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Resumo

A construcao de compiladores é uma area de grande interesse na ciéncia da compu-

tagao pois ela é responsével pela traducao de linguagens de alto nivel para codigo de
méquina. No entanto, a complexidade dos compiladores modernos, como o GCC e o
Clang/LLVM, ou mesmo da literatura associada ao assunto, tornam seu aprendizado
e compreensao dificeis. Este trabalho busca minimizar essa dificuldade construindo
um compilador para uma linguagem de programacao minimalista (um subconjunto
da linguagem de programacao C) associando apenas o contexto teorico necessario
para a compreensao da construcao do compilador. Dessa forma, o objetivo do tra-
balho é construir um compilador que implemente as fases de compilacao, traduzindo
a linguagem definida, o Micro C, para codigo Assembly e, finalmente, um binario
executavel. Por se tratar de um compilador para aprendizado, todas as etapas de
compilacao sao explicitas e podem ser executadas de forma independente seguindo
o pipeline de compilagao. Dessa forma, é possivel compreender como a linguagem é
convertida em seus artefatos intermediérios a cada fase do processo. No compilador
desenvolvido para a linguagem Micro C, foi utilizado um projeto modular simples
dividido em front-end e back-end. O front-end esta associado as fases de analise (1é-
xica, sintatica e semantica) para converter o codigo fonte em objetos prontos para
conversao em linguagem de méquina. Por outro lado, o back-end realiza a conversao
desses objetos em codigos simplificados e, por fim, codigo Assembly, pronto para
serem convertidos em binarios. Por fim, varios exemplos de teste foram disponibili-
zados para validar o compilador em diversos cenarios como lagos aninhados (Bubble
Sort, Peneira de Eratostenes) e recursao multipla (Fibonacci, Maximo Divisor Co-
mum). O compilador para a linguagem Micro C equivale, em linhas de codigo,
menos do que 0,027% do compilador GCC, tornando-o uma ferramenta valiosa para
o aprendizado e ensino de compiladores. Além disso, o codigo fonte do compilador
e todos os seus artefatos estao disponiveis publicamente.

Palavras Chave: compilador, linguagem de programacao, educagao
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Capitulo 1

Introducao

The introduction of many minds into many fields of learning along a broad
spectrum keeps alive questions about the accessibility, if not the unity, of
knowledge.

— Edward Levi

Apesar de sua importancia, os compiladores modernos, como o GNU Compi-
ler Collection (GCC) [15] e o framework LLVM (utilizado pelo Clang) [10,11], sao
sistemas muito complexos. Eles possuem milhoes de linhas de codigo e décadas
de otimizagoes. Do ponto de vista de quem estéd aprendendo sobre compiladores,
sao sistemas dificeis de serem compreendidos, estudados e entendidos. Consequen-
temente, a maioria dos estudos académicos desenvolvidos sobre compiladores fica
restrita a algumas fases de compilagao como analise sintatica e seméantica, e topicos
tedricos como autdématos finitos, gramaticas livres de contexto e gerenciamento de
pilha de compilacao.

A construcao de um compilador com fins académicos é um desafio em vérios
niveis. Primeiro, escrever um compilador para uma linguagem (das analises iniciais
do codigo fonte até a geracao de codigo de méquina) envolve intumeros conceitos
de computacao, tanto tedricos quanto de implementacao. Este capitulo introduz o
trabalho, focando na construgao de compiladores com o objetivo de criar um material
que permita que outros académicos possam compreender, de forma prética, como
um compilador é construido, os desafios de implementagao e os conceitos tedricos
envolvidos.

O desenvolvimento da linguagem Micro C, como um subconjunto de uma lingua-
gem conhecida, pode ajudar no aprendizado de programacao e ainda permitir que
o conhecimento adquirido com essa micro linguagem possa ser aproveitado quando
do estudo da propria linguagem C. Além disso, pode servir como ferramenta para o
estudo de compiladores. Pois, como o codigo do compilador é reduzido e cada uma
das etapas de compilacao é explicita, isso permite que seja compreendido como cada
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uma das etapas envolvidas na conversao do codigo fonte em linguagem de méaquina
foi desenvolvida.

Por outro lado, o compilador do Micro C' nao esta preocupado com performance
ou otimizagao de codigo. Seus fins sao didaticos para o aprendizado sobre construgao
de compiladores e conceitos necessarios para o seu desenvolvimento. O objetivo é
utilizar os conceitos teoricos da ciéncia da computagao de livros cléssicos [1,4, 13]
e utilizar apenas o necessario desses conceitos para implementar um compilador
completo e com codigo acessivel [14] publicamente sob a licenga GPLv3.

1.1 Compiladores vs. Interpretadores

Programas de software sao escritos em linguagens de alto nivel, como C ou Python,
pois sao a forma como programadores conseguem expressar conjuntos de instrugoes
para que um computador possa executé-las. Contudo, um computador nao compre-
ende a logica e muito menos instrugoes textuais escritas em codigos de alto nivel. O
que a CPU de um computador consegue executar sao instrucoes binérias de baixo
nivel, conhecidas como cédigo de méquina.

Quem realiza a tradugao do co6digo que o programador desenvolveu em linguagem
de alto nivel em instrugoes que o hardware consegue executar é o compilador que é
um tradutor entre as duas linguagens. Existem duas abordagens para esta traducao,
a compilacao e a interpretacao.

Um compilador é um programa que traduz um codigo-fonte de alto nivel (ex:
Micro C') para um codigo-alvo de baixo nivel (ex: Assembly x86-64), antes de sua
execucao. O resultado desse processo é um arquivo executavel independente (ex:
programa.exe) que o sistema operacional pode carregar e executar diretamente no
processador.

A principal caracteristica de um compilador é que a traducao ocorre apenas
uma vez. O programa final gerado é o c6digo de maquina nativo pronto para ser
executado [1]. O compilador do Micro C'é um exemplo dessa estratégia de tradugao.

Um interpretador, por outro lado, nao produz um arquivo executavel. Em vez
disso, ele intepreta as instru¢oes em tempo de execucao. O interpretador 1é o codigo-
fonte (ou um codigo intermediario chamado de bytecode) instrugdo por instrugao e
erecuta a agao correspondente.

A principal caracteristica de um interpretador é que ele atua como um processa-
dor virtual, simulando a execugao do programa. Linguagens como Python ou Ruby
sao exemplos de linguagens que dependem de um interpretador. Nystrom [13] mos-
tra que esta abordagem ¢ muito portavel (o mesmo codigo-fonte pode ser executado
em qualquer maquina que tenha o interpretador), mas incorre em penalidades de
performance, pois a tradugao ocorre a cada execugao.

As diferencas fundamentais entre as duas abordagens impactam diretamente a

FACOM-UFMS
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performance, a portabilidade e a forma como os erros sao tratados. Enquanto o
compilador traduz o programa uma tnica vez antes de sua execugao, o interpretador
executa instrugao por instrucao durante a execucao do programa.

Dessa forma, com o compilador, a traducao do codigo fonte para o cédigo de
maquina é gerado apenas uma Unica vez para o sistema e arquitetura alvo, o que é
diferente do interpretador que geralmente interpreta o codigo fonte todas as vezes
ou, na melhor hipotese, gera um codigo intermediario (bytecode). Essa diferenga no
processamento e execucao faz com que o compilador gere codigos executaveis pelo
computador muito mais rapidos em relagao aos codigos interpretados.

Além disso, a compilacao consegue detectar varios erros antes da geracao do
c6digo binario, pois ele realiza uma verificagao estdtica antes de traduzir, enquanto
o interpretador realiza verificacoes dindmicas gerando erros e excegoes em tempo
de execucao. Por fim, do ponto de vista da portabilidade, os cddigos compilados
ficam dependentes das arquiteturas e sistemas operacionais alvos da compilagao
enquanto os codigos interpretados sao muito mais portaveis pois dependem apenas
da existéncia do interpretador para o sistema desejado.

1.2 Estrutura do Trabalho

Este trabalho esté organizado em seis capitulos, além da introducao. No Capitulo 2,
sao detalhadas a Analise Léxica, a teoria dos autématos finitos e a implementacao
do scanner.c do compilador para converter texto em tokens. No Capitulo 3, é
abordada a Anélise Sintatica, explicando a gramética da linguagem do Micro C,; a
implementacdo do parser recursivo descendente e a construcdo da Arvore Sintética
Abstrata (ASA). Em seguida, no Capitulo 4, aborda-se a Analise Seméantica, de-
talhando a implementacao da Tabela de Simbolos, o gerenciamento de escopos, a
checagem de tipos e o célculo dos offsets de memoria, garantindo que nao existam
inconsisténcias entre o que foi programado e a linguagem. Encerrando, dessa forma,
a construcao do front-end do compilador.

O proximo passo na construcao do compilador é a construcao do back-end, ou
seja, a conversao das estruturas logicas em linguagem de maquina. Dessa forma,
no Capitulo 5 se inicia essa construgao, explicando a arquitetura da Representagao
Intermediaria (RI) e a tradugdo da ASA gerada nos capitulos anteriores para o
Codigo de Trés Enderegos (CTE). Finalizando o back-end, no Capitulo 6 ¢ feita a
implementagao e o detalhamento dos modelos de memoria (stack frame), convengoes
de chamada (ABI) e a traducao final da RI para o codigo Assembly x86-64.

Vale destacar que, alinhado ao propoésito didatico do projeto, o compilador foi
implementado para permitir a execugao passo-a-passo. A cada fase concluida
descrita nos paragrafos anteriores, a ferramenta é capaz de gerar um artefato cor-
respondente aquela etapa (como a lista de tokens, a visualizagdo da ASA, a tabela
de simbolos, o codigo intermediario e o codigo em Assembly). Essa funcionalidade
permite que o usudario inspecione e valide os resultados parciais de cada processo

FACOM-UFMS
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de compilacao do Micro C antes de prosseguir para a proxima fase do compilador.
Além disso, a ferramenta também permite a execugao de todas as etapas de uma
lnica vez para gerar o executavel final diretamente, imprimindo a saida do codigo,
caso haja.

No Capitulo 7, sao apresentados os resultados da implementacao, discussao dos
principais desafios de implementagao e trabalhos futuros. Por fim, sdao apresentados
quatro apéndices. O Apéndice A descreve a linguagem definida para o Micro C,
o O Apéndice B descreve a Gramatica Livre de Contexto aceita pelo Micro C, o
Apéndice C apresenta alguns exemplos de codigos que podem ser implementados
e compilados e, finalmente, o Apéndice D mostrando um exemplo de compilagao
completa passando por todas as etapas de compilacao até a geracao de um binério
para o Linux.

FACOM-UFMS



Capitulo 2
Analise Léxica

It was the best of times, it was the worst of times, it was the age of wisdom,
it was the age of foolishness, it was the epoch of belief, it was the epoch of
incredulity, it was the season of Light, it was the season of Darkness, it was
the spring of hope, it was the winter of despair, we had everything before
us, we had nothing before us, we were all going direct to Heaven, we were
all going direct the other way.

— A Tale of Two Cities

Neste capitulo, vamos abordar a anélise léxica (a primeira fase do processo de
compilacao) do codigo e suas operagdes. A primeira fase da compilagdo de um pro-
grama tem como objetivo ler os caracteres do codigo fonte e identificar as sequéncias
de caracteres que correspondem a formatos esperados para os tokens (simbolos ou
elementos léxicos). Um token é uma categoria ou tipo de elemento no codigo que o
compilador reconhece e associa a um significado especifico seguindo um padrao.

Suponha, por exemplo, um programa escrito em uma linguagem de programacao,
com linhas de cédigo como x = 5 ou y = 10. A analise 1éxica é a etapa inicial que
1é essas linhas de codigo e identifica as sequéncias de caracteres que correspondem a
operagoes aritméticas (como =), variaveis (como x e y) ou outros tipos de elementos.

A essa sequéncia é dado o nome de lexema, que é a sequéncia real de caracteres
encontrada no codigo fonte que o compilador identifica e associa a um token espe-
cifico. O token é uma unidade do cédigo que o compilador reconhece e classifica.
Cada token possui um nome que indica sua fungao ou tipo (por exemplo, uma pa-
lavra reservada, um numero inteiro, etc.) e, em alguns casos, um valor adicional
(como o valor de uma constante). Enquanto o token é a categoria abstrata (como
identificador ou operador de atribuigao), o lexema é o texto concreto que se
encaixa nessa categoria (como x ou =), desde que corresponda a um padrao léxico
definido. A analise léxica é o processo de ler os lexemas do codigo e etiquetd-los com
seus respectivos tipos de token, preparando-os para as fases seguintes.



Analise Léxica 6

Por outro lado, o padrao é a descricao do formato que os lexemas de um token
devem seguir. Em outras palavras, é o modelo que o compilador usa para identificar
qual tipo de token esti sendo processado. Por exemplo, o padrao para um token
de nimero inteiro pode ser uma ou mais ocorréncias de digitos de 0 a 9. Esse
padrao faz o compilador distinguir entre diferentes tipos de tokens, como palavras
reservadas, operadores, identificadores e constantes, por exemplo.

Além de agrupar os lexemas em tokens, o analisador léxico frequentemente re-
aliza o escandimento!, que envolve a remocao de comentarios e espacos em branco
desnecessarios do codigo fonte para facilitar as proximas etapas.

2.1 Analise Léxica: A Primeira Validacao

Embora as fases posteriores do compilador sejam responséveis pela maior parte da
verificacao de erros, o analisador léxico atua como a primeira linha de defesa. Ele
nao apenas agrupa caracteres, mas também valida se esses agrupamentos formam
lexemas validos. Se o scanner encontrar um caractere ou uma sequéncia de caracte-
res que nao corresponde a nenhum padrao definido na linguagem, ele deve reportar
um erro léxico.

Um erro léxico ocorre quando o scanner nao consegue formar um token vélido
a partir da entrada. Por exemplo, na linguagem do Micro C, o caractere @ nao
pertence a nenhum padrao véalido. Se o scanner o encontrasse no cédigo, ele geraria
um erro imediato.

int x = 10 @ 20; // Erro Léxico!

Neste caso, o scanner reconheceria int, x, =, 10, mas ao encontrar o @, ele nao
conseguiria classificd-lo. Neste caso, o compilador iria interromper sua execugao e
informar o programador com um erro como, por exemplo: Erro Léxico na linha
1: Caractere invalido ’@’ encontrado.

2.1.1 A Interagao com as Fases Subsequentes

O analisador léxico nao trabalha isoladamente; ele é a fonte de entrada para a pro-
xima fase do compilador. Existem duas arquiteturas principais para essa interagao:
a sob demanda (em que o analisador sintéatico avalia um token de cada vez) ou a em
lote (em que o analisador léxico gera todos os tokens primeiro).

Embora a abordagem sob demanda seja comum e eficiente em termos de uso de
memoria [1], no Micro C, optou-se pela abordagem em lote por ser mais simples de
implementar e mais facil de depurar.

'Em compiladores, o escandimento ¢ uma leitura inicial do cédigo que apenas identifica os
elementos basicos, removendo comentérios ou espagos em branco.
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No Micro C, o processo de compilacao ocorre em duas etapas. Na primeira etapa
é realizada a analise 1éxica completa, em que a funcao executar_analise_lexica()
¢ invocada e entra em um lago de repeti¢ao executando a fungao proximo_token()
repetidamente, até que o token END_OF_FILE seja encontrado no codigo fonte. Cada
token gerado é armazenado em uma grande lista na memoria (TokenList). A se-
gunda etapa ¢é a entrega para a proxima fase, que ocorre somente ap6s a anélise
léxica estar concluida e a TokenList completa. Essa lista serd entao enviada para
o analisador sintatico (parser).

O trecho de c6digo a seguir ilustra a logica de execucao do Micro C. Primeiro,
ele executa a Fase 1 por completo:

// arquivo: src/main.c (trecho da Fase 1)

/fase 1: andlise léxica
TokenList tokens;
inicializar_token_list(&tokens, 100);
if (executar_analise_lexica(nome_arquivo, &tokens) != 0) {
liberar_token_list (&tokens) ;
return -1; //encerra se houver erro léxico

}

if (strcmp(modo, "--scan") != 0) {
salvar_tokens_em_arquivo(&tokens, false);

}

printf("Fase 1 (Lexica) concluida: %d tokens
gerados.\n", tokens.tamanho);

Uma vez que a lista de tokens esta completamente preenchida e validada, ela é
enviada para a Fase 2:

// arquivo: src/main.c (trecho da Fase 2)

//fase 2: andlise sintatica

PilhaTabelasSimbolos* pilha_simbolos = criar_pilha_tabelas();
Parser parser;

// A lista "tokens" completa & entregue ao parser de uma sd vez:
inicializar_parser(&parser, &tokens, pilha_simbolos);

ASTNode* arvore = parse(&parser);

7 oo

O uso da estratégia em lote como decisao de projeto, permitiu uma depura-
¢ao mais granular ao executar a andlise léxica de forma independente (make scan).
Como o objetivo é aprender e entender como compiladores sao construidos, o Micro
C' permite que cada fase da compilacao seja executada de forma incremental. Ou
seja, o make scan, quando utilizado de forma independente, imprime a lista com-
pleta de tokens e permite verificar se o vocabuldrio pré-determinado foi reconhecido
corretamente.
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2.1.2 A Anilise Léxica como uma Fase Independente

Separar a analise 1éxica das outras fases em moédulos distintos é uma decisao de
projeto na construcao de um compilador e possui algumas vantagens como, por
exemplo:

e Simplicidade de Projeto: a separacao torna cada médulo mais simples. O
scanner, por exemplo, fica dedicado apenas em reconhecer padroes de baixo
nivel (caracteres), enquanto as proximas etapas podem se concentrar em como
esses tokens se combinam para formar estruturas maiores, sem se preocupar
com os detalhes da leitura de caracteres, espagos em branco ou comentarios.

e Eficiéncia: o scanner é a parte do compilador que mais interage com o sistema
de arquivos. Técnicas de otimizagao de leitura, podem ser implementadas e
aprimoradas dentro do médulo do scanner sem afetar o resto do compilador.

e Portabilidade: A analise léxica é uma das partes mais portaveis de um com-
pilador. A logica para reconhecer identificadores, niimeros e palavras reser-
vadas é muito semelhante entre diferentes linguagens de programacao. Um
scanner bem escrito pode ser mais facilmente adaptado para um novo projeto
de compilador.

O Micro C pode ser facilmente reproduzido ou expandido dado o seu carater
modular com interfaces simples definidas em bibliotecas (.h) e implementagoes (ar-
quivos .c) do projeto.

2.2 Do Cobdigo Fonte aos Lexemas e Tokens

A Analise Léxica é o primeiro passo do processo de compilacao, responsavel por ler o
arquivo fonte caractere por caractere. Ela consiste em agrupar esses caracteres para
transformar o codigo fonte em elementos léxicos (tokens), gerando uma estrutura que
o compilador possa entender e utilizar. Essa transformagao permite ao compilador
correlacionar o que o programador escreveu com a sua real intengao, preparando o
ambiente para as etapas subsequentes de analise.

A linguagem definida para o Micro C' é um subconjunto minimalista da lin-
guagem ANSI C. Embora sua sintaxe reduzida facilite a compreensao das etapas
internas do compilador, permitindo observar com clareza como cada etapa funciona,
isso nao torna a linguagem menos poderosa. Ou seja, mesmo com uma linguagem
reduzida, varios algoritmos puderam ser implementados como, por exemplo, Bubble
Sort, Torre de Hanoi, Fibonnaci, etc (alguns exemplos estao no Apéndice C). A
descricao completa da linguagem esta definida no Apéndice A.
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numero é um identificador

int é um lexema para
palavra reservada

= representa atribuigdo

int numero

Il
o~
(€]
~

; € um delimitador 45 é uma constante inteira

Figura 2.1: Uma expressao como int numero = 45; deve ser quebrada em véarios
tokens e cada um sera interpretado de uma maneira diferente na anéalise 1éxica.

Como mostrado na Figura 2.1, cada lexema cria um token. Por exemplo, int é
uma palavra reservada para ntumeros inteiros. numero é o nome de uma variavel (um
identificador). O simbolo = é um operador que atribui um valor a variavel que vem
antes dele, neste caso, numero. 45 ¢ o valor inteiro que serd guardado em numero.
Por fim, ; é um delimitador que marca o fim da instrucao.

Quando o analisador léxico identifica um token do tipo ID, ele registra o lexema
correspondente. Por exemplo, na Figura 2.1, o lexema numero é classificado como
um ID. Embora o analisador léxico nao associe esse nome a informagoes adicionais,
como seu tipo de dado (int) ou seu futuro endere¢o de memoria, essa correlagao
serd feita posteriormente pelo analisador seméantico. Dessa forma, o campo lexema
do token serve como ponte entre a fase da andlise léxica e as etapas seguintes do
compilador.

Uma vez que o fluxo de tokens é gerado pela anélise léxica, a primeira etapa
da compilacao esta finalizada. O texto bruto foi transformado em uma sequéncia
de unidades logicas e estruturadas, permitindo que as fases seguintes do compilador
possam analisar a gramaética e o significado do programa.

2.3 Os Tokens no Compilador do Mzicro C

Na introducao e na primeira segao, foram definidos os conceitos teoricos de token,
lexzema e padrao. Em seguida, como a anélise léxica atua transformando o codigo-
fonte em unidades logicas.

O préximo passo € entender a especificacao formal desses conceitos, mostrando
como eles foram traduzidos para estruturas de dados concretas no compilador. Esta
secao detalha o diciondrio completo do vocabulario do compilador do Micro C e
como ele é implementado.
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2.3.1 Vocabulario Completo: tokens.h

O primeiro passo na construgao de um scanner é definir o seu vocabulario. No caso
do Micro C, o arquivo tokens.h possui o diciondrio central que é compartilhado
por todas as fases do compilador. Este arquivo define duas estruturas de dados
principais: a enumeracao de todos os tipos de token e a estrutura que representa
um token individual.

Primeiro, definimos todas as categorias de tokens possiveis usando uma enumera-
cao TokenType. Esta é a lista completa de todos os tokens que o scanner do Micro
C' é capaz de reconhecer. Eles sao agrupados por funcionalidade para facilitar a
leitura e manutencao. Segue abaixo o trecho de codigo relativo aos tipos de tokens:

// arquivo: src/tokens/tokens.h (Parte 1: O Enum)
#ifndef TOKENS_H
#define TOKENS_H

typedef enum {
// Tokens Fundamentais

UNDEF, // token indefinido (para erros)
1D, // identificador (ex: x, minhaVariavel)
END_OF_FILE, // token especial para o fim do arquivo

// Constantes Literais

INTEGERCONST, // constante inteira (ex: 123)
CHARCONST, // constante de caractere (ex: ’a’)
STRINGCONST, // string de caracteres (ex: "ola")

// Operadores Aritméticos
PLUS, MINUS, MUL, DIV, MOD,

// Operadores Relacionais e Logicos
EQ, NEQ, LT, GT, LEQ, GEQ, AND, OR, NOT,

// Simbolos de Atribuig3o e Pontuagdo
ASSIGN, SEMICOLON, COMMA, LPAREN, RPAREN,
LBRACE, RBRACE, LBRACKET, RBRACKET,

// Palavras reservadas
MAIN, IF, ELSE, FOR, RETURN, INT, CHAR, PRINT

} TokenType;

Cada valor dentro dessa enumeracao representa um tipo diferente de token que
o analisador 1éxico serd capaz de identificar no cédigo. Além da categoria, o compi-
lador precisa armazenar as informagoes especificas daquele token, como o texto que
ele representa (o lexema) e onde ele foi encontrado.
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Esse comportamento é codificado na struct Token:

// arquivo: src/tokens/tokens.h (Parte 2: A Struct)
typedef struct {

TokenType tipo;

char lexema[100];

int linha;
} Token;

#endif //TOKENS_H

Com as categorias definidas, a struct Token agrupa todas as informagoes que
o scanner extrai do codigo para cada token. Esta estrutura é o pacote de dados
que é utilizado entre as fases do compilador. Segue a seguir uma descricao de cada
componente da estrutura:

e TokenType tipo: este é o campo mais importante para o analisador sinta-
tico. E a etiqueta que informa ao parser qual é a categoria do token (ex: IF,
LPAREN, ID). O parser usara essa informagao para verificar se a sequéncia de
tokens obedece a gramatica da linguagem.

e char lexema[100]: este ¢ o atributo do token. Ele armazena o texto original
do lexema. Como veremos na proxima subsegao, este campo é vital para
o analisador seméantico (que o usard para inserir o nome da variével na
Tabela de Simbolos) e para o gerador de codigo (que precisa saber o valor
de uma constante, como 123).

e int linha: Este campo armazena o nimero da linha em que o token foi en-
contrado. Sua tnica finalidade é permitir que qualquer fase do compilador
(léxica, sintatica ou seméantica) possa reportar erros de forma clara e precisa
para o programador.

2.3.2 Atributos: O Valor por tras do Token

Um token pode ter um valor adicional ou atributo. No Micro C, o campo lexema é
o responsavel por carregar esse atributo. Alguns tokens, como palavras reservadas
(IF) ou pontuadores (SEMICOLON), sdao autossuficientes. O tipo de token IF, por
exemplo, carrega todo o significado necessario.

Por outro lado, o lexema original (“if") é irrelevante para o resto do compilador,
pois uma vez que o scanner o classifica como o tipo IF, o analisador sintatico so
precisa saber isso para validar as regras gramaticais (ex: IF seguido de LPAREN).
Sendo assim, a string “if'"por si s6 nao carrega valor adicional. O que é diferente,
por exemplo, para um ID ou um INTEGERCONST. No entanto, para outras categorias
de token, o tipo sozinho nao é relevante.
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Considere o seguinte codigo:

int x = 10;
int y = 20;

Se o scanner gerasse tokens sem atributos (sem o campo lexema), o analisador
sintatico receberia a seguinte sequéncia de tipos de token:

INT, ID, ASSIGN, INTEGERCONST, SEMICOLON, INT, ID, ASSIGN, INTEGERCONST, SEMICOLON

Do ponto de vista da gramatica (anélise sintatica), essa sequéncia esta correta.
O parser conseguiria validar que ambas sao declaragoes vdlidas. No entanto, para
a analise semantica e a geragao de codigo, essa informacgao ¢ desastrosa porque nao
seria possivel determinar quais os nomes das variaveis que foram declaradas e nem
qual o valor atribuido para qual variavel.

Isso exemplifica o porqué do lexema ser essencial. O fluxo de tokens real que o
scanner gera é, na verdade, uma sequéncia de struct Token, cada uma carregando
seu lexema, ou seja:

e Token 1: tipo: INT, lexema: “int", ...

[T |}

e Token 2: tipo: ID, lexema: “x", ...

e Token 3: tipo: ASSIGN, lexema: “=" ...

e Token 4: tipo: INTEGERCONST, lexema: “10", ...
e Token 5: tipo: SEMICOLON, lexema: ", ...

e ... e assim por diante para a variavel y.

Cada token cumpre um papel especifico no processo de traducao. O primeiro
indica ao compilador que sera declarada uma variavel inteira. O segundo fornece o
nome dessa variavel, x, que sera registrada na tabela de simbolos. O terceiro sinaliza
uma atribuicao, enquanto o quarto entrega o valor literal 10, que sera associado a
variavel x e posteriormente carregado na memoria. O quinto token, o delimitador
;, encerra a instrugao, indicando ao compilador o fim logico dessa declaragao. Esse
mesmo processo se repete para a variavel y. De forma geral, o campo lexema é o elo
entre o texto escrito pelo programador e as informagoes que o compilador realmente
entende e manipula.

2.3.3 Tratamento de Erros Léxicos

Como mencionado na Subsecao 2.1, o scanner é responsavel por identificar caracteres
que nao pertencem a nenhum padrao. O Micro C utiliza uma abordagem direta para
tratar com situacoes em que um lexema nao corresponde a nenhum token valido.
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Dessa forma, um token UNDEF pode ser gerado em dois cendrios principais pelo
scanner:

1. Padroes Malformados: ocorre quando o scanner reconhece o inicio de um
padrao valido (como " para uma string ou ’ para um caractere), mas a sequén-
cia é terminada de forma inesperada. Como pode-se observar, uma string que
nao é fechada antes de uma quebra de linha ou um caractere que nao é fechado
corretamente sao exemplos perfeitos. Nesses casos, o scanner identifica o erro
e retorna UNDEF.

2. Caracteres Invalidos: ocorre quando o caractere lido nao inicia nenhum
padrao conhecido pela linguagem (como @ ou #).

A seguir, temos um trecho de codigo do ‘scanner.c’ para o reconhecimento de
strings. Ele ilustra apenas o primeiro cenério. Se o lago while parar por causa de
uma quebra de linha (\n) ou fim de arquivo (EOF) antes de encontrar a aspa de
fechamento da string, ele entra no bloco else e gera um erro. Para referéncia, toda
a estrutura léxica da linguagem Micro C, incluindo as defini¢oes e exemplos de todos
os tokens e seus lexemas correspondentes, é apresentada no Apéndice A.

// arquivo: src/scanner/scanner.c (trecho do reconhecimento
de string)
if (c =="") {

char buffer[101];

int i = 0;

¢ = prox_char();

while (c != "2 && c != ’\n’ && c != EOF && i < 100) {
buffer[i++] = c;
¢ = prox_char() ;

}

buffer[i] = ’\0’;

if (¢ == >"?) { // Sucesso

token.tipo = STRINGCONST;

strcpy (token.lexema, buffer);
} else { // Erro: Padrdo malformado

token.tipo = UNDEF;

strcpy(token.lexema, "String nao terminada");
}

return token;

O segundo cenario (caractere invalido) é tratado pelo caso default no final da
fungao proximo_token.
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Abaixo, um trecho que respresenta o caso geral para qualquer caractere que nao
iniciou nenhum dos padroes anteriores:

// arquivo: src/scanner/scanner.c (trecho do final do switch)
//... (apdés todas as outras verificagdes)

// Se nenhum padrio foi reconhecido, & um token indefinido
default:
token.lexema[0] = c;
token.lexemal[l] = ’\0’;
token.tipo = UNDEF;
break;
}

return token;

E importante notar que a légica de parada nio estd no scanner em si, mas
sim no orquestrador principal do compilador (o main.c). O main verifica cada token
recebido do scanner e, se ele for do tipo UNDEF, interrompe imediatamente o processo
de compilagao.

// arquivo: src/main.c (trecho da funcg8o executar_analise_lexica)
do {
token = proximo_token();
adicionar_token(lista, token);
if (token.tipo == UNDEF) {
fprintf (stderr,
"Erro Lexico: Token indefinido ’%s’ na linha %d\n",
token.lexema, token.linha);
return -1; // Interrompe a compilag&o

}
} while (token.tipo != END_OF_FILE);

Essa estratégia de parada imediata evita que as fases seguintes (sintatica e seméan-
tica) tentem processar uma entrada corrompida. Como o Micro C é um compilador
didatico, ele reporta o primeiro erro encontrado de forma clara e facilita a corre-
¢ao pelo usuario, sem a complexidade de algoritmos de modo de pdnico que tentam
continuar a analise mesmo ap6s um erro.

2.4 Relacao da Pratica com a Teoria Formal

Nas se¢oes anteriores foi definido o vocabuléario da linguagem, expresso nas estru-
turas tokens.h, e o papel do scanner em identificar lexemas e gerar tokens. O
proximo passo é fazer essas definigoes de modo mais formal.

A logica por tras da implementagao do scanner nao é arbitraria. Ela repre-
senta uma aplicacao de conceitos classicos de teoria da computacgao. E, embora nao
seja o objetivo aprofundar nos conceitos teéricos relacionados a implementacao do
scanner.c, dois topicos s@o importantes para compreender como ele é construido:
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as Expressoes Regulares e os Autématos Finitos.

2.4.1 Expressoes Regulares para Especificacao dos Tokens

Na introducao do capitulo, definiu-se o conceito de padrao como a regra que des-
creve os lexemas de um token. A ferramenta mais comum, poderosa e concisa para
descrever esses padroes é a Expressao Regular (Regex). Uma expressao regular
é uma notagao formal que define um conjunto de strings (uma linguagem).

