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Resumo

A falta de mecanismos nativos para a recuperação estruturada de arquivos ex-
clúıdos em sistemas de arquivos amplamente utilizados constitui uma limitação ainda
não solucionada. Nesse sentido, este trabalho apresenta o desenvolvimento e a ava-
liação do Basic Solution File System (BSFS), um sistema de arquivos experimental
implementado em linguagem C e executado em espaço de usuário no Linux, com
um modelo próprio de recuperação de arquivos exclúıdos. O estudo é fundamentado
em uma análise comparativa das arquiteturas e práticas de implementação utiliza-
das em sistemas de arquivos como Ext2, Ext3, Ext4, ZFS e Btrfs, com ênfase nas
estratégias de gerenciamento e otimização da alocação de blocos, organização de
metadados e métodos de preservação de integridade. São descritas a organização
interna do BSFS, suas estruturas de dados, os utilitários de formatação e acesso,
bem como os testes comparativos de desempenho efetuados com sistemas ampla-
mente utilizados no Linux como Ext4, Btrfs e ZFS. Os resultados mostram que o
BSFS é funcional e capaz de recuperar arquivos exclúıdos sem o uso de ferramentas
externas ou técnicas complexas de recuperação de i-nodes. O trabalho contribui com
uma implementação prática que permite analisar, de forma controlada, os impactos
de diferentes escolhas de projeto na consistência, recuperação e gerenciamento de
blocos em sistemas de arquivos.

Palavra-chave: sistema de arquivos, linux, recuperação de dados.
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Caṕıtulo 1

Introdução

I will, in fact, claim that the difference between a bad programmer and
a good one is whether he considers his code or his data structures more
important. Bad programmers worry about the code. Good programmers
worry about data structures and their relationships.

– Linus Torvalds

Os sistemas de arquivos constituem um dos componentes fundamentais de um
sistema operacional, sendo responsáveis pela organização lógica, armazenamento e
acesso aos dados em dispositivos de memória secundária. Sua função é oferecer uma
abstração estruturada sobre o hardware de armazenamento, permitindo que progra-
mas e usuários interajam com os dados de forma hierárquica, segura e eficiente. A
confiabilidade e o desempenho das estruturas de dados que compõem um sistema de
arquivos afeta diretamente a estabilidade e a experiência de uso, especialmente em
ambientes que lidam com grandes volumes de informação.

Com o avanço das tecnologias de armazenamento e a popularização de unidades
de estado sólido (solid-state drives — SSDs), surgiram novos desafios na concepção
de sistemas de arquivos [12, 20]. Entre eles estão a necessidade de otimizar o
acesso à dados não cont́ıguos, reduzir o número de escritas desnecessárias e oferecer
mecanismos de recuperação capazes de preservar a integridade das informações em
caso de falhas. Esses aspectos motivaram o surgimento de sistemas como o Ext4,
Btrfs e ZFS, que introduziram técnicas avançadas de alocação, journaling e copy-
on-write, representando marcos na evolução do gerenciamento de armazenamento
moderno [8].

O estudo e a implementação de sistemas de arquivos continuam sendo uma área
de interesse na pesquisa em sistemas operacionais, tanto pelo seu valor didático
quanto pelo potencial de inovação em novos modelos de gerenciamento de dados.
A criação de implementações experimentais permite investigar soluções alternativas
para problemas clássicos, como a fragmentação e o gerenciamento de blocos livres,
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Introdução 2

favorecendo o entendimento detalhado de seus impactos sobre o desempenho e a
consistência dos dados.

Apesar dos avanços presentes nos sistemas de arquivos modernos, a maioria de-
les ainda carece de um mecanismo direto e integrado para recuperação de arquivos
exclúıdos. Em implementações amplamente utilizadas, como o Ext4, Btrfs e ZFS, a
exclusão de um arquivo implica a remoção imediata de suas referências nos metada-
dos, tornando sua restauração dependente de ferramentas externas, que operam de
forma limitada e nem sempre confiável. Esses utilitários, em geral, realizam varredu-
ras heuŕısticas sobre os blocos de dados, sem garantia de integridade ou consistência
estrutural, o que restringe seu uso a situações emergenciais e a casos simples de
perda recente.

Ferramentas de ńıvel de usuário que implementam uma lixeira, como trash-cli

ou mecanismos equivalentes presentes em ambientes gráficos, não constituem um
método de recuperação propriamente dito, apenas transferem o arquivo para um
diretório especial antes que a operação de exclusão seja efetivada pelo sistema de
arquivos. Uma vez removidas as referências do i-node, tais ferramentas deixam de
ser úteis, pois não atuam sobre as estruturas internas nem preservam informações
necessárias para a restauração posterior. Assim, esses mecanismos oferecem con-
veniência ao usuário, mas não substituem soluções integradas ao sistema de arquivos,
capazes de operar de forma estruturada após a exclusão real dos dados.

Essa limitação evidencia uma lacuna entre o gerenciamento eficiente de armaze-
namento e a preservação lógica de dados em ńıvel de sistema de arquivos. Embora
a integridade seja tratada por meio de técnicas como journaling e copy-on-write,
os sistemas não se preocupam com a possibilidade de recuperação reverśıvel de ex-
clusões lógicas realizadas pelo usuário. A ausência desse tipo de funcionalidade torna
a recuperação de arquivos um processo dependente do contexto de uso e das ferra-
mentas dispońıveis, sem padronização ou garantias sobre o estado final dos dados
recuperados.

Portanto, torna-se relevante a investigação e o desenvolvimento de abordagens
que permitam integrar ao próprio sistema de arquivos mecanismos internos de re-
cuperação, capazes de registrar, preservar e restaurar arquivos exclúıdos de forma
controlada, sem comprometer a consistência das estruturas e sem recorrer a soluções
externas.

1.1 Objetivo

O objetivo geral deste trabalho é desenvolver e avaliar um sistema de arquivos ex-
perimental em espaço de usuário denominado Basic Solution File System (BSFS),
implementado em linguagem C. O sistema tem como propósito investigar a viabili-
dade de um modelo simples de gerenciamento e recuperação de arquivos, capaz de
registrar e restaurar dados exclúıdos sem o aux́ılio de ferramentas externas, preser-
vando a consistência estrutural e o controle de blocos em disco.

facom-ufms



Introdução 3

Neste trabalho foram implementadas as principais estruturas de um sistema de
arquivos: o superbloco, o gerenciamento de blocos livres e a organização de metada-
dos por meio de árvores B. A estrutura de i-nodes, por exemplo, adota um modelo
h́ıbrido de endereçamento, combinando ponteiros diretos e árvores de intervalos
(bspans), acompanhado de um mecanismo de recuperação de arquivos exclúıdos
mantido em uma árvore própria. Também foram desenvolvidos utilitários de for-
matação e inspeção, como mkfs.bsfs e o interpretador browser. Por fim, o trabalho
inclui testes comparativos de desempenho entre o BSFS e sistemas amplamente uti-
lizados no Linux (Ext4, Btrfs e ZFS), avaliando o impacto do modelo proposto no
desempenho e na viabilidade de operação em espaço de usuário.

O desenvolvimento de um sistema de arquivos experimental oferece uma oportu-
nidade para compreender, de forma prática e controlada, o funcionamento interno
dos mecanismos de armazenamento de dados. Trabalhos dessa natureza permitem
investigar a relação entre estruturas de metadados, estratégias de alocação e poĺıticas
de recuperação, aspectos que geralmente permanecem ocultos nas implementações
complexas de sistemas de arquivos modernos.

1.2 Estrutura do Trabalho

Este trabalho está organizado em cinco caṕıtulos, além desta introdução inicial.
O Caṕıtulo 2 apresenta os fundamentos teóricos necessários para compreender o
funcionamento e a organização interna dos sistemas de arquivos. São discutidos seus
objetivos, a estrutura f́ısica de uma partição, o papel do superbloco, gerenciamento
de blocos livres, i-nodes, os métodos de alocação de blocos, a implementação de
diretórios, e os compromissos entre desempenho e confiabilidade que orientam o
projeto dessas estruturas.

O Caṕıtulo 3 descreve sistemas de arquivos utilizados em ambientes Linux: Ext2,
Ext3, Ext4, ZFS e Btrfs, com ênfase nas estratégias de gerenciamento e otimização
da alocação de blocos, organização de metadados e métodos de preservação de in-
tegridade. Essa fundamentação estabelece o contexto necessário para a análise e o
desenvolvimento da proposta apresentada neste trabalho.

O Caṕıtulo 4 apresenta a implementação do Basic Solution File System. São de-
talhadas suas principais estruturas, incluindo o superbloco, o mapeamento de blocos
livres, as árvores B utilizadas para indexação e gerenciamento de i-nodes, diretórios
e blocos de dados, além do mecanismo de recuperação de arquivos exclúıdos. O
caṕıtulo também descreve os utilitários de formatação e interação com o sistema,
bem como os resultados dos testes comparativos de desempenho.

Por fim, o Caṕıtulo 5 apresenta as conclusões do trabalho, sintetizando os re-
sultados obtidos, as limitações identificadas e as perspectivas de aprimoramento
futuro, com destaque para a implementação do sistema em espaço de kernel, a im-
plementação de métodos de verificação de integridade e novas estratégias de alocação
e paralelismo.

facom-ufms



Caṕıtulo 2

Sistemas de Arquivos

We build our computer the way we build our cities: over time, without a
plan, on top of ruins.

– Ellen Ullman

Neste caṕıtulo, serão abordados o funcionamento e a organização interna dos
sistemas de arquivos do ponto de vista teórico. Sistemas de arquivos tem, por
definição, os seguintes objetivos: organizar, persistir e controlar o acesso aos dados
em um sistema operacional. Embora seja transparente ao usuário na maior parte
do tempo, são comparadas a visão do usuário, que interage com nomes e conteúdos
de arquivos, com a perspectiva do sistema operacional, responsável por gerenciar as
sequências de bytes e metadados por meio de chamadas de sistema.

Essa sequência de bytes e metadados é organizada em blocos dentro de um dis-
positivo. De forma geral, sistemas de arquivos estruturam espaço f́ısico em áreas
distintas dedicadas à descrição global do sistema, ao gerenciamento do espaço livre,
ao armazenamento dos metadados dos arquivos e aos dados propriamente ditos.
A forma como essas áreas são implementadas varia conforme o sistema de arqui-
vos, mas todas têm por objetivo possibilitar o controle e a localização eficiente das
informações gravadas em disco.

Em seguida, o caṕıtulo apresenta o i-node como o elemento central de metadados
e endereçamento de blocos, a partir do qual se exploram os métodos de alocação de
espaço e suas implicações diretas, como o desempenho em leitura e a fragmentação.
Adicionalmente, são detalhados o funcionamento dos diretórios, o gerenciamento do
espaço livre e os critérios para a escolha do tamanho de bloco, encerrando com os
objetivos que guiam projetos modernos de sistemas de arquivos, que busca equilibrar
desempenho, confiabilidade e eficiência de armazenamento.
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Sistemas de Arquivos 5

2.1 O que é um Sistema de Arquivos

Um sistema de arquivos é a estrutura responsável por organizar, de forma eficiente,
as operações de leitura, gravação e acesso às informações armazenadas em dispositi-
vos de bloco. Dispositivos de bloco são, normalmente, atribúıdos a memórias mais
lentas como, por exemplo, discos mecânicos (hard drives), discos de estado sólido
(solid state drive) ou outros dispositivos de armazenamento não volátil. Dessa forma,
um sistema de arquivos é uma abstração para a complexidade do armazenamento
f́ısico, oferecendo ao sistema operacional e aos usuários uma forma estruturada,
segura e consistente de lidar com os dados. Além disso, também atua como in-
termediário entre o hardware e o software, garantindo que as informações sejam
acessadas e gerenciadas independentemente da natureza do dispositivo de armaze-
namento.

Com o surgimento dos discos magnéticos, passou a ser posśıvel acessar registros
de arquivos fora da ordem em que foram gravados. Esse tipo de acesso, chamado
de acesso aleatório, tornou o processo de leitura de dados mais rápido, já que não
é mais necessário percorrer todos os registros anteriores para chegar a uma posição
espećıfica. Dessa forma, dois métodos são comuns: o read, que lê a partir de uma
posição inicial definida; e o seek, que move o ponteiro para uma posição exata
dentro do arquivo, permitindo a leitura de forma sequencial [17].

Ao analisarmos a organização de um sistema de arquivos, identificamos duas
perspectivas fundamentais: a do usuário e a do sistema operacional. Do ponto de
vista do usuário, um aspecto relevante é a forma como os arquivos são visualizados
e manipulados, ou seja, o que constitui um arquivo, seu nome, tipo e conteúdo.
O nome dos arquivos, por exemplo, é um mecanismo que permite aos usuários
simplificar o processo de gerenciamento e organização dos seus dados. Por outro lado,
o sistema operacional, normalmente utiliza informações vinculadas aos metadados
dos cabeçalhos dos arquivos. Isso não é, necessariamente, verdade para todos os
sistemas, mas é comum em derivados do Unix.

Sistemas operacionais modernos adotam o modelo de arquivos não estruturados,
no qual qualquer tipo de dado pode ser armazenado sem imposições sobre sua orga-
nização interna. Entretanto, diferentes modelos de organização existem. No modelo
de arquivo como sequência de bytes, o sistema enxerga o arquivo apenas como um
fluxo linear de dados, cabendo à aplicação interpretar seu conteúdo. Já no modelo
baseado em registros de tamanho fixo, o arquivo é dividido em unidades uniformes,
facilitando acesso direto a posições espećıficas. Por fim, em estruturas organizadas
em árvore, o arquivo é composto por registros hierárquicos contendo campos-chave,
o que permite buscas otimizadas por meio de navegação estruturada [18].

Outra caracteŕıstica associada a um sistema de arquivos são as operações sobre
os arquivos armazenados. Essas operações incluem criação, remoção, leitura, escrita,
modificação de permissões e movimentação entre diretórios, todas executadas por
chamadas ao sistema operacional, que garante acesso controlado e seguro aos dados.
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Por exemplo, ao abrir um arquivo, o sistema carrega (total ou parcialmente) suas
informações na memória para acessos subsequentes; ao fechar, garante que os dados
pendentes sejam escritos corretamente no disco. Operações como leitura e escrita
manipulam os dados com base na posição atual do ponteiro do arquivo, e algumas
chamadas permitem navegar aleatoriamente pelo seu conteúdo [1].

2.2 A Estrutura do Sistema de Arquivos

Os sistemas de arquivos apresentam estruturas variadas, mas compartilham compo-
nentes e prinćıpios de organização e funcionamento. Entre os elementos mais comuns
estão o superbloco, responsável pelas informações de controle global, os blocos de
inicialização e, em muitos sistemas, estruturas de mapeamento como os bitmaps,
utilizadas para indicar quais blocos estão livres ou ocupados.

Durante o processo de inicialização do computador, a BIOS é responsável por
localizar e executar o Registro Mestre de Inicialização (Master Boot Record —
MBR). Esse registro contém o código que identifica a partição ativa do disco, lê
seu primeiro bloco e transfere o controle da execução [18]. A partir desse ponto,
o carregamento do sistema operacional segue conforme a estrutura espećıfica da
partição. Embora o prinćıpio geral seja comum, a organização interna das partições
varia entre diferentes sistemas de arquivos, que frequentemente incluem componentes
ilustrados na Figura 2.1.

Nos sistemas atuais, o processo de inicialização é geralmente realizado por meio
da UEFI (Unified Extensible Firmware Interface), que substitui a BIOS e o esquema
tradicional de particionamento baseado em MBR. A UEFI utiliza a tabela GPT
(GUID Partition Table), que permite um número maior de partições, tamanhos
superiores a 2 TiB e mecanismos adicionais de integridade. Em vez de carregar um
bloco fixo como o MBR, a UEFI localiza e executa um arquivo de boot armazenado
em uma partição especial denominada EFI System Partition (ESP). Apesar dessas
diferenças estruturais, o papel desempenhado pelo sistema de firmware permanece
equivalente: preparar o ambiente inicial e transferir o controle para o carregador do
sistema operacional, que então prossegue com a montagem e utilização do sistema
de arquivos.

O superbloco constitui a estrutura central de controle do sistema de arquivos,
responsável por armazenar seus principais parâmetros de configuração e integridade.
É carregado na memória durante a inicialização do sistema ou no momento em
que o sistema de arquivos é montado. Entre os dados mantidos nessa estrutura
estão o número mágico, um identificador único que permite ao sistema operacional
reconhecer o tipo de sistema de arquivos, e a quantidade total de blocos dispońıveis.

Além disso, o superbloco armazena dados administrativos relevantes para o fun-
cionamento do sistema de arquivos. Entre eles, podem ser citados: o tamanho total
do sistema de arquivos e de cada bloco de armazenamento, a quantidade de blocos
e i-nodes livres, a posição inicial e a extensão da tabela de i-nodes, e a localização
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dos mapas de bits responsáveis pelo controle de blocos e i-nodes. Também podem
ser registrados parâmetros de controle, como a data e a hora do último acesso ou
montagem, o número de montagens e indicadores de integridade, que sinalizam se o
sistema de arquivos foi desmontado de forma adequada. Essas informações permi-
tem ao sistema operacional garantir a consistência da estrutura e realizar operações
de alocação, acesso e manutenção.

Nos blocos seguintes da partição são armazenadas as informações referentes à
alocação de blocos dispońıveis no sistema de arquivos, geralmente representadas por
meio de um bitmap ou, em algumas implementações, por listas encadeadas de pontei-
ros. Em sistemas inspirados no modelo Unix, essa região é seguida pelas estruturas
de metadados conhecidas como i-nodes, responsáveis por descrever as propriedades
e os endereços de dados de cada arquivo. Em outros sistemas de arquivos são uti-
lizadas estruturas funcionais equivalentes, mas organizadas e nomeadas de forma
diferente.

Em seguida, é encontrado o diretório raiz, representando o ńıvel mais alto da
árvore hierárquica do sistema de arquivos. Por fim, a área remanescente do disco é
utilizada para armazenar os demais diretórios e arquivos pertencentes ao sistema.

