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Resumo

A falta de mecanismos nativos para a recuperacgao estruturada de arquivos ex-
cluidos em sistemas de arquivos amplamente utilizados constitui uma limitacao ainda
nao solucionada. Nesse sentido, este trabalho apresenta o desenvolvimento e a ava-
liagado do Basic Solution File System (BSFS), um sistema de arquivos experimental
implementado em linguagem C e executado em espaco de usuario no Linux, com
um modelo proprio de recuperagao de arquivos excluidos. O estudo é fundamentado
em uma analise comparativa das arquiteturas e praticas de implementacao utiliza-
das em sistemas de arquivos como Ext2, Ext3, Ext4, ZFS e Btrfs, com énfase nas
estratégias de gerenciamento e otimizacao da alocacao de blocos, organizacao de
metadados e métodos de preservacao de integridade. Sao descritas a organizacao
interna do BSF'S, suas estruturas de dados, os utilitarios de formatacao e acesso,
bem como os testes comparativos de desempenho efetuados com sistemas ampla-
mente utilizados no Linux como Ext4, Btrfs e ZFS. Os resultados mostram que o
BSF'S é funcional e capaz de recuperar arquivos excluidos sem o uso de ferramentas
externas ou técnicas complexas de recuperacao de i-nodes. O trabalho contribui com
uma implementagao pratica que permite analisar, de forma controlada, os impactos
de diferentes escolhas de projeto na consisténcia, recuperacao e gerenciamento de
blocos em sistemas de arquivos.

Palavra-chave: sistema de arquivos, linux, recuperacao de dados.
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Capitulo 1

Introducao

I will, in fact, claim that the difference between a bad programmer and
a good one is whether he considers his code or his data structures more
important. Bad programmers worry about the code. Good programmers
worry about data structures and their relationships.

— Linus Torvalds

Os sistemas de arquivos constituem um dos componentes fundamentais de um
sistema operacional, sendo responséaveis pela organizacao légica, armazenamento e
acesso aos dados em dispositivos de memoria secundaria. Sua fungao é oferecer uma
abstracao estruturada sobre o hardware de armazenamento, permitindo que progra-
mas e usuarios interajam com os dados de forma hierarquica, segura e eficiente. A
confiabilidade e o desempenho das estruturas de dados que compoem um sistema de
arquivos afeta diretamente a estabilidade e a experiéncia de uso, especialmente em
ambientes que lidam com grandes volumes de informagao.

Com o avanco das tecnologias de armazenamento e a popularizacao de unidades
de estado sélido (solid-state drives — SSDs), surgiram novos desafios na concepgao
de sistemas de arquivos [12,20]. Entre eles estdo a necessidade de otimizar o
acesso a dados nao contiguos, reduzir o nimero de escritas desnecessarias e oferecer
mecanismos de recuperagao capazes de preservar a integridade das informagoes em
caso de falhas. Esses aspectos motivaram o surgimento de sistemas como o Ext4,
Btrfs e ZFS, que introduziram técnicas avancadas de alocacao, journaling e copy-
on-write, representando marcos na evolugao do gerenciamento de armazenamento
moderno [8].

O estudo e a implementacao de sistemas de arquivos continuam sendo uma area
de interesse na pesquisa em sistemas operacionais, tanto pelo seu valor didatico
quanto pelo potencial de inovacao em novos modelos de gerenciamento de dados.
A criagao de implementagoes experimentais permite investigar solugoes alternativas
para problemas classicos, como a fragmentacao e o gerenciamento de blocos livres,
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favorecendo o entendimento detalhado de seus impactos sobre o desempenho e a
consisténcia dos dados.

Apesar dos avangos presentes nos sistemas de arquivos modernos, a maioria de-
les ainda carece de um mecanismo direto e integrado para recuperagao de arquivos
excluidos. Em implementagoes amplamente utilizadas, como o Ext4, Btrfs e ZFS, a
exclusao de um arquivo implica a remocao imediata de suas referéncias nos metada-
dos, tornando sua restauracao dependente de ferramentas externas, que operam de
forma limitada e nem sempre confiavel. Esses utilitarios, em geral, realizam varredu-
ras heuristicas sobre os blocos de dados, sem garantia de integridade ou consisténcia
estrutural, o que restringe seu uso a situacoes emergenciais e a casos simples de
perda recente.

Ferramentas de nivel de usuario que implementam uma lixeira, como trash-cli
ou mecanismos equivalentes presentes em ambientes graficos, nao constituem um
método de recuperagao propriamente dito, apenas transferem o arquivo para um
diretério especial antes que a operacao de exclusao seja efetivada pelo sistema de
arquivos. Uma vez removidas as referéncias do ¢-node, tais ferramentas deixam de
ser uteis, pois nao atuam sobre as estruturas internas nem preservam informagoes
necessarias para a restauracao posterior. Assim, esses mecanismos oferecem con-
veniéncia ao usuario, mas nao substituem solugoes integradas ao sistema de arquivos,
capazes de operar de forma estruturada apds a exclusao real dos dados.

Essa limitagao evidencia uma lacuna entre o gerenciamento eficiente de armaze-
namento e a preservacao logica de dados em nivel de sistema de arquivos. Embora
a integridade seja tratada por meio de técnicas como journaling e copy-on-write,
os sistemas nao se preocupam com a possibilidade de recuperacao reversivel de ex-
clusoes logicas realizadas pelo usuario. A auséncia desse tipo de funcionalidade torna
a recuperacao de arquivos um processo dependente do contexto de uso e das ferra-
mentas disponiveis, sem padronizacao ou garantias sobre o estado final dos dados
recuperados.

Portanto, torna-se relevante a investigacao e o desenvolvimento de abordagens
que permitam integrar ao proprio sistema de arquivos mecanismos internos de re-
cuperacao, capazes de registrar, preservar e restaurar arquivos excluidos de forma
controlada, sem comprometer a consisténcia das estruturas e sem recorrer a solugoes
externas.

1.1 Objetivo

O objetivo geral deste trabalho é desenvolver e avaliar um sistema de arquivos ex-
perimental em espago de usudrio denominado Basic Solution File System (BSFS),
implementado em linguagem C. O sistema tem como propdsito investigar a viabili-
dade de um modelo simples de gerenciamento e recuperacao de arquivos, capaz de
registrar e restaurar dados excluidos sem o auxilio de ferramentas externas, preser-
vando a consisténcia estrutural e o controle de blocos em disco.

FACOM-UFMS
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Neste trabalho foram implementadas as principais estruturas de um sistema de
arquivos: o superbloco, o gerenciamento de blocos livres e a organizacao de metada-
dos por meio de arvores B. A estrutura de i-nodes, por exemplo, adota um modelo
hibrido de enderecamento, combinando ponteiros diretos e arvores de intervalos
(bspans), acompanhado de um mecanismo de recuperagao de arquivos excluidos
mantido em uma arvore prépria. Também foram desenvolvidos utilitarios de for-
matacao e inspecao, como mkfs.bsfs e o interpretador browser. Por fim, o trabalho
inclui testes comparativos de desempenho entre o BSFS e sistemas amplamente uti-
lizados no Linux (Ext4, Btrfs e ZFS), avaliando o impacto do modelo proposto no
desempenho e na viabilidade de operagao em espaco de usuario.

O desenvolvimento de um sistema de arquivos experimental oferece uma oportu-
nidade para compreender, de forma pratica e controlada, o funcionamento interno
dos mecanismos de armazenamento de dados. Trabalhos dessa natureza permitem
investigar a relagao entre estruturas de metadados, estratégias de alocacao e politicas
de recuperacao, aspectos que geralmente permanecem ocultos nas implementagoes
complexas de sistemas de arquivos modernos.

1.2 Estrutura do Trabalho

Este trabalho estd organizado em cinco capitulos, além desta introducgao inicial.
O Capitulo 2 apresenta os fundamentos tedricos necessarios para compreender o
funcionamento e a organizacao interna dos sistemas de arquivos. Sao discutidos seus
objetivos, a estrutura fisica de uma particao, o papel do superbloco, gerenciamento
de blocos livres, i-nodes, os métodos de alocacao de blocos, a implementagao de
diretorios, e os compromissos entre desempenho e confiabilidade que orientam o
projeto dessas estruturas.

O Capitulo 3 descreve sistemas de arquivos utilizados em ambientes Linux: Ext2,
Ext3, Ext4, ZFS e Btrfs, com énfase nas estratégias de gerenciamento e otimizagao
da alocacao de blocos, organizacao de metadados e métodos de preservagao de in-
tegridade. Essa fundamentacao estabelece o contexto necessario para a andlise e o
desenvolvimento da proposta apresentada neste trabalho.

O Capitulo 4 apresenta a implementacao do Basic Solution File System. Sao de-
talhadas suas principais estruturas, incluindo o superbloco, o mapeamento de blocos
livres, as arvores B utilizadas para indexacao e gerenciamento de i-nodes, diretorios
e blocos de dados, além do mecanismo de recuperacao de arquivos excluidos. O
capitulo também descreve os utilitarios de formatagao e interacao com o sistema,
bem como os resultados dos testes comparativos de desempenho.

Por fim, o Capitulo 5 apresenta as conclusdes do trabalho, sintetizando os re-
sultados obtidos, as limitacgoes identificadas e as perspectivas de aprimoramento
futuro, com destaque para a implementagao do sistema em espaco de kernel, a im-
plementacao de métodos de verificacao de integridade e novas estratégias de alocagao
e paralelismo.

FACOM-UFMS



Capitulo 2

Sistemas de Arquivos

We build our computer the way we build our cities: over time, without a
plan, on top of ruins.

— Ellen Ullman

Neste capitulo, serao abordados o funcionamento e a organizacao interna dos
sistemas de arquivos do ponto de vista tedrico. Sistemas de arquivos tem, por
definicao, os seguintes objetivos: organizar, persistir e controlar o acesso aos dados
em um sistema operacional. Embora seja transparente ao usuario na maior parte
do tempo, sao comparadas a visao do usuario, que interage com nomes e conteidos
de arquivos, com a perspectiva do sistema operacional, responsavel por gerenciar as
sequéncias de bytes e metadados por meio de chamadas de sistema.

Essa sequéncia de bytes e metadados é organizada em blocos dentro de um dis-
positivo. De forma geral, sistemas de arquivos estruturam espago fisico em areas
distintas dedicadas a descrigao global do sistema, ao gerenciamento do espago livre,
ao armazenamento dos metadados dos arquivos e aos dados propriamente ditos.
A forma como essas areas sao implementadas varia conforme o sistema de arqui-
vos, mas todas tém por objetivo possibilitar o controle e a localizacao eficiente das
informacoes gravadas em disco.

Em seguida, o capitulo apresenta o i-node como o elemento central de metadados
e enderecamento de blocos, a partir do qual se exploram os métodos de alocacao de
espago e suas implicagoes diretas, como o desempenho em leitura e a fragmentagao.
Adicionalmente, sao detalhados o funcionamento dos diretérios, o gerenciamento do
espaco livre e os critérios para a escolha do tamanho de bloco, encerrando com os
objetivos que guiam projetos modernos de sistemas de arquivos, que busca equilibrar
desempenho, confiabilidade e eficiéncia de armazenamento.
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2.1 O que é um Sistema de Arquivos

Um sistema de arquivos é a estrutura responsavel por organizar, de forma eficiente,
as operacoes de leitura, gravacao e acesso as informagoes armazenadas em dispositi-
vos de bloco. Dispositivos de bloco sao, normalmente, atribuidos a memoérias mais
lentas como, por exemplo, discos mecanicos (hard drives), discos de estado sélido
(solid state drive) ou outros dispositivos de armazenamento nao volétil. Dessa forma,
um sistema de arquivos é uma abstracao para a complexidade do armazenamento
fisico, oferecendo ao sistema operacional e aos usuarios uma forma estruturada,
segura e consistente de lidar com os dados. Além disso, também atua como in-
termediario entre o hardware e o software, garantindo que as informacoes sejam
acessadas e gerenciadas independentemente da natureza do dispositivo de armaze-
namento.

Com o surgimento dos discos magnéticos, passou a ser possivel acessar registros
de arquivos fora da ordem em que foram gravados. Esse tipo de acesso, chamado
de acesso aleatorio, tornou o processo de leitura de dados mais rapido, ja que nao
¢ malis necessario percorrer todos os registros anteriores para chegar a uma posicao
especifica. Dessa forma, dois métodos sao comuns: o read, que lé a partir de uma
posicao inicial definida; e o seek, que move o ponteiro para uma posicao exata
dentro do arquivo, permitindo a leitura de forma sequencial [17].

Ao analisarmos a organizacao de um sistema de arquivos, identificamos duas
perspectivas fundamentais: a do usudrio e a do sistema operacional. Do ponto de
vista do usuario, um aspecto relevante é a forma como os arquivos sao visualizados
e manipulados, ou seja, o que constitui um arquivo, seu nome, tipo e contetdo.
O nome dos arquivos, por exemplo, é um mecanismo que permite aos usuarios
simplificar o processo de gerenciamento e organizacao dos seus dados. Por outro lado,
o sistema operacional, normalmente utiliza informagoes vinculadas aos metadados
dos cabecalhos dos arquivos. Isso nao €, necessariamente, verdade para todos os
sistemas, mas ¢ comum em derivados do Unix.

Sistemas operacionais modernos adotam o modelo de arquivos nao estruturados,
no qual qualquer tipo de dado pode ser armazenado sem imposi¢oes sobre sua orga-
nizagao interna. Entretanto, diferentes modelos de organizacao existem. No modelo
de arquivo como sequéncia de bytes, o sistema enxerga o arquivo apenas como um
fluxo linear de dados, cabendo a aplicagao interpretar seu contetido. Ja no modelo
baseado em registros de tamanho fixo, o arquivo é dividido em unidades uniformes,
facilitando acesso direto a posicoes especificas. Por fim, em estruturas organizadas
em arvore, o arquivo é composto por registros hierarquicos contendo campos-chave,
0 que permite buscas otimizadas por meio de navegacao estruturada [18].

Outra caracteristica associada a um sistema de arquivos sao as operacoes sobre
os arquivos armazenados. Essas operagoes incluem criacao, remocao, leitura, escrita,
modificagao de permissoes e movimentacao entre diretérios, todas executadas por
chamadas ao sistema operacional, que garante acesso controlado e seguro aos dados.
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Por exemplo, ao abrir um arquivo, o sistema carrega (total ou parcialmente) suas
informacoes na meméria para acessos subsequentes; ao fechar, garante que os dados
pendentes sejam escritos corretamente no disco. Operagoes como leitura e escrita
manipulam os dados com base na posicao atual do ponteiro do arquivo, e algumas
chamadas permitem navegar aleatoriamente pelo seu contetudo [1].

2.2 A Estrutura do Sistema de Arquivos

Os sistemas de arquivos apresentam estruturas variadas, mas compartilham compo-
nentes e principios de organizacao e funcionamento. Entre os elementos mais comuns
estao o superbloco, responsavel pelas informagoes de controle global, os blocos de
inicializacao e, em muitos sistemas, estruturas de mapeamento como os bitmaps,
utilizadas para indicar quais blocos estao livres ou ocupados.

Durante o processo de inicializacao do computador, a BIOS é responsavel por
localizar e executar o Registro Mestre de Inicializagdo (Master Boot Record —
MBR). Esse registro contém o cédigo que identifica a partigdo ativa do disco, lé
seu primeiro bloco e transfere o controle da execugao [18]. A partir desse ponto,
o carregamento do sistema operacional segue conforme a estrutura especifica da
particao. Embora o principio geral seja comum, a organizagao interna das particoes
varia entre diferentes sistemas de arquivos, que frequentemente incluem componentes
ilustrados na Figura 2.1.

Nos sistemas atuais, o processo de inicializagao é geralmente realizado por meio
da UEFI (Unified Extensible Firmware Interface), que substitui a BIOS e o esquema
tradicional de particionamento baseado em MBR. A UEFI utiliza a tabela GPT
(GUID Partition Table), que permite um nimero maior de parti¢oes, tamanhos
superiores a 2 TiB e mecanismos adicionais de integridade. Em vez de carregar um
bloco fixo como o MBR, a UEFI localiza e executa um arquivo de boot armazenado
em uma partigao especial denominada EFI System Partition (ESP). Apesar dessas
diferencas estruturais, o papel desempenhado pelo sistema de firmware permanece
equivalente: preparar o ambiente inicial e transferir o controle para o carregador do
sistema operacional, que entao prossegue com a montagem e utilizacao do sistema
de arquivos.

