica de execução de uma máquina. Em
nosso caso, essa primeira representação é o RI.

Essa divisão faz sentido para o compilador do Micro C, porquê: primeiro, ela cria
uma separação clara. Ou seja, o front-end termina quando a análise e a verificação
do código terminam, que é onde o trabalho de validação termina. E, segundo, o
back-end é um processo de duas etapas que gera o RI e depois transforma-o em
Assembly. Essas fases tem como objetivo a síntese do programa final. Considerar a
geração do RI como o passo inicial do back-end agrupa todas as tarefas de tradução
de forma coesa, pois ambas as fases (geração de RI e geração de Assembly) são, em
essência, etapas de tradução que transformam uma representação em outra, de nível
mais baixo. Por simplicidade, a construção do compilador do Micro C considera o
front-end como um motor de compressão e o back-end (a começar pela geração do
RI) como o motor de construção.

5.1.3 O Papel do Back-End : Do “O Quê” para o “Como”

O front-end nos entregou uma descrição precisa do o quê. Ele nos disse: Esta parte
do programa é um laço for que itera 10 vezes; dentro dele, há uma atribuição de
um valor inteiro a uma variável chamada x. A ASA e a Tabela de Símbolos são esse
“o quê"detalhado.

O trabalho do back-end é descobrir o “como”. Ele precisa responder a perguntas
fundamentalmente diferentes, que estão muito mais próximas do hardware:

• Como eu implemento um laço? – usando rótulos e instruções de desvio condi-
cional e incondicional.

• Como eu acesso a variável x? – acessando sua posição na pilha de execução,
que está no endereço relativo [rbp-4].

• Como eu realizo uma soma? – carregando os valores para registradores da
CPU e usando a instrução de máquina ADD.

O back-end, portanto, é a ponte que conecta a lógica abstrata da linguagem de
programação com a realidade concreta do processador. A geração de código in-
termediário é o primeiro e mais importante passo nessa tradução, pois cria uma
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representação que já começa a pensar em termos de “como", mas de forma ainda
abstrata e independente de uma máquina específica.

5.1.4 A ASA e a Tabela de Símbolos

Para realizar a tradução do o quê para o como, o gerador de código intermediário
precisa de um mapa detalhado. Isso é fornecido pelo front-end por duas estruturas
de dados. A primeira é a A Árvore Sintática Abstrata (ASA) que dita a ordem
e a estrutura das operações. O gerador de código irá caminhar por esta árvore, nó-
a-nó, e para cada nó visitado, ele irá gerar uma ou mais instruções correspondentes.
A ASA define o fluxo de controle e a estrutura das expressões. A segunda estrutura
é a A Tabela de Símbolos que fornece o conjunto de informações contextuais.
A ASA por si só é incompleta. Quando o gerador encontra um nó NO_ID com o
nome x, ele não sabe nada sobre x. É nesse momento que ele consulta a Tabela de
Símbolos para obter os detalhes sobre a variável: x é uma variável do tipo int e seu
endereço na pilha é -8. Sem essa informação, seria impossível gerar o código correto
para acessar a variável.

A interação entre essas duas estruturas é constante. O gerador de código segue o
mapa da ASA e, a cada passo, consulta as informações da Tabela de Símbolos para
obter os detalhes necessários para executar aquele passo.

5.2 O Papel da Representação Intermediária
No desenvolvimento de um compilador uma questão natural é o porquê não traduzir
uma Árvore Sintática Abstrata diretamente para o código final em assembly. A
resposta está nos princípios de design de software que priorizam a modularidade, a
abstração e a separação de objetivos e resultados em cada uma das fases do compi-
lador.

Gerar código Assembly diretamente a partir da ASA é uma tarefa complexa.
O compilador precisaria tratar simultaneamente com a lógica de alto nível da lin-
guagem (como a semântica de um laço for ou de um if-else aninhado) e com os
detalhes de baixo nível da máquina (gerenciamento de registradores, convenções de
chamada de função, conjunto de instruções específico do processador). Ou seja, essa
abordagem construiria um compilador monolítico que seria, ao mesmo tempo, difícil
de escrever, depurar, manter e, principalmente, muito complexo para portar para
outras arquiteturas de computador.

O compilador do Micro C foi implementado utilizando técnicas modernas de
compiladores, utilizando a estratégia de divisão e conquista, quebrando tarefas com-
plexas em etapas mais simples. Uma delas, por exemplo, é o uso da geração inter-
mediária. Essa segmentação das etapas de compilação traz vantagens robustas que
serão verificadas nas seções seguintes.
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5.2.1 Abstração e a Simplificação do Problema

A principal vantagem de usar uma representação intermediária é a aplicação da
estratégia divisão e conquista. Em vez de um problema único e massivo de tradução,
passamos a ter dois problemas menores e bem definidos.

O primeiro problema é a Tradução da Linguagem Fonte para a Repre-
sentação Intermediária. Nesta etapa, realizada pelo módulo intercode.c, a
tradução de alto nível é direcionada, exclusivamente, para traduzir a lógica de alto
nível da ASA para uma representação linear simples. O compilador não precisa
saber sobre registradores ou instruções de máquina. Sua única tarefa é desenrolar
as estruturas complexas em versões mais simples. Por exemplo, ele transforma um
nó NODE_IF da árvore na seguinte sequência lógica:

1. Calcule a condição.

2. Se a condição for falsa, pule para o rótulo do else.

3. Execute o bloco then.

4. Pule para o rótulo do fim do if.

5. Marque o início do rótulo do else.

E a etapa final, a Tradução da Representação Intermediária para a Lin-
guagem Alvo (Assembly). Nessa etapa, o compilador (assembly.c) tem uma
tarefa mais direta. Ele recebe a lista de instruções simples da RI (como some dois
valores, salte para o rótulo L1 ou atribua um valor a uma variável) e sua única
responsabilidade é mapear cada uma dessas instruções abstratas para uma ou mais
instruções de Assembly específicas da máquina-alvo (como addl, jmp ou movl). O
compilador não precisa mais se preocupar em decompor a lógica de alto nível de um
if ou for; essa complexidade já foi compactada em instruções de desvio e rótulos
simples pela fase anterior.

Essa separação permite que cada módulo tenha uma única responsabilidade,
tornando o código do compilador mais limpo, mais fácil de testar e muito mais
simples de depurar.

5.2.2 Portabilidade entre Arquiteturas

Diferentes processadores processam diferentes instruções de máquina (dialetos) que
são mapeadas em mnemônicos (o que ficou conhecido como assembly). O conjunto de
instruções de um processador Intel x86-64 por exemplo, é completamente diferente
do de um processador ARM. A tarefa de gerar código de máquina (binário) é,
portanto, inerentemente dependente da arquitetura alvo. Um compilador moderno
deve ser capaz de gerar código para múltiplas arquiteturas, um desafio conhecido
como portabilidade.

Se o compilador do Micro C gerasse código de máquina diretamente da ASA
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para uma única arquitetura, seria necessária muitas mudanças para ser possível
gerar código de máquina para outras arquiteturas. A representação intermediária
resolve este problema atuando com uma linguagem universal que é independente da
arquitetura da máquina.

A Figura 5.1 mostra como o compilador do Micro C utiliza uma representação
modular para desacoplar completamente o front-end do back-end. O front-end e o
Gerador ASA para RI formam um componente coeso e reutilizável. A complexidade
fica dividida entre a primeira parte do back-end relacionada a tradução da lógica
da linguagem para a RI, que é uma tarefa independente de máquina. E a segunda
parte, que consiste em múltiplos Tradutores menores e simples. A tarefa de um
Tradutor RI para x86 é mais fácil do que a de um Back-End Completo para x86,
pois ele parte de uma sequência de instruções linear, explícita e simplificada.

Figura 5.1: A abordagem modular, com Código Intermediário.

A principal vantagem na estratégia adotada na implementação do compilador do
Micro C é a portabilidade. Ou seja, para dar suporte a outras arquiteturas como o
RISC-V, por exemplo, bastaria adicionar um novo Tradutor RI para RISC-V. Todo
o trabalho do front-end e da geração da RI seria reaproveitado. Isso torna o esforço
de portar o compilador menor e incentiva um design limpo e modular.

Este modelo, que separa o front-end (que produz a RI) do back-end (que consome
a RI), tornou-se o padrão de fato na indústria de compiladores modernos, uma
abordagem que foi solidificada por frameworks como o LLVM [11]. Lattner et al. [11],
por exemplo, demonstrou como uma Representação Intermediária (RI) comum e
reutilizável permite que múltiplos front-ends (para linguagens diferentes) e múltiplos
back-ends (para arquiteturas diferentes) sejam desenvolvidos de forma independente.
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5.3 O Código de Três Endereços (CTE)
O Código de Três Endereços (CTE) do inglês (Three Address Code - TAC) é uma
representação intermediária usada por compiladores para facilitar a otimização e a
tradução do código-fonte para o código de máquina.

O princípio fundamental do CTE é a simplicidade, ou seja, cada instrução deve
conter no máximo uma operação. Isso significa que expressões complexas e ani-
nhadas do código fonte são decompostas em uma sequência de instruções simples e
explícitas. No CTE, cada instrução contém no máximo três endereços (operandos),
geralmente no formato:

x = y op z

Ou seja, x, y, e z são os endereços (operandos). Eles podem representar variáveis
do programa, constantes ou variáveis temporárias criadas pelo próprio compilador.
Essa estrutura linear e explícita se assemelha a uma espécie de Assembly universal,
tornando a tradução final para o Assembly de máquina mais sistemática e direta.

5.3.1 A Estrutura do CTE no compilador do Micro C

A implementação CTE, como representação intermediária do compilador, requer
uma definição formal em linguagem C de sua estrutura. Essa especificação abrange
três componentes essenciais: os opcodes (que definem o conjunto de operações atô-
micas), os operandos (que representam os dados manipulados) e as instruções (que
são a combinação estruturada de opcodes e operandos, representando a unidade de
código executável). A estrutura léxica e a sintática da RI do compilador do Micro
C são especificados no arquivo de cabeçalho ir.h

Os Opcodes: Os Verbos da RI

Para representar todas as operações possíveis da nossa RI, criamos uma enume-
ração chamada IROpcode. Ela contém uma entrada para cada tipo de ação que
o código intermediário pode executar. Os opcodes foram agrupados por categoria
para facilitar a compreensão. As categorias definidas foram: operações aritméticas,
de comparação, de movimentação de dados, de controle de fluxo e de chamada de
função.

O trecho de código a seguir, extraído diretamente do arquivo de cabeçalho ir.h,
apresenta a definição da enumeração IROpcode. Esta estrutura é o núcleo estrutural
da RI, definindo cada verbo (operação) que o back-end é capaz de processar. Como
descrito anteriormente, os opcodes são agrupados por sua função (aritmética, con-
trole de fluxo, etc.) para facilitar a implementação e a manutenção do tradutor de
Assembly :
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// arquivo: src/ir/ir.h (trecho)
typedef enum {

//opcodes aritméticos, lógicos e de comparação
IR_ADD, IR_SUB, IR_MUL, IR_DIV, IR_MOD,
IR_EQ, IR_NEQ, IR_LT, IR_LEQ, IR_GT, IR_GEQ,
IR_AND, IR_OR, IR_NOT, IR_NEG,

//opcodes de movimentação de dados e acesso a memória
IR_ASSIGN, // Atribuição (x := y)
IR_STORE, // Armazenar em array (v[i] := x)
IR_LOAD, // Carregar de array (x := v[i])

//opcodes de controle de fluxo e funções
IR_LABEL, IR_GOTO, IR_IF_FALSE,
IR_PARAM, IR_CALL, IR_RETURN,

} IROpcode;

Os Operandos: Os Substantivos da RI

Os endereços em no CTE podem ser de diferentes naturezas (uma variável, um nú-
mero, um rótulo, etc.). Para representar todas essas possibilidades, foram criadas
estruturas de struct IROperand. Elas utilizam um enum OperandType para iden-
tificar o tipo de dado que carrega e uma union para armazenar o valor de forma
eficiente, economizando memória.

// arquivo: src/ir/ir.h (trecho)
typedef enum {

OPERAND_SYMBOL, // Uma variável ou parâmetro
(ponteiro para Tabela de Símbolos)
OPERAND_TEMP, // Um temporário gerado pelo
compilador (t0, t1...)
OPERAND_CONST, // Uma constante inteira
OPERAND_LABEL, // Um rótulo de código (L0, L1..., main)
OPERAND_STRING_LBL // Um rótulo para uma string literal

} OperandType;

typedef struct {
OperandType type;
union {

Simbolo* symbol;
int temp_id;
int const_val;
char* label_name;

} data;
} IROperand;

As Instruções: As Frases da RI

Finalmente, a struct IR_Instruction unifica os opcodes e os operandos descritos
anteriormente. Ela representa uma única linha do nosso código intermediário. Isso
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ocorre pois esta estrutura contém o opcode (a operação a ser executada) e ponteiros
para até três operandos (resultado, argumento 1 e argumento 2). O ponteiro next é
o que permite conectar as instruções em uma lista encadeada, formando a sequência
linear que representa o programa.