Para compreender o uso das expressoes regulares, sao necessarios alguns meta-
caracteres basicos que servem como base para descrever regras de construgao.:

e | (alternancia): significa “ou". Ex: al|b significa o caractere ‘a’ ou o caractere
{b?

e x (fecho de Kleene): significa zero ou mais ocorréncias do que veio antes. Ex:

ax significa ‘” (string vazia), “a", “aa", “aaa", etc.

e + (fecho positivo): significa uma ou mais ocorréncias. Ex: a+ significa “a",
“aa', “aaa', etc.

e 7 (opcional): significa zero ou uma ocorréncia. Ex: -7 significa um sinal de
menos opcional.

e [a-z]: define uma classe de caracteres, ou seja, qualquer caractere de ‘a’ a ‘2’

e [~abc]: o ~ dentro de uma classe nega o conjunto, significando qualquer ca-
ractere que nao seja ‘a’, ‘b’ ou ‘c’.

Com essas regras de construcao, é possivel descrever um conjunto de todos os
tokens de uma linguagem de programacao. Isso forma o que é conhecido como uma
linguagem regular. Abaixo, estao listados os padroes formais para os tokens mais
importantes do Micro C' e como eles se conectam ao codigo.

Identificadores (ID) O padrao para um identificador na linguagem é uma letra
ou underscore, sequido por zero ou mais letras, digitos ou underscores.

[a-zA-Z_] [a-zA-Z0-9_]*

Conexao com o Coédigo:

Essa expressao regular é implementada diretamente no scanner.c. O primeiro
if da fungao proximo_token verifica a primeira classe de caracteres (isalpha(c) ||
c == ’_’)eolago do-while subsequente implementa o * (zero ou mais) ao consumir
todos os caracteres seguintes que se encaixam na segunda classe (isalnum(c) || ¢

- ;_)).
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Constantes Inteiras (INTEGERCONST) O padrao para um inteiro na lin-
guagem ¢ um ou mais digitos, opcionalmente precedido por um sinal de menos para
representacoes de niimeros negativos.

-7[0-9]+

Conexao com o Cddigo:

A implementagao foi realizada em duas partes: o bloco if (isdigit(c)) trata a
parte [0-9]+ eo case ’-’: (discutido em detalhes na proxima se¢ao) usa lookahead
para tratar a parte opcional -7.

Constantes String (STRINGCONST) O padrao para uma string ¢ um carac-
tere de aspas duplas, sequido por zero ou mais caracteres de qualquer tipo, exceto
outras aspas duplas ou uma quebra de linha, sequido por um caractere de aspas
duplas.

n [’\ll \n] *ll

Conexao com o Cdédigo:

A classe [*"\n] (qualquer caractere que ndo seja aspa ou quebra de linha) é
implementada pelo laco: while (c != ’"?> && c != >\n’ && c != EQF).

Essas sao as principais expressoes regulares para tokens no Micro C. As demais
expressoes regulares estao documentadas no c6digo do compilador e seguem o mesmo
padrao apresentado nos exemplos acima.

2.4.2 O Scanner como um Automato Finito Deterministico

A construcao das expressoes regulares é o primeiro mecanismo. Contudo, para o
reconhecimento do texto do co6digo, sao necessarios mecanismos capazes de capturar
a relacao entre os caracteres de um token. Isso pode ser realizado por meio do uso
de Automatos Finitos Deterministicos (AFD). Um AFD pode ser descrito,
empiricamente, como um jogo de tabuleiro simples. Ele consiste em um conjunto de
estados (circulos no diagrama, ou casas do tabuleiro). Um estado inicial (onde
o jogo comega). Um conjunto de estados de aceitagao (casas que, se a jogada
encerrar nelas, o jogador vence, em outras palavras, um token é reconhecido). E
um conjunto de transigoes (vetores direcionais entre os estados). Cada vetor é
rotulado com um caractere ou classe de caracteres que precisam ser processados
para que aquele caminho seja percorrido.

Para concretizar esse conceito teodrico, a Figura 2.2 apresenta o autéomato finito
deterministico projetado para o reconhecimento de identificadores na linguagem
Micro C. A regra léxica define que um identificador deve iniciar obrigatoriamente
com uma letra ou sublinhado, podendo ser seguido por uma sequéncia de letras,
digitos ou sublinhados.
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a-z, A-Z,0-9,

a-z,AZ,
—»( SO >

Figura 2.2: Automato Finito Deterministico para reconhecimento de Identificado-
res.

Conforme ilustrado na Figura 2.2, o processo de reconhecimento inicia-se no
estado Sp. Ao ler um caractere vélido para o inicio de uma variavel (letra ou _), o
automato transita para o estado S;. Note que S; possui borda dupla, indicando ser
um estado de aceitagao, ou seja, a sequéncia processada até aquele momento ja
constitui um token valido.

A partir de S, existe uma transi¢do de lago (loop) que permite ao autdémato
consumir sucessivos caracteres alfanuméricos, permanecendo no estado de aceitagao.
O reconhecimento do token é finalizado quando o scanner encontra um caractere
que nao satisfaz a condigao do lago (como um espago em branco ou um operador),
momento em que o lexema acumulado é classificado como um ID.

A avaliagao dos tokens por um AFD funciona de forma similar ao jogo descrito
anteriormente. O AFD processa a entrada um caractere de cada vez. Ele comeca
no estado inicial, 16 um caractere e percorre o vetor direcional correspondente até o
novo estado até consumir todos os caracteres do lexema. Se, ao final, ele terminar
em um estado de aceitagdo (estado final), o token é reconhecido. A palavra deter-
ministico, neste contexto, significa que para qualquer estado e qualquer caractere,
h& no maximo um caminho possivel. Nao ha ambiguidades.

A nao ambiguidade é uma caracteristica importante na construcao de compila-
dores. Existem ferramentas automatizadas (ex: Lex?, Flex?, etc.) que transformam
expressoes regulares (padroes) em AFD’s otimizados [9], além de gerar como saida
o codigo em C que implementa o AFD. Nao é o caso com relagao a implementacao
do Micro C.

2Lex, abreviacio de Lezical Analyzer Generator, é uma ferramenta que gera automaticamente o
c6digo de um analisador léxico em linguagem C a partir de um arquivo onde o programador define
os padroes dos tokens usando expressoes regulares.

3Flex, ou Fast Lexical Analyzer, é uma reimplementacio mais rapida do Lex. Ele cumpre a
mesma fungdo: gerar um scanner automaticamente a partir de um arquivo de regras e padroes.
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2.4.3 O Scanner como um AFD Manual

Embora o uso de ferramentas auxilie na conversao de expressoes regulares em auto-
matos finitos deterministicos, o compilador do Micro C' nao os utiliza. O scanner
implementado em scanner.c é uma implementacao simples e direta de um AFD
simulando um autémato finito. Isso permite que o compilador fique, embora mais
limitado a linguagem definida, mais simples de entender como o processamento dos
lexemas ocorre.

A funcao do codigo do Micro C' que implementa o AFD é a proximo_token().
E nela que estao implementados os estados do autémato e suas transicoes. Iniciando
pelo estado inicial, ap6s invocar a fungao ignora_espacos_e_comentarios(), ele
retorna com o primeiro caractere de um lexema. Cada estado é armazenado pela
variavel ¢ (o caractere atual) e por qual bloco de codigo esta sendo executado no
momento (ex: if (isalpha...) ou case ’=’:). Caso o lexema seja consumido
e a transicao encerre em um estado de aceitagao, a funcao decide qual tipo o
token (ex: token.tipo = INT;) esta relacionado e o retorna (return token;) para
recomecar e avaliar o proximo token. Por outro lado, quando termina em um estado
de erro, que é o padrao, é retornado um token UNDEF (indefinido).

O exemplo a seguir demonstra como o AFD do Micro C' reconhece os tokens <

(LT) e <= (LEQ).
1. Estado Inicial: A fungao proximo_token() 1é um caractere. Ele é <.

2. Estado Avaliando um Menor Que: O AFD agora estd em um estado que
consumiu um <. A Unica transicao de saida deste estado depende do proximo
caractere. O codigo executa o lookahead invocando a fungao prox_char ().

3. Transigoes:

e Se o proximo caractere for =, o AFD transita para o Estado de Acei-
tacao LEQ. O scanner retorna o token LEQ.

e Se o proximo caractere for qualquer outra coisa, o AFD transita para o
Estado de Aceitagao LT. O scanner usa ungetc() para retornar um
caractere (retorna o ponteiro ao estado anterior) e retorna o token LT.

Esse exemplo demonstra como o AFD é utilizado para consumir os lexemas apre-
sentados e determinar o que sao os elementos sendo avaliados. O uso do lookahead é
necessario para determinar situagoes em que existem possiveis variacoes na ramifi-
cacao de uma decisao, permitindo avaliar em qual estado, de fato, o automato deve
terminar sua execucao.

2.5 O Scanner da Linguagem Micro C

As estruturas de dados para representacao formal dos tokens, definidas no arquivo
tokens.h, possibilitam iniciar a implementagao do analisador léxico. Esta segao
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apresenta a parte mais extensa e detalhada deste capitulo, dedicando-se a uma
analise do arquivo scanner.c.

Embora ferramentas de automacao, como Lex ou Flex, gerem analisadores léxicos
a partir de um arquivo de especificacoes contendo expressoes regulares, o scanner
do Micro C foi feito manualmente. Essa metodologia, apesar de implicar um maior
esforgo de desenvolvimento, proporciona uma compreensao mais profunda da anélise
léxica.

2.5.1 Interface e Implementagao do Scanner

A interface e implementagao do scanner é simples e direta. Ele possui uma inter-
face publica (scanner.h) que possui uma interface acessivel por qualquer parte
do compilador. Essa interface é simples e possui apenas duas agoes possiveis: int
inicializar_scanner(const char* nome_arquivo), que requisita a abertura de
um novo arquivo de c6digo; e Token proximo_token(), que requisita o préoximo
token dentro do cédigo fonte.

O scanner, no entanto, precisa guardar o estado de execugao. Ou seja, ele pre-
cisa determinar o arquivo e linha que estava processando. Essa memodria interna
(estado), é armazenado por duas variaveis no scanner. c:

e FILE *arquivo_fonte: armazena qual o arquivo aberto no momento.

e int linha_atual: armazena a linha que estava sendo avaliada, informacao
utilizada para reportar erros de compilacao apontando a linha aproximada do
erro.

A execucao do compilador é dependente da correta captura de todos os tokens
de um codigo fonte. Dessa forma, ele vai requisitando tokens para o scanner até
que todo o codigo seja processado. Se o arquivo for escaneado até o fim sem erro,
signfica que todos os tokens foram corretamente processados e estao prontos para a
proxima etapa da compilacao.

2.5.2 A Funcao proximo_token()

A fungao proximo_token() é o procedimento chave do analisador léxico. A cada
chamada é executado um ciclo completo de reconhecimento: consumir caracteres
do arquivo fonte, ignorar o que for irrelevante (espagos ou comentarios) e, por fim,
identificar, construir e retornar o proximo Token vélido. Essa funcao é, na pratica,
uma implementagao de um autdémato finito deterministico. Ou seja, ela é uma
méquina de estados que executa trés fases:

1. Chamada da fungao (estado inicial);

2. Invocagao da fungao ignora_espacos_e_comentarios() para avancar até o
primeiro caractere de um potencial lexema.
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3. E, uma cadeia if-else if-switch para classificacao dos caracteres e mudanca
para o estado de reconhecimento correto ou um erro.

Além disso, a ordem das verificacbes determina se o scanner ird produzir os
resultados de forma correta. Dessa forma, ele precisa avaliar os tokens recebidos
comegando pela verificagao do EQOF primeiro, para garantir que o programa pare
corretamente. Depois, verifica se ¢ uma sequéncia de letras e _ (isalpha()). Isso
permite que o scanner entre no modo de reconhecimento de identificador, que é
capaz de processar letras e numeros (ex: varl). Na sequéncia, se nao for uma
letra, verifica se é um digito (isdigit()), o que faria o scanner entrar no modo
de reconhecimento de nimeros. O passo seguinte ¢é validar se estao sendo utilizados
delimitadores literais como ’> e ". Por fim, validar todos os caracteres importantes
da linguagem como os operadores (+, =, <) e delimitadores (;, ( ) ou { }). O caso
padrao, quando nenhum estado final valido é alcancado é encerrar o processamento
em um estado de erro, gerando um token UNDEF de erro.

Essa ordem garante que o scanner tente reconhecer o padrao mais longo possivel.
Por exemplo, int é reconhecido como um ID primeiro, e s6 depois classificado como
INT, em vez de ser lido erroneamente como trés tokens ID separados (i, n, t).

2.5.3 Desafios Praticos e Solugoes no Codigo

Essa subsecao detalha a estrutura do cédigo scanner.c analisando e mostrando
como algumas solugoes foram implementadas dependendo do desafio pratico encon-
trado durante a compilagao pelo analisador léxico.

O Ruido do Coédigo: Ignorando Espacos e Comentarios

A primeira tarefa do scanner a cada chamada de proximo_token() é remover o
ruido. Isso € feito pela funcao ignora_espacos_e_comentarios. Ela é construida
utilizando um lago while(1) (loop infinito) que s6 termina quando um caractere
valido ¢ encontrado e retornado.

O primeiro passo dentro do lago é consumir todos os espacos em branco e quebras
de linha:

// arquivo: src/scanner/scanner.c (trecho 1)
static char ignora_espacos_e_comentarios() {
char ¢ = prox_char();
while (1) {
//ignora espagos em branco
while (isspace(c)) {
if (¢ == ’\n’) linha_atual++;
¢ = prox_char();

0o
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A funcdo isspace() (da biblioteca ctype.h) é usada para consumir rapida-
mente todos os caracteres de espago (espago, tab, etc.). Um fato importante é que é
necessario verificar se o caractere sendo avaliado é um ’\n’, pois é necessario incre-
mentar a variavel global 1linha_atual de controle que auxilia quando é necessario
determinar em qual linha de c6digo o erro ocorreu.

Apobs o término do lago, ¢ nao é um espaco em branco. Em seguida, a préxima
verificagao ¢ se ele é o inicio de um comentario (/). O if a seguir usa e estratégia
de lookahead (olhar o proximo caractere):

//... (continuag8o de ignora_espacos_e_comentarios)
//verifica comentarios
if (c == /7)) {
char next_c = prox_char();

//. ..

Ao verificar que o caractere é uma barra (/), o scanner precisa decidir se se trata
de um comentéario ou uma operacao de divisao. Essa decisao depende do proximo
caractere. O que acontece é que é avaliado o proximo caractere (que é armazenado
em next_c). Com esse caractere extra, o scanner consegue decidir se a sequéncia é
um comentario ou nao.

O trecho de c6digo a seguir, demonstra essa ideia:

//... (continuagio)
if (next_c == /) { //comentério de linha tnica
do {
¢ = prox_char();
} while (c '= ’\n’ && c '= EQOF);
} else if (next_c == ’%’) { //comentario de
miltiplas linhas
char prev_c = ’\0’;
do {
prev_c = c;
¢ = prox_char();
if (¢ == ’\n’) linha_atual++;
} while (!(prev_c == ’%’ && c == ’/’) && c
1= EQOF);
¢ = prox_char(); //consome o char apds o
7*/,
//...

Se next_c for /, ele entra no modo de comentario de linha e processa tudo até
encontrar um ‘\n’ ou EOF. Por outro lado, se next_c for *, ele entra no modo
de comentario de bloco. Este modo é mais complexo e precisa de estado: ele usa
a variavel prev_c para procurar a sequéncia de término ‘*/’, consumindo tudo
(incluindo quebras de linha) até encontra-la.

Finalmente, se nao for um comentario, ou se o caractere original nao for /, o
scanner trata os casos restantes:
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//... (continuacg&o)
} else {
//ndo & um comentario, devolve o caractere
e retorna a barra
ungetc(next_c, arquivo_fonte);
return c;

}
} else {
//ndo & espaco nem comentdrio, retorna o
caractere encontrado
return c;

O primeiro else é crucial. Se next_c nao era / nem *, o scanner descobriu que
era o operador de divisao. Ele usa ungetc() para devolver o caractere avaliado e
retorna o / para a fungao proximo_token() processar. Por outro lado, o segundo
else interrompe o lago while(1). Ele retorna o caractere ¢ (que pode ser uma
letra, digito, =, etc.) para a fun¢ao proximo_token(), que agora pode classificar o
lexema.

Identificadores vs. Palavras Reservadas: Uma Decisao em Duas Etapas

Um dos desafios centrais do scanner é diferenciar identificadores (ex: contador) de
palavras reservadas (ex: if). A abordagem utilizada no Micro C segue a estratégia
classica. Ou seja, primeiro, o scanner reconhece o padrao mais genérico, o de ID,
e depois, apds ter o lexema completo, ele o compara com uma lista de palavras
reservadas conhecidas.

Primeiro, o consumidor de identificadores:

// arquivo: src/scanner/scanner.c (trecho)
if (isalpha(c) || c == *_?) {
char buffer[101];
int 1 = 0;
do {
buffer[i++] = c;
¢ = prox_char();
} while ((isalnum(c) || ¢ == ’_’) && i < 100);

ungetc(c, arquivo_fonte);
buffer[i] = ’\0’;
//. ..

A primeira verificagdo é garantir que o caractere atual pode iniciar um identi-
ficador valido (O if (isalpha(c) || ¢ == ’_?)). Em seguida, o laco do-while
constroi o lexema no buffer enquanto os caracteres seguintes forem alfanumeéricos
ou _. E, por ultimo, a chamada ungetc(c, arquivo_fonte) ; retorna um caractere
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para continuar o processamento de forma correta. O lago s6 para quando é lido um
caractere que ndo pertence ao identificador (ex: um espago). Esse caractere precisa
ser devolvido ao fluxo para ser processado na proxima chamada.

Com o lexema completo no buffer, a pfoxima fase é a de classificacao:

//... (continuac8o: 0 Classificador)
//--- Inicio da Etapa 2: Classificag8o ---
if (strcmp(buffer, "main") == 0) token.tipo = MAIN;
else if (strcmp(buffer, "if") == 0) token.tipo = IF;
else if (strcmp(buffer, "else") == 0) token.tipo = ELSE;
else if (strcmp(buffer, "for") == 0) token.tipo = FOR;

else if (strcmp(buffer, "return") == 0) token.tipo =
RETURN;;
else if (strcmp(buffer, "int") == 0) token.tipo = INT;

else if (strcmp(buffer, "char") == 0) token.tipo = CHAR;

else if (strcmp(buffer, "print") == 0) token.tipo =

PRINT;

else token.tipo = ID; // Se nfo for palavra reservada, & um ID

strcpy(token.lexema, buffer);
return token;

O bloco if-else if compara o lexema no buffer com todas as palavras reser-
vadas da linguagem. Se nenhuma delas corresponder, ele classifica o token como um
ID genérico.

Ambiguidade e a Técnica de Lookahead: Observando o Futuro

O lookahead ¢ utilizado para tratar operadores que compartilham prefixos, como = e
==, por exemplo. O trecho de cédigo a seguir demonstra como um trecho de codigo
de como o lookahead é implementado:

// arquivo: src/scanner/scanner.c (trecho do switch)
case ’=’:
next_c = prox_char(); // 1. "Observa" o proéximo caractere
if (next_c == ’=’) { // 2. Compara
token.tipo = EQ; strcpy(token.lexema, "==");

} else {
ungetc(next_c, arquivo_fonte); // 3. Devolve se
ndo for
token.tipo = ASSIGN; strcpy(token.lexema, "=");
}
break;
// ... (casos similares para ’!’, ’<’, ’>?)

Este exemplo ilustra como funciona o padrao de avaliacao. O scanner 1é =, mas
observa antecipadamente (prox_char()) o caractere seguinte. Se for outro =, ele
consome ambos e gera o token EQ (==). Caso contrario, ele devolve o caractere
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observado antecipadamente (ungetc()) e gera o token ASSIGN (=).

O caso mais complexo é a desambiguagao entre o operador de subtragao (MINUS)
e um ndimero negativo (INTEGERCONST). Ao encontrar o caractere -, é necessario
avaliar também o proximo caractere (next_c). Isso divide o fluxo em duas rotas
possiveis.

Rota 1: Reconhecimento de Niimero Negativo Se o caractere seguinte for
um digito, o scanner entra no modo de reconhecimento de nimero. Esta é uma
mudanca de estado, ou seja, o caractere - nao é mais um operador, mas sim o prefixo
de um literal numérico. O processo de construgao do token se inicia armazenando o
- em um buffer temporario. Em seguida, o scanner entra em um lago para consumir
o primeiro digito (que foi observado) e todos os digitos subsequentes, anexando cada
um ao buffer. O laco é interrompido apenas quando o primeiro caractere nao-digito
é encontrado. Finalmente, o token é classificado como INTEGERCONST e o lexema
completo (ex: -123) ¢é salvo.

O bloco de codigo a seguir detalha esta implementagao:

// arquivo: src/scanner/scanner.c (Rota 1: Nimero Negativo)
case ’-7:
next_c = prox_char(); // Espia o caractere apds o ’-’
if (isdigit(next_c)) { // Se for um digito...
// ...entd3o & um numero negativo.
char buffer[12];
buffer[0] = ¢c; // c == -
int i = 1;
// (Lago para consumir o restante dos digitos)
do {
buffer[i++] = next_c;
next_c = prox_char();
} while (isdigit(next_c) && i < 11);

ungetc(next_c, arquivo_fonte); // Devolve o ndo-digito
buffer[i] = ’\0’;
token.tipo = INTEGERCONST;
strcpy (token.lexema, buffer);
} else {
/* ... (trata operador MINUS, veja Rota 2) ... %/
}

break;

Rota 2: Reconhecimento do Operador de Subtracao Contudo, se o carac-
tere seguinte nao for um digito (como um espago, uma letra ou outro operador), o
scanner identifica que se trata do operador MINUS. Ou seja, ele devolve o caractere
observado (next_c) de volta ao fluxo de entrada. O trecho de codigo a seguir detalha
esta implementagao:

FACOM-UFMS



Analise Léxica 25

// arquivo: src/scanner/scanner.c (Rota 2: Operador MINUS)
case ’-’:
next_c = prox_char(); // Espia o caractere apds o ’-’
if (isdigit(next_c)) { // Se for um digito...
/* ... (trata namero negativo, veja Rota 1) ... */
} else { // Se ndo for um digito...
// ...entd3o0 & o operador MINUS.
ungetc(next_c, arquivo_fonte); // Devolve o n8o-digito
token.tipo = MINUS;
strcpy (token.lexema, "-");

}

break;

Esta abordagem demonstra uma técnica central do analisador léxico: o uso de
lookahead (olhar & frente) com prox_char() para tomar uma decisdo e, caso o
caractere observado nao pertenga ao token atual (como na Rota 2), devolvé-lo ao
fluxo de entrada com ungetc() para que seja processado na proxima iteragao.

Reconhecimento de Literais: Strings e Caracteres

Finalmente, o scanner precisa reconhecer literais definidos por seus delimitadores (’
e "). Este é um tipo de reconhecimento que torna claro como sao tratados os erros
léxicos pelo compilador Micro C. O trecho a seguir mostra como o scanner trata
essa situacgao:

// arquivo: src/scanner/scanner.c (trecho)
if (c == 2"7) {
char buffer[101];
int i = 0;
¢ = prox_char(); // Pula a aspa de abertura

// Consome caracteres até encontrar o fim, uma nova

linha ou EQOF

while (c !'= "> && c '= ’\n’ && c != EOF && i < 100) {
buffer[i++] = c;
¢ = prox_char();

¥

buffer[i] = ’\0’;

//...

Ao avaliar o ", o scanner entra no modo string e comeca a salvar os caracteres no
buffer. O lago while sera executado até encontrar a aspa de fechamento (") ou até
encontrar um erro como, por exemplo, uma quebra de linha (\n) ou o fim do arquivo
(EQF), pois strings na linguagem nao podem ter multiplas linhas. Continuando o
reconhecimento da string:
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//... (continuagdo do reconhecimento de string)
if (c == ’"?) { // Se parou por causa da aspa...
token.tipo = STRINGCONST;
strcpy(token.lexema, buffer);
} else { // Se parou por ’\n’ ou EOF...
token.tipo = UNDEF; // E um erro!
strcpy(token.lexema, "String nao terminada");

}
return token;
}
Apobs o lago, o if (c == "?) verifica por que o lago parou. Se foi por causa

da aspa, o token é um STRINGCONST vélido. Se foi por qualquer outro motivo, é um
erro, e é retornado o token UNDEF com uma mensagem de erro. O processamento de
constantes de caracteres CHARCONST é processado de forma similar.

2.6 Sumario

Neste capitulo, iniciamos o processo de compilacao com a primeira fase: a analise
léxica. Foram definidos os trés conceitos centrais desta etapa: o token (categoria
abstrata), o lexema (texto do codigo fonte) e o padrao (a regra que descreve o
lexema).

Foi possivel observar que o analisador léxico, ou scanner, atua como a primeira
linha de processamento do compilador, sendo responsavel por validar o texto de en-
trada e reportar erros léxicos, como caracteres invélidos (@) ou strings malformadas.

Além disso, foram discutidas decisoes de projeto que deixam claro porque al-
gumas decisoes de implementacao foram tomadas ao desenvolver o scanner. Por
exemplo, optando pelo uso da abordagem em lote ao invés de outras mais comuns
que sao utilizadas em compiladores classicos.

Em seguida, discutiu-se a implementagao do vocabulario (arquivo tokens.h) da
linguagem e como os tipos de tokens sao processados com o uso de estruturas de
dados como a struct Token, que agrupa o tipo, o lexema e o numero da linha
associada ao lexema. A estrutura dessa forma, permite que erros comuns sejam
informados ao programador apontando em qual linha de c6digo o erro ocorreu.

Finalizando, foram abordados conceitos importantes que sao utilizados na im-
plementagao do scanner.c como o uso de expressoes regulares e automatos finitos
deterministicos. O Micro C' segue os mesmos principios e nao utiliza mecanismos
automatizados de geragao de AFD’s como Lex ou Flex. Isso tornou o scanner mais
simples, mas ao mesmo tempo, dependente da linguagem definida.
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Capitulo 3
Analise Sintatica

Trees sprout up just about everywhere in computer science.

— Donald E. Knuth

Neste capitulo seréd discutida a construgao do analisador sintatico do compilador
da linguagem Micro C. Apos a conversao do codigo fonte em uma sequéncia de
tokens pelo analisador léxico, o processo de compilagao realiza a analise sintética.
Esta fase tem como objetivo verificar se a estrutura do co6digo e as regras gramaticais
da linguagem estao em conformidade. Ou seja, o analisador sintatico valida se
a sequéncia de tokens forma construgoes sintaticas validas, tais como expressoes,
comandos e declaracgoes, em concordancia com uma gramatica formal previamente

definida.

Nesta fase da compilacgao é que a estrutura do programa comeca a ganhar forma.
Além de simplesmente validar a graméatica, a responsabilidade principal desta fase
é construir a estrutura de dados hierarquica que serda usada por todas as fases
subsequentes. Essa estrutura, conhecida como Arvore Sintatica Abstrata (ASA), é
o resultado da anélise sintatica e serve como a representacao concreta da logica do
programa, pronta para a anéalise de significado (seméntica).

O analisador sintatico recebe como entrada uma cadeia de tokens fornecida pelo
analisador 1éxico e verifica se essa cadeia pertence a linguagem definida pela gra-
mética do Micro C. Caso encontre erros de sintaxe, o analisador deve ser capaz
de reporta-los de forma clara e, sempre que possivel, seguir adiante com a anélise,
permitindo que outros erros também sejam detectados.

Existem trés abordagens principais para a construcao de analisadores sintaticos:
a abordagem universal, a descendente e a ascendente [1,3,13]. A abordagem uni-
versal é capaz de analisar qualquer gramatica, mas seus algoritmos, como o classico
algoritmo de Earley [7], sdo pouco eficientes. Eles precisam explorar multiplas
arvores de derivagao possiveis, um processo computacionalmente custoso que atinge
a complexidade de O(n?) em relagao ao tamanho do programa e, por isso, raramente
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sao usados em compiladores reais. As estratégias realmente utilizadas em compi-
ladores sao as anélises descendente e ascendente. A anéalise descendente constréi a
arvore de derivagao do topo (raiz) até as folhas, enquanto a andlise ascendente faz
o caminho inverso, comegando das folhas em dire¢ao a raiz. Em ambos os casos, os
tokens sao processados da esquerda para a direita. O Micro C utiliza a estratégia
descendente, por simplicidade.

Nas proximas secoes serao discutidas como essas técnicas funcionam, usando
exemplos praticos da linguagem do Micro C. Também sera abordado como o anali-
sador sintatico trata erros e como se conecta com as demais fases do compilador.

3.1 Expressoes e Gramaticas

Grande parte da complexidade da analise sintatica em linguagens de programacao
esta relacionada ao processamento de expressoes, principalmente por causa das re-
gras de associagao e precedéncia entre operadores. Enquanto construgoes iniciadas
por palavras reservadas como if, while ou int sao relativamente faceis de iden-
tificar e tratar, expressoes exigem mais cuidado, ja que podem gerar ambiguidade
dependendo da ordem em que os elementos sao analisados.

Para tratar essa situacao, sao utilizadas gramaéaticas que incorporam essas regras.
Uma forma tradicional de representar expressoes é por meio de uma estrutura em
arvore onde os operadores de menor precedéncia aparecem no topo da arvore, e os
de maior precedéncia mais préoximo das folhas.

3.1.1 Hierarquia de Precedéncia em Expressoes

Para que a gramatica possa tratar corretamente a precedéncia e associatividade de
operadores, ela é dividida em trés niveis hierarquicos, utilizando os simbolos nao
terminais E (para Expressao), T (para Termo) e F (para Fator) para expressar essa
hierarquia. Essa estrutura é um padrao cléssico no projeto de compiladores, que
garante a ordem correta de avaliacao das operagoes matemaéticas, por exemplo. A
estrutura logica é construida do nivel de maior para o de menor precedéncia. A
seguir uma descri¢gao de cada um dos niveis hierarquicos definidos:

e Fator (F): representa a unidade de maior precedéncia em uma expressao.
Um fator é algo que pode ser avaliado imediatamente, como um identificador
(id), um numero (num), ou uma ezpressio inteira entre parénteses (E). O
uso de parénteses altera a precedéncia natural, forcando a avaliacao do que
esta dentro antes de qualquer outra operacao. Isso gera a regra para Fator!:
F — (F) |id | num.

LA leitura desta notacéo, adotada ao longo de todo este trabalho, deve ser realizada da seguinte
forma: a seta (—) deve ser interpretada como “pode ser formado por” e a barra vertical (|) como
um “ou”. Sendo assim, a regra define, especificamente, que um Fator pode ser formado por uma
expressao entre parénteses, ou por um identificador, ou por um nimero.
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e Termo (T): representa uma sequéncia de fatores conectados pelos operadores
de alta precedéncia: multiplicagdo (*) e divisao (/). Um termo pode ser um
tnico fator, ou uma multiplicagao/divisao de um termo com outro fator. Isso
gera a regra para Termo: T — T F |T/F | F.

e Expressao (E): representa a forma mais geral, composta por uma sequéncia
de termos conectados pelos operadores de baixa precedéncia: soma (+) e sub-
tragao (-). Uma expressao pode ser um tnico termo, ou uma soma/subtragao
de uma expressao com outro termo. Isso gera a regra para Expressao: F —
E+T|E-T|T.

Dessa forma, é criada uma hierarquia bem definida, ou seja, uma Expressao é
feita de Termos, e um Termo é feito de Fatores. Como as operacoes de maior
precedéncia (*, /) estdao “aninhadas"na regra de T, que est4 um nivel abaixo de E, a
gramatica determina que as multiplicagoes e divisoes sejam reconhecidas e agrupadas
antes das somas e subtracoes, garantindo a ordem correta da avaliagao matematica.

3.1.2 Graméatica como Especificacao Formal da Linguagem

A gramética é a ferramenta formal que permite ao compilador entender qual a se-
quéncia de simbolos que forma um programa valido. Ela funciona como uma descri-
¢ao precisa da linguagem, definindo as regras que determinam a organizacao correta
dos elementos no codigo. Assim como a anéalise léxica identifica os tokens, a gramé-
tica define como esses tokens se combinam para formar construcoes sintaticamente
corretas, como expressoes, comandos e blocos.

Em outras palavras, a graméatica é um conjunto de instrugoes que explica ao com-
pilador o que é esperado na estrutura do programa. Qualquer c6digo que nao obe-
dega a essas regras sera considerado invalido durante a analise sintatica, garantindo
que erros estruturais sejam detectados o quanto antes no processo de compilacao.