Figura 2.1: Estrutura simplificada de partição de disco e seus componentes [18].

2.2.1 Estrutura de Dados i-node

Uma estratégia empregada por sistemas de arquivos para monitorar a quais blocos
de disco cada arquivo pertence consiste em associá-lo a uma estrutura de dados
denominada i-node (index-node — nó-́ındice). Essa estrutura armazena metadados
do arquivo e os endereços dos blocos onde seus dados residem. Com esse descritor,
é posśıvel localizar no disco os blocos que compõem o arquivo, conforme o esquema
mostrado na Figura 2.2.

A principal vantagem do modelo baseado em i-nodes é que apenas os i-nodes
associados a arquivos abertos precisam permanecer na memória principal. Assim, o
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consumo de memória depende do número de arquivos abertos simultaneamente, e
não da quantidade total de arquivos armazenados no sistema. Esse comportamento
é diferente das abordagens baseadas em tabelas globais de alocação, cujo tamanho
cresce proporcionalmente à capacidade do disco e aumenta linearmente à medida
que o dispositivo se expande [17].

A estrutura de i-nodes possui a limitação de conter um número fixo de pon-
teiros para endereçar blocos de dados. Quando o arquivo ultrapassa esse limite,
é necessário adotar um mecanismo de expansão. A solução tradicional é o uso de
blocos de indireção, nos quais um dos ponteiros do i-node referencia um bloco inter-
mediário que armazena novos endereços de dados. Esse método pode ser estendido a
múltiplos ńıveis, permitindo ampliar a capacidade de endereçamento sem aumentar
o tamanho da estrutura, conforme ilustrado na Figura 2.2.

Figura 2.2: Exemplo de estrutura de i-node [18].

2.2.2 Armazenamento de dados cont́ıguos

O armazenamento cont́ıguo consiste na gravação de arquivos em blocos dispostos
de forma sequencial no disco, de modo que todos os blocos de um mesmo arquivo
ocupem posições adjacentes no dispositivo de armazenamento. Nesse modelo, um
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arquivo de 50 KiB em um sistema com blocos de 1 KiB seria alocado em 50 blocos
consecutivos. Por outro lado, com blocos de 2 KiB, ocuparia 25 blocos consecuti-
vos [18].

A Figura 2.3 apresenta um exemplo de alocação em armazenamento cont́ıguo.
Os primeiros 18 blocos de disco são exibidos, iniciando pelo bloco 0 à esquerda.
Inicialmente, o disco encontra-se vazio. Posteriormente, um arquivo denominado
prova.pdf, com seis blocos de comprimento, é gravado a partir do bloco inicial.
Em seguida, o arquivo contas.txt, de quatro blocos, é alocado imediatamente
após o término de prova.pdf. E por fim, o musica.mp3, de oito blocos, é alocado
imediatamente após o término do contas.txt.

Figura 2.3: Distribuição cont́ıgua de blocos de disco para 3 arquivos.

Cada arquivo gravado inicia em um bloco completo. Dessa forma, quando o
tamanho do arquivo não é múltiplo exato do tamanho do bloco, o espaço restante no
último bloco permanece inutilizado, caracterizando uma fragmentação interna [18].
Um arquivo que ocupa 5,5 blocos utilizará efetivamente 6 blocos, sendo metade do
último bloco espaço desperdiçado.

Essa forma de fragmentação ocorre porque o sistema de arquivos opera com
unidades de alocação fixas, não sendo capaz de compartilhar o espaço livre de um
bloco parcialmente ocupado entre diferentes arquivos. Embora a perda de espaço
em arquivos isolados seja pequena, seu efeito cumulativo pode se tornar relevante
em sistemas com grande número de arquivos, reduzindo a eficiência global de arma-
zenamento.

A fragmentação interna difere da fragmentação externa, que surge quando o
espaço livre está disperso em pequenas regiões não cont́ıguas do disco, dificultando
a alocação de novos blocos para arquivos grandes. Enquanto a fragmentação externa
impacta o desempenho de leitura e escrita, a fragmentação interna afeta principal-
mente a utilização do espaço dispońıvel.

Na alocação cont́ıgua, o controle de blocos de um arquivo é realizado por meio do
endereço do primeiro bloco e da quantidade total de blocos que o compõem. Essa
abordagem permite localizar qualquer bloco subsequente por meio de um cálculo
baseado na posição inicial. Em operações de leitura, o acesso ao arquivo ocorre de
forma cont́ınua, uma vez que todos os blocos estão dispostos em sequência, o que
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reduz o número de movimentações e as variações temporais associadas à busca por
blocos dispersos no disco.

Entretanto, essa técnica apresenta uma limitação: a fragmentação externa do
disco ao longo do tempo. Como ilustrado na Figura 2.4, quando um arquivo como
contas.txt é removido, seus blocos são liberados, criando lacunas de espaço livre.
O disco não é compactado imediatamente, uma vez que a operação de reorganização
poderia exigir a movimentação de blocos de outros arquivos, tornando o processo
mais custoso. Consequentemente, o disco passa a apresentar arquivos intercalados
com lacunas de espaço livre.

Figura 2.4: Distribuição cont́ıgua de blocos com 1 arquivo excluido.

Inicialmente, a fragmentação externa não representa um problema, pois novos
arquivos podem ser gravados ao final do disco. Contudo, ao atingir a capacidade
máxima, será necessário optar por compactação ou reutilização das lacunas dis-
pońıveis. Esta última abordagem requer a manutenção de uma lista de espaços
livres e a necessidade de conhecer previamente o tamanho final do arquivo para es-
colher uma lacuna adequada. Este procedimento é pouco prático, pois exigiria que
o usuário informasse o tamanho final de cada documento ao iniciar sua criação, o
que pode resultar em falhas ou na necessidade de reiniciar o processo diversas vezes
até localizar um espaço adequado.

A alocação cont́ıgua também apresenta limitações relacionadas à gestão de espaço
e à recuperação de falhas. Como os dados são gravados em blocos sequenciais, um
arquivo só pode ser alocado se houver um espaço cont́ıguo suficientemente grande,
o que se torna cada vez mais dif́ıcil à medida que a partição se fragmenta. Dessa
forma, mesmo com blocos livres dispońıveis, arquivos extensos podem não encontrar
regiões cont́ınuas adequadas, resultando em subutilização do disco.

Além disso, falhas durante a escrita, como interrupções de energia ou erros de
sistema, podem deixar blocos parcialmente ocupados ou metadados inconsisten-
tes. Esse problema não é exclusivo da alocação cont́ıgua, mas torna-se mais cŕıtico
em sistemas que não implementam mecanismos de recuperação, como o journaling,
responsáveis por registrar operações pendentes e restaurar o estado consistente do
sistema após uma falha.

Historicamente, a alocação cont́ıgua foi amplamente utilizada em sistemas de
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arquivos baseados em discos magnéticos, devido à sua simplicidade e alto desem-
penho. Porém, sua exigência de definir o tamanho final do arquivo no momento
da criação e a crescente fragmentação resultante de operações de escrita e exclusão
sucessivas levaram ao desenvolvimento de métodos mais flex́ıveis, como a alocação
encadeada e a indexada. Em mı́dias de gravação única, como CD-ROMs e DVDs,
onde o conteúdo é definido previamente e não sofre modificações, a alocação cont́ıgua
permaneceu uma solução prática e eficiente.

2.2.3 Gerenciamento de espaço livre

O gerenciamento do espaço livre é um dos aspectos fundamentais no projeto de um
sistema de arquivos, pois determina como os blocos dispońıveis em disco são iden-
tificados, reservados e reutilizados. Diferentes estratégias de alocação influenciam
diretamente o desempenho, a fragmentação e a eficiência do uso do armazenamento,
exigindo um equiĺıbrio entre simplicidade de implementação e aproveitamento do
espaço.

Existem duas abordagens para o armazenamento de arquivos: a alocação de
dados em regiões sequenciais do disco e a divisão do conteúdo em blocos de tamanho
fixo, que podem ser distribúıdos em diferentes áreas do dispositivo. Essa escolha é
análoga às estratégias de gerenciamento de memória, nas quais se utilizam modelos
baseados em segmentação ou paginação para organizar o espaço dispońıvel.

O armazenamento de um arquivo como uma sequência de bytes apresenta a des-
vantagem de exigir movimentação f́ısica do arquivo no disco quando há necessidade
de expansão. Essa operação envolve a realocação de dados em regiões distintas do
disco, diferentemente da movimentação de segmentos na memória principal.

Em razão dessa limitação, a maioria dos sistemas de arquivos modernos adotam
a estratégia de dividir os arquivos em blocos de tamanho fixo [18]. Essa abordagem
elimina a necessidade de contiguidade, permitindo maior flexibilidade na alocação
de espaço e reduzindo o impacto de fragmentações. Os blocos podem ser posicio-
nados em diferentes partes do disco, sendo a localização de cada um registrada em
estruturas espećıficas do sistema de arquivos, como os i-nodes.

A definição do tamanho dos blocos de armazenamento constitui uma etapa es-
sencial no projeto de sistemas de arquivos, pois influencia diretamente o equiĺıbrio
entre desempenho e eficiência de utilização do espaço.

Blocos de tamanho maior reduzem a sobrecarga de gerenciamento e permitem
que cada operação de leitura ou escrita inclua uma quantidade maior de dados, favo-
recendo o desempenho em arquivos que ocupam múltiplos blocos. Essa configuração,
entretanto, aumenta o desperd́ıcio de espaço em arquivos que utilizam apenas uma
fração de um bloco, uma vez que cada arquivo deve ocupar ao menos um bloco
completo, independentemente da quantidade efetiva de dados armazenados.

Blocos de tamanho reduzido, por sua vez, aproveitam melhor o espaço dispońıvel,
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mas exigem um número maior de operações de entrada e sáıda (I/O) para arquivos
que ocupam múltiplos blocos, elevando o tempo de acesso e o custo de manutenção
dos metadados. Dessa forma, a escolha do tamanho de bloco representa um compro-
misso entre eficiência de armazenamento e desempenho operacional, aplicável tanto
a discos magnéticos quanto a unidades de estado sólido (SSDs).

A definição do tamanho de bloco pode ser orientada por análises estat́ısticas da
distribuição de tamanhos de arquivos em sistemas reais. Um estudo conduzido na
Universidade Vrije e em um servidor web comercial indicou que, em 2005, aproxi-
madamente 59,13% dos arquivos possúıam até 4 KiB e 90,84% até 64 KiB, com
tamanho médio de 2475 bytes [19].

Considerando blocos de 1 KiB, entre 30% e 50% dos arquivos podem ser ar-
mazenados em um único bloco, enquanto blocos de 4 KiB elevam essa proporção
para 60% a 70%. Observou-se também que cerca de 93% do espaço total do disco
é ocupado por 10% dos arquivos que contêm a maior quantidade de dados. Dessa
forma, o desperd́ıcio de espaço decorrente de arquivos que ocupam poucos blocos
torna-se insignificante, uma vez que a maior parte da capacidade de armazenamento
é consumida por arquivos de maior extensão. Assim, aumentar o tamanho dos blo-
cos para acomodar uma fração maior dos arquivos menores tende a produzir efeitos
limitados sobre a eficiência global de utilização do espaço.

Os resultados dessa análise são apresentados na Tabela 2.1. Os conjuntos “UV
1984” e “UV 2005” correspondem à levantamentos realizados nos sistemas de ar-
quivos da Universidade de Vrije em diferentes peŕıodos, enquanto as colunas “Web”
referem-se à análise de arquivos armazenados em um servidor Web comercial.

Tamanho UV 1984 UV 2005 Web Tamanho UV 1984 UV 2005 Web
1 1,79 1,38 6,67 16 KiB 92,53 78,92 86,79
2 1,88 1,53 7,67 32 KiB 97,21 85,87 91,65
4 2,01 1,65 8,33 64 KiB 99,18 90,84 94,80
8 2,31 1,80 11,30 128 KiB 99,84 93,73 96,93
16 3,32 2,15 11,46 256 KiB 99,96 96,12 98,48
32 5,13 3,15 12,33 512 KiB 100,00 97,73 98,99
64 8,71 4,98 26,10 1 MiB 100,00 98,87 99,62
128 14,73 8,03 28,49 2 MiB 100,00 99,44 99,80
256 23,09 13,29 32,10 4 MiB 100,00 99,71 99,87
512 34,44 20,62 39,94 8 MiB 100,00 99,86 99,94

1 KiB 48,05 30,91 47,82 16 MiB 100,00 99,94 99,97
2 KiB 60,87 46,09 59,44 32 MiB 100,00 99,97 99,99
4 KiB 75,31 59,13 70,64 64 MiB 100,00 99,99 99,99
8 KiB 84,97 69,96 79,69 128 MiB 100,00 99,99 100,00

Tabela 2.1: Distribuição percentual do tamanho de arquivos em diferentes conjun-
tos de dados [18,19].

Por outro lado, blocos menores aumentam o número de blocos por arquivo,
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tornando a leitura mais lenta devido a buscas e atrasos rotacionais, exceto em discos
de estado sólido. Considerando um disco ŕıgido com 1 MiB por trilha, tempo de
rotação de 8,33 ms e tempo de busca de 5 ms, o tempo de leitura de um bloco de k
bytes é dado por:

tleitura = 5 + 4, 165 +
k

1.000.000
× 8, 33 ms

A Figura 2.5 ilustra a taxa de transferência em função do tamanho do bloco.
Para estimar a eficiência de espaço, assume-se que todos os arquivos possuam 4
KiB, valor próximo ao observado na Universidade Vrije. A curva sólida da figura
mostra a eficiência de espaço, enquanto a curva tracejada indica a taxa de dados.

1
K
iB

4
K
iB

16
K
iB

64
K
iB

25
6
K
iB

1
M
iB

0

10

20

30

40

50

60

Tamanho do bloco

T
ax

a
d
e
d
ad

os
(M

iB
/s
)

Eficiência de espaço

0

20

40

60

80

100

U
ti
li
za
çã
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Figura 2.5: Taxa de dados e utilização de espaço em disco ŕıgido em função do
tamanho do bloco. [18].

O tempo de acesso é dominado pelo tempo de busca e atraso rotacional. Quanto
maiores os blocos, mais eficiente é a transferência de dados, até que o tempo de
transferência se torne relevante. Portanto, a escolha do tamanho de bloco deve
equilibrar desperd́ıcio de espaço e desempenho de leitura.

A análise do tamanho de bloco não se limita ao desempenho, mas também deve
considerar a eficiência de espaço. Suponha arquivos de 4 KiB sendo armazenados
em blocos de 1 KiB, 2 KiB ou 4 KiB. Nesse caso, os arquivos ocupam 4, 2 e 1
bloco(s), respectivamente, sem desperd́ıcio de espaço. Entretanto, se o bloco for
maior que o arquivo, como 8 KiB ou 16 KiB, a eficiência de espaço cai para 50%
e 25%, respectivamente. Na prática, poucos arquivos possuem tamanho múltiplo
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exato do bloco, de modo que sempre haverá algum desperd́ıcio no último bloco de
cada arquivo.

A análise dos dados evidencia um conflito entre desempenho e eficiência na uti-
lização do espaço de armazenamento. Blocos de menor tamanho favorecem o apro-
veitamento do disco, mas aumentam o número de acessos necessários para manipular
arquivos extensos, reduzindo o desempenho. Em contrapartida, blocos maiores ele-
vam a taxa de transferência, porém resultam em desperd́ıcio de espaço. No conjunto
de dados analisado, não há um ponto de equiĺıbrio ideal: o tamanho de bloco que
mais se aproxima do cruzamento entre as curvas de desempenho e eficiência é de
64 KiB, apresentando uma taxa de 6,6 MiB/s e eficiência de 7%, valores insatis-
fatórios para ambos os critérios.

Historicamente, sistemas de arquivos têm adotado tamanhos de bloco entre 1 KiB
e 4 KiB; contudo, em dispositivos atuais com capacidades superiores a 1 TiB, blocos
de 64 KiB podem se mostrar viáveis, mesmo com certo desperd́ıcio de espaço, devido
à ampla disponibilidade de armazenamento nos dispositivos.

Estudos emṕıricos corroboram essa relação entre o tamanho de bloco e o padrão
de uso dos arquivos. Vogels [22] realizou uma análise do comportamento de sistemas
de arquivos no ambiente Windows NT, comparando-o a sistemas baseados em UNIX.
O estudo revelou que o modelo de gerenciamento de arquivos do Windows NT é
mais complexo, envolvendo um número maior de chamadas de sistema mesmo para
operações simples de edição, o que aumenta a sobrecarga de entrada e sáıda (I/O)
no sistema.

Apesar das diferenças de implementação, os resultados observados no Win-
dows NT apresentaram tamanhos médios ponderados de arquivos semelhantes aos
registrados em sistemas UNIX. Arquivos acessados apenas para leitura possúıam ta-
manho médio de aproximadamente 1 KiB, enquanto arquivos apenas escritos apre-
sentavam cerca de 2,3 KiB, e aqueles lidos e escritos atingiam, em média, 4,2 KiB. Es-
ses valores demonstram consistência com os resultados obtidos na Universidade Vrije,
indicando que a maioria dos arquivos ocupa poucos blocos, o que reforça a relevância
da escolha criteriosa do tamanho de bloco para equilibrar eficiência e desempenho.

2.2.4 Gerenciamento de blocos livres

Após a definição do tamanho de bloco, torna-se necessário estabelecer um método
para o controle dos blocos livres no disco. O gerenciamento dessa informação é
utilizado para a alocação de novos arquivos e para o reaproveitamento do espaço
liberado. Entre as técnicas mais empregadas, destacam-se a lista encadeada de
blocos livres e o mapa de bits (bitmap), ilustradas na Figura 2.6.