O superbloco constitui a estrutura central de controle do sistema de arquivos,
responsavel por armazenar seus principais parametros de configuracao e integridade.
E carregado na memoria durante a inicializacao do sistema ou no momento em
que o sistema de arquivos é montado. Entre os dados mantidos nessa estrutura
estao o numero mdgico, um identificador tinico que permite ao sistema operacional
reconhecer o tipo de sistema de arquivos, e a quantidade total de blocos disponiveis.

Além disso, o superbloco armazena dados administrativos relevantes para o fun-
cionamento do sistema de arquivos. Entre eles, podem ser citados: o tamanho total
do sistema de arquivos e de cada bloco de armazenamento, a quantidade de blocos
e i-nodes livres, a posicao inicial e a extensao da tabela de i-nodes, e a localizacao
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dos mapas de bits responsaveis pelo controle de blocos e i-nodes. Também podem
ser registrados parametros de controle, como a data e a hora do iltimo acesso ou
montagem, o numero de montagens e indicadores de integridade, que sinalizam se o
sistema de arquivos foi desmontado de forma adequada. Essas informagoes permi-
tem ao sistema operacional garantir a consisténcia da estrutura e realizar operacoes
de alocacao, acesso e manutencao.

Nos blocos seguintes da particao sao armazenadas as informacoes referentes a
alocacao de blocos disponiveis no sistema de arquivos, geralmente representadas por
meio de um bitmap ou, em algumas implementacoes, por listas encadeadas de pontei-
ros. Em sistemas inspirados no modelo Unix, essa regiao é seguida pelas estruturas
de metadados conhecidas como i-nodes, responsaveis por descrever as propriedades
e os enderecos de dados de cada arquivo. Em outros sistemas de arquivos sao uti-
lizadas estruturas funcionais equivalentes, mas organizadas e nomeadas de forma
diferente.

Em seguida, é encontrado o diretério raiz, representando o nivel mais alto da
arvore hierarquica do sistema de arquivos. Por fim, a drea remanescente do disco é
utilizada para armazenar os demais diretérios e arquivos pertencentes ao sistema.

Disco inteiro

Partigdo do disco

Tabela de Part;;ao \\

[ )

Bloco de

inicializagdo

Gerenciamento Arquivos e

Superbloco i-nod Diretédrio - raiz
e de espago livre [ es ' ' ' diretsrios

Figura 2.1: Estrutura simplificada de parti¢cao de disco e seus componentes [18].

2.2.1 Estrutura de Dados 2-node

Uma estratégia empregada por sistemas de arquivos para monitorar a quais blocos
de disco cada arquivo pertence consiste em associd-lo a uma estrutura de dados
denominada i-node (index-node — né-indice). Essa estrutura armazena metadados
do arquivo e os enderecos dos blocos onde seus dados residem. Com esse descritor,
é possivel localizar no disco os blocos que compoem o arquivo, conforme o esquema
mostrado na Figura 2.2.

A principal vantagem do modelo baseado em i-nodes é que apenas os i-nodes
associados a arquivos abertos precisam permanecer na memoria principal. Assim, o
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consumo de memoéria depende do nimero de arquivos abertos simultaneamente, e
nao da quantidade total de arquivos armazenados no sistema. Esse comportamento
é diferente das abordagens baseadas em tabelas globais de alocagao, cujo tamanho
cresce proporcionalmente a capacidade do disco e aumenta linearmente a medida

que o dispositivo se expande [17].

A estrutura de i-nodes possui a limitagdo de conter um niumero fixo de pon-
teiros para enderecar blocos de dados. Quando o arquivo ultrapassa esse limite,
é necessario adotar um mecanismo de expansao. A solucao tradicional é o uso de
blocos de indirecao, nos quais um dos ponteiros do i-node referencia um bloco inter-
mediario que armazena novos enderecos de dados. Esse método pode ser estendido a
multiplos niveis, permitindo ampliar a capacidade de enderecamento sem aumentar

o tamanho da estrutura, conforme ilustrado na Figura 2.2.

a

Atributos do arquivo

~

Endereco do bloco 0 do disco

Endereco do bloco 1 do diseo

Enderego do bloco 2 do disco

Enderego do bloco 3 do disco

Endereco do bloco ¢ do disco

Endere¢o do bloco 5 do disco

Endereco do bloco 6 do disco

——>

Enderego do bloco 7 do disco

—

1\

Enderego de bloco de ponteiros

Y,

———=| Bloco de disco

contendo

enderegos

adicionais
de disco

Figura 2.2: Exemplo de estrutura de i-node [18].

2.2.2 Armazenamento de dados contiguos

O armazenamento contiguo consiste na gravacao de arquivos em blocos dispostos
de forma sequencial no disco, de modo que todos os blocos de um mesmo arquivo
ocupem posigoes adjacentes no dispositivo de armazenamento. Nesse modelo, um
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arquivo de 50 KiB em um sistema com blocos de 1 KiB seria alocado em 50 blocos

consecutivos. Por outro lado, com blocos de 2 KiB, ocuparia 25 blocos consecuti-
vos [18].

A Figura 2.3 apresenta um exemplo de alocagao em armazenamento contiguo.
Os primeiros 18 blocos de disco sao exibidos, iniciando pelo bloco 0 a esquerda.
Inicialmente, o disco encontra-se vazio. Posteriormente, um arquivo denominado
prova.pdf, com seis blocos de comprimento, é gravado a partir do bloco inicial.
Em seguida, o arquivo contas.txt, de quatro blocos, ¢ alocado imediatamente
ap6s o término de prova.pdf. E por fim, o musica.mp3, de oito blocos, é alocado
imediatamente apds o término do contas.txt.

arquivo inicio #blocos

Prova.Pr:lF 000 006
contas.txt 006 (004 e
musica.mp3 010 00% T ‘ T

v

b 1 2 3 4 5 6 ? 8 q 10 1 12 13 14 15 16 17

(G G G G G o Gy G [ |

Figura 2.3: Distribuicao contigua de blocos de disco para 3 arquivos.

Cada arquivo gravado inicia em um bloco completo. Dessa forma, quando o
tamanho do arquivo nao é miltiplo exato do tamanho do bloco, o espago restante no
ultimo bloco permanece inutilizado, caracterizando uma fragmentagao interna [18].
Um arquivo que ocupa 5,5 blocos utilizara efetivamente 6 blocos, sendo metade do
ultimo bloco espaco desperdicado.

Essa forma de fragmentacao ocorre porque o sistema de arquivos opera com
unidades de alocacao fixas, nao sendo capaz de compartilhar o espaco livre de um
bloco parcialmente ocupado entre diferentes arquivos. Embora a perda de espaco
em arquivos isolados seja pequena, seu efeito cumulativo pode se tornar relevante
em sistemas com grande nimero de arquivos, reduzindo a eficiéncia global de arma-
zenamento.

A fragmentacao interna difere da fragmentacao externa, que surge quando o
espaco livre esta disperso em pequenas regioes nao contiguas do disco, dificultando
a alocacgao de novos blocos para arquivos grandes. Enquanto a fragmentacao externa
impacta o desempenho de leitura e escrita, a fragmentacao interna afeta principal-
mente a utilizagao do espago disponivel.

Na alocagao contigua, o controle de blocos de um arquivo é realizado por meio do
endereco do primeiro bloco e da quantidade total de blocos que o compoem. Essa
abordagem permite localizar qualquer bloco subsequente por meio de um calculo
baseado na posicao inicial. Em operacoes de leitura, o acesso ao arquivo ocorre de
forma continua, uma vez que todos os blocos estao dispostos em sequéncia, o que
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reduz o numero de movimentacoes e as variacoes temporais associadas a busca por
blocos dispersos no disco.

Entretanto, essa técnica apresenta uma limitacao: a fragmentacao externa do
disco ao longo do tempo. Como ilustrado na Figura 2.4, quando um arquivo como
contas.txt é removido, seus blocos sao liberados, criando lacunas de espaco livre.
O disco nao é compactado imediatamente, uma vez que a operagao de reorganizacao
poderia exigir a movimentacao de blocos de outros arquivos, tornando o processo
mais custoso. Consequentemente, o disco passa a apresentar arquivos intercalados
com lacunas de espaco livre.

arquivo inicio #blocos
Provg.PalF 000 006
_contasteb—006—004

musicamp3 010 008 |

|
|
v ¥

1 2 3 4 5 6 q 10 m 12 13 14 15 16 17

0 ¥ 38
(G o G DD o o oo o [ )

Figura 2.4: Distribuicao contigua de blocos com 1 arquivo excluido.

Inicialmente, a fragmentacao externa nao representa um problema, pois novos
arquivos podem ser gravados ao final do disco. Contudo, ao atingir a capacidade
maxima, serd necessario optar por compactacao ou reutilizacao das lacunas dis-
poniveis. Esta ultima abordagem requer a manutencao de uma lista de espacgos
livres e a necessidade de conhecer previamente o tamanho final do arquivo para es-
colher uma lacuna adequada. Este procedimento é pouco pratico, pois exigiria que
o usuario informasse o tamanho final de cada documento ao iniciar sua criacao, o
que pode resultar em falhas ou na necessidade de reiniciar o processo diversas vezes
até localizar um espaco adequado.

A alocagao contigua também apresenta limitacoes relacionadas a gestao de espaco
e a recuperacao de falhas. Como os dados sao gravados em blocos sequenciais, um
arquivo s6 pode ser alocado se houver um espago contiguo suficientemente grande,
0 que se torna cada vez mais dificil & medida que a particao se fragmenta. Dessa
forma, mesmo com blocos livres disponiveis, arquivos extensos podem nao encontrar
regioes continuas adequadas, resultando em subutilizacao do disco.

Além disso, falhas durante a escrita, como interrupgoes de energia ou erros de
sistema, podem deixar blocos parcialmente ocupados ou metadados inconsisten-
tes. Esse problema nao é exclusivo da alocacao contigua, mas torna-se mais critico
em sistemas que nao implementam mecanismos de recuperacao, como o journaling,
responsaveis por registrar operagoes pendentes e restaurar o estado consistente do
sistema apos uma falha.

Historicamente, a alocacao contigua foi amplamente utilizada em sistemas de
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arquivos baseados em discos magnéticos, devido a sua simplicidade e alto desem-
penho. Porém, sua exigéncia de definir o tamanho final do arquivo no momento
da criacao e a crescente fragmentacao resultante de operacoes de escrita e exclusao
sucessivas levaram ao desenvolvimento de métodos mais flexiveis, como a alocagao
encadeada e a indexada. Em midias de gravagao unica, como CD-ROMs e DVDs,
onde o conteido ¢é definido previamente e nao sofre modificagoes, a alocacao contigua
permaneceu uma solucao pratica e eficiente.

2.2.3 (Gerenciamento de espaco livre

O gerenciamento do espago livre é um dos aspectos fundamentais no projeto de um
sistema de arquivos, pois determina como os blocos disponiveis em disco sao iden-
tificados, reservados e reutilizados. Diferentes estratégias de alocacao influenciam
diretamente o desempenho, a fragmentacao e a eficiéncia do uso do armazenamento,
exigindo um equilibrio entre simplicidade de implementagao e aproveitamento do
espago.

Existem duas abordagens para o armazenamento de arquivos: a alocagao de
dados em regioes sequenciais do disco e a divisao do conteido em blocos de tamanho
fixo, que podem ser distribuidos em diferentes areas do dispositivo. Essa escolha é
analoga as estratégias de gerenciamento de memoria, nas quais se utilizam modelos
baseados em segmentacao ou paginacao para organizar o espaco disponivel.

O armazenamento de um arquivo como uma sequéncia de bytes apresenta a des-
vantagem de exigir movimentagcao fisica do arquivo no disco quando ha necessidade
de expansao. Essa operacao envolve a realocacao de dados em regioes distintas do
disco, diferentemente da movimentacao de segmentos na memoria principal.

Em razao dessa limitagao, a maioria dos sistemas de arquivos modernos adotam
a estratégia de dividir os arquivos em blocos de tamanho fixo [18]. Essa abordagem
elimina a necessidade de contiguidade, permitindo maior flexibilidade na alocagao
de espaco e reduzindo o impacto de fragmentacoes. Os blocos podem ser posicio-
nados em diferentes partes do disco, sendo a localizacao de cada um registrada em
estruturas especificas do sistema de arquivos, como os i-nodes.

A defini¢ao do tamanho dos blocos de armazenamento constitui uma etapa es-
sencial no projeto de sistemas de arquivos, pois influencia diretamente o equilibrio
entre desempenho e eficiéncia de utilizagao do espaco.

Blocos de tamanho maior reduzem a sobrecarga de gerenciamento e permitem
que cada operacao de leitura ou escrita inclua uma quantidade maior de dados, favo-
recendo o desempenho em arquivos que ocupam miltiplos blocos. Essa configuragao,
entretanto, aumenta o desperdicio de espago em arquivos que utilizam apenas uma
fracao de um bloco, uma vez que cada arquivo deve ocupar ao menos um bloco
completo, independentemente da quantidade efetiva de dados armazenados.

Blocos de tamanho reduzido, por sua vez, aproveitam melhor o espago disponivel,
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mas exigem um nimero maior de operagoes de entrada e saida (1/0) para arquivos
que ocupam multiplos blocos, elevando o tempo de acesso e o custo de manutencao
dos metadados. Dessa forma, a escolha do tamanho de bloco representa um compro-
misso entre eficiencia de armazenamento e desempenho operacional, aplicavel tanto
a discos magnéticos quanto a unidades de estado sélido (SSDs).

A definicao do tamanho de bloco pode ser orientada por andlises estatisticas da
distribuicao de tamanhos de arquivos em sistemas reais. Um estudo conduzido na
Universidade Vrije e em um servidor web comercial indicou que, em 2005, aproxi-
madamente 59,13% dos arquivos possuiam até 4 KiB e 90,84% até 64 KiB, com
tamanho médio de 2475 bytes [19].

Considerando blocos de 1 KiB, entre 30% e 50% dos arquivos podem ser ar-
mazenados em um unico bloco, enquanto blocos de 4 KiB elevam essa proporcao
para 60% a 70%. Observou-se também que cerca de 93% do espaco total do disco
¢ ocupado por 10% dos arquivos que contém a maior quantidade de dados. Dessa
forma, o desperdicio de espaco decorrente de arquivos que ocupam poucos blocos
torna-se insignificante, uma vez que a maior parte da capacidade de armazenamento
é consumida por arquivos de maior extensao. Assim, aumentar o tamanho dos blo-
cos para acomodar uma fragao maior dos arquivos menores tende a produzir efeitos
limitados sobre a eficiéncia global de utilizacao do espaco.

Os resultados dessa analise sao apresentados na Tabela 2.1. Os conjuntos “UV
19847 e “UV 2005” correspondem a levantamentos realizados nos sistemas de ar-
quivos da Universidade de Vrije em diferentes periodos, enquanto as colunas “Web”
referem-se a analise de arquivos armazenados em um servidor Web comercial.

Tamanho | UV 1984 | UV 2005 | Web | Tamanho | UV 1984 | UV 2005 | Web
1 1,79 1,38 6,67 16 KiB 92,53 78,92 86,79

2 1,88 1,53 7,67 32 KiB 97,21 85,87 91,65

4 2,01 1,65 8,33 64 KiB 99,18 90,84 94,80

8 2,31 1,80 11,30 | 128 KiB 99,84 93,73 96,93
16 3,32 2,15 11,46 | 256 KiB 99,96 96,12 98,48
32 5,13 3,15 12,33 | 512 KiB 100,00 97,73 98,99
64 8,71 4,98 26,10 1 MiB 100,00 98,87 99,62
128 14,73 8,03 28,49 2 MiB 100,00 99,44 99,80
256 23,09 13,29 32,10 4 MiB 100,00 99,71 99,87
512 34,44 20,62 39,94 8 MiB 100,00 99,86 99,94
1 KiB 48,05 30,91 47,82 16 MiB 100,00 99,94 99,97
2 KiB 60,87 46,09 59,44 32 MiB 100,00 99,97 99,99
4 KiB 75,31 59,13 70,64 64 MiB 100,00 99,99 99,99
8 KiB 84,97 69,96 79,69 | 128 MiB 100,00 99,99 100,00

Tabela 2.1: Distribuicao percentual do tamanho de arquivos em diferentes conjun-
tos de dados [18,19].