// arquivo: src/ir/ir.h (trecho)
typedef struct IR_Instruction {

IROpcode opcode;
IROperand* result;
IROperand* arg1;
IROperand* arg2;
struct IR_Instruction* next;

} IR_Instruction;

5.3.2 Formato das Instruções: Tradução para CTE

Com as estruturas de dados da RI definidas, é possível ver, na prática, como as
construções da linguagem do Micro C são convertidas para o Código de Três En-
dereços (CTE) pelo módulo intercode.c. Esta subseção servirá como um guia de
referência, mostrando exemplos práticos e explicando o processo de conversão para
cada tipo de construção.

Atribuições e Expressões Aritméticas

A tradução de expressões é onde o princípio do CTE de no máximo uma operação
por instrução se torna mais evidente. O exemplo a seguir mostra de forma simples
como funciona a atribuição de uma constante:

• Código Fonte:

int x = 10;

• RI Gerada:

x := 10

Neste caso, a tradução é direta. A instrução IR_ASSIGN é usada para mover um
valor de origem (o operando constante 10) para um destino (o operando de símbolo
x). Como há apenas uma operação implícita (a atribuição), uma única instrução na
RI é suficiente para representar toda a linha de código.

O próximo exemplo mostra uma operação aritimética. Neste exemplo é possível
observar o benefício da decomposição do problema para tornar as operações mais
simples e atômicas.
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• Código Fonte:

int z;
z = x + y;

• RI Gerada:

t0 := x + y
z := t0

A linha z = x + y; no exemplo possui duas operações: uma soma (+) e uma
atribuição (=). Para respeitar a regra de que cada instrução deve ser atômica, o
gerador de código divide o processo em dois passos lógicos.

Essa separação reflete como o processador opera fisicamente: ele não consegue
realizar cálculos diretamente nas variáveis armazenadas na memória (RAM). Pri-
meiro, é necessário carregar os valores e realizar a soma em um local de acesso
rápido (representado aqui pela variável temporária t0, que simula um registrador
da CPU). Somente após o cálculo, o resultado é movido de t0 para o endereço de
memória definitivo da variável z.

1. Operação: primeiro, ele resolve a operação x + y. Ou seja, ele gera a instru-
ção t0 := x + y, que realiza a soma dos valores representados pelos operandos
x e y, e armazena o resultado em uma nova variável temporária, t0.

2. Atribuição: com o resultado da expressão inicial guardado em t0, o gerador
pode realizar a atribuição. Neste caso, ele gera a uma nova instrução z :=
t0, que move o valor do temporário para a variável de destino z.

Essa decomposição garante que cada linha da RI seja simples. É possível observar
que esse pseudo-código é praticamente como funcionam as instruções em códigos
de máquina utilizando instruções de operações entre registradores ou saltos para
posições de memórias (condicionais ou não).

Acesso a Vetores (Arrays)

O acesso a vetores na RI são tratados com duas instruções especializadas: LOAD
para leitura de um valor da memória e STORE para escrita de um valor na memória.
Segue um exemplo de como uma posição de um vetor é carregada e atribuída para
uma variável:

• Código Fonte (Leitura):

x = v[4];

• RI Gerada:

t0 := LOAD v[4]
x := t0
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De forma similar, o acesso a uma posição de um vetor é decomposto para man-
ter a simplicidade das operações. Ou seja, a leitura (LOAD) gera uma instrução
especializada IR_LOAD. Isso significa que o endereço de memória correspondente ao
índice 4 do vetor v é calculado, permitindo que o dado seja acessado diretamente,
sem a necessidade de percorrer os elementos anteriores. Em seguida, o valor ar-
mazenado nesta posição é carregado para a variável temporária t0. No próximo
passo, a atribuição ocorre com o valor que agora está disponível em t0, por meio
de uma instrução simples (x := t0), finalizando a operação e movendo o valor para
a variável de destino x.

A operação de escrita em um vetor (STORE ) segue a mesma lógica de acesso
direto, sendo encapsulada pela instrução IR_STORE. Essa instrução determina que
o valor do operando x seja armazenado na posição de memória correspondente ao
índice 5 do vetor v. Visto que a instrução opera diretamente na memória, não são
necessários passos adicionais.

• Código Fonte (Escrita):

v[5] = x;

• RI Gerada:

STORE v[5] := x

Controle de Fluxo

Estruturas hierárquicas como o if-else são compactadas em uma sequência linear
de testes e desvios (saltos) usando rótulos e instruções condicionais, que é como um
processador de fato executa essa cadeia de operações. O exemplo a seguir mostra
uma operação que compara se uma variável é menor do que a outra e atribui um
valor a uma terceira variável, bem como a RI gerada no processo:

• Código Fonte:

if (a < b) {
x = 1;

}

• RI Gerada:

t0 := a < b
if_false t0 goto L0
x := 1

L0:

A conversão da estrutura condicional if para o formato CTE segue alguns pas-
sos. O primeiro é avaliar a condição, ou seja a verificar o resutlado da expressão
condicional a < b. O resultado de expressões condicionais são boleanos (que em C
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é 1 para verdadeiro e 0 para falso) é armazenado na variável temporária t0. Em se-
guida, é realizado um desvio condicional, ou seja, a instrução if_false t0 goto
L0 gerada controla o fluxo de execução do código. Se o valor em t0 for falso (ou seja,
0), salte (goto) para o rótulo L0. Se for verdadeiro, a execução continua na próxima
linha. Se o desvio condicional não for executado (condição verdadeira), o corpo
do if é executado (x := 1). Por outro lado, sempre que uma condição estrutura
condicional for inserida, é criado um rótulo de saída. Este rótulo L0: serve para
permitir que o fluxo seja desviado (condição falsa) para fora do laço condicional do
if.

5.3.3 Variáveis Temporárias e Rótulos

Como observado, o gerador de código precisou adicionar entidades extras que não
existiam no código original (variáveis temporárias e rótulos) para respeitar a es-
trutura definida pela CTE. Para uma melhor compreensão as subseções a seguir
descrevem estes dois tipos de entidades mais profundamente.

Variáveis Temporárias (t0, t1, ...)

Elas são essenciais para manter a simplicidade do Código de Três Endereços. Sempre
que uma expressão complexa é avaliada, o resultado intermediário de cada operação
é armazenado em uma nova variável temporária. A abstração neste caso é similar a
ideia de existir um número infinito de registradores em uma máquina abstrata.

A tarefa de mapear essas variáveis temporárias para o número limitado de regis-
tradores reais do processador (ex: %eax, %ebx) fica a cargo da fase final de geração do
código em Assembly. Na implementação do compilador do Micro C (intercode.c),
é utilizado uma simplificação com o uso de um contador (temp_counter) para ge-
ração de nomes únicos.

Rótulos (L0, L1, ..., main)

Os rótulos são marcadores de posição no código. Eles servem como alvos para as
instruções de desvio (GOTO, IF_FALSE) e como pontos de entrada para funções. Eles
são a ferramenta que nos permite agrupar a estrutura de controle aninhada da ASA
(como ifs e fors) em um fluxo de código linear, que é como um processador executa
uma sequência de códigos. O gerador de código do compilador do Micro C também
usa um contador (label_counter) para garantir que cada rótulo gerado para as
estruturas de controle seja único.

5.4 Gerador de Código: ASA para RI
Com as estruturas da Representação Intermediária (RI) definidas, está na hora de
definir o núcleo do back-end : a construção do tradutor. Este componente, imple-
mentado no módulo intercode, tem a tarefa de usar a Árvore Sintática Abstrata
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(ASA) que possui as informações hierárquicas de de significado e convertê-la em
uma lista linear de instruções simples do Código de Três Endereços (CTE).

Para realizar essa tradução de uma estrutura em árvore (a ASA) para uma
estrutura linear (a lista de RI), a abordagem mais comum é percorrer a árvore
nó por nó, gerando o código correspondente para cada um. Esta foi a estratégia
utilizada na implementação.

5.4.1 Tree Walker e a Interação com a Tabela de Símbolos

Para traduzir a ASA, é utilizado um padrão de projeto clássico conhecido como o
Tree Walker (ou “caminhante da árvore"). Como o nome sugere, ele consiste em
uma função recursiva que visita cada nó da ASA e, para cada nó, ele executa uma
ação de tradução específica.

Contudo, o tree walker não realiza suas operações de forma independente. Ele
usa as duas grandes estruturas de dados produzidas pelo front-end (ASA e tabela
de símbolos). Ou seja, a ASA fornece a representação estrutural das operações,
ditando a ordem e a hierarquia do programa. Por outro lado, a Tabela de Símbolos
atua como o repositório de informações semânticas. Para cada identificador
(ID) encontrado na ASA, o gerador de código consulta a Tabela de Símbolos para
obter seu contexto, seu tipo, seu escopo e, o mais importante para o back-end, seu
memory_offset. Dessa forma, a cada passo, o gerador de código segue a estrutura
da ASA e consulta o repositório da Tabela de Símbolos para obter os detalhes.

Do ponto de vista da implementação no compilador do Micro C, a lógica envol-
vida na organização do tree walker é dividida em duas funções: gerar_ir_expr()
para expressões que calculam um valor, e gerar_ir_no() para instruções que rea-
lizam uma ação.

Essa separação de responsabilidades é uma decisão de projeto. Expressões (como
a + b) são recursivas, podem ser aninhadas e devem sempre retornar um valor (ou
o local onde o valor foi armazenado). Em contraste, instruções (ou statements, como
if ou for) controlam o fluxo do programa e não retornam valores. As subseções
seguintes detalharão a implementação de cada uma dessas funções, começando pela
gerar_ir_expr.

5.4.2 Traduzindo Expressões: A Função gerar_ir_expr

Esta função é especialista em traduzir qualquer parte do código que produza um
valor. Sua principal característica é que ela sempre retorna um IROperand, que
representa o local onde o resultado do cálculo foi armazenado.
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O Ponto de Partida: Variáveis e Constantes

Os casos mais simples de tradução de expressão ocorrem nos nós folha da árvore,
como constantes ou identificadores.

O processamento para o nó NODE_ID (que representa o uso de uma variável) é
detalhado no trecho de código a seguir, extraído do intercode.c:

• Código Fonte: x (o uso de uma variável)

// arquivo: src/intercode/intercode.c (trecho)
case NODE_ID: {

// 1. Consulta a Tabela de Símbolos para encontrar ’x’
Simbolo* s = buscar_simbolo_em_todos_escopos(pilha,

no->data.string_value);

// 2. Cria um operando que aponta para as informações de ’x’
IROperand* var = criar_operando(OPERAND_SYMBOL);
var->data.symbol = s;

// 3. Retorna este operando
return var;

}

O código mostra que ao encontrar um NODE_ID, o gerador executa invoca o
método buscar_simbolo_em_todos_escopos que retorna um ponteiro para um
Simbolo que contém o tipo, o nome, o offset de memória, etc., é armazenado no
IROperand. Nenhuma instrução de RI é gerada neste momento; a função apenas
retorna a referência para a variável, para que quem a chamou possa usá-la.

5.4.3 Traduzindo Instruções: função gerar_ir_no

Esta função é a contraparte da gerar_ir_expr; ela é responsável por traduzir ins-
truções (statements), que são os nós da ASA que representam ações e não retornam
valores. Isso inclui o controle de fluxo (como NODE_IF e NODE_FOR) e as operações
de efeito colateral, como as atribuições. O exemplo mais fundamental de instrução é
a atribuição (NODE_ASSIGN), detalhada a seguir, que demonstra a colaboração entre
gerar_ir_no e gerar_ir_expr.

Atribuição (NODE_ASSIGN)

• Código Fonte: y = x + 10;
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// arquivo: src/intercode/intercode.c (trecho)
case NODE_ASSIGN: {

// 1. Identifica o destino da atribuição (’y’)
Simbolo* s = buscar_simbolo_em_todos_escopos(pilha, ...);
IROperand* dest = criar_operando(OPERAND_SYMBOL);
dest->data.symbol = s;

// 2. Pede para gerar_ir_expr avaliar o lado direito
// (’x + 10’)
// Isso gera "t0 := x + 10" e retorna o operando ’t0’
IROperand* src = gerar_ir_expr(no->filho
->proximo_irmao, pilha);

// 3. Emite a instrução final de atribuição
emitir(IR_ASSIGN, dest, src, NULL); // Gera: y := t0
break;

}

A tradução mostra a colaboração entre as duas funções. A gerar_ir_no processa
a atribuição, mas delega a avaliação da expressão complexa para a gerar_ir_expr.
Após a gerar_ir_expr retornar o operando temporário (t0) com o resultado da
soma, a gerar_ir_no finaliza o processo, emitindo a instrução que move o valor do
temporário para a variável final.

Operações Binárias

Diferente dos nós folha (como NODE_ID ou NODE_INTEGER_CONST), que apenas re-
tornam um operando existente, os nós de operação binária são o primeiro exemplo
onde o tradutor gera ativamente novas instruções de código intermediário.