Na abordagem baseada em lista encadeada, cada bloco da lista armazena uma
sequência de endereços de blocos livres, além de um ponteiro para o próximo ele-
mento da lista. O número de endereços posśıveis em cada bloco depende de seu
tamanho e da largura dos identificadores de bloco. Por exemplo, em um sistema
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Figura 2.6: (a) Lista encadeada utilizada para armazenar os blocos livres; (b) Mapa
de bits (bitmap). [18].

com blocos de 1 KiB e endereços de 32 bits, cada bloco pode conter até 255 re-
ferências a blocos livres, reservando uma posição para o ponteiro que encadeia o
próximo bloco da lista. Em um disco de 1 TiB, composto por aproximadamente 1
bilhão de blocos, essa estrutura exigiria cerca de 4 milhões de blocos para armazenar
a lista completa.

A segunda técnica de controle é o bitmap, que representa o estado de ocupação
de cada bloco do dispositivo por meio de uma sequência compacta de bits. Cada
posição do mapa indica se o respectivo bloco está livre ou alocado, permitindo que
a verificação e a atualização dessas informações sejam realizadas de forma direta.

Em um disco de 1 TiB, o bitmap requer aproximadamente 130.000 blocos de
1 KiB para seu armazenamento, o que o torna mais econômico que a lista enca-
deada, já que utiliza uma quantidade fixa e reduzida de bits para representar cada
bloco. Essa abordagem apresenta melhor desempenho em cenários de alta utilização
do disco, embora, em situações de espaço quase esgotado, a lista encadeada possa
oferecer vantagem por lidar com um número menor de referências livres.

Quando os blocos livres tendem a ocorrer em sequências de blocos consecutivos,
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a lista encadeada de blocos livres pode ser otimizada para gerenciar conjuntos de
blocos em vez de blocos individuais. Um contador pode ser associado a cada bloco,
indicando a quantidade de blocos livres consecutivos. No melhor cenário, um disco
formatado ou com baixa fragmentação poderia ser representado por apenas dois
números: o endereço do primeiro bloco livre e o contador de blocos consecutivos.

Em contrapartida, se o disco estiver fragmentado, o controle de conjuntos torna-
se menos eficiente, pois além do endereço, é necessário armazenar também o con-
tador. Essa técnica ilustra um dos dilemas recorrentes no projeto de sistemas de
arquivos: o equiĺıbrio entre simplicidade estrutural e eficiência operacional depende
do padrão de utilização do armazenamento.

No método baseado em lista encadeada, apenas um bloco de ponteiros é mantido
na memória principal, servindo como referência temporária para as operações de
alocação e liberação de blocos. Durante a criação de arquivos, os endereços são
obtidos desse bloco; quando esgotado, um novo é lido do disco. De modo análogo, na
remoção de arquivos, os blocos liberados são adicionados a essa estrutura e, ao atingir
sua capacidade, o bloco de ponteiros é escrito de volta ao disco. Esse mecanismo
pode gerar sobrecarga de entrada e sáıda (I/O) em cenários com arquivos pequenos
e temporários, devido à frequência com que blocos precisam ser lidos e gravados
novamente, aumentando o número de operações.

Figura 2.7: (a) Bloco na memória principal quase completo, contendo ponteiros
para blocos livres no disco, enquanto três blocos de ponteiros permanecem arma-
zenados no disco. (b) Situação após a remoção de um arquivo composto por três
blocos. (c) Estratégia alternativa para tratar a liberação desses três blocos livres.
As áreas sombreadas indicam ponteiros para blocos de disco dispońıveis. [18].

A Figura 2.7 ilustra a diferença entre o comportamento tradicional da lista enca-
deada de blocos livres e uma estratégia alternativa que reduz operações de entrada e
sáıda. No método convencional, mostrado nas partes (a) e (b), todo bloco liberado
precisa ser imediatamente registrado no bloco de ponteiros mantido na memória
principal; quando esse bloco fica cheio, ocorre um “transbordo”, exigindo que um
novo bloco seja lido ou escrito em disco. A alternativa, apresentada na parte (c),
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divide o bloco de ponteiros sempre que ele é preenchido, mantendo na memória
apenas um bloco parcialmente cheio. Com isso, o sistema consegue realizar diversas
operações de criação e remoção de arquivos temporários sem operar sobre o disco.
A maior parte dos blocos de ponteiros permanece cheia e armazenada em disco,
enquanto o bloco na memória continua parcialmente cheio, permitindo adicionar ou
remover ponteiros sem incorrer imediatamente em operações de entrada e sáıda.

No método baseado em bitmap, apenas um bloco da estrutura é mantido na
memória principal, sendo necessária a escrita em disco apenas quando ocorre seu
preenchimento ou esvaziamento completo. Essa abordagem facilita a alocação de
blocos cont́ıguos, reduzindo o deslocamento f́ısico da cabeça de leitura em disposi-
tivos de armazenamento magnético. Além disso, por possuir tamanho fixo e pre-
viśıvel, o bitmap pode ser mapeado na memória virtual, permitindo a paginação
de suas seções conforme a demanda e otimizando o uso dos recursos do núcleo do
sistema operacional.

2.2.5 Alocação de blocos

A técnica de alocação define a forma como os blocos de disco são selecionados para
armazenar os dados de um arquivo, influenciando o desempenho e a eficiência do
sistema. Assim como no gerenciamento de memória principal, os algoritmos de
alocação buscam localizar regiões livres de forma rápida e reduzir a fragmentação do
espaço, equilibrando custo computacional e aproveitamento do armazenamento [18].

Entre as estratégias aplicáveis ao contexto de sistemas de arquivos estão os
métodos first fit, next fit, best fit, worst fit e quick-fit. Nesses esquemas, os blocos
de disco assumem o papel dos segmentos de memória, e as informações de disponi-
bilidade são mantidas em estruturas auxiliares, como bitmaps ou listas encadeadas
de blocos livres, permitindo o controle das áreas de armazenamento.

Entre os métodos utilizados, o first fit (primeiro encaixe) consiste em percorrer
a estrutura de blocos livres até encontrar o primeiro intervalo cont́ıguo de tamanho
suficiente para atender à solicitação. No contexto de sistemas de arquivos, essa
abordagem é simples e eficiente, pois reduz o tempo de busca e tende a preservar
blocos cont́ıguos nas áreas iniciais do disco. Entretanto, à medida que o espaço livre
se fragmenta, o número de varreduras necessárias para localizar blocos dispońıveis
aumenta, impactando diretamente o tempo de escrita e a taxa de transferência.

Uma variação do método é o next fit (próximo encaixe), que armazena a posição
da última alocação bem-sucedida e retoma a busca a partir desse ponto nas próximas
solicitações. Essa estratégia busca evitar repetidas varreduras das mesmas regiões da
partição, mas em sistemas de arquivos tende a apresentar desempenho semelhante
ou ligeiramente inferior ao first fit, pois distribui a fragmentação ao longo de todo o
espaço de armazenamento.

O algoritmo best fit (melhor encaixe) procura entre todos os blocos livres aquele
cujo tamanho mais se aproxima da quantidade solicitada, tentando minimizar o
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desperd́ıcio interno de espaço. Apesar da eficiência, esse método costuma resultar
em fragmentação mais severa, pois tende a gerar pequenos blocos residuais que não
são reutilizáveis.

O método worst fit (pior encaixe) segue a lógica inversa do best fit, escolhendo
sempre o maior bloco livre dispońıvel. A ideia é que, ao dividir uma grande região,
o espaço remanescente ainda seja utilizável em futuras alocações. Na prática, entre-
tanto, esse método não apresenta vantagens significativas em sistemas de arquivos
e tende a gerar padrões de fragmentação semelhantes ao best fit.

Outra abordagem, o quick fit, mantém listas separadas de blocos livres para
tamanhos pré-definidos. Em sistemas de arquivos, um mecanismo similar pode ser
aplicado por meio de múltiplos mapas de bits ou tabelas de alocação que segmentam
o espaço de acordo com a granularidade dos arquivos. Essa técnica reduz o tempo
de busca por blocos, mas aumenta a complexidade de união e atualização dessas
estruturas, especialmente quando arquivos são removidos ou redimensionados.

De modo geral, sistemas de arquivos modernos tendem a empregar variações do
first fit combinadas a estratégias de agrupamento de blocos, como os extents abor-
dados no Caṕıtulo 3, para equilibrar simplicidade de implementação, desempenho
e aproveitamento do espaço. Em implementações baseadas em bitmaps, a eficiência
da alocação depende tanto do algoritmo de busca adotado quanto da forma como
as regiões livres são representadas e atualizadas no disco.

2.2.6 Diretórios

Um diretório é uma estrutura de dados utilizada pelos sistemas de arquivos para or-
ganizar e manter a relação entre os nomes atribúıdos aos arquivos e suas respectivas
localizações f́ısicas no disco. Funciona como um ı́ndice que associa identificadores
leǵıveis pelo usuário a endereços ou descritores internos do sistema, permitindo o
acesso hierárquico e estruturado aos dados armazenados. A organização em di-
retórios e subdiretórios compõe a árvore hierárquica do sistema de arquivos, na qual
cada nó representa um agrupamento lógico de arquivos ou de outros diretórios.

No momento da abertura de um arquivo, o sistema operacional utiliza o caminho
informado pelo usuário para localizar a entrada correspondente dentro do diretório.
Essa entrada contém as informações necessárias para identificar os blocos de dados
do arquivo. Dependendo do método de alocação adotado, essas informações podem
incluir o endereço f́ısico do arquivo (em sistemas de alocação cont́ıgua), o número
do primeiro bloco (em listas encadeadas) ou o número do i-node, nos sistemas que
utilizam essa estrutura. Em todos os casos, o diretório tem como função principal
associar o nome do arquivo, armazenado em formato ASCII, às informações que
permitem ao sistema localizar e manipular os dados de forma eficiente.

Além de armazenar referências para a localização dos dados, os diretórios também
precisam registrar os atributos associados a cada arquivo. Esses atributos, como
identificador do proprietário, permissões de acesso, datas de criação e modificação,

facom-ufms



Sistemas de Arquivos 19

Figura 2.8: (a) diretório com entradas fixas que armazenam tanto os endereços
de armazenamento quanto os atributos diretamente. (b) diretório em que cada
entrada aponta apenas para um i-node, responsável pelos atributos e endereços de
armazenamento [18].

são informações utilizadas para o controle e a segurança do sistema de arquivos.
Uma das formas de organização consiste em armazenar esses atributos diretamente
nas entradas do diretório. Nesse modelo, o diretório é composto por uma lista de
registros de tamanho fixo, cada um correspondendo a um arquivo. Cada registro
contém o nome do arquivo (também de tamanho fixo), a estrutura de atributos e
um ou mais endereços de disco que indicam a localização dos blocos que compõem
o conteúdo do arquivo.

Nos sistemas que utilizam i-nodes, os atributos dos arquivos, como permissões,
proprietário, tamanho e marcações de tempo, são armazenados diretamente nos
próprios i-nodes, e não nas entradas de diretório. Nessas implementações, cada
entrada do diretório contém o nome do arquivo e o número de i-node correspondente,
reduzindo o tamanho das entradas e tornando a estrutura mais eficiente em termos
de armazenamento e acesso.

Historicamente, diferentes sistemas de arquivos adotaram restrições quanto ao
tamanho e formato dos nomes de arquivos. O MS-DOS, por exemplo, utilizava o
padrão 8.3, com nomes de até oito caracteres e uma extensão de três; já a Versão 7 do
UNIX limitava o nome completo a 14 caracteres. Com o tempo, a demanda por maior
expressividade e compatibilidade levou à adoção de nomes longos e de tamanho
variável, comuns nos sistemas modernos. Essa flexibilidade, contudo, impõe desafios
adicionais de implementação, uma vez que as entradas de diretório deixam de ter
tamanho fixo e precisam acomodar nomes de diferentes comprimentos de forma
eficiente.
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Figura 2.9: Duas abordagens para o gerenciamento de nomes de arquivos exten-
sos em diretórios: (a) organização sequencial; (b) armazenamento em estrutura
heap. [18]

Uma forma de implementação é definir um limite máximo para o tamanho dos
nomes de arquivos e adotar um dos modelos apresentados na Figura 2.8, reservando,
por exemplo, 255 caracteres para cada nome. Essa estratégia, apesar de funcional,
resulta em desperd́ıcio de espaço, pois a maioria dos arquivos não utiliza nomes tão
extensos.

Outra possibilidade consiste em não impor que todas as entradas de diretório
possuam o mesmo tamanho. Nesse modelo, cada entrada contém uma parte fixa,
que inicia com a informação sobre o tamanho da entrada, seguida de dados em
formato definido, como o identificador do proprietário, o momento de criação, as
permissões de acesso e outros atributos. Após essa estrutura de comprimento fixo,
registra-se o nome do arquivo, independentemente do seu tamanho. Esse método
está ilustrado na Figura 2.9(a), em um formato de organização em que o byte mais
significativo aparece primeiro (big-endian).

No exemplo apresentado, há três arquivos: project-budget, personnel e foo.
Cada nome de arquivo é encerrado com um caractere especial (geralmente o valor 0),
representado na figura por um quadrado com a letra X. Para que cada entrada de
diretório inicie em um limite correspondente ao tamanho de uma palavra, o nome de
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cada arquivo é completado com caracteres adicionais até atingir esse alinhamento,
o que é indicado pelas áreas cinzas da figura.

A desvantagem do método de armazenamento com nomes de tamanhos variáveis
é que, ao remover um arquivo, cria-se uma lacuna de tamanho também variável no
diretório. O próximo arquivo a ser inserido pode não se ajustar nesse espaço, ocasio-
nando fragmentação interna. Esse problema é semelhante ao observado nos arquivos
cont́ıguos em disco. No entanto, como os diretórios são mantidos inteiramente na
memória, torna-se posśıvel compactá-los quando necessário, eliminando as lacunas
formadas.

Outro ponto de atenção é que uma única entrada de diretório pode se estender
por múltiplas páginas de memória, o que pode gerar falhas de página (page faults)
durante a leitura de nomes de arquivos. Uma alternativa para evitar esse tipo de
fragmentação consiste em adotar tamanhos fixos para as entradas de diretório e ar-
mazenar os nomes dos arquivos em uma área separada, denominada heap, localizada
ao final de cada diretório, conforme ilustrado na Figura 2.9(b).

Esse método apresenta a vantagem de permitir que, ao remover uma entrada,
o próximo arquivo inserido sempre encontre espaço dispońıvel. Contudo, o heap
precisa ser devidamente gerenciado, e falhas de página ainda podem ocorrer durante
o processamento dos nomes. Um benef́ıcio adicional é que não há mais a necessidade
de alinhar os nomes dos arquivos aos limites de palavra, eliminando a obrigatoriedade
de preenchê-los com caracteres adicionais, como ocorria nas estruturas apresentadas
anteriormente.

Nos modelos discutidos anteriormente, os diretórios são pesquisados linearmente,
ou seja, o sistema percorre as entradas do ińıcio ao fim até encontrar o nome do
arquivo desejado. Essa abordagem é simples e eficiente para diretórios pequenos,
mas pode se tornar lenta em estruturas muito extensas. Para otimizar o desempenho
em diretórios grandes, uma solução posśıvel é o uso de tabelas de espalhamento (hash
tables).

Nesse modelo, o diretório é implementado como uma tabela de espalhamento
(hash table) composta por n posições, cada uma correspondendo a um posśıvel valor
de hash. O nome de cada arquivo é processado por uma função de espalhamento,
que converte a sequência de caracteres em um número inteiro no intervalo de 0
a n − 1. Esse número determina a posição da tabela onde a entrada do arquivo
será registrada. Quando múltiplos nomes produzem o mesmo valor de hash, ocorre
uma colisão, resolvida pela criação de uma lista encadeada de entradas associadas
àquela posição. Dessa forma, todas as entradas que compartilham o mesmo valor
de hash permanecem acesśıveis a partir de um único ponto da tabela, preservando
a eficiência da busca.

Durante a busca, o sistema aplica a mesma função de espalhamento ao nome
desejado para determinar qual lista encadeada consultar. Caso o nome não seja
encontrado nessa lista, conclui-se que o arquivo não está presente no diretório. Essa
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estratégia reduz o tempo de busca, embora aumente a complexidade da estrutura.
Por essa razão, o uso de tabelas de espalhamento costuma ser mais vantajoso em
sistemas em que os diretórios contêm centenas ou milhares de arquivos.

Entre as funções de espalhamento conhecidas, destaca-se o algoritmo djb2, pro-
posto por Daniel J. Bernstein [2]. Trata-se de uma função de hash simples, fre-
quentemente utilizada em sistemas que demandam operações rápidas de indexação.
Seu funcionamento baseia-se em um valor inicial constante (geralmente 5381), que
é atualizado iterativamente para cada caractere da cadeia de entrada por meio da
expressão hash = hash × 33 + c, em que c representa o código numérico do carac-
tere processado. Essa operação produz uma boa distribuição de valores e reduz a
ocorrência de colisões em conjuntos de dados textuais.

Outra alternativa para melhorar o desempenho em diretórios muito extensos
consiste no uso de uma cache de buscas. Antes de iniciar uma pesquisa completa, o
sistema verifica se o nome do arquivo já está armazenado na cache. Caso positivo,
o arquivo pode ser localizado imediatamente. Esse método é eficiente quando a
maioria das buscas recai sobre um conjunto relativamente pequeno de arquivos,
permitindo um acesso quase instantâneo aos diretórios mais consultados.

2.3 Sumário

No presente caṕıtulo foram apresentados os fundamentos dos sistemas de arquivos,
relacionando a visão do usuário, centrada em nomes e conteúdos, com a perspectiva
do sistema operacional, que manipula sequências de bytes e metadados por meio de
chamadas de sistema. A explicação inicial destacou o papel do sistema de arqui-
vos como camada de abstração entre software e hardware, responsável por garantir
organização, persistência e acesso seguro aos dados.

Em seguida, foi detalhada a organização de uma partição de disco: o bloco de
inicialização, o superbloco, as estruturas de mapeamento de espaço, com destaque
para o uso de bitmaps a área de i-nodes, o diretório raiz e a região de dados. O
i-node foi discutido como elemento central de metadados e endereçamento, e seus
ńıveis de indireção para ampliar a capacidade de armazenamento sem aumentar o
tamanho das estruturas mantidas em memória.