Por outro lado, blocos menores aumentam o nimero de blocos por arquivo,
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tornando a leitura mais lenta devido a buscas e atrasos rotacionais, exceto em discos
de estado solido. Considerando um disco rigido com 1 MiB por trilha, tempo de
rotacao de 8,33 ms e tempo de busca de 5 ms, o tempo de leitura de um bloco de k&
bytes é dado por:

I
tei ura — 47 1 T ANN AN )
teitura = 5+ 4,165 + 7555500 X 8, 33 ms

A Figura 2.5 ilustra a taxa de transferéncia em func¢ao do tamanho do bloco.
Para estimar a eficiéncia de espaco, assume-se que todos os arquivos possuam 4
KiB, valor préximo ao observado na Universidade Vrije. A curva sélida da figura
mostra a eficiéncia de espago, enquanto a curva tracejada indica a taxa de dados.

- 1100
60 | -u- Taxa de dados §
= 180 ¢
E 50 |- %3
= g
2 40 - 160 ZO;
= 30! 2
e} <5}
() N 40 o
oS o]
s 201 5
c>é zg
= 10l 120 E
S
0 Q)‘ 0
< .
W W \Q& @3& qﬁb%% S

—e— Eficiéncia de espaco

Figura 2.5: Taxa de dados e utilizacao de espaco em disco rigido em funcao do
tamanho do bloco. [18].

O tempo de acesso ¢ dominado pelo tempo de busca e atraso rotacional. Quanto
maiores os blocos, mais eficiente é a transferéncia de dados, até que o tempo de
transferéncia se torne relevante. Portanto, a escolha do tamanho de bloco deve
equilibrar desperdicio de espaco e desempenho de leitura.

A andlise do tamanho de bloco nao se limita ao desempenho, mas também deve
considerar a eficiéncia de espaco. Suponha arquivos de 4 KiB sendo armazenados
em blocos de 1 KiB, 2 KiB ou 4 KiB. Nesse caso, os arquivos ocupam 4, 2 e 1
bloco(s), respectivamente, sem desperdicio de espago. Entretanto, se o bloco for
maior que o arquivo, como 8 KiB ou 16 KiB, a eficiéncia de espaco cai para 50%
e 25%, respectivamente. Na pratica, poucos arquivos possuem tamanho multiplo
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exato do bloco, de modo que sempre havera algum desperdicio no tltimo bloco de
cada arquivo.

A anélise dos dados evidencia um conflito entre desempenho e eficiéncia na uti-
lizacao do espaco de armazenamento. Blocos de menor tamanho favorecem o apro-
veitamento do disco, mas aumentam o niimero de acessos necessarios para manipular
arquivos extensos, reduzindo o desempenho. Em contrapartida, blocos maiores ele-
vam a taxa de transferéncia, porém resultam em desperdicio de espago. No conjunto
de dados analisado, nao ha um ponto de equilibrio ideal: o tamanho de bloco que
mais se aproxima do cruzamento entre as curvas de desempenho e eficiéncia é de
64 KiB, apresentando uma taxa de 6,6 MiB/s e eficiéncia de 7%, valores insatis-
fatorios para ambos os critérios.

Historicamente, sistemas de arquivos tém adotado tamanhos de bloco entre 1 KiB
e 4 KiB; contudo, em dispositivos atuais com capacidades superiores a 1 TiB, blocos
de 64 KiB podem se mostrar viaveis, mesmo com certo desperdicio de espago, devido
a ampla disponibilidade de armazenamento nos dispositivos.

Estudos empiricos corroboram essa relacao entre o tamanho de bloco e o padrao
de uso dos arquivos. Vogels [22] realizou uma andlise do comportamento de sistemas
de arquivos no ambiente Windows N'T', comparando-o a sistemas baseados em UNIX.
O estudo revelou que o modelo de gerenciamento de arquivos do Windows NT é
mais complexo, envolvendo um nimero maior de chamadas de sistema mesmo para
operagoes simples de edi¢ao, o que aumenta a sobrecarga de entrada e saida (1/0)
no sistema.

Apesar das diferencas de implementagao, os resultados observados no Win-
dows NT apresentaram tamanhos médios ponderados de arquivos semelhantes aos
registrados em sistemas UNIX. Arquivos acessados apenas para leitura possuiam ta-
manho médio de aproximadamente 1 KiB, enquanto arquivos apenas escritos apre-
sentavam cerca de 2,3 KiB, e aqueles lidos e escritos atingiam, em média, 4,2 KiB. Es-
ses valores demonstram consisténcia com os resultados obtidos na Universidade Vrije,
indicando que a maioria dos arquivos ocupa poucos blocos, o que reforca a relevancia
da escolha criteriosa do tamanho de bloco para equilibrar eficiéncia e desempenho.

2.2.4 Gerenciamento de blocos livres

Apoés a definicao do tamanho de bloco, torna-se necessario estabelecer um método
para o controle dos blocos livres no disco. O gerenciamento dessa informacgao é
utilizado para a alocacao de novos arquivos e para o reaproveitamento do espaco
liberado. Entre as técnicas mais empregadas, destacam-se a lista encadeada de
blocos livres e o mapa de bits (bitmap), ilustradas na Figura 2.6.

Na abordagem baseada em lista encadeada, cada bloco da lista armazena uma
sequéncia de enderecos de blocos livres, além de um ponteiro para o proximo ele-
mento da lista. O numero de enderecos possiveis em cada bloco depende de seu
tamanho e da largura dos identificadores de bloco. Por exemplo, em um sistema
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Blocos livres de disco: 16, 17, 18

& —> 215 —> 136 1001101101101110
69 72 162 1001101101101000
212 109 214 1001101101111100
a6 86 41 1001101111101100
50 46 a4 1001111101101100
67 32 345 1011101101101100
104 106 365 1101101101101100
47 5¢ 420 1000101101101100
219 180 450 1001110101101100
309 482 354 1001101110101100
518 — 342 — 279 1001101100101100
Uwm bloco de disco de 1 KB Pode conter Um mapa de bits
256 nimeros de blocos de disco de 32 bits
(o) (6)

Figura 2.6: (a) Lista encadeada utilizada para armazenar os blocos livres; (b) Mapa
de bits (bitmap). [18].

com blocos de 1 KiB e enderecos de 32 bits, cada bloco pode conter até 255 re-
feréncias a blocos livres, reservando uma posi¢ao para o ponteiro que encadeia o
proximo bloco da lista. Em um disco de 1 TiB, composto por aproximadamente 1
bilhao de blocos, essa estrutura exigiria cerca de 4 milhoes de blocos para armazenar
a lista completa.

A segunda técnica de controle é o bitmap, que representa o estado de ocupacao
de cada bloco do dispositivo por meio de uma sequéncia compacta de bits. Cada
posicao do mapa indica se o respectivo bloco esta livre ou alocado, permitindo que
a verificacao e a atualizacao dessas informagcoes sejam realizadas de forma direta.

Em um disco de 1 TiB, o bitmap requer aproximadamente 130.000 blocos de
1 KiB para seu armazenamento, o que o torna mais econémico que a lista enca-
deada, ja que utiliza uma quantidade fixa e reduzida de bits para representar cada
bloco. Essa abordagem apresenta melhor desempenho em cenarios de alta utilizagao
do disco, embora, em situagoes de espago quase esgotado, a lista encadeada possa
oferecer vantagem por lidar com um nimero menor de referéncias livres.

Quando os blocos livres tendem a ocorrer em sequéncias de blocos consecutivos,
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a lista encadeada de blocos livres pode ser otimizada para gerenciar conjuntos de
blocos em vez de blocos individuais. Um contador pode ser associado a cada bloco,
indicando a quantidade de blocos livres consecutivos. No melhor cenario, um disco
formatado ou com baixa fragmentacao poderia ser representado por apenas dois
nimeros: o endereco do primeiro bloco livre e o contador de blocos consecutivos.

Em contrapartida, se o disco estiver fragmentado, o controle de conjuntos torna-
se menos eficiente, pois além do endereco, é necessario armazenar também o con-
tador. Essa técnica ilustra um dos dilemas recorrentes no projeto de sistemas de
arquivos: o equilibrio entre simplicidade estrutural e eficiéncia operacional depende
do padrao de utilizagao do armazenamento.

No método baseado em lista encadeada, apenas um bloco de ponteiros é mantido
na memoria principal, servindo como referéncia temporaria para as operacoes de
alocacao e liberacao de blocos. Durante a criacao de arquivos, os enderecos sao
obtidos desse bloco; quando esgotado, um novo ¢ lido do disco. De modo andlogo, na
remocao de arquivos, os blocos liberados sao adicionados a essa estrutura e, ao atingir
sua capacidade, o bloco de ponteiros é escrito de volta ao disco. Esse mecanismo
pode gerar sobrecarga de entrada e saida (1/0) em cendrios com arquivos pequenos
e temporarios, devido a frequéncia com que blocos precisam ser lidos e gravados
novamente, aumentando o nimero de operagoes.

Memdria Diseo

(a) (k) O]

Figura 2.7: (a) Bloco na memdria principal quase completo, contendo ponteiros
para blocos livres no disco, enquanto trés blocos de ponteiros permanecem arma-
zenados no disco. (b) Situacao apds a remocao de um arquivo composto por trés
blocos. (c) Estratégia alternativa para tratar a liberacao desses trés blocos livres.
As areas sombreadas indicam ponteiros para blocos de disco disponiveis. [18].

A Figura 2.7 ilustra a diferenca entre o comportamento tradicional da lista enca-
deada de blocos livres e uma estratégia alternativa que reduz operacoes de entrada e
saida. No método convencional, mostrado nas partes (a) e (b), todo bloco liberado
precisa ser imediatamente registrado no bloco de ponteiros mantido na memoria
principal; quando esse bloco fica cheio, ocorre um “transbordo”, exigindo que um
novo bloco seja lido ou escrito em disco. A alternativa, apresentada na parte (c),
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divide o bloco de ponteiros sempre que ele é preenchido, mantendo na memoria
apenas um bloco parcialmente cheio. Com isso, o sistema consegue realizar diversas
operacoes de criagao e remocao de arquivos temporarios sem operar sobre o disco.
A maior parte dos blocos de ponteiros permanece cheia e armazenada em disco,
enquanto o bloco na memoria continua parcialmente cheio, permitindo adicionar ou
remover ponteiros sem incorrer imediatamente em operacoes de entrada e saida.

No método baseado em bitmap, apenas um bloco da estrutura é mantido na
memoria principal, sendo necessaria a escrita em disco apenas quando ocorre seu
preenchimento ou esvaziamento completo. Essa abordagem facilita a alocacao de
blocos contiguos, reduzindo o deslocamento fisico da cabeca de leitura em disposi-
tivos de armazenamento magnético. Além disso, por possuir tamanho fixo e pre-
visivel, o bitmap pode ser mapeado na memoria virtual, permitindo a paginacao
de suas secoes conforme a demanda e otimizando o uso dos recursos do nucleo do
sistema operacional.

2.2.5 Alocacgao de blocos

A técnica de alocacao define a forma como os blocos de disco sao selecionados para
armazenar os dados de um arquivo, influenciando o desempenho e a eficiéncia do
sistema. Assim como no gerenciamento de memoria principal, os algoritmos de
alocacao buscam localizar regioes livres de forma réapida e reduzir a fragmentacao do
espago, equilibrando custo computacional e aproveitamento do armazenamento [18].

Entre as estratégias aplicaveis ao contexto de sistemas de arquivos estao os
métodos first fit, next fit, best fit, worst fit e quick-fit. Nesses esquemas, os blocos
de disco assumem o papel dos segmentos de memoéria, e as informacoes de disponi-
bilidade sao mantidas em estruturas auxiliares, como bitmaps ou listas encadeadas
de blocos livres, permitindo o controle das areas de armazenamento.

Entre os métodos utilizados, o first fit (primeiro encaixe) consiste em percorrer
a estrutura de blocos livres até encontrar o primeiro intervalo contiguo de tamanho
suficiente para atender a solicitacao. No contexto de sistemas de arquivos, essa
abordagem ¢ simples e eficiente, pois reduz o tempo de busca e tende a preservar
blocos contiguos nas areas iniciais do disco. Entretanto, a medida que o espaco livre
se fragmenta, o nimero de varreduras necessarias para localizar blocos disponiveis
aumenta, impactando diretamente o tempo de escrita e a taxa de transferéncia.

Uma variagdo do método é o next fit (préximo encaixe), que armazena a posi¢ao
da ultima alocacao bem-sucedida e retoma a busca a partir desse ponto nas préximas
solicitacoes. Essa estratégia busca evitar repetidas varreduras das mesmas regioes da
particao, mas em sistemas de arquivos tende a apresentar desempenho semelhante
ou ligeiramente inferior ao first fit, pois distribui a fragmentacao ao longo de todo o
espago de armazenamento.

O algoritmo best fit (melhor encaixe) procura entre todos os blocos livres aquele
cujo tamanho mais se aproxima da quantidade solicitada, tentando minimizar o
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desperdicio interno de espaco. Apesar da eficiéncia, esse método costuma resultar
em fragmentagao mais severa, pois tende a gerar pequenos blocos residuais que nao
sao reutilizaveis.

O método worst fit (pior encaixe) segue a légica inversa do best fit, escolhendo
sempre o maior bloco livre disponivel. A ideia é que, ao dividir uma grande regiao,
0 espaco remanescente ainda seja utilizavel em futuras alocacoes. Na pratica, entre-
tanto, esse método nao apresenta vantagens significativas em sistemas de arquivos
e tende a gerar padroes de fragmentacao semelhantes ao best fit.

Outra abordagem, o quick fit, mantém listas separadas de blocos livres para
tamanhos pré-definidos. Em sistemas de arquivos, um mecanismo similar pode ser
aplicado por meio de multiplos mapas de bits ou tabelas de alocacao que segmentam
o espaco de acordo com a granularidade dos arquivos. Essa técnica reduz o tempo
de busca por blocos, mas aumenta a complexidade de uniao e atualizacao dessas
estruturas, especialmente quando arquivos sao removidos ou redimensionados.

De modo geral, sistemas de arquivos modernos tendem a empregar variacoes do
first fit combinadas a estratégias de agrupamento de blocos, como os extents abor-
dados no Capitulo 3, para equilibrar simplicidade de implementacao, desempenho
e aproveitamento do espaco. Em implementacoes baseadas em bitmaps, a eficiéncia
da alocacao depende tanto do algoritmo de busca adotado quanto da forma como
as regioes livres sao representadas e atualizadas no disco.

2.2.6 Diretorios

Um diretorio é uma estrutura de dados utilizada pelos sistemas de arquivos para or-
ganizar e manter a relagao entre os nomes atribuidos aos arquivos e suas respectivas
localizagoes fisicas no disco. Funciona como um indice que associa identificadores
legiveis pelo usudrio a enderecos ou descritores internos do sistema, permitindo o
acesso hierarquico e estruturado aos dados armazenados. A organizacao em di-
retérios e subdiretérios compoe a arvore hierarquica do sistema de arquivos, na qual
cada né representa um agrupamento loégico de arquivos ou de outros diretorios.

No momento da abertura de um arquivo, o sistema operacional utiliza o caminho
informado pelo usudario para localizar a entrada correspondente dentro do diretério.
Essa entrada contém as informagoes necessarias para identificar os blocos de dados
do arquivo. Dependendo do método de alocacao adotado, essas informagoes podem
incluir o endereco fisico do arquivo (em sistemas de alocagao contigua), o nimero
do primeiro bloco (em listas encadeadas) ou o ntimero do i-node, nos sistemas que
utilizam essa estrutura. Em todos os casos, o diretorio tem como fungao principal
associar o nome do arquivo, armazenado em formato ASCII, as informacoes que
permitem ao sistema localizar e manipular os dados de forma eficiente.