• Código Fonte: x + 10

// arquivo: src/intercode/intercode.c (trecho)
case NODE_BINARY_OP: {

// A. Resolve recursivamente o operando da esquerda (’x’)
IROperand* arg1 = gerar_ir_expr(no->filho, pilha);

// B. Resolve recursivamente o operando da direita (’10’)
IROperand* arg2 = gerar_ir_expr(no->filho
->proximo_irmao, pilha);

// C. Cria um novo "local" temporário para o resultado
IROperand* temp = criar_operando_temporario(); // ex: t0

// D. Emite a instrução de três endereços
emitir(IR_ADD, temp, arg1, arg2); // Gera: t0 := x + 10

// E. Retorna o local do resultado
return temp;

}
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O processo segue uma lógica de pós-ordem: primeiro resolve os filhos, depois
executa sua própria ação. As chamadas recursivas para gerar_ir_expr retornam
os operandos para x e 10. Dessa forma, a função cria um novo temporário (t0),
emite a instrução de soma e retorna o operando t0, com o contexto necessário para
que a função superior tenha informações de que o resultado esperado (de x + 10)
está armazenado na variável t0.

Controle de Fluxo (NODE_IF)

A tradução de estruturas hierárquicas como o if-else é compactada em um fluxo
linear usando rótulos e desvios.

• Código Fonte: if (cond) { A } else { B }

O processo de tradução segue o seguinte passo-a-passo:

1. Criação de Rótulos: O gerador cria dois novos rótulos para marcar pontos
no código: um para o início do bloco else (que podemos chamar conceitu-
almente de L_ELSE) e outro para o fim da instrução if (o L_FIM_IF).
No nosso código, a função criar_operando_label_novo() faz isso, criando
nomes reais como L0 e L1.

2. Tradução da Condição: o gerador invoca gerar_ir_expr para a condição.
O resultado é um temporário, t_cond.

3. Desvio Condicional: a instrução if_false t_cond goto L_ELSE é emitida.
Ela significa: “se a condição em t_cond for falsa, pule para o início do bloco
else".

4. Tradução do Bloco ‘Then’: o corpo do if (bloco A) é traduzido em seguida.
Após sua última instrução, um desvio incondicional goto L_FIM_IF é emitido
para pular por cima do bloco else.

5. Tradução do Bloco ‘Else’: o rótulo L_ELSE: é emitido, seguido pela tradu-
ção do bloco B.

6. Rótulo Final: por fim, o rótulo L_FIM_IF: é emitido, marcando o ponto para
onde a execução continua após o if ou o else.

O código que implementa essa lógica mostra como a estrutura complexa do if é
traduzida.
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A primeira parte é responsável por avaliar a condição e emitir o desvio condicional
para o bloco else:

// arquivo: src/intercode/intercode.c (trecho: parte 1)
case NODE_IF: {

IROperand* cond_result = gerar_ir_expr(no->filho,
pilha);

// Nossos nomes conceituais L_ELSE e L_FIM_IF viram
// nomes reais aqui:
IROperand* label_else = criar_operando_label_novo();
// ex: L0
IROperand* label_fim_if = criar_operando_label_novo();
// ex: L1

emitir(IR_IF_FALSE,
criar_operando_label_nome(label_else->data.label_name),

cond_result, NULL);
//...

A segunda parte do bloco de código gera a tradução para os blocos then e else,
inserindo os rótulos e o desvio goto incondicional para garantir o fluxo correto:

//... (continuação do case NODE_IF)
gerar_ir_no(no->filho->proximo_irmao, pilha);
// bloco ’then’
emitir(IR_GOTO, criar_operando_label_nome(label_fim_if
->data.label_name),

NULL, NULL);

emitir(IR_LABEL, label_else, NULL, NULL);
if (no->filho->proximo_irmao->proximo_irmao) { // se
existe ’else’

gerar_ir_no(no->filho->proximo_irmao
->proximo_irmao, pilha);

}

emitir(IR_LABEL, label_fim_if, NULL, NULL);
break;

}

Este trecho de código é a tradução direta da receita descrita anteriormente. Ele
demonstra como o gerador de código, de forma sistemática, transforma a estrutura
de árvore do if em uma sequência linear de testes e saltos. Essa mesma técnica de
usar rótulos (labels) e desvios (goto’s) é a base para a tradução de todas as outras
estruturas de controle de fluxo, como os laços for. Ao final, a lógica complexa e
aninhada do programador é convertida em um formato simples e explícito que se
assemelha muito mais à forma como um processador de fato executa o código.
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5.5 Sumário
Este capítulo expande a compreensão sobre os processos relacionados ao back-end
do compilador. Inicialmente são discutidas as etapas relacionadas a síntese como,
por exemplo, a geração de código intermediário. Em seguida, são apresentadas as
justificativas do porquê utilizar uma representação intermediária garante maior mo-
dularidade e portabilidade do compilador levando em conta diferentes arquiteturas
de computadores.

O próximo passo foi explorar e determinar o uso do Código de Três Endere-
ços (CTE), principalmente pela simplicidade na conversão por sua simplicidade e
formato linear, que se assemelha a um Assembly abstrato. Detalhamos a implemen-
tação dessa RI em C, analisando o arquivo ir.h e o papel de suas três estruturas
centrais: IROpcode (os verbos), IROperand (os substantivos) e IR_Instruction (a
frase que une tudo em uma lista encadeada).

Com a estrutura da RI definida, o foco principal do capítulo foi a construção
do tradutor, o módulo intercode.c. Explicamos a nossa estratégia de implemen-
tação, o padrão Tree Walker (caminhante da árvore), que utiliza a ASA como um
mapa e a Tabela de Símbolos como um dicionário. Detalhamos como as funções
gerar_ir_no (para instruções) e gerar_ir_expr (para expressões) trabalham em
conjunto, percorrendo a ASA e consultando a Tabela de Símbolos para traduzir cada
nó.

Finalmente, demonstramos com exemplos de código como as construções do com-
pilador do Micro C, desde simples atribuições e expressões aritméticas até estruturas
complexas como acesso a vetores e o controle de fluxo do if-else, são sistemati-
camente compactadas e convertidas para a sequência linear de instruções do CTE.
Ao final deste capítulo, temos um programa que traduz com sucesso a ASA vali-
dada pelo front-end para uma Representação Intermediária correta e pronta para a
próxima etapa: a geração de código Assembly.
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Geração de Assembly

"Vision without execution is hallucination."

– Thomas Edison

No capítulo anterior, foi concluída a primeira fase do back-end do compilador ao
traduzir a Árvore Sintática Abstrata (ASA) para uma Representação Intermediária
(RI). Essa RI, por definição, é abstrata e independente de plataforma; ela nos diz o
que o programa deve fazer, mas não como uma máquina específica deve executá-lo.

Neste capítulo, será abordada a etapa final da compilação (execução): a geração
de código Assembly . Esta é a última milha da tradução, onde a lógica abstrata
da RI é convertida em um conjunto de instruções concretas, projetadas para uma
arquitetura de um processador, no caso, o x86-64.

Esta é a fase onde a síntese, iniciada no Capítulo 5, se completa. O objetivo
é pegar a lista de instruções do Código de Três Endereços (CTE), que é linear e
explícita, e produzir um arquivo de texto (.s) que contém um código Assembly x86-
64 equivalente. Este arquivo, por sua vez, pode ser entregue a um montador (ou
assembler), que é o programa responsável por traduzir o código Assembly textual
em código de máquina binário (um arquivo objeto .o). Em seguida, esse arquivo
objeto passa por um linker (ou ligador), que o combina com bibliotecas do sistema
(como a biblioteca C, para funções como printf) e cria o programa executável final.

No compilador do Micro C, é utilizada a ferramenta gcc para realizar essas duas
últimas etapas e gerar um executável que o sistema operacional pode carregar e
executar diretamente no hardware. O GCC [15] (GNU Compiler Collection) é um
conjunto de compiladores e ferramentas de desenvolvimento de software de código
aberto. Embora seja mais conhecido como um compilador C, ele é usado pelo Micro
C para, especificamente, atuar como o montador e linker da saída do Asssembly
gerado pelo compilador do Micro C.
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6.1 A Plataforma Alvo: x86-64 e a Sintaxe AT&T
A geração de código final é, por definição, dependente de plataforma. A Represen-
tação Intermediária (RI) que foi construída no Capítulo 5 é abstrata e universal,
mas o processador de um computador não. Ele entende apenas um conjunto especí-
fico de instruções binárias. A primeira decisão de projeto do back-end é, portanto,
definir qual será a arquitetura de máquina para a qual a linguagem intermediária
será traduzida.

6.1.1 A Arquitetura x86-64

A arquitetura escolhida para saída do compilador do Micro C foi a x86-64 (também
conhecida como AMD64). Esta é a arquitetura de 64 bits que sucedeu a popular
arquitetura de 32 bits (IA-32, ou x86). A escolha se justifica por sua onipresença em
computadores pessoais, desktops e servidores modernos, englobando a vasta maioria
dos processadores da Intel (Core i3/i5/i7/i9) e da AMD (Ryzen).

O termo 64 bits se refere ao tamanho dos registradores de propósito geral (como
%rax) e ao tamanho dos endereços de memória, permitindo ao processador acessar
uma quantidade de memória muito maior do que seu predecessor de 32 bits.

Além disso, a x86-64 é uma arquitetura CISC (Complex Instruction Set Compu-
ter), o que significa que ela possui um conjunto de instruções rico e complexo, onde
uma única instrução de Assembly pode realizar múltiplas micro-operações (como
carregar um valor da memória, somá-lo a um registrador e salvar o resultado de
volta na memória, em uma única instrução). Como a linguagem do Micro C é
limitada, será utilizado apenas um pequeno subconjunto dessas instruções.

A escolha da arquitetura também foi pragmática, pois ela é o alvo padrão do gcc
no ambiente utilizado no desenvolvimento do compilador do Micro C. Isso garantiu
que o código Assembly gerado pelo compilador seria compatível também com as
ferramentas e bibliotecas de desenvolvimento do próprio sistema operacional.

6.1.2 Sintaxe AT&T vs. Sintaxe Intel

Escolher a arquitetura x86-64 não foi a única decisão. O Assembly para esta ar-
quitetura possui duas sintaxes principais diferentes, a Sintaxe Intel e a Sintaxe
AT&T. Embora ambas produzam o mesmo código de máquina, o formato textual
da sintaxe é muito diferente.

Enquanto a Sintaxe Intel é utilizada, principalmente, pela Microsoft, de acordo
com a documentação oficial da Intel [8] (com montadores como MASM [6] ou
NASM [16]), ambientes derivados do Unix, como Linux e macOS, utilizam a Sintaxe
AT&T e, por isso, muitos projetos como GCC [15] e Clang [10] e suas bibliotecas,
seguem este modelo. A Tabela 6.1 apresenta, de forma resumida, diferenças entre
as duas sintaxes.
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Tabela 6.1: Comparação de Sintaxe: Intel vs. AT&T (Ex: NASM vs. GCC)

Item Sintaxe Intel Sintaxe AT&T
Ordem instrução destino, fonte instrução fonte, destino
Registrador eax, rbp %eax, %rbp
Constante 10 $10
Sufixo (Tamanho) mov, add (inferido) movl, addq (explícito)
Memória [rbp-4] -4(%rbp)

Como o compilador do Micro C utiliza o gcc como montador e linker, a sintaxe
utilizada como saída da etapa de geração de código intermediário segue o padrão
da Sintaxe AT&T. As subseções seguintes detalham as implicações práticas dessa
escolha.

Ordem dos Operandos

A diferença que causa maior confusão no Assembly gerado pelas sintaxes está rela-
cionada a ordem dos operandos utilizados nas instruções. Enquanto na sintaxe da
Intel as operações seguem a ordem destino ⇒ origem, na sintaxe da AT&T, elas
seguem a ordem origem ⇒ destino. Por exemplo:

• Intel: mov eax, 10
significa mova 10 para dentro do registrador eax.

• AT&T: movl $10, %eax
significa mova $10 para dentro de %eax.

A lógica de ordem das instruções da AT&T, embora menos intuitiva, é consistente
em todas as suas instruções.

Prefixos de Registradores e Imediatos

A sintaxe AT&T é mais explícita e menos ambígua sobre o que é um operando, por
exemplo:

• Registradores são sempre prefixados com %. O que a Intel chama de rbp, a
AT&T chama de %rbp. O que é eax vira %eax.

• Valores Imediatos (constantes) são sempre prefixados com $. O número 10
é escrito como $10.

Isso resolve ambiguidades. Enquanto na sintaxe Intel: mov eax, 10, que signi-
fica mova o valor 10 para eax, pode causar confusão com outra instrução como, por
exemplo, mov eax, [10], que significa mova o valor do endereço de memória 10
para eax. Isso não ocorre com a sintaxe da AT&T pois, movl $10, %eax (o valor
10), é sintaticamente distinto de movl 10, %eax (endereço de memória 10).
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Sufixos de Mnemônico

Onde a sintaxe Intel muitas vezes infere o tamanho da operação (8, 16, 32 ou 64
bits) a partir dos operandos, a sintaxe AT&T exige que o tamanho seja explícito no
nome da instrução (o mnemônico):

• movl (move long, 32 bits): este é o mnemônico que será usado para todas as
operações com os dados do Micro C. Embora um char tenha 1 byte, para
simplificar o alinhamento da pilha, o compilador do Micro C trata tanto ints
quanto chars como valores de 32 bits (4 bytes) na memória.