Em seguida, foram analisados os principais métodos de alocação e seus efeitos no
desempenho e na fragmentação. A alocação cont́ıgua foi discutida quanto às van-
tagens em leitura sequencial e às limitações impostas pela fragmentação. Também
foram avaliados os critérios para escolha do tamanho de bloco e as estratégias de
gerenciamento de espaço livre, incluindo listas encadeadas e bitmaps.

Por fim, foram abordadas as estruturas de diretórios, comparando modelos de
entradas fixas e variáveis, mecanismos de gerenciamento de nomes longos baseados
em áreas heap, e técnicas de otimização de busca em diretórios extensos, como o uso
de funções de espalhamento (hashing) e de caches de diretórios.
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Trabalhos Relacionados

Trees sprout up just about everywhere in computer science.

– Donald E. Knuth

Este caṕıtulo apresenta a evolução de sistemas de arquivos utilizados em ambien-
tes Unix-like, com foco em caracteŕısticas estruturais que influenciam desempenho,
escalabilidade e integridade dos dados. A partir das primeiras implementações no
Unix original e de propostas como o Fast File System (FFS), são abordados concei-
tos como i-nodes, diretórios hierárquicos, grupos de blocos e estratégias de gerencia-
mento de espaço livre, que servem de base para os sistemas adotados posteriormente
para uso com o kernel Linux.

Na sequência, são analisados os sistemas da famı́lia Extended File System (Ext2,
Ext3 e Ext4), que constituem a linha evolutiva dos sistemas de arquivos utilizados
em distribuições Linux. Esses sistemas foram selecionados por representarem di-
ferentes estágios de maturidade do modelo baseado em i-nodes, blocos de dados e
grupos de blocos, oferecendo um panorama progressivo de soluções adotadas para
problemas como fragmentação, escalabilidade de metadados, poĺıticas de alocação e
mecanismos de recuperação após falhas.

O caṕıtulo também examina o ZFS e o Btrfs, dois sistemas de arquivos que imple-
mentam mecanismos avançados como Copy-on-Write, verificação de integridade por
checksums e organização dinâmica de metadados por meio de árvores, tendências
observadas em sistemas contemporâneos. Esses sistemas foram inclúıdos por incor-
porarem técnicas e soluções que serviram de base para o projeto do Basic Solution
File System, especialmente em relação ao endereçamento por intervalos e utilização
de estruturas em árvore para gerenciamento de metadados.
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3.1 Sistemas de Arquivos UNIX

A evolução dos sistemas de arquivos utilizados com sistemas Unix acompanha o
desenvolvimento das tecnologias de armazenamento, a partir do surgimento das
primeiras versões do sistema nos laboratórios da AT&T em 1961. Como discutido
no Caṕıtulo 2, conceitos como i-nodes, diretórios hierárquicos, blocos de dados e
mecanismos de gerenciamento de espaço livre tornaram-se elementos centrais no
projeto de sistemas de arquivos. Entretanto, estes prinćıpios foram consolidados de
forma gradual, a partir das limitações observadas nas primeiras versões do Unix e
das adaptações propostas ao longo das décadas seguintes [13].

O sistema de arquivos original do Unix, descrito por Ritchie [14], implementou
mecanismos de organização que incluem a separação entre nomes e metadados por
meio de i-nodes e o uso de diretórios armazenados como arquivos especiais. Embora
suficiente para os dispositivos e cargas de trabalho da época, esse modelo apresen-
tava limitações relacionadas à escalabilidade, ao dimensionamento dos blocos e à
eficiência do gerenciamento de espaço.

Em resposta a essas restrições, diferentes variantes do Unix passaram a desen-
volver sistemas de arquivos modificados. O Berkeley Fast File System (FFS), por
exemplo, implementou o conceito de grupos de blocos, reorganizando i-nodes e dados
de forma a reduzir movimentações f́ısicas da cabeça de leitura em discos ŕıgidos [11].

A partir dessas implementações, estratégias de gerenciamento de espaço livre
também foram aprimoradas. Estruturas como listas encadeadas de blocos, bitmaps
e contagem de sequências, descritas no Caṕıtulo 2, passaram a ser aplicadas de ma-
neira mais eficiente, reduzindo o custo de varreduras e melhorando a previsibilidade
da alocação. Ao mesmo tempo, o aumento da variedade de tamanhos de arquivos
exigiu modelos de alocação mais flex́ıveis que a alocação estritamente cont́ıgua.

O crescimento das árvores de diretórios em ambientes multiusuário também de-
mandou abordagens otimizadas para nomeação, organização e busca. Entre as
adaptações implementadas estão o suporte a nomes maiores, a adoção de entra-
das de diretório de tamanho variável e o uso de estruturas auxiliares para otimizar
buscas, como tabelas de espalhamento e mecanismos de cache [11, 13]. Esses re-
cursos complementaram a evolução dos sistemas de arquivos, aproximando-os das
necessidades observadas em sistemas Unix modernos.

OMinix File System (MFS), utilizado no sistema operacional educacional Minix,
adotava uma implementação simples, com tabelas fixas de i-nodes e blocos pequenos.
Embora limitado em capacidade, seu desenho serviu como referência didática im-
portante na compreensão das estruturas clássicas de sistemas de arquivos baseados
em i-nodes.

Com a consolidação do kernel Linux nos anos 1990, tornou-se necessário um
sistema de arquivos compat́ıvel com os modelos Unix, mas que incorporasse me-
lhorias estruturais para suportar discos de maior capacidade e cargas de trabalho

facom-ufms



Trabalhos Relacionados 25

mais intensas. O sistema Ext surgiu nesse contexto, derivado de soluções anteriores
e inspirado tanto no Minix File System quanto no FFS. Porém, seu desempenho e
suas limitações operacionais mostraram a necessidade de uma reformulação.

3.2 Ext2

O Second Extended File System (Ext2) foi apresentado em 1994 como sucessor do sis-
tema Ext, consolidando-se como o primeiro sistema de arquivos amplamente adotado
pelas distribuições Linux. Sua concepção foi influenciada pelo Minix File System e
pelo Fast File System (FFS), a partir dos quais herdou o modelo baseado em i-nodes
e blocos de dados. O Ext2 implementou avanços em relação ao seu antecessor ao
incorporar mecanismos de gerenciamento de metadados mais eficientes e implemen-
tar grupos de blocos, projetado para reduzir a fragmentação externa e otimizar o
acesso em discos ŕıgidos [13].

Uma das principais melhorias introduzidas pelo Ext2 foi a possibilidade de con-
figurar a densidade de i-nodes durante a formatação do sistema de arquivos. Di-
ferentemente do Ext original, em que a quantidade de i-nodes era definida e não
podia ser ajustada, o Ext2 permite ao administrador determinar o número máximo
de i-nodes com base no perfil de uso da partição. Essa configuração permanece
fixa após a criação do sistema de arquivos, mas oferece flexibilidade para adequar a
estrutura tanto a ambientes com grande quantidade de arquivos pequenos quanto a
volumes destinados a arquivos extensos. A opção de definir o tamanho de bloco en-
tre 1.024 e 4.096 bytes complementa esse ajuste, permitindo equilibrar desempenho
e eficiência de armazenamento ao reduzir a fragmentação interna e otimizar o custo
das operações de leitura e escrita.

Cada i-node contém um conjunto de ponteiros diretos que referenciam blocos de
dados de forma imediata, adequado para arquivos de pequena extensão. À medida
que o arquivo cresce, o sistema recorre a ńıveis adicionais de indireção: o ponteiro
indireto simples referencia um bloco que contém apenas endereços de blocos de
dados; o indireto duplo aponta para um bloco cujas entradas, por sua vez, apon-
tam para blocos de indireção simples; e o indireto triplo encadeia mais um ńıvel
nessa hierarquia. Esse esquema permite que arquivos potencialmente grandes se-
jam representados sem aumentar o tamanho fixo do i-node, mas introduz um custo
adicional de acesso, especialmente quando múltiplos ńıveis precisam ser percorridos
para localizar os dados.

O Ext2 organiza os dados em grupos de blocos, cada um contendo seu próprio
superbloco, bitmaps e tabela de i-nodes. Essa segmentação melhora a localidade
espacial dos blocos no disco e reduz o tempo de busca, uma vez que os metadados e
os blocos de dados de um mesmo arquivo tendem a residir próximos no disco. Esse
modelo de agrupamento foi projetado especificamente para discos magnéticos, nos
quais a movimentação da cabeça de leitura representava uma parcela significativa
do tempo de acesso. Em unidades de estado sólido, esse benef́ıcio é menos relevante,
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mas a organização modular continua favorecendo a escalabilidade e a integridade
estrutural do sistema.

O sistema também adota a pré-alocação de blocos de dados como forma de
reduzir a fragmentação externa e melhorar o desempenho em acessos sequenciais.
Essa técnica reserva blocos cont́ıguos no momento da criação de arquivos, ante-
cipando futuras expansões e garantindo que os dados sejam gravados em regiões
fisicamente próximas. Essa abordagem é vantajosa em aplicações que manipulam
fluxos cont́ınuos de dados, como bancos de dados ou arquivos multimı́dia.

Outro conceito fundamental para o entendimento do Ext2 é o de links, mecanis-
mos que permitem associar múltiplos nomes a um mesmo arquivo. O sistema dis-
tingue entre dois tipos: hard links e symbolic links. Os hard links criam referências
diretas ao mesmo i-node, de modo que diferentes nomes de arquivo apontam para
o mesmo conteúdo armazenado em disco. Já os links simbólicos armazenam apenas
o caminho de destino, funcionando como ponteiros que o sistema resolve em tempo
de acesso.

A resolução de links simbólicos foi otimizada para reduzir o número de acessos a
disco. Em outros sistemas de arquivos, o caminho de destino de um link simbólico é
armazenado em um bloco de dados comum, exigindo uma leitura adicional sempre
que o sistema precisa interpretar o link. O Ext2 evita essa operação ao registrar
o caminho diretamente no i-node, desde que o conteúdo possua até 60 bytes. Essa
estratégia elimina a necessidade de buscar o bloco de dados associado ao link, redu-
zindo o número de operações de entrada e sáıda (I/O) e otimizando o processo de
resolução de caminhos.

O sistema mantém a consistência estrutural dos arquivos por meio de um conta-
dor de referências associado a cada i-node. Esse contador registra o número de hard
links existentes, ou seja, de nomes distintos que apontam para o mesmo arquivo.
Quando um novo hard link é criado, o contador é incrementado; quando um nome
é removido, ele é decrementado. O conteúdo de um arquivo permanece acesśıvel
enquanto o contador for maior que zero, garantindo que os blocos de dados associ-
ados não sejam liberados. Essa abordagem assegura a integridade das referências
sem exigir estruturas auxiliares, preservando a coerência entre diretórios e i-nodes
mesmo em operações de atualização simultânea.

3.2.1 Grupo de Blocos

A Figura 3.1 apresenta a organização de uma partição formatada com Ext2 em um
dispositivo. Após o bloco de inicialização, a partição é dividida em múltiplos grupos
de blocos, dispostos de forma sequencial e de tamanho uniforme. Essa segmentação
permite ao sistema localizar diretamente o ińıcio de qualquer grupo por meio de
cálculos baseados em seu ı́ndice.
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Figura 3.1: Distribuição cont́ıgua de blocos com 1 arquivo exclúıdo.

Cada grupo de blocos reúne as estruturas necessárias ao gerenciamento local do
sistema de arquivos. O superbloco e os descritores de grupo possuem cópias dis-
tribúıdas entre os grupos, contendo informações globais sobre o sistema de arquivos
e referências às estruturas internas de cada grupo. Em seguida localizam-se os bit-
maps de blocos e de i-nodes, responsáveis por indicar quais unidades estão livres ou
alocadas.

A tabela de i-nodes do grupo contém as estruturas de metadados dos arquivos,
incluindo permissões, tamanho, marcações de tempo e ponteiros para os blocos de
dados. O espaço restante do grupo é destinado aos blocos de dados propriamente
ditos, cujo conteúdo é acessado a partir dos ponteiros armazenados nos i-nodes.
A organização em grupos busca manter arquivos relacionados próximos entre si,
reduzindo movimentações de leitura em dispositivos mecânicos e favorecendo padrões
de acesso sequencial.

Como mostra a Figura 3.1, as cópias de superbloco e dos descritores de grupo são
mantidas em todos os grupos, mas apenas as localizadas no grupo 0 são utilizadas
rotineiramente pelo kernel. Durante verificações de integridade, o utilitário e2fsck

utiliza esses metadados do primeiro grupo de blocos e pode reconstruir as cópias dos
demais grupos conforme necessário [3].

O número de grupos de blocos que compõem um dispositivo com Ext2 depende
de seu tamanho total e do tamanho de bloco adotado. Essa divisão busca equili-
brar a quantidade de i-nodes, o tamanho dos bitmaps e a proximidade f́ısica entre
metadados e dados, contribuindo para acessos mais previśıveis e para a distribuição
uniforme da carga de alocação.

3.2.2 Exclusão de Arquivos

A remoção de arquivos no Ext2 não apaga imediatamente os dados armazenados em
disco. O procedimento consiste, inicialmente, na remoção da entrada correspondente
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no diretório e na redução do contador de hard links presente no i-node. Somente
quando esse contador atinge zero o i-node é considerado não referenciado, permitindo
que o sistema marque seus blocos de dados como livres no bitmap. Dessa forma,
embora o conteúdo permaneça fisicamente no disco até ser sobrescrito por novas
alocações, ele deixa de ser acesśıvel por meio da estrutura de diretórios.

A ordem em que essas atualizações são realizadas é relevante para preservar a
consistência do sistema de arquivos. Caso a remoção do i-node ocorresse antes da
atualização do diretório, uma falha durante a operação poderia resultar em uma
entrada de diretório apontando para um i-node inválido. Se esse i-node viesse a
ser posteriormente reutilizado para outro arquivo, a entrada residual no diretório
passaria a referenciar metadados incorretos, potencialmente levando à sobrescrita
acidental de dados ou à leitura de informações incorretas. A abordagem implemen-
tada no Ext2 reduz o risco de inconsistências estruturais ao garantir que o diretório
seja atualizado somente após o estado do i-node ter sido registrado de forma coe-
rente.

3.3 Ext3

O Third Extended File System (Ext3) foi desenvolvido com o objetivo de resolver
uma limitação do Ext2: a ausência de um mecanismo de registro de operações capaz
de garantir a consistência do sistema após falhas inesperadas como, por exemplo,
desligamentos inesperados ou falhas no sistema operacional. A fim de tornar o
sistema mais robusto foi implementada a estratégia de journaling. Além disso, sua
arquitetura manteve compatibilidade total com o Ext2, permitindo a migração de
sistemas legados sem necessidade de reformatação.

3.3.1 Mecanismo de Journaling

Em sistemas que não possuem journaling, uma interrupção durante operações de
escrita, como queda de energia ou travamento do sistema operacional, pode deixar
o sistema em estado inconsistente, exigindo a execução de uma verificação completa
do disco no próximo boot. Esse procedimento é custoso e pode levar minutos ou
horas, dependendo do tamanho da partição ou do disco.

O Ext3 introduziu o journaling de metadados para mitigar esse problema. Antes
de gravar alterações na estrutura do sistema de arquivos, as operações são registra-
das em uma área de log denominada journal. Em caso de falha, o sistema não
precisa verificar toda a partição: basta identificar transações incompletas no journal
e reaplicá-las para restaurar o sistema a um estado consistente [18].

Essa abordagem reduz o tempo de recuperação e aumenta a robustez quando
falhas inesperadas ocorrem. Em cenários espećıficos, o mecanismo também pode
melhorar o desempenho, eliminando a necessidade de protocolos complexos de con-
sistência e aproveitando técnicas como somas de verificação para confirmar a inte-
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gridade das transações.

3.3.2 Indexação de Diretórios

Outra limitação herdada pelo Ext3 estava relacionada ao método de organização
das entradas de diretório. Em sua versão anterior, os diretórios eram representados
como listas lineares, de modo em que operações como busca, inserção ou remoção
exigiam a leitura sequencial de cada entrada. O custo dessa operação crescia pro-
porcionalmente ao número de arquivos presentes no diretório e tornava-se ineficiente
em cenários com centenas ou milhares de entradas, nos quais o tempo de resposta
aumentava de forma significativa [6].

Para mitigar esse problema, o Ext3 implementou a estrutura denominada HTree
(Hashed Tree), um mecanismo de indexação baseado em prinćıpios de árvores B,
porém adaptado ao contexto de diretórios. O HTree utiliza um valor de dispersão
(hash) calculado a partir do nome de cada arquivo como chave para indexação, per-
mitindo organizar as entradas em blocos internos responsáveis pelo direcionamento
das buscas e em blocos que armazenam as entradas reais. Essa segmentação permite
que o diretório seja percorrido de maneira hierárquica, reduzindo a necessidade de
varreduras lineares.

A profundidade fixa adotada pela estrutura, limitada a dois ńıveis, garante que
as operações de busca, inserção e exclusão apresentem complexidade próxima de
O(log n), independentemente do número de arquivos no diretório [7]. Como resul-
tado, o Ext3 supera o custo linear associado ao modelo de lista sequencial e oferece
um mecanismo de acesso escalável, adequado para diretórios com grande quantidade
de arquivos e cargas de trabalho intensivas.

3.4 Ext4

O Ext4 foi projetado como sucessor do Ext3, com o objetivo de superar limitações
relacionadas à escalabilidade, fragmentação e desempenho dos sistemas anteriores.
Embora mantenha compatibilidade estrutural com Ext2/Ext3, o Ext4 implementa
alterações em seu modelo de endereçamento e no gerenciamento de metadados.