Dessa forma, a gramatica atua como um contrato entre o programador e o com-
pilador, assegurando que o coédigo esteja organizado conforme as convengoes da
linguagem. Por isso, o estudo e a definicao da gramaética sao essenciais para que o
compilador possa interpretar corretamente o coédigo fonte e avancar para as etapas
seguintes da compilacao.

Para ilustrar o papel da gramética, considere uma linguagem extremamente sim-
ples de expressoes aritméticas que permite somar nimeros e agrupar operagoes entre
parénteses. Essa linguagem pode ser descrita pela seguinte gramatica:

E—-E+T|T
T — (F) | num

Nessa gramatica, o simbolo inicial é F, que representa uma expressao. A regra
diz que uma expressao pode ser a soma de outra expressao com um termo (F + T)
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ou apenas um termo (7). O termo, por sua vez, pode ser uma expressao entre
parénteses, permitindo agrupamento, ou um ntmero terminal, representado aqui
por num.

Assim, uma sequéncia valida nessa linguagem é 3 + (5 + 2), pois a gramatica
especifica que niimeros e somas entre expressoes agrupadas sao aceitos. Por outro
lado, uma sequéncia como 3 + + 5 nao é valida, pois nao existe regra na gramética
que permita dois operadores + consecutivos.

A gramatica completa que representa essa hierarquia é a seguinte:

ESE+T|E-T|T
T T+F|T/F|F
F — (E)|id | num

Embora a gramatica acima parega expressar de forma natural a hierarquia das
operacoes aritméticas, ela apresenta um problema para a analise sintatica descen-
dente: a recursio a esquerda. E importante destacar que, enquanto analisadores
ascendentes lidam bem com regras recursivas a esquerda, na abordagem descendente
essa estrutura inviabiliza o algoritmo. O exemplo a seguir deixard mais claro o por-
qué dessa situagao ocorrer. Suponha a seguinte expressao, que sera avaliada passo
a passo:

a+bx*xc

Ao tentar derivar essa expressao a partir do simbolo inicial F, a estratégia natural
seria expandir F de acordo com a producao:

EFE—-E+T

No entanto, essa escolha faz com que o simbolo E apareca novamente no lado
direito da produgao, logo na primeira posi¢ao. Assim, o analisador tentara expandir
E novamente por E + T, e em seguida mais uma vez, e assim sucessivamente, sem
processar nenhum simbolo de entrada. Isso gera um ciclo infinito de derivagoes,
como ilustrado abaixo:

F=FEF+T=FE+T+T=>FE+T+T+T= ...

Para a correta interpretagao desta demonstracao, deve-se notar a mudanga na
simbologia: diferente da seta simples (—), que define uma regra estatica, a seta
dupla (=) representa um passo de derivagao. Ou seja, ela indica uma agao de
transformacao. A sequéncia acima deve ser lida como: o simbolo F deriva em
E+T, que por sua vez deriva em E+ T+ T, e assim sucessivamente, demonstrando
a expansao infinita.
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Em outras palavras, o analisador continua expandindo E indefinidamente, sem
avangar na analise dos tokens do programa.

Esse comportamento caracteriza a recursao a esquerda direta, um padrao
em que um nao terminal faz referéncia a si mesmo como o primeiro simbolo de seu

lado direito. A gramatica apresentada contém esse tipo de recursao nas produgoes
de EelT:

E—-FE+T e T—>TxF

Esse problema impede o funcionamento correto de analisadores descendentes re-
cursivos, que baseiam suas decisoes em chamadas de fungoes recursivas. Portanto,
antes de construir o analisador sintatico propriamente dito, seré necessario reformu-
lar essa gramatica para eliminar a recursao a esquerda.

Para resolver o problema da recursao, transformamos a gramatica eliminando a
recursao a esquerda e reestruturando as produgoes.

O resultado é uma gramatica equivalente, mas adequada para analise descen-
dente:

E—=TF

E' — +TE | -TE |
T — FT'

T' 5 «FT'| JFT' | e
F — (F)|id | num

Ao analisar novamente a expressao, é possivel notar que o problema foi resolvido:
a+bx*xc

Na nova gramatica, a derivagao comeca pelo simbolo E e segue pela producao:
E—TFE
Primeiro, 7" consome o termo mais a esquerda, que ¢é a:
T= FT'=idT

Em seguida, E' processa os operadores & direita. O proximo token é +, entao é
aplicada a derivacao:

E' = +TF'
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O T seguinte processa b x ¢ de forma correta, utilizando T" — FT" e T — xFT".
Ao final, a gramatica permite a derivacao E’ = ¢, encerrando o processamento.

Dessa forma, cada operador e operando é processado na ordem correta, res-
peitando a precedéncia de multiplicagao sobre adi¢ao, e o analisador descendente
consegue processar todos os tokens sem entrar em um ciclo infinito.

Contextualizagao da Implementacao: Estruturas e Fluxo

Para compreender a implementacao pratica da analise sintatica no Micro C' é ne-
cessario, primeiramente, entender como o analisador é estruturado e quais dados ele
manipula. O compilador utiliza uma abordagem Descendente Recursiva (Recur-
sive Descent), onde a estrutura das fungdes em C espelha diretamente a hierarquia
da gramatica.

Em alto nivel, o fluxo de execugdo comega na regra mais geral (o Programa) e
desce, por meio de chamadas de fungdes, até atingir os elementos atomicos (Fatores
e Tokens), conforme ilustrado na Figura 3.1.

program( )

l

function()

|

statement() FLUXO TOP-DOWN

l Cada funcao corresponde a um
simbolo nao-terminal da
. Jramatica. As fungdes superiores

expression()

l chamam as inferiores
recursivamente para compor a
term() Arvore Sintatica Abstrata (ASA),
l descendo até o nivel dos tokens.
factor()
. I
match(token)

(Consumo de tokens)

Figura 3.1: Fluxo de chamadas do Analisador Descendente Recursivo.

E importante notar a distincao entre o fluxo de controle e a construcao da es-
trutura de dados. O analisador segue uma estratégia Top-Down (descendente),
navegando das regras gramaticais mais gerais (Programa) para as mais especificas
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(Fatores). No entanto, a Arvore Sintatica Abstrata (ASA) é efetivamente mon-
tada de maneira Bottom-Up (ascendente): os nos folhas (nimeros e variaveis) sao
criados primeiro nas fungoes mais profundas da recursao e, & medida que as fun-
gOes retornam, esses nos sao capturados e agrupados por noés operadores (pais) nas
funcoes superiores.

Para sustentar esse processo, o analisador manipula duas estruturas de dados
fundamentais:

1. A Arvore Sintatica (ASTNode)

Diferente de implementacoes simplificadas que utilizam vetores fixos, o Micro C
adota uma estrutura dinadmica baseada em listas encadeadas. Conforme definido em
ast.h, cada n6 possui um ponteiro para seu primeiro filho (filho) e um ponteiro
para o seu proximo irmao (proximo_irmao). Essa flexibilidade permite que um no
pai tenha quantidade variavel de filhos.

2. O Estado do Analisador (Parser)

O controle do fluxo de tokens é encapsulado na estrutura Parser, que mantém
a referéncia para a lista completa de tokens carregada do arquivo e um cursor para
o elemento atual.

As defini¢bes reais dessas estruturas, utilizadas no codigo, sdo apresentadas
abaixo:

// --- DefinigBes baseadas em ast.h e parser.h ---

//estrutura de um N6 da Arvore (ASA)
typedef struct ASTNode {

NodeType node_type; //tipo do nd (ex: NODE_BINARY_OP)
int linha; //linha de origem no cbédigo
struct ASTNode *filho; //ponteiro para o primeiro filho

struct ASTNode *proximo_irmao;//ponteiro para o préximo irmdo (lista)

union {
long int_value; //para constantes inteiras
char* string_value; //para identificadores e strings
TokenType op_type; //para operadores (+, -, *, /)
} data;
} ASTNode;

//estrutura de controle do Parser
typedef struct {

TokenList *1lista; //lista contendo todos os tokens lidos
int current; //indice numérico do token atual
Token *current_token; //ponteiro direto para o token atual
// ... outros campos (tabela de simbolos)

} Parser;
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Com o contexto das estruturas estabelecido, a implementagao da fungao arith-
metic_expression pode ser analisada.

Para a implementacao no Micro C| realiza-se uma otimizagao em relagao a gra-
mética tedrica. E essencial distinguir que, ao eliminar a recursdo a esquerda (que
causa loops infinitos), a gramatica teorica resultante passa a utilizar recursao a
direita no simbolo auxiliar E’. Embora a recursao a direita seja vélida para anali-
sadores descendentes, pois consome tokens antes da chamada recursiva, converté-la
diretamente em codigo geraria uma funcao extra apenas para processar o resto da
expressao.

Por isso, na préatica, nao se cria uma funcao recursiva separada para E’. A logica
de repeticao definida por E’, que continuaria chamando a si mesma ao final da regra,
é substituida de forma equivalente e mais eficiente por um lago iterativo (while).
O lago continua rodando enquanto houver operadores (4, —), desempenhando exa-
tamente o mesmo papel logico da recursao a direita, mas sem o custo de multiplas
chamadas de fungao e uso excessivo da pilha. O cédigo abaixo demonstra como a
arvore ¢ construida de baixo para cima (bottom-up) dentro do lago, garantindo a
precedéncia correta:

ASTNode* arithmetic_expression(Parser* parser) {
//1. processa o termo da esquerda (maior precedéncia,
ex: multiplicagdes)
ASTNode* node = term(parser);

//2. loop para processar somas (+) e subtragdes (-) sequencialmente
while (parser->current_token &&
(parser->current_token->tipo == PLUS ||
parser->current_token->tipo == MINUS)) {

TokenType op = parser->current_token->tipo;
int line = parser->current_token->linha;
match(parser, op); //consome o operador e avanga

//cria o ndé da operagdo binaria
ASTNode* op_node = criar_no(NODE_BINARY_OP, line);
op_node->data.op_type = op;

//a arvore cresce para cima:
//0 ndé acumulado node vira o filho da esquerda do novo operador
adicionar_filho(op_node, node);

//o proximo termo vira o filho da direita
adicionar_filho(op_node, term(parser));

//atualiza a raiz da sub-&arvore para o novo operador
node = op_node;

return node;
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Essa implementacao garante que uma expressao como A + B + C seja estrutu-
rada corretamente. O laco processa primeiro A + B, criando um né6. Na proxima
iteracao, esse no torna-se filho da esquerda da soma com C. Isso respeita a associa-
tividade a esquerda da linguagem C e evita o estouro de pilha por recursao infinita.

3.2 Tratamento de Erros na Andalise Sintatica

Durante a analise sintatica, ¢ inevitavel que erros de sintaxe aparecam no codigo
fonte. O papel do analisador sintatico nao é apenas detectar esses erros, mas também
tentar se recuperar deles para continuar a anélise e identificar o méaximo possivel de
problemas em uma tnica execucao. Para isso, diversas estratégias de recuperacao
de erro podem ser utilizadas, cada uma com suas vantagens e limitagoes.

Modo de péanico. Essa é uma das estratégias mais comuns. Quando um erro é
detectado, o analisador descarta simbolos da entrada até encontrar um token que
pertenga a um conjunto de sincronizacao (geralmente delimitadores como ponto e
virgula ou chaves). Isso permite que o analisador pule instru¢oes malformadas e
continue com o restante do codigo.

int a, b5abcd, sum, $2;

Neste exemplo, o parser reconhece o int a como uma declaracao valida. Con-
tudo, quando encontra tokens invalidos como 5abed ou $2, ele os ignora, sem inter-
romper a analise. A leitura continua até que seja encontrado o ; que indica o fim
da declaracao, permitindo que o restante do codigo seja processado corretamente.

Essa abordagem ¢é simples e evita que o compilador entre em ciclos infinitos.
No entanto, pode mascarar erros posteriores, levando a interpretacoes incorretas na
analise semantica ou na geracao de codigo.

Recuperacao de nivel de frase. Essa técnica tenta realizar corregoes locais.
Quando um erro é detectado, o analisador tenta fazer ajustes simples na entrada,
como inserir um ponto e virgula ausente ou corrigir uma virgula no lugar errado.

Exemplo: int a, b = int a, b;
(O compilador insere o ponto e virgula faltando.)

E uma abordagem eficiente e adotada por diversos compiladores, mas exige cui-
dado para evitar corre¢oes em cascata que causem ciclos ou novos erros.

Producgoes de erro. Nesse método, a propria gramatica é enriquecida com produ-
¢Oes especificas para reconhecer construgoes comuns incorretas. Quando uma dessas
producoes ¢ acionada, uma mensagem de erro personalizada pode ser gerada. Isso
exige conhecimento prévio sobre os tipos de erro que os programadores geralmente
cometem.
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Exemplo: Se a gramética original nao reconhece uma entrada como
abcd, pode ser introduza uma producao auxiliar para aceitar esse padrao
e indicar o erro:

E-SB
S+ A
A-ahA | bA |l alobd
B =+ cd

Apesar de poderosa, essa estratégia é de dificil manutencao, pois qualquer mu-
danca na gramatica principal exige ajustes nas produgoes de erro.

Correcao global. E uma abordagem tedrica que tenta transformar a cadeia de
entrada incorreta na mais proxima possivel de uma entrada valida, realizando o
menor namero de alteragoes (insergoes, remogoes ou substituigoes de tokens). Em-
bora seja um conceito interessante, nao ¢ aplicavel na pratica devido ao alto custo
computacional.

Verificacao de Tipos e Coergao. Embora o gerenciamento de tipos seja de
responsabilidade da anélise seméantica, o analisador sintatico pode interagir com a
tabela de simbolos para validar operacoes basicas. E importante distinguir erro de
conversao. Quando ocorre uma incompatibilidade de tipos que a linguagem suporta
(como atribuir um valor real a um inteiro), néo se trata de um erro, mas sim de uma
coergao (conversao implicita). Nesses casos, o compilador utiliza as informagoes da
tabela de simbolos para ajustar o valor automaticamente, garantindo a continuidade
da compilacao sem emitir falhas.

Exemplo de Coercao: int x = 5.2; = int x = (int)5.2;
(O compilador trunca o valor para 5)

A tabela de simbolos torna-se essencial para a recuperacao de erros apenas
quando essa conversao nao é possivel (por exemplo, tentar atribuir uma string a
uma variavel numérica), momento em que o compilador deve, efetivamente, repor-
tar a incompatibilidade e tentar sincronizar a anélise.

No Micro C, o analisador sintatico nao implementa estratégias de recuperacao de
erro avancadas, como modo de panico, correcao de nivel de frase, produgoes de erro
ou correcao global. O proposito do compilador é didatico: ele interrompe a anélise
ao encontrar o primeiro erro sintatico, garantindo que a compreensao da estrutura
da gramatica e da arvore sintatica abstrata seja clara e simples.

3.3 Leitura dos Tokens

Apo6s a etapa de analise léxica, o compilador gera uma sequéncia de tokens que
representa os elementos significativos do codigo fonte. O analisador sintatico, por sua
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vez, trabalha diretamente com essa sequéncia de tokens para verificar se a estrutura
do programa esta correta de acordo com a gramética da linguagem.

Neste estagio, a entrada para o analisador sintatico nao ¢ mais o codigo fonte
original, mas uma lista de tokens previamente gerados pelo analisador léxico. Cada
token contém informagdes essenciais, como o tipo (representando a categoria do
lexema), o lexema (que e a sequéncia de caracteres que corresponde ao token), e a
linha do cédigo onde o token foi encontrado. Com esses dados, o analisador sintatico
consegue construir a arvore de derivacao e verificar se a construcao sintatica do
programa esté de acordo com as regras definidas pela gramatica da linguagem.

O objetivo desta secao é descrever o processo de leitura e armazenamento desses
tokens para que possam ser usados pelo analisador sintatico. O arquivo de entrada
utilizado para esse processo, o tokens.txt, contém os tokens gerados pela fase de
analise léxica, e é a partir deste arquivo que o analisador sintatico vai realizar sua
analise. Um exemplo real da estrutura interna desse arquivo, gerado a partir do
c6digo fonte soma.mcc, pode ser consultado no Apéndice D.2 Andlise Léxica.

A seguir, serd discutida a implementacao que permite a leitura desse arquivo e
o armazenamento dos tokens em uma estrutura apropriada para posterior uso no
processo de andlise sintatica.

3.3.1 Estrutura para Armazenamento de Tokens

Antes de prosseguir, é importante entender como os dados sao organizados. Para
isso, é utilizada a estrutura TokenList que mantém um vetor dinamico de tokens e
garante que a memoria seja gerenciada de forma eficiente e todos os tokens gerados
pela anélise 1éxica sejam acessiveis, pelo analisador sintatico.

A estrutura TokenList ¢é definida como segue:

typedef struct {
Token *tokens;
int tamanho;
int capacidade;
} Tokenlist;

A estrutura TokenList é formada por trés membros: tokens, que é um ponteiro
para o vetor de tokens; tamanho, que é o ntimero atual de tokens armazenados; e,
capacidade, que é a quantidade maxima de tokens que a estrutura pode armazenar
antes de precisar ser redimensionada.

3.3.2 Leitura do Arquivo tokens.txt

A leitura do arquivo tokens. txt é realizada pela fungdo carregar_tokens no Micro
C. Essa funcao abre o arquivo e processa cada linha usando a func¢ao sscanf que
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faz a leitura formatada de uma linha extraindo tipo, lexema e niimero de cada linha
para cada token.

O trecho abaixo ilustra a leitura dos tokens do arquivo tokens.txt:

int carregar_tokens(const char *nome_arquivo, TokenList #*lista){
FILE *arquivo = fopen(nome_arquivo, "r");
if (arquivo == NULL) {
return -1; }

char linha_str[256];

while (fgets(linha_str, sizeof (linha_str), arquivo)) {
int tipo, linha_num;

char lexema[100];

//extrai os dados da linha formatada
if (sscanf(linha_str, "Token: tipo = %d, lexema = ’J[~’]’,
linha = %d", &tipo, lexema, &linha_num) != 3) {

continue; }

//verifica se & necessario redimensionar a lista
if (lista->tamanho >= lista->capacidade) {
lista->capacidade *= 2;
Token *nova_lista = realloc(lista->tokens,
lista->capacidade * sizeof (Token));
if (nova_lista == NULL) {
fclose(arquivo) ;
return -1; //falha de meméria
}
lista->tokens = nova_lista;

}

//armazena o token na lista
lista->tokens[lista->tamanho] .tipo = (TokenType)tipo;
strncpy(lista->tokens[lista->tamanho] .lexema, lexema, 100);
lista->tokens[lista->tamanho] .linha = linha_num;
lista->tamanho++;

}

fclose(arquivo) ;

return O;

A fungao lé o arquivo linha a linha utilizando um buffer temporario (1inha_str).
O formato esperado para cada linha segue o padrao definido na etapa léxica:

Token: tipo = <tipo do token>, lexema = <texto>, linha = <nimero da linha>

Esta funcao abre o arquivo tokens.txt e 1é cada linha, que contém as informagoes
do token. Caso a leitura da linha seja bem sucedida, as informagcoes do token sao
extraidas e armazenadas na lista de tokens. Se a lista estiver cheia, ela é redimensi-
onada dinamicamente para comportar novos tokens.

Notem que, ao lidar com a lista de tokens, é importante garantir que a memoria

FACOM-UFMS



Analise Sintatica 39

seja gerida de forma eficiente, redimensionando o vetor conforme necessario para
evitar desperdicio ou falta de espaco. O uso da func¢ao realloc garante que a lista
de tokens possa crescer dinamicamente durante o processamento do arquivo.

3.3.3 Conectando as Fases Léxica e Sintatica

Neste estagio do compilador, a leitura dos tokens serve como uma ponte entre a fase
de analise léxica e a analise sintatica. A fase de anélise léxica, que ocorre primeiro,
tem como objetivo identificar os tokens no codigo fonte. Esses tokens sao, entao,
carregados no analisador sintatico para que a estrutura do programa seja verificada
e processada.

E importante notar que, nesta etapa de leitura dos tokens, ainda nao ha validacao
sintatica. Ou seja, o objetivo nao é verificar se a sequéncia de tokens segue as regras
da gramatica da linguagem de programagao. Em vez disso, estamos simplesmente
carregando e organizando os tokens identificados pela analise 1éxica para que possam
ser usados na proxima fase de anélise sintatica. Esse processo garante que o com-
pilador tenha acesso a sequéncia de tokens que sera analisada mais detalhadamente
na fase subsequente.

Dessa forma, a etapa de leitura dos tokens fornece uma entrada organizada e
estruturada ao analisador sintéatico, permitindo que ele realize suas operagdes com
eficiéncia, sem precisar se preocupar com a identificagao e categorizacao de tokens,
uma vez que isso ja foi feito pela analise léxica. Ou seja, os tokens armazenados
no arquivo representam a unica interface entre a anélise 1éxica e a analise sintatica,
portanto qualquer erro nessa transicao pode comprometer toda a compilacao.

Para facilitar o acesso sequencial e ordenado a essas informagoes, utilizamos uma
estrutura em C chamada TokenList, que é um vetor dindmico de estruturas Token.
Cada elemento dessa lista contém trés informagdes: o tipo do token (valor numeérico),
seu lezema (texto associado) e a linha do codigo fonte onde ele foi encontrado.

Essa organizagao em forma de lista permite que o analisador sintatico percorra os
tokens de maneira eficiente, respeitando a ordem em que foram identificados. Além
disso, ao manter o ntimero da linha, facilita-se a geragao de mensagens de erro mais
informativas durante a andlise sintatica, contribuindo para uma melhor depuragao
do codigo fonte pelo programador.

Observem que a separagao entre a anélise léxica e a sintatica permite que cada
fase seja desenvolvida, testada e mantida de forma independente. A estrutura de
dados escolhida para armazenar os tokens serve como uma ponte entre essas fases,
garantindo que os dados sejam compartilhados de forma clara e organizada.

O trecho abaixo mostra um exemplo do arquivo tokens.txt:
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// Conteido exemplo de um arquivo tokens.txt

Token: tipo = 31, lexema = ’int’, linha = 1
Token: tipo = 1, lexema = ’x’, linha =1
Token: tipo = 19, lexema = ’=’, linha =1
Token: tipo = 2, lexema = ’10’, linha =1
Token: tipo = 20, lexema = ’;’, linha =1

Esse trecho simula a saida do analisador léxico para uma linha simples de decla-
racao e atribuicao. Cada linha representa um token com seu tipo, contetdo textual
e a linha correspondente do codigo-fonte. Ao serem carregados em uma estrutura
TokenList, esses dados sao organizados sequencialmente, mantendo a integridade
da ordem original do programa, o que é essencial para a anélise sintatica.

Compreender como os tokens sao lidos e organizados pelo scanner nos permite
preparar o parser para a andlise sintatica. Na secao a seguir, sera introduzida a
Gramdtica da Linguagem, que define formalmente as regras que o parser seguira
para validar a estrutura do programa. Serao descritos os simbolos terminais e nao
terminais, bem como as convencoes adotadas para representar expressoes, fungoes e
instrugoes do Micro C, garantindo que a anélise sintética esteja totalmente alinhada
com a implementacao pratica do compilador.

3.4 Gramatica da Linguagem

Gramaticas sao manuais de regras que definem a estrutura de uma linguagem de
programagao. No Micro C) elas descrevem como funcgoes, declaragoes, expressoes e
instrugoes devem ser organizadas, sendo essenciais para a construcao do compilador
e para a geracio da Arvore Sintatica Abstrata (ASA).

Uma Gramdtica Livre de Contexto (GLC) é um tipo especial de gramatica que
expressa estruturas hierarquicas. No Micro C, ela permite representar fungoes, blo-
cos, expressoes aninhadas, lagos e comandos condicionais, refletindo diretamente a
implementagao do parser recursivo descendente.

Além disso, cada tipo de construcao sintatica possui correspondéncia direta com
fungoes do parser. Por exemplo, as fungoes function(), var_declaration(),
expression(), arithmetic_expression(), term() e factor() representam nao
terminais que estruturam a linguagem e determinam a hierarquia de operacoes e
regras de escopo. Esse mapeamento garante que a gramética esteja alinhada com
a implementacao pratica da linguagem, considerando que os tokens sao fornecidos
pelo scanner.

3.4.1 Notagoes de Gramaéatica

Para evitar ambiguidades e facilitar a leitura, foram adotadas convencoes claras para
representar os simbolos e produgoes da gramatica do Micro C"-
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1. Simbolos terminais: representam tokens reconhecidos pelo scanner, como:

Palavras reservadas: int, char, if, else, for, return, print.

Operadores e simbolos de pontuacao: +, -, *, /, %, =, ==, <, > <= >= 1=

;7 b (7)’{7 }7 [7]'

Literais e identificadores: id, num, char const, string const.

I

2. Simbolos nao terminais: representam construgoes sintaticas do Micro C'

program — representa o ponto de entrada do compilador, contendo uma
sequéncia de fungoes.

function — definicao completa de func¢ao, incluindo tipo de retorno,
nome, parametros e corpo.

type — especificador de tipo (int ou char).
var_declaration — declaragao de variaveis locais ou parametros.

expression, arithmetic_expression, term, factor — hierarquia de
expressoes, determinando precedéncia e associatividade de operadores.

arg_list e param_list — listas de argumentos em chamadas de fungao
e parametros de fungoes, respectivamente.

statement — representa instrucoes individuais, como atribuicgoes, lacos
(for), condicionais (if-else) e comandos de saida (print).

3. Producgoes: uma regra genérica da gramatica é escrita como:

A=«

onde A é um nao terminal e a é uma sequéncia de simbolos terminais e/ou
nao terminais. Alternativas podem ser representadas com o operador |:

A= ag|ag]| | ay

4. Simbolo inicial: o nao terminal da primeira produgao é o simbolo inicial da
gramatica, que no Micro C' é program.

Pelas convencgoes adotadas, E, T e F sao nao terminais. O simbolo E é o simbolo
inicial. Por outro lado, o id, os operadores aritméticos e os parénteses sao todos

terminais.

Com as notacoes e convencgoes estabelecidas, torna-se possivel definir formal-
mente a estrutura sintatica da linguagem. O Apéndice B possui a Especificagao
da Gramatica Livre de Contexto (GLC) completa do Micro C. Esta especificagao
fundamenta a implementacao do analisador sintatico, detalhando como os tokens de-
vem ser combinados para formar estruturas vélidas, abrangendo desde a declaragao
da fungao principal (main) até as regras de precedéncia em expressoes aritméticas e

logicas.
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3.4.2 Relagao entre Gramatica e Analisador Sintatico

Apos a analise léxica, que transforma o coédigo fonte em uma sequéncia de tokens,
o compilador precisa verificar se essa sequéncia esta organizada de forma sintatica-
mente correta. E nesse momento que o analisador sintatico, ou parser, entra em
acao.

O analisador sintatico utiliza a gramatica da linguagem como um guia para
reconhecer se a sequéncia de tokens pode ser derivada a partir do simbolo inicial
da gramética. Em outras palavras, o parser verifica se os tokens seguem as regras
formais definidas pela gramatica, confirmando que o programa obedece a estrutura
sintatica esperada. Caso a sequéncia nao se encaixe nas regras, o analisador sintatico
sinaliza um erro indicando que o codigo estd mal estruturado.

Além de validar a sequéncia de tokens, o analisador sintatico constréi uma re-
presentacao intermediaria chamada drvore sintdtica ou drvore de derivacao. Essa
arvore mostra a estrutura hierarquica das construcoes do programa, evidenciando
como as regras da gramatica foram aplicadas para gerar a sequéncia de tokens. Cada
n6 da arvore representa um simbolo da gramatica, e as ramificagoes indicam como
as produgoes foram usadas para decompor a entrada.

A gramética, portanto, influencia diretamente a forma da arvore sintatica. De-
pendendo das regras e da organizacao das producgoes, a arvore pode ter diferentes
formatos, o que afeta etapas posteriores do compilador, como anéalise seméantica e
geracao de codigo. Assim, é fundamental que a gramatica seja projetada de forma
cuidadosa para garantir que o analisador sintatico funcione corretamente e produza
estruturas que facilitem as fases seguintes da compilagao.

Considere a expressao aritmética simples:
3+(5+2)
Supondo a gramética para expressoes aritméticas vista anteriormente:

E—SE+T|E-T|T
T T*F|T/F|F
F — (F)|id | num

Neste exemplo, num representa um nimero, que é um terminal da gramatica. A
analise sintatica verifica se a sequéncia de tokens correspondente & expressao acima
pode ser derivada a partir do simbolo inicial F.

Na Figura 3.2 (arvore sintatica para a expressao 3 + (5 + 2)), cada no re-
presenta um simbolo nao terminal ou terminal da gramaética, mostrando como a
expressao foi decomposta seguindo as regras sintaticas. O analisador sintatico cons-
troi essa estrutura para garantir que a entrada estd correta e facilitar as etapas
seguintes, como a geracao de cdédigo ou a analise semantica.
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E

T F

F (/E\)

num E/+\T
T :
F .
num

Figura 3.2: Arvore Sintética para a expressio 3 + (5 + 2).

Assim, é possivel notar que a gramatica orienta e guia o analisador sintatico e
a construcao da arvore sintatica. Isso estabelece uma ligacao direta entre as regras
formais da linguagem e a representacao estrutural do programa.

3.5 Analise Sintatica Descendente

A anélise sintatica descendente é uma técnica que constroi a arvore de derivagao
do codigo-fonte de forma top-down, ou seja, da raiz até as folhas. Nesse tipo de
abordagem, a estrutura da arvore é criada em ordem pré-fixada (ou pré-ordem [5]),
seguindo o mesmo raciocinio de uma busca em profundidade. O objetivo é derivar
a cadeia de entrada de acordo com as regras da gramaética, partindo do simbolo
inicial e aplicando sucessivamente producgoes até gerar uma sequéncia de simbolos
terminais que coincida com a sequéncia de tokens gerada pela analise léxica.

Essa estratégia corresponde a uma derivacao mais a esquerda, pois a cada etapa
o analisador foca na substituicao da subarvore mais a esquerda que ainda contém
um nao terminal. A escolha da producao correta a ser aplicada em cada passo é o
principal desafio desse método, especialmente em graméaticas que oferecem multiplas
alternativas para um mesmo simbolo nao terminal.

3.5.1 Descida Recursiva

Um dos métodos mais utilizados na implementagao da anélise descendente é a des-
cida recursiva. Ele é baseado em um conjunto de procedimentos recursivos, um
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para cada nao terminal da gramatica. A execuc¢ao tem inicio no procedimento cor-
respondente ao simbolo inicial e avanca por chamadas recursivas até que todos os
tokens sejam reconhecidos corretamente.

O funcionamento basico pode ser esquematizado da seguinte forma: para cada
nao terminal da gramatica, existe uma funcao associada que tenta reconhecer a
produgao correta. Essa fungao pode invocar outras fungdes (recursivamente) para
reconhecer os simbolos nao terminais do lado direito da producao. Finalmente, para
cada simbolo terminal, verifica-se se ele corresponde com o simbolo atual da entrada.

No entanto, esse método, em sua forma geral, pode exigir retrocesso, isto é, pode
ser necessario tentar diversas alternativas para um mesmo nao terminal até encon-
trar aquela que corresponde corretamente a entrada. Essa tentativa e erro é pouco
eficiente e raramente usada em compiladores reais [1,3,9], especialmente porque
muitas construgoes em linguagens de programacao nao exigem essa complexidade.

Exemplo: Considere a seguinte gramaética:

S — xBz
B—yl|lw

Suponha a cadeia de entrada x w z que sera analisada utilizando a anélise sin-
tatica descendente. Inicialmente, a descida comega do simbolo inicial S e aplica-se
a producao S — xBz. Em seguida, tenta-se expandir o nao terminal B para que
ele reconheca o simbolo intermediario da entrada. Como o préoximo simbolo é w, a
producao B — w é escolhida. A derivagao é bem-sucedida, pois todos os simbo-

los da entrada sao consumidos corretamente, resultando na arvore de derivacao da
Figura 3.3.

S
X B z
W
Figura 3.3: Arvore de Derivacio da gramética.

Neste ponto, é experimentado a primeira alternativa para B, que é B — y. Como
o simbolo y nao corresponde ao proximo simbolo da entrada, que é w, ocorre um erro.
O analisador entao realiza o retrocesso: retorna ao ponto em que B foi invocado e
tenta a proxima alternativa. Utilizando B — w, ocorre uma validagao bem-sucedida
com a entrada, permitindo o avanco para o simbolo final z, completando a derivagao
com sucesso.
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3.5.2 Problemas com Recursao a Esquerda

Um dos desafios classicos ao implementar analisadores descendentes recursivos é a
presenga de recursao a esquerda [1]. Quando uma fungao recursiva chama a si mesma
de forma direta sem computar nenhum simbolo da entrada, o parser pode entrar
em um ciclo infinito, impedindo que a analise avance.