• movq (move quad, 64 bits): este mnemônico é reservado para manipular os
ponteiros da própria arquitetura. Como o alvo é um sistema de 64 bits, os
endereços de memória (e, portanto, os registradores que os armazenam, como
%rsp e %rbp) têm 64 bits. Foram utilizadas as instruções movq (e pushq/popq)
exclusivamente para gerenciar o stack frame, como em movq %rsp, %rbp.

• Strings (Literais): strings não são movidas com uma única instrução mov.
Em vez disso, elas são armazenadas na seção de dados .rodata. Quando
é necessário utiliza-las (como em print("ola")), é usada a instrução leaq
(Load Effective Address) para carregar o seu endereço (um ponteiro de 64
bits) em um registrador.

O gerador de código do Micro C usará movl para todas as operações de dados e
movq (ou pushq/popq) para manipulação da pilha.

Endereçamento de Memória

Esta é a diferença sintática final e mais importante do compilador do Micro C. O
acesso à memória (especialmente à pilha) é escrito de forma diferente. A sintaxe da
Intel e da AT&T seriam representadas da seguinte maneira:

• Intel: [rbp - 4]

• AT&T: -4(%rbp)

Embora ambas signifiquem a mesma coisa: pegue o endereço no registrador %rbp
e subtraia 4 bytes dele. A sintaxe AT&T usa o formato offset(%base). Nas pró-
ximas seções, esta sintaxe será explorada com maior profundidade, pois ela pode
ser estendida para o cálculo complexo de arrays, como offset(%base, %indice,
escala), que implementa base + (indice * escala).

Com essas decisões de projeto, a arquitetura x86-64 como alvo e a Sintaxe
AT&T de saída definida, a engenharia do back-end está completa. Todas as ins-
truções que o compilador do Micro C gerar, a partir deste ponto, deverão obedecer
estritamente a essas convenções.

Definir as convenções e sintaxe, no entanto, são apenas metade do problema.
Antes de serem realizadas as traduções das instruções da RI, é necessário definir
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um plano de gerenciamento de memória. A RI opera com um número infinito de
temporários e variáveis, que são recursos limitados para o Assembly. A próxima
seção detalhará o modelo de memória que será utilizada para resolver este problema,
o stack frame (registro de ativação), que permitirá mapear os símbolos abstratos da
RI para endereços de memória na pilha de execução.

6.2 O Modelo de Memória e Execução
Antes de traduzir a primeira instrução da RI, é fundamental entender o ambiente
de execução de um programa em Assembly. Diferente do C, não existem variáveis
automáticas; o que existe é apenas memória e esta deve ser gerenciada manualmente
por meio da pilha de execução (stack). A tradução da RI para o Assembly é, em
essência, um processo de mapear os conceitos abstratos de variáveis, parâmetros e
temporários para endereços de memória e registradores do processador.

6.2.1 Registradores: A Memória Rápida da CPU

Um programa em Assembly não opera diretamente em variáveis na memória. A CPU
utiliza um pequeno conjunto de áreas de armazenamento de altíssima velocidade,
chamados registradores, para realizar operações. Para traduzir a RI, é necessário
definir um subconjunto desses registradores e atribuir a eles papéis específicos.

Para isso, o Micro C utilizará os seguintes registradores (em sintaxe AT&T):

• %rbp (Base Pointer): é o registrador mais importante. Ele atua como o pon-
teiro base do stack frame. Durante a execução de uma função, seu valor é
estável, servindo como uma âncora para acessar todas as variáveis locais e
parâmetros.

• %rsp (Stack Pointer): é o ponteiro da pilha. Ele aponta para o topo atual da
pilha e seu valor muda dinamicamente toda vez que algo é empurrado (push)
ou retirado (pop) da pilha.

• %rax (Accumulator): é o registrador acumulador. É usado como o princi-
pal registrador de rascunho para cálculos aritméticos. Mais importante, pela
convenção de chamada, é o registrador padrão para armazenar o valor de
retorno de uma função. (Será utilizada sua porção de 32 bits, %eax, para os
inteiros do Micro C ).

• %rbx, %rcx, %rdx: são registradores de propósito geral que serão usados como
rascunhos secundários, principalmente para conter o segundo operando em
operações binárias (como arg2 em t0 := arg1 + arg2).

• %rdi, %rsi: são registradores para chamadas de funções externas. A Con-
venção de Chamada System V ABI [12] (que o gcc utiliza) determina que o
primeiro argumento de uma função é passado em %rdi e o segundo em %rsi.
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Isso será utilizado extensivamente na função print exclusiva do Micro C (sua
implementação é diferente do printf padrão da linguagem C).

6.2.2 O Registro de Ativação (Stack Frame)

Quando uma função é chamada, ela não opera em um vácuo; ela aloca uma área de
trabalho temporária na pilha de execução. Essa área é conhecida como Registro
de Ativação ou Stack Frame. Este frame contém todo o contexto necessário
para a função executar: seus parâmetros, suas variáveis locais e espaço para valores
temporários.

No x86-64, o acesso às variáveis locais e parâmetros é feito de forma relativa ao
ponteiro base %rbp. A Figura 6.1 ilustra a anatomia de um stack frame típico, que
serve de base para o cálculo de endereços na pilha.

[rbp+24] Parâmetro 2 (ex: ‘b’)

[rbp+16] Parâmetro 1 (ex: ‘a’)

[rbp+8] Endereço de Retorno (call)

[rbp] RBP Antigo (pushq %rbp)
%rbp (ponteiro base atual)

[rbp-4] Variável Local 1 (ex: ‘resultado’)

[rbp-8] Variável Local 2 (ex: ‘x’)
...

[rbp-128] Temporário 1 (ex: ‘t0’)

Endereços mais altos (%rbp do chamador)

Endereços mais baixos (%rsp)

Figura 6.1: Estrutura do Registro de Ativação (Stack Frame) no x86-64.

Este diagrama é a conexão direta com o analisador semântico do Micro C. A fun-
ção calcular_offsets (semantic.c) foi projetada especificamente para preencher
a Tabela de Símbolos com os valores exatos deste mapa:

• Offsets Positivos (Parâmetros): endereços acima do %rbp pertencem ao
escopo da função que os chamou. Por convenção, o primeiro parâmetro (ex:
a) é alocado em 16(%rbp), o segundo (ex: b) em 24(%rbp) e assim por diante.
A Passagem 1 do calcular_offsets calcula, exatamente, esses valores.

• Offsets Negativos (Locais): endereços abaixo do %rbp são o espaço de
trabalho da função atual. É aqui que as variáveis locais (ex: x, y, z) são ar-
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mazenadas. A Passagem 2 da função calcular_offsets calcula esses valores
(ex: -4(%rbp), -8(%rbp)).

• Temporários: os temporários da IR (ex: t0, t1) também precisam de es-
paço. Para evitar conflitos com as variáveis locais, a função do gerador de
Assembly do Micro C (assembly.c) os aloca em uma área negativa separada,
começando em -128(%rbp) e alocando os temporários subsequentes em ende-
reços de memória cada vez menores.Dessa forma, enquanto t0 fica associado
ao endereço -128(%rbp), t1 passa a ocupar -132(%rbp), t2 -136(%rbp), e a
sequência continua seguindo esse padrão.

6.2.3 Prólogo e Epílogo: Gerenciamento do Frame

O (stack frame) descrito anteriormente não é construído automaticamente. Sua
criação é um processo explícito, que exige a construção no início da execução de
cada função e a sua subsequente destruição no fim. Essas duas sequências de ins-
truções são denominadas, respectivamente, prólogo e epílogo da função. No gera-
dor de Assembly do Micro C foram criadas duas funções auxiliáres para este fim:
asm_gen_prologue e asm_gen_epilogue.

Prólogo da Função O prólogo é gerado toda vez que encontrado um IR_LABEL
que é uma função (ex: main: ou soma:).

// Código gerado pela função asm_gen_prologue()
pushq %rbp
movq %rsp, %rbp
subq $256, %rsp

A lógica, que é executada em ordem, é a seguinte:

1. pushq %rbp: salva o ponteiro base da função anterior (o chamador) na pilha.
Isso é crucial para que seja possível restaurá-lo depois e retornar corretamente.

2. movq %rsp, %rbp: define o novo ponto zero do frame. O ponteiro base (‘%rbp‘)
agora aponta para o topo da pilha (que contém o %rbp antigo). Todos os aces-
sos (‘-4(%rbp)‘, ‘+16(%rbp)‘) serão relativos a este novo ponto.

3. subq $256, %rsp: abre espaço na pilha para as variáveis locais e temporá-
rios. Ao subtrair do ponteiro da pilha (%rsp), é possível movê-los para baixo,
alocando 256 bytes de memória. No Micro C este é um tamanho fixo, mas
compiladores otimizados calculariam o tamanho exato necessário.

Epílogo da Função O epílogo é gerado toda vez que uma instrução IR_RETURN
é encontrada.
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// Código gerado pela função asm_gen_epilogue()
movq %rbp, %rsp
popq %rbp
ret

A lógica é inversa ao prólogo, destruindo o frame:

1. movq %rbp, %rsp: desaloca todo o espaço local (os 256 bytes) de uma só vez,
movendo o ponteiro da pilha de volta para o ponteiro base.

2. popq %rbp: restaura o ponteiro base da função anterior, que foi salva no início.
A pilha agora está exatamente como estava antes da função ser chamada.

3. ret: recupera o Endereço de Retorno (que agora está no topo da pilha) e
redireciona a execução de volta para ele, saindo da função.

6.2.4 Desafios de Implementação

Embora o diagrama do stack frame pareça simples, implementar a lógica para o
compilador foi um dos maiores desafios do projeto. O código Assembly gerado
inicialmente estava logicamente incorreto, com todas as variáveis e parâmetros sendo
mapeados para o mesmo endereço (0(%rbp)), o que causava a sobrescrita de dados.

O problema não estava no gerador de Assembly, mas na análise semântica, que
falhava em popular a Tabela de Símbolos com os offsets corretos. A depuração
revelou dois problemas (bugs).

Bug 1: Diferenciação de Parâmetros e Variáveis Locais. O primeiro pro-
blema era que a struct Simbolo não tinha como diferenciar um parâmetro (que pre-
cisa de um offset positivo) de uma variável local (que precisa de um offset negativo).
A solução foi modificar o a definição da tabela de símbolos (em symbol_table.h)
para adicionar uma flag:

// arquivo: src/symbol_table/symbol_table.h (trecho)
typedef struct {

// ... (campos anteriores como nome, tipo, is_array)
int memory_offset;
int is_parameter; // <-- FLAG ADICIONADA

} Simbolo;

Em seguida, a função adicionar_simbolo (em symbol_table.c) foi atualizada
para receber e armazenar essa flag:
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// arquivo: src/symbol_table/symbol_table.c (trecho)
int adicionar_simbolo(..., int is_parameter) {

// ... (código de alocação)
s->is_array = is_array;
s->array_size = array_size;
s->is_parameter = is_parameter; // <-- Salva a flag
s->memory_offset = 0; // Inicializa o offset
tabela->tamanho++;
return 0;

}

Bug 2: Lógica de Percurso e Momento do Cálculo. O segundo bug, era que
o analisador semântico (em semantic.c) estava invocando calcular_offsets no
momento errado. A lógica de percurso da árvore (o tree walker) estava calculando
os offsets de um escopo antes que todos os símbolos tivessem sido adicionados a ele,
resultando em tabelas vazias e offsets zerados.

A solução foi reestruturar a função analisar_no para garantir uma ordem de
execução correta (Pós-Ordem):

1. Pré-Ordem (Entrada no Escopo): ao encontrar um NODE_FUNCTION_DEF
ou NODE_BLOCK, o analisador apenas empilha uma nova tabela (empilhar_tabela
(pilha)) e marca que um novo_escopo foi criado.

2. Descida Recursiva: o analisador visita todos os nós filhos. É durante esta
etapa que os nós NODE_VAR_DECL são processados e invocam adicionar_simbolo,
populando a tabela do topo da pilha (que é o escopo atual).

3. Pós-Ordem (Saída do Escopo): somente após todos os filhos terem sido
visitados (e a tabela de símbolos estar completa), a função verifica a flag
novo_escopo e, então, invoca calcular_offsets(pilha->tabelas[pilha->
topo]).

Finalmente, a própria função calcular_offsets (em semantic.c) foi reescrita
para usar a flag is_parameter, implementando a lógica de duas passagens que o
modelo de memória exige.

Dessa forma, a primeira passagem itera pela tabela de símbolos do escopo e
calcula os offsets positivos para todos os símbolos marcados como parâmetros. Neste
trecho (Passagem 1 ), o param_offset é inicializado em 16, que corresponde ao
primeiro endereço disponível acima do ponteiro base (%rbp), conforme o diagrama
de stack frame. Cada parâmetro encontrado incrementa o offset em 8 bytes. A
seguir, o trecho de código correspondente:

facom-ufms



Geração de Assembly 96

// arquivo: src/semantic/semantic.c (trecho: passagem 1)
static void calcular_offsets(TabelaSimbolos* tabela) {

int param_offset = 16;
int local_offset = 0;

//passagem 1: calcular offsets de parâmetros
for (int i = 0; i < tabela->tamanho; i++) {

Simbolo* s = &tabela->simbolos[i];
if (s->is_function) continue;

if (s->is_parameter) {
s->memory_offset = param_offset;
param_offset += 8;

}
}

//...