3.4.1 Endereçamento por Extents

Uma das modificações implementadas pelo Ext4 é a adoção de Extents em substi-
tuição ao esquema de blocos indiretos utilizado pelo Ext2/Ext3. No novo modelo,
um Extent representa um intervalo cont́ıguo de blocos f́ısicos, descrito por meio de
um único registro contendo o bloco lógico inicial, o bloco f́ısico inicial e o compri-
mento do intervalo. Essa substituição reduz o volume de metadados necessários
para representar arquivos e elimina a sobrecarga imposta pelos múltiplos ńıveis de
indireção do esquema anterior.
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A estrutura de Extents é organizada como uma Árvore B+, denominada Extent
Tree, cuja raiz é armazenada diretamente no i-node de cada arquivo. Os nós internos
da árvore contêm registros do tipo Extent-Index, responsáveis por apontar para
ńıveis inferiores, enquanto os nós folha armazenam os Extents propriamente ditos,
que mapeiam os blocos f́ısicos correspondentes. A navegação nessa árvore é realizada
por meio de busca binária em cada nó, garantindo um caminho de acesso eficiente e
assintoticamente estável entre o bloco lógico solicitado e seu respectivo bloco f́ısico.

A Figura 3.2 mostra a organização hierárquica da Extent Tree, mostrando a
relação entre o i-node, os nós internos e os nós folha que apontam diretamente para
os blocos de dados.

Figura 3.2: Estrutura hierárquica da Extent Tree no Ext4 [16].

3.4.2 Melhorias de Desempenho

Com o objetivo de mitigar problemas de fragmentação e otimizar o desempenho de
escrita, o Ext4 implementa a técnica de alocação atrasada, que posterga a alocação
f́ısica dos blocos até o instante efetivo da escrita no dispositivo de armazenamento.
Ao adiar essa decisão, o alocador passa a dispor de informações mais completas sobre
o padrão de escrita, permitindo a seleção de áreas cont́ıguas e favorecendo a criação
de Extents mais longos. Esse mecanismo reduz a probabilidade de fragmentação
interna e externa, melhora o throughput e diminui a sobrecarga de operações de
entrada e sáıda (I/O).

Como complemento, a alocação múltipla de blocos permite a reserva simultânea
de conjuntos de blocos cont́ıguos, otimizando a construção de arquivos sequenciais
e reduzindo o custo computacional associado à alocação bloco a bloco.

Outras melhorias incluem o aumento do tamanho padrão do i-node para 256
bytes, permitindo armazenar metadados adicionais, como timestamps com resolução
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de nanossegundos, além de mecanismos de checksumming aplicados ao journaling,
com o objetivo de ampliar a robustez contra corrupção de metadados. Por fim,
o recurso de grupos não-inicializados possibilita ao utilitário de verificação ignorar
grupos de i-nodes ainda não inicializados, reduzindo o tempo necessário para a
verificação de consistência do sistema de arquivos.

3.5 Copy-on-Write

O Copy-on-Write (COW) é um prinćıpio arquitetural empregado por sistemas de
arquivos como o ZFS e Btrfs, e consiste na atualização de dados e metadados sem
sobrescrever diretamente seus conteúdos já persistidos. Em uma operação de escrita,
os blocos modificados são registrados em novas regiões do dispositivo de armazena-
mento. Somente após a conclusão dessa escrita é que as estruturas de metadados
são atualizadas para referenciar os novos blocos.

Como consequência direta desse mecanismo, qualquer modificação em uma folha
da árvore de metadados, normalmente organizada como variações de uma Árvore B,
requer a atualização dos nós internos que apontam para ela. Esses nós também são
gravados em novos locais, pois seus ponteiros passam a referenciar blocos distintos.
Esse processo se propaga até a raiz, produzindo uma nova cadeia de metadados que
representa a versão atual do sistema, enquanto a versão anterior permanece intacta
até que a atualização da raiz seja conclúıda de forma atômica.

Embora garanta alta consistência, o mecanismo de copy-on-write causa um custo
adicional ao desempenho, pois cada modificação exige a criação de um novo bloco e
a atualização dos ponteiros ao longo da árvore. Em operações de escrita intensivas,
esse processo de copiar antes de escrever aumenta o tempo de de entrada e sáıda em
comparação com atualizações realizadas diretamente no bloco original.

Essa abordagem reduz o risco de inconsistência estrutural. Caso ocorra uma
falha durante a operação, o sistema continua a referenciar a versão anterior dos
dados e metadados, que permanece válida e completa [23]. A estratégia de COW
cumpre o papel que, em sistemas não o utilizam, é desempenhado pelo journaling :
preservar a consistência dos metadados após falhas abruptas.

O mesmo prinćıpio possibilita a criação eficiente de snapshots. Como os dados
não são sobrescritos, o sistema mantém múltiplas ráızes que referenciam diferentes
versões de uma mesma árvore de metadados. Essas versões compartilham todos os
blocos que não foram alterados, de modo que a criação de um snapshot consiste
apenas no registro de uma nova raiz, operação que não exige cópia imediata de da-
dos [15]. Quando uma das versões é modificada, apenas os blocos afetados e seus
metadados ancestrais são alocados novamente, formando uma nova cadeia de atu-
alizações. Essa técnica também permite a criação de clones mutáveis, que evoluem
independentemente do volume de origem.

Embora o COW proporcione propriedades relevantes de integridade e versiona-
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mento, também introduz um efeito conhecido como amplificação de escrita. Como
alterações localizadas podem exigir a regravação de múltiplos ńıveis da árvore de
metadados, a quantidade total de blocos modificados por operação pode ser maior
do que em sistemas que empregam sobrescrita direta [15].

3.6 ZFS

O ZFS (Zettabyte File System), desenvolvido originalmente pela Sun Microsystems,
introduz uma arquitetura integrada que combina o sistema de arquivos e o gerenci-
amento de volumes em uma única camada. Essa integração contrasta com modelos
tradicionais, como os utilizados pelo Ext4, nos quais a organização lógica do volume
e o sistema de arquivos operam como componentes separados. No ZFS, essa dis-
tinção é eliminada, permitindo um controle global sobre dispositivos f́ısicos, alocação
de espaço, redundância e integridade dos dados [23].

O sistema implementa um modelo de escrita baseado em Copy-on-Write (COW),
no qual dados e metadados modificados são gravados em novos blocos, preservando-
se intacta a versão anterior até a conclusão da operação. Esse mecanismo elimina a
necessidade de estruturas tradicionais de journaling para consistência dos metadados
e reduz o risco de corrupção em cenários de falhas abruptas [23].

Além do COW, o ZFS adota verificação de integridade de ponta a ponta por
meio de checksums aplicados tanto a dados quanto a metadados. Cada bloco ar-
mazenado possui uma soma de verificação registrada em seus metadados superiores.
Durante leituras, o ZFS recalcula o checksum do bloco e o compara ao valor re-
gistrado, permitindo detectar e, quando posśıvel, corrigir corrupção silenciosa ao
utilizar cópias redundantes dispońıveis [10]. Essa propriedade confere ao sistema
um ńıvel de confiabilidade superior ao de sistemas que verificam apenas metadados
ou utilizam técnicas de journaling.

Embora utilize o conceito de intervalos cont́ıguos de blocos (extents) para repre-
sentar dados, o ZFS não utiliza Árvore B+. Em vez disso, suas estruturas internas
são organizadas pela Data Management Unit (DMU), que mantém árvores baseadas
em COW onde cada nó contém ponteiros para blocos de dados ou metadados, acom-
panhados de identificadores de transação. Essa organização permite que múltiplas
versões de uma mesma estrutura coexistam, viabilizando operações como snapshots
e clonagem sem duplicação imediata de dados.

A combinação do modelo COW com a organização interna das árvores da DMU
permite ao ZFS criar snapshots de modo eficiente. Um snapshot, no ZFS, consiste em
um ponto estável da árvore de metadados, formado pelo registro de uma nova raiz.
Como os blocos não modificados são compartilhados entre as versões, a criação de um
snapshot não acarreta cópia de dados. Além disso, o ZFS disponibiliza mecanismos
de replicação incremental, nos quais apenas as diferenças entre dois snapshots são
transmitidas, otimizando processos de recuperação e sincronização entre sistemas.
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3.6.1 Gerenciamento Unificado de Armazenamento

O gerenciamento de armazenamento no ZFS é estruturado por meio de storage pools
(ou zpools). Um pool representa um agrupamento lógico de dispositivos de armaze-
namento, organizados em estruturas chamadas vdevs (virtual device — dispositivo
virtual). Cada vdev pode ser configurado com diferentes ńıveis de redundância,
como espelhamento ou RAID-Z, e o conjunto desses dispositivos é tratado como
uma única fonte de blocos para o sistema de arquivos.

Essa abordagem substitui a necessidade de camadas externas de gerenciamento
de volumes, como LVM ou mdadm1, e permite ao ZFS efetuar a alocação de espaço,
o balanceamento interno e a distribuição de dados entre dispositivos de forma
autônoma. A consistência global do pool é assegurada por um conjunto de uber-
blocks, estruturas que funcionam como pontos de entrada para o estado atual do
sistema. Cada uberblock contém informações de transação, é protegido por check-
sums e é atualizado de maneira atômica, garantindo que sempre exista uma versão
consistente do pool acesśıvel após falhas.

3.7 Btrfs

O Btrfs (B-tree file system) é um sistema de arquivos para Linux cujo projeto com-
bina o uso de árvores B balanceadas e a poĺıtica de escrita Copy-on-Write (COW).
Em contraste com sistemas como Ext4, que dependem de tabelas de i-nodes pré-
alocadas, o Btrfs organiza seus metadados em árvores especializadas atualizadas
dinamicamente conforme o volume cresce, se fragmenta ou cria novas versões.

No Btrfs, todo o estado persistente é representado por árvores B. O sistema
mantém múltiplas árvores, cada uma responsável por uma categoria distinta de
metadados: a árvore de arquivos (FS tree) armazena i-nodes e diretórios; a árvore
de extents descreve o mapeamento entre endereços lógicos e blocos f́ısicos; a árvore
de chunks registra a disposição f́ısica do volume; e a árvore de checksums contém os
valores de verificação associados aos blocos. Todas seguem o mesmo formato geral,
utilizando chaves compostas e operações de busca, inserção e remoção com custo
computacional de O(log n) [4].

Diferentemente de sistemas baseados em tabelas estáticas, como Ext4, essa mo-
delagem dispensa a pré-alocação de regiões destinadas a metadados. Dessa forma,
novos i-nodes, diretórios e extents podem ser criados conforme necessário, o que
reduz a dependência entre tamanho do volume e espaço reservado para metadados
e contribui para a escalabilidade do sistema.

O Btrfs utiliza extents para representar sequências cont́ıguas de blocos associa-
dos a arquivos ou metadados. Ao modificar um bloco pertencente a um extent, o
mecanismo COW grava o conteúdo atualizado em um novo local e ajusta as árvores

1O LVM (Logical Volume Manager) e o mdadm são ferramentas do Linux para gerenciamento
lógico de volumes e configuração de arranjos RAID em camadas separadas do sistema de arquivos.
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correspondentes, gerando novos nós desde a folha até a raiz. Esse procedimento
preserva as versões anteriores até a finalização da operação e viabiliza a criação
eficiente de snapshots e clones [15]. A ausência de sobrescrita no Btrfs facilita o
versionamento, mas pode aumentar a quantidade total de metadados modificados
em situações que exigem sincronização frequente.

O Btrfs organiza seu espaço lógico por meio de subvolumes, unidades indepen-
dentes que possuem sua própria árvore de arquivos. Um subvolume pode ser repre-
sentado por meio de um snapshot, que consiste na criação de uma nova raiz para a
mesma estrutura de metadados existente. Como blocos não modificados são com-
partilhados, a criação de snapshots é imediata e não demanda cópia de dados [15].

A integridade é assegurada por meio de checksums armazenados na árvore de-
dicada a esse propósito. Em cada leitura, o sistema recalcula o valor de verificação
do bloco e compara-o ao valor registrado. Havendo redundância dispońıvel, o Btrfs
é capaz de recuperar blocos corrompidos, reforçando sua resiliência estrutural.

A combinação de árvores B dinâmicas, extents e escrita baseada em COW confere
ao Btrfs flexibilidade para operações de clonagem e criação de snapshots. Embora
esse modelo introduza custos adicionais em cargas que exigem sincronização fre-
quente, oferece mecanismos nativos de versionamento e verificação de integridade
integrados ao próprio sistema de arquivos.

3.8 Comparação entre Sistemas de Arquivos

A partir da revisão apresentada neste caṕıtulo, é posśıvel sintetizar algumas ca-
racteŕısticas estruturais dos sistemas de arquivos analisados, com foco em quatro
aspectos: forma de indexação de metadados, mecanismo de endereçamento de da-
dos, estratégias de integridade em caso de falhas e presença ou ausência de recursos
nativos de recuperação de arquivos exclúıdos. A Tabela 3.1 resume essas carac-
teŕısticas para os sistemas Ext2, Ext3, Ext4, ZFS e Btrfs, bem como para o Basic
Solution File System (BSFS), cuja arquitetura será detalhada no Caṕıtulo 4.

Tabela 3.1: Comparação entre caracteŕısticas de sistemas de arquivos e o BSFS.

Sistema Indexação Endereçamento Integridade Recup.
Nativa

Ext2 Tabela de i-nodes Indireção múltipla fsck Não

Ext3 Tabela de i-nodes e
HTree

Indireção múltipla Journaling Não

Ext4 Tabela de i-nodes e
HTree

Extents Journaling Não

ZFS Árvores B+ Extents COW e checksums Não

Btrfs Árvores B+ Extents COW e checksums Não

BSFS Árvores B Bspan Não apresenta Sim
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3.9 Sumário

Este caṕıtulo apresentou a evolução dos sistemas de arquivos utilizados em ambien-
tes Unix-like, destacando como decisões de projeto distintas buscaram equilibrar de-
sempenho, escalabilidade, integridade e simplicidade de administração. A discussão
iniciou-se com os sistemas de arquivos clássicos do Unix e com o Berkeley Fast File
System (FFS), que consolidaram conceitos como i-nodes, diretórios hierárquicos,
grupos de blocos e estratégias de gerenciamento de espaço livre, servindo de base
para os sistemas posteriores.

Em seguida, foram analisados os sistemas da famı́lia Ext. O Ext2 foi descrito
como a primeira solução amplamente adotada no Linux, incorporando grupos de
blocos, configuração de densidade de i-nodes, escolha do tamanho de bloco e me-
canismos de pré-alocação, além do tratamento de links e da ordem das operações
de exclusão. O Ext3 foi apresentado como uma evolução compat́ıvel, que intro-
duziu journaling de metadados para acelerar a recuperação após falhas e passou a
empregar a indexação de diretórios por HTree. O Ext4, por sua vez, substituiu o
esquema de blocos indiretos por extents organizados em uma Extent Tree, ampliou
o espaço de endereçamento e incorporou técnicas de alocação atrasada e multibloco,
além de melhorias em metadados e mecanismos de verificação, aproximando-se das
demandas de discos de maior capacidade.

Além disso, o caṕıtulo apresentou o modelo de Copy-on-Write (COW), utilizado
pelos sistemas de arquivos ZFS e Btrfs. Foram descritos o modo de atualização sem
sobrescrita, a propagação de modificações nas árvores de metadados, as garantias
de consistência estrutural e o papel desse modelo na viabilização de snapshots e
clones. Também foram discutidos os efeitos de amplificação de escrita associados a
essa técnica.

Na sequência, foram examinados dois sistemas contemporâneos que adotam
COW: ZFS e Btrfs. O primeiro foi descrito como uma arquitetura que integra o
gerenciamento de volumes e o sistema de arquivos em storage pools organizados em
vdevs, empregando escrita baseada em COW, verificação de integridade de ponta
a ponta por meio de checksums, estruturas mantidas pela Data Management Unit
(DMU) e mecanismos de snapshots e replicação incremental. O segundo foi ana-
lisado como uma solução moderna para Linux que representa praticamente todo o
estado persistente em múltiplas B-trees dinâmicas, incluindo as árvores de arquivos,
de extents, de chunks e de checksums, combinando extents com COW e oferecendo
recursos como subvolumes, snapshots e verificação de integridade integrada.

Em conjunto, esses sistemas evidenciam três tendências principais: a adoção de
ı́ndices hierárquicos em lugar de estruturas lineares, o uso de extents para substi-
tuir múltiplos ńıveis de indireção e a inclusão de mecanismos de integridade, como
journaling ou COW com checksums. Essas tendências também orientam o projeto
do BSFS, que utiliza intervalos cont́ıguos de blocos e estruturas indexadas para
organizar seus metadados, conforme detalhado no Caṕıtulo 4.
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Caṕıtulo 4

Basic Solution File System

Code is not like other how-computers-work books. It doesn’t have big color
illustrations of disk drives with arrows showing how the data sweeps into
the computer. Code has no drawings of trains carrying a cargo of zeros
and ones. Metaphors and similes are wonderful literary devices but they do
nothing but obscure the beauty of technology.

– Charles Petzold

Neste caṕıtulo, serão abordadas as caracteŕısticas de implementação do Basic
Solution File System (BSFS), um sistema de arquivos desenvolvido em linguagem
C, executado em espaço de usuário no ambiente Linux, cuja principal funcionalidade
é o mecanismo de recuperação de arquivos previamente exclúıdos. Inicia-se tratando
da estrutura que contém as principais informações sobre uma partição formatada
com o sistema de arquivos, o superbloco. Em seguida, aborda a decisão de projeto
de escolha do tamanho do bloco e o mapeamento do espaço livre.

Para facilitar o entendimento das estruturas de dados utilizadas no projeto, é
apresentada a conceitualização da árvore B, estrutura fundamental para o gerenci-
amento de i-nodes, o endereçamento de blocos, o funcionamento dos diretórios e o
processo de recuperação de arquivos.