Além de armazenar referéncias para a localizacao dos dados, os diretérios também
precisam registrar os atributos associados a cada arquivo. Esses atributos, como
identificador do proprietario, permissoes de acesso, datas de criacao e modificagao,
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Figura 2.8: (a) diretério com entradas fixas que armazenam tanto os enderegos
de armazenamento quanto os atributos diretamente. (b) diretério em que cada
entrada aponta apenas para um i-node, responsavel pelos atributos e enderecos de
armazenamento [18].

sao informagoes utilizadas para o controle e a seguranca do sistema de arquivos.
Uma das formas de organizacao consiste em armazenar esses atributos diretamente
nas entradas do diretorio. Nesse modelo, o diretério é composto por uma lista de
registros de tamanho fixo, cada um correspondendo a um arquivo. Cada registro
contém o nome do arquivo (também de tamanho fixo), a estrutura de atributos e
um ou mais enderecos de disco que indicam a localizacao dos blocos que compoem
o conteudo do arquivo.

Nos sistemas que utilizam i-nodes, os atributos dos arquivos, como permissoes,
proprietario, tamanho e marcagoes de tempo, sao armazenados diretamente nos
proprios i-nodes, e nao nas entradas de diretorio. Nessas implementacoes, cada
entrada do diretorio contém o nome do arquivo e o nimero de i-node correspondente,
reduzindo o tamanho das entradas e tornando a estrutura mais eficiente em termos
de armazenamento e acesso.

Historicamente, diferentes sistemas de arquivos adotaram restrigoes quanto ao
tamanho e formato dos nomes de arquivos. O MS-DOS, por exemplo, utilizava o
padrao 8.3, com nomes de até oito caracteres e uma extensao de trés; ja a Versao 7 do
UNIX limitava o nome completo a 14 caracteres. Com o tempo, a demanda por maior
expressividade e compatibilidade levou a adocao de nomes longos e de tamanho
variavel, comuns nos sistemas modernos. Essa flexibilidade, contudo, impoe desafios
adicionais de implementacgao, uma vez que as entradas de diretério deixam de ter
tamanho fixo e precisam acomodar nomes de diferentes comprimentos de forma
eficiente.
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Figura 2.9: Duas abordagens para o gerenciamento de nomes de arquivos exten-
sos em diretérios: (a) organizagdo sequencial; (b) armazenamento em estrutura

heap. [18]

Uma forma de implementacao ¢ definir um limite méximo para o tamanho dos
nomes de arquivos e adotar um dos modelos apresentados na Figura 2.8, reservando,
por exemplo, 255 caracteres para cada nome. Essa estratégia, apesar de funcional,
resulta em desperdicio de espacgo, pois a maioria dos arquivos nao utiliza nomes tao
extensos.

Outra possibilidade consiste em nao impor que todas as entradas de diretorio
possuam o mesmo tamanho. Nesse modelo, cada entrada contém uma parte fixa,
que inicia com a informacao sobre o tamanho da entrada, seguida de dados em
formato definido, como o identificador do proprietario, o momento de criagao, as
permissoes de acesso e outros atributos. Apds essa estrutura de comprimento fixo,
registra-se o nome do arquivo, independentemente do seu tamanho. Esse método
estd ilustrado na Figura 2.9(a), em um formato de organizagao em que o byte mais
significativo aparece primeiro (big-endian).

No exemplo apresentado, ha trés arquivos: project-budget, personnel e foo.
Cada nome de arquivo é encerrado com um caractere especial (geralmente o valor 0),
representado na figura por um quadrado com a letra X. Para que cada entrada de
diretorio inicie em um limite correspondente ao tamanho de uma palavra, o nome de
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cada arquivo é completado com caracteres adicionais até atingir esse alinhamento,
o que é indicado pelas areas cinzas da figura.

A desvantagem do método de armazenamento com nomes de tamanhos variaveis
é que, a0 remover um arquivo, cria-se uma lacuna de tamanho também variavel no
diretério. O préximo arquivo a ser inserido pode nao se ajustar nesse espaco, ocasio-
nando fragmentacao interna. Esse problema é semelhante ao observado nos arquivos
contiguos em disco. No entanto, como os diretérios sao mantidos inteiramente na
memoria, torna-se possivel compacta-los quando necessario, eliminando as lacunas
formadas.

Outro ponto de atencao é que uma unica entrada de diretério pode se estender
por multiplas paginas de meméria, o que pode gerar falhas de péagina (page faults)
durante a leitura de nomes de arquivos. Uma alternativa para evitar esse tipo de
fragmentacao consiste em adotar tamanhos fixos para as entradas de diretoério e ar-
magzenar os nomes dos arquivos em uma area separada, denominada heap, localizada
ao final de cada diretério, conforme ilustrado na Figura 2.9(b).

Esse método apresenta a vantagem de permitir que, ao remover uma entrada,
o préoximo arquivo inserido sempre encontre espaco disponivel. Contudo, o heap
precisa ser devidamente gerenciado, e falhas de pagina ainda podem ocorrer durante
o processamento dos nomes. Um beneficio adicional é que nao ha mais a necessidade
de alinhar os nomes dos arquivos aos limites de palavra, eliminando a obrigatoriedade
de preenché-los com caracteres adicionais, como ocorria nas estruturas apresentadas
anteriormente.

Nos modelos discutidos anteriormente, os diretorios sao pesquisados linearmente,
ou seja, o sistema percorre as entradas do inicio ao fim até encontrar o nome do
arquivo desejado. Essa abordagem é simples e eficiente para diretorios pequenos,
mas pode se tornar lenta em estruturas muito extensas. Para otimizar o desempenho
em diretérios grandes, uma solugao possivel é o uso de tabelas de espalhamento (hash
tables).

Nesse modelo, o diretério é implementado como uma tabela de espalhamento
(hash table) composta por n posigoes, cada uma correspondendo a um possivel valor
de hash. O nome de cada arquivo é processado por uma funcao de espalhamento,
que converte a sequéncia de caracteres em um numero inteiro no intervalo de 0
an — 1. Esse numero determina a posi¢ao da tabela onde a entrada do arquivo
sera registrada. Quando multiplos nomes produzem o mesmo valor de hash, ocorre
uma colisao, resolvida pela criagao de uma lista encadeada de entradas associadas
aquela posicao. Dessa forma, todas as entradas que compartilham o mesmo valor
de hash permanecem acessiveis a partir de um tnico ponto da tabela, preservando
a eficiéncia da busca.

Durante a busca, o sistema aplica a mesma funcao de espalhamento ao nome
desejado para determinar qual lista encadeada consultar. Caso o nome nao seja
encontrado nessa lista, conclui-se que o arquivo nao esta presente no diretorio. Essa
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estratégia reduz o tempo de busca, embora aumente a complexidade da estrutura.
Por essa razao, o uso de tabelas de espalhamento costuma ser mais vantajoso em
sistemas em que os diretérios contém centenas ou milhares de arquivos.

Entre as fung¢oes de espalhamento conhecidas, destaca-se o algoritmo djb2, pro-
posto por Daniel J. Bernstein [2]. Trata-se de uma funcao de hash simples, fre-
quentemente utilizada em sistemas que demandam operacoes rapidas de indexagao.
Seu funcionamento baseia-se em um valor inicial constante (geralmente 5381), que
¢é atualizado iterativamente para cada caractere da cadeia de entrada por meio da
expressao hash = hash x 33 + ¢, em que c representa o codigo numérico do carac-
tere processado. Essa operacao produz uma boa distribuicao de valores e reduz a
ocorréncia de colisoes em conjuntos de dados textuais.

Outra alternativa para melhorar o desempenho em diretérios muito extensos
consiste no uso de uma cache de buscas. Antes de iniciar uma pesquisa completa, o
sistema verifica se 0 nome do arquivo ja esta armazenado na cache. Caso positivo,
o arquivo pode ser localizado imediatamente. Esse método é eficiente quando a
maioria das buscas recai sobre um conjunto relativamente pequeno de arquivos,
permitindo um acesso quase instantaneo aos diretérios mais consultados.

2.3 Sumario

No presente capitulo foram apresentados os fundamentos dos sistemas de arquivos,
relacionando a visao do usuario, centrada em nomes e conteidos, com a perspectiva
do sistema operacional, que manipula sequéncias de bytes e metadados por meio de
chamadas de sistema. A explicacao inicial destacou o papel do sistema de arqui-
vos como camada de abstracao entre software e hardware, responsavel por garantir
organizacao, persisténcia e acesso seguro aos dados.

Em seguida, foi detalhada a organizacao de uma particao de disco: o bloco de
inicializacao, o superbloco, as estruturas de mapeamento de espaco, com destaque
para o uso de bitmaps a area de i-nodes, o diretorio raiz e a regiao de dados. O
i-node foi discutido como elemento central de metadados e enderecamento, e seus
niveis de indirecao para ampliar a capacidade de armazenamento sem aumentar o
tamanho das estruturas mantidas em memoria.

Em seguida, foram analisados os principais métodos de alocagao e seus efeitos no
desempenho e na fragmentacao. A alocacao contigua foi discutida quanto as van-
tagens em leitura sequencial e as limitagoes impostas pela fragmentacao. Também
foram avaliados os critérios para escolha do tamanho de bloco e as estratégias de
gerenciamento de espaco livre, incluindo listas encadeadas e bitmaps.

Por fim, foram abordadas as estruturas de diretérios, comparando modelos de
entradas fixas e variaveis, mecanismos de gerenciamento de nomes longos baseados
em areas heap, e técnicas de otimizagao de busca em diretérios extensos, como o uso
de fungoes de espalhamento (hashing) e de caches de diretérios.
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Capitulo 3

Trabalhos Relacionados

Trees sprout up just about everywhere in computer science.

— Donald E. Knuth

Este capitulo apresenta a evolugao de sistemas de arquivos utilizados em ambien-
tes Unix-like, com foco em caracteristicas estruturais que influenciam desempenho,
escalabilidade e integridade dos dados. A partir das primeiras implementacoes no
Unix original e de propostas como o Fast File System (FFS), sao abordados concei-
tos como i-nodes, diretérios hierdrquicos, grupos de blocos e estratégias de gerencia-
mento de espaco livre, que servem de base para os sistemas adotados posteriormente
para uso com o kernel Linux.

Na sequéncia, sdo analisados os sistemas da familia Extended File System (Ext2,
Ext3 e Ext4), que constituem a linha evolutiva dos sistemas de arquivos utilizados
em distribui¢oes Linux. Esses sistemas foram selecionados por representarem di-
ferentes estagios de maturidade do modelo baseado em i-nodes, blocos de dados e
grupos de blocos, oferecendo um panorama progressivo de solugoes adotadas para
problemas como fragmentacao, escalabilidade de metadados, politicas de alocagao e
mecanismos de recuperacgao apos falhas.

O capitulo também examina o ZFS e o Btrfs, dois sistemas de arquivos que imple-
mentam mecanismos avangados como Copy-on- Write, verificagao de integridade por
checksums e organizacao dinamica de metadados por meio de arvores, tendéncias
observadas em sistemas contemporaneos. Esses sistemas foram incluidos por incor-
porarem técnicas e solucoes que serviram de base para o projeto do Basic Solution
File System, especialmente em relacao ao enderecamento por intervalos e utilizacao
de estruturas em arvore para gerenciamento de metadados.
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3.1 Sistemas de Arquivos UNIX

A evolucao dos sistemas de arquivos utilizados com sistemas Unix acompanha o
desenvolvimento das tecnologias de armazenamento, a partir do surgimento das
primeiras versoes do sistema nos laboratérios da AT&T em 1961. Como discutido
no Capitulo 2, conceitos como i-nodes, diretérios hierarquicos, blocos de dados e
mecanismos de gerenciamento de espago livre tornaram-se elementos centrais no
projeto de sistemas de arquivos. Entretanto, estes principios foram consolidados de
forma gradual, a partir das limitacoes observadas nas primeiras versoes do Unix e
das adaptagoes propostas ao longo das décadas seguintes [13].

O sistema de arquivos original do Unix, descrito por Ritchie [14], implementou
mecanismos de organizacao que incluem a separacao entre nomes e metadados por
meio de i-nodes e o uso de diretérios armazenados como arquivos especiais. Embora
suficiente para os dispositivos e cargas de trabalho da época, esse modelo apresen-
tava limitagoes relacionadas a escalabilidade, ao dimensionamento dos blocos e a
eficiéncia do gerenciamento de espaco.

Em resposta a essas restrigoes, diferentes variantes do Unix passaram a desen-
volver sistemas de arquivos modificados. O Berkeley Fast File System (FFS), por
exemplo, implementou o conceito de grupos de blocos, reorganizando i-nodes e dados
de forma a reduzir movimentagoes fisicas da cabega de leitura em discos rigidos [11].

A partir dessas implementacoes, estratégias de gerenciamento de espaco livre
também foram aprimoradas. Estruturas como listas encadeadas de blocos, bitmaps
e contagem de sequéncias, descritas no Capitulo 2, passaram a ser aplicadas de ma-
neira mais eficiente, reduzindo o custo de varreduras e melhorando a previsibilidade
da alocacao. Ao mesmo tempo, o aumento da variedade de tamanhos de arquivos
exigiu modelos de alocacao mais flexiveis que a alocagao estritamente contigua.

O crescimento das arvores de diretérios em ambientes multiusudrio também de-
mandou abordagens otimizadas para nomeagao, organizacao e busca. Entre as
adaptacoes implementadas estao o suporte a nomes maiores, a adocao de entra-
das de diretorio de tamanho variavel e o uso de estruturas auxiliares para otimizar
buscas, como tabelas de espalhamento e mecanismos de cache [11,13]. Esses re-
cursos complementaram a evolugao dos sistemas de arquivos, aproximando-os das
necessidades observadas em sistemas Unix modernos.

O Miniz File System (MFS), utilizado no sistema operacional educacional Minix,
adotava uma implementacao simples, com tabelas fixas de i-nodes e blocos pequenos.
Embora limitado em capacidade, seu desenho serviu como referéncia didatica im-
portante na compreensao das estruturas classicas de sistemas de arquivos baseados
em i-nodes.

Com a consolidacao do kernel Linux nos anos 1990, tornou-se necessario um
sistema de arquivos compativel com os modelos Unix, mas que incorporasse me-
lhorias estruturais para suportar discos de maior capacidade e cargas de trabalho

FACOM-UFMS



Trabalhos Relacionados 25

mais intensas. O sistema Ext surgiu nesse contexto, derivado de solucoes anteriores
e inspirado tanto no Minix File System quanto no FFS. Porém, seu desempenho e
suas limitagoes operacionais mostraram a necessidade de uma reformulacao.

3.2 Ext2

O Second Eztended File System (Ext2) foi apresentado em 1994 como sucessor do sis-
tema Ext, consolidando-se como o primeiro sistema de arquivos amplamente adotado
pelas distribuigoes Linux. Sua concepgao foi influenciada pelo Minix File System e
pelo Fast File System (FFS), a partir dos quais herdou o modelo baseado em i-nodes
e blocos de dados. O Ext2 implementou avancos em relagao ao seu antecessor ao
incorporar mecanismos de gerenciamento de metadados mais eficientes e implemen-
tar grupos de blocos, projetado para reduzir a fragmentacao externa e otimizar o
acesso em discos rigidos [13].

Uma das principais melhorias introduzidas pelo Ext2 foi a possibilidade de con-
figurar a densidade de i-nodes durante a formatacao do sistema de arquivos. Di-
ferentemente do Ext original, em que a quantidade de i-nodes era definida e nao
podia ser ajustada, o Ext2 permite ao administrador determinar o nimero maximo
de i-nodes com base no perfil de uso da particao. Essa configuragao permanece
fixa apds a criagao do sistema de arquivos, mas oferece flexibilidade para adequar a
estrutura tanto a ambientes com grande quantidade de arquivos pequenos quanto a
volumes destinados a arquivos extensos. A opcao de definir o tamanho de bloco en-
tre 1.024 e 4.096 bytes complementa esse ajuste, permitindo equilibrar desempenho
e eficiéncia de armazenamento ao reduzir a fragmentacao interna e otimizar o custo
das operacoes de leitura e escrita.