Em seguida, a segunda passagem da mesma função itera novamente pela tabela
para calcular os offsets negativos para todas as variáveis locais. Nesta passagem
(Passagem 2 ), o local_offset começa em 0 e é decrementado pelo tamanho de
cada símbolo (4 bytes para int ou o tamanho total para vetores). Isso aloca espaço
na pilha para baixo a partir do %rbp, como -4, -8, etc. Trecho do código relativo a
segunda passagem da função:

//... (continuação de calcular_offsets)
//passagem 2: calcular offsets de variáveis locais
for (int i = 0; i < tabela->tamanho; i++) {

Simbolo* s = &tabela->simbolos[i];
if (s->is_function) continue;

if (!s->is_parameter) {
int tamanho_simbolo = get_symbol_size(s);
local_offset -= tamanho_simbolo;
s->memory_offset = local_offset;

}
}

}

Com essas correções, a Tabela de Símbolos foi transformada em um mapa de
memória preciso, permitindo ao gerador de Assembly (Seção 6.3) consultar os valores
em memory_offset de qualquer símbolo e traduzi-lo para o endereço correto na
pilha, como 16(%rbp) ou -4(%rbp).

Com o modelo de registradores, a estrutura do stack frame e o gerenciamento
desse frame (por meio do prólogo e epílogo) agora é o compilador está pronto para
gerar o código Assembly. A preparação está encerrada e agora existe um mapa de
memória preciso da Tabela de Símbolos. Esse mapa armazena o endereço exato de
cada símbolo (como 16(%rbp) ou -4(%rbp)) e de cada variável temporária (como
-128(%rbp)).
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A próxima seção irá detalhar a tradução na prática. Será analisado como o
gerador de Assembly do Micro C (assembly.c) percorre a lista de RI e traduz
cada IROpcode (como IR_ASSIGN, IR_ADD e IR_LOAD) na sequência de instruções
Assembly x86-64 correspondente.

6.3 Tradução da RI para Assembly
Com o modelo de memória e a estrutura do stack frame definidos, podemos agora
analisar a implementação do módulo que gerador do Assembly (assembly.c). O
processo de tradução é um percurso linear pela lista de RI, onde a função principal
gerar_assembly utiliza um switch para traduzir cada IROpcode em sua sequência
de Assembly x86-64 AT&T correspondente.

6.3.1 O Tradutor de Operandos

A primeira peça-chave da implementação é a função auxiliar get_operand_asm.
Esta função atua como um dicionário que traduz a estrutura de dados abstrata
IROperand (da RI) para a sintaxe de texto que o montador (gcc) espera. Ela é
implementada como um switch que analisa o op->type e formata uma string. Os
três casos de uso principais são descritos a seguir.

Valores Imediatos (Constantes) Para constantes numéricas, o Assembly AT&T
exige um prefixo $.

// IR: OPERAND_CONST, data.const_val = 10
case OPERAND_CONST:

sprintf(asm_buffer, "$%d", op->data.const_val);
break;

// Saída: "$10"

Símbolos (Variáveis e Parâmetros) Este é o ponto de conexão crucial com o
analisador semântico. A função acessa o memory_offset (calculado na Fase 3) e o
formata na sintaxe de endereçamento relativo à base da pilha.

// IR: OPERAND_SYMBOL, data.symbol->memory_offset = -4 (para ’x’)
// IR: OPERAND_SYMBOL, data.symbol->memory_offset = 16 (para ’a’)
case OPERAND_SYMBOL:

sprintf(asm_buffer, "%d(%%rbp)", op>data.symbol->
memory_offset);
break;

// Saída para ’x’: "-4(%rbp)"
// Saída para ’a’: "16(%rbp)"

Temporários Como os temporários (ex: t0, t1) não existem na Tabela de Símbo-
los, são atribuímos a eles um espaço de memória próprio. O case de cada um deles
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calcula um offset negativo a partir de um endereço base (no caso, -128), garantindo
que eles não colidam com as variáveis locais.

// IR: OPERAND_TEMP, data.temp_id = 0 (para ’t0’)
case OPERAND_TEMP: {

int temp_offset = -128 - (op->data.temp_id * 4);
sprintf(asm_buffer, "%d(%%rbp)", temp_offset);
break;

}
// Saída para ’t0’: "-128(%rbp)"
// Saída para ’t1’: "-132(%rbp)"

6.3.2 A Estratégia de Tradução: Load-Operate-Store

A RI implementada no compilador do Micro C utiliza o mecanismo de Código de
Três Endereços (CTE). Isso significa que uma instrução típica tem três operandos
como, por exemplo, t0 := a + b. Por outro lado, a maioria das instruções arit-
méticas do x86-64 (como addl) opera em um formato de dois endereços, onde o
destino é também um dos operandos fonte (destino = destino + fonte). Por
isso, é utilizada a estratégia de tradução Load-Operate-Store (Carregar-Operar-
Armazenar), que utiliza registradores de rascunho (como %eax e %ebx) para dividir
a operação. A seguir a descrição de cada uma dessas operações:

1. Load (Carregar): carrega os operandos fonte da pilha de memória (ex:
-4(%rbp)) para registradores de rascunho (ex: %eax, %ebx).

2. Operate (Operar): executa a operação (ex: addl %ebx, %eax).

3. Store (Armazenar): move o resultado do registrador de rascunho (ex: %eax)
de volta para o destino na pilha (ex: -128(%rbp)).

Tradução de Operações Aritméticas e Atribuição

Os cases para IR_ASSIGN e IR_ADD são exemplos desta estratégia.

IR_ASSIGN A atribuição (ex: x := t0) é um Load-Store de duas etapas:

// IR: x := t0
// Mapeamento: x -> -4(%rbp), t0 -> -128(%rbp)

// 1. Load: Carrega t0 (-128(%rbp)) para o registrador %eax
movl -128(%rbp), %eax

// 2. Store: Armazena %eax na variável x (-4(%rbp))
movl %eax, -4(%rbp)

IR_ADD A adição (ex: t0 := a + b) é o exemplo completo de Load-Load-
Operate-Store:
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// IR: t0 := a + b
// Mapeamento: t0 -> -128(%rbp), a -> 16(%rbp), b -> 24(%rbp)

// 1. Load: Carrega ’a’ (16(%rbp)) em %eax
movl 16(%rbp), %eax

// 2. Load: Carrega ’b’ (24(%rbp)) em %ebx
movl 24(%rbp), %ebx

// 3. Operate: Adiciona %ebx em %eax (resultado fica em %eax)
addl %ebx, %eax

// 4. Store: Armazena %eax no temporário t0 (-128(%rbp))
movl %eax, -128(%rbp)

Esta mesma estratégia é usada para todas as operações binárias, como IR_SUB,
IR_MUL, IR_LT e IR_EQ.

Tradução de Controle de Fluxo

Estruturas de alto nível, como o if, foram compactadas pelo gerador de RI em um
conjunto de rótulos e desvios. O gerador de Assembly simplesmente traduz essas
instruções de controle de baixo nível.

IR_LABEL A tradução de um rótulo (ex: L0: ou main:), por outro lado, precisa
de uma lógica especial para diferenciar um rótulo de função (que precisa de um
prólogo) de um rótulo de desvio.

// IR: main:
case IR_LABEL: {

// 1. Busca o label na Tabela de Símbolos
Simbolo* s = buscar_simbolo_em_todos_escopos(pilha, ...);

// 2. Verifica se é uma função
if (s != NULL && s->is_function) {

// Se for, gera o prólogo completo
asm_print(".globl %s", s->nome);
asm_print("%s:", s->nome);
asm_gen_prologue();

} else {
// Se for um label comum (ex: L0), apenas imprime o rótulo
asm_print("%s:", get_operand_asm(instr->result));

}
break;

}

IR_GOTO e IR_IF_FALSE Estas instruções têm traduções diretas para ins-
truções de salto do x86-64.
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// IR: goto L1
case IR_GOTO:

asm_instr("jmp L1");
break;

// IR: if_false t1 goto L0
// Mapeamento: t1 -> -132(%rbp)
case IR_IF_FALSE:

// 1. Compara o booleano ’t1’ com 0 (falso)
asm_instr("cmpl $0, -132(%rbp)");
// 2. "Jump if Equal" (Pula se for igual a 0, ou seja, falso)
asm_instr("je L0");
break;

Tradução de Acesso a Arrays (LOAD e STORE)

A tradução de acesso a vetores é a operação mais complexa, pois requer o cálculo de
um endereço de memória em tempo de execução. Ela é resolvida usando o modo de
endereçamento indexado do x86-64. A fórmula para encontrar um elemento v[i]
é: Endereço = EndereçoBase(v) + (Indice(i) * TamanhoDoElemento). Na sin-
taxe da AT&T, isso é escrito como: offset(%base, %indice, escala).

IR_LOAD Para a leitura de t0 := v[i]:

// IR: t0 := v[i]
// Mapeamento: v -> -40(%rbp), i -> -8(%rbp), t0 -> -128(%rbp)

// 1. Carrega o Endereço Base de ’v’ em %rax
asm_instr("leaq -40(%%rbp), %%rax");

// 2. Carrega o Índice ’i’ em %rbx
asm_instr("movl -8(%%rbp), %%ebx");

// 3. Carrega o Valor [base + indice*4] em %ecx
asm_instr("movl (%%rax, %%rbx, 4), %%ecx");

// 4. Salva o Valor (em %ecx) no destino ’t0’
asm_instr("movl %%ecx, -128(%%rbp)");

Neste trecho de código é possível observar que a instrução leaq (Load Effective
Address), carrega o endereço de v (ou seja, -40(%rbp)), e não o valor contido nele.
A instrução movl (%rax, %rbx, 4), %ecx implementa a fórmula de acesso, usando
4 como a escala (isso acontece porque no Micro C int’s e char’s ocupam 4 bytes).

IR_STORE Para a escrita v[i] := x, o processo é o inverso, com o endereço
indexado no lado do destino:
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// IR: v[i] := x
// Mapeamento: v -> -40(%rbp), i -> -8(%rbp), x -> -4(%rbp)

// 1. Carrega o Endereço Base ’v’ em %rax
asm_instr("leaq -40(%%rbp), %%rax");

// 2. Carrega o Índice ’i’ em %rbx
asm_instr("movl -8(%%rbp), %%ebx");

// 3. Carrega o Valor ’x’ em %ecx
asm_instr("movl -4(%%rbp), %%ecx");

// 4. Salva o Valor (em %ecx) no Endereço [base + indice*4]
asm_instr("movl %%ecx, (%%rax, %%rbx, 4)");

Com a implementação da estratégia Load-Operate-Store e a tradução dos opcodes
de atribuição, operações aritméticas, controle de fluxo e acesso a vetores, o gerador
de Assembly está completo. Agora é possível traduzir o corpo de qualquer função
do Micro C em um conjunto de instruções x86-64.

No entanto, um programa funcional é mais do que uma coleção de funções isola-
das; elas precisam se comunicar. Até agora, não foram implementadas as instruções
que permitem essa comunicação: IR_PARAM, IR_CALL e IR_RETURN. Mais importante,
ainda não foi tratada a complexidade relacionada a invocação de funções externas,
como o printf, que não fazem parte do projeto de implementação do compilador
do Micro C.

A próxima seção abordará este desafio final. Serão detalhadas as regras e pro-
tocolos, conhecidas como Convenções de Chamada (ABIs), que ditam como os
parâmetros são passados, como os valores são retornados e como o código se conecta
com bibliotecas externas para criar um executável.

6.4 Convenções de Chamada e Linking
A geração de código não termina ao emitir as instruções de uma única função. Um
programa funcional é composto por múltiplas funções que precisam interagir entre si
e, o mais importante, com o sistema operacional e suas bibliotecas. Essas interações
são realizadas por um conjunto estrito de regras conhecidas como Convenção de
Chamada (ou ABI, Application Binary Interface) [12].

A convenção dita como os parâmetros são passados para as funções, como os
valores são retornados e quem é responsável pela limpeza da pilha. No compilador do
Micro C, são utilizadas duas convenções: uma convenção interna simplificada para
as funções do próprio Micro C, e a convenção externa formal exigida por funções da
biblioteca C.

6.4.1 Convenção Interna: Chamando Funções do Micro C

Para a invocação de funções que existem dentro do próprio código-fonte (como a
main ou outras funções declaradas internamente), é utilizada uma convenção de

facom-ufms



Geração de Assembly 102

interna simplificada. Esta convenção não utiliza os registradores para a passagem
de argumentos, optando por passar todos os parâmetros, exclusivamente, usando a
pilha. Essa é uma abordagem mais simples de implementar e depurar. O processo
de invocação é dividido em três etapas que são mapeadas a partir das instruções da
RI:

IR_PARAM (Empilhando Argumentos) Para cada argumento de uma fun-
ção, o intercode.c emite uma instrução IR_PARAM. O gerador de Assembly traduz
isso em código que move o valor do argumento para um registrador de rascunho e,
em seguida, empurra esse valor para a pilha.