Após a definição das estruturas de dados e operações fundamentais, o caṕıtulo
apresenta a implementação da interface de interação com o usuário, responsável por
expor as funcionalidades do BSFS por meio de comandos e utilitários espećıficos. Em
seguida, são discutidos os procedimentos de teste adotados e os resultados obtidos
em operações de gravação de arquivos, permitindo comparar o comportamento do
BSFS com sistemas de arquivos consolidados em ambientes Linux.
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4.1 Superbloco

O superbloco do BSFS segue os prinćıpios descritos na Seção 2.1, atuando como
a principal estrutura de controle e identificação. É armazenado em uma posição
fixa no primeiro bloco da partição e carregado em memória sempre que o BSFS é
utilizado. A estrutura superblock t define esse componente, reunindo informações
sobre como o sistema está configurado e onde estão as outras estruturas. O campo
magic_number armazena o valor constante para identificar o sistema de arquivos, e os
campos block_size e fs_size definem, respectivamente, o tamanho de cada bloco
f́ısico em bytes e o tamanho total da partição formatada. Já o campo total_blocks
indica o número total de blocos dispońıveis na partição, servindo como base para o
cálculo do espaço livre e para a inicialização das rotinas de alocação.

Em seguida, o superbloco registra os campos que descrevem a organização lógica
do sistema de arquivos. Os campos block_bitmap_start e block_bitmap_total

indicam, respectivamente, o bloco inicial e a quantidade de blocos utilizados pelo
mapa de bits responsável pelo controle de espaço livre. Os campos inode_root e
recovery_root armazenam os blocos que contêm as ráızes das duas árvores B do
sistema: a primeira dedicada à indexação dos i-nodes e a segunda ao gerenciamento
das entradas de recuperação. Por fim, data_block_start define o ińıcio da área
de dados dos arquivos, enquanto root_inode registra o i-node correspondente ao
diretório raiz.

Essa organização foi projetada para permitir o acesso direto às principais estru-
turas do BSFS com o mı́nimo de operações de leitura em disco. Como o sistema
de arquivos é executado em espaço de usuário, o superbloco é lido e interpretado
diretamente pela aplicação abordada na Seção 4.8, sem intermediação do kernel. A
definição expĺıcita dos endereços e tamanhos de cada região garante acesso às estru-
turas do BSFS a partir de uma consulta única ao superbloco durante as operações.
Dessa forma, o superbloco atua como um mapa fixo do sistema, centralizando todas
as informações necessárias para localizar e manipular as demais estruturas em disco.

4.2 Gerenciamento do Espaço Livre

O BSFS adota blocos de 4 KiB como unidade de alocação, valor definido com base
nos critérios discutidos na Seção 2.2.3. A escolha oferece um equiĺıbrio entre desem-
penho e eficiência de espaço, além de alinhar-se ao tamanho de página comumente
utilizado pelos sistemas operacionais, simplificando o gerenciamento de buffers e as
operações de entrada e sáıda em espaço de usuário. O uso de blocos de 4 KiB reduz
a fragmentação interna observada em blocos maiores e, ao mesmo tempo, evita a
sobrecarga de leitura e escrita que ocorreria com blocos menores.

Para rastrear blocos livres e ocupados, o BSFS implementa um bitmap arma-
zenado em disco, segmentado em blocos de bitmap e organizado como uma lista
encadeada, conforme mostrado na Figura 4.1. Cada bit representa um bloco de
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dados: 0 (livre) e 1 (ocupado), convenção adotada pelo BSFS, e cada nó da lista
corresponde a uma estrutura lógica bitmap block t, composta por um vetor de bits
e um ponteiro next_block para o próximo bloco do bitmap.

Figura 4.1: Lista ligada do bitmap implementado no BSFS.

Os campos block_bitmap_start e block_bitmap_total do superbloco delimi-
tam a região inicial e a capacidade alocada para o conjunto de blocos de bitmap,
enquanto data_block_start marca o ińıcio da área de dados. Dessa forma, o bit-
map pode crescer de forma incremental, adicionando novos nós à lista sem mover
estruturas existentes.

Durante a escrita de arquivos, a alocação de novos blocos segue a estratégia first-
fit, na qual o sistema percorre sequencialmente os blocos do bitmap até encontrar o
primeiro intervalo de bits livres capaz de atender à quantidade de blocos solicitados.
Assim que um espaço adequado é identificado, os bits correspondentes são marcados
como ocupados no mapa, e seus números de bloco são retornados para gravação.
Essa abordagem foi escolhida pela simplicidade de implementação em relação a
outros métodos mais sofisticados, como best-fit e quick-fit.

4.3 Árvore B

As árvores B são estruturas de dados de busca balanceada projetadas para operar de
forma eficiente em dispositivos de armazenamento secundário, como discos ŕıgidos
e unidades de estado sólido. Diferentemente das árvores binárias tradicionais, cada
nó pode conter múltiplas chaves e vários filhos, reduzindo a altura da árvore e,
consequentemente, o número de acessos ao disco necessários em operações de busca
e inserção. Essa caracteŕıstica torna esse tipo de estrutura de dados ideal para
sistemas de arquivos, em que o custo de leitura e escrita em disco é maior do que
operações realizadas na memória principal [5].

Os sistemas de arquivos abordados no Caṕıtulo 3 utilizam variações de árvores
B (Ext4, ZFS e Btrfs), nas quais apenas as folhas armazenam os metadados dos
arquivos, enquanto os nós internos contêm chaves e endereços de blocos. No BSFS,
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optou-se pela implementação de uma árvore B tradicional, em que os metadados
são armazenados diretamente nos nós internos. Essa estrutura de dados foi imple-
mentada integralmente para o projeto, sem o uso de bibliotecas externas, a fim de
permitir controle total sobre o formato dos nós, a poĺıtica de persistência e o modelo
de interação com o armazenamento secundário. A decisão tem como objetivo reduzir
o número total de blocos ocupados pela estrutura, ainda que as operações de busca,
inserção e remoção apresentem um custo computacional maior. O equiĺıbrio entre
simplicidade estrutural e economia de espaço motivou essa escolha no contexto do
projeto.

No BSFS, a árvore B foi implementada para operar sobre o armazenamento
secundário, seguindo o modelo de operações DISK-READ e DISK-WRITE [5], que abs-
traem o processo de leitura e gravação de páginas de dados entre a memória principal
e o disco. Cada nó da árvore ocupa um bloco inteiro da partição, contendo meta-
dados e ponteiros para blocos-filhos. A estrutura foi projetada para uso de quatro
tipos diferentes de dados como chave; as Seções 4.4 à 4.7 detalham as estruturas
utilizadas na implementação.

A implementação da árvore B no BSFS contempla as principais operações des-
critas na literatura: criação, busca, inserção, remoção e atualização de chaves. O
objetivo central dessas rotinas é permitir a manipulação de conjuntos de metadados,
garantindo a integridade e a consistência da árvore após cada modificação.

A operação de busca segue o prinćıpio da busca em árvores de pesquisa binária,
porém com múltiplos caminhos posśıveis a partir de cada nó. Ao receber uma
chave, o algoritmo percorre sequencialmente as chaves armazenadas no nó atual
até determinar o intervalo correspondente e, então, acessa o nó-filho adequado. No
BSFS, cada acesso a um nó envolve uma leitura de bloco em disco, e o processo
continua até que a chave seja localizada ou que uma folha seja alcançada. Assim
como no modelo teórico, a complexidade da busca é proporcional à altura da árvore,
mantendo-se em ordem logaŕıtmica mesmo para grandes quantidades de registros.

A inserção de novos elementos é executada de forma descendente, garantindo
que nenhum nó exceda o número máximo de chaves permitido. Quando um nó fica
completo, ocorre sua divisão, na qual a chave intermediária sobe para o nó pai e as
chaves remanescentes são distribúıdas entre dois novos blocos. Esse procedimento
mantém o balanceamento da árvore e preserva suas propriedades estruturais. No
BSFS, a divisão de nós envolve tanto a alocação de novos blocos quanto a atu-
alização de ponteiros armazenados, o que torna o processo mais custoso que em
implementações puramente em memória, porém essencial para garantir persistência
e integridade dos metadados.

A remoção de registros segue um processo similar à inserção, com o objetivo de
evitar nós com menos chaves do que o grau mı́nimo permitido. Quando um nó fica
abaixo do limite, ele é combinado com um nó irmão ou recebe uma chave emprestada
de um nó vizinho, de modo a restabelecer as propriedades da árvore.
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A operação de atualização é tratada como uma substituição da chave existente,
sem necessidade de reestruturação, salvo em casos de realocação de blocos. Todas
as operações são gravadas em armazenamento secundário por meio de chamadas às
funções de leitura e escrita de blocos, assegurando a persistência das alterações.

4.4 Implementação de I-nodes

A estrutura de i-node utilizada no BSFS segue o prinćıpio funcional descrito na
Seção 2.2.1, atuando como o principal repositório de metadados de cada arquivo
e diretório. O i-node armazena identificadores, permissões, tamanho do arquivo,
marcações de tempo de criação e modificação, e referências para os blocos de dados.
A estrutura constitui um dos tipos genéricos aceitos pela árvore B, como mostrado
na Figura 4.2.

Figura 4.2: Exemplo de árvore B de i-nodes implementada no BSFS.

Cada i-node é identificado por um número único (inode_number), que serve
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como chave na árvore B responsável pela indexação dos metadados. A árvore é ar-
mazenada em disco e possui como raiz o bloco referenciado pelo campo inode_root

do superbloco. As operações de criação, leitura, atualização e remoção são imple-
mentadas como modificações diretas na árvore.

A criação de um i-node envolve a alocação de um identificador livre e a inserção
do registro na árvore de i-nodes, vinculando os metadados do arquivo às estrutu-
ras de armazenamento. A leitura realiza a busca do i-nodes pela chave na árvore,
recuperando seus metadados diretamente do disco. A atualização é tratada como
uma reescrita controlada dos campos do i-node, refletindo modificações em tama-
nho, marcações de tempo ou referências de blocos. Por fim, a exclusão remove a
entrada da árvore, preservando, contudo, a referência para recuperação posterior,
funcionalidade associada ao mecanismo que será descrito na Seção 4.7.

A estrutura do i-node também contém campos que registram os intervalos de
blocos associados ao arquivo, denominados bspans, que definem a localização f́ısica
dos dados dentro da partição. Essa estrutura, análoga aos extents utilizados em
sistemas de arquivos como Ext4, ZFS e Btrfs, é detalhada na Seção 4.5.

Cada i-node do BSFS mantém duas estruturas de controle relacionadas ao en-
dereçamento de blocos de dados. A primeira é uma lista direta de até 16 bspans,
utilizada enquanto o arquivo pode ser representado por um número reduzido de in-
tervalos cont́ıguos de blocos. Quando o número de bspans excede o limite da lista
direta, o i-node passa a referenciar uma árvore B de bspans, cuja raiz é indicada pelo
campo btree_root. Nessa configuração, a árvore é utilizada para indexar e localizar
os intervalos adicionais, permitindo que o sistema gerencie arquivos de grande porte
sem perda de desempenho ou limitação de tamanho.

4.5 Endereçamento de Blocos

O BSFS emprega uma estratégia h́ıbrida para o endereçamento de blocos de dados,
combinando mapeamento direto e indexação em árvore B. A base desse mecanismo é
a estrutura bspan, projetada especificamente para o sistema e inspirada nos extents
utilizados em sistemas como o Ext3 e Ext4.

Cada bspan representa um intervalo cont́ıguo de blocos f́ısicos alocados para
um arquivo, definido por três campos principais: o número do bloco lógico inicial
(file_blk), o número do bloco f́ısico correspondente (disk_blk) e o comprimento
do intervalo (length). Assim, um único bspan pode mapear diversos blocos con-
secutivos, reduzindo a fragmentação e simplificando os cálculos de endereçamento
durante operações de leitura e escrita.

Dentro de cada i-node, o BSFS mantém uma lista direta de até 16 bspans,
utilizada enquanto o número de intervalos do arquivo permanece pequeno, conforme
o exemplo da Figura 4.3. Quando o arquivo cresce e excede o limite dessa lista, o
sistema inicializa uma árvore B dedicada de bspans. O campo bspan_root do i-
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node armazena o número do bloco que contém o nó raiz dessa árvore, que é utilizada
para indexar intervalos adicionais. A Figura 4.4 apresenta a estrutura completa de
endereçamento de bspans em um dispositivo f́ısico.

Cada nó da árvore segue o mesmo formato geral das demais árvores do BSFS,
com chaves correspondendo aos blocos lógicos do arquivo e valores contendo os
descritores bspan. Essa estrutura hierárquica garante que o acesso e a atualização
de bspans permaneçam eficientes mesmo para arquivos grandes, com complexidade
logaŕıtmica (altura da árvore B cresce em proporção O(log n) [5]) em relação ao
número total de intervalos.

Figura 4.3: Exemplo de endereçamento direto de blocos com bspans implementado
no BSFS.

Durante uma operação de escrita, o BSFS procura no bitmap o primeiro intervalo
cont́ıguo de blocos livres com comprimento suficiente para acomodar a quantidade de
dados que precisam ser gravados, utilizando a poĺıtica first-fit descrita na Seção 4.2.
Caso o novo intervalo possa ser mesclado com o último bspan da lista ou da árvore
(contiguidade f́ısica), ele é expandido. Caso contrário, é criado um novo bspan e
inserido na posição adequada na lista direta ou, se necessário, na árvore. A leitura
utiliza o caminho inverso: dado um deslocamento dentro do arquivo, o BSFS verifica
inicialmente a lista direta de bspans para identificar o intervalo correspondente;
caso o bloco solicitado não esteja coberto por nenhum dos registros da lista, a busca
continua na árvore B de bspans, que é percorrida até localizar o intervalo que contém
o bloco lógico solicitado.
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Figura 4.4: Exemplo completo de endereçamento de blocos com bspans implemen-
tado no BSFS.

A opção por esse modelo h́ıbrido elimina a necessidade de blocos indiretos sim-
ples, duplos e triplos, tradicionalmente usados em sistemas como o Ext2. Além disso,
a combinação de lista direta e árvore B permite equilibrar simplicidade e escalabi-
lidade no endereçamento de blocos. No contexto do BSFS, considera-se arquivo
pequeno aquele cujos intervalos de blocos podem ser completamente representados
pela lista direta de até 16 bspans, sem necessidade de estruturas adicionais. Arqui-
vos que excedem esse limite passam a utilizar, além da lista direta, uma árvore B
dedicada para indexar intervalos adicionais, sendo classificados como arquivos gran-
des. Essa distinção é estrutural e não depende do tamanho lógico do arquivo, mas do
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número de regiões cont́ıguas necessárias para armazená-lo, o que reflete diretamente
o grau de fragmentação da partição.

4.6 Implementação de Diretórios

A Figura 4.5 mostra como os diretórios são implementados no BSFS. Cada nó
da árvore B armazena um conjunto de entradas de diretório (directory entries).
Cada entrada associa um nome de arquivo filename ao seu número de i-node
(inode_number), além de registrar o tipo do objeto file_type (arquivo comum
ou diretório) e o tamanho file_size (em bytes) conhecido no momento do registro.
A estrutura é de tamanho fixo e contém: o nome do arquivo com até 255 caracteres,
o hash do nome, o i-node associado e os metadados mı́nimos para navegação (tipo
e tamanho). A limitação do nome a 255 caracteres e o layout fixo foram adotados
por simplicidade e previsibilidade de armazenamento, facilitando o acesso direto e
a organização das páginas em disco.

Figura 4.5: Exemplo de implementação de diretórios no BSFS.

Cada diretório é representado por um i-node espećıfico, cujo campo btree_root

não aponta para uma árvore de bspans (como ocorre em arquivos regulares), mas sim
para a raiz da árvore B que armazena as entradas do diretório. Essa diferenciação
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permite que a mesma estrutura de i-nodes seja utilizada de forma genérica, mudando
apenas o tipo de dado indexado. Assim, arquivos e diretórios compartilham o mesmo
modelo de indexação hierárquica, mas operam sobre conteúdos distintos, ou seja,
bspans para arquivos e entradas para diretórios.

A chave de ordenação utilizada na árvore B de diretórios é o hash do nome,
produto do algoritmo djb2, conforme Seção 2.2.6, escolhido por sua simplicidade e
por produzir chaves de tamanho fixo, o que reduz o custo de comparação em disco
e tende a distribuir as entradas uniformemente entre os nós. O nome completo
permanece armazenado dentro da entrada; assim, em caso de colisão de hash, o
sistema confirma a correspondência comparando o nome ı́ntegro com o solicitado
antes de concluir a operação.

A inserção de uma nova entrada em um diretório consiste em calcular o hash
djb2 do nome, montar a entrada fixa com nome, hash, i-node, tipo e tamanho, e
inserir o registro na árvore B do diretório pai usando o hash como chave. A remoção
elimina a chave correspondente na árvore, e inicia o processo de recuperação, que
será abordado na Seção 4.7.

A busca calcula o hash do nome, percorre a árvore B pelo hash e, ao localizar
o registro candidato, realiza a verificação do nome completo para resolver colisões e
retornar o i-node correto. Dessa forma, busca, inserção e remoção mantêm comple-
xidade logaŕıtmica em relação ao número de entradas do diretório.

As operações sobre diretórios integram-se aos mecanismos de resolução de cami-
nhos do BSFS. Uma sequência como /home/usuario/documento.txt é decomposta
em componentes, e cada componente é resolvido iterativamente consultando a árvore
B do diretório corrente, a partir do diretório raiz, usando o hash djb2 do componente
para localizar a entrada e, então, o i-node subsequente. Esse procedimento permite
gerenciar caminhos longos, preservando a coerência da hierarquia e a integridade
das referências entre diretórios e i-nodes.

4.7 Recuperação de Arquivos

A recuperação de arquivos é a principal funcionalidade adicional do BSFS, proje-
tada para permitir a restauração de dados exclúıdos sem necessidade de ferramentas
externas. O mecanismo é implementado por meio de uma árvore B dedicada, res-
ponsável por armazenar registros de recuperação de arquivos. Essa árvore utiliza o
tipo de dados rec_entry_t, definido para representar cada entrada de recuperação,
e é acessada a partir do bloco raiz indicado pelo campo recovery_root do super-
bloco.