Com o objetivo de reforgar a compreensao mas com enfoque na mecénica da des-
cida recursiva, considere o seguinte analisador descendente recursivo para comandos
de repeticao simples a seguir:

e Funcao repetir_comando() tenta processar qualquer comando que comece
com a palavra reservada repeat.

Se implementada de forma recursiva e direta, sem consumir a palavra repeat
antes da chamada recursiva, a fungao poderia se auto invocar repetidamente sem
avancar na entrada. Por exemplo, a sequéncia de chamadas poderia ocorrer da
seguinte forma:

repetir_comando() = repetir_comando() = repetir_comando() = ...

O parser nunca chega a processar a palavra repeat, resultando em um lago
infinito, mesmo que a entrada contenha comandos validos.

Para evitar isso, cada chamada recursiva precisa processar, pelo menos, um token
da entrada antes de se invocar recursivamente. Alternativamente, é possivel rees-
truturar a funcao para tratar a repeticao de maneira iterativa ou dividir a producao
em partes que garantam avanco da andlise. Assim, o parser consegue processar
corretamente os comandos e avancar pela entrada sem problemas adicionais.

O exemplo apresentado reforca que a recursao a esquerda precisa ser cuidadosa-
mente tratada em analisadores descendentes recursivos. Ao compreender e aplicar
esta técnica, é possivel garantir que o parser funcione, reconhecendo sequéncias de
tokens corretamente e evitando ciclos infinitos.

3.5.3 Implementacao Sem Recursao

Além da versao recursiva, também é possivel implementar um analisador descen-
dente com uma pilha explicita, simulando o comportamento das chamadas recur-
sivas. Essa técnica é particularmente 1til em situagoes em que o uso de recursao na
linguagem de implementacao nao é desejado.

A pilha mantém os simbolos que ainda precisam ser analisados. A cada passo, o
analisador consulta o topo da pilha e o simbolo corrente da entrada. Se o topo da
pilha for um terminal que casa com a entrada, ambos sao processados. Se for um nao
terminal, usa-se a tabela preditiva para decidir qual producao aplicar, substituindo
o nao terminal por seus componentes. Por fim, se nao houver regra aplicavel, ocorre
um erro de sintaxe.
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3.6 Conjuntos FIRST e FOLLOW

Na construgao de analisadores sintaticos descendentes especialmente os preditivos
e também na anélise sintatica ascendente, os conjuntos FIRST e FOLLOW de-
sempenham um papel fundamental. Essas duas fungoes, associadas aos simbolos de
uma gramatica livre de contexto, ajudam a decidir qual producao deve ser utilizada
em cada etapa da analise.

Durante a analise descendente, por exemplo, o conjunto FIRST permite prever
qual produgao aplicar com base no proximo simbolo da entrada. Ja o conjunto
FOLLOW é especialmente ttil em momentos de recuperacao de erro e no tratamento
de produgdes que podem derivar a cadeia vazia (¢).

O conjunto FIRST de uma cadeia «, denotado por FIRST(«), é o conjunto de
simbolos terminais que podem iniciar alguma cadeia derivada a partir de a. Em
outras palavras, ¢ o conjunto de possiveis primeiros simbolos da entrada quando
aplicadas as produgoes da gramética a partir de a.. Se v =* ¢, entdo € € FIRST(«).

Por outro lado, o conjunto FOLLOW de um nao terminal A, denotado por
FOLLOW(A), é o conjunto de simbolos terminais que podem aparecer imediatamente
a direita de A em alguma derivagao da gramética. Ou seja, se houver uma derivagao
do tipo S =* aAaf, entdo a € FOLLOW(A). Além disso, o marcador de fim de
entrada, representado por $, também pertence a FOLLOW(S), onde S é o simbolo
inicial da gramatica.

Para computar o conjunto FIRST para todos os simbolos da gramaética, sao apli-
cadas as regras a seguir repetidamente, até que o conjunto se torne estavel, ou seja,
nao ocorram mais mudancas:

1. Se X ¢ um terminal, entao FIRST(X) = {X}.
2. Se X é um nao terminal e h4 uma producao X — Y1Y5...Y}, entao:
e Inclua todos os simbolos nao-¢ de FIRST(Y;) em FIRST(X);

e Se ¢ € FIRST(Y}), entao também inclua os simbolos nao-¢ de FIRST(Y3),
e assim por diante;

e Se € € FIRST(Y;) para todo i = 1,...,k, entdo ¢ € FIRST(X).
3. Se X — ¢ ¢ uma producao, entdo ¢ € FIRST(X).

Por outro lado, para calcular o conjunto FOLLOW para todos os nao terminais,
sao utilizadas as seguintes regras:

1. Inclua $ em FOLLOW(S), onde S é o simbolo inicial da gramatica.

2. Se houver uma produgdo A — «aBf3, entao todos os simbolos de FIRST(f)
exceto € devem estar em FOLLOW(B).
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3. Se € € FIRST(S) ou 8 = ¢, entao tudo que estiver em FOLLOW(A) deve estar
também em FOLLOW(B).

E os procedimentos seguem o mesmo padrao do conjunto FIRST, até que o con-
junto estabilize.

3.6.1 Exemplo de Calculo dos Conjuntos

Nesta secao ¢ apresentado um exemplo pratico de calculo dos conjuntos FIRST e
FOLLOW, utilizando uma gramatica para aritmética simples ajustada para nao conter
recursoes a esquerda. O objetivo é compreender como esses conjuntos sao construi-
dos e como eles auxiliam o parser a tomar decisoes durante a analise sintatica.

Considere a seguinte gramatica sem recursao a esquerda:

E—TFE
E - +TE|¢
T—FT
T - xFT |e
F— (FE)|id

As reapresentacoes a seguir demonstram a execucao dos passos utilizados para
calcular e construir os conjuntos FIRST e FOLLOW:

FIRST(F) = { (, id }

FIRST(T) = FIRST(F) = { (, id }
FIRST(E) = FIRST(T) = { (, id }
FIRST(E") = { +, ¢ }
FIRST(T’) = { *, ¢ }

FOLLOW(E) = { ), $ }

FOLLOW(E’) = FOLLOW(E) = { ), $ }
FOLLOW(T) = { +, ), $ }

FOLLOW(T’) = FOLLOW(T) ={ +, ), $ }
FOLLOW(F) = { *, +, ), $ }

Este exemplo mostra, de forma concreta, como os conjuntos FIRST e FOLLOW
sao determinados para cada nao terminal. Ao calcular esses conjuntos, é possivel
garantir que o parser do Micro C' consiga prever corretamente quais produgoes
devem ser aplicadas em cada situagao, facilitando a construcao da arvore sintatica
e evitando erros durante a compilagao.
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3.6.2 Gramaticas LL(1)

Os conjuntos FIRST e FOLLOW sao as ferramentas formais que permitem responder
a uma pergunta importante sobre a gramatica. Ou seja, é necessario determinar se
uma gramatica é simples o suficiente para ser analisada por um parser preditivo.
E esses conjuntos auxiliam nesse processo.

Um parser preditivo, como o nome sugere, tenta prever qual regra gramatical
aplicar olhando apenas um token & frente na entrada. Esta é a abordagem mais
rapida e eficiente. A alternativa seria um parser com retrocesso (ou backtracking):
um método onde o parser adivinha uma regra. Se essa regra falhar (ex: 50 tokens
depois), ele deve voltar atras (retroceder) e tentar outra regra. O backtracking é
extremamente lento e complexo [1,13| de implementar e por isso nao foi utilizado
no compilador do Micro C.

Para garantir que o parser possa ser preditivo e nao precise de backtracking, a
gramatica deve atender a uma propriedade especial. Essa propriedade é conhecida
como LL (Left-to-right, Leftmost), onde o primeiro “L"indica que a entrada ¢é lida
da esquerda para a direita, e o segundo “L"indica que a analise constréi uma de-
rivagdo mais a esquerda. Usando uma gramatica LL(1), é possivel construir um
analisador sintéatico preditivo que reconhece a cadeia de entrada (da esquerda para
a direita), produzindo uma derivagdo mais & esquerda, e que decide qual produgao
usar examinando apenas um simbolo a frente da entrada, o “1"da notagao LL(1)
indica exatamente essa quantidade de lookahead.

Para que uma gramatica G seja LL(1), ela deve satisfazer as seguintes condigoes,
para toda par de produgoes A =+ ae A — :

1. FIRST(a) N FIRST(B) = ()
2. No méaximo uma entre o ou [ pode derivar
3. Se £ € FIRST(j3), entdo FIRST( o) N FOLLOW(A) = )

Essas condigoes garantem que a produgao correta pode ser escolhida apenas com
base no proximo simbolo da entrada.

3.6.3 Gramaticas que nao sao LL(1)

A definigao de LL(1) é estrita, e nem toda graméatica pode ser transformada para
satisfazer suas condigoes. Uma gramaética falha em ser LL(1) se for intrinsecamente
ambigua ou se requerer mais de um simbolo de antecipagao (lookahead) para decidir
qual produgao aplicar. Quando uma gramética viola as condi¢oes (por exemplo, se
FIRST(«) NFIRST(f) # (), a tabela de andlise preditiva resultante conteria multiplas
producoes, indicando que o parser nao pode tomar uma decisao deterministica.

Exemplo: Considere a graméatica abaixo, que simula a ambiguidade do uso de
else:
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S — if F then SS5'|a
S"—else S|e
E—b

Essa graméatica nao é LL(1), pois a entrada da tabela para S’ com simbolo
else contém duas producoes possiveis, o que causa ambiguidade. A resolucao mais
comum para esse tipo de problema ¢é adotar a convengao de associar o else ao then
mais proximo, que corresponde a escolher a producao S’ — else S.

3.6.4 Analise Preditiva

Uma variacao eficiente da descida recursiva é o analisador preditivo, que evita o
uso de retrocesso. Nessa abordagem, a escolha da producao correta para um nao
terminal é feita de forma deterministica, com base no proximo simbolo da entrada
(ou nos proximos k simbolos, no caso geral de uma gramatica LL(k). Na pratica,
costuma-se usar k = 1, dando origem as gramaticas LL(1).

A partir desses conjuntos, é possivel construir uma tabela preditiva que relaci-
ona nao terminais e simbolos de entrada as producoes apropriadas. Com essa tabela,
o analisador preditivo pode decidir, com base no préximo simbolo, qual producao
utilizar sem necessidade de retrocesso.

Exemplo: Suponha que temos a seguinte gramatica transformada:

E—>TE
E' — +TFE' | ¢
T —id

Com base nos conjuntos FIRST e FOLLOW, a tabela preditiva pode ser cons-
truida para guiar o analisador na escolha correta das producoes para E’ com base
no simbolo seguinte na entrada. Se o préximo simbolo for +, é escolhida a derivagao
E'" — +TE'. Se for um simbolo do conjunto FOLLOW de E’, é aplicada a derivacao
E' — e

3.6.5 Recuperagao de Erros

Assim como discutido anteriormente, analisadores descendentes também podem ado-
tar estratégias de recuperacao de erros. Mesmo que a anéalise falhe em um determi-
nado ponto, é desejavel que o compilador continue examinando o restante do codigo,
reportando multiplos erros em uma tnica execuc¢ao. Para isso, ¢ comum utilizar o
modo de panico, onde simbolos da entrada sao descartados até que se encontre um
simbolo seguro que pertenga ao conjunto FOLLOW de algum nao terminal relevante.
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Essa abordagem simples permite que o compilador avance a analise e retome a
derivagao a partir de pontos bem definidos, como o final de uma instrucao ou um
delimitador importante.

3.7 A Arvore Sintatica Abstrata (ASA)

Enquanto a arvore de derivagao ¢ uma representagao literal de como a gramatica
gera uma sequéncia de tokens, na pratica, os compiladores utilizam uma estrutura
mais otimizada e informativa: a Arvore Sintdtica Abstrata (ASA), ou AST (do
inglés, Abstract Syntaz Tree). A ASA é o principal resultado da analise sintatica e
serve como a estrutura de dados central para todas as fases subsequentes.

Diferente da arvore de derivacao, a ASA condensa a estrutura do programa,
removendo nos intermediarios e tokens que nao carregam significado essencial, como
parénteses para agrupamento ou pontos e virgulas como terminadores de instrugao.
Ela captura a estrutura hierarquica e logica do coédigo de uma forma muito mais
direta. Por exemplo, uma expressao como a + b * c seria representada em uma
arvore que reflete diretamente a precedéncia dos operadores, com a multiplicacao
com um no folha mais profundo que o da adigao.

3.7.1 Estrutura de um N6 da ASA no Micro C

Para construir a ASA, primeiro foi definida a estrutura de um né individual no
arquivo ast.h. Cada nd na arvore representa um conceito gramatical, como uma
declaracao, uma expressao ou um lago, e precisa de uma etiqueta para que o com-
pilador saiba o que ele representa. Esta etiqueta ¢ a informagao central que as fases
subsequentes (como a andlise semantica e a geragao de codigo) usardo para decidir
qual acao tomar.

Para implementar este sistema de etiquetas, foi utilizado um enumerador (enum)
chamado NodeType. Este enum é, essencialmente, o vocabuldrio da ASA. Ele define
formalmente todo tipo de construcao que o analisador sintatico é capaz de reconhecer
e armazenar. Cada membro deste enum (como NODE_PROGRAM ou NODE_BINARY_OP)
atua como um tipo de no, permitindo que a estrutura ASTNode (que seréd visto
a seguir) saiba como interpretar os dados que armazena em sua union, definida
dentro da estrutura.
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O trecho de codigo a seguir, extraido do ast.h, detalha alguns tipos de nés que
o compilador Micro C utiliza:

//arquivo: src/ast/ast.h (trecho)
typedef enum {
NODE_UNDEFINED,

NODE_PROGRAM, // N6 raiz da AST
NODE_FUNCTION_DEF, // Definig8o de uma fungdo
NODE_VAR_DECL, // Declaragio de uma variavel
NODE_ASSIGN, // Operagdo de atribuigdo
NODE_IF, // Estrutura condicional ’if-else’
NODE_FOR, // Lago ’for’
NODE_RETURN, // Comando ’return’
NODE_CALL, // Chamada de fung3o
NODE_BINARY_OP, // Operagdo binaria (ex: +, <, ==)
NODE_ID, // Um identificador
NODE_INTEGER_CONST, // Uma constante inteira
//... outros tipos de nds

} NodeType;

Com os tipos de nés definidos, a estrutura principal, ASTNode, ¢é criada. Ela
contém o tipo do no, a linha do codigo para facilitar mensagens de erro, ponteiros
para conectar os nos e formar a arvore e uma estrutura do tipo union para armazenar
dados especificos de forma eficiente.

A forma como os nos sao conectados é um detalhe de implementacao importante.
Em vez de cada né ter um niamero fixo de filhos (o que seria inflexivel), foi utilizada
a representacao primeiro filho, proximo irmao. Ou seja, o f£ilho tem um ponteiro
que aponta para o primeiro filho do n6 atual e o proximo_irmao um ponteiro que
aponta para o proximo filho do mesmo né pai. Os filhos de um n6é formam uma
lista encadeada por meio deste ponteiro.

Essa técnica é poderosa, pois permite que um né tenha um nimero varidvel de
filhos. Um no6 de atribuigao (NODE_ASSIGN) sempre teré dois filhos (o lado esquerdo
e o direito), mas um né de bloco (NODE_BLOCK) pode ter dezenas de filhos, um para
cada instrugao.
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O trecho de codigo abaixo mostra a estrutura do ASTNode:

//arquivo: src/ast/ast.h (trecho)
typedef struct ASTNode {

NodeType node_type;

int linha;

struct ASTNode *filho;

struct ASTNode *proximo_irmao;

union {
long int_value;
char char_value;
char* string_value;
TokenType op_type;
} data;
} ASTNode;

3.7.2 Construindo e Manipulando a Arvore

Uma vez que o objetivo era que o codigo do parser fosse simples para facilitar
a compreensao de sua implementacao, a alocacao de memoria e conexao entre os
nos foi encapsulada em fungoes auxiliares (em ast.c). A funcdo criar_no(), por
exemplo, foi usada para alocacao e inicializacao de um novo ASTNode:

//arquivo: src/ast/ast.c (trecho)

ASTNode* criar_no(NodeType type, int linha) {
ASTNode* no = (ASTNode*) malloc(sizeof (ASTNode)) ;
if (no == NULL) { /*...*/ exit(EXIT_FAILURE); }

no->node_type = type;

no->linha = linha;

no->filho NULL;

no->proximo_irmao = NULL;

memset (&no->data, 0, sizeof(no->data));

return no;

A funcao mais importante para a construcao da arvore é a adicionar_filho().
Ela implementa a logica da representagao primeiro filho, prorimo irmao, garantindo
que novos filhos sejam adicionados ao final da lista de irmaos, preservando a ordem
das instrugoes do codigo.
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O trecho de codigo que implementa a fungao adicionar_filho esta abaixo:

//arquivo: src/ast/ast.c (trecho)
void adicionar_filho(ASTNode* pai, ASTNode* filho) {
if (pai == NULL || filho == NULL) return;

if (pai->filho == NULL) {
//Se for o primeiro filho
pai->filho = filho;

} else {
//Se ja existem filhos, percorre a lista de irmfos até o final
ASTNode* irmao_atual = pai->filho;
while (irmao_atual->proximo_irmao != NULL) {

irmao_atual = irmao_atual->proximo_irmao;

3
//Adiciona o novo filho no final da lista
irmao_atual->proximo_irmao = filho;

Com essas estruturas e fungoes, o analisador sintatico pode construir uma re-
presentacao fiel do programa. Por exemplo, para a instrucao v[i] = 47;, o parser
executaria uma sequéncia de chamadas como:

—_

. criar_no(NODE_ASSIGN, ...) para criar o n6 de atribuicao.

2. criar_no(NODE_ARRAY_ACCESS, ...) para o lado esquerdo, v[i].
3. criar_no(NODE_INTEGER_CONST, ...) para o lado direito, 47.

4. adicionar_filho(no_assign, no_array_access).

5. adicionar_filho(no_assign, no_integer_const).

O resultado é uma sub-arvore que captura a operagao e a deixa pronta para ser
validada pelo analisador seméantico.

3.8 Analisador Sintatico

O analisador sintatico, ou parser, é a etapa responsavel por verificar se a sequéncia
de tokens produzida pelo analisador 1éxico esta estruturada conforme as regras da
gramatica da linguagem. Em outras palavras, ele garante que o codigo fonte siga a
sintaxe correta da linguagem.

No compilador do Micro C. foi implementado um analisador sintatico do tipo
descendente recursivo, onde cada regra gramatical é representada por uma funcao
em C que processa os tokens na ordem correta. Essa abordagem permite um con-
trole detalhado do processo de analise e facilita a deteccao de erros sintaticos e sua
localizagao no codigo.
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3.8.1 Processamento de tokens esperados

Uma operacao fundamental do analisador sintdatico é a verificagao e o processamento
do token atual para garantir que ele corresponda ao simbolo esperado conforme
as regras da gramatica. Para isso, foi utilizada a funcao match, que recebe dois
argumentos: um ponteiro para o parser e o tipo do token que se espera encontrar
na entrada.

Se o tipo do token atual coincidir com o esperado, o analisador avanca para o
proximo token, processando-o com a funcao advance. Caso contrario, a funcao error
é acionada para reportar uma mensagem de erro sintatico e encerrar o processo de
compilagao.

Esse procedimento garante que o codigo-fonte esta sintaticamente correto e ade-
rente a estrutura da linguagem, facilitando a deteccao precoce de desvios e incon-
sisténcias durante a anélise.

A implementacao da funcao match ¢é dividida em duas partes. A primeira parte,
mostrada abaixo, trata se o token atual é o esperado, ele é processado:

void match(Parser *parser, TokenType esperado) {

if (parser->current_token && parser->current_token->tipo == esperado) {
advance (parser) ;
} else {

A segunda parte da funcao é o bloco else, que trata o erro sintatico quando o
token é inesperado. A fungao constréi uma mensagem de erro clara e interrompe a
compilacgao:

//... (continuacdo da func&o match)
} else {
char msg[100];
snprintf (msg, sizeof(msg), "Token inesperado. Esperado: %s",
token_name (esperado)) ;
error (parser, msg);

A funcao match encapsula uma operacao de verificacdo simples, porém critica.
Ela compara o tipo do token atual armazenado em parser->current_token com
o tipo especificado como argumento. Havendo correspondéncia, o analisador chama
a funcao advance, que realiza a leitura do proximo token da lista encadeada de
entrada.

Quando ha discrepancia entre o tipo atual e o esperado, a funcao monta uma
mensagem de erro que informa o que era esperado, utilizando a funcao token_name
para converter o tipo do token em uma representacao textual amigavel. Essa men-
sagem é repassada a funcao error, que imprime o erro com o nimero da linha e
interrompe a compilagao.
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Esse mecanismo é aplicado sistematicamente em todas as funcoes de analise,
servindo como um verificador local que reforga a precisao e previsibilidade do parser.
Como resultado, erros de sintaxe sao detectados no ponto exato de ocorréncia, com
mensagens explicativas que auxiliam na corregao rapida do codigo-fonte.

Além disso, a centralizacao da verificacdo na funcao match é uma pratica de
projeto importante. Ela promove a clareza, evita duplicacao de cdédigo nas fungoes
de analise e assegura uma resposta uniforme para erros sintaticos, o que torna o
analisador mais robusto e de facil manutencao.

3.8.2 Avanco para o préximo token

A cada vez que um token esperado é encontrado e corretamente processado, o ana-
lisador sintdtico precisa avancar para o proximo elemento da sequéncia léxica. Essa
transicao ¢ realizada pela funcao advance, que atualiza o ponteiro current_token
do parser para apontar para o proximo noé da lista de tokens gerada pelo analisador
léxico.

A implementagao é simples, mas desempenha um papel essencial na anélise sinta-
tica, pois garante que o parser esteja sempre posicionado corretamente na sequéncia
de entrada. A seguir o c6digo da funcao advance:

void advance(Parser #*parser) {
if (parser->current_token != NULL) {
parser->current_token = parser->current_token->proximo;

}

O funcionamento da funcao advance é simples: ele apenas atualiza o campo
current_token para apontar para o proximo elemento da lista de tokens. Isso supoe
que os tokens foram previamente organizados em uma lista encadeada simples, na
qual cada token aponta para o préximo por meio do campo proximo.

Esse mecanismo sequencial reflete o fluxo natural da leitura de um programa
fonte, permitindo ao analisador percorrer token por token enquanto valida a estru-
tura sintatica com base nas regras da gramatica.

E importante destacar que, ao projetar a estrutura de tokens, deve-se garantir
que o ultimo elemento da lista aponte para NULL, marcando assim o final da entrada.
Isso permite a funcao advance lidar corretamente com o fim do fluxo de entrada,
evitando acessos invalidos & memoria.

Por outro lado, a fungao advance implementa o avanco linear da entrada e atua
em conjunto com a func¢ao match para controlar o fluxo de reconhecimento de tokens.
Juntas, essas duas fungoes formam a base do controle sintético sobre a leitura da
entrada.
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3.9 Sumario

Neste capitulo, avangamos para a segunda fase da compilacao: a analise sintatica.
Foi explicado como o parser recebe uma sequéncia linear de tokens da analise léxica
e valida se essa sequéncia obedece & estrutura gramatical da linguagem do Micro C.

Inicialmente foi discutida a teoria sobre Gramaticas Livres de Contexto
(GLC), que sao a especificagao formal para linguagens de programagao. Aém disso,
foi detalhado como a hierarquia classica de expressoes (Expressao, Termo, Fator) é
usada para garantir a precedéncia de operadores. Em seguida, foram identificados
os problemas que a recursao a esquerda (ex: F — FE + T) pode causar e o
porqué isso impede o uso de parsers descendentes. Em seguida, apresentou-se como
o compilador do Micro C' implementa o seu parser descendente recursivo.

O proximo passo foi discutir a importancia da Arvore Sintatica Abstrata
(ASA) como o principal produto desta fase de compilagdo, em contraste com a
arvore de derivacao teérica. E foi comparada a implementacao da ASA do Micro C
com a representagao primeiro filho, prozimo irmao (filho e proximo_irmao), que
permite que nés como NODE_BLOCK tenham um ntmero varidvel de filhos.

Por fim, foram revisadas as fun¢oes auxiliares que encapsulam a logica de cons-
trucao da arvore, mantendo o cdédigo do parser limpo e concentrado na gramética.
Dessa forma, com a lista linear de tokens e a estrutura de arvore hierarquica (a
ASA), o codigo esta pronto para a proxima etapa que serd explorada no proximo
capitulo: a andlise de significado (seméntica).
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Analise Semantica

Get the habit of analysis - analysis will in time enable synthesis to become
your habit of mind.

— Frank Lloyd Wright

No Capitulo 3, exploramos a anélise sintatica e como o compilador constréi a
Arvore Sintatica Abstrata (ASA) a partir das regras da gramatica. Essa estrutura
é essencial, mas nao é suficiente, pois a anélise sintatica apenas valida a forma do
codigo, nao o seu significado. Um programa pode ser gramaticalmente perfeito e,
ainda assim, ser semanticamente invalido, por exemplo, ao tentar somar um nimero
inteiro a um wvetor.

Neste capitulo, serd abordada a seguinte fase: a analise semantica. Esta é
a etapa responsavel por interpretar a ASA e verificar se ela faz sentido dentro do
contexto da linguagem Micro C. Nesta etapa de compilagao serao explorados como
o compilador utiliza uma Tabela de Simbolos para rastrear variaveis, checar tipos,
validar escopos e garantir que as construgoes feitas pelo programador sejam logicas
e coerentes.

4.1 Além da Gramatica: Sentido e Contexto

A melhor analogia para a diferenca entre a anélise sintatica e a seméantica vem da
linguistica. Por exemplo, a frase: ideias verdes incolores dormem furiosamente. E
possivel observar que do ponto de vista sintatico, a frase esta correta pois segue a
estrutura convencional de sujeito + verbo + advérbio. No entanto, a frase nao
tem significado coerente e, por isso, esta semanticamente incorreta.

Da mesma forma, um programa pode seguir todas as regras gramaticais de uma
linguagem e ainda assim ser semanticamente invalida.
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Considere o seguinte trecho de cédigo em Micro C-:

int a[10];
int b[10];
int c;

c =a *x b; // Erro Semadntico!

Para o analisador sintatico, a linha ¢ = a * b; é perfeitamente vélida. Ele a
enxerga como a estrutura ID = ID * ID;, que corresponde a uma regra gramatical
de atribuigao e expressao. O parser nao sabe (e nem precisa saber) o que a, b e ¢
realmente sao.

A anélise seméantica, por outro lado, adiciona o contexto. Ela consulta a Tabela
de Simbolos e descobre que a e b nao sao numeros, mas sim vetores. A regra
seméntica da linguagem determina que o operador de multiplica¢ao (*) nao é definido
para operandos do tipo vetor. Portanto, é o analisador seméantico que identifica e
reporta este erro.

4.1.1 Verificacao Estatica vs. Dinamica

A anélise seméntica é a principal responsavel pela verificagao estatica. Verifi-
cagoes estaticas sao aquelas que o compilador pode realizar antes da execucao do
programa, apenas analisando o codigo fonte. A checagem de tipos, a verificacao de
declaracao de varidveis e a validacao de parametros de fungoes sao todos exemplos
de verificagoes estaticas. O objetivo é capturar o maior nimero possivel de erros.

No entanto, nem todos os erros podem ser detectados estaticamente. Existem
erros que s6 podem ser identificados durante a execucao, pois dependem dos valores
que as varidveis assumem. Estes sao erros de verificagcao dindmica.

Exemplos classicos incluem:

e Acesso a um vetor fora dos limites: em uma expressao como v[i], se i
for uma variavel, o compilador nao tem como saber em tempo de compilagao
se o valor de i sera valido.

e Divisao por zero: em x / y, o compilador nao pode garantir que o valor de
y nunca sera zero durante a execugao.

e Desreferéncia de ponteiro nulo: o compilador nao pode prever se um
ponteiro tera o valor NULL em um determinado ponto da execugao.

Linguagens como C e, por consequéncia, do Micro C, priorizam a performance
e, portanto, realizam um ntmero limitado de verificagdes dinamicas. A responsa-
bilidade de evitar esses erros de execucao é de responsabilidade do programador.
Linguagens como Java ou Python, por outro lado, inserem automaticamente verifi-
cagoes dinAmicas em seu ambiente de execugao (como a Java Virtual Machine ou o
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interpretador Python), o que as torna mais seguras, mas com um custo de perfor-
mance. Esse custo se deve aos ciclos extras de CPU gastos para realizar checagens
de seguranca, por exemplo, verificar se um indice esta dentro dos limites de um vetor
em cada execucao, algo que linguagens como C nao fazem.

4.1.2 Atributos, Regras Semanticas e a Tabela de Simbolos

Para realizar suas tarefas, o analisador seméantico trabalha com o conceito de atri-
butos, que sao informagoes associadas aos nés da ASA. O atributo mais importante
¢ o tipo de uma expressao. O trabalho do analisador é percorrer a arvore e calcular
os atributos para cada né.

Esse processo é guiado por regras seméanticas. Cada producao da gramatica
(representada por um tipo de né na ASA) tem uma ou mais regras semanticas
associadas. Por exemplo, para um né de operacao binaria que representa a regra
expr -> exprl + expr2, a regra semantica seria:

“O tipo de expr serd inteiro se os tipos de exprl e expr2 forem ambos
inteiro. Caso contrdrio, reporte um erro de tipo."

Para aplicar essa regra, o analisador precisa saber os tipos de exprl e expr2.
Se eles forem identificadores (variaveis), o analisador consulta a Tabela de Simbolos
para obter seus tipos declarados. Se forem outras expressoes, ele calcula seus tipos
recursivamente.

Dessa forma, a ASA fornece a estrutura, a Tabela de Simbolos fornece o contexto
inicial, e as regras seméanticas guiam o processo de validacao e de enriquecimento
da Tabela de Simbolos com os atributos calculados. Este processo nao se limita
a verificagao de tipos, mas inclui o registro de informagoes vitais para o back-end,
como o célculo do desvio de memoria (offset) na pilha de execugao para cada variavel
e parametro.

4.2 Objetivos da Analise Seméantica

Enquanto a anélise sintéatica se preocupa com a forma do cédigo: esta frase estd
gramaticalmente correta?, a analise semantica se preocupa com o significado: esta
frase, embora gramaticalmente correta, faz algum sentido? ou seja, ela atua como
uma camada de verificagao profunda, utilizando a ASA gerada pelo parser como
sua principal estrutura de entrada.

Para realizar suas tarefas, o analisador seméntico percorre a arvore e, com o
auxilio da Tabela de Simbolos, valida a coeréncia do programa, respondendo a per-
guntas como esta varidvel jd foi declarada? ou € possivel somar um inteiro com um
caractere?

A anélise seméantica tem como principais objetivos: verificar se todos os identifi-
cadores usados foram devidamente declarados; garantir que operadores e operandos
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sejam compativeis em termos de tipo; detectar usos incorretos de variaveis, fungoes e
estruturas; controlar escopos e visibilidade de simbolos em blocos de c6digo; validar
chamadas de fungoes quanto ao nimero e tipos dos argumentos; e, finalmente, gerar
anotagoes semanticas na arvore de sintaxe para uso na tradugao posterior.

Por meio dessas tarefas, a analise semantica atua como uma ponte entre a forma
(sintaxe) e o comportamento (execugao), consolidando a informacao necessaria para
transformar cédigo fonte em passos executéaveis pelo computador com seguranca e
precisao.

Considere o exemplo abaixo com um erro seméantico:

int x;
x = ‘P’; // Erro: atribuigdo de caractere a uma varidvel inteira
Esse trecho é sintaticamente valido: a atribuicao x = ‘P’; esta de acordo com

a gramatica da linguagem. No entanto, semanticamente ele esta incorreto, pois em
C nao é permitido atribuir um valor booleano diretamente a uma variavel do tipo
int sem conversao explicita. Esse tipo de erro nao pode ser capturado pela analise
sintatica apenas pela analise semantica.