// IR: param x
// Mapeamento: x -> -4(%rbp)

// 1. Carrega o valor do argumento ’x’ em %eax
movl -4(%rbp), %eax
// 2. Empurra o valor (como 64 bits) na pilha
pushq %rax

Este processo é repetido para cada parâmetro, construindo-os na pilha para a
próxima função consumir.

IR_CALL (Executando a Chamada) A instrução IR_CALL é o ponto central.
Ela realiza a chamada, limpa a pilha e armazena o resultado.

// IR: t2 := call soma, 2
// Mapeamento: t2 -> -136(%rbp)

// 1. Pula para o label da função ’soma’
call soma

// 2. Limpa os 2 argumentos (2 * 8 bytes = 16) da pilha
addq $16, %rsp

// 3. Pega o valor de retorno (em %eax) e salva em ’t2’
movl %eax, -136(%rbp)

Quando a instrução call é executada, o processador automaticamente empilha o
endereço de retorno. Em seguida, a função invocada (neste exemplo, soma) executa
seu prólogo. O código Assembly padrão para este prólogo (Subseção 6.2.3) estabelece
seu próprio stack frame. Dentro de soma, os parâmetros a e b são acessados usando
os offsets positivos previamente calculados (ex: 16(%rbp) e 24(%rbp)).

Após o retorno da função, a convenção determina que a função que fez a invo-
cação (main) é responsável por limpar a pilha. A instrução addq $16, %rsp realiza
essa ação de forma eficiente, simplesmente movendo o ponteiro da pilha para cima,
descartando os 16 bytes que tinham sido alocados para os dois parâmetros.
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6.4.2 O Desafio do print

A convenção interna criada para o Micro C funciona corretamente para funções con-
troladas pelo compilador, ou seja, de escopo local ao programa. No entanto, ela não
serve para cenários que necessitam de interação com códigos externos ao programa
ou mesmo ao compilador do Micro C. A função print, que é uma implementação
exclusiva para o Micro C, é uma imitação limitada da função printf da biblio-
teca C padrão. O objetivo dessa função é fornecer ao programador a capacidade de
visualizar saídas dos seus programas e conferir se eles estão corretos, por exemplo.

O printf é uma função externa, pré-compilada, que não foi escrita para o com-
pilador do Micro C. Ela não tem como saber sobre a convenção estrita de repassar
os parâmetros todos pela pilha. Em vez disso, a função espera que os argumentos
sejam enviados seguindo a convenção de chamadas do sistema operacional.

O Problema dos Argumentos (Convenção System V ABI)

Como o ambiente de desenvolvimento utiliza o gcc em um ambiente Unix-like, a
função printf espera que seus argumentos sigam a convenção System V AMD64
ABI [12]. Esta convenção determina que os primeiros argumentos inteiros ou pon-
teiros são passados usando registradores específicos, não da pilha. Para o printf,
em especial, os dois primeiros argumentos são:

• Argumento 1 (Formato): um ponteiro para a string de formato (ex: "%d\n").
Deve ser colocado no registrador %rdi.

• Argumento 2 (Valor): o valor a ser impresso (ex: o valor de z). Deve ser
colocado no registrador %rsi.

Para resolver isso, na implementação do compilador (intercode.c), primeiro
é detectado o tipo de argumento (usando get_expr_static_type) que vai gerar
opcodes (códigos de operação) especializados:

• IR_PRINT_INT

• IR_PRINT_CHAR

• IR_PRINT_STRING

Em seguida, o compilador (assembly.c) traduz esses opcodes usando a con-
venção correta. A tradução para IR_PRINT_INT, detalhada abaixo, serve como o
principal exemplo de como a ABI System V é implementada. O processo exige
o carregamento dos argumentos nos registradores corretos (%rdi e %rsi), o zera-
mento do %eax (um requisito para funções com número variável de argumentos
como printf), e o alinhamento da pilha antes da chamada:
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// IR: print_int z
// Mapeamento: z -> -12(%rbp)

// 1. Carrega o ponteiro da string de formato "%d\n" em %rdi
leaq .L.str.int(%rip), %rdi

// 2. Carrega o valor de ’z’ em %esi (os 32 bits
inferiores de %rsi)

movl -12(%rbp), %esi
// 3. Define %eax como 0 (necessário para funções
variádicas como printf)

xorl %eax, %eax
// 4. Alinha a pilha (requisito da ABI) e chama

subq $8, %rsp
call printf
addq $8, %rsp

Como é possível observar no código, a tradução para uma chamada externa é,
significativamente, mais complexa do que uma para chamada interna.

O Problema dos Dados (A Seção .rodata)

A convenção ABI resolve como passar os argumentos, mas acaba desencadeando
em um outro problema: o primeiro argumento, %rdi, deve conter o endereço da
string de formato (ex: "%d\n"). Essa string precisa estar fisicamente armazenada
na memória do programa para que o ponteiro possa referência-la.

A solução foi criar uma seção de dados no topo do arquivo Assembly gerado
pelo compilador com uma chamada .section .rodata (Read-Only Data). Para
preencher esta seção, o compilador (assembly.c) realiza uma pré-varredura na
lista de RI antes de traduzir o código.

// Código gerado no topo do arquivo teste.s

.section .rodata

.L.str.int: .string "%d\n"

.L.str.char: .string "%c\n"

.L.str.str: .string "%s\n"

// ... código da pré-varredura para strings literais ...
// Ex: L0: .string "Meu Compilador"

.text

.globl main
//... (resto do código)

Esta pré-varredura procura por instruções IR_PRINT_STRING e define seus labels
(ex: L0) com o conteúdo da string. A instrução leaq .L.str.int(%rip), %rdi
então usa o RIP-relative addressing (endereçamento relativo ao ponteiro de ins-
trução) para carregar o endereço daquela string de formato no registrador correto,
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completando os requisitos para a chamada a função printf.

Com a implementação das convenções de chamada, tanto as internas (para fun-
ções como soma) quanto as externas (para a função printf da biblioteca C), o
gerador de Assembly está agora completo. O resultado da compilação gera um
arquivo com extensão .s que não é apenas uma tradução literal da RI, mas um ar-
quivo de Assembly válido que obedece às regras da arquitetura x86-64 e do Sistema
Operacional.

No entanto, este arquivo .s ainda é apenas texto; ele não é um programa execu-
tável. A etapa final, e a conclusão de todo o processo é a montagem e linking . No
projeto do compilador do Micro C foram disponibilizados um Makefile que pode
ser utilizado para facilitar a compilação de novos códigos fonte (extensão .mcc),
embora as mesmas etapas possam ser realizadas manualmente utilizando o próprio
binário do compilador (mcc). O Apêndice D mostra um exemplo de compilação
gerando cada uma das fases de compilação do código fonte exemplo até a geração
do seu, respectivo, código binário.

6.5 Sumário
Este capítulo encerra a construção do compilador para a linguagem Micro C ao
implementar a fase final do back-end, o gerador de código Assembly . Esta
etapa foi responsável por traduzir a Representação Intermediária (RI) descrita no
Capítulo 5, que é abstrata e independente de plataforma, em código Assembly.

Inicialmente foi definida a arquitetura x86-64 e a Sintaxe AT&T que seria
utilizada para gerar código em Assembly. A opção foi pelo formato esperado pelo
GCC, que é a ferramenta utilizada para a montagem e linking(conversão do Assembly
gerado pelo compilador do Micro C para binário).

Em seguida, foram explorados os modelos de memória necessários para montar
o código em Assembly, explicando o papel de registradores (como %rbp, %rsp e
%rax) e a estrutura do Registro de Ativação (Stack Frame). Além disso, foram
explicados como o prólogo e o epílogo (‘pushq %rbp’ / ‘popq %rbp’) criam e destroem
esse frame, e como ajustes na fase semântica do compilador do Micro C foram
necessárias para corrigir o mapeamento das variáveis locais para offsets negativos
(ex: -4(%rbp)) e parâmetros para offsets positivos (ex: 16(%rbp))

Com as estruturas devidamente organizadas, foram detalhados como o gerador
de Assembly (assembly.c) do Micro C usa a função get_operand_asm, que atua
como o dicionário tradutor de operandos, e a estratégia Load-Operate-Store usada
para converter instruções de três endereços (como IR_ADD) em sequências de As-
sembly (como movl, movl, addl, movl). Além disso, foram analisadas a tradução de
instruções-chave, desde IR_ASSIGN e IR_IF_FALSE até o complexo endereçamento
indexado de IR_LOAD e IR_STORE.
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Por fim, foram detalhados os desafios para realizar a interação com código ex-
terno. Por exemplo, foram detalhas as Convenções de Chamada, fazendo um
contraste entre a convenção de pilha interna definida para o Micro C (baseada em
pilha, para a função soma) com a convenção externa System V ABI, que foi neces-
sária para implementar e invocar a função printf sem a necessidade de bibliotecas
externas. Isso incluiu o uso de registradores (%rdi e %rsi) para argumentos e a
definição de dados na seção .rodata do código Assembly.
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Capítulo 7

Conclusão

"It always seems impossible until it’s done."

– Nelson Mandela

Este trabalho teve como objetivo o projeto, a implementação e a validação de
um compilador para a linguagem Micro C, que é um subconjunto minimalista da
linguagem de programação C. Ao longo dos capítulos, detalhou-se cada fase do
complexo pipeline de compilação de um programa, do seu código fonte até geração
de código binário.

7.1 Sumário do Compilador do Micro C
O desenvolvimento do compilador da linguagem Micro C foi extenso e complexo.
Cada capítulo abordou uma fase do processo de compilação e está associada dire-
tamente ao software que foi desenvolvido, o compilador da linguagem Micro C. A
seguir serão sintetizadas as contribuições de cada uma das etapas de construção do
compilador, por fase de compilação.

7.1.1 O Front-End: Análise e Compreensão

O front-end do compilador é responsável pela fase de análise. A implementação
inicia com a Análise Léxica (Capítulo 2), onde o scanner.c converte o arquivo-fonte
do Micro C em uma sequência linear de tokens. Em seguida, a Análise Sintática
(Capítulo 3) consome esses tokens, valida a gramática da linguagem e constrói a
Árvore Sintática Abstrata (ASA), a representação hierárquica do programa. Por
fim, a Análise Semântica (Capítulo 4) percorre a ASA para realizar a verificação de
tipos e escopos, utilizando a Tabela de Símbolos para armazenar o contexto (como
tipos de variáveis) e informações para o back-end, como os offsets de memória.
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7.1.2 O Back-End : Síntese e Geração

O back-end é o responsável pela fase de síntese da compilação (Capítulo 5 e Ca-
pítulo 6). Esta fase inicia com a geração de código intermediário (intercode.c),
que percorre a ASA e a traduz (ou compacta) para uma Representação Intermedi-
ária (RI) linear: o Código de Três Endereços (CTE). Esta RI é independente da
plataforma. Na etapa final, o compilador (assembly.c) traduz a RI instrução por
instrução para código em Assembly x86-64 (sintaxe AT&T), resolvendo o acesso à
memória (o stack frame) e implementando as convenções de chamada (ABI) neces-
sárias para interagir com chamadas de funções externas, como o printf. O arquivo
.s resultante pode ser montado e linkado pelo gcc para produzir um código binário
executável.

7.2 Resultados Obtidos e Validação
A implementação teórica de um compilador não é suficiente sem uma validação
prática. Esta seção detalha os resultados obtidos ao submeter o Compilador Micro
C a um conjunto diversificado de algoritmos de teste, tanto de sucesso quanto de
falha. O sucesso na compilação e a subsequente execução correta dos testes provam
que o código Assembly gerado (Capítulo 6), é funcional e que toda a pipeline de
síntese gera, corretamente um programa binário válido.

O conjunto de testes de sucesso foi dividido em três categorias principais, cada
uma validando um subconjunto de funcionalidades do compilador:

• Testes de Funcionalidade Básica: verificação das operações aritméticas
fundamentais (+, -, *, / e %), todos os operadores relacionais (como <, ==,
!=, >=), a estrutura condicional if-else, e a capacidade de invocar a função
print com os três tipos de dados suportados (int, char e string).

• Testes de Controle e Memória: que realizam operações de laço complexas
e acesso a dados. Isso incluiu a implementação de algoritmos como a Peneira
de Eratóstenes (para encontrar números primos) e o Bubble Sort (para
ordenação). Esses testes validaram intensivamente os laços for aninhados e o
correto acesso a arrays (operações IR_LOAD e IR_STORE).

• Testes do Stack Frame: validação do gerenciamento da pilha em chamadas
recursivas. Isso incluiu a Recursão Simples (Fatorial) e a Recursão Múl-
tipla (Máximo Divisor Comum e Fibonacci). O teste de Fibonacci foi impor-
tante, por exemplo, por validar a capacidade do compilador de lidar com ins-
truções return que contêm expressões complexas (ex: return fibonacci(n
- 1) + fibonacci(n - 2);). Isso mostra que o gerador de RI trata correta-
mente múltiplas chamadas IR_CALL aninhadas dentro de uma única expressão
aritmética.