A estrutura rec_entry_t contém os principais metadados necessários para iden-
tificar e restaurar arquivos exclúıdos. Cada entrada registra um identificador único
(recovery_id), o número original do i-node (inode_number), o nome do arquivo
(original_name), tamanho (file_size), permissões (uid, gid, permissions), i-
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node do diretório pai (parent_ino), número de blocos (block_count), marcação
de tempo (retention_until) e as referências aos blocos de dados originalmente
associados.

A Figura 4.6 mostra os campos de entrada utilizados para recuperação em uma
árvore B de exemplo. Esses campos permitem reconstruir com precisão as in-
formações essenciais do arquivo sem depender da árvore principal de i-nodes. O
campo de identificação exclusivo garante que múltiplos arquivos com o mesmo nome
possam coexistir na árvore de recuperação sem conflito, uma vez que o acesso e a
restauração são feitos com base no identificador e não no nome.

O processo de recuperação inicia-se no momento da exclusão de um arquivo.
Quando o usuário remove um arquivo, alguns campos fundamentais do seu i-node,
incluindo nome, tamanho, tipo e referências de blocos, são copiados para uma nova
estrutura rec_entry_t. Após a cópia, o i-node é removido da árvore de i-nodes,
e a nova entrada de recuperação é inserida na árvore de recuperação do sistema.
Dessa forma, o registro do arquivo é mantido no sistema até que o usuário decida
restaurá-lo ou que a entrada seja removida automaticamente por rotinas de limpeza.

Em situações de interrupção inesperada durante o processo de exclusão ou regis-
tro de recuperação, como a finalização abrupta do sistema operacional ou uma falha
de energia, o arquivo removido pode se tornar irrecuperável. Isso ocorre porque o
procedimento de cópia dos metadados para a estrutura rec_entry_t e sua inserção
na árvore de recuperação não constituem uma operação atômica. O BSFS não im-
plementa journaling ou mecanismos de transação capazes de garantir a consistência
do estado do sistema em caso de falhas intermediárias. Em trabalhos futuros, a
adoção de um mecanismo de journaling e o uso de verificações de integridade por
checksums poderiam assegurar a atomicidade das operações de recuperação e a va-
lidação dos metadados armazenados, aumentando a confiabilidade do sistema diante
de interrupções inesperadas.

Durante o peŕıodo em que o arquivo permanece na árvore de recuperação, seus
blocos de dados não são marcados como livres no bitmap, impedindo que novas
alocações sobrescrevam seu conteúdo. Uma entrada permanece ativa nessa árvore en-
quanto estiver dentro do intervalo de retenção definido, 30 dias por padrão. Durante
esse peŕıodo, seus blocos continuam protegidos, exceto em situações de esgotamento
do espaço livre, nas quais blocos pertencentes aos registros mais antigos podem ser
reutilizados para novas alocações. Apenas quando a entrada de recuperação é defi-
nitivamente exclúıda, seja manualmente pelo comando purge ou automaticamente
pelo processo de limpeza, os blocos são liberados e marcados como dispońıveis no
bitmap. Essa decisão de projeto garante integridade e segurança na restauração de
arquivos, evitando perda de dados enquanto o registro de recuperação estiver ativo.
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Figura 4.6: Exemplo de implementação da árvore de recuperação no BSFS.

A manutenção da árvore de recuperação inclui rotinas de limpeza periódica,
responsáveis por remover registros antigos e liberar os recursos associados. O módulo
de coleta de recuperação implementa um procedimento de varredura que identifica
entradas cujo tempo de exclusão ultrapassa o limite estabelecido de 30 dias por
padrão e remove essas entradas do sistema. Esse processo de coleta de lixo (garbage
collection) assegura que a árvore de recuperação não cresça indefinidamente e que
o espaço em disco seja reaproveitado conforme o uso.

Quando o sistema de arquivos atinge sua capacidade total, a rotina de alocação
de novos blocos para escrita executa uma verificação no estado da partição. Caso
não haja espaço livre suficiente para a nova operação, o BSFS aciona o módulo
de coleta de recuperação para liberar blocos ocupados por arquivos mais antigos
armazenados na árvore de recuperação. As entradas são removidas seguindo uma
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ordem cronológica, priorizando os registros de exclusão mais antigos, de modo a
preservar os arquivos mais recentes. Essa estratégia permite que o sistema continue
operando mesmo em condições de saturação do espaço dispońıvel, garantindo a
continuidade das operações de escrita sem comprometer a integridade dos dados
ainda recuperáveis.

O sistema oferece ainda comandos espećıficos para interação com o mecanismo
de recuperação. Por exemplo, o comando recovery permite listar os arquivos dis-
pońıveis para restauração, o comando restore realiza a recriação do arquivo original
a partir das informações armazenadas na árvore de recuperação e o comando purge

remove permanentemente as entradas selecionadas, liberando seus blocos de dados.
O funcionamento detalhado desses comandos e sua integração com a interface de
usuário serão apresentados na Seção 4.8.

4.8 Interface de Interação com o Usuário

O BSFS dispõe de dois programas principais para interação em espaço de usuário:
o formatador, responsável pela criação e inicialização do sistema de arquivos, e a
interface shell-like, que permite a execução de comandos similares aos do Linux. O
formatador é responsável por preparar um dispositivo de blocos para ser utilizado
com o BSFS, enquanto o interpretador de comandos oferece uma interface para
navegação, manipulação de arquivos e uso das funcionalidades de recuperação apre-
sentadas na Seção 4.7. A seguir, a Seção 4.8.1 descreve em detalhes o funcionamento
do formatador.

4.8.1 O Formatador (mkfs.bsfs)

O programa mkfs.bsfs é responsável pela criação e formatação de um novo sis-
tema de arquivos BSFS em um dispositivo de blocos do Linux. Seu funciona-
mento é análogo ao de ferramentas tradicionais de formatação, como mkfs.ext4

ou mkfs.btrfs, mas implementado em espaço de usuário.

Durante a execução, o programa recebe como argumento o caminho absoluto do
dispositivo a ser formatado e procede com a criação das estruturas fundamentais
do BSFS. Inicialmente, a partir do tamanho do bloco (block_size), o número to-
tal de blocos dispońıveis é calculado considerando o tamanho total da partição. Em
seguida, é criado e gravado o superbloco, que contém informações essenciais de confi-
guração, como magic_number, block_bitmap_start, inode_root, recovery_root,
e os delimitadores da área de dados, abordados na Seção 4.1.

Após a escrita do superbloco, o programa inicializa o mapa de bits responsável
pelo controle de blocos livres e ocupados, conforme descrito na Seção 4.2, e grava os
blocos correspondentes. Posteriormente, são criadas as árvores B vazias referentes
aos i-nodes e à árvore de recuperação, cujos blocos raiz são referenciados no su-
perbloco. O programa também cria o i-node do diretório raiz, inserindo a entrada
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inicial que identifica o ponto de partida do sistema de diretórios.

4.8.2 Interpretador de Comandos (Browser)

O programa browser é o interpretador de comandos interativo compilado junta-
mente com o BSFS. Sua execução recebe como argumento o caminho para uma
partição ou arquivo de blocos previamente formatado com o BSFS, permitindo ao
usuário navegar, inspecionar e manipular o conteúdo do sistema de arquivos. O
browser funciona como uma interface em linha de comando (shell-like), implemen-
tada em espaço de usuário, e mantém uma sessão interativa em que cada comando
é lido, interpretado e executado por meio das funções disponibilizadas pela API
interna.

Os comandos de manipulação de arquivos e diretórios seguem a semântica tradici-
onal do Linux, de modo a proporcionar uma experiência familiar ao usuário. Abaixo,
apresentam-se todos os comandos suportados (conforme a sáıda do comando help),
organizados por categoria. A Tabela 4.1 mostra os comandos de navegação que
foram implementados. Por outro lado, as Tabelas 4.2 e 4.3 mostram os comandos
implementados para operações em diretórios, arquivos e permissões. Por último, a
Tabela 4.4 apresenta os comandos gerais de ajuda e a Tabela 4.5 as ferramentas de
recuperação e manutenção da árvore de recuperação de dados.

Tabela 4.1: Comandos de navegação

Comando Função
cd Altera o diretório atual.
whoami Exibe o UID/GID atual e a umask.
su Troca a identidade de sessão (teste).
umask Exibe/define a umask.
pwd Mostra o diretório de trabalho atual.
ls Lista o conteúdo do diretório.
list Alias para ls.

Tabela 4.2: Operações de diretório

Comando Função
mkdir Cria um novo diretório.
rmdir Remove um diretório vazio.
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Tabela 4.3: Operações de arquivo

Comando Função
touch Cria um arquivo vazio.
rm Remove um arquivo (opção rm --all [dir] varre

arquivos com medição de tempo).
cp Copia um arquivo.
mv Move/renomeia arquivo ou diretório.
cat Exibe o conteúdo do arquivo.
fill Cria muitos arquivos de determinado tamanho e re-

porta o tempo decorrido.
chmod Altera permissões (octal, ex.: 755).
chown Altera o proprietário (apenas root).
chgrp Altera o grupo (apenas root).
echo Exibe texto ou escreve em arquivo.
dd Gera/duplica conteúdo com bloco e contagem.

Tabela 4.4: Comandos de sistema

Comando Função
info Exibe informações do sistema de arquivos.
help Mostra o resumo de ajuda dos comandos.
exit Encerra o browser do BSFS.

Tabela 4.5: Recuperação de arquivos

Comando Função
recovery Lista entradas da árvore de recuperação (filtro por

nome exato ou identificador) com sáıda tabular.
restore Restaura por número identificador ou por nome

(com desambiguação). Destino opcional; senão, di-
retório pai original. Valida permissões; reconstrói o
i-node a partir da cópia armazenada na entrada de
recuperação.

purge Limpa a árvore de recuperação: sem argumentos,
remove entradas com mais de 30 dias; purge [id]

remove uma entrada espećıfica; purge oldest [N]

remove as N mais antigas. Exibe contagem remo-
vida.

Os comandos de manipulação de arquivos e diretórios, como ls, cd, mkdir,
rmdir, touch, cp, mv, rm, cat e fill, seguem a mesma semântica e comportamento
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dos sistemas Unix tradicionais. O programa browser mantém uma camada de
abstração entre os comandos e a API do sistema de arquivos, que realiza as chamadas
de manipulação de estruturas de dados, leitura e escrita. Os comandos de sistema,
como info, help e exit, complementam a interface, fornecendo meios de consulta,
documentação e encerramento da sessão.

O BSFS utiliza um modelo de controle de acesso do tipo Discretionary Access
Control (DAC), compat́ıvel com o esquema de permissões do Linux. Cada i-node
contém campos de UID, GID e modo de acesso, avaliados durante as operações de
leitura e escrita. Comandos como su, chmod, chown e chgrp reproduzem as mesmas
funcionalidades do ambiente Unix, permitindo a simulação de diferentes usuários,
alteração de permissões e gerenciamento de grupos, o que torna o comportamento
do sistema de arquivos compat́ıvel com o modelo de segurança de arquivos.

O comando recovery tem como objetivo listar as entradas armazenadas na
árvore de recuperação, conforme descrito na Seção 4.7. Sem argumentos, percorre
toda a árvore em ordem e exibe uma tabela com identificador, tipo, tamanho,
horários de exclusão, peŕıodo de retenção, i-node do diretório pai e nome origi-
nal do arquivo. Quando recebe um argumento de nome, o comando realiza um filtro
exato, exibindo apenas as entradas correspondentes, o que facilita a localização de
arquivos espećıficos.

O comando restore permite reconstruir arquivos previamente exclúıdos, utili-
zando os dados armazenados nas entradas de recuperação. A restauração pode ser
solicitada pelo identificador único (recovery_id) ou pelo nome do arquivo. Quando
há múltiplas entradas com o mesmo nome, o programa apresenta uma lista para de-
sambiguação. O diretório de destino pode ser especificado como segundo argumento;
caso contrário, o arquivo é restaurado no diretório original ou no diretório raiz do
sistema de arquivos. O processo inclui a verificação das permissões do destino e a
reconstrução completa do i-node a partir de sua cópia armazenada na entrada de
recuperação.

O comando purge é utilizado para remover definitivamente entradas da árvore de
recuperação, liberando seus blocos no bitmap. Quando executado sem parâmetros,
ele remove automaticamente arquivos cuja exclusão tenha ocorrido há mais de
30 dias. A opção purge [ID] remove uma entrada espećıfica pelo seu recovery_id,
e purge oldest [N] exclui as N entradas mais antigas. Após a execução, o co-
mando informa a quantidade de registros removidos, garantindo o reaproveitamento
do espaço em disco e a manutenção periódica da estrutura de recuperação.

Os comandos apresentados nesta seção descrevem a interface de interação ofe-
recida pelo BSFS e suas principais funcionalidades. Exemplos detalhados de uso,
incluindo sequências de execução e sáıdas produzidas pelo sistema, encontram-se no
Apêndice A, que complementa esta seção com demonstrações práticas.
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4.9 Resultados de Desempenho

Esta seção apresenta os resultados obtidos nos testes de desempenho realizados com
o BSFS e outros sistemas de arquivos abordados no Caṕıtulo 3: Ext4, Btrfs e ZFS.
A Tabela 4.6 apresenta as configurações do hardware utilizado nos testes.

Tabela 4.6: Especificações de hardware da estação de testes.

Componente Descrição
Processador AMD Ryzen 7 5700G with Radeon Graphics
Caches 512 KiB L1, 4 MiB L2 e 16 MiB L3
Placa-mãe ASUS A520M K V2
Chipset AMD A520 (Renoir/Cezanne Platform)
Memória RAM 16 GB DDR4 (2 × 8 GB, 2133 MHz, dual channel)
Controladora SATA AMD 500 Series Chipset SATA Controller
Armazenamento do sistema SSD NVMe Kingston SNV3S500G (500 GB) —

utilizado exclusivamente para o sistema operacio-
nal

Armazenamento de testes SSD SATA III ADATA SU630 (447 GB) — dedi-
cado aos benchmarks de sistemas de arquivos

Os testes foram realizados na distribuição Arch Linux, utilizando o conjunto de
ferramentas e versões de software mostrados nas Tabelas 4.7 e 4.8.

Tabela 4.7: Especificações de software do ambiente de testes.

Componente Versão / Descrição
Kernel Linux 6.12.51-1-lts #1 SMP PRE-

EMPT DYNAMIC x86 64 GNU/Linux
Compilador GCC 15.2.1 (2025-08-13)

Tabela 4.8: Programas de formatação utilizados nos testes.

Sistema de Arquivos Ferramenta / Versão
BSFS mkfs.bsfs v1.0

Ext4 mke2fs 1.47.3 (8-Jul-2025)

Btrfs btrfs-progs v6.17

ZFS zfs-2.3.4-1

4.9.1 Metodologia de Teste

Para a avaliação de desempenho foram desenvolvidos roteiros de teste executados
diretamente sobre partições de disco formatadas (/dev/sdX) com cada um dos se-

facom-ufms



Basic Solution File System 53

guintes sistemas de arquivos: BSFS, Ext4, ZFS e Btrfs. Ambos os procedimen-
tos utilizam os mesmos conjuntos de arquivos previamente gerados a partir de
/dev/urandom: 100 arquivos de 10 MiB e um arquivo único de 1 GiB, preservados
e reutilizados em todas as execuções. Embora o dispositivo /dev/urandom produza
dados não determińısticos, o uso de um conjunto fixo de arquivos assegura que to-
dos os sistemas de arquivos sejam submetidos à mesma carga de escrita, garantindo
reprodutibilidade dos testes e comparabilidade entre os resultados.

Em ambos os experimentos, cada ciclo consiste na gravação e remoção dos 100
arquivos de 10 MiB com conteúdo aleatório, na mesma ordem, 10 vezes. Em se-
guida, ocorre a gravação e remoção do arquivo único de 1 GiB, também por 10
vezes. No primeiro experimento, os testes no BSFS foram executados no browser
em sessão única, alimentados por comandos redirecionados de um arquivo de texto.
Esse procedimento permitiu reproduzir interações com o sistema de arquivos sem
intervenção manual.

O primeiro experimento foi conduzido em duas variações: a primeira executa ape-
nas a remoção dos arquivos após cada ciclo, preservando as entradas de recuperação
na árvore; a segunda inclui a execução do comando de limpeza purge, que remove os
registros mais antigos da árvore de recuperação e libera os blocos associados. Essa
distinção possibilita avaliar o impacto direto do mecanismo de recuperação sobre
o desempenho do sistema. O sistema de arquivos registra o tempo de execução de
cada operação de gravação por meio de um relógio monotônico interno.

O segundo experimento foi projeto para medir o desempenho dos sistemas de
arquivos Ext4, Btrfs e ZFS. Nesse caso, cada sistema de arquivos é avaliado sepa-
radamente sob as mesmas condições de carga e parâmetros de teste. Antes de cada
rodada, os arquivos anteriores são removidos para evitar reutilização de dados e
interferência nos tempos subsequentes. A medição de tempo baseia-se na captura
de timestamps em nanosegundos via date +%s%N e, entre as repetições, o cache de
páginas do kernel é limpo para minimizar o impacto de armazenamento em memória.

4.9.2 Resultados e Discussão

Nesta subseção, são apresentados os resultados de tempo de gravação de arquivos
para duas cargas: 100×10 MiB e 1×1 GiB. As Figuras 4.7 e 4.8 exibem, para cada
sistema de arquivos (BSFS nas variantes com e sem purge, além de Ext4, Btrfs e
ZFS), barras horizontais com o tempo médio (em segundos) e, em cada barra, os
valores de máximo e mı́nimo observados ao longo de 10 repetições. Nesse contexto,
menor é melhor.
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Figura 4.7: O gráfico apresenta a média de dez execuções na gravação de 100
arquivos de 10 MiB em cada um dos sistemas de arquivos.