Como foi possivel observar, a anélise semantica atua sobre a arvore gerada pela
analise sintatica, enriquecendo-a com informacoes contextuais: tipos, escopos, de-
claracoes, coeréncia de uso e outros atributos. Além disso, ela também prepara a
arvore para a proxima fase do compilador: a geracao de codigo intermediario que
serd o tema do Capitulo 5.

4.3 O Papel da Tabela de Simbolos

Um dos elementos centrais da anélise seméantica é a Tabela de Simbolos. Essa
estrutura de dados armazena informacoes relevantes sobre cada identificador do
programa: tipo, categoria (variavel, fungao, constante), escopo, entre outros.

Sempre que uma nova declaracao é encontrada, um simbolo correspondente é
inserido na tabela. Quando um identificador é utilizado, o compilador consulta essa
tabela para verificar se ele foi declarado corretamente, se esta acessivel no escopo
atual e se esta sendo usado de maneira coerente com seu tipo.

A Tabela de Simbolos é fundamental para a verificacdo seméntica, pois permite
rastrear e validar o uso de nomes ao longo do programa, garantindo consisténcia e
evitando ambiguidades.

4.3.1 Exemplos de Erros Seméanticos

A seguir, serao apresentados exemplos de erros seméanticos comuns, que nao seriam
detectados por um analisador sintatico.
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Uso de variavel nao declarada

y = 10; // Erro: ’y’ nfo foi declarada

Incompatibilidade de tipos

int x;
x = "abc"; // Erro: tentativa de atribuir string a inteiro

Chamada de fungao com ntimero incorreto de argumentos

int soma(int a, int b);
soma(10); // Erro: nimero de argumentos incompativel

Acesso a identificadores fora de escopo

int funcao() {
int z = 5;
}

z = 6; // Erro: ’z’> n3o estad mais em escopo

E possivel observar que esses erros envolvem significado e contexto e nao apenas
forma. Por isso, a analise seméantica é a tnica fase capaz de detecta-los adequada-
mente, completando o processo de validagao do programa.

4.4 Estrutura da Tabela de Simbolos

Como discutido na Secao 4.3, a Tabela de Simbolos é uma estrutura essencial no
processo de compilagao, especialmente durante a anélise semantica. Ela armazena
informagoes sobre os identificadores presentes no codigo fonte, como variaveis e fun-
¢oes, incluindo seus tipos e propriedades. Por meio dessa estrutura, o compilador
assegura a coeréncia semantica do programa, verificando, por exemplo, se uma vari-
avel foi declarada antes de seu uso, se ha redeclaracoes indevidas no mesmo escopo
ou se os tipos envolvidos em uma operacao sao compativeis.

Além disso, a Tabela de Simbolos precisa tratar corretamente com os escopos
de variavel, permitindo que blocos de codigo, como fungoes ou estruturas de con-
trole, mantenham declaracoes independentes. Essa caracteristica é essencial para
respeitar as regras de visibilidade definidas pela linguagem, onde variaveis locais
tém precedéncia sobre variaveis globais.

O objetivo desta segao é apresentar a implementacao da Tabela de Simbolos no
compilador do Micro C, detalhando sua organizagao, as operagoes realizadas sobre
ela e sua integracao com o analisador sintatico. A solucao adotada utiliza uma pilha
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de tabelas de simbolos para gerenciar escopos aninhados, garantindo uma analise
semantica robusta e eficiente.

4.4.1 Organizagao em Pilha de Escopos

Para gerenciar escopos, a Tabela de Simbolos é organizada como uma pilha de
tabelas, representada pela estrutura PilhaTabelasSimbolos. Cada tabela na pilha
corresponde a um escopo especifico, com o escopo mais interno localizado no topo.
Ao entrar em um novo bloco (como o corpo de uma func¢ao), uma nova tabela é
empilhada. Ao sair do bloco, a tabela é desempilhada, descartando os identificadores
locais e preservando a hierarquia de escopos.

A estrutura PilhaTabelasSimbolos é definida como segue:

/*representa a pilha de tabelas de simbolos para controle de escopo. */
typedef struct {

TabelaSimbolos *tabelas[MAX_SIMBOLOS];

int topo;
} PilhaTabelasSimbolos;

Os campos da estrutura sao representados por: tabelas, que é um vetor de
ponteiros para as estruturas TabelaSimbolos, responsavel por armazenar os eScopos
aninhados até o limite de MAX_SIMBOLQOS; e topo, um numero inteiro que indica o
indice da tabela atualmente ativa (o escopo corrente no topo da pilha).

O uso de uma pilha para gerenciar escopos é uma técnica consagrada em compi-
ladores [1,4,13], pois reflete a natureza hierarquica da andlise sintatica e seméantica,
garantindo que os identificadores sejam acessados conforme as regras de visibilidade
da linguagem.

4.4.2 Estrutura dos Simbolos e Tabelas

Cada Tabela de Simbolos, representada pela estrutura TabelaSimbolos, armazena
um conjunto de identificadores, cada um descrito pela estrutura Simbolo. Essas
estruturas sao definidas como segue:

/** @brief armazena informagdes sobre um dnico simbolo. */
typedef struct {
char nome[100] ;
TokenType tipo;
int is_function;
TokenType param_tipos[MAX_PARAMETROS] ;
int num_parametros;
int is_array;
int array_size;
int memory_offset;
int is_parameter;
} Simbolo;
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/* representa uma tabela de simbolos para um Gnico escopo. */
typedef struct {

Simbolo simbolos[MAX_SIMBOLOS] ;

int tamanho;
} TabelaSimbolos;

Os campos da estrutura Simbolo armazenam os dados essenciais para a analise
seméntica e geracao de codigo: nome (o lexema do identificador); tipo (categoria
de dado, ex: INT); flags booleanas como is_function, is_array e is_parameter
para categorizar o identificador; dados especificos como array_size e assinatura
de fungbes (param_tipos, num_parametros); e o memory_offset, que determina o
endereco relativo da variavel na pilha de execucao.

J& a estrutura TabelaSimbolos gerencia o escopo individual através dos cam-
pos: simbolos, que é um vetor estatico responsavel por armazenar as definigoes
do escopo; e tamanho, um contador inteiro que indica a quantidade de simbolos
atualmente registrados na tabela.

Essa organizacao permite que cada escopo mantenha um conjunto independente
de identificadores, com suporte a crescimento dindmico para acomodar programas
de tamanho variavel.

4.4.3 Insercao e Busca de Simbolos

As operagoes principais na Tabela de Simbolos sao a insercao e a busca de identifi-
cadores, implementadas pelas funcoes:

adicionar_simbolo
buscar_simbolo_no_escopo_atual
buscar_simbolo_em_todos_escopos

A funcado adicionar_simbolo é o principal método para popular uma tabela.
Ela insere um novo identificador no escopo atual (o topo da pilha), gerenciando
a alocacao de memoria do vetor de simbolos dinamicamente, como demonstra sua
implementagao:

Simbolo* adicionar_simbolo(PilhaTabelasSimbolos *pilha,
const char *nome, TokenType tipo, int is_function, int is_array,

FACOM-UFMS



Analise Seméantica 64

/*...continuagdo...x*/
int array_size, int is_parameter) {
if (pilha->topo < 0) {
printf ("Erro: Nenhuma tabela de simbolos disponivelln");
return NULL;
}
TabelaSimbolos *tabela = pilha->tabelas[pilha->topo];
if (tabela->tamanho >= MAX_SIMBOLOS) {
printf ("Erro: Tabela de simbolos cheia\n");
return NULL;
}
Simbolo *s = &tabela->simbolos[tabela->tamanho];
strncpy(s->nome, nome, 100);
s->tipo = tipo;
s->is_function = is_function;
s->num_parametros = O;
//salva as novas informagdes do array
s->is_array = is_array;
s->array_size = array_size;

s->is_parameter = is_parameter;
s->memory_offset = 0; //serd calculado pelo semantic.c

tabela->tamanho++;

return s;

Para evitar a redeclaracao de um simbolo no mesmo escopo, o analisador seméan-
tico utiliza a fungao buscar_simbolo_no_escopo_atual. Conforme detalhado no
codigo abaixo, esta funcao realiza uma busca linear simples apenas na tabela que
esta no topo da pilha:

Simbolo* buscar_simbolo_no_escopo_atual (PilhaTabelasSimbolos
*pilha, const char *nome) {
if (pilha->topo < 0) {
return NULL;
}
TabelaSimbolos *tabela = pilha->tabelas[pilha->topo];
for (int i = 0; i < tabela->tamanho; i++) {
if (strcmp(tabela->simbolos[i] .nome, nome) == 0) {
return &tabela->simbolos[i];
}
}
return NULL;

De forma complementar, para validar o uso de um identificador (garantindo que
ele foi declarado), o analisador utiliza a fungao buscar_simbolo_em_todos_escopos.
Esta implementacao demonstra a légica de busca em escopos aninhados, iterando
do topo da pilha (pilha->topo) até a base (o escopo global):
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Simbolo* buscar_simbolo_em_todos_escopos(PilhaTabelasSimbolos
*pilha, const char #*nome) {
//itera da tabela do topo (escopo local) para a base (escopo global)
for (int i = pilha->topo; i >= 0; i--) {
TabelaSimbolos *tabela = pilha->tabelas[i];
for (int j = 0; j < tabela->tamanho; j++) {
if (strcmp(tabela->simbolos[j].nome, nome) == 0) {
return &tabela->simbolos[j];

3

}
return NULL;

4.4.4 Gerenciamento de Escopos

O gerenciamento de escopos ¢ realizado pelas fungoes:
empilhar_tabela
desempilhar_tabela

Essas funcoes implementam a seméantica de pilha para o controle de escopos. A
funcao empilhar_tabela ¢ invocada sempre que o analisador entra em um novo
bloco (como o corpo de uma fungao), alocando dinamicamente uma nova estrutura
TabelaSimbolos na memoria, desde que o limite maximo da pilha fixa nao tenha
sido atingido.

Abaixo a implementacao da funcao:

void empilhar_tabela(PilhaTabelasSimbolos #*pilha) {
if (pilha->topo + 1 >= MAX_SIMBOLOS) {
printf ("Erro: Pilha de tabelas cheia\n");
exit (EXIT_FAILURE);
}

TabelaSimbolos *nova_tabela = malloc(sizeof (TabelaSimbolos));
if (nova_tabela == NULL) {
printf ("Erro: Falha ao alocar memdéria para nova tabela\n");
exit (EXIT_FAILURE) ;
}
nova_tabela->tamanho = 0;
pilha->tabelas[++pilha->topo] = nova_tabela;

De forma simétrica, a funcao desempilhar_tabela é chamada ao sair do bloco.
Nesta implementacao didatica, a funcao apenas decrementa o indice do topo, fe-
chando logicamente o escopo e impedindo o acesso a varidveis locais fora de seu
contexto. A memoria alocada é preservada temporariamente para permitir a gera-
¢ao de relatorios de depuracao ao final da compilacao. Abaixo o codigo relativo &
fungao:
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void desempilhar_tabela(PilhaTabelasSimbolos #*pilha) {
if (pilha->topo < 0) {
printf ("Erro: Pilha de tabelas vazia\n");
exit (EXIT_FAILURE);

pilha->topo--;

Vale ressaltar que, embora a memoria nao seja liberada no momento do desempi-
lhamento, o ciclo de vida dos dados ¢é gerido corretamente: a liberagao fisica de todos
os recursos é delegada a funcao destruir_pilha_tabelas, executada ao término
do processo de analise.

4.4.5 Processamento da Arvore Sintatica e Validacao

Diferente de compiladores de passagem tnica, a implementagao do Micro C' realiza
a analise semantica de forma sequencial & sintatica. O moédulo seméntico percorre
a Arvore Sintatica Abstrata (ASA) gerada anteriormente, utilizando a Tabela de
Simbolos para validar regras de contexto e escopo. O percurso da arvore ocorre em
profundidade (Tree Walking), interagindo com a tabela em trés momentos-chave:

1. Declaragao de identificadores: ao visitar nés de declaragao (ex: NODE
_VAR_DECL), o analisador verifica se o identificador ja existe no escopo corrente
antes de invocar a funcao adicionar_simbolo.

2. Uso de identificadores: em nos de expressao ou atribuic¢ao, utiliza-se buscar
_simbolo_em_todos_escopos para garantir que a variavel foi declarada e para
recuperar seu tipo para checagem.

3. Gerenciamento de escopos: ao descer em nos de bloco ou func¢ao, o ana-
lisador invoca empilhar_tabela, e ao retornar da visita aos filhos, executa
desempilhar_tabela, garantindo o isolamento das variaveis locais.
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O trecho abaixo, extraido da funcao analisar_no do modulo seméantico, ilustra

como essa validagao é aplicada na préatica ao encontrar uma declaragao de variavel
na ASA:

case NODE_VAR_DECL: {
ASTNode* tipo_no = no->filho;
ASTNode* id_no = tipo_no->proximo_irmao;
char* nome_var = id_no->data.string_value;

//1. verifica duplicidade no escopo atual
if (buscar_simbolo_no_escopo_atual(pilha, nome_var)) {
char msg[200];
snprintf (msg, sizeof(msg), "Variavel ‘Ys’ ja foi declarada.",
nome_var) ;
erro_semantico(msg, id_no->linha);

}

//2. adiciona a Tabela de Simbolos
adicionar_simbolo(pilha, nome_var, tipo_var, 0, is_array, ...);

//3. linkagem: Salva o ponteiro do simbolo no ndé da &arvore
id_no->symbol = buscar_simbolo_no_escopo_atual(pilha, nome_var);
break;

Como foi possivel observar, essa abordagem permite que o compilador trate
escopos complexos e recursao, validando os tipos antes da geragao de codigo.

Vale ressaltar que a implementagao da Tabela de Simbolos utilizou vetores com
busca linear. Em cenérios de producao, essa abordagem é considerada ineficiente

devido a complexidade O(n) nas operagoes de busca [5], sendo preferivel o uso de
Tabelas Hash O(1) [1].

No entanto, para o escopo do Micro C, a escolha pelos vetores foi intencional
e pedagogica. Essa abstragao simplificada reduz a sobrecarga de codigo (como o
tratamento de colisdes), tornando a implementagao mais legivel e facilitando a com-
preensao dos conceitos fundamentais de escopo e tipagem.

4.4.6 Importancia da Tabela na Analise Semantica

Se a Arvore Sintatica Abstrata (ASA) é o esqueleto do programa, a Tabela de
Simbolos é o seu cérebro e memoria. A ASA, por si 86, nao tem contexto; um néd de
identificador x em uma expressao (ex: y = x + 5;) é apenas um no, sem conexao
com a sua declaragao, int x;, que pode ter ocorrido muitas linhas antes, no inicio
do bloco. Para que o compilador possa determinar que esses dois usos x se referem a
mesma entidade, que é uma variavel inteira, ele precisa de uma estrutura que, neste
caso, é a Tabela de Simbolos.

Essa tabela funciona como um banco de dados para todos os identificadores do
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programa. Durante o percurso da ASA, o analisador semantico interage constante-
mente com a Tabela de Simbolos para realizar suas verificacoes, permitindo valida-
¢oes como: a declaragao prévia de variaveis antes de seu uso, por exemplo,
em x = 10; se x nao foi declarado; compatibilidade de tipos em atribuigoes,
por exemplo, em int x = ‘a’;; e, finalmente, a validagcao de funcgoes, como a
existéncia de main e a auséncia de redeclaracoes.

Além disso, a Tabela de Simbolos nao apenas suporta a anélise seméantica, mas
também ¢é a base para etapas posteriores de compilagao, como a geracao de codigo
e otimizagao, onde informagoes sobre tipos e escopos sao importantes.

Por esses motivos, essa tabela é um componente indispensavel do compilador,
facilitando a analise seméantica por meio do armazenamento e gerenciamento de
identificadores. Sua implementacao, baseada em uma pilha de tabelas dinadmicas,
suporta escopos aninhados de forma eficiente, respeitando as regras de visibilidade
da linguagem.

4.5 Sumario

Neste capitulo, exploramos a terceira fase do processo de compilacao, a anélise
semantica, que é responsavel por verificar o significado e a coeréncia do codigo-
fonte. Dessa forma, embora um programa possa estar sintaticamente correto, ele
ainda pode conter erros de logica, como incompatibilidade de tipos ou o uso de
varidveis nao declaradas.

Para realizar essa validacao, foi introduzida uma estrutura de dados chamada
de Tabela de Simbolos. Durante a avaliagao de fungoes importantes e do uso da
tabela no processo de compilagao, foram explorados detalhes da implementacao
de uma pilha de tabelas, que é a estratégia fundamental para gerenciar os escopos
aninhados da linguagem. Em seguida, analisados os codigos das principais fungoes
que manipulam essa pilha e como elas colaboram no processo de resolucao de erros
semanticos no céodigo do Micro C.

Por fim, foram avaliados os cenarios de como o analisador seméntico interage
com essa Tabela de Simbolos ao percorrer a ASA para validar o c6digo e suas re-
gras de contexto. Com a conclusao desta fase, o compilador nao apenas tem uma
representacio estrutural do programa que é a Arvore Sintatica Abstrata, mas tam-
bém uma compreensao completa do contexto e do significado de cada identificador,
deixando o caminho preparado para as fases de back-end de compilacdo (geragao de
intercode e codigo em Assembly).
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Capitulo 5

Geracao de Codigo Intermediario

The greatest revolution of our generation is the discovery that human be-
ings, by changing the inner attitudes of their minds, can change the outer
aspects of their lives.

— William James

Os capitulos anteriores abordaram a parte do compilador conhecida como front-
end, ou seja, a compilacao ocorria em torno da analise 1éxica, sintatica e seméantica
do codigo fonte. Na analise léxica (Capitulo 2), foram validados os lexemas e proces-
samento correto de tokens, na analise sintatica (Capitulo 3) foi construida a Arvore
Sintatica Abstrata (ASA) e, finalmente, na andalise semantica (Capitulo 4) validou-se
essa arvore, verificando tipos, escopos e preenchendo a Tabela de Simbolos. Con-
tudo, somente a validagao da ASA, embora essencial, nao era suficiente porque ela
ainda representa o programa em um formato hierarquico e de alto nivel, muito dis-
tante do que um processador pode executar. A analise seméantica apenas confirmou
que o programa faz sentido, mas nao definiu como ele deve ser executado.

Neste capitulo se iniciard a implementagao do back-end do compilador, abor-
dando, inicialmente, a geracao de codigo intermediario. Esta fase em si inicia
no processo de sintese, traduzindo a ASA hierarquica e, previamente verificada, em
uma nova representacao: uma sequéncia linear de instrucoes simples, independente
da méquina, conhecida como Coédigo Intermediario. Esta fase do processamento
realiza a conexao entre a anélise (0 0 qué) e a geragao de codigo final (o como).

5.1 A Transicao da Analise para a Sintese

Com a conclusao da analise seméantica, se encerra a construcao do front-end do
compilador. Dessa forma, o compilador agora sabe o que cada variavel significa,
qual o seu tipo, onde ela esta armazeanda e se as operagoes fazem sentido.
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A partir deste ponto, a fungao do compilador muda da analise para a sintese,
marcando o inicio da construcao do back-end. O back-end nao questiona mais o
significado do programa; ele aceita a representacao validada pelo front-end como
correta. Sua nova missao é construir um novo artefato funcional a partir dessa
representacao. Essa construcao é o programa executavel, ou uma representacao que
pode ser facilmente convertida em um. A primeira etapa desse processo de sintese
é a geracgao de cédigo intermediario.

5.1.1 O que é um Coédigo Intermediario?

Um Codigo ou Representagao Intermediaria (RI) (Intermediate Representation - IR)
é uma linguagem “no meio do caminho". Ela é mais baixo nivel e mais explicita que
a linguagem fonte (como a descrita para o compilador do Micro C'), mas é mais alto
nivel e mais abstrata que a linguagem de maquina (ex.: Assembly x86-64).

Ou seja, o RI é um idioma universal para compiladores. Em vez de escrever um
tradutor direto de Portugués para Japonés e outro de Portugués para Alemao, é mais
eficiente traduzir o Portugués para uma lingua intermediaria, como o Esperanto, e
depois criar tradutores menores de Esperanto para Japonés e de Esperanto para
Alemao. Tornando o exemplo mais concreto:

e A ASA é a linguagem de alto nivel, complexa e hierdrquica.
e O RI é a linguagem intermediaria, simples, linear e independente de maquina.
e O Assembly é a linguagem de baixo nivel, especifica para um processador.

Uma boa RI deve possuir algumas caracteristicas para torna-lo mais eficiente.
A primeira é a Independéncia de Maquina: A RI nado deve conter nenhuma
informagao especifica de um processador, como o nome de um registrador (ex: %eax).
Isso garante que a primeira metade do back-end (gerador de RI) seja portavel. E
a segunda ¢ a Linearidade e Explicitude: Ela representa o programa como uma
longa sequéncia de instrugoes muito simples, onde todo o fluxo de controle (como
os saltos de um if) e a ordem de avaliagdo de expressdes se tornam explicitos.
Existem muitos tipos de RI. Na implementacao do compilador do Micro C, optou-se
pela construcao classica utilizando Cédigos de Trés Enderecos(CTE).

5.1.2 Front-End vs. Back-End: Onde Tracgar a Linha?

A fronteira precisa entre o front-end e o back-end de um compilador é um tema
controverso. Em geral, entende-se que o front-end é responsavel pela analise do
programa-fonte e pela geragao de uma representacao intermediaria (RI), enquanto o
back-end converte essa RI em codigo de maquina. No modelo classico [1], a geragao
de codigo intermediario é tratada como a etapa final do front-end, uma vez que
a RI ainda é uma forma abstrata e independente de maquina. Por outro lado,
abordagens mais modernas [4] propéem uma divisdo em trés grandes fases: o front-
end, responsavel pela analise; o middle-end, dedicado a geragao e otimizacao da RI;
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e o back-end, encarregado da geracao de codigo para a arquitetura alvo.

No entanto, no compilador do Micro C, foi adotada uma divisao conceitual li-
geiramente diferente, com foco na intengao da fase. No Front-End (Fases de
Analise), a missao é exclusivamente entender e validar o codigo fonte. Todas as
operagoes sao feitas sobre representagoes diretas do codigo original (tokens, ASA,
tabela de simbolos). Essa fase termina quando o compilador pode afirmar com 100%
de certeza: “Eu entendo este programa e ele estd semanticamente correto". Por ou-
tro lado, para o Back-End (Fases de Sintese), o objetivo é construir e traduzir.
Essa fase comeca no momento em que o compilador, pela primeira vez, gera uma
nova representacao do programa que nao ¢ mais um reflexo da estrutura do co-
digo fonte, mas sim um passo em direcao a logica de execugao de uma maquina. Em
Nnosso caso, essa primeira representacao é o RI.

Essa divisao faz sentido para o compilador do Micro C| porqué: primeiro, ela cria
uma separacgao clara. Ou seja, o front-end termina quando a analise e a verificagao
do codigo terminam, que é onde o trabalho de validacao termina. E, segundo, o
back-end é um processo de duas etapas que gera o RI e depois transforma-o em
Assembly. Essas fases tem como objetivo a sintese do programa final. Considerar a
geracao do RI como o passo inicial do back-end agrupa todas as tarefas de tradugao
de forma coesa, pois ambas as fases (geragao de Rl e geragao de Assembly) sao, em
esséncia, etapas de traducao que transformam uma representagao em outra, de nivel
mais baixo. Por simplicidade, a construcao do compilador do Micro C' considera o
front-end como um motor de compressao e o back-end (a comegar pela geragdo do
RI) como o motor de construgao.

5.1.3 O Papel do Back-End: Do “O Qué&” para o “Como”

O front-end nos entregou uma descrigao precisa do o qué. Ele nos disse: FEsta parte
do programa é um lago for que itera 10 vezes; dentro dele, hd uma atribuicao de
um valor inteiro a uma varidvel chamada z. A ASA e a Tabela de Simbolos s@o esse
“o qué"detalhado.

O trabalho do back-end é descobrir o “como”. Ele precisa responder a perguntas
fundamentalmente diferentes, que estao muito mais proximas do hardware:

e (C'omo eu implemento um laco? — usando rétulos e instrucoes de desvio condi-
cional e incondicional.

e (Como eu acesso a variavel x?7 — acessando sua posi¢ao na pilha de execucao,
que esté no enderego relativo [rbp-4].

e Como eu realizo uma soma? — carregando os valores para registradores da
CPU e usando a instrucao de méquina ADD.

O back-end, portanto, é a ponte que conecta a logica abstrata da linguagem de
) Y

programagao com a realidade concreta do processador. A geragao de codigo in-

termediario ¢ o primeiro e mais importante passo nessa tradugao, pois cria uma
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representacao que ja comeca a pensar em termos de “como", mas de forma ainda
abstrata e independente de uma méaquina especifica.

5.1.4 A ASA e a Tabela de Simbolos

Para realizar a traducao do o qué para o como, o gerador de cédigo intermediério
precisa de um mapa detalhado. Isso é fornecido pelo front-end por duas estruturas
de dados. A primeira ¢ a A Arvore Sintatica Abstrata (ASA) que dita a ordem
e a estrutura das operacoes. O gerador de codigo ird caminhar por esta arvore, no-
a-no, e para cada noé visitado, ele ird gerar uma ou mais instrugoes correspondentes.
A ASA define o fluxo de controle e a estrutura das expressoes. A segunda estrutura
é a A Tabela de Simbolos que fornece o conjunto de informacoes contextuais.
A ASA por si s6 é incompleta. Quando o gerador encontra um né NO_ID com o
nome x, ele ndo sabe nada sobre x. E nesse momento que ele consulta a Tabela de
Simbolos para obter os detalhes sobre a variavel: z é uma varidvel do tipo int e seu
endereco na pilha € -8. Sem essa informagao, seria impossivel gerar o codigo correto
para acessar a variavel.

A interacao entre essas duas estruturas é constante. O gerador de c6digo segue o
mapa da ASA e, a cada passo, consulta as informacoes da Tabela de Simbolos para
obter os detalhes necessarios para executar aquele passo.

5.2 O Papel da Representacao Intermediaria

No desenvolvimento de um compilador uma questao natural é o porqué nao traduzir
uma Arvore Sintatica Abstrata diretamente para o codigo final em assembly. A
resposta esta nos principios de design de software que priorizam a modularidade, a
abstracao e a separagao de objetivos e resultados em cada uma das fases do compi-
lador.

Gerar codigo Assembly diretamente a partir da ASA é uma tarefa complexa.
O compilador precisaria tratar simultaneamente com a logica de alto nivel da lin-
guagem (como a seméntica de um lago for ou de um if-else aninhado) e com os
detalhes de baixo nivel da maquina (gerenciamento de registradores, convengoes de
chamada de fungao, conjunto de instrugoes especifico do processador). Ou seja, essa
abordagem construiria um compilador monolitico que seria, ao mesmo tempo, dificil
de escrever, depurar, manter e, principalmente, muito complexo para portar para
outras arquiteturas de computador.

O compilador do Micro C' foi implementado utilizando técnicas modernas de
compiladores, utilizando a estratégia de divisao e conquista, quebrando tarefas com-
plexas em etapas mais simples. Uma delas, por exemplo, é o uso da geracao inter-
mediaria. Essa segmentacgao das etapas de compilacao traz vantagens robustas que
serao verificadas nas segoes seguintes.
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5.2.1 Abstracao e a Simplificacao do Problema

A principal vantagem de usar uma representacao intermediaria é a aplicacao da
estratégia divisao e conquista. Em vez de um problema tinico e massivo de tradugao,
passamos a ter dois problemas menores e bem definidos.

O primeiro problema é a Tradugao da Linguagem Fonte para a Repre-
sentacao Intermediaria. Nesta etapa, realizada pelo médulo intercode.c, a
traducao de alto nivel é direcionada, exclusivamente, para traduzir a logica de alto
nivel da ASA para uma representacao linear simples. O compilador nao precisa
saber sobre registradores ou instrugoes de méaquina. Sua tnica tarefa é desenrolar
as estruturas complexas em versoes mais simples. Por exemplo, ele transforma um
n6 NODE_IF da arvore na seguinte sequéncia logica:

Calcule a condicao.
Se a condigao for falsa, pule para o rotulo do else.
Execute o bloco then.

Pule para o rétulo do fim do if.

A

Marque o inicio do rétulo do else.

E a etapa final, a Tradugao da Representacao Intermediaria para a Lin-
guagem Alvo (Assembly). Nessa etapa, o compilador (assembly.c) tem uma
tarefa mais direta. Ele recebe a lista de instrugoes simples da RI (como some dois
valores, salte para o rétulo L1 ou atribua um valor a uma varidvel) e sua dnica
responsabilidade é mapear cada uma dessas instrugoes abstratas para uma ou mais
instrugdes de Assembly especificas da maquina-alvo (como addl, jmp ou movl). O
compilador nao precisa mais se preocupar em decompor a légica de alto nivel de um
if ou for; essa complexidade ja foi compactada em instrugoes de desvio e rétulos
simples pela fase anterior.

Essa separacao permite que cada modulo tenha uma tnica responsabilidade,
tornando o coédigo do compilador mais limpo, mais facil de testar e muito mais
simples de depurar.

5.2.2 Portabilidade entre Arquiteturas

Diferentes processadores processam diferentes instrugoes de maquina (dialetos) que
sao mapeadas em mnemonicos (o que ficou conhecido como assembly). O conjunto de
instrugoes de um processador Intel x86-64 por exemplo, é completamente diferente
do de um processador ARM. A tarefa de gerar codigo de maquina (binério) é,
portanto, inerentemente dependente da arquitetura alvo. Um compilador moderno
deve ser capaz de gerar cddigo para miultiplas arquiteturas, um desafio conhecido
como portabilidade.

Se o compilador do Micro C gerasse codigo de méaquina diretamente da ASA
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para uma Unica arquitetura, seria necessaria muitas mudancas para ser possivel
gerar codigo de méquina para outras arquiteturas. A representacao intermediaria
resolve este problema atuando com uma linguagem universal que é independente da
arquitetura da méaquina.

A Figura 5.1 mostra como o compilador do Micro C utiliza uma representacao
modular para desacoplar completamente o front-end do back-end. O front-end e o
Gerador ASA para RI formam um componente coeso e reutilizavel. A complexidade
fica dividida entre a primeira parte do back-end relacionada a traducao da légica
da linguagem para a RI, que é uma tarefa independente de maquina. E a segunda
parte, que consiste em multiplos Tradutores menores e simples. A tarefa de um
Tradutor RI para x86 é mais facil do que a de um Back-End Completo para 86,
pois ele parte de uma sequéncia de instrugoes linear, explicita e simplificada.

Front-End Analisador

(Gerador AST para IR)

'

Cédigo Intermediario
-IR

Tradutor Pequeno e Tradutor Pequeno e Tradutor Pequeno e
Simples para x86 Simples para ARM Simples para RISC-V

Figura 5.1: A abordagem modular, com Coédigo Intermediario.

A principal vantagem na estratégia adotada na implementacao do compilador do
Micro C é a portabilidade. Ou seja, para dar suporte a outras arquiteturas como o
RISC-V, por exemplo, bastaria adicionar um novo Tradutor RI para RISC-V. Todo
o trabalho do front-end e da geracao da RI seria reaproveitado. Isso torna o esforco
de portar o compilador menor e incentiva um design limpo e modular.

Este modelo, que separa o front-end (que produz a RI) do back-end (que consome
a RI), tornou-se o padrao de fato na industria de compiladores modernos, uma
abordagem que foi solidificada por frameworks como o LLVM [11]. Lattner et al. [11],
por exemplo, demonstrou como uma Representagao Intermediaria (RI) comum e
reutilizavel permite que multiplos front-ends (para linguagens diferentes) e multiplos
back-ends (para arquiteturas diferentes) sejam desenvolvidos de forma independente.
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5.3 O Codigo de Trés Enderegos (CTE)

O Codigo de Trés Enderegos (CTE) do inglés (Three Address Code - TAC) é uma
representacao intermediaria usada por compiladores para facilitar a otimizagao e a
traducao do codigo-fonte para o cédigo de maquina.

O principio fundamental do CTE é a simplicidade, ou seja, cada instrucao deve
conter no maximo uma operagao. Isso significa que expressoes complexas e ani-
nhadas do cédigo fonte sao decompostas em uma sequéncia de instrucgoes simples e
explicitas. No CTE, cada instrugao contém no méximo trés enderegos (operandos),
geralmente no formato:

X =y op z

Ou seja, x, v, e z s@o os enderegos (operandos). Eles podem representar variaveis
do programa, constantes ou varidveis temporarias criadas pelo proprio compilador.
Essa estrutura linear e explicita se assemelha a uma espécie de Assembly universal,
tornando a traducao final para o Assembly de maquina mais sistematica e direta.