Cada i-node contém um conjunto de ponteiros diretos que referenciam blocos de
dados de forma imediata, adequado para arquivos de pequena extensao. A medida
que o arquivo cresce, o sistema recorre a niveis adicionais de indire¢ao: o ponteiro
indireto simples referencia um bloco que contém apenas enderecos de blocos de
dados; o indireto duplo aponta para um bloco cujas entradas, por sua vez, apon-
tam para blocos de indirecao simples; e o indireto triplo encadeia mais um nivel
nessa hierarquia. Esse esquema permite que arquivos potencialmente grandes se-
jam representados sem aumentar o tamanho fixo do i-node, mas introduz um custo
adicional de acesso, especialmente quando multiplos niveis precisam ser percorridos
para localizar os dados.

O Ext2 organiza os dados em grupos de blocos, cada um contendo seu préprio
superbloco, bitmaps e tabela de i-nodes. Essa segmentacao melhora a localidade
espacial dos blocos no disco e reduz o tempo de busca, uma vez que os metadados e
os blocos de dados de um mesmo arquivo tendem a residir proximos no disco. Esse
modelo de agrupamento foi projetado especificamente para discos magnéticos, nos
quais a movimentacao da cabeca de leitura representava uma parcela significativa
do tempo de acesso. Em unidades de estado solido, esse beneficio é menos relevante,
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mas a organizacao modular continua favorecendo a escalabilidade e a integridade
estrutural do sistema.

O sistema também adota a pré-alocacao de blocos de dados como forma de
reduzir a fragmentacao externa e melhorar o desempenho em acessos sequenciais.
Essa técnica reserva blocos contiguos no momento da criacao de arquivos, ante-
cipando futuras expansoes e garantindo que os dados sejam gravados em regioes
fisicamente proximas. Essa abordagem é vantajosa em aplicacoes que manipulam
fluxos continuos de dados, como bancos de dados ou arquivos multimidia.

Outro conceito fundamental para o entendimento do Ext2 é o de links, mecanis-
mos que permitem associar multiplos nomes a um mesmo arquivo. O sistema dis-
tingue entre dois tipos: hard links e symbolic links. Os hard links criam referéncias
diretas ao mesmo i-node, de modo que diferentes nomes de arquivo apontam para
o mesmo conteido armazenado em disco. Ja os links simbdlicos armazenam apenas
o caminho de destino, funcionando como ponteiros que o sistema resolve em tempo
de acesso.

A resolugao de links simbdlicos foi otimizada para reduzir o niimero de acessos a
disco. Em outros sistemas de arquivos, o caminho de destino de um link simbdlico é
armazenado em um bloco de dados comum, exigindo uma leitura adicional sempre
que o sistema precisa interpretar o link. O Ext2 evita essa operacao ao registrar
o caminho diretamente no i-node, desde que o contetido possua até 60 bytes. Essa
estratégia elimina a necessidade de buscar o bloco de dados associado ao link, redu-
zindo o nimero de operagoes de entrada e saida (I/0) e otimizando o processo de
resolucao de caminhos.

O sistema mantém a consisténcia estrutural dos arquivos por meio de um conta-
dor de referéncias associado a cada i-node. Esse contador registra o nimero de hard
links existentes, ou seja, de nomes distintos que apontam para o mesmo arquivo.
Quando um novo hard link é criado, o contador é incrementado; quando um nome
é removido, ele é decrementado. O conteiido de um arquivo permanece acessivel
enquanto o contador for maior que zero, garantindo que os blocos de dados associ-
ados nao sejam liberados. Essa abordagem assegura a integridade das referéncias
sem exigir estruturas auxiliares, preservando a coeréncia entre diretérios e i-nodes
mesmo em operagoes de atualizacao simultanea.

3.2.1 Grupo de Blocos

A Figura 3.1 apresenta a organizacao de uma particao formatada com Ext2 em um
dispositivo. Apds o bloco de inicializacao, a particao é dividida em multiplos grupos
de blocos, dispostos de forma sequencial e de tamanho uniforme. Essa segmentagao
permite ao sistema localizar diretamente o inicio de qualquer grupo por meio de
calculos baseados em seu indice.
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Figura 3.1: Distribuicao contigua de blocos com 1 arquivo excluido.

Cada grupo de blocos retine as estruturas necessarias ao gerenciamento local do
sistema de arquivos. O superbloco e os descritores de grupo possuem copias dis-
tribuidas entre os grupos, contendo informagoes globais sobre o sistema de arquivos
e referéncias as estruturas internas de cada grupo. Em seguida localizam-se os bit-
maps de blocos e de i-nodes, responsaveis por indicar quais unidades estao livres ou
alocadas.

A tabela de i-nodes do grupo contém as estruturas de metadados dos arquivos,
incluindo permissoes, tamanho, marcacoes de tempo e ponteiros para os blocos de
dados. O espaco restante do grupo é destinado aos blocos de dados propriamente
ditos, cujo conteudo ¢é acessado a partir dos ponteiros armazenados nos i-nodes.
A organizacdo em grupos busca manter arquivos relacionados préximos entre si,
reduzindo movimentacoes de leitura em dispositivos mecanicos e favorecendo padroes
de acesso sequencial.

Como mostra a Figura 3.1, as copias de superbloco e dos descritores de grupo sao
mantidas em todos os grupos, mas apenas as localizadas no grupo 0 sao utilizadas
rotineiramente pelo kernel. Durante verificacoes de integridade, o utilitario e2fsck
utiliza esses metadados do primeiro grupo de blocos e pode reconstruir as cépias dos
demais grupos conforme necessario [3].

O numero de grupos de blocos que compoem um dispositivo com Ext2 depende
de seu tamanho total e do tamanho de bloco adotado. Essa divisao busca equili-
brar a quantidade de i-nodes, o tamanho dos bitmaps e a proximidade fisica entre
metadados e dados, contribuindo para acessos mais previsiveis e para a distribuicao
uniforme da carga de alocacao.

3.2.2 Exclusao de Arquivos

A remocgao de arquivos no Ext2 nao apaga imediatamente os dados armazenados em
disco. O procedimento consiste, inicialmente, na remocao da entrada correspondente
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no diretério e na reducao do contador de hard links presente no i-node. Somente
quando esse contador atinge zero o i-node é considerado nao referenciado, permitindo
que o sistema marque seus blocos de dados como livres no bitmap. Dessa forma,
embora o conteudo permaneca fisicamente no disco até ser sobrescrito por novas
alocacoes, ele deixa de ser acessivel por meio da estrutura de diretérios.

A ordem em que essas atualizagoes sao realizadas é relevante para preservar a
consisténcia do sistema de arquivos. Caso a remocao do i-node ocorresse antes da
atualizacao do diretério, uma falha durante a operacao poderia resultar em uma
entrada de diretorio apontando para um i-node invalido. Se esse i-node viesse a
ser posteriormente reutilizado para outro arquivo, a entrada residual no diretério
passaria a referenciar metadados incorretos, potencialmente levando a sobrescrita
acidental de dados ou a leitura de informagoes incorretas. A abordagem implemen-
tada no Ext2 reduz o risco de inconsisténcias estruturais ao garantir que o diretério
seja atualizado somente apds o estado do i-node ter sido registrado de forma coe-
rente.

3.3 Ext3

O Third Extended File System (Ext3) foi desenvolvido com o objetivo de resolver
uma limitagao do Ext2: a auséncia de um mecanismo de registro de operagoes capaz
de garantir a consisténcia do sistema apds falhas inesperadas como, por exemplo,
desligamentos inesperados ou falhas no sistema operacional. A fim de tornar o
sistema mais robusto foi implementada a estratégia de journaling. Além disso, sua
arquitetura manteve compatibilidade total com o Ext2, permitindo a migracao de
sistemas legados sem necessidade de reformatacao.

3.3.1 Mecanismo de Journaling

Em sistemas que nao possuem journaling, uma interrupcao durante operacoes de
escrita, como queda de energia ou travamento do sistema operacional, pode deixar
o sistema em estado inconsistente, exigindo a execucao de uma verificagao completa
do disco no préximo boot. Esse procedimento é custoso e pode levar minutos ou
horas, dependendo do tamanho da particao ou do disco.

O Ext3 introduziu o journaling de metadados para mitigar esse problema. Antes
de gravar alteragoes na estrutura do sistema de arquivos, as operagoes sao registra-
das em uma &area de log denominada journal. Em caso de falha, o sistema nao
precisa verificar toda a particao: basta identificar transagoes incompletas no journal
e reaplicé-las para restaurar o sistema a um estado consistente [18].

Essa abordagem reduz o tempo de recuperagao e aumenta a robustez quando
falhas inesperadas ocorrem. Em cenarios especificos, o mecanismo também pode
melhorar o desempenho, eliminando a necessidade de protocolos complexos de con-
sisténcia e aproveitando técnicas como somas de verificagao para confirmar a inte-
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gridade das transacoes.

3.3.2 Indexacgao de Diretorios

Outra limitacao herdada pelo Ext3 estava relacionada ao método de organizacao
das entradas de diretorio. Em sua versao anterior, os diretérios eram representados
como listas lineares, de modo em que operacoes como busca, inser¢cao ou remocao
exigiam a leitura sequencial de cada entrada. O custo dessa operagao crescia pro-
porcionalmente ao nimero de arquivos presentes no diretério e tornava-se ineficiente
em cenarios com centenas ou milhares de entradas, nos quais o tempo de resposta
aumentava de forma significativa [6].

Para mitigar esse problema, o Ext3 implementou a estrutura denominada H7Tree
(Hashed Tree), um mecanismo de indexacao baseado em principios de arvores B,
porém adaptado ao contexto de diretorios. O HTree utiliza um valor de dispersao
(hash) calculado a partir do nome de cada arquivo como chave para indexagao, per-
mitindo organizar as entradas em blocos internos responsaveis pelo direcionamento
das buscas e em blocos que armazenam as entradas reais. Essa segmentacao permite
que o diretorio seja percorrido de maneira hierarquica, reduzindo a necessidade de
varreduras lineares.

A profundidade fixa adotada pela estrutura, limitada a dois niveis, garante que
as operacoes de busca, insercao e exclusao apresentem complexidade proxima de
O(log n), independentemente do nimero de arquivos no diretério [7]. Como resul-
tado, o Ext3 supera o custo linear associado ao modelo de lista sequencial e oferece
um mecanismo de acesso escaldvel, adequado para diretérios com grande quantidade
de arquivos e cargas de trabalho intensivas.

3.4 Ext4

O Ext4 foi projetado como sucessor do Ext3, com o objetivo de superar limitagoes
relacionadas a escalabilidade, fragmentacao e desempenho dos sistemas anteriores.
Embora mantenha compatibilidade estrutural com Ext2/Ext3, o Ext4 implementa
alteragoes em seu modelo de enderecamento e no gerenciamento de metadados.

3.4.1 Enderecamento por FExtents

Uma das modificagoes implementadas pelo Ext4 é a adocao de Fxtents em substi-
tui¢do ao esquema de blocos indiretos utilizado pelo Ext2/Ext3. No novo modelo,
um FEzxtent representa um intervalo contiguo de blocos fisicos, descrito por meio de
um unico registro contendo o bloco l6gico inicial, o bloco fisico inicial e o compri-
mento do intervalo. Essa substituicao reduz o volume de metadados necesséarios
para representar arquivos e elimina a sobrecarga imposta pelos multiplos niveis de
indirecao do esquema anterior.
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A estrutura de Eztents é organizada como uma Arvore B+, denominada Extent
Tree, cuja raiz é armazenada diretamente no i-node de cada arquivo. Os nés internos
da arvore contém registros do tipo Fxtent-Index, responsaveis por apontar para
niveis inferiores, enquanto os nés folha armazenam os Eztents propriamente ditos,
que mapeiam os blocos fisicos correspondentes. A navegacao nessa arvore é realizada
por meio de busca binaria em cada né, garantindo um caminho de acesso eficiente e
assintoticamente estavel entre o bloco 1égico solicitado e seu respectivo bloco fisico.

A Figura 3.2 mostra a organizacao hierarquica da FEztent Tree, mostrando a
relacao entre o i-node, os nés internos e os nds folha que apontam diretamente para
os blocos de dados.

Data Block

Extent-Header

Extent-Header

Extent-Header

Extent-Index

Extent-Index

Extent-Header
Extent-Index

Figura 3.2: Estrutura hierdrquica da Extent Tree no Ext4 [16].

3.4.2 Melhorias de Desempenho

Com o objetivo de mitigar problemas de fragmentagao e otimizar o desempenho de
escrita, o Ext4 implementa a técnica de alocagao atrasada, que posterga a alocagao
fisica dos blocos até o instante efetivo da escrita no dispositivo de armazenamento.
Ao adiar essa decisao, o alocador passa a dispor de informagcoes mais completas sobre
o padrao de escrita, permitindo a selecao de areas contiguas e favorecendo a criagao
de Faxtents mais longos. Esse mecanismo reduz a probabilidade de fragmentagao
interna e externa, melhora o throughput e diminui a sobrecarga de operacoes de
entrada e saida (1/0).

Como complemento, a alocagao multipla de blocos permite a reserva simultanea
de conjuntos de blocos contiguos, otimizando a construcao de arquivos sequenciais
e reduzindo o custo computacional associado a alocagao bloco a bloco.

Outras melhorias incluem o aumento do tamanho padrao do i-node para 256
bytes, permitindo armazenar metadados adicionais, como timestamps com resolugao
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de nanossegundos, além de mecanismos de checksumming aplicados ao journaling,
com o objetivo de ampliar a robustez contra corrupcao de metadados. Por fim,
o recurso de grupos nao-inicializados possibilita ao utilitario de verificagao ignorar
grupos de i-nodes ainda nao inicializados, reduzindo o tempo necessario para a
verificacao de consisténcia do sistema de arquivos.

3.5 Copy-on-Write

O Copy-on-Write (COW) é um principio arquitetural empregado por sistemas de
arquivos como o ZFS e Btrfs, e consiste na atualizacao de dados e metadados sem
sobrescrever diretamente seus contetdos ja persistidos. Em uma operacao de escrita,
os blocos modificados sao registrados em novas regioes do dispositivo de armazena-
mento. Somente apds a conclusao dessa escrita é que as estruturas de metadados
sao atualizadas para referenciar os novos blocos.

Como consequeéncia direta desse mecanismo, qualquer modificacao em uma folha
da arvore de metadados, normalmente organizada como variagoes de uma Arvore B,
requer a atualizagao dos nds internos que apontam para ela. Esses nds também sao
gravados em novos locais, pois seus ponteiros passam a referenciar blocos distintos.
Esse processo se propaga até a raiz, produzindo uma nova cadeia de metadados que
representa a versao atual do sistema, enquanto a versao anterior permanece intacta
até que a atualizagao da raiz seja concluida de forma atomica.

Embora garanta alta consisténcia, o mecanismo de copy-on-write causa um custo
adicional ao desempenho, pois cada modificagao exige a criacao de um novo bloco e
a atualizagao dos ponteiros ao longo da arvore. Em operacgoes de escrita intensivas,
esse processo de copiar antes de escrever aumenta o tempo de de entrada e saida em
comparacao com atualizagoes realizadas diretamente no bloco original.

Essa abordagem reduz o risco de inconsisténcia estrutural. Caso ocorra uma
falha durante a operagao, o sistema continua a referenciar a versao anterior dos
dados e metadados, que permanece valida e completa [23]. A estratégia de COW
cumpre o papel que, em sistemas nao o utilizam, é desempenhado pelo journaling:
preservar a consisténcia dos metadados apods falhas abruptas.

O mesmo principio possibilita a criacao eficiente de snapshots. Como os dados
nao sao sobrescritos, o sistema mantém multiplas raizes que referenciam diferentes
versoes de uma mesma arvore de metadados. Essas versoes compartilham todos os
blocos que nao foram alterados, de modo que a criacao de um snapshot consiste
apenas no registro de uma nova raiz, operacao que nao exige copia imediata de da-
dos [15]. Quando uma das versdes é modificada, apenas os blocos afetados e seus
metadados ancestrais sao alocados novamente, formando uma nova cadeia de atu-
alizagoes. Essa técnica também permite a criagao de clones mutaveis, que evoluem
independentemente do volume de origem.