Além da validação de sucesso, o compilador também foi testado quanto à sua
capacidade detectar erros. Testes de falha foram criados para garantir que cada fase
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do front-end capturasse corretamente códigos inválidos:

• Erros Léxicos: caracteres inválidos (ex: @) são corretamente capturados pelo
scanner.c.

• Erros Sintáticos: Gramática incorreta (ex: falta de ;) é corretamente cap-
turada pelo parser.c.

• Erros Semânticos: Uso de variáveis não declaradas ou incompatibilidade de
tipos são corretamente capturados pelo semantic.c.

A capacidade do compilador em aceitar programas complexos e válidos, produ-
zindo a saída correta, ao mesmo tempo em que rejeita programas inválidos com
mensagens de erro claras, demonstra a integridade e a funcionalidade de todas as
fases implementadas.

7.3 Desafios de Implementação e Soluções
O desenvolvimento do compilador da linguagem Micro C não foi um processo linear.
A transição da teoria para uma implementação revelou diversos desafios. Esta seção
detalha os principais desafios de engenharia encontrados tanto no front-end (análise),
quanto no back-end (síntese) e as soluções aplicadas.

7.3.1 Desafios do Front-End : Ambiguidade e Estrutura

No front-end, os desafios centraram-se em resolver ambiguidades no código-fonte e
em traduzir regras gramaticais recursivas para um parser funcional.

Desambiguação Léxica (Scanner): o scanner.c enfrentou o desafio de dife-
renciar operadores de comentários, que compartilham o mesmo prefixo (o caractere
‘/‘). Uma tradução simples falharia em distinguir a expressão a / b de um comen-
tário //comentário. A solução foi implementar uma lógica de lookahead (olhar à
frente), em que o scanner observa o próximo caractere ao / (usando prox_char())
e, caso não seja um comentário, devolve o caractere ao fluxo de entrada (usando
ungetc()) para ser processado corretamente como um operador.

Precedência e Recursão à Esquerda (Parser): o desafio do parser.c foi
implementar a precedência de operadores (ex: * antes de +) sem usar uma gramática
com recursão à esquerda (ex: E → E + T ), que causaria um laço infinito em um
parser recursivo descendente. A solução foi implementar a precedência por meio da
própria estrutura das chamadas de função: a gramática foi dividida em expression,
term e factor, onde expression (nível mais baixo de precedência) deriva em term,
que por sua vez deriva factor (nível mais alto), fazendo com que a árvore a fosse
construída na ordem correta.
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Ambiguidade Sintática (Parser): o parser.c falhou inicialmente ao tentar
analisar chamadas de função usadas como uma instrução independente. O case
ID: na função statement assumia que todo ID (como minha_funcao) era o início
de uma atribuição (ex: x = ...) e gerava um erro ao encontrar o token LPAREN
(representando o caractere ’(’). A solução foi implementar uma função peek para
observar o token seguinte. O case ID: agora verifica: se o próximo token for
LPAREN, ele chama a rotina de análise de expressão (que sabe processar uma chamada
de função); caso contrário, ele chama a rotina de análise de atribuição.

7.3.2 Desafios do Back-End: Memória e Convenções

No back-end, os desafios foram, principalmente, no gerenciamento de memória e na
adesão às convenções de baixo nível da arquitetura.

Gerenciamento de Memória na RI (O Bug do double free): O primeiro
bug crítico ocorreu na Fase 4 (Capítulo 5). A depuração revelou que a reutilização de
ponteiros de IROperand (ex: t0 ou L1) em múltiplas instruções causava um double
free em liberar_ir. A solução foi refatorar a RI, adicionando a flag owns_label
e a função copiar_operando, garantindo que cada instrução possuía cópias únicas
de seus operandos.

Cálculo de Offsets de Pilha (O Bug do 0(%rbp)): Após corrigir o bug an-
terior, o Assembly gerado ainda era inválido, pois acabava mapeando todas as va-
riáveis para 0(%rbp). O problema estava no semantic.c: a função analisar_no
chamava calcular_offsets em Pré-Ordem (antes de os símbolos serem adicionados
à tabela). A solução foi reestruturar analisar_no para uma lógica de Pós-Ordem,
garantindo que os offsets fossem calculados apenas após a tabela do escopo estar
completa.

Convenções de Chamada (Os Bugs do printf e da Recursão): A imple-
mentação de chamadas de função (IR_CALL) revelou dois bugs de convenção de
chamada:

1. Convenção Externa: a chamada a função printf falhava porque ele espera
argumentos nos registradores (%rdi, %rsi) e dados na seção .rodata, seguindo
a ABI System V [12]. O assembly.c foi corrigido para tratar IR_PRINT como
um caso especial que segue esta convenção.

2. Convenção Interna: chamadas de função recursivas estavam causando um
estouro de pilha. A depuração revelou que o assembly.c estava empilhando os
parâmetros na ordem errada (da esquerda para a direita), em vez de seguir a
convenção do C (da direita para a esquerda). Isso fazia com que a função recur-
siva fizesse a leitura de seus próprios argumentos de forma incorreta, levando
a um laço infinito. A solução foi criar um buffer de parâmetros, permitindo
ao IR_CALL empilhá-los na ordem correta (da direita para a esquerda).
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7.4 Limitações e Trabalhos Futuros
Um projeto de compilador é, normalmente, limitado pela linguagem definida e pe-
los objetivos dos projetistas. A versão atual do compilador do Micro C, embora
funcional e capaz de compilar algoritmos complexos, foi desenvolvida para fins di-
dáticos. Dessa forma, várias funcionalidades não foram implementadas e o escopo
da linguagem foi restrito ao máximo, para tornar o programa desenvolvido simples
de aprender ou expandir.

7.4.1 Limitações Atuais

A seguir serão descritas algumas de suas limitações de implementação. Elas se
concentram em três áreas:

• Ausência de Suporte a Ponteiros: esta é a limitação mais significativa da
linguagem Micro C. A gramática, o analisador semântico e os geradores de
código não reconhecem a sintaxe de ponteiros (como * ou &). A consequência
mais direta disso é a incapacidade de passar vetores como parâmetros para
funções. Isso impede a implementação de algoritmos que dependem dessa
funcionalidade, como o Quick Sort Recursivo.

• Geração de Código Não Otimizado: o código Assembly gerado é simples e
correto, mas não se preocupa com a performance. A estratégia Load-Operate-
Store, que move valores constantemente entre a pilha e os registradores de
rascunho, é lenta. Além disso, o prólogo de cada função aloca um espaço
fixo de 256 bytes na pilha, independentemente de quantas variáveis a função
realmente necessita, desperdiçando espaço.

• Tipos de Dados Primitivos: o compilador suporta apenas os tipos básicos
int e char. Faltam outros tipos fundamentais do C, como float, double ou
mesmo qualificadores como unsigned.

• Gramática Incompleta: A gramática da Micro C é um subconjunto estrito
do C. Faltam diversas estruturas de controle de fluxo essenciais, como os laços
while e do-while, a seleção switch-case, e tipos de dados agregados, como
structs.

7.4.2 Propostas de Trabalhos Futuros

Cada limitação listada acima representa uma oportunidade para a evolução deste
projeto. As propostas de trabalhos futuros podem transformar o Compilador Mi-
cro C de uma ferramenta didática para um compilador de propósito mais geral
implementando algumas estruturas adicionais como, por exemplo:

• Implementação de uma Fase de Otimização: adição de uma nova fase
de otimização dentro do back-end, a ser executada entre a geração da RI e a
geração do Assembly. Esta fase operaria sobre a RI para realizar otimizações,
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como eliminação de código desnecessário, propagação de constantes e, o mais
importante, alocação de registradores para reduzir o tráfego de memória da
estratégia Load-Operate-Store.

• Suporte a Ponteiros e Alocação Dinâmica: expansão da sintaxe e da
semântica para incluir ponteiros. Isso não só permitiria a passagem de arrays,
mas também abriria caminho para a implementação de funções de alocação de
memória (como malloc), aproximando a linguagem do poder total do C.

• Expansão do Sistema de Tipos: adicionar suporte para tipos de ponto flu-
tuante (float e double), o que exigiria a utilização dos registradores FPU/SSE
(como %xmm0) e novas instruções de Assembly.

• Geração de Back-Ends Adicionais: criação de novos geradores de código.
Um back-end para arquiteturas ARM ou RISC-V poderia ser implementado,
reutilizando todo o front-end e o gerador de RI existentes.

• Independência de Ferramentas Externas: substituir a dependência atual
do gcc. Isso envolveria a implementação das duas fases finais da compilação:
um Montador (Assembler) próprio, capaz de traduzir o arquivo .s em um
arquivo objeto binário (.o), e, subsequentemente, um Linker (Ligador) capaz
de ligar o arquivo .o com as bibliotecas do sistema para produzir o executável
final.

7.5 Considerações Finais
A construção de um compilador é um exercício que relaciona teorias e conceitos de
ciência da computação com a construção de um software complexo. Foi projetado,
implementado e validado um compilador para a linguagem Micro C, que funciona
do código fonte a geração de código Assembly para o executável binário.

Além disso, do ponto de vista da implementação, este trabalho vai facilitar o
aprendizado acadêmico, porque cria um compilador para uma linguagem minima-
lista com um tamanho acessível (em linhas de código) para que outros estudantes
possam entender e modificar, de acordo com suas necessidades de aprendizado, o
compilador. Por exemplo, o gcc, um compilador muito utilizado em ambientes Unix-
like, possui mais de 15 milhões de linhas de código (informação de 2019), por outro
lado, o compilador do Micro C, possui pouco menos de 4 mil linhas de código (o que
representa em torno de 0,027% do gcc). Isso demonstra que é possível implementar
um compilador funcional, mesmo que não seja o compilador mais eficiente.

O código fonte completo do projeto, documentado nesta monografia, está dispo-
nível online sob a licença GPLv3 [14].
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Apêndice A

Linguagem do Micro C

Abaixo estão descritos os operadores e demais elementos do subconjunto da lingua-
gem de programação C utilizada pelo compilador Micro C. São definidos os tipos
literais, operadores aritméticos, relacionais, lógicos e de atribuição. Além disso, são
definidos os delimitadores palavras reservadas e o token utilizado para representar
o final do arquivo. Os elementos definidos são os utilizados em todas as fases da
compilação mas em momentos diferentes.

Literais
• UNDEF - Token indefinido (erro ou valor desconhecido).

• ID - Identificadores (variáveis, funções).

• INTEGERCONST - Constante inteira (ex: 42).

• CHARCONST - Constante de caractere (ex: ‘a’).

• STRINGCONST - Constante de string (ex: “a35er").

Operadores Aritméticos
• PLUS - Adição “+".

• MINUS - Subtração “-".

• MUL - Multiplicação “*".

• DIV - Divisão “/".

• MOD - Módulo “%".

Operadores Relacionais
• EQ - Igualdade “==".

• NEQ - Desigualdade “!=".

• LT - Menor que “<".
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• GT - Maior que “>".

• LEQ - Menor ou igual que “<=".

• GEQ - Maior ou igual que “>=".

Operadores Lógicos
• AND - Operador lógico E “&&".

• OR - Operador lógico OU “||".

• NOT - Operador lógico NÃO “!".

Operadores de Atribuição
• ASSIGN - Atribuição “=".

Delimitadores
• SEMICOLON - Ponto e vírgula “;".

• COMMA - Vírgula “,".

• LPAREN - Parêntese esquerdo “(".

• RPAREN - Parêntese direito “)".

• LBRACE - Chave esquerda “{".

• RBRACE - Chave direita “}".

• LBRACKET - Colchete esquerdo “[".

• RBRACKET - Colchete direito “]".

Palavras Reservadas
• MAIN - Função principal main.

• IF - Estrutura condicional if.

• ELSE - Estrutura condicional else.

• PRINT - Comando de Imprimir print.

• FOR - Laço de repetição for.

• RETURN - Comando de retorno return.

• INT - Tipo de dado int.

• CHAR - Tipo de dado char.

Fim de Arquivo
• END_OF_FILE - Fim do arquivo.
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Apêndice B

Gramática do Micro C

Neste Apêndice, apresentamos a especificação formal da sintaxe da linguagem Micro
C. A estrutura é definida por meio de uma Gramática Livre de Contexto (GLC),
utilizando uma notação baseada em BNF (Backus-Naur Form) [2].

A gramática descreve as regras de produção para a estrutura do programa, co-
mandos, expressões e operadores suportados pela linguagem do Micro C.