5.3.1 A Estrutura do CTE no compilador do Micro C

A implementacao CTE, como representacao intermediaria do compilador, requer
uma definicao formal em linguagem C de sua estrutura. Essa especificagao abrange
trés componentes essenciais: os opcodes (que definem o conjunto de operagoes ato-
micas), os operandos (que representam os dados manipulados) e as instrugoes (que
sao a combinacao estruturada de opcodes e operandos, representando a unidade de
codigo executavel). A estrutura léxica e a sintéatica da RI do compilador do Micro
C' sao especificados no arquivo de cabegalho ir.h

Os Opcodes: Os Verbos da RI

Para representar todas as operagoes possiveis da nossa RI, criamos uma enume-
racao chamada IROpcode. Ela contém uma entrada para cada tipo de acao que
o codigo intermediario pode executar. Os opcodes foram agrupados por categoria
para facilitar a compreensao. As categorias definidas foram: operagoes aritméticas,
de comparacao, de movimentacao de dados, de controle de fluxo e de chamada de
fungao.

O trecho de codigo a seguir, extraido diretamente do arquivo de cabecalho ir.h,
apresenta a definicao da enumeracao IROpcode. Esta estrutura é o nicleo estrutural
da RI, definindo cada verbo (operagao) que o back-end é capaz de processar. Como
descrito anteriormente, os opcodes sdo agrupados por sua fungao (aritmética, con-
trole de fluxo, etc.) para facilitar a implementagdo e a manutencao do tradutor de
Assembly:
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// arquivo: src/ir/ir.h (trecho)

typedef enum {
//opcodes aritméticos, ldgicos e de comparagio
IR_ADD, IR_SUB, IR_MUL, IR_DIV, IR_MOD,
IR_EQ, IR_NEQ, IR_LT, IR_LEQ, IR_GT, IR_GEQ,
IR_AND, IR_OR, IR_NOT, IR_NEG,

//opcodes de movimentag8o de dados e acesso a memdria

IR_ASSIGN, // Atribuigdo (x := y)
IR_STORE, // Armazenar em array (v[i] := x)
IR_LOAD, // Carregar de array (x := v[il)

//opcodes de controle de fluxo e fungdes
IR_LABEL, IR_GOTO, IR_IF_FALSE,
IR_PARAM, IR_CALL, IR_RETURN,

} IROpcode;

Os Operandos: Os Substantivos da RI

Os enderegos em no CTE podem ser de diferentes naturezas (uma variavel, um na-
mero, um rotulo, etc.). Para representar todas essas possibilidades, foram criadas
estruturas de struct IROperand. Elas utilizam um enum OperandType para iden-
tificar o tipo de dado que carrega e uma union para armazenar o valor de forma
eficiente, economizando memoria.

// arquivo: src/ir/ir.h (trecho)
typedef enum {

OPERAND_SYMBOL, // Uma variavel ou pardmetro

(ponteiro para Tabela de Simbolos)

OPERAND_TEMP, // Um temporario gerado pelo

compilador (tO, ti1...)

OPERAND_CONST, // Uma constante inteira

OPERAND_LABEL, // Um rdétulo de cdédigo (LO, L1..., main)

OPERAND_STRING_LBL // Um rétulo para uma string literal
} OperandType;

typedef struct {
OperandType type;
union {
Simbolo* symbol;
int temp_id;
int const_val;
char* label_name;
} data;
} IROperand;

As Instrugoes: As Frases da RI

Finalmente, a struct IR_Instruction unifica os opcodes e os operandos descritos
anteriormente. Ela representa uma tnica linha do nosso cédigo intermediario. Isso
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ocorre pois esta estrutura contém o opcode (a operagao a ser executada) e ponteiros
para até trés operandos (resultado, argumento 1 e argumento 2). O ponteiro next é
0 que permite conectar as instrugdes em uma lista encadeada, formando a sequéncia
linear que representa o programa.

// arquivo: src/ir/ir.h (trecho)
typedef struct IR_Instruction {
IROpcode opcode;
IROperand* result;
IROperand* argil;
IROperand* arg?2;
struct IR_Instruction* next;
} IR_Instruction;

5.3.2 Formato das Instrucoes: Traducao para CTE

Com as estruturas de dados da RI definidas, é possivel ver, na pratica, como as
construgoes da linguagem do Micro C sao convertidas para o Codigo de Trés En-
deregos (CTE) pelo modulo intercode.c. Esta subsegao servird como um guia de
referéncia, mostrando exemplos praticos e explicando o processo de conversao para
cada tipo de construgao.

Atribuigoes e Expressoes Aritméticas

A traducao de expressoes é onde o principio do CTE de no méximo uma operagao
por instrucao se torna mais evidente. O exemplo a seguir mostra de forma simples
como funciona a atribui¢ao de uma constante:

e Cobdigo Fonte:
int x = 10;
¢ RI Gerada:
x = 10

Neste caso, a traducao é direta. A instrucao IR_ASSIGN é usada para mover um
valor de origem (o operando constante 10) para um destino (o operando de simbolo
x). Como ha apenas uma operagao implicita (a atribui¢do), uma tnica instrugao na
RI é suficiente para representar toda a linha de codigo.

O préximo exemplo mostra uma operagao aritimética. Neste exemplo é possivel
observar o beneficio da decomposicao do problema para tornar as operagoes mais
simples e atomicas.
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e Codigo Fonte:

int z;
zZ =X+ 7y;

e RI Gerada:
t0 (= x +y
z := t0

A linha z = x + y; no exemplo possui duas operagoes: uma soma (+) e uma
atribuigao (=). Para respeitar a regra de que cada instru¢ao deve ser atdomica, o
gerador de codigo divide o processo em dois passos logicos.

Essa separacao reflete como o processador opera fisicamente: ele nao consegue
realizar célculos diretamente nas varidveis armazenadas na memoria (RAM). Pri-
meiro, é necessario carregar os valores e realizar a soma em um local de acesso
rapido (representado aqui pela varidvel temporaria t0, que simula um registrador
da CPU). Somente apos o calculo, o resultado é movido de t0 para o enderego de
memoéria definitivo da variavel z.

1. Operagao: primeiro, ele resolve a operagao x + y. Ou seja, ele gera a instru-
¢aot0 := x + y, querealiza a soma dos valores representados pelos operandos
x e y, e armazena o resultado em uma nova variavel temporaria, tO.

2. Atribuicao: com o resultado da expressao inicial guardado em t0, o gerador
pode realizar a atribuicao. Neste caso, ele gera a uma nova instrugao z :=
t0, que move o valor do temporario para a variavel de destino z.

Essa decomposicio garante que cada linha da RI seja simples. E possivel observar
que esse pseudo-codigo é praticamente como funcionam as instrugoes em codigos
de maquina utilizando instrugoes de operacoes entre registradores ou saltos para
posi¢oes de memorias (condicionais ou nao).

Acesso a Vetores (Arrays)

O acesso a vetores na Rl sao tratados com duas instrugoes especializadas: LOAD
para leitura de um valor da memoria e STORE para escrita de um valor na memoria.
Segue um exemplo de como uma posi¢ao de um vetor é carregada e atribuida para
uma variavel:

e Cobdigo Fonte (Leitura):
x = v[4];
¢ RI Gerada:

t0 := LOAD v[4]
x := t0
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De forma similar, o acesso a uma posicao de um vetor é decomposto para man-
ter a simplicidade das operagoes. Ou seja, a leitura (LOAD) gera uma instrugao
especializada IR_LOAD. Isso significa que o endereco de memoria correspondente ao
indice 4 do vetor v é calculado, permitindo que o dado seja acessado diretamente,
sem a necessidade de percorrer os elementos anteriores. Em seguida, o valor ar-
mazenado nesta posicao é carregado para a variavel temporaria t0. No proximo
passo, a atribuigao ocorre com o valor que agora esté disponivel em t0, por meio
de uma instrugao simples (x := t0), finalizando a operagao e movendo o valor para
a variavel de destino x.

A operagao de escrita em um vetor (STORE) segue a mesma logica de acesso
direto, sendo encapsulada pela instru¢ao IR_STORE. Essa instrugao determina que
o valor do operando x seja armazenado na posicao de memoria correspondente ao
indice 5 do vetor v. Visto que a instrucao opera diretamente na memoria, nao sao
necessarios passos adicionais.

e Cobdigo Fonte (Escrita):
v[5] = x;
¢ RI Gerada:

STORE v[5] := x

Controle de Fluxo

Estruturas hierarquicas como o if-else sao compactadas em uma sequéncia linear
de testes e desvios (saltos) usando rotulos e instrugées condicionais, que é como um
processador de fato executa essa cadeia de operacoes. O exemplo a seguir mostra
uma operacgao que compara se uma variavel é menor do que a outra e atribui um
valor a uma terceira variavel, bem como a RI gerada no processo:

e Cobdigo Fonte:

if (a < b) {
x =1;

}

e RI Gerada:

t0 :=a<b
if_false tO goto LO
x =1

LO:

A conversao da estrutura condicional if para o formato CTE segue alguns pas-
sos. O primeiro é avaliar a condicao, ou seja a verificar o resutlado da expressao
condicional a < b. O resultado de expressoes condicionais sao boleanos (que em C
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¢ 1 para verdadeiro e 0 para falso) é armazenado na variavel temporaria t0. Em se-
guida, é realizado um desvio condicional, ou seja, a instrucao if_false t0 goto
L0 gerada controla o fluxo de execugao do codigo. Se o valor em t0 for falso (ou seja,
0), salte (goto) para o rétulo LO. Se for verdadeiro, a execuc¢ao continua na proxima
linha. Se o desvio condicional ndo for executado (condi¢do verdadeira), o corpo
do if é executado (x := 1). Por outro lado, sempre que uma condigao estrutura
condicional for inserida, é criado um rétulo de saida. Este rotulo LO: serve para
permitir que o fluxo seja desviado (condigao falsa) para fora do lago condicional do
if.

5.3.3 Variaveis Temporarias e Roétulos

Como observado, o gerador de cédigo precisou adicionar entidades extras que nao
existiam no codigo original (variaveis temporarias e rotulos) para respeitar a es-
trutura definida pela CTE. Para uma melhor compreensao as subsegoes a seguir
descrevem estes dois tipos de entidades mais profundamente.

Variaveis Temporarias (t0, t1, ...)

Elas sao essenciais para manter a simplicidade do Cédigo de Trés Enderegos. Sempre
que uma expressao complexa ¢ avaliada, o resultado intermediéario de cada operagao
é armazenado em uma nova variavel temporaria. A abstracao neste caso é similar a
ideia de existir um namero infinito de registradores em uma maquina abstrata.

A tarefa de mapear essas variaveis temporarias para o ntimero limitado de regis-
tradores reais do processador (ex: %eax, %ebx) fica a cargo da fase final de geragao do
codigo em Assembly. Na implementagao do compilador do Micro C (intercode.c),
é utilizado uma simplificagdo com o uso de um contador (temp_counter) para ge-
racao de nomes inicos.

Rotulos (LO, L1, ..., main)

Os rotulos sao marcadores de posicao no codigo. Eles servem como alvos para as
instrugoes de desvio (GOTO, IF_FALSE) e como pontos de entrada para fungoes. Eles
sao a ferramenta que nos permite agrupar a estrutura de controle aninhada da ASA
(como ifs e fors) em um fluxo de codigo linear, que é como um processador executa
uma sequéncia de codigos. O gerador de coédigo do compilador do Micro C' também
usa um contador (label_counter) para garantir que cada rétulo gerado para as
estruturas de controle seja tinico.

5.4 Gerador de Codigo: ASA para RI

Com as estruturas da Representagao Intermediaria (RI) definidas, esta na hora de
definir o nucleo do back-end: a construgao do tradutor. Este componente, imple-
mentado no modulo intercode, tem a tarefa de usar a Arvore Sintatica Abstrata
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(ASA) que possui as informagoes hierarquicas de de significado e converté-la em
uma lista linear de instrugoes simples do Codigo de Trés Enderecos (CTE).

Para realizar essa tradu¢do de uma estrutura em &arvore (a ASA) para uma
estrutura linear (a lista de RI), a abordagem mais comum é percorrer a arvore
né por no, gerando o coédigo correspondente para cada um. Esta foi a estratégia
utilizada na implementacao.

5.4.1 Tree Walker e a Interacao com a Tabela de Simbolos

Para traduzir a ASA, é utilizado um padrao de projeto classico conhecido como o
Tree Walker (ou “caminhante da arvore"). Como o nome sugere, ele consiste em
uma funcao recursiva que visita cada n6 da ASA e, para cada no, ele executa uma
acao de traducao especifica.

Contudo, o tree walker nao realiza suas operagoes de forma independente. Ele
usa as duas grandes estruturas de dados produzidas pelo front-end (ASA e tabela
de simbolos). Ou seja, a ASA fornece a representagao estrutural das operagoes,
ditando a ordem e a hierarquia do programa. Por outro lado, a Tabela de Simbolos
atua como o repositério de informacgoes seméanticas. Para cada identificador
(ID) encontrado na ASA, o gerador de codigo consulta a Tabela de Simbolos para
obter seu contexto, seu tipo, seu escopo e, o mais importante para o back-end, seu
memory_offset. Dessa forma, a cada passo, o gerador de codigo segue a estrutura
da ASA e consulta o repositorio da Tabela de Simbolos para obter os detalhes.

Do ponto de vista da implementacao no compilador do Micro C, a logica envol-
vida na organizacao do tree walker é dividida em duas fungoes: gerar_ir_expr ()
para expressoes que calculam um valor, e gerar_ir_no() para instrucoes que rea-
lizam uma acao.

Essa separacao de responsabilidades é uma decisao de projeto. Expressoes (como
a + b) sdo recursivas, podem ser aninhadas e devem sempre retornar um valor (ou
o local onde o valor foi armazenado). Em contraste, instrugoes (ou statements, como
if ou for) controlam o fluxo do programa e nao retornam valores. As subsegoes
seguintes detalharao a implementagao de cada uma dessas fung¢oes, comecgando pela
gerar_ir_expr.

5.4.2 Traduzindo Expressoes: A Fungao gerar_ir_expr

Esta funcao é especialista em traduzir qualquer parte do codigo que produza um
valor. Sua principal caracteristica é que ela sempre retorna um IROperand, que
representa o local onde o resultado do calculo foi armazenado.
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O Ponto de Partida: Variaveis e Constantes

Os casos mais simples de tradugao de expressao ocorrem nos nés folha da arvore,
como constantes ou identificadores.

O processamento para o né NODE_ID (que representa o uso de uma variavel) é
detalhado no trecho de cédigo a seguir, extraido do intercode.c:

e Codigo Fonte: x (0 uso de uma variavel)

// arquivo: src/intercode/intercode.c (trecho)
case NODE_ID: {
// 1. Consulta a Tabela de Simbolos para encontrar ’x’
Simbolo* s = buscar_simbolo_em_todos_escopos(pilha,
no->data.string_value);

// 2. Cria um operando que aponta para as informagdes de ’x’
IROperand* var = criar_operando(OPERAND_SYMBOL) ;
var->data.symbol = s;

// 3. Retorna este operando
return var;

O co6digo mostra que ao encontrar um NODE_ID, o gerador executa invoca o
método buscar_simbolo_em_todos_escopos que retorna um ponteiro para um
Simbolo que contém o tipo, o nome, o offset de memoria, etc., € armazenado no
IROperand. Nenhuma instrucao de RI é gerada neste momento; a fungao apenas
retorna a referéncia para a variavel, para que quem a chamou possa usa-la.

5.4.3 Traduzindo Instrucgoes: funcao gerar_ir_no

Esta fungao é a contraparte da gerar_ir_expr; ela é responsavel por traduzir ins-
trugoes (statements), que sao os nos da ASA que representam agoes e nao retornam
valores. Isso inclui o controle de fluxo (como NODE_IF e NODE_FOR) e as operagoes
de efeito colateral, como as atribui¢oes. O exemplo mais fundamental de instrucao é
a atribui¢ao (NODE_ASSIGN), detalhada a seguir, que demonstra a colaboragao entre
gerar_ir_no e gerar_ir_expr.

Atribuigao (NODE_ASSIGN)

e Cobdigo Fonte: y = x + 10;
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// arquivo: src/intercode/intercode.c (trecho)

case NODE_ASSIGN: {
// 1. Identifica o destino da atribuigio (’y’)
Simbolo* s = buscar_simbolo_em_todos_escopos(pilha, ...);
IROperand* dest = criar_operando(OPERAND_SYMBOL) ;
dest->data.symbol = s;

// 2. Pede para gerar_ir_expr avaliar o lado direito

// Cx + 107)

// Isso gera "t0 := x + 10" e retorna o operando ’t0’
IROperand* src = gerar_ir_expr(no->filho
->proximo_irmao, pilha);

// 3. Emite a instrug8o final de atribuig&o
emitir (IR_ASSIGN, dest, src, NULL); // Gera: y := tO
break;

A tradugao mostra a colaboragao entre as duas fungoes. A gerar_ir_no processa
a atribuicao, mas delega a avaliacao da expressao complexa para a gerar_ir_expr.
Apés a gerar_ir_expr retornar o operando temporario (t0) com o resultado da
soma, a gerar_ir_no finaliza o processo, emitindo a instru¢ao que move o valor do
temporario para a variavel final.

Operacoes Binarias

Diferente dos nos folha (como NODE_ID ou NODE_INTEGER_CONST), que apenas re-
tornam um operando existente, os nés de operacao binaria sao o primeiro exemplo
onde o tradutor gera ativamente novas instrugoes de codigo intermediério.

e Codigo Fonte: x + 10

// arquivo: src/intercode/intercode.c (trecho)

case NODE_BINARY_OP: {
// A. Resolve recursivamente o operando da esquerda (’x’)
IROperand* argl = gerar_ir_expr(no->filho, pilha);

// B. Resolve recursivamente o operando da direita (’10°)
IROperand* arg2 = gerar_ir_expr (no->filho

->proximo_irmao, pilha);

// C. Cria um novo "local" temporario para o resultado
IROperand* temp = criar_operando_temporario(); // ex: tO

// D. Emite a instruc8o de trés enderegos
emitir (IR_ADD, temp, argl, arg2); // Gera: tO := x + 10

// E. Retorna o local do resultado
return temp;
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O processo segue uma logica de pos-ordem: primeiro resolve os filhos, depois
executa sua propria agao. As chamadas recursivas para gerar_ir_expr retornam
os operandos para x e 10. Dessa forma, a fungdo cria um novo temporario (t0),
emite a instrucao de soma e retorna o operando t0, com o contexto necessario para
que a fungao superior tenha informagoes de que o resultado esperado (de x + 10)
estd armazenado na variavel tO.

Controle de Fluxo (NODE_IF)

A traducao de estruturas hierarquicas como o if-else é compactada em um fluxo
linear usando réotulos e desvios.

e Codigo Fonte: if (cond) { A } else { B }
O processo de tradugao segue o seguinte passo-a-passo:

1. Criagao de Roétulos: O gerador cria dois novos roétulos para marcar pontos
no codigo: um para o inicio do bloco else (que podemos chamar conceitu-
almente de L ELSE) e outro para o fim da instrugdo if (o L FIM IF).
No nosso codigo, a funcao criar_operando_label_novo() faz isso, criando
nomes reais como LO e L1.

2. Traducao da Condigao: o gerador invoca gerar_ir_expr para a condicao.
O resultado é um temporario, t_cond.

3. Desvio Condicional: ainstrucao if_false t_cond goto L_ELSE é emitida.
Ela significa: “se a condigao em t_cond for falsa, pule para o inicio do bloco
else".

4. Tradugao do Bloco ‘Then’: o corpo do if (bloco A) é traduzido em seguida.
Apos sua tltima instrugao, um desvio incondicional goto L_FIM_IF é emitido
para pular por cima do bloco else.

5. Traducao do Bloco ‘Else’: o rotulo L_ELSE: ¢é emitido, seguido pela tradu-
¢ao do bloco B.

6. Rotulo Final: por fim, o rotulo L_FIM_IF: é emitido, marcando o ponto para
onde a execugao continua apés o if ou o else.

O coédigo que implementa essa logica mostra como a estrutura complexa do if é
traduzida.
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A primeira parte é responsavel por avaliar a condi¢ao e emitir o desvio condicional
para o bloco else:

// arquivo: src/intercode/intercode.c (trecho: parte 1)
case NODE_IF: {

IROperand* cond_result = gerar_ir_expr(no->filho,
pilha);

// Nossos nomes conceituais L_ELSE e L_FIM_IF viram
// nomes reais aqui:

IROperand* label_else = criar_operando_label_novo();
// ex: LO

IROperand* label_fim_if = criar_operando_label_novo();
// ex: L1

emitir (IR_IF_FALSE,
criar_operando_label_nome(label_else->data.label_name),
cond_result, NULL);

ax

A segunda parte do bloco de codigo gera a tradugao para os blocos then e else,
inserindo os rétulos e o desvio goto incondicional para garantir o fluxo correto:

0o

(continuagdo do case NODE_IF)
gerar_ir_no(no->filho->proximo_irmao, pilha);

// bloco ’then’

emitir (IR_GOTO, criar_operando_label_nome(label_fim_if
->data.label_name),

NULL, NULL);

emitir (IR_LABEL, label_else, NULL, NULL);
if (no->filho->proximo_irmao->proximo_irmao) { // se
existe ’else’
gerar_ir_no(no->filho->proximo_irmao
->proximo_irmao, pilha);

}

emitir (IR_LABEL, label_fim_if, NULL, NULL);
break;

Este trecho de codigo é a traducgao direta da receita descrita anteriormente. Ele
demonstra como o gerador de codigo, de forma sistemética, transforma a estrutura
de arvore do if em uma sequéncia linear de testes e saltos. Essa mesma técnica de
usar rotulos (labels) e desvios (goto’s) é a base para a tradugao de todas as outras
estruturas de controle de fluxo, como os lagos for. Ao final, a loégica complexa e
aninhada do programador é convertida em um formato simples e explicito que se
assemelha muito mais & forma como um processador de fato executa o codigo.
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5.5 Sumario

Este capitulo expande a compreensao sobre os processos relacionados ao back-end
do compilador. Inicialmente sao discutidas as etapas relacionadas a sintese como,
por exemplo, a geracdo de codigo intermedidrio. Em seguida, sao apresentadas as
justificativas do porqué utilizar uma representacao intermediaria garante maior mo-
dularidade e portabilidade do compilador levando em conta diferentes arquiteturas
de computadores.

O préximo passo foi explorar e determinar o uso do Cédigo de Trés Endere-
¢os (CTE), principalmente pela simplicidade na conversao por sua simplicidade e
formato linear, que se assemelha a um Assembly abstrato. Detalhamos a implemen-
tacao dessa RI em C, analisando o arquivo ir.h e o papel de suas trés estruturas
centrais: IROpcode (os verbos), IROperand (os substantivos) e IR_Instruction (a
frase que une tudo em uma lista encadeada).

Com a estrutura da RI definida, o foco principal do capitulo foi a construcao
do tradutor, o moédulo intercode.c. Explicamos a nossa estratégia de implemen-
tacdo, o padrao Tree Walker (caminhante da arvore), que utiliza a ASA como um
mapa e a Tabela de Simbolos como um diciondrio. Detalhamos como as fungoes
gerar_ir_no (para instrugoes) e gerar_ir_expr (para expressoes) trabalham em
conjunto, percorrendo a ASA e consultando a Tabela de Simbolos para traduzir cada
no.

Finalmente, demonstramos com exemplos de codigo como as construgoes do com-
pilador do Micro C, desde simples atribuigoes e expressoes aritméticas até estruturas
complexas como acesso a vetores e o controle de fluxo do if-else, sao sistemati-
camente compactadas e convertidas para a sequéncia linear de instrugoes do CTE.
Ao final deste capitulo, temos um programa que traduz com sucesso a ASA vali-
dada pelo front-end para uma Representacao Intermediaria correta e pronta para a
proxima etapa: a geracao de codigo Assembly.
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Geracao de Assembly

"Vision without execution is hallucination.”

— Thomas Edison

No capitulo anterior, foi concluida a primeira fase do back-end do compilador ao
traduzir a Arvore Sintatica Abstrata (ASA) para uma Representacdo Intermediaria
(RI). Essa RI, por defini¢ao, é abstrata e independente de plataforma; ela nos diz o
que o programa deve fazer, mas nao como uma maquina especifica deve executé-lo.

Neste capitulo, serd abordada a etapa final da compilagao (ezecu¢do): a geragao
de coédigo Assembly. Esta é a ultima milha da traducao, onde a logica abstrata
da RI é convertida em um conjunto de instrugdes concretas, projetadas para uma
arquitetura de um processador, no caso, o x86-64.

Esta é a fase onde a sintese, iniciada no Capitulo 5, se completa. O objetivo
é pegar a lista de instrugoes do Codigo de Trés Enderecos (CTE), que é linear e
explicita, e produzir um arquivo de texto (.s) que contém um codigo Assembly x86-
64 equivalente. Este arquivo, por sua vez, pode ser entregue a um montador (ou
assembler), que é o programa responsavel por traduzir o codigo Assembly textual
em codigo de maquina binario (um arquivo objeto .o). Em seguida, esse arquivo
objeto passa por um linker (ou ligador), que o combina com bibliotecas do sistema
(como a biblioteca C, para fung¢oes como printf) e cria o programa executavel final.

No compilador do Micro C, é utilizada a ferramenta gcc para realizar essas duas
ultimas etapas e gerar um executavel que o sistema operacional pode carregar e
executar diretamente no hardware. O GCC [15] (GNU Compiler Collection) é um
conjunto de compiladores e ferramentas de desenvolvimento de software de codigo
aberto. Embora seja mais conhecido como um compilador C, ele é usado pelo Micro
C para, especificamente, atuar como o montador e linker da saida do Asssembly
gerado pelo compilador do Micro C.
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6.1 A Plataforma Alvo: x86-64 e a Sintaxe AT&T

A geracao de codigo final é, por definicdo, dependente de plataforma. A Represen-
tagdo Intermediaria (RI) que foi construida no Capitulo 5 é abstrata e universal,
mas o processador de um computador nao. Ele entende apenas um conjunto especi-
fico de instrucoes binarias. A primeira decisao de projeto do back-end é, portanto,
definir qual serd a arquitetura de méquina para a qual a linguagem intermediaria
sera traduzida.

6.1.1 A Arquitetura x86-64

A arquitetura escolhida para saida do compilador do Micro C foi a x86-64 (também
conhecida como AMDG64). Esta é a arquitetura de 64 bits que sucedeu a popular
arquitetura de 32 bits (IA-32, ou x86). A escolha se justifica por sua onipresenga em
computadores pessoais, desktops e servidores modernos, englobando a vasta maioria

dos processadores da Intel (Core 13/i5/i7/i9) e da AMD (Ryzen).

O termo 64 bits se refere ao tamanho dos registradores de proposito geral (como
%irax) e ao tamanho dos enderegos de memoria, permitindo ao processador acessar
uma quantidade de memoria muito maior do que seu predecessor de 32 bits.

Além disso, a x86-64 ¢ uma arquitetura CISC (Complex Instruction Set Compu-
ter), o que significa que ela possui um conjunto de instrugoes rico e complexo, onde
uma unica instrugao de Assembly pode realizar miltiplas micro-operagoes (como
carregar um valor da memoria, somé-lo a um registrador e salvar o resultado de
volta na memoria, em uma tunica instru¢ao). Como a linguagem do Micro C é
limitada, serd utilizado apenas um pequeno subconjunto dessas instrucoes.

A escolha da arquitetura também foi pragmaética, pois ela é o alvo padrao do gcc
no ambiente utilizado no desenvolvimento do compilador do Micro C. Isso garantiu
que o codigo Assembly gerado pelo compilador seria compativel também com as
ferramentas e bibliotecas de desenvolvimento do proprio sistema operacional.

6.1.2 Sintaxe AT&T vs. Sintaxe Intel

Escolher a arquitetura x86-64 nao foi a unica decisdo. O Assembly para esta ar-
quitetura possui duas sintaxes principais diferentes, a Sintaxe Intel e a Sintaxe
AT&T. Embora ambas produzam o mesmo coédigo de maquina, o formato textual
da sintaxe é muito diferente.

Enquanto a Sintaxe Intel é utilizada, principalmente, pela Microsoft, de acordo
com a documentagao oficial da Intel [8] (com montadores como MASM [6] ou
NASM [16]), ambientes derivados do Unix, como Linux e macOS, utilizam a Sintaxe
AT&T e, por isso, muitos projetos como GCC [15] e Clang [10] e suas bibliotecas,
seguem este modelo. A Tabela 6.1 apresenta, de forma resumida, diferencas entre
as duas sintaxes.
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Tabela 6.1: Comparagao de Sintaxe: Intel vs. AT&T (Ex: NASM vs. GCC)

Item Sintaxe Intel Sintaxe AT&T

Ordem instrugdo destino, fonte | instrugdo fonte, destino
Registrador eax, rbp %heax, %rbp

Constante 10 $10

Sufixo (Tamanho) | mov, add (inferido) movl, addq (explicito)
Memoria [rbp-4] -4 (Jrop)

Como o compilador do Micro C utiliza o gcc como montador e linker, a sintaxe
utilizada como saida da etapa de geracao de codigo intermediario segue o padrao
da Sintaxe AT&T. As subsegoes seguintes detalham as implicagoes préticas dessa
escolha.

Ordem dos Operandos

A diferencga que causa maior confusao no Assembly gerado pelas sintaxes esté rela-
cionada a ordem dos operandos utilizados nas instrugoes. Enquanto na sintaxe da
Intel as operagoes seguem a ordem destino = origem, na sintaxe da AT&T, elas
seguem a ordem origem = destino. Por exemplo:

e Intel: mov eax, 10
significa mova 10 para dentro do registrador eaz.

o AT&T: movl $10, Yeax
significa mova $10 para dentro de }eaz.

A logica de ordem das instrugoes da AT&T, embora menos intuitiva, é consistente
em todas as suas instrugoes.

Prefixos de Registradores e Imediatos

A sintaxe AT&T é mais explicita e menos ambigua sobre o que é um operando, por
exemplo:

e Registradores sao sempre prefixados com %. O que a Intel chama de rbp, a
AT&T chama de %rbp. O que é eax vira %eax.

e Valores Imediatos (constantes) sdo sempre prefixados com $. O ntumero 10
¢ escrito como $10.

Isso resolve ambiguidades. Enquanto na sintaxe Intel: mov eax, 10, que signi-
fica mova o valor 10 para eaz, pode causar confusao com outra instrugao como, por
exemplo, mov eax, [10], que significa mova o valor do endereco de memoria 10
para eaz. Isso ndo ocorre com a sintaxe da AT&T pois, movl $10, %eax (o valor
10), é sintaticamente distinto de movl 10, %eax (endere¢o de memoria 10).
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Sufixos de Mnemonico

Onde a sintaxe Intel muitas vezes infere o tamanho da operagao (8, 16, 32 ou 64
bits) a partir dos operandos, a sintaxe AT&T exige que o tamanho seja explicito no
nome da instrugao (o mnemonico):

e movl (move long, 32 bits): este é o mnemodnico que sera usado para todas as
operagoes com os dados do Micro C. Embora um char tenha 1 byte, para
simplificar o alinhamento da pilha, o compilador do Micro C' trata tanto ints
quanto chars como valores de 32 bits (4 bytes) na memoria.

e movq (move quad, 64 bits): este mnemoénico é reservado para manipular os
ponteiros da prépria arquitetura. Como o alvo é um sistema de 64 bits, os
enderecos de memoria (e, portanto, os registradores que os armazenam, como
%rsp e %rbp) tém 64 bits. Foram utilizadas as instrugoes movq (e pushq/popq)
exclusivamente para gerenciar o stack frame, como em movq %rsp, %rbp.

e Strings (Literais): strings ndo sdo movidas com uma tunica instrugao mov.
Em vez disso, elas sao armazenadas na secao de dados .rodata. Quando
é necessario utiliza-las (como em print("ola")), é usada a instrugdo leaq
(Load Effective Address) para carregar o seu endereco (um ponteiro de 64
bits) em um registrador.

O gerador de codigo do Micro C' usarda movl para todas as operacoes de dados e
movq (ou pushq/popq) para manipulagao da pilha.