Embora o COW proporcione propriedades relevantes de integridade e versiona-
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mento, também introduz um efeito conhecido como amplificagao de escrita. Como
alteracoes localizadas podem exigir a regravacao de multiplos niveis da arvore de
metadados, a quantidade total de blocos modificados por operacao pode ser maior
do que em sistemas que empregam sobrescrita direta [15].

3.6 ZFS

O ZFS (Zettabyte File System), desenvolvido originalmente pela Sun Microsystems,
introduz uma arquitetura integrada que combina o sistema de arquivos e o gerenci-
amento de volumes em uma unica camada. Essa integragao contrasta com modelos
tradicionais, como os utilizados pelo Ext4, nos quais a organizacao légica do volume
e o sistema de arquivos operam como componentes separados. No ZFS, essa dis-
tingao é eliminada, permitindo um controle global sobre dispositivos fisicos, alocagao
de espaco, redundancia e integridade dos dados [23].

O sistema implementa um modelo de escrita baseado em Copy-on- Write (COW),
no qual dados e metadados modificados sao gravados em novos blocos, preservando-
se intacta a versao anterior até a conclusao da operacao. Esse mecanismo elimina a
necessidade de estruturas tradicionais de journaling para consisténcia dos metadados
e reduz o risco de corrupgao em cendrios de falhas abruptas [23].

Além do COW, o ZFS adota verificagao de integridade de ponta a ponta por
meio de checksums aplicados tanto a dados quanto a metadados. Cada bloco ar-
mazenado possui uma soma de verificagao registrada em seus metadados superiores.
Durante leituras, o ZFS recalcula o checksum do bloco e o compara ao valor re-
gistrado, permitindo detectar e, quando possivel, corrigir corrupcao silenciosa ao
utilizar cépias redundantes disponiveis [10]. Essa propriedade confere ao sistema
um nivel de confiabilidade superior ao de sistemas que verificam apenas metadados
ou utilizam técnicas de journaling.

Embora utilize o conceito de intervalos contiguos de blocos (extents) para repre-
sentar dados, o ZFS nao utiliza Arvore B+. Em vez disso, suas estruturas internas
sao organizadas pela Data Management Unit (DMU), que mantém arvores baseadas
em COW onde cada né contém ponteiros para blocos de dados ou metadados, acom-
panhados de identificadores de transacao. Essa organizagao permite que multiplas
versoes de uma mesma estrutura coexistam, viabilizando operacoes como snapshots
e clonagem sem duplicagao imediata de dados.

A combinagao do modelo COW com a organizagao interna das arvores da DMU
permite ao ZFS criar snapshots de modo eficiente. Um snapshot, no ZFS, consiste em
um ponto estavel da arvore de metadados, formado pelo registro de uma nova raiz.
Como os blocos nao modificados sao compartilhados entre as versoes, a criacao de um
snapshot nao acarreta cépia de dados. Além disso, o ZFS disponibiliza mecanismos
de replicagao incremental, nos quais apenas as diferencas entre dois snapshots sao
transmitidas, otimizando processos de recuperacao e sincronizacao entre sistemas.
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3.6.1 Gerenciamento Unificado de Armazenamento

O gerenciamento de armazenamento no ZFS é estruturado por meio de storage pools
(ou zpools). Um pool representa um agrupamento 16gico de dispositivos de armaze-
namento, organizados em estruturas chamadas vdevs (virtual device — dispositivo
virtual). Cada wvdev pode ser configurado com diferentes niveis de redundancia,
como espelhamento ou RAID-Z, e o conjunto desses dispositivos é tratado como
uma unica fonte de blocos para o sistema de arquivos.

Essa abordagem substitui a necessidade de camadas externas de gerenciamento
de volumes, como LVM ou mdadm!, e permite ao ZFS efetuar a alocacao de espaco,
o balanceamento interno e a distribuicao de dados entre dispositivos de forma
autonoma. A consisténcia global do pool é assegurada por um conjunto de uber-
blocks, estruturas que funcionam como pontos de entrada para o estado atual do
sistema. Cada uberblock contém informacgoes de transagao, é protegido por check-
sums e é atualizado de maneira atomica, garantindo que sempre exista uma versao
consistente do pool acessivel apos falhas.

3.7 Btrfs

O Btrfs (B-tree file system) é um sistema de arquivos para Linux cujo projeto com-
bina o uso de arvores B balanceadas e a politica de escrita Copy-on- Write (COW).
Em contraste com sistemas como Ext4, que dependem de tabelas de i-nodes pré-
alocadas, o Btrfs organiza seus metadados em arvores especializadas atualizadas
dinamicamente conforme o volume cresce, se fragmenta ou cria novas versoes.

No Btrfs, todo o estado persistente é representado por arvores B. O sistema
mantém multiplas arvores, cada uma responsavel por uma categoria distinta de
metadados: a arvore de arquivos (FS tree) armazena i-nodes e diretérios; a arvore
de extents descreve o mapeamento entre enderecos légicos e blocos fisicos; a arvore
de chunks registra a disposicao fisica do volume; e a arvore de checksums contém os
valores de verificagao associados aos blocos. Todas seguem o mesmo formato geral,
utilizando chaves compostas e operagoes de busca, insercao e remog¢ao com custo
computacional de O(log n) [4].

Diferentemente de sistemas baseados em tabelas estaticas, como Ext4, essa mo-
delagem dispensa a pré-alocacao de regioes destinadas a metadados. Dessa forma,
novos i-nodes, diretérios e extents podem ser criados conforme necessario, o que
reduz a dependéncia entre tamanho do volume e espaco reservado para metadados
e contribui para a escalabilidade do sistema.

O Btrfs utiliza extents para representar sequéncias contiguas de blocos associa-
dos a arquivos ou metadados. Ao modificar um bloco pertencente a um eztent, o
mecanismo COW grava o contetido atualizado em um novo local e ajusta as arvores

10 LVM (Logical Volume Manager) e o mdadm sao ferramentas do Linux para gerenciamento
l6gico de volumes e configuragao de arranjos RAID em camadas separadas do sistema de arquivos.
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correspondentes, gerando novos nés desde a folha até a raiz. Esse procedimento
preserva as versoes anteriores até a finalizacao da operacao e viabiliza a criacao
eficiente de snapshots e clones [15]. A auséncia de sobrescrita no Btrfs facilita o
versionamento, mas pode aumentar a quantidade total de metadados modificados
em situagoes que exigem sincronizagao frequente.

O Btrfs organiza seu espaco loégico por meio de subvolumes, unidades indepen-
dentes que possuem sua propria arvore de arquivos. Um subvolume pode ser repre-
sentado por meio de um snapshot, que consiste na criacao de uma nova raiz para a
mesma estrutura de metadados existente. Como blocos nao modificados sao com-
partilhados, a criagdo de snapshots é imediata e ndo demanda cépia de dados [15].

A integridade é assegurada por meio de checksums armazenados na arvore de-
dicada a esse proposito. Em cada leitura, o sistema recalcula o valor de verificagao
do bloco e compara-o ao valor registrado. Havendo redundancia disponivel, o Btrfs
¢ capaz de recuperar blocos corrompidos, reforgando sua resiliéncia estrutural.

A combinagao de arvores B dinamicas, extents e escrita baseada em COW confere
ao Btrfs flexibilidade para operacoes de clonagem e criacao de snapshots. Embora
esse modelo introduza custos adicionais em cargas que exigem sincronizagao fre-
quente, oferece mecanismos nativos de versionamento e verificacao de integridade
integrados ao proprio sistema de arquivos.

3.8 Comparacao entre Sistemas de Arquivos

A partir da revisao apresentada neste capitulo, é possivel sintetizar algumas ca-
racteristicas estruturais dos sistemas de arquivos analisados, com foco em quatro
aspectos: forma de indexagao de metadados, mecanismo de enderecamento de da-
dos, estratégias de integridade em caso de falhas e presenca ou auséncia de recursos
nativos de recuperagao de arquivos excluidos. A Tabela 3.1 resume essas carac-
teristicas para os sistemas Ext2, Ext3, Ext4, ZFS e Btrfs, bem como para o Basic
Solution File System (BSFS), cuja arquitetura serd detalhada no Capitulo 4.

Tabela 3.1: Comparacao entre caracteristicas de sistemas de arquivos e o BSF'S.

Sistema | Indexagao Enderecamento | Integridade Recup.
Nativa
Ext2 Tabela de i-nodes Indirecao multipla | fsck Nao
Ext3 Tabela de i-nodes e | Indirecdo multipla | Journaling Nao
HTree
Ext4 Tabela de i-nodes e | Extents Journaling Nao
HTree
ZF'S Arvores B+ Extents COW e checksums | Nao
Btrfs Arvores B+ Extents COW e checksums | Nao
BSFS Arvores B Bspan Nao apresenta Sim
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3.9 Sumario

Este capitulo apresentou a evolucao dos sistemas de arquivos utilizados em ambien-
tes Unix-like, destacando como decisoes de projeto distintas buscaram equilibrar de-
sempenho, escalabilidade, integridade e simplicidade de administracao. A discussao
iniciou-se com os sistemas de arquivos classicos do Unix e com o Berkeley Fast File
System (FFS), que consolidaram conceitos como i-nodes, diretérios hierarquicos,
grupos de blocos e estratégias de gerenciamento de espaco livre, servindo de base
para os sistemas posteriores.

Em seguida, foram analisados os sistemas da familia Ext. O Ext2 foi descrito
como a primeira solucao amplamente adotada no Linux, incorporando grupos de
blocos, configuragao de densidade de i-nodes, escolha do tamanho de bloco e me-
canismos de pré-alocacao, além do tratamento de links e da ordem das operagoes
de exclusao. O Ext3 foi apresentado como uma evolugao compativel, que intro-
duziu journaling de metadados para acelerar a recuperacao apés falhas e passou a
empregar a indexacao de diretorios por HTree. O Ext4, por sua vez, substituiu o
esquema de blocos indiretos por extents organizados em uma Fzxtent Tree, ampliou
o espaco de enderecamento e incorporou técnicas de alocacao atrasada e multibloco,
além de melhorias em metadados e mecanismos de verificagao, aproximando-se das
demandas de discos de maior capacidade.

Além disso, o capitulo apresentou o modelo de Copy-on- Write (COW), utilizado
pelos sistemas de arquivos ZFS e Btrfs. Foram descritos o modo de atualizacao sem
sobrescrita, a propagacao de modificagoes nas arvores de metadados, as garantias
de consisténcia estrutural e o papel desse modelo na viabilizacao de snapshots e
clones. Também foram discutidos os efeitos de amplificacao de escrita associados a
essa técnica.

Na sequéncia, foram examinados dois sistemas contemporaneos que adotam
COW: ZFS e Btrfs. O primeiro foi descrito como uma arquitetura que integra o
gerenciamento de volumes e o sistema de arquivos em storage pools organizados em
vdevs, empregando escrita baseada em COW, verificacao de integridade de ponta
a ponta por meio de checksums, estruturas mantidas pela Data Management Unit
(DMU) e mecanismos de snapshots e replicagao incremental. O segundo foi ana-
lisado como uma solu¢ao moderna para Linux que representa praticamente todo o
estado persistente em multiplas B-trees dinamicas, incluindo as arvores de arquivos,
de extents, de chunks e de checksums, combinando extents com COW e oferecendo
recursos como subvolumes, snapshots e verificagao de integridade integrada.

Em conjunto, esses sistemas evidenciam trés tendéncias principais: a adocao de
indices hierarquicos em lugar de estruturas lineares, o uso de extents para substi-
tuir multiplos niveis de indire¢ao e a inclusao de mecanismos de integridade, como
journaling ou COW com checksums. Essas tendéncias também orientam o projeto
do BSFS, que utiliza intervalos contiguos de blocos e estruturas indexadas para
organizar seus metadados, conforme detalhado no Capitulo 4.
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Capitulo 4

Basic Solution File System

Code is not like other how-computers-work books. It doesn’t have big color
tllustrations of disk drives with arrows showing how the data sweeps into
the computer. Code has no drawings of trains carrying a cargo of zeros
and ones. Metaphors and similes are wonderful literary devices but they do
nothing but obscure the beauty of technology.

— Charles Petzold

Neste capitulo, serao abordadas as caracteristicas de implementacao do Basic
Solution File System (BSFS), um sistema de arquivos desenvolvido em linguagem
C, executado em espaco de usuario no ambiente Linux, cuja principal funcionalidade
¢ o mecanismo de recuperacao de arquivos previamente excluidos. Inicia-se tratando
da estrutura que contém as principais informacoes sobre uma particao formatada
com o sistema de arquivos, o superbloco. Em seguida, aborda a decisao de projeto
de escolha do tamanho do bloco e 0 mapeamento do espago livre.

Para facilitar o entendimento das estruturas de dados utilizadas no projeto, é
apresentada a conceitualizacao da arvore B, estrutura fundamental para o gerenci-
amento de i-nodes, o enderecamento de blocos, o funcionamento dos diretérios e o
processo de recuperacao de arquivos.

Apos a definicao das estruturas de dados e operagoes fundamentais, o capitulo
apresenta a implementacao da interface de interagao com o usuario, responsavel por
expor as funcionalidades do BSF'S por meio de comandos e utilitarios especificos. Em
seguida, sao discutidos os procedimentos de teste adotados e os resultados obtidos
em operagoes de gravagao de arquivos, permitindo comparar o comportamento do
BSFS com sistemas de arquivos consolidados em ambientes Linux.
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4.1 Superbloco

O superbloco do BSFS segue os principios descritos na Secao 2.1, atuando como
a principal estrutura de controle e identificacao. E armazenado em uma posicao
fixa no primeiro bloco da particao e carregado em memoria sempre que o BSFS é
utilizado. A estrutura superblock_t define esse componente, reunindo informacoes
sobre como o sistema esta configurado e onde estao as outras estruturas. O campo
magic_number armazena o valor constante para identificar o sistema de arquivos, e os
campos block_size e fs_size definem, respectivamente, o tamanho de cada bloco
fisico em bytes e o tamanho total da partigao formatada. Ja o campo total_blocks
indica o nimero total de blocos disponiveis na particao, servindo como base para o
calculo do espaco livre e para a inicializacao das rotinas de alocacao.

Em seguida, o superbloco registra os campos que descrevem a organizacao légica
do sistema de arquivos. Os campos block_bitmap_start e block_bitmap_total
indicam, respectivamente, o bloco inicial e a quantidade de blocos utilizados pelo
mapa de bits responsavel pelo controle de espaco livre. Os campos inode_root e
recovery_root armazenam os blocos que contém as raizes das duas arvores B do
sistema: a primeira dedicada a indexacgao dos i-nodes e a segunda ao gerenciamento
das entradas de recuperacao. Por fim, data_block_start define o inicio da area
de dados dos arquivos, enquanto root_inode registra o i-node correspondente ao
diretorio raiz.

Essa organizacao foi projetada para permitir o acesso direto as principais estru-
turas do BSFS com o minimo de operagoes de leitura em disco. Como o sistema
de arquivos é executado em espaco de usuario, o superbloco ¢é lido e interpretado
diretamente pela aplicacao abordada na Secao 4.8, sem intermediacao do kernel. A
definicao explicita dos enderecos e tamanhos de cada regiao garante acesso as estru-
turas do BSFS a partir de uma consulta tinica ao superbloco durante as operacoes.
Dessa forma, o superbloco atua como um mapa fixo do sistema, centralizando todas
as informagoes necessarias para localizar e manipular as demais estruturas em disco.

4.2 Gerenciamento do Espaco Livre

O BSF'S adota blocos de 4 KiB como unidade de alocagao, valor definido com base
nos critérios discutidos na Se¢ao 2.2.3. A escolha oferece um equilibrio entre desem-
penho e eficiéencia de espaco, além de alinhar-se ao tamanho de pagina comumente
utilizado pelos sistemas operacionais, simplificando o gerenciamento de buffers e as
operacoes de entrada e saida em espaco de usuario. O uso de blocos de 4 KiB reduz
a fragmentacgao interna observada em blocos maiores e, a0 mesmo tempo, evita a
sobrecarga de leitura e escrita que ocorreria com blocos menores.