No cenário com purge, o BSFS apresenta tempos médios estáveis e desempenho
competitivo frente aos sistemas em espaço de kernel. Essa vantagem relativa decorre
do menor volume de metadados atualizados a cada escrita e da ausência de métodos
que garantem a integridade como journaling ou COW, mecanismos que, embora
elevem a confiabilidade, introduzem sobrecarga adicional no processo para estes
sistemas de arquivos.

Quando o purge não é realizado entre cada teste, cada rm apenas move o arquivo
para a árvore de recuperação, preservando metadados e blocos de dados alocados.
Assim, a cada ciclo de testes, o volume de entradas de recuperação cresce linearmente
e os blocos permanecem indispońıveis ao alocador.

Nesse contexto, a poĺıtica first-fit adotada pelo BSFS se mostra ineficiente por
efetuar varreduras lineares no bitmap em busca do primeiro intervalo cont́ıguo com
tamanho suficiente, tendo desempenho impactado com a fragmentação crescente
da partição. Os segmentos livres tornam-se menores e mais esparsos, prolongando
as buscas e degradando a localidade. O efeito acumulado manifesta-se em dois
pontos: no alocador de blocos, cujas varreduras ficam progressivamente mais longas
à medida que o espaço cont́ıguo diminui; e na coleta emergencial de espaço, que
precisa percorrer a árvore de recuperação para liberar intervalos (bspans) quando
a pressão por blocos aumenta. O custo dominante, portanto, está na alocação e na
coleta, não na travessia das árvores B.
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Figura 4.8: O gráfico apresenta a média de dez execuções na gravação de um
arquivo de 1 GiB em cada um dos sistemas de arquivos.

A manutenção das árvores B para diretórios, i-nodes e bspans introduz custos
logaŕıtmicos para busca e atualização, os quais permanecem secundários diante do
trabalho extra do alocador sob fragmentação e da necessidade de liberar espaço ao
atingir alta ocupação. Assim, o aumento do tempo ao longo das rodadas não decorre
de lentidão estrutural das árvores, mas do comportamento intencional do BSFS em
reter versões na recuperação quando o purge não é aplicado, somado à sensibilidade
do first-fit à fragmentação.

Apesar de não ter se mostrado o principal fator responsável pela diferença de
desempenho, a execução do BSFS em espaço de usuário exerce influência nos resul-
tados. Enquanto sistemas como Ext4, Btrfs e ZFS operam em modo kernel, o BSFS
depende de chamadas de sistema para interagir com o hardware e com o próprio
núcleo do sistema operacional. Cada operação de leitura ou escrita em disco implica
transições entre os modos de usuário e de kernel, trocas de contexto e verificações de
proteção de memória. Esses procedimentos acrescentam um overhead adicional, que
não está presente nas implementações nativas em espaço de kernel. Love [9] discorre
que cada chamada de sistema envolve uma alternância de contexto entre esses dois
modos de execução, o que resulta em um custo mensurável de tempo mesmo em
sistemas otimizados como o Linux.

Para trabalhos futuros, é necessário planejar um novo mecanismo de gerencia-
mento de blocos livres, buscando uma abordagem mais eficiente e integrada à lógica
de recuperação de arquivos. A atual estratégia de varredura sequencial (first-fit)
mostrou-se funcional, mas pouco adaptável a cenários de fragmentação e retenção
prolongada de dados. Soluções alternativas, como alocadores baseados em agrupa-
mento, ou estruturas hierárquicas de bitmap, podem melhorar a previsibilidade e
reduzir o custo das operações de alocação. Além disso, uma readequação do projeto
para execução em espaço de kernel é desejável, de modo a eliminar o overhead as-
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sociado às chamadas de sistema e permitir integração direta com as rotinas nativas
de entrada e sáıda (I/O) do Linux, possibilitando uma avaliação de desempenho
comparável aos outros sistemas de arquivos.

4.10 Sumário

Este caṕıtulo apresentou a implementação do Basic Solution File System (BSFS),
um sistema de arquivos desenvolvido em linguagem C e executado inteiramente em
espaço de usuário no ambiente Linux. Foram descritas suas principais estruturas
internas: o superbloco, responsável pela configuração e localização das demais áreas
do sistema; o gerenciamento de blocos livres baseado em bitmaps encadeados; e o uso
de árvores B como estrutura para indexação de i-nodes, blocos de dados e diretórios.

Destacou-se o modelo h́ıbrido de endereçamento, que combina listas diretas de
bspans para arquivos pequenos e árvores B dedicadas para arquivos maiores, bem
como o mecanismo de recuperação de arquivos exclúıdos, implementado por meio
de estruturas rec_entry_t armazenadas em uma árvore de recuperação indepen-
dente. Também foram detalhados os utilitários do sistema, incluindo o formatador
mkfs.bsfs e o interpretador interativo browser, que oferece uma interface seme-
lhante a um shell tradicional, com comandos de manipulação de arquivos e diretórios,
além das operações espećıficas de recuperação, restauração e remoção de registros.

Os testes de desempenho compararam o BSFS a sistemas de arquivos utilizados
com o Linux, como Ext4, Btrfs e ZFS, em diferentes cenários de escrita sequencial.
Os resultados mostraram que o BSFS apresenta tempos de escrita maiores quando
a rotina de purge não é executada, devido ao acúmulo de metadados na árvore de
recuperação e à fragmentação crescente do espaço livre. Identificou-se que o uso do
algoritmo first-fit para alocação de blocos e a ausência de estratégias de agrupamento
agravam o tempo de busca em situações de alta ocupação. Por outro lado, quando
o purge é aplicado entre as execuções, o desempenho torna-se estável e próximo ao
dos sistemas de arquivos de referência.

Também foi discutido o impacto do BSFS operar em espaço de usuário, o que
implica um overhead adicional decorrente das transições entre os modos de execução
e das chamadas de sistema necessárias para interação com o kernel. Apesar disso, o
sistema de arquivos se mostrou funcional, consistente e capaz de recuperar arquivos
exclúıdos sem perda de integridade.
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Conclusão

Art is never finished, only abandoned.

– Leonardo da Vinci

Este caṕıtulo apresenta as considerações finais a respeito do desenvolvimento e
avaliação do Basic Solution File System (BSFS), consolidando os resultados obtidos
e destacando as principais limitações e possibilidades de evolução do projeto.

O Caṕıtulo 1 introduziu o contexto e a motivação para o estudo, ressaltando
a importância dos sistemas de arquivos na organização e persistência de dados em
sistemas operacionais do tipo Unix. O Caṕıtulo 2 abordou os fundamentos teóricos
necessários à implementação de um sistema de arquivos, discutindo conceitos como
i-nodes, diretórios, gerenciamento de espaço livre com bitmaps e o impacto do ta-
manho de blocos no desempenho. O Caṕıtulo 3 apresentou os principais sistemas de
arquivos utilizados em ambientes Linux: Ext2, Ext3, Ext4, ZFS e Btrfs, destacando
suas arquiteturas, os mecanismos de gerenciamento de metadados e as estratégias
empregadas para organização, alocação e preservação de integridade. Por fim, o
Caṕıtulo 4 descreveu detalhadamente a implementação do BSFS, suas estruturas
de dados e os resultados comparativos de desempenho em relação aos sistemas de
arquivos abordados anteriormente.

O BSFS atingiu o objetivo proposto de implementar um sistema de arquivos
funcional em espaço de usuário, projetado para operar sobre dispositivos de blocos
no Linux. Sua principal colaboração foi um mecanismo para recuperação nativa de
arquivos exclúıdos, ausente nos sistemas convencionais, que mantém registros estru-
turados de metadados e blocos de dados para restauração futura. Embora o sistema
não tenha apresentado desempenho competitivo quando a lógica de recuperação é
aplicada em comparação a sistemas de arquivos otimizados como Ext4, ZFS e Btrfs,
o BSFS cumpriu seu papel como experimento prático e prova de conceito, demons-
trando a viabilidade de uma implementação em espaço de usuário.
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As principais limitações observadas no BSFS estão relacionadas à sua arqui-
tetura e às decisões de projeto adotadas. O mecanismo de recuperação, embora
funcional, tende a aumentar o volume de metadados mantidos em disco, especial-
mente quando a rotina de limpeza (purge) não é executada com frequência, o que
leva ao crescimento cont́ınuo da árvore de recuperação e à ocupação prolongada de
blocos. Em conjunto, a poĺıtica de alocação baseada em first-fit mostrou-se senśıvel
à fragmentação, uma vez que realiza varreduras lineares no bitmap até localizar o
primeiro intervalo cont́ıguo livre, tornando-se progressivamente menos eficiente à
medida que o espaço dispońıvel se fragmenta. Essa combinação faz com que o custo
de alocação e coleta de blocos se torne o principal gargalo de desempenho do sistema.

Além dessas limitações, o BSFS opera integralmente em espaço de usuário, o
que impõe uma sobrecarga adicional decorrente das transições entre os modos de
execução e das chamadas de sistema necessárias para acesso ao disco. O BSFS ainda
carece de recursos avançados presentes em sistemas de arquivos modernos, como
mecanismos de concorrência e paralelismo, estratégias de alocação por localidade
e suporte a journaling, que poderiam ampliar sua confiabilidade e eficiência em
cenários reais de uso.

5.1 Trabalhos Futuros

Como trabalhos futuros, propõe-se a adaptação do BSFS para operação em modo
kernel, por meio da implementação de um módulo dedicado ao Linux. Essa im-
plementação permitiria eliminar a sobrecarga associada às chamadas de sistema e
possibilitaria integração direta com as rotinas nativas de entrada e sáıda (I/O), apro-
ximando o desempenho do sistema de arquivos ao de implementações como Ext4,
ZFS e Btrfs.

Outra linha de aprimoramento envolve o redesenho do mecanismo de geren-
ciamento de blocos livres. A estratégia atual, baseada em varredura sequencial
(first-fit), mostrou-se simples e funcional, mas pouco eficiente em cenários de alta
fragmentação e retenção prolongada de dados. O desenvolvimento de um alocador
mais sofisticado, possivelmente baseado em agrupamento de blocos, em estruturas
hierárquicas de bitmap ou em algoritmos de alocação que consideram a localidade
de blocos de um mesmo arquivo, poderia reduzir o custo das operações e melhorar
o desempenho.

Além disso, a introdução de suporte à concorrência e paralelismo nas rotinas de
leitura e escrita constitui um passo esperado na evolução do sistema, de modo a
aproveitar arquiteturas multicore modernas e permitir processamento simultâneo de
diferentes regiões das árvores de metadados.

Por fim, a implementação de mecanismos de preservação de consistência, como
journaling ou poĺıticas baseadas em Copy-on-Write (COW), representa um passo re-
levante para ampliar a confiabilidade do BSFS. Um módulo de journaling permitiria
registrar transações de metadados e operações cŕıticas, possibilitando a recuperação
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automática após falhas inesperadas. Alternativamente, a adoção de uma poĺıtica
COW evitaria a sobrescrita direta de dados e metadados, preservando versões an-
teriores até a finalização das atualizações. Em ambos os casos, a combinação com
verificações de integridade baseadas em checksums permitiria que o BSFS evolúısse
para uma plataforma experimental mais robusta para estudos de tolerância a falhas
e recuperação em sistemas de arquivos.

5.2 Considerações Finais

O desenvolvimento do BSFS permitiu compreender de maneira prática os prinćıpios
de funcionamento interno de sistemas de arquivos, consolidando o aprendizado
teórico sobre organização, persistência e gerenciamento de dados em sistemas ope-
racionais. Mais do que um sistema de arquivos funcional, o BSFS representa um
exerćıcio de engenharia de software de baixo ńıvel, cujo valor reside na aplicação dos
conceitos fundamentais de arquitetura de sistemas, estruturas de dados e controle
de armazenamento em um projeto completo e experimental. O código fonte [21]
está dispońıvel online sob a licença GPLv3.
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Apêndice A

Exemplo de Uso do BSFS

Neste apêndice será mostrado um exemplo de formatação de dispositivo utilizando
o BSFS, criando arquivos e restaurando um arquivo removido acidentalmente pelo
usuário.

A.1 Formatando um dispositivo com o BSFS

Após compilar o projeto, você pode formatar uma imagem baseada em arquivo (ou
até mesmo um dispositivo de bloco) e explorá-la por meio do navegador (browser)
do BSFS.

O primeiro passo é criar uma imagem cujo tamanho é múltiplo de 4096 bytes.
No exemplo a seguir será criada uma imagem de 8 MiB:

$ dd if=/dev/zero of=bsfs.img bs=1M count=8

8+0 registos entrados

8+0 registos saı́dos

8388608 bytes (8,4 MB, 8,0 MiB) copiados, 0,00399782 s, 2,1 GB/s

O próximo passo é formatar o arquivo criado:

$ ./bin/mkfs.bsfs bsfs.img

BSFS formatted successfully

Partition size (bytes): 8388608

Block size (bytes): 4096

Total blocks: 2048

Block bitmap (start,total): 1,1

Data block start: 2

Inode root block: 2

Root inode: 1

É importante destacar que é posśıvel formatar um dispositivo de blocos como, por
exemplo, uma partição de disco /dev/sda1. O formatador irá gravar o superbloco,
inicializar o mapa de bits do bloco, a árvores B de i-nodes e criar as entradas do
diretório raiz.
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A.2 Criando arquivos

Agora serão criados quatro arquivos de maneiras diferentes utilizando o browser

do BSFS. O primeiro passo é acessar o sistema de arquivos recém criado com o
browser:

$ ./bin/browser bsfs.img

BSFS Browser

Partition: bsfs.img

Type "help" for available commands or "info" for filesystem details

BSFS:/>

O browser suporta diversos comandos similares aos do Linux. Abaixo o comando
help:

BSFS:/> help

BSFS Browser Commands:

======================

Navigation:

cd <directory> - Change current directory

whoami - Show current uid/gid and umask

su <uid> [gid] - Switch session identity (testing)

umask [octal] - Show/set umask

pwd - Print current working directory

ls [directory] - List directory contents

list [directory] - List directory contents (alias for ls)

Directory Operations:

mkdir <directory> - Create a new directory

rmdir <directory> - Remove an empty directory

File Operations:

touch <filename> - Create an empty file

rm <filename> - Remove a file (rm --all [dir] sweeps files with timing)

cp <src> <dest> - Copy a file

mv <src> <dest> - Move/rename a file or directory

cat <filename> - Display file contents

fill <count> <size> [prefix] [bs=<n>] [pattern=index|zero|random]

Create many files and print elapsed time (size/bs accept K/M/G)

chmod <mode> <path>- Change permissions (octal, e.g., 755)

chown <uid> <path> - Change file owner (root only)

chgrp <gid> <path> - Change file group (root only)

echo <text> - Display text or write to file

echo "text" > file - Write text to file (overwrite)

echo "text" >> file - Append text to file

dd if=<src> of=<dest> bs=<size> count=<blocks> - Create files of specific size

Example: dd if=/dev/zero of=testfile bs=1M count=10 (creates 10MB file)

System:

info - Display filesystem information

Recovery:

recovery [name] - List recovery entries (optionally filter by name)

restore <id|name> [dir] - Restore a deleted file by recovery id or by original name

(optional dest dir)

purge [id|oldest N|expired] - Purge recovery entries (default: older than ~30 days)

help - Display this help message

exit - Exit the BSFS browser
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Agora, serão criados os quatro arquivos:

BSFS:/> touch file.txt

File created: file.txt

BSFS:/> dd if=/dev/zero of=block.img bs=1M count=1

dd: copying 1 blocks of 1048576 bytes each...

dd: 1 blocks (1048576 bytes) copied

dd: completed in 3.978 ms (251.41 MiB/s)

BSFS:/> echo "Prof. Brivaldo" > name.txt

Text written to file: name.txt

BSFS:/> echo "BSFS FileSystem" > othername.txt

Text written to file: othername.txt

Foram criados os arquivos: file.txt vazio, block.img de 1MiB de dados do
/dev/zero, name.txt contendo o texto "Prof. Brivaldo" e othername.txt con-
tendo o texto "BSFS FileSystem".

No próximo passo, é verificada a existência dos arquivos usando o comando de
listagem ls e o conteúdo de um dos arquivos, para garantir que os dados estão
corretos:

BSFS:/> ls

Listing directory: .

Name Type

---- ----

. DIR

.. DIR

name.txt FILE

file.txt FILE

othername.txt FILE

block.img FILE

BSFS:/> cat name.txt

"Prof. Brivaldo"

Nesta etapa, o arquivo othername.txt será removido:

BSFS:/> rm othername.txt

File removed: othername.txt

BSFS:/> ls

Listing directory: .

Name Type

---- ----

. DIR

.. DIR

name.txt FILE

file.txt FILE

block.img FILE

O próximo passo é recuperar um arquivo removido. Notem que o arquivo não
aparece mais no sistema de arquivos ao executar o comando ls.
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A.3 Recuperando um arquivo removido

E, com o comando restore, o arquivo othername.txt será recuperado:

BSFS:/> recovery

Recovery entries:

ID Type Size Deleted At Retain Until ParentIno Name

-- ---- ---- ------------------- ------------------- ---------- ----

1 FILE 18 2025-11-13 08:44:08 2025-12-13 08:44:08 1 othername.txt

Ao se digitar o comando recovery, a estrutura de dados do BSFS de recu-
peração é acessada para verificar os arquivos que foram removidos, mostrando suas
informações como o nome do arquivo, quando foi removido e até quando sua retenção
é esperada. O próximo passo é recuperá-lo com o comando restore:

BSFS:/> restore othername.txt

Restored ’othername.txt’ (id 1)

BSFS:/> ls

Listing directory: .

Name Type

---- ----

. DIR

.. DIR

name.txt FILE

file.txt FILE

othername.txt FILE

block.img FILE

BSFS:/> cat othername.txt

"BSFS FileSystem"

No exemplo, o arquivo foi restaurado pelo seu nome (poderia ter sido restaurado
pelo ID na tabela de recuperação). Como observado, o arquivo foi restaurado e
voltou a aparecer no sistema de arquivos ao executar o ls e o seu conteúdo continuou
intacto. Com isso, está finalizada a demonstração de uso, formatação e recuperação
do BSFS.
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