Enderecamento de Meméria

Esta é a diferenca sintatica final e mais importante do compilador do Micro C. O
acesso a memoria (especialmente a pilha) é escrito de forma diferente. A sintaxe da
Intel e da AT&T seriam representadas da seguinte maneira:

e Intel: [rbp - 4]
o AT&T: -4(%rbp)

Embora ambas signifiquem a mesma coisa: pegue o enderego no registrador Jrbp
e subtraia 4 bytes dele. A sintaxe AT&T usa o formato offset(Jbase). Nas pro-
ximas segoes, esta sintaxe serd explorada com maior profundidade, pois ela pode
ser estendida para o calculo complexo de arrays, como offset(%base, %indice,
escala), que implementa base + (indice * escala).

Com essas decisoes de projeto, a arquitetura x86-64 como alvo e a Sintaxe
AT&T de saida definida, a engenharia do back-end esta completa. Todas as ins-
trugoes que o compilador do Micro C gerar, a partir deste ponto, deverao obedecer
estritamente a essas convengoes.

Definir as convengoes e sintaxe, no entanto, sao apenas metade do problema.
Antes de serem realizadas as tradugoes das instrugdes da RI, é necessario definir
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um plano de gerenciamento de meméria. A RI opera com um niimero infinito de
tempordrios e varidveis, que sao recursos limitados para o Assembly. A proxima
secao detalhara o modelo de memoria que sera utilizada para resolver este problema,
o stack frame (registro de ativa¢ao), que permitird mapear os simbolos abstratos da
RI para enderecos de memoria na pilha de execucao.

6.2 O Modelo de Memoria e Execucao

Antes de traduzir a primeira instru¢ao da RI, é fundamental entender o ambiente
de execucao de um programa em Assembly. Diferente do C, ndo existem varidveis
automaticas; o que existe é apenas memoria e esta deve ser gerenciada manualmente
por meio da pilha de execugao (stack). A tradugao da RI para o Assembly é, em
esséncia, um processo de mapear os conceitos abstratos de wvaridveis, pardimetros e
tempordrios para enderecos de memoria e registradores do processador.

6.2.1 Registradores: A Memoéria Rapida da CPU

Um programa em Assembly nao opera diretamente em variaveis na memoria. A CPU
utiliza um pequeno conjunto de areas de armazenamento de altissima velocidade,
chamados registradores, para realizar operagoes. Para traduzir a RI, é necessario
definir um subconjunto desses registradores e atribuir a eles papéis especificos.

Para isso, o Micro C utilizara os seguintes registradores (em sintaxe AT&T):

e Jirbp (Base Pointer): é o registrador mais importante. Ele atua como o pon-
teiro base do stack frame. Durante a execugao de uma fungao, seu valor é
estavel, servindo como uma &ancora para acessar todas as variaveis locais e
parametros.

e irsp (Stack Pointer): é o ponteiro da pilha. Ele aponta para o topo atual da
pilha e seu valor muda dinamicamente toda vez que algo é empurrado (push)
ou retirado (pop) da pilha.

e Yrax (Accumulator): é o registrador acumulador. E usado como o princi-
pal registrador de rascunho para calculos aritméticos. Mais importante, pela
convencao de chamada, é o registrador padrao para armazenar o valor de
retorno de uma funcdo. (Seré utilizada sua porcao de 32 bits, %eax, para os
inteiros do Micro C).

e Jrbx, lrcx, %hrdx: sao registradores de proposito geral que serao usados como
rascunhos secundérios, principalmente para conter o segundo operando em
operagoes binarias (como arg2 em t0 := argl + arg?2).

e Jrdi, Jrsi: sdo registradores para chamadas de fungoes externas. A Con-
vengao de Chamada System V ABI [12] (que o gcc utiliza) determina que o
primeiro argumento de uma funcgao é passado em %rdi e o segundo em %rsi.
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Isso seré utilizado extensivamente na fungao print exclusiva do Micro C' (sua
implementagao é diferente do printf padrao da linguagem C).

6.2.2 O Registro de Ativagao (Stack Frame)

Quando uma fungao é chamada, ela nao opera em um vacuo; ela aloca uma éarea de
trabalho temporaria na pilha de execugao. Essa érea é conhecida como Registro
de Ativacao ou Stack Frame. Este frame contém todo o contexto necessario
para a funcao executar: seus parametros, suas variaveis locais e espago para valores
temporarios.

No x86-64, o acesso as variaveis locais e parametros ¢ feito de forma relativa ao
ponteiro base %rbp. A Figura 6.1 ilustra a anatomia de um stack frame tipico, que
serve de base para o célculo de enderecos na pilha.

Enderegos mais altos (%rbp do chamador)

T

[rbp+24] Parametro 2 (ex: ‘b’)

[rbp+16] Parametro 1 (ex: ‘a’)

[rbp+8] Endereco de Retorno (call)

[rbp] RBP Antigo (pushq %rbp)
""""""""""""""" - %rbp (ponteiro base atual)

[rbp-4] Variavel Local 1 (ex: ‘resultado’)
[rbp-8] Variavel Local 2 (ez: ‘x’)

[rbp-128] Temporario 1 (ex: ‘t07)

Enderegos mais baixos (%rsp)

Figura 6.1: Estrutura do Registro de Ativagao (Stack Frame) no x86-64.

Este diagrama é a conexao direta com o analisador seméantico do Micro C. A fun-
¢ao calcular_offsets (semantic.c) foi projetada especificamente para preencher
a Tabela de Simbolos com os valores exatos deste mapa:

e Offsets Positivos (Parametros): enderegos acima do %rbp pertencem ao
escopo da func@o que os chamou. Por convencdo, o primeiro parametro (ex:
a) ¢ alocado em 16 (%;rbp), o segundo (ex: b) em 24 (%rbp) e assim por diante.
A Passagem 1 do calcular_offsets calcula, exatamente, esses valores.

e Offsets Negativos (Locais): enderegos abaizo do %rbp sdo o espago de
trabalho da funcdo atual. E aqui que as varidveis locais (ex: x, y, z) sdo ar-
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mazenadas. A Passagem 2 da fungao calcular_offsets calcula esses valores
(ex: -4 (%rbp), -8(%rbp) ).

Temporarios: os temporarios da IR (ex: t0, t1) também precisam de es-
paco. Para evitar conflitos com as variaveis locais, a funcao do gerador de
Assembly do Micro C' (assembly.c) os aloca em uma area negativa separada,
comecando em -128(%rbp) e alocando os temporérios subsequentes em ende-
recos de memoria cada vez menores.Dessa forma, enquanto t0 fica associado
ao enderego -128(%rbp), t1 passa a ocupar -132(%rbp), t2 -136(%rbp), e a
sequéncia continua seguindo esse padrao.

6.2.3 Prologo e Epilogo: Gerenciamento do Frame

O (stack frame) descrito anteriormente nao é construido automaticamente. Sua
criacao ¢ um processo explicito, que exige a construcao no inicio da execucao de
cada funcao e a sua subsequente destruicao no fim. Essas duas sequéncias de ins-
trugoes sao denominadas, respectivamente, prologo e epilogo da fungao. No gera-
dor de Assembly do Micro C foram criadas duas fungoes auxilidres para este fim:
asm_gen_prologue ¢ asm_gen_epilogue.

Prologo da Funcao O proélogo é gerado toda vez que encontrado um IR_LABEL
que é uma fungdo (ex: main: ou soma:).

// Cddigo gerado pela fung8o asm_gen_prologue()

pushq J%rbp
movq %rsp, %rbp
subq $256, Yrsp

A légica, que é executada em ordem, é a seguinte:

1.

pushq ’%rbp: salva o ponteiro base da fungao anterior (o chamador) na pilha.
Isso é crucial para que seja possivel restaura-lo depois e retornar corretamente.

. movq %rsp, %rbp: define o novo ponto zero do frame. O ponteiro base (‘%rbp*)

agora aponta para o topo da pilha (que contém o %rbp antigo). Todos os aces-
sos (“-4(%rbp)‘, “+16(%rbp)‘) serdo relativos a este novo ponto.

subq $256, %rsp: abre espaco na pilha para as variaveis locais e temporé-
rios. Ao subtrair do ponteiro da pilha (%rsp), é possivel mové-los para baixo,
alocando 256 bytes de memoria. No Micro C este é um tamanho fixo, mas
compiladores otimizados calculariam o tamanho exato necessario.

Epilogo da Fungao O epilogo é gerado toda vez que uma instrucao IR_RETURN
é encontrada.
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// Cbédigo gerado pela fungio asm_gen_epilogue()
movq %rbp, %rsp

popq ’%rbp
ret

A légica é inversa ao prologo, destruindo o frame:

1. movq %rbp, ’%rsp: desaloca todo o espago local (os 256 bytes) de uma so6 vez,
movendo o ponteiro da pilha de volta para o ponteiro base.

2. popq %rbp: restaura o ponteiro base da fungao anterior, que foi salva no inicio.
A pilha agora esta exatamente como estava antes da funcao ser chamada.

3. ret: recupera o Endereco de Retorno (que agora estd no topo da pilha) e
redireciona a execucao de volta para ele, saindo da funcao.

6.2.4 Desafios de Implementacao

Embora o diagrama do stack frame pareca simples, implementar a logica para o
compilador foi um dos maiores desafios do projeto. O coédigo Assembly gerado
inicialmente estava logicamente incorreto, com todas as variaveis e parametros sendo
mapeados para o mesmo enderego (0(%rbp)), o que causava a sobrescrita de dados.

O problema nao estava no gerador de Assembly, mas na analise seméantica, que
falhava em popular a Tabela de Simbolos com os offsets corretos. A depuragao
revelou dois problemas (bugs).

Bug 1: Diferenciacao de Parametros e Variaveis Locais. O primeiro pro-
blema era que a struct Simbolo néo tinha como diferenciar um parametro (que pre-
cisa de um offset positivo) de uma variavel local (que precisa de um offset negativo).
A solucao foi modificar o a defini¢ao da tabela de simbolos (em symbol_table.h)
para adicionar uma flag:

// arquivo: src/symbol_table/symbol_table.h (trecho)
typedef struct {
// ... (campos anteriores como nome, tipo, is_array)
int memory_offset;
int is_parameter; // <-- FLAG ADICIONADA
} Simbolo;

Em seguida, a fun¢do adicionar_simbolo (em symbol_table.c) foi atualizada
para receber e armazenar essa flag:
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// arquivo: src/symbol_table/symbol_table.c (trecho)
int adicionar_simbolo(..., int is_parameter) {
// ... (cdédigo de alocag8o)
s->is_array = is_array;
s->array_size = array_size;
s->is_parameter = is_parameter; // <-- Salva a flag
s->memory_offset = 0; // Inicializa o offset
tabela->tamanho++;
return O;

Bug 2: Loégica de Percurso e Momento do Calculo. O segundo bug, era que
o analisador semantico (em semantic.c) estava invocando calcular_offsets no
momento errado. A légica de percurso da arvore (o tree walker) estava calculando
0s offsets de um escopo antes que todos os simbolos tivessem sido adicionados a ele,
resultando em tabelas vazias e offsets zerados.

A solucgao foi reestruturar a funcao analisar_no para garantir uma ordem de
execugao correta (Pos-Ordem):

1. Pré-Ordem (Entrada no Escopo): ao encontrar um NODE_FUNCTION_DEF
ou NODE_BLOCK, o analisador apenas empilha uma nova tabela (empilhar_tabela
(pilha)) e marca que um novo_escopo foi criado.

2. Descida Recursiva: o analisador visita todos os nos filhos. E durante esta
etapa que os nés NODE_VAR_DECL sao processados e invocam adicionar_simbolo,
populando a tabela do topo da pilha (que é o escopo atual).

3. P6s-Ordem (Saida do Escopo): somente apds todos os filhos terem sido
visitados (e a tabela de simbolos estar completa), a funcao verifica a flag
novo_escopo e, entao, invoca calcular_offsets(pilha->tabelas[pilha->
topol).

Finalmente, a propria fungdo calcular_offsets (em semantic.c) foi reescrita
para usar a flag is_parameter, implementando a logica de duas passagens que o
modelo de memoria exige.

Dessa forma, a primeira passagem itera pela tabela de simbolos do escopo e
calcula os offsets positivos para todos os simbolos marcados como parametros. Neste
trecho (Passagem 1), o param_offset é inicializado em 16, que corresponde ao
primeiro enderego disponivel acima do ponteiro base (%rbp), conforme o diagrama
de stack frame. Cada pardmetro encontrado incrementa o offset em 8 bytes. A
seguir, o trecho de codigo correspondente:
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// arquivo: src/semantic/semantic.c (trecho: passagem 1)
static void calcular_offsets(TabelaSimbolos* tabela) {
int param_offset = 16;
int local_offset = O;

//passagem 1: calcular offsets de parametros
for (int i = 0; i < tabela->tamanho; i++) {
Simbolo* s = &tabela->simbolos[i];
if (s->is_function) continue;

if (s->is_parameter) {
s->memory_offset = param_offset;
param_offset += 8;

70 o«

Em seguida, a segunda passagem da mesma func¢ao itera novamente pela tabela
para calcular os offsets negativos para todas as variaveis locais. Nesta passagem
(Passagem 2), o local_offset comeca em 0 e é decrementado pelo tamanho de
cada simbolo (4 bytes para int ou o tamanho total para vetores). Isso aloca espago
na pilha para baizo a partir do %rbp, como -4, -8, etc. Trecho do codigo relativo a
segunda passagem da funcao:

//... (continuacdo de calcular_offsets)
//passagem 2: calcular offsets de variaveis locais
for (int i = 0; i < tabela->tamanho; i++) {
Simbolo* s = &tabela->simbolos[i];
if (s->is_function) continue;

if (!s->is_parameter) {
int tamanho_simbolo = get_symbol_size(s);
local_offset -= tamanho_simbolo;
s->memory_offset = local_offset;

Com essas correcoes, a Tabela de Simbolos foi transformada em um mapa de
memdria preciso, permitindo ao gerador de Assembly (Secao 6.3) consultar os valores
em memory_offset de qualquer simbolo e traduzi-lo para o endereco correto na
pilha, como 16 (%xrbp) ou -4 (%rbp).

Com o modelo de registradores, a estrutura do stack frame e o gerenciamento
desse frame (por meio do prologo e epilogo) agora é o compilador esta pronto para
gerar o codigo Assembly. A preparagao estd encerrada e agora existe um mapa de
memoria preciso da Tabela de Simbolos. Esse mapa armazena o enderego exato de
cada simbolo (como 16 (%rbp) ou -4(%rbp)) e de cada variavel temporaria (como
-128(%rbp) ).
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A proxima segao ird detalhar a tradugao na pratica. Sera analisado como o
gerador de Assembly do Micro C (assembly.c) percorre a lista de RI e traduz
cada IROpcode (como IR_ASSIGN, IR_ADD e IR_LOAD) na sequéncia de instrugoes
Assembly ©86-64 correspondente.

6.3 Traducao da RI para Assembly

Com o modelo de memoria e a estrutura do stack frame definidos, podemos agora
analisar a implementacao do modulo que gerador do Assembly (assembly.c). O
processo de tradugao é um percurso linear pela lista de RI, onde a fun¢ao principal
gerar_assembly utiliza um switch para traduzir cada IROpcode em sua sequéncia
de Assembly x86-64 ATET correspondente.

6.3.1 O Tradutor de Operandos

A primeira pega-chave da implementagao ¢ a fungao auxiliar get_operand_asm.
Esta funcao atua como um diciondrio que traduz a estrutura de dados abstrata
IROperand (da RI) para a sintaxe de texto que o montador (gcc) espera. Ela é
implementada como um switch que analisa o op->type e formata uma string. Os
trés casos de uso principais sao descritos a seguir.

Valores Imediatos (Constantes) Para constantes numeéricas, o Assembly AT&T
exige um prefixo $.

// IR: OPERAND_CONST, data.const_val = 10

case OPERAND_CONST:
sprintf (asm_buffer, "$%d", op->data.const_val);
break;

// Saida: "$10"

Simbolos (Variaveis e Parametros) Este é o ponto de conexdo crucial com o
analisador semantico. A fungao acessa o memory_offset (calculado na Fase 3) e o
formata na sintaxe de enderecamento relativo a base da pilha.

// IR: OPERAND_SYMBOL, data.symbol->memory_offset = -4 (para ’x’)
// IR: OPERAND_SYMBOL, data.symbol->memory_offset = 16 (para ’a’)
case OPERAND_SYMBOL:
sprintf (asm_buffer, "%d(%\rbp)", op>data.symbol->
memory_offset) ;
break;
// Saida para ’x’: "-4(%rbp)"
// Saida para ’a’: "16(%rbp)"

Temporarios Como os temporarios (ex: t0, t1) ndo existem na Tabela de Simbo-
los, sao atribuimos a eles um espago de memoria proprio. O case de cada um deles
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calcula um offset negativo a partir de um enderego base (no caso, -128), garantindo
que eles nao colidam com as variaveis locais.

// IR: OPERAND_TEMP, data.temp_id = O (para ’t0’)
case OPERAND_TEMP: {
int temp_offset = -128 - (op->data.temp_id * 4);
sprintf (asm_buffer, "%d(%krbp)", temp_offset);
break;

}
// Saida para ’t0’: "-128(%rbp)"
// Saida para ’t1’: "-132(%rbp)"

6.3.2 A Estratégia de Traducao: Load-Operate-Store

A RI implementada no compilador do Micro C' utiliza o mecanismo de Cddigo de
Trés Enderegos (CTE). Isso significa que uma instrugao tipica tem trés operandos
como, por exemplo, t0 := a + b. Por outro lado, a maioria das instrucoes arit-
méticas do x86-64 (como addl) opera em um formato de dois enderegos, onde o
destino é também um dos operandos fonte (destino = destino + fonte). Por
isso, é utilizada a estratégia de tradugao Load-Operate-Store (Carregar-Operar-
Armazenar), que utiliza registradores de rascunho (como %eax e %ebx) para dividir
a operacao. A seguir a descricao de cada uma dessas operagoes:

1. Load (Carregar): carrega os operandos fonte da pilha de memoria (ex:
-4 (%rbp) ) para registradores de rascunho (ex: %eax, j%ebx).

2. Operate (Operar): executa a operacao (ex: addl %ebx, %eax).

3. Store (Armazenar): move o resultado do registrador de rascunho (ex: %eax)
de volta para o destino na pilha (ex: -128(%rbp)).
Traducao de Operagoes Aritméticas e Atribuicao

Os cases para IR_ASSIGN e IR_ADD sao exemplos desta estratégia.

IR ASSIGN A atribuicdio (ex: x := t0) é um Load-Store de duas etapas:

// IR: x := t0
// Mapeamento: x -> -4(%rbp), t0 -> -128(%rbp)

// 1. Load: Carrega t0 (-128(%rbp)) para o registrador Yeax
movl -128(%rbp), %eax

// 2. Store: Armazena %eax na variavel x (-4(%rbp))
movl %eax, -4(%rbp)

IR._ADD A adicdo (ex: t0 := a + b) é o exemplo completo de Load-Load-
Operate-Store:
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// IR: t0 := a + b
// Mapeamento: t0 -> -128(%rbp), a -> 16(%rbp), b -> 24(%rbp)

// 1. Load: Carrega ’a’ (16(%rbp)) em Y%eax
movl 16(%rbp), %eax
// 2. Load: Carrega ’b’ (24(%rbp)) em %ebx
movl 24 (%rbp), %ebx
// 3. Operate: Adiciona %ebx em %eax (resultado fica em %eax)
addl Y%ebx, %eax
// 4. Store: Armazena %eax no temporario tO (-128(%rbp))
movl %eax, -128(%rbp)

Esta mesma estratégia é usada para todas as operacgoes binarias, como IR_SUB,
IR_MUL, IR_LT e IR_EQ.

Traducao de Controle de Fluxo

Estruturas de alto nivel, como o if, foram compactadas pelo gerador de RI em um
conjunto de rotulos e desvios. O gerador de Assembly simplesmente traduz essas
instrugoes de controle de baixo nivel.

IR _LABEL A tradugao de um rétulo (ex: LO: oumain:), por outro lado, precisa
de uma logica especial para diferenciar um rétulo de fungao (que precisa de um
prologo) de um rotulo de desvio.

// IR: main:
case IR_LABEL: {
// 1. Busca o label na Tabela de Simbolos
Simbolo* s = buscar_simbolo_em_todos_escopos(pilha, ...);

// 2. Verifica se & uma fungdo

if (s != NULL && s->is_function) {
// Se for, gera o prdélogo completo
asm_print(".globl %s", s->nome);

asm_print("¥%s:", s->nome);
asm_gen_prologue();
} else {
// Se for um label comum (ex: LO), apenas imprime o rdtulo
asm_print("Ys:", get_operand_asm(instr->result));
}
break;

IR GOTO eIR IF FALSE Estas instrucoes tém traducoes diretas para ins-
trugoes de salto do x86-64.
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// IR: goto L1

case IR_GOTO:
asm_instr("jmp L1");
break;

// IR: if_false tl1 goto LO
// Mapeamento: tl1 -> -132(%rbp)
case IR_IF_FALSE:
// 1. Compara o booleano ’t1’ com O (falso)
asm_instr("cmpl $0, -132(%rbp)");
// 2. "Jump if Equal" (Pula se for igual a O, ou seja, falso)
asm_instr("je LO");
break;

Tradugao de Acesso a Arrays (LOAD e STORE)

A tradugao de acesso a vetores é a operacao mais complexa, pois requer o célculo de
um enderego de memoria em tempo de execugao. Ela é resolvida usando o modo de
enderegamento indexado do x86-64. A férmula para encontrar um elemento v [1]
é: Endereco = EnderegoBase(v) + (Indice(i) * TamanhoDoElemento). Nasin-
taxe da AT&T, isso é escrito como: offset ();base, %indice, escala).

IR _LOAD Para a leitura de t0 := v[i]:

// IR: t0 := v[i]
// Mapeamento: v -> -40(%rbp), i -> -8(%rbp), t0 -> -128(%rbp)

// 1. Carrega o Endereco Base de ’v’ em Jrax
asm_instr("leaq -40(%/krbp), %hrax");

// 2. Carrega o Indice ’i’ em %rbx
asm_instr("movl -8(%Jrbp), %%ebx");

// 3. Carrega o Valor [base + indice*4] em Jecx
asm_instr("movl (%lkrax, %krbx, 4), %hecx");

// 4. Salva o Valor (em %ecx) no destino ’t0’
asm_instr("movl Y%jecx, -128(%%rbp)");

Neste trecho de codigo é possivel observar que a instrugao leaq (Load Effective
Address), carrega o endereco de v (ou seja, -40(%rbp) ), e nao o valor contido nele.
A instrucao movl (%rax, %rbx, 4), %ecximplementa a féormula de acesso, usando
4 como a escala (isso acontece porque no Micro C int’s e char’s ocupam 4 bytes).

IR _STORE Para a escrita v[i]l := x, o processo ¢ o inverso, com o endereco
indexado no lado do destino:
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// IR: v[i] := x
// Mapeamento: v -> -40(%rbp), i -> -8(%rbp), x -> -4(%rbp)

// 1. Carrega o Enderego Base ’v’ em jrax
asm_instr("leaq -40(%%rbp), %hrax");
// 2. Carrega o Indice ’i’ em %rbx
asm_instr("movl -8(%%rbp), %%ebx");
// 3. Carrega o Valor ’x’ em %ecx
asm_instr("movl -4(%%rbp), %hecx");
// 4. Salva o Valor (em %ecx) no Enderego [base + indicex4]
asm_instr("movl %%ecx, (%hrax, %hrbx, 4)");

Com a implementacao da estratégia Load-Operate-Store e a tradugao dos opcodes
de atribuicao, operagoes aritméticas, controle de fluxo e acesso a vetores, o gerador
de Assembly esta completo. Agora é possivel traduzir o corpo de qualquer fungao
do Micro C' em um conjunto de instrugoes x86-64.

No entanto, um programa funcional é mais do que uma colegao de fungoes isola-
das; elas precisam se comunicar. Até agora, nao foram implementadas as instrugoes
que permitem essa comunicacao: IR_PARAM, IR_CALL e IR_RETURN. Mais importante,
ainda nao foi tratada a complexidade relacionada a invocacao de funcoes externas,

como o printf, que nao fazem parte do projeto de implementagao do compilador
do Micro C.

A proxima segao abordara este desafio final. Serao detalhadas as regras e pro-
tocolos, conhecidas como Convengoes de Chamada (ABIs), que ditam como os
parametros sao passados, como os valores sao retornados e como o codigo se conecta
com bibliotecas externas para criar um executavel.

6.4 Convencoes de Chamada e Linking

A geragao de cddigo nao termina ao emitir as instrugoes de uma tnica fun¢ao. Um
programa funcional é composto por multiplas func¢oes que precisam interagir entre si
e, 0 mais importante, com o sistema operacional e suas bibliotecas. Essas interacoes
sao realizadas por um conjunto estrito de regras conhecidas como Convengao de
Chamada (ou ABI, Application Binary Interface) [12].

A convencao dita como os parametros sao passados para as func¢oes, como os
valores sao retornados e quem ¢é responséavel pela limpeza da pilha. No compilador do
Micro C) sao utilizadas duas convencgoes: uma convencao interna simplificada para
as fungoes do proprio Micro C) e a convengao externa formal exigida por fungoes da
biblioteca C.

6.4.1 Convengao Interna: Chamando Fungoes do Micro C

Para a invocagao de fungbes que existem dentro do proprio codigo-fonte (como a
main ou outras fungdes declaradas internamente), é utilizada uma convengao de
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interna simplificada. Esta convencao nao utiliza os registradores para a passagem
de argumentos, optando por passar todos os parametros, exclusivamente, usando a
pilha. Essa é uma abordagem mais simples de implementar e depurar. O processo
de invocagao ¢é dividido em trés etapas que sao mapeadas a partir das instrugoes da

RI:

IR _PARAM (Empilhando Argumentos) Para cada argumento de uma fun-
¢ao0, 0 intercode.c emite uma instrucao IR_PARAM. O gerador de Assembly traduz
isso em codigo que move o valor do argumento para um registrador de rascunho e,
em seguida, empurra esse valor para a pilha.

// IR: param x
// Mapeamento: x -> -4(%rbp)

// 1. Carrega o valor do argumento ’x’ em %eax
movl -4(%rbp), %eax

// 2. Empurra o valor (como 64 bits) na pilha
pushq ’rax

Este processo é repetido para cada parametro, construindo-os na pilha para a
proxima func¢ao consumir.

IR CALL (Executando a Chamada) A instrugdo IR_CALL é o ponto central.
Ela realiza a chamada, limpa a pilha e armazena o resultado.

// IR: t2 := call soma, 2
// Mapeamento: t2 -> -136(%rbp)

// 1. Pula para o label da fung8o ’soma’
call soma

// 2. Limpa os 2 argumentos (2 * 8 bytes = 16) da pilha
addq $16, Yrsp

// 3. Pega o valor de retorno (em %eax) e salva em ’t2’
movl %eax, -136(%rbp)

Quando a instrucao call é executada, o processador automaticamente empilha o
endereco de retorno. Em seguida, a fungao invocada (neste exemplo, soma) executa
seu prologo. O codigo Assembly padrao para este prologo (Subsegao 6.2.3) estabelece
seu proprio stack frame. Dentro de soma, os pardmetros a e b sao acessados usando
os offsets positivos previamente calculados (ex: 16 (%rbp) e 24 (%rbp)).

Apos o retorno da funcao, a convencao determina que a funcao que fez a invo-
cacdo (main) é responsével por limpar a pilha. A instrugdo addq $16, %rsp realiza
essa acao de forma eficiente, simplesmente movendo o ponteiro da pilha para cima,
descartando os 16 bytes que tinham sido alocados para os dois parametros.
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6.4.2 O Desafio do print

A convengao interna criada para o Micro C' funciona corretamente para fungoes con-
troladas pelo compilador, ou seja, de escopo local ao programa. No entanto, ela nao
serve para cenarios que necessitam de interacao com codigos externos ao programa
ou mesmo ao compilador do Micro C. A fungao print, que é uma implementagao
exclusiva para o Micro C, é uma imitacao limitada da funcgao printf da biblio-
teca C padrao. O objetivo dessa fungao ¢ fornecer ao programador a capacidade de
visualizar saidas dos seus programas e conferir se eles estao corretos, por exemplo.

O printf é uma funcao externa, pré-compilada, que nao foi escrita para o com-
pilador do Micro C. Ela nao tem como saber sobre a convencao estrita de repassar
os parametros todos pela pilha. Em vez disso, a fungao espera que os argumentos
sejam enviados seguindo a convencao de chamadas do sistema operacional.

O Problema dos Argumentos (Convencao System V ABI)

Como o ambiente de desenvolvimento utiliza o gcc em um ambiente Unix-like, a
funcao printf espera que seus argumentos sigam a convencao System V AMDG64
ABI [12]. Esta convengao determina que os primeiros argumentos inteiros ou pon-
teiros sao passados usando registradores especificos, nao da pilha. Para o printf,
em especial, os dois primeiros argumentos sao:

e Argumento 1 (Formato): um ponteiro para a string de formato (ex: "%d\n").
Deve ser colocado no registrador %rdi.

e Argumento 2 (Valor): o valor a ser impresso (ex: o valor de z). Deve ser
colocado no registrador %rsi.

Para resolver isso, na implementagao do compilador (intercode.c), primeiro
¢ detectado o tipo de argumento (usando get_expr_static_type) que vai gerar
opcodes (codigos de operagao) especializados:

e IR_PRINT_INT
e TR_PRINT_CHAR
e TR_PRINT_STRING

Em seguida, o compilador (assembly.c) traduz esses opcodes usando a con-
vengao correta. A traducao para IR_PRINT_INT, detalhada abaixo, serve como o
principal exemplo de como a ABI System V é implementada. O processo exige
o carregamento dos argumentos nos registradores corretos (%rdi e %rsi), o zera-
mento do %eax (um requisito para fungbes com ntmero variavel de argumentos
como printf), e o alinhamento da pilha antes da chamada:
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// IR: print_int z
// Mapeamento: z -> -12(%rbp)

// 1. Carrega o ponteiro da string de formato "%d\n" em %rdi
leaq .L.str.int(%rip), %rdi
// 2. Carrega o valor de ’z’ em %esi (os 32 bits
inferiores de Y%rsi)
movl -12(%rbp), %esi
// 3. Define %eax como O (necessario para fungdes
variadicas como printf)
xorl %eax, %eax
// 4. Alinha a pilha (requisito da ABI) e chama
subq $8, %rsp
call printf
addq $8, %rsp

Como ¢ possivel observar no cédigo, a tradugao para uma chamada externa é,
significativamente, mais complexa do que uma para chamada interna.

O Problema dos Dados (A Segao .rodata)

A convengao ABI resolve como passar os argumentos, mas acaba desencadeando
em um outro problema: o primeiro argumento, %rdi, deve conter o endereco da
string de formato (ex: "%d\n"). Essa string precisa estar fisicamente armazenada
na memoria do programa para que o ponteiro possa referéncia-la.

A solucao foi criar uma secao de dados no topo do arquivo Assembly gerado
pelo compilador com uma chamada .section .rodata (Read-Only Data). Para
preencher esta se¢do, o compilador (assembly.c) realiza uma pré-varredura na
lista de RI antes de traduzir o codigo.

// Cdédigo gerado no topo do arquivo teste.s

.section .rodata

.L.str.int: .string "J%d\n"
.L.str.char: .string "Yc\n"
.L.str.str: .string "¥%s\n"

// ... cddigo da pré-varredura para strings literais ...
// Ex: LO: .string "Meu Compilador"

.text
.globl main
//... (resto do cddigo)

Esta pré-varredura procura por instrugoes IR_PRINT_STRING e define seus labels
(ex: LO) com o conteido da string. A instrucdo leaq .L.str.int(%rip), %rdi
entdo usa o RIP-relative addressing (enderegamento relativo ao ponteiro de ins-
trucdo) para carregar o endere¢o daquela string de formato no registrador correto,
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completando os requisitos para a chamada a fungao printf.

Com a implementagao das convengdes de chamada, tanto as internas (para fun-
¢Oes como soma) quanto as externas (para a fun¢do printf da biblioteca C), o
gerador de Assembly esta agora completo. O resultado da compilagao gera um
arquivo com extensao .s que nao é apenas uma traducao literal da RI, mas um ar-
quivo de Assembly valido que obedece as regras da arquitetura x86-64 e do Sistema
Operacional.