1. Estrutura e Declarações

⟨programa⟩ → int main () ⟨bloco⟩
⟨bloco⟩ → { ⟨declarações⟩ ⟨comandos⟩ }

⟨declarações⟩ → ⟨declaração⟩ ⟨declarações⟩ | ε
⟨declaração⟩ → ⟨tipo⟩ ID ; | ⟨tipo⟩ ID [ INTEGERCONST ] ;

⟨tipo⟩ → int | char

2. Comandos

⟨comando⟩ → ⟨if⟩ | ⟨for⟩ | ⟨atribuição⟩ | ⟨return⟩ | ⟨print⟩ | ⟨bloco⟩ | ;
⟨if⟩ → if ( ⟨expressão⟩ ) ⟨comando⟩ [ else ⟨comando⟩ ]

⟨for⟩ → for ( ⟨atribuição_interna⟩ ; ⟨expressão⟩ ;
⟨atribuição_interna⟩ ) ⟨comando⟩

⟨return⟩ → return [ ⟨expressão⟩ ] ;
⟨print⟩ → print ( ⟨conteúdo_print⟩ ) ;

⟨atribuição⟩ → ⟨atribuição_interna⟩ ;
⟨atribuição_interna⟩ → ID = ⟨expressão⟩ | ID [ ⟨expressão⟩ ] = ⟨expressão⟩
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3. Expressões e Operadores

⟨conteúdo_print⟩ → STRINGCONST | ⟨expressão⟩
⟨expressão⟩ → ⟨expressão_lógica⟩

⟨expressão_lógica⟩ → ⟨expressão_relacional⟩ { (&& | ||) ⟨expressão_relacional⟩ }
⟨expressão_relacional⟩ → ⟨expressão_aritmética⟩ [ ⟨operador_relacional⟩

⟨expressão_aritmética⟩ ]
⟨operador_relacional⟩ → == | ! = | < | > | <= | >=

⟨expressão_aritmética⟩ → ⟨termo⟩ { (+ | −) ⟨termo⟩ }
⟨termo⟩ → ⟨fator⟩ { (∗ | / | %) ⟨fator⟩ }
⟨fator⟩ → ( ⟨expressão⟩ ) | ID | ID [ ⟨expressão⟩ ] |

INTEGERCONST | CHARCONST | ! ⟨fator⟩
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Apêndice C

Exemplos de Código

A seguir, temos exemplos de implementação de códigos utilizando a linguagem re-
conhecida pelo compilador Micro C, de acordo com a gramática definida no Apên-
dice B e com seus respectivos tokens definidos no Apêndice A. As implementações
demonstram que, mesmo uma linguagem simples, é capaz de resolver vários proble-
mas computacionais. No repositório do código [14] existem outros exemplos.

C.1 Fibonacci Recursivo
O código do Fibonacci recursivo demonstra como o compilador é capaz de tratar
corretamente a invocação recursiva de chamadas a mesma função, empilhando cor-
retamente as chamadas e gerando o resultado esperado.

fibonacci.mcc

int fibonacci(int n) {
int resultado;

if (n <= 1) {
resultado = n;
return resultado;

}
return fibonacci(n - 1) + fibonacci(n - 2);

}

int main() {
print("Calculando fibonacci(8)...");
print(fibonacci(8)); // Deve imprimir 21
return 0;

}
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C.2 Bubble Sort
O Bubble Sort é um algoritmo de ordenação de vetores que recebe como entrada um
vetor não ordenado e retorna como saída o vetor com os elementos ordenados. O uso
de várias variáveis, alocação de vetores, e laços aninhados funciona como esperado.

bubble.mcc

int main() {
int v[5];
int i;
int j;
int temp;
v[0] = 50;
v[1] = 20;
v[2] = 40;
v[3] = 10;
v[4] = 30;

print("--- Array Desordenado ---");
for (i = 0; i < 5; i = i + 1) {

print(v[i]);
}

// --- algoritmo Bubble Sort ---

for (i = 0; i < 5; i = i + 1) {
//passa pelo array comparando pares
for (j = 0; j < 4; j = j + 1) {

if (v[j] > v[j+1]) {
//Troca
temp = v[j];
v[j] = v[j+1];
v[j+1] = temp;

}
}

}

print("--- Array Ordenado ---");
for (i = 0; i < 5; i = i + 1) {

print(v[i]);
}

return 0;
}
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C.3 Fatorial de um Número
Diferente do exemploa da sequência de Fibonacci, o calculo do fatorial de um número
utiliza sequências comparativas determinísticas (if-else com o fluxo do código
variando entre atribuir um valor a uma variável ou calcular recursivamente o fatorial
do número anterior e receber o resultado agregado final.

fatorial.mcc

int fatorial(int n) {
int resultado_recursivo;
int resultado_final;

if (n < 2) {
resultado_final = 1;

} else {
resultado_recursivo = fatorial(n - 1);
resultado_final = n * resultado_recursivo;

}
return resultado_final;

}

int main() {
int valor;

print("--- Teste de Recursao ---");

//calcular o fatorial de 5 (5! = 120)
print("O resultado de 5! e:");
print(fatorial(5));

return 0;
}

Um detalhe importante é que, diferente da linguagem C original, o Micro C
implementa uma função de impressão print() simplificada que foi criada apenas
para fins de depuração. Ela não utiliza os mesmos parâmetros da função printf()
da biblioteca padrão do C.
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Apêndice D

Compilação Completa

Neste apêndice será mostrado um exemplo de código e quais os códigos intermedi-
ários gerados pelo compilador para cada uma das fases de compilação.

D.1 Código Fonte: soma.mcc

O exemplo a seguir apresenta uma soma simples de duas variáveis inteiras declaradas.
As variáveis recebem, cada uma, um valor de atribuição e sua soma é impressa no
terminal.

soma.mcc

int main()
{

int a;
int b;

a = 10;
b = 20;

print(a + b);

return 0;
}

Este exemplo se encontra no diretório /exemplos no repositório do código fonte
do compilador.
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D.2 Análise Léxica
A primeira fase é a análise léxica. Para gerar os tokens pela análise léxica usamos o
comando:

$ mcc --scan exemplos/soma.mcc

ao executar este comando, o compilador irá realizar a análise léxica e gerar o
arquivo tokens.txt que será utilizado nas fases posteriores.

Fase 1: análise léxica

Fase 1 (Lexica) concluida: 31 tokens gerados.
--- LISTA DE TOKENS GERADOS ---
Token: tipo = 33, lexema = ’int’, linha = 1
Token: tipo = 28, lexema = ’main’, linha = 1
Token: tipo = 22, lexema = ’(’, linha = 1
Token: tipo = 23, lexema = ’)’, linha = 1
Token: tipo = 24, lexema = ’{’, linha = 2
Token: tipo = 33, lexema = ’int’, linha = 3
Token: tipo = 1, lexema = ’a’, linha = 3
Token: tipo = 20, lexema = ’;’, linha = 3
Token: tipo = 33, lexema = ’int’, linha = 4
Token: tipo = 1, lexema = ’b’, linha = 4
Token: tipo = 20, lexema = ’;’, linha = 4
Token: tipo = 1, lexema = ’a’, linha = 6
Token: tipo = 19, lexema = ’=’, linha = 6
Token: tipo = 2, lexema = ’10’, linha = 6
Token: tipo = 20, lexema = ’;’, linha = 6
Token: tipo = 1, lexema = ’b’, linha = 7
Token: tipo = 19, lexema = ’=’, linha = 7
Token: tipo = 2, lexema = ’20’, linha = 7
Token: tipo = 20, lexema = ’;’, linha = 7
Token: tipo = 35, lexema = ’print’, linha = 9
Token: tipo = 22, lexema = ’(’, linha = 9
Token: tipo = 1, lexema = ’a’, linha = 9
Token: tipo = 5, lexema = ’+’, linha = 9
Token: tipo = 1, lexema = ’b’, linha = 9
Token: tipo = 23, lexema = ’)’, linha = 9
Token: tipo = 20, lexema = ’;’, linha = 9
Token: tipo = 32, lexema = ’return’, linha = 11
Token: tipo = 2, lexema = ’0’, linha = 11
Token: tipo = 20, lexema = ’;’, linha = 11
Token: tipo = 25, lexema = ’}’, linha = 12
Token: tipo = 36, lexema = ’EOF’, linha = 13
--------------------------------
Arquivo ‘tokens.txt’ gerado com sucesso.
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D.3 Análise Sintática
O próximo passo é executar a análise sintática.

$ mcc --parse exemplos/soma.mcc

Executando o compilador com o parâmetro –parse, o analisador sintático pro-
cessa a sequência de tokens para validar se a estrutura do código obedece às regras
gramaticais definidas para o Micro C :

Fase 2: análise sinática

Fase 1 (Lexica) concluida: 31 tokens gerados.
Fase 2 (Sintatica) concluida: AST gerada.
--- ARVORE SINTATICA ABSTRATA (AST) ---
NO_PROGRAMA

NO_DEFINICAO_FUNCAO
NO_TIPO (INT)
NO_ID (Nome: main)
NO_BLOCO

NO_DECLARACAO_VARIAVEL
NO_TIPO (INT)
NO_ID (Nome: a)

NO_DECLARACAO_VARIAVEL
NO_TIPO (INT)
NO_ID (Nome: b)

NO_ATRIBUICAO
NO_ID (Nome: a)
NO_CONST_INT (Valor: 10)

NO_ATRIBUICAO
NO_ID (Nome: b)
NO_CONST_INT (Valor: 20)

NO_PRINT
NO_OP_BINARIA (PLUS)

NO_ID (Nome: a)
NO_ID (Nome: b)

NO_RETORNO
NO_CONST_INT (Valor: 0)

---------------------------------------
Arquivo ‘ast.txt’ gerado com sucesso.

ao final da análise sintática, é gerado o arquivo ast.txt que é a árvore sintática
abstrata que será utilizado na análise semântica.

D.4 Análise Semântica
Em seguida, é realizada a análise semântica para validar a lógica implementada pelo
programador e calcular os endereços de memória das variáveis.

$ mcc --semantic exemplos/soma.mcc
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Se a lógica implementada no código estiver correta, o compilador valida a estru-
tura e exibe a Tabela de Símbolos gerada. Nela, é possível visualizar os escopos
(Global e Local), os tipos das variáveis e, principalmente, o Offset (deslocamento)
de memória calculado para a geração de código:

Fase 3: análise semântica e tabela de símbolos

Fase 1 (Lexica) concluida: 31 tokens gerados.
Fase 2 (Sintatica) concluida: AST gerada.
Fase 3 (Semantica) concluida: Codigo validado.

ESCOPO: Funcao: main
NOME | TIPO | CATEGORIA | ARRAY? | TAMANHO | OFFSET
---------------------+------------+------------+------------+----------+--------
a | INT | VAR LOCAL | NAO | 0 | -4
b | INT | VAR LOCAL | NAO | 0 | -8
--------------------------------------------------------------------------------

ESCOPO: GLOBAL
NOME | TIPO | CATEGORIA | ARRAY? | TAMANHO | OFFSET
---------------------+------------+------------+------------+----------+--------
main | INT | FUNCAO | NAO | 0 | 0
--------------------------------------------------------------------------------

Arquivo ‘symbols.txt’ gerado com sucesso.

D.5 Intercode
A quarta fase é a geração do código intermediário:

$ mcc --gen-ir exemplos/soma.mcc

A saída da geração intermediária são códigos seguindo o padrão CTE descrito no
Capítulo 5. O resultado, que é o arquivo ir.txt contendo o código intermediário,
dessa fase está a seguir:

Fase 4: intercode

Fase 1 (Lexica) concluida: 31 tokens gerados.
Fase 2 (Sintatica) concluida: AST gerada.
Fase 3 (Semantica) concluida: Codigo validado.
Fase 4 (Geracao de IR) concluida.

--- MODO DE GERACAO DE CODIGO INTERMEDIARIO ---
--- CODIGO INTERMEDIARIO (IR) ---
main:

a := 10
b := 20
t0 := a + b
print_int t0
return 0

---------------------------------
Arquivo ‘ir.txt’ gerado com sucesso.
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D.6 Assembly
Na última fase, o código intermediário é convertido em linguagem Assembly. Para
executar a geração de código em Assembly :

$ mcc --gen-asm exemplos/soma.mcc

A execução gera o código de saída em Assembly soma.s, contendo todas as
instruções necessárias para o GCC montar e linkar o binário compatível com a
arquitetura Intel/AMD x86-64.

Fase 5: geração do assembly

Fase 1 (Lexica) concluida: 31 tokens gerados.
Fase 2 (Sintatica) concluida: AST gerada.
Fase 3 (Semantica) concluida: Codigo validado.
Fase 4 (Geracao de IR) concluida.
Fase 5 (Geracao de Assembly) concluida: ’exemplos/soma.s’ gerado.
--- MODO DE GERACAO DE ASSEMBLY CONCLUIDO ---

O código Assembly gerado:

exemplo.s

.section .rodata

.L.str.int: .string "%d\n"

.L.str.char: .string "%c\n"

.L.str.str: .string "%s\n"

.text

.globl main
main:

pushq %rbp
movq %rsp, %rbp
subq $256, %rsp
movl $10, %eax
movl %eax, -4(%rbp)
movl $20, %eax
movl %eax, -8(%rbp)
movl -4(%rbp), %eax
movl -8(%rbp), %ebx
addl %ebx, %eax
movl %eax, -128(%rbp)
leaq .L.str.int(%rip), %rdi
movl -128(%rbp), %esi
xorl %eax, %eax
subq $8, %rsp
call printf
addq $8, %rsp
movl $0, %eax
movq %rbp, %rsp
popq %rbp
ret
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O código final em Assembly pode ser transformado em binário usando o compi-
lador de Assembly do próprio gcc com o comando:

$ gcc exemplos/soma.s -o soma
$ ./soma
30

Com isso, se encerra o processo de compilação e execução do código binário
gerado pelo compilador do Micro C.
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