Para rastrear blocos livres e ocupados, o BSFS implementa um bitmap arma-
zenado em disco, segmentado em blocos de bitmap e organizado como uma lista
encadeada, conforme mostrado na Figura 4.1. Cada bit representa um bloco de
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dados: 0 (livre) e 1 (ocupado), convengao adotada pelo BSFS, e cada né da lista
corresponde a uma estrutura légica bitmap_block_t, composta por um vetor de bits
e um ponteiro next_block para o proximo bloco do bitmap.

é superblock_t h
- N - N
magic_number bitmap_block_t bitmap_block_t
block_size
fs_size bits[BITMAP_BLOCK_BYTES] bits[BITMAP_BLOCK_BYTES]
total_blocks next_block next_block

block_bitmap_start
block_bitmap_total
inode_root
recovery_root
data_block_start
root_inode \

. /

J =

Figura 4.1: Lista ligada do bitmap implementado no BSF'S.

Os campos block_bitmap_start e block_bitmap_total do superbloco delimi-
tam a regiao inicial e a capacidade alocada para o conjunto de blocos de bitmap,
enquanto data_block_start marca o inicio da area de dados. Dessa forma, o bit-
map pode crescer de forma incremental, adicionando novos nés a lista sem mover
estruturas existentes.

Durante a escrita de arquivos, a alocacao de novos blocos segue a estratégia first-
fit, na qual o sistema percorre sequencialmente os blocos do bitmap até encontrar o
primeiro intervalo de bits livres capaz de atender a quantidade de blocos solicitados.
Assim que um espaco adequado é identificado, os bits correspondentes sao marcados
como ocupados no mapa, e seus numeros de bloco sao retornados para gravacgao.
Essa abordagem foi escolhida pela simplicidade de implementacao em relacao a
outros métodos mais sofisticados, como best-fit e quick-fit.

4.3 Arvore B

As arvores B sao estruturas de dados de busca balanceada projetadas para operar de
forma eficiente em dispositivos de armazenamento secundério, como discos rigidos
e unidades de estado sélido. Diferentemente das arvores binarias tradicionais, cada
no pode conter multiplas chaves e varios filhos, reduzindo a altura da arvore e,
consequentemente, o nimero de acessos ao disco necessarios em operagoes de busca
e insercao. Essa caracteristica torna esse tipo de estrutura de dados ideal para
sistemas de arquivos, em que o custo de leitura e escrita em disco é maior do que
operagoes realizadas na memdria principal [5].

Os sistemas de arquivos abordados no Capitulo 3 utilizam variacoes de arvores
B (Ext4, ZFS e Btrfs), nas quais apenas as folhas armazenam os metadados dos
arquivos, enquanto os nos internos contém chaves e enderecos de blocos. No BSFS,
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optou-se pela implementagao de uma arvore B tradicional, em que os metadados
sao armazenados diretamente nos nés internos. Essa estrutura de dados foi imple-
mentada integralmente para o projeto, sem o uso de bibliotecas externas, a fim de
permitir controle total sobre o formato dos nds, a politica de persisténcia e o modelo
de interagao com o armazenamento secundario. A decis@ao tem como objetivo reduzir
o numero total de blocos ocupados pela estrutura, ainda que as operacoes de busca,
insercao e remogao apresentem um custo computacional maior. O equilibrio entre
simplicidade estrutural e economia de espago motivou essa escolha no contexto do
projeto.

No BSFS, a arvore B foi implementada para operar sobre o armazenamento
secundério, seguindo o modelo de operagoes DISK-READ e DISK-WRITE [5], que abs-
traem o processo de leitura e gravacao de paginas de dados entre a memoria principal
e o disco. Cada né da arvore ocupa um bloco inteiro da particao, contendo meta-
dados e ponteiros para blocos-filhos. A estrutura foi projetada para uso de quatro
tipos diferentes de dados como chave; as Segoes 4.4 a 4.7 detalham as estruturas
utilizadas na implementacao.

A implementacao da arvore B no BSFS contempla as principais operacoes des-
critas na literatura: criacao, busca, insercao, remocao e atualizacao de chaves. O
objetivo central dessas rotinas é permitir a manipulacao de conjuntos de metadados,
garantindo a integridade e a consisténcia da arvore apds cada modificacao.

A operacao de busca segue o principio da busca em arvores de pesquisa bindria,
porém com multiplos caminhos possiveis a partir de cada né. Ao receber uma
chave, o algoritmo percorre sequencialmente as chaves armazenadas no né atual
até determinar o intervalo correspondente e, entao, acessa o no-filho adequado. No
BSFS, cada acesso a um né envolve uma leitura de bloco em disco, e o processo
continua até que a chave seja localizada ou que uma folha seja alcancada. Assim
como no modelo tedrico, a complexidade da busca é proporcional a altura da arvore,
mantendo-se em ordem logaritmica mesmo para grandes quantidades de registros.

A insercao de novos elementos é executada de forma descendente, garantindo
que nenhum né exceda o nimero maximo de chaves permitido. Quando um né fica
completo, ocorre sua divisao, na qual a chave intermediaria sobe para o no pai e as
chaves remanescentes sao distribuidas entre dois novos blocos. Esse procedimento
mantém o balanceamento da arvore e preserva suas propriedades estruturais. No
BSFS, a divisao de nds envolve tanto a alocacao de novos blocos quanto a atu-
alizacao de ponteiros armazenados, o que torna o processo mais custoso que em
implementacgoes puramente em memoria, porém essencial para garantir persisténcia
e integridade dos metadados.

A remocao de registros segue um processo similar a insercao, com o objetivo de
evitar nés com menos chaves do que o grau minimo permitido. Quando um né fica
abaixo do limite, ele é combinado com um né irmao ou recebe uma chave emprestada
de um né vizinho, de modo a restabelecer as propriedades da arvore.
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A operacao de atualizagao é tratada como uma substituicao da chave existente,
sem necessidade de reestruturacao, salvo em casos de realocagao de blocos. Todas
as operagoes sao gravadas em armazenamento secundario por meio de chamadas as
funcoes de leitura e escrita de blocos, assegurando a persisténcia das alteragoes.

4.4 Implementacao de I-nodes

A estrutura de i-node utilizada no BSFS segue o principio funcional descrito na
Secao 2.2.1, atuando como o principal repositério de metadados de cada arquivo
e diretério. O i-node armazena identificadores, permissoes, tamanho do arquivo,
marcacoes de tempo de criacao e modificacao, e referéncias para os blocos de dados.
A estrutura constitui um dos tipos genéricos aceitos pela arvore B, como mostrado

na Figura 4.2.

Inode Root
btree_node_t
is_leaf
num_entries
entries
children
-
inode_t inode_t
inode_rumber inode_number
file size file size
file_type file_type
block_count block_count
uid uid
gid gid
permizsions permizsions
created_at created_at
modified_at modified_at
accessed_at accessed_at
direct_blocks direct_blocks
btree_root btree_root
L A
4 ™ e ~ d
btree_naode_t btree_node_t btree_node_t
is_leaf is_leaf is_leaf
num_gntries num_gntries num_gntriess
entries entries entries
children children children
inode_t inode_t inode_t
inode_number inode_number inode_number
file size file size file size
file_type file_type file_type
block_count block_count block_count
uid uid uid
gid gid gid
permissions permissions permissions
created_at created_at created_at
modified at modified at modified_at
accessed_at accessed_at accessed_at
direct_blocks direct_blocks direct_blocks
btree_root btree_root btree_root
N 000/ N 00/ N 0/
h A e Y, h

Figura 4.2: Exemplo de arvore B de i-nodes implementada no BSFS.

Cada i-node é identificado por um nimero unico (inode_number), que serve
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como chave na arvore B responsavel pela indexacao dos metadados. A arvore é ar-
mazenada em disco e possui como raiz o bloco referenciado pelo campo inode_root
do superbloco. As operacoes de criacao, leitura, atualizacdo e remocao sao imple-
mentadas como modifica¢oes diretas na arvore.

A criagao de um i-node envolve a alocacao de um identificador livre e a insercao
do registro na arvore de i-nodes, vinculando os metadados do arquivo as estrutu-
ras de armazenamento. A leitura realiza a busca do i-nodes pela chave na arvore,
recuperando seus metadados diretamente do disco. A atualizacao é tratada como
uma reescrita controlada dos campos do i-node, refletindo modificagbes em tama-
nho, marcagoes de tempo ou referéncias de blocos. Por fim, a exclusao remove a
entrada da arvore, preservando, contudo, a referéncia para recuperacao posterior,
funcionalidade associada ao mecanismo que sera descrito na Secao 4.7.

A estrutura do i-node também contém campos que registram os intervalos de
blocos associados ao arquivo, denominados bspans, que definem a localizagao fisica
dos dados dentro da particao. Essa estrutura, analoga aos extents utilizados em
sistemas de arquivos como Ext4, ZFS e Btrfs, é detalhada na Secao 4.5.

Cada i-node do BSFS mantém duas estruturas de controle relacionadas ao en-
derecamento de blocos de dados. A primeira é uma lista direta de até 16 bspans,
utilizada enquanto o arquivo pode ser representado por um nimero reduzido de in-
tervalos contiguos de blocos. Quando o nimero de bspans excede o limite da lista
direta, o i-node passa a referenciar uma arvore B de bspans, cuja raiz ¢é indicada pelo
campo btree_root. Nessa configuracao, a arvore é utilizada para indexar e localizar
os intervalos adicionais, permitindo que o sistema gerencie arquivos de grande porte
sem perda de desempenho ou limitacao de tamanho.

4.5 Enderecamento de Blocos

O BSFS emprega uma estratégia hibrida para o enderecamento de blocos de dados,
combinando mapeamento direto e indexacgao em arvore B. A base desse mecanismo é
a estrutura bspan, projetada especificamente para o sistema e inspirada nos extents
utilizados em sistemas como o Ext3 e Ext4.

Cada bspan representa um intervalo contiguo de blocos fisicos alocados para
um arquivo, definido por trés campos principais: o nimero do bloco logico inicial
(file_blk), o ntimero do bloco fisico correspondente (disk_blk) e o comprimento
do intervalo (length). Assim, um tnico bspan pode mapear diversos blocos con-
secutivos, reduzindo a fragmentacao e simplificando os cédlculos de enderecamento
durante operacoes de leitura e escrita.

Dentro de cada i-node, o BSFS mantém uma lista direta de até 16 bspans,
utilizada enquanto o niimero de intervalos do arquivo permanece pequeno, conforme
o exemplo da Figura 4.3. Quando o arquivo cresce e excede o limite dessa lista, o
sistema inicializa uma arvore B dedicada de bspans. O campo bspan_root do i-
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node armazena o nimero do bloco que contém o no raiz dessa arvore, que é utilizada
para indexar intervalos adicionais. A Figura 4.4 apresenta a estrutura completa de
enderecamento de bspans em um dispositivo fisico.

Cada né da arvore segue o mesmo formato geral das demais arvores do BSF'S,
com chaves correspondendo aos blocos logicos do arquivo e valores contendo os
descritores bspan. Essa estrutura hierarquica garante que o acesso e a atualizagao
de bspans permanecam eficientes mesmo para arquivos grandes, com complexidade
logaritmica (altura da arvore B cresce em proporcao O(logn) [5]) em relagdo ao
nimero total de intervalos.

Inode .
S Arquivo
inode_t
inode_number 1 2 3 4 5 6 7
file_size
file_type
block_count
uid
9id
permissions
created_at
modified_at
accessed_at
direct_blocks bSPQn bspan bSan
btree_root
- J

101 102 103 104 105 106 107 108 109

Dispositivo Fisico

Figura 4.3: Exemplo de enderegamento direto de blocos com bspans implementado

no BSFS.

Durante uma operacao de escrita, o BSFS procura no bitmap o primeiro intervalo
contiguo de blocos livres com comprimento suficiente para acomodar a quantidade de
dados que precisam ser gravados, utilizando a politica first-fit descrita na Segao 4.2.
Caso o novo intervalo possa ser mesclado com o tltimo bspan da lista ou da arvore
(contiguidade fisica), ele é expandido. Caso contrario, é criado um novo bspan e
inserido na posicao adequada na lista direta ou, se necessario, na arvore. A leitura
utiliza o caminho inverso: dado um deslocamento dentro do arquivo, o BSF'S verifica
inicialmente a lista direta de bspans para identificar o intervalo correspondente;
caso o bloco solicitado nao esteja coberto por nenhum dos registros da lista, a busca
continua na arvore B de bspans, que é percorrida até localizar o intervalo que contém
o bloco légico solicitado.
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Direct Blocks
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Figura 4.4: Exemplo completo de enderecamento de blocos com bspans implemen-
tado no BSFS.

A opcao por esse modelo hibrido elimina a necessidade de blocos indiretos sim-
ples, duplos e triplos, tradicionalmente usados em sistemas como o Ext2. Além disso,
a combinacao de lista direta e drvore B permite equilibrar simplicidade e escalabi-
lidade no enderecamento de blocos. No contexto do BSFS, considera-se arquivo
pequeno aquele cujos intervalos de blocos podem ser completamente representados
pela lista direta de até 16 bspans, sem necessidade de estruturas adicionais. Arqui-
vos que excedem esse limite passam a utilizar, além da lista direta, uma arvore B
dedicada para indexar intervalos adicionais, sendo classificados como arquivos gran-
des. Essa distincao ¢é estrutural e nao depende do tamanho légico do arquivo, mas do
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nimero de regioes contiguas necessarias para armazena-lo, o que reflete diretamente
o grau de fragmentacao da particao.

4.6 Implementacao de Diretorios

A Figura 4.5 mostra como os diretérios sao implementados no BSFS. Cada né
da drvore B armazena um conjunto de entradas de diretério (directory entries).
Cada entrada associa um nome de arquivo filename ao seu numero de i-node
(inode_number), além de registrar o tipo do objeto file_type (arquivo comum
ou diretério) e o tamanho file_size (em bytes) conhecido no momento do registro.
A estrutura é de tamanho fixo e contém: o nome do arquivo com até 255 caracteres,
o hash do nome, o i-node associado e os metadados minimos para navegacao (tipo
e tamanho). A limitacdo do nome a 255 caracteres e o layout fixo foram adotados
por simplicidade e previsibilidade de armazenamento, facilitando o acesso direto e
a organizacao das paginas em disco.
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file_type -

block_count
uid
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created_at
modified_at
accessed_at
direct_blocks
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Directory Tree Root
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Figura 4.5: Exemplo de implementagao de diretérios no BSFS.

Cada diretério € representado por um ¢-node especifico, cujo campo btree_root
nao aponta para uma arvore de bspans (como ocorre em arquivos regulares), mas sim
para a raiz da arvore B que armazena as entradas do diretério. Essa diferenciagao
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permite que a mesma estrutura de i-nodes seja utilizada de forma genérica, mudando
apenas o tipo de dado indexado. Assim, arquivos e diretérios compartilham o mesmo
modelo de indexacao hierarquica, mas operam sobre conteiudos distintos, ou seja,
bspans para arquivos e entradas para diretérios.

A chave de ordenacao utilizada na arvore B de diretérios é o hash do nome,
produto do algoritmo djb2, conforme Secao 2.2.6, escolhido por sua simplicidade e
por produzir chaves de tamanho fixo, o que reduz o custo de comparacao em disco
e tende a distribuir as entradas uniformemente entre os nés. O nome completo
permanece armazenado dentro da entrada; assim, em caso de colisao de hash, o
sistema confirma a correspondéncia comparando o nome integro com o solicitado
antes de concluir a operacao.

A inser¢ao de uma nova entrada em um diretério consiste em calcular o hash
djb2 do nome, montar a entrada fixa com nome, hash, i-node, tipo e tamanho, e
inserir o registro na arvore B do diretoério pai usando o hash como chave. A remocao
elimina a chave correspondente na arvore, e inicia o processo de recuperacao, que
serd abordado na Segao 4.7.