No entanto, este arquivo .s ainda é apenas texto; ele nao é um programa execu-
tavel. A etapa final, e a conclusao de todo o processo é a montagem e linking. No
projeto do compilador do Micro C' foram disponibilizados um Makefile que pode
ser utilizado para facilitar a compilagdo de novos codigos fonte (extensdo .mcc),
embora as mesmas etapas possam ser realizadas manualmente utilizando o préprio
binario do compilador (mcc). O Apéndice D mostra um exemplo de compilagao
gerando cada uma das fases de compilagao do codigo fonte exemplo até a geragao
do seu, respectivo, codigo binario.

6.5 Sumario

Este capitulo encerra a construcao do compilador para a linguagem Micro C' ao
implementar a fase final do back-end, o gerador de coédigo Assembly. Esta
etapa foi responsavel por traduzir a Representa¢ao Intermediaria (RI) descrita no
Capitulo 5, que é abstrata e independente de plataforma, em codigo Assembly.

Inicialmente foi definida a arquitetura x86-64 e a Sintaxe AT&T que seria
utilizada para gerar codigo em Assembly. A opgao foi pelo formato esperado pelo
GCC, que é a ferramenta utilizada para a montagem e linking(conversao do Assembly
gerado pelo compilador do Micro C' para binério).

Em seguida, foram explorados os modelos de memoéria necessarios para montar
o codigo em Assembly, explicando o papel de registradores (como %rbp, %rsp e
irax) e a estrutura do Registro de Ativagao (Stack Frame). Além disso, foram
explicados como o prologo e o epilogo (‘pushq %rbp’ / ‘popq %rbp’) criam e destroem
esse frame, e como ajustes na fase semantica do compilador do Micro C' foram
necessarias para corrigir o mapeamento das variaveis locais para offsets negativos
(ex: -4(%rbp)) e parametros para offsets positivos (ex: 16 (%rbp))

Com as estruturas devidamente organizadas, foram detalhados como o gerador
de Assembly (assembly.c) do Micro C usa a fun¢do get_operand_asm, que atua
como o diciondrio tradutor de operandos, e a estratégia Load-Operate-Store usada
para converter instrugoes de trés enderecos (como IR_ADD) em sequéncias de As-
sembly (como movl, movl, addl, movl). Além disso, foram analisadas a tradugao de
instrugoes-chave, desde IR_ASSIGN e IR_IF_FALSE até o complexo enderecamento
indexado de IR_LOAD e IR_STORE.
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Por fim, foram detalhados os desafios para realizar a interacao com codigo ex-
terno. Por exemplo, foram detalhas as Convengoes de Chamada, fazendo um
contraste entre a convencao de pilha interna definida para o Micro C' (baseada em
pilha, para a fungao soma) com a convengao externa System V ABI, que foi neces-
séria para implementar e invocar a fun¢ao printf sem a necessidade de bibliotecas
externas. Isso incluiu o uso de registradores (%rdi e %rsi) para argumentos e a
definicao de dados na se¢ao .rodata do codigo Assembly.
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Capitulo 7

Conclusao

"It always seems impossible until it’s done.”

— Nelson Mandela

Este trabalho teve como objetivo o projeto, a implementagao e a validagao de
um compilador para a linguagem Micro C, que é um subconjunto minimalista da
linguagem de programacao C. Ao longo dos capitulos, detalhou-se cada fase do
complexo pipeline de compilagao de um programa, do seu codigo fonte até geragao
de coédigo binario.

7.1 Sumério do Compilador do Micro C

O desenvolvimento do compilador da linguagem Micro C' foi extenso e complexo.
Cada capitulo abordou uma fase do processo de compilacao e esta associada dire-
tamente ao software que foi desenvolvido, o compilador da linguagem Micro C. A
seguir serao sintetizadas as contribuicoes de cada uma das etapas de construcao do
compilador, por fase de compilagao.

7.1.1 O Front-End: Analise e Compreensao

O front-end do compilador é responséavel pela fase de analise. A implementagao
inicia com a Analise Léxica (Capitulo 2), onde o scanner. ¢ converte o arquivo-fonte
do Micro C' em uma sequéncia linear de tokens. Em seguida, a Analise Sintatica
(Capitulo 3) consome esses tokens, valida a graméatica da linguagem e constréi a
Arvore Sintatica Abstrata (ASA), a representacdo hierarquica do programa. Por
fim, a Analise Seméntica (Capitulo 4) percorre a ASA para realizar a verificacao de
tipos e escopos, utilizando a Tabela de Simbolos para armazenar o contexto (como
tipos de variaveis) e informagoes para o back-end, como os offsets de memoria.
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7.1.2 O Back-End: Sintese e Geracao

O back-end é o responsével pela fase de sintese da compila¢ao (Capitulo 5 e Ca-
pitulo 6). Esta fase inicia com a geracao de codigo intermediario (intercode.c),
que percorre a ASA e a traduz (ou compacta) para uma Representacio Intermedi-
aria (RI) linear: o Codigo de Trés Enderegos (CTE). Esta RI é independente da
plataforma. Na etapa final, o compilador (assembly.c) traduz a RI instrugao por
instrucao para codigo em Assembly 186-64 (sintaxe AT&T), resolvendo o acesso a
memoria (o stack frame) e implementando as convengoes de chamada (ABI) neces-
sérias para interagir com chamadas de fungoes externas, como o printf. O arquivo
.s resultante pode ser montado e linkado pelo gcc para produzir um cédigo binario
executavel.

7.2 Resultados Obtidos e Validacao

A implementacao tedrica de um compilador nao é suficiente sem uma validagao
pratica. Esta secao detalha os resultados obtidos ao submeter o Compilador Micro
C' a um conjunto diversificado de algoritmos de teste, tanto de sucesso quanto de
falha. O sucesso na compilagao e a subsequente execucao correta dos testes provam
que o codigo Assembly gerado (Capitulo 6), é funcional e que toda a pipeline de
sintese gera, corretamente um programa binario valido.

O conjunto de testes de sucesso foi dividido em trés categorias principais, cada
uma validando um subconjunto de funcionalidades do compilador:

e Testes de Funcionalidade Basica: verificacao das operagoes aritméticas
fundamentais (+, -, *, / e %), todos os operadores relacionais (como <, ==,
I=, >=), a estrutura condicional if-else, e a capacidade de invocar a fungao
print com os trés tipos de dados suportados (int, char e string).

e Testes de Controle e Memoria: que realizam operagoes de lago complexas
e acesso a dados. Isso incluiu a implementacao de algoritmos como a Peneira
de Eratdstenes (para encontrar nimeros primos) e o Bubble Sort (para
ordenacao). Esses testes validaram intensivamente os lagos for aninhados e o
correto acesso a arrays (operagoes IR_LOAD e IR_STORE).

e Testes do Stack Frame: validacao do gerenciamento da pilha em chamadas
recursivas. Isso incluiu a Recursao Simples (Fatorial) e a Recursao Mul-
tipla (Maximo Divisor Comum e Fibonacci). O teste de Fibonacci foi impor-
tante, por exemplo, por validar a capacidade do compilador de lidar com ins-
trugoes return que contém expressoes complexas (ex: return fibonacci(n
- 1) + fibonacci(n - 2);). Isso mostra que o gerador de RI trata correta-
mente miltiplas chamadas IR_CALL aninhadas dentro de uma tnica expressao
aritmética.

Além da validacao de sucesso, o compilador também foi testado quanto & sua
capacidade detectar erros. Testes de falha foram criados para garantir que cada fase
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do front-end capturasse corretamente codigos invalidos:

e Erros Léxicos: caracteres invalidos (ex: @) sdo corretamente capturados pelo
scanner. c.

e Erros Sintaticos: Gramatica incorreta (ex: falta de ;) é corretamente cap-
turada pelo parser.c.

e Erros Semanticos: Uso de variaveis nao declaradas ou incompatibilidade de
tipos sao corretamente capturados pelo semantic.c.

A capacidade do compilador em aceitar programas complexos e validos, produ-
zindo a saida correta, ao mesmo tempo em que rejeita programas invalidos com
mensagens de erro claras, demonstra a integridade e a funcionalidade de todas as
fases implementadas.

7.3 Desafios de Implementacao e Solucoes

O desenvolvimento do compilador da linguagem Micro C nao foi um processo linear.
A transicao da teoria para uma implementacao revelou diversos desafios. Esta secao
detalha os principais desafios de engenharia encontrados tanto no front-end (analise),
quanto no back-end (sintese) e as solugoes aplicadas.

7.3.1 Desafios do Front-End: Ambiguidade e Estrutura

No front-end, os desafios centraram-se em resolver ambiguidades no codigo-fonte e
em traduzir regras gramaticais recursivas para um parser funcional.

Desambiguagao Léxica (Scanner): o scanner.c enfrentou o desafio de dife-
renciar operadores de comentérios, que compartilham o mesmo prefixo (o caractere
‘/9). Uma traducao simples falharia em distinguir a expressdo a / b de um comen-
tario //comentario. A solugdo foi implementar uma logica de lookahead (olhar a
frente), em que o scanner observa o proximo caractere ao / (usando prox_char())
e, caso nao seja um comentario, devolve o caractere ao fluxo de entrada (usando
ungetc()) para ser processado corretamente como um operador.

Precedéncia e Recursao a Esquerda (Parser): o desafio do parser.c foi
implementar a precedéncia de operadores (ex: * antes de +) sem usar uma gramética
com recursao a esquerda (ex: F — E + T), que causaria um lago infinito em um
parser recursivo descendente. A solugao foi implementar a precedéncia por meio da
propria estrutura das chamadas de fungao: a gramética foi dividida em expression,
term e factor, onde expression (nivel mais baixo de precedéncia) deriva em term,
que por sua vez deriva factor (nivel mais alto), fazendo com que a arvore a fosse
construida na ordem correta.
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Ambiguidade Sintatica (Parser): o parser.c falhou inicialmente ao tentar
analisar chamadas de funcao usadas como uma instrucao independente. O case
ID: na fungao statement assumia que todo ID (como minha_funcao) era o inicio
de uma atribuigao (ex: x = ...) e gerava um erro ao encontrar o token LPAREN
(representando o caractere ’ (?). A solucdo foi implementar uma fun¢ao peek para
observar o token seguinte. O case ID: agora verifica: se o proximo token for
LPAREN, ele chama a rotina de analise de expressao (que sabe processar uma chamada
de fun¢ao); caso contrario, ele chama a rotina de andlise de atribuigao.

7.3.2 Desafios do Back-End: Memoéria e Convencoes

No back-end, os desafios foram, principalmente, no gerenciamento de memoria e na
adesao as convengoes de baixo nivel da arquitetura.

Gerenciamento de Memoria na RI (O Bug do double free): O primeiro
bug critico ocorreu na Fase 4 (Capitulo 5). A depuragao revelou que a reutilizagao de
ponteiros de IROperand (ex: t0 ou L1) em multiplas instrugoes causava um double
free em liberar_ir. A solucgao foi refatorar a RI, adicionando a flag owns_label
e a funcao copiar_operando, garantindo que cada instrugao possuia copias tinicas
de seus operandos.

Calculo de Offsets de Pilha (O Bug do 0(Jrbp)): Apos corrigir o bug an-
terior, o Assembly gerado ainda era invélido, pois acabava mapeando todas as va-
ridveis para 0(%rbp). O problema estava no semantic.c: a fung¢ao analisar_no
chamava calcular_offsets em Pré-Ordem (antes de os simbolos serem adicionados
a tabela). A solugao foi reestruturar analisar_no para uma logica de Pos-Ordem,
garantindo que os offsets fossem calculados apenas apds a tabela do escopo estar
completa.

Convengoes de Chamada (Os Bugs do printf e da Recursao): A imple-
mentac¢ao de chamadas de fungdo (IR_CALL) revelou dois bugs de convencao de
chamada:

1. Convencgao Externa: a chamada a fungao printf falhava porque ele espera
argumentos nos registradores (%rdi, %rsi) e dados na segdo .rodata, seguindo
a ABI System V [12]. O assembly.c foi corrigido para tratar IR_PRINT como
um caso especial que segue esta convengao.

2. Convencao Interna: chamadas de fungao recursivas estavam causando um
estouro de pilha. A depuragao revelou que o assembly. c estava empilhando os
parametros na ordem errada (da esquerda para a direita), em vez de seguir a
convengao do C (da direita para a esquerda). Isso fazia com que a fungao recur-
siva fizesse a leitura de seus proprios argumentos de forma incorreta, levando
a um lago infinito. A solucao foi criar um buffer de parametros, permitindo
ao IR_CALL empilhé-los na ordem correta (da direita para a esquerda).
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7.4 Limitacoes e Trabalhos Futuros

Um projeto de compilador é, normalmente, limitado pela linguagem definida e pe-
los objetivos dos projetistas. A versao atual do compilador do Micro C, embora
funcional e capaz de compilar algoritmos complexos, foi desenvolvida para fins di-
déticos. Dessa forma, varias funcionalidades nao foram implementadas e o escopo
da linguagem foi restrito ao méximo, para tornar o programa desenvolvido simples
de aprender ou expandir.

7.4.1 Limitagoes Atuais

A seguir serao descritas algumas de suas limitagoes de implementagao. Elas se
concentram em trés areas:

e Auséncia de Suporte a Ponteiros: esta ¢ a limitacao mais significativa da
linguagem Micro C. A gramatica, o analisador seméantico e os geradores de
codigo ndo reconhecem a sintaxe de ponteiros (como * ou &). A consequéncia
mais direta disso é a incapacidade de passar vetores como parametros para
fungoes. Isso impede a implementacao de algoritmos que dependem dessa
funcionalidade, como o Quick Sort Recursivo.

e Geragao de Codigo Nao Otimizado: o codigo Assembly gerado é simples e
correto, mas nao se preocupa com a performance. A estratégia Load-Operate-
Store, que move valores constantemente entre a pilha e os registradores de
rascunho, é lenta. Além disso, o prologo de cada funcao aloca um espaco
fixo de 256 bytes na pilha, independentemente de quantas variaveis a funcao
realmente necessita, desperdicando espaco.

e Tipos de Dados Primitivos: o compilador suporta apenas os tipos basicos
int e char. Faltam outros tipos fundamentais do C, como float, double ou
mesmo qualificadores como unsigned.

e Gramatica Incompleta: A gramatica da Micro C' é um subconjunto estrito
do C. Faltam diversas estruturas de controle de fluxo essenciais, como os lacos
while e do-while, a selecao switch-case, e tipos de dados agregados, como
structs.

7.4.2 Propostas de Trabalhos Futuros

Cada limitacao listada acima representa uma oportunidade para a evolucao deste
projeto. As propostas de trabalhos futuros podem transformar o Compilador Mi-
cro C de uma ferramenta didatica para um compilador de propoésito mais geral
implementando algumas estruturas adicionais como, por exemplo:

¢ Implementacao de uma Fase de Otimizagao: adicao de uma nova fase
de otimizacao dentro do back-end, a ser executada entre a geracao da RI e a
geracao do Assembly. Esta fase operaria sobre a RI para realizar otimizagoes,
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como eliminacgao de codigo desnecessario, propagacao de constantes e, o mais
importante, alocacao de registradores para reduzir o trafego de memoria da
estratégia Load-Operate-Store.

e Suporte a Ponteiros e Alocagcao Dindmica: expansao da sintaxe e da
semantica para incluir ponteiros. Isso nao s6 permitiria a passagem de arrays,
mas também abriria caminho para a implementacao de fungoes de alocacao de
memoria (como malloc), aproximando a linguagem do poder total do C.

e Expansao do Sistema de Tipos: adicionar suporte para tipos de ponto flu-
tuante (float e double), o que exigiria a utilizagao dos registradores FPU /SSE
(como %xmm0) e novas instrugoes de Assembly.

e Geracgao de Back-Ends Adicionais: criacao de novos geradores de codigo.
Um back-end para arquiteturas ARM ou RISC-V poderia ser implementado,
reutilizando todo o front-end e o gerador de RI existentes.

¢ Independéncia de Ferramentas Externas: substituir a dependéncia atual
do gcc. Isso envolveria a implementagao das duas fases finais da compilagao:
um Montador (Assembler) proprio, capaz de traduzir o arquivo .s em um
arquivo objeto binario (.o), e, subsequentemente, um Linker (Ligador) capaz
de ligar o arquivo .o com as bibliotecas do sistema para produzir o executavel

final.

7.5 Consideracoes Finais

A construcao de um compilador é um exercicio que relaciona teorias e conceitos de
ciéncia da computacao com a construgao de um software complexo. Foi projetado,
implementado e validado um compilador para a linguagem Micro C, que funciona
do codigo fonte a geragao de codigo Assembly para o executéavel binario.

Além disso, do ponto de vista da implementacao, este trabalho vai facilitar o
aprendizado académico, porque cria um compilador para uma linguagem minima-
lista com um tamanho acessivel (em linhas de co6digo) para que outros estudantes
possam entender e modificar, de acordo com suas necessidades de aprendizado, o
compilador. Por exemplo, o gcc, um compilador muito utilizado em ambientes Unix-
like, possui mais de 15 milhoes de linhas de codigo (informagao de 2019), por outro
lado, o compilador do Micro C, possui pouco menos de 4 mil linhas de codigo (o que
representa em torno de 0,027% do gcc). Isso demonstra que é possivel implementar
um compilador funcional, mesmo que nao seja o compilador mais eficiente.

O codigo fonte completo do projeto, documentado nesta monografia, esta dispo-
nivel online sob a licenga GPLv3 [14].
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Apéndice A
Linguagem do Micro C

Abaixo estao descritos os operadores e demais elementos do subconjunto da lingua-
gem de programagao C utilizada pelo compilador Micro C. Sao definidos os tipos
literais, operadores aritméticos, relacionais, logicos e de atribuicao. Além disso, sao
definidos os delimitadores palavras reservadas e o token utilizado para representar
o final do arquivo. Os elementos definidos sao os utilizados em todas as fases da
compila¢ao mas em momentos diferentes.

Literais
e UNDETF - Token indefinido (erro ou valor desconhecido).
e ID - Identificadores (variaveis, fungoes).
¢ INTEGERCONST - Constante inteira (ex: 42).
¢ CHARCONST - Constante de caractere (ex: ‘a’).
e STRINGCONST - Constante de string (ex: “a35er").

Operadores Aritméticos
e PLUS - Adicdo “+".
e MINUS - Subtragao “-".
e MUL - Multiplicagao “*".
e DIV - Divisao “/".
e MOD - Moédulo “%".

Operadores Relacionais
e EQ - Igualdade “==".
e NEQ - Desigualdade “!=".

e LT - Menor que “<".

115



Linguagem do Micro C

116

e GT - Maior que “>".

e LEQ - Menor ou igual que “<=".

e GEQ - Maior ou igual que “>=".

Operadores Logicos
e AND - Operador logico E “&&".
e OR - Operador logico OU “||".
e NOT - Operador logico NAO “I".

Operadores de Atribuicao

ASSIGN - Atribuicao “=".

Delimitadores

SEMICOLON - Ponto e virgula “;".
COMMA - Virgula “,".

LPAREN - Paréntese esquerdo “(".
RPAREN - Paréntese direito “)".
LBRACE - Chave esquerda “{".
RBRACE - Chave direita “}".
LBRACKET - Colchete esquerdo “[".
RBRACKET - Colchete direito “]1".

Palavras Reservadas

MAIN - Funcao principal main.

IF - Estrutura condicional if.

ELSE - Estrutura condicional else.
PRINT - Comando de Imprimir print.
FOR - Laco de repeticao for.

RETURN - Comando de retorno return.
INT - Tipo de dado int.

CHAR - Tipo de dado char.

Fim de Arquivo

END _ OF _FILE - Fim do arquivo.

FACOM-UFMS



Apéndice B
Gramatica do Micro C

Neste Apéndice, apresentamos a especificagao formal da sintaxe da linguagem Micro
C. A estrutura é definida por meio de uma Gramaética Livre de Contexto (GLC),
utilizando uma notagao baseada em BNF (Backus-Naur Form) [2].

A gramaética descreve as regras de producao para a estrutura do programa, co-
mandos, expressoes e operadores suportados pela linguagem do Micro C.

1. Estrutura e Declaragoes

(programa) — int main () (bloco)
(bloco) — { (declaragoes) (comandos) }
(declaragoes) —  (declaragao) (declaragoes) | e
(declaragao) — (tipo) ID ;| (tipo) ID [ INTEGERCONST | ;
(tipo) — int | char
2. Comandos
(comando) —  (if) | (for) | (atribui¢ao) | (return) | (print) | (bloco) | ;
(ify — if ( (expressao) ) (comando) | else (comando) ]
(fory — for ( (atribuicao interna) ; (expressao) ;
(atribuicao _interna) ) (comando)
(return) — return [ (expressao) | ;
(printy — print ( (conteido print) ) ;
(atribuicao) — (atribuicao interna) ;
(atribui¢ao_interna) — ID = (expressao) | ID [ (expressao) | = (expressao)
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3. Expressoes e Operadores

(conteido printy — STRINGCONST | (expressao)
(expressao)y — (expressao_logica)
(expressao_logica) — (expressao relacional) { (&& | ||) (expressio_relacional) }

(expressao_relacional) — (expressao_ aritmética) | (operador _relacional)
(expressao_aritmética) |
(operador_relacional) — ==|!=|<|>|<=|>=
(expressao_ aritmética)y —  (termoy { (+ | —) (termo) }
(termoy — (fator) { (x| /| %) {(fator) }

(fator) — ( (expressao) ) | ID | ID [ (expressao) | |

INTEGERCONST | CHARCONST | ! (fator)
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Apéndice C
Exemplos de Coédigo

A seguir, temos exemplos de implementacao de cédigos utilizando a linguagem re-
conhecida pelo compilador Micro C, de acordo com a gramatica definida no Apén-
dice B e com seus respectivos tokens definidos no Apéndice A. As implementagoes
demonstram que, mesmo uma linguagem simples, é capaz de resolver varios proble-
mas computacionais. No repositorio do codigo [14] existem outros exemplos.

C.1 Fibonacci Recursivo

O codigo do Fibonacci recursivo demonstra como o compilador é capaz de tratar
corretamente a invocagao recursiva de chamadas a mesma funcao, empilhando cor-
retamente as chamadas e gerando o resultado esperado.

fibonacci.mcc

int fibonacci(int n) {
int resultado;

if (n <=1) {
resultado = n;
return resultado;

}
return fibonacci(n - 1) + fibonacci(n - 2);
}
int main() {
print("Calculando fibonacci(8)...");
print(fibonacci(8)); // Deve imprimir 21
return O;
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C.2 Bubble Sort

O Bubble Sort é um algoritmo de ordenagao de vetores que recebe como entrada um
vetor nao ordenado e retorna como saida o vetor com os elementos ordenados. O uso
de varias variaveis, alocagao de vetores, e lagos aninhados funciona como esperado.

bubble.mcc

int main() {

int v[5];

int i;

int j;

int temp;

v[0] = 50;

v[1] = 20;

v[2] = 40;

v[3] = 10;

v[4] = 30;

print("--- Array Desordenado ---");

for (i =0; i<5;1i=1+1){
print(v[il);
}

// --- algoritmo Bubble Sort ---

for (i =0; i <5; i=1+1){
//passa pelo array comparando pares
for (j =0; j<4; j=3+1{
if (v[jl > v[j+1]) {

//Troca

temp = v[jl;

v[jl = v[j+1];

v[j+1] = temp;

}
}
}
print("--- Array Ordenado ---");
for (i =0; 1 <5;i=1i+1){
print(v[il);
}
return 0;
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C.3 Fatorial de um Namero

Diferente do exemploa da sequéncia de Fibonacci, o calculo do fatorial de um nimero
utiliza sequéncias comparativas deterministicas (if-else com o fluxo do codigo
variando entre atribuir um valor a uma variavel ou calcular recursivamente o fatorial
do nimero anterior e receber o resultado agregado final.

fatorial.mcc

int fatorial(int n) {
int resultado_recursivo;
int resultado_final;

if (n < 2) {
resultado_final = 1;
} else {

resultado_recursivo = fatorial(n - 1);
resultado_final = n * resultado_recursivo;

}

return resultado_final;

int main() {
int valor;
print("--- Teste de Recursao ---");
//calcular o fatorial de 5 (5! = 120)
print ("0 resultado de 5! e:");

print(fatorial(5));

return O;

Um detalhe importante é que, diferente da linguagem C original, o Micro C
implementa uma fungao de impressao print () simplificada que foi criada apenas
para fins de depuracao. Ela nao utiliza os mesmos parametros da funcao printf ()
da biblioteca padrao do C.
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Apéndice D
Compilacao Completa

Neste apéndice serd mostrado um exemplo de codigo e quais os codigos intermedi-
arios gerados pelo compilador para cada uma das fases de compilacao.

D.1 Cébdigo Fonte: soma.mcc

O exemplo a seguir apresenta uma soma simples de duas variaveis inteiras declaradas.
As variaveis recebem, cada uma, um valor de atribui¢ao e sua soma é impressa no
terminal.

soma.1mcc

int main()
{
int a;
int b;

a = 10;
b = 20;

print(a + b);

return O;

3

Este exemplo se encontra no diretério /exemplos no repositorio do codigo fonte
do compilador.
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D.2 Analise Léxica

A primeira fase é a analise léxica. Para gerar os tokens pela analise léxica usamos o

comando:

$ mcc --scan exemplos/soma.mcc

ao executar este comando, o compilador ira realizar a analise léxica e gerar o
arquivo tokens.txt que sera utilizado nas fases posteriores.

Fase 1: anélise léxica

Fase 1 (Lexica) concluida: 31 tokens gerados.
--- LISTA DE TOKENS GERADOS ---

Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:
Token:

tipo =

tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo
tipo

33, lexema
28, lexema
22, lexema
23, lexema
24, lexema
33, lexema
1, lexema
20, lexema
33, lexema
1, lexema
20, lexema
1, lexema
19, lexema
2, lexema
20, lexema
1, lexema
19, lexema
2, lexema =
20, lexema
35, lexema
22, lexema
1, lexema
5, lexema =
1, lexema
23, lexema
20, lexema =
32, lexema
2, lexema =
20, lexema
25, lexema
36, lexema

= ’int’, linha = 1
= ’main’, linha = 1
= 2(’, linha =
= )?, linha
= 2{’, linha
= 2int’, linha = 3
’a’, linha = 3
= ?;?, linha = 3
= ?int’, linha =
’b’, linha = 4
’;?, linha = 4
’a’, linha = 6

I
N~ -

4

= ?=>_ linha = 6
’10’, linha = 6
= 2,7, linha = 6
b’ linha = 7
= 2=’ linha =7
’20°, linha =7
= 2,7, linha =7

’print’, linha = 9
’>(’, linha = 9
’a’, linha =
’+?, linha
’b?, linha =
’)?, linha = 9

’;?, linha = 9
= ’return’, linha = 11
’0’, linha = 11
= ?;?, linha = 11
’}’, linha = 12
EOF’, linha = 13

9
9
9

Arquivo ‘tokens.txt’ gerado com sucesso.
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D.3 Analise Sintatica

O proximo passo é executar a analise sintatica.

$ mcc --parse exemplos/soma.mcc

Executando o compilador com o parametro -parse, o analisador sintatico pro-
cessa a sequéncia de tokens para validar se a estrutura do cédigo obedece as regras
gramaticais definidas para o Micro C:

Fase 2: analise sinatica

Fase 1 (Lexica) concluida: 31 tokens gerados.
Fase 2 (Sintatica) concluida: AST gerada.
--- ARVORE SINTATICA ABSTRATA (AST) ---
NO_PROGRAMA
NO_DEFINICAO_FUNCAOQO
NO_TIPO (INT)
NO_ID (Nome: main)
NO_BLOCO
NO_DECLARACAQO_VARIAVEL
NO_TIPO (INT)
NO_ID (Nome: a)
NO_DECLARACAQO_VARIAVEL
NO_TIPO (INT)
NO_ID (Nome: b)
NO_ATRIBUICAOQ
NO_ID (Nome: a)
NO_CONST_INT (Valor: 10)
NO_ATRIBUICAOQ
NO_ID (Nome: b)
NO_CONST_INT (Valor: 20)
NO_PRINT
NO_OP_BINARIA (PLUS)
NO_ID (Nome: a)
NO_ID (Nome: b)
NO_RETORNO
NO_CONST_INT (Valor: 0)

Arquivo ‘ast.txt’ gerado com sucesso.

ao final da analise sintatica, é gerado o arquivo ast.txt que é a arvore sintética
abstrata que seré utilizado na analise semantica.
D.4 Analise Semantica

Em seguida, é realizada a analise semantica para validar a l6gica implementada pelo
programador e calcular os enderegos de memoria das variaveis.

$ mcc --semantic exemplos/soma.mcc
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Se a logica implementada no cédigo estiver correta, o compilador valida a estru-
tura e exibe a Tabela de Simbolos gerada. Nela, é possivel visualizar os escopos
(Global e Local), os tipos das variaveis e, principalmente, o Offset (deslocamento)
de memoria calculado para a geragao de codigo:

Fase 3: analise semantica e tabela de simbolos

Fase 1 (Lexica) concluida: 31 tokens gerados.
Fase 2 (Sintatica) concluida: AST gerada.
Fase 3 (Semantica) concluida: Codigo validado.

ESCOPO: Funcao: main

NOME | TIPO | CATEGORIA | ARRAY? | TAMANHO | OFFSET
_____________________ S S S
a | INT | VAR LOCAL | NAO | 0 | -4

b | INT | VAR LOCAL | NAO | 0 | -8
ESCOPO: GLOBAL

NOME | TIPO | CATEGORIA | ARRAY? | TAMANHO | OFFSET
_____________________ S S S
main | INT | FUNCAO | NAO | 0 | 0

Arquivo ‘symbols.txt’ gerado com sucesso.

D.5 Intercode

A quarta fase é a geragao do codigo intermediério:

$ mcc --gen-ir exemplos/soma.mcc

A saida da geragao intermediéria sao codigos seguindo o padrao CTE descrito no
Capitulo 5. O resultado, que é o arquivo ir.txt contendo o cédigo intermediério,
dessa fase esta a seguir:

Fase 4: intercode

Fase 1 (Lexica) concluida: 31 tokens gerados.
Fase 2 (Sintatica) concluida: AST gerada.

Fase 3 (Semantica) concluida: Codigo validado.
Fase 4 (Geracao de IR) concluida.

--- MODO DE GERACAO DE CODIGO INTERMEDIARIO ---
--- CODIGO INTERMEDIARIO (IR) ---
main:

a := 10

b := 20

t0 :=a+b

print_int tO

return O

Arquivo ‘ir.txt’ gerado com sucesso.
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D.6 Assembly

Na ultima fase, o c6digo intermediario é convertido em linguagem Assembly. Para

executar a geracao de codigo em Assembly:

$ mcc --gen-asm exemplos/soma.mcc

A execugao gera o codigo de saida em Assembly soma.s, contendo todas as
instrugoes necessarias para o GCC montar e linkar o binario compativel com a

arquitetura Intel/AMD x86-64.

Fase 5: geracgao do assembly

Fase 1 (Lexica) concluida: 31 tokens gerados.
Fase 2 (Sintatica) concluida: AST gerada.

Fase 3 (Semantica) concluida: Codigo validado.
Fase 4 (Geracao de IR) concluida.

Fase 5 (Geracao de Assembly) concluida: ’exemplos/soma.s’ gerado.

--- MODO DE GERACAO DE ASSEMBLY CONCLUIDO ---

O codigo Assembly gerado:

exemplo.s

.section

.rodata

.L.str.int: .string "%d\n"
.L.str.char: .string "%c\n"
.L.str.str: .string "¥%s\n"

.text

.globl main

main:

pushq J%rbp

movq
subq
movl
movl
movl
movl
movl
movl
addl
movl
leaq
movl
xorl
subq
call
addq
movl
movq
popq
ret

%rsp, %rbp

$256, Yrsp

$10, %eax

%heax, -4(%rbp)
$20, %eax

%heax, -8(%rbp)
-4 (%rbp), %eax
-8(%rbp) , %ebx
%ebx, %eax

%heax, -128(%rbp)
.L.str.int (%rip), %rdi
-128(%rbp), Y%esi
Yeax, heax

$8, Y%rsp

printf

$8, JYrsp

$0, %eax

%rbp, %rsp

%rbp
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O codigo final em Assembly pode ser transformado em binério usando o compi-
lador de Assembly do proprio gcc com o comando:

$ gcc exemplos/soma.s -o soma
$ ./soma
30

Com isso, se encerra o processo de compilagao e execugao do coddigo binario
gerado pelo compilador do Micro C.
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