A busca calcula o hash do nome, percorre a arvore B pelo hash e, ao localizar
o registro candidato, realiza a verificacao do nome completo para resolver colisoes e
retornar o i-node correto. Dessa forma, busca, inser¢cao e remoc¢ao mantém comple-
xidade logaritmica em relacao ao nimero de entradas do diretoério.

As operacoes sobre diretorios integram-se aos mecanismos de resolucao de cami-
nhos do BSFS. Uma sequéncia como /home/usuario/documento.txt é decomposta
em componentes, e cada componente é resolvido iterativamente consultando a arvore
B do diretério corrente, a partir do diretério raiz, usando o hash djb2 do componente
para localizar a entrada e, entao, o i-node subsequente. Esse procedimento permite
gerenciar caminhos longos, preservando a coeréncia da hierarquia e a integridade
das referéncias entre diretorios e i-nodes.

4.7 Recuperacao de Arquivos

A recuperacao de arquivos é a principal funcionalidade adicional do BSFS, proje-
tada para permitir a restauracao de dados excluidos sem necessidade de ferramentas
externas. O mecanismo é implementado por meio de uma arvore B dedicada, res-
ponsavel por armazenar registros de recuperacao de arquivos. Essa arvore utiliza o
tipo de dados rec_entry_t, definido para representar cada entrada de recuperagao,
e é acessada a partir do bloco raiz indicado pelo campo recovery_root do super-
bloco.

A estrutura rec_entry_t contém os principais metadados necessarios para iden-
tificar e restaurar arquivos excluidos. Cada entrada registra um identificador tinico
(recovery_id), o ndmero original do i-node (inode_number), o nome do arquivo
(original_name), tamanho (file_size), permissoes (uid, gid, permissions), i-
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node do diretério pai (parent_ino), numero de blocos (block_count), marcagao
de tempo (retention_until) e as referéncias aos blocos de dados originalmente
associados.

A Figura 4.6 mostra os campos de entrada utilizados para recuperagao em uma
arvore B de exemplo. Esses campos permitem reconstruir com precisao as in-
formagoes essenciais do arquivo sem depender da arvore principal de i-nodes. O
campo de identificacao exclusivo garante que multiplos arquivos com o0 mesmo nome
possam coexistir na arvore de recuperacao sem conflito, uma vez que o acesso e a
restauracao sao feitos com base no identificador e nao no nome.

O processo de recuperagao inicia-se no momento da exclusao de um arquivo.
Quando o usuario remove um arquivo, alguns campos fundamentais do seu i-node,
incluindo nome, tamanho, tipo e referéncias de blocos, sao copiados para uma nova
estrutura rec_entry_t. Apds a cdpia, o i-node é removido da arvore de i-nodes,
e a nova entrada de recuperacao ¢ inserida na arvore de recuperacao do sistema.
Dessa forma, o registro do arquivo é mantido no sistema até que o usuario decida
restaurd-lo ou que a entrada seja removida automaticamente por rotinas de limpeza.

Em situagoes de interrupgao inesperada durante o processo de exclusao ou regis-
tro de recuperagao, como a finalizacao abrupta do sistema operacional ou uma falha
de energia, o arquivo removido pode se tornar irrecuperavel. Isso ocorre porque o
procedimento de copia dos metadados para a estrutura rec_entry_t e sua insergao
na arvore de recuperacao nao constituem uma operacao atomica. O BSFS nao im-
plementa journaling ou mecanismos de transacao capazes de garantir a consisténcia
do estado do sistema em caso de falhas intermediarias. Em trabalhos futuros, a
adocao de um mecanismo de journaling e o uso de verificagoes de integridade por
checksums poderiam assegurar a atomicidade das operacoes de recuperacao e a va-
lidacao dos metadados armazenados, aumentando a confiabilidade do sistema diante
de interrupcoes inesperadas.

Durante o periodo em que o arquivo permanece na arvore de recuperacao, seus
blocos de dados nao sao marcados como livres no bitmap, impedindo que novas
alocagoes sobrescrevam seu conteido. Uma entrada permanece ativa nessa arvore en-
quanto estiver dentro do intervalo de retencao definido, 30 dias por padrao. Durante
esse periodo, seus blocos continuam protegidos, exceto em situagoes de esgotamento
do espaco livre, nas quais blocos pertencentes aos registros mais antigos podem ser
reutilizados para novas alocacoes. Apenas quando a entrada de recuperacao é defi-
nitivamente excluida, seja manualmente pelo comando purge ou automaticamente
pelo processo de limpeza, os blocos sao liberados e marcados como disponiveis no
bitmap. Essa decisao de projeto garante integridade e seguranca na restauracao de
arquivos, evitando perda de dados enquanto o registro de recuperacao estiver ativo.
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Figura 4.6: Exemplo de implementagao da arvore de recuperacao no BSF'S.

A manutencao da arvore de recuperacao inclui rotinas de limpeza periddica,
responsaveis por remover registros antigos e liberar os recursos associados. O médulo
de coleta de recuperacao implementa um procedimento de varredura que identifica
entradas cujo tempo de exclusao ultrapassa o limite estabelecido de 30 dias por
padrao e remove essas entradas do sistema. Esse processo de coleta de lixo (garbage
collection) assegura que a arvore de recuperagao nao cresga indefinidamente e que
o espaco em disco seja reaproveitado conforme o uso.

Quando o sistema de arquivos atinge sua capacidade total, a rotina de alocacao
de novos blocos para escrita executa uma verificacdo no estado da particao. Caso
nao haja espago livre suficiente para a nova operagao, o BSFS aciona o médulo
de coleta de recuperacao para liberar blocos ocupados por arquivos mais antigos
armazenados na arvore de recuperacao. As entradas sao removidas seguindo uma
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ordem cronoldgica, priorizando os registros de exclusao mais antigos, de modo a
preservar os arquivos mais recentes. Essa estratégia permite que o sistema continue
operando mesmo em condigoes de saturacao do espago disponivel, garantindo a
continuidade das operagoes de escrita sem comprometer a integridade dos dados
ainda recuperaveis.

O sistema oferece ainda comandos especificos para interagao com o mecanismo
de recuperagao. Por exemplo, o comando recovery permite listar os arquivos dis-
poniveis para restauragao, o comando restore realiza a recriagao do arquivo original
a partir das informagoes armazenadas na arvore de recuperacao e o comando purge
remove permanentemente as entradas selecionadas, liberando seus blocos de dados.
O funcionamento detalhado desses comandos e sua integracao com a interface de
usudrio serao apresentados na Secao 4.8.

4.8 Interface de Interacao com o Usuario

O BSFS dispoe de dois programas principais para interacao em espaco de usuario:
o formatador, responsavel pela criacao e inicializacao do sistema de arquivos, e a
interface shell-like, que permite a execucao de comandos similares aos do Linux. O
formatador é responsavel por preparar um dispositivo de blocos para ser utilizado
com o BSFS, enquanto o interpretador de comandos oferece uma interface para
navegacao, manipulagao de arquivos e uso das funcionalidades de recuperacao apre-
sentadas na Secao 4.7. A seguir, a Secao 4.8.1 descreve em detalhes o funcionamento
do formatador.

4.8.1 O Formatador (mkfs.bsfs)

O programa mkfs.bsfs é responsavel pela criacao e formatacao de um novo sis-
tema de arquivos BSFS em um dispositivo de blocos do Linux. Seu funciona-
mento é andlogo ao de ferramentas tradicionais de formatagao, como mkfs.ext4
ou mkfs.btrfs, mas implementado em espago de usuario.

Durante a execucao, o programa recebe como argumento o caminho absoluto do
dispositivo a ser formatado e procede com a criacao das estruturas fundamentais
do BSFS. Inicialmente, a partir do tamanho do bloco (block_size), o nimero to-
tal de blocos disponiveis é calculado considerando o tamanho total da particao. Em
seguida, é criado e gravado o superbloco, que contém informagoes essenciais de confi-
guragao, como magic_number, block_bitmap_start, inode_root, recovery_root,
e os delimitadores da area de dados, abordados na Secao 4.1.

Apoés a escrita do superbloco, o programa inicializa o mapa de bits responsavel
pelo controle de blocos livres e ocupados, conforme descrito na Se¢ao 4.2, e grava os
blocos correspondentes. Posteriormente, sao criadas as arvores B vazias referentes
aos i-nodes e a arvore de recuperacao, cujos blocos raiz sao referenciados no su-
perbloco. O programa também cria o i-node do diretério raiz, inserindo a entrada
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inicial que identifica o ponto de partida do sistema de diretérios.

4.8.2 Interpretador de Comandos (Browser)

O programa browser ¢é o interpretador de comandos interativo compilado junta-
mente com o BSFS. Sua execucao recebe como argumento o caminho para uma
particao ou arquivo de blocos previamente formatado com o BSFS, permitindo ao
usudrio navegar, inspecionar e manipular o conteido do sistema de arquivos. O
browser funciona como uma interface em linha de comando (shell-like), implemen-
tada em espago de usuario, e mantém uma sessao interativa em que cada comando
é lido, interpretado e executado por meio das funcoes disponibilizadas pela API
interna.

Os comandos de manipulagao de arquivos e diretorios seguem a semantica tradici-
onal do Linux, de modo a proporcionar uma experiéncia familiar ao usuario. Abaixo,
apresentam-se todos os comandos suportados (conforme a saida do comando help),
organizados por categoria. A Tabela 4.1 mostra os comandos de navegacao que
foram implementados. Por outro lado, as Tabelas 4.2 e 4.3 mostram os comandos
implementados para operacoes em diretérios, arquivos e permissoes. Por ultimo, a
Tabela 4.4 apresenta os comandos gerais de ajuda e a Tabela 4.5 as ferramentas de
recuperacao e manutencao da arvore de recuperacao de dados.

Tabela 4.1: Comandos de navegacao

Comando Funcao
cd Altera o diretério atual.
whoami Exibe o UID/GID atual e a umask.
su Troca a identidade de sessao (teste).
umask Exibe/define a umask.
pwd Mostra o diretério de trabalho atual.
1s Lista o conteido do diretério.
list Alias para 1s.

Tabela 4.2: Operagoes de diretério
Comando Funcao
mkdir Cria um novo diretério.
rmdir Remove um diretorio vazio.
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Tabela 4.3: Operagoes de arquivo

Comando Funcao

touch Cria um arquivo vazio.

rm Remove um arquivo (opgao rm --all [dir] varre
arquivos com medi¢ao de tempo).

cp Copia um arquivo.

mv Move/renomeia arquivo ou diretdrio.

cat Exibe o conteido do arquivo.

fill Cria muitos arquivos de determinado tamanho e re-
porta o tempo decorrido.

chmod Altera permissoes (octal, ex.: 755).

chown Altera o proprietario (apenas root).

chgrp Altera o grupo (apenas root).

echo Exibe texto ou escreve em arquivo.

dd Gera/duplica contetido com bloco e contagem.

Tabela 4.4: Comandos de sistema

Comando Funcao

info Exibe informagoes do sistema de arquivos.

help Mostra o resumo de ajuda dos comandos.

exit Encerra o browser do BSFS.

Tabela 4.5: Recuperacao de arquivos

Comando Funcao

recovery Lista entradas da arvore de recuperacao (filtro por
nome exato ou identificador) com saida tabular.

restore Restaura por numero identificador ou por nome
(com desambiguagao). Destino opcional; senao, di-
retério pai original. Valida permissoes; reconstréi o
i-node a partir da copia armazenada na entrada de
recuperacao.

purge Limpa a arvore de recuperacao: sem argumentos,
remove entradas com mais de 30 dias; purge [id]
remove uma entrada especifica; purge oldest [N]
remove as N mais antigas. Exibe contagem remo-
vida.

Os comandos de manipulacao de arquivos e diretorios, como 1s, cd, mkdir,
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dos sistemas Unix tradicionais. O programa browser mantém uma camada de
abstracao entre os comandos e a API do sistema de arquivos, que realiza as chamadas
de manipulacao de estruturas de dados, leitura e escrita. Os comandos de sistema,
como info, help e exit, complementam a interface, fornecendo meios de consulta,
documentacao e encerramento da sessao.

O BSFS utiliza um modelo de controle de acesso do tipo Discretionary Access
Control (DAC), compativel com o esquema de permissdes do Linux. Cada i-node
contém campos de UID, GID e modo de acesso, avaliados durante as operacoes de
leitura e escrita. Comandos como su, chmod, chown e chgrp reproduzem as mesmas
funcionalidades do ambiente Unix, permitindo a simulacao de diferentes usuérios,
alteracao de permissoes e gerenciamento de grupos, o que torna o comportamento
do sistema de arquivos compativel com o modelo de seguranca de arquivos.

O comando recovery tem como objetivo listar as entradas armazenadas na
arvore de recuperacao, conforme descrito na Secao 4.7. Sem argumentos, percorre
toda a arvore em ordem e exibe uma tabela com identificador, tipo, tamanho,
horarios de exclusao, periodo de retencao, i-node do diretério pai e nome origi-
nal do arquivo. Quando recebe um argumento de nome, o comando realiza um filtro
exato, exibindo apenas as entradas correspondentes, o que facilita a localizacao de
arquivos especificos.

O comando restore permite reconstruir arquivos previamente excluidos, utili-
zando os dados armazenados nas entradas de recuperacao. A restauracao pode ser
solicitada pelo identificador tinico (recovery_id) ou pelo nome do arquivo. Quando
h& multiplas entradas com o mesmo nome, o programa apresenta uma lista para de-
sambiguacao. O diretério de destino pode ser especificado como segundo argumento;
caso contrario, o arquivo é restaurado no diretério original ou no diretério raiz do
sistema de arquivos. O processo inclui a verificacao das permissoes do destino e a
reconstrucao completa do i-node a partir de sua copia armazenada na entrada de
recuperacao.

O comando purge ¢ utilizado para remover definitivamente entradas da arvore de
recuperacao, liberando seus blocos no bitmap. Quando executado sem parametros,
ele remove automaticamente arquivos cuja exclusao tenha ocorrido ha mais de
30 dias. A opcao purge [ID] remove uma entrada especifica pelo seu recovery_id,
e purge oldest [N] exclui as N entradas mais antigas. Apds a execugdo, o co-
mando informa a quantidade de registros removidos, garantindo o reaproveitamento
do espaco em disco e a manutencao periédica da estrutura de recuperagao.

Os comandos apresentados nesta secao descrevem a interface de interacao ofe-
recida pelo BSF'S e suas principais funcionalidades. Exemplos detalhados de uso,
incluindo sequéncias de execugao e saidas produzidas pelo sistema, encontram-se no
Apéndice A, que complementa esta secao com demonstragoes praticas.
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4.9 Resultados de Desempenho

Esta secao apresenta os resultados obtidos nos testes de desempenho realizados com
o BSFS e outros sistemas de arquivos abordados no Capitulo 3: Ext4, Btrfs e ZF'S.
A Tabela 4.6 apresenta as configuragoes do hardware utilizado nos testes.

Tabela 4.6: Especificagoes de hardware da estacao de testes.

Componente Descrigao

Processador AMD Ryzen 7 5700G with Radeon Graphics
Caches 512 KiB L1, 4 MiB L2 e 16 MiB L3

Placa-mae ASUS A520M K V2

Chipset AMD A520 (Renoir/Cezanne Platform)

Meméria RAM 16 GB DDR4 (2 x 8 GB, 2133 MHz, dual channel)
Controladora SATA AMD 500 Series Chipset SATA Controller

Armazenamento do sistema | SSD NVMe Kingston SNV3S500G (500 GB) —
utilizado exclusivamente para o sistema operacio-
nal

Armazenamento de testes | SSD SATA III ADATA SU630 (447 GB) — dedi-
cado aos benchmarks de sistemas de arquivos

Os testes foram realizados na distribuicao Arch Linux, utilizando o conjunto de
ferramentas e versoes de software mostrados nas Tabelas 4.7 e 4.8.

Tabela 4.7: Especificagoes de software do ambiente de testes.

Componente Versao / Descrigao

Kernel Linux 6.12.51-1-1ts #1 SMP PRE-
EMPT_DYNAMIC x86-64 GNU/Linux

Compilador GCC 15.2.1 (2025-08-13)

Tabela 4.8: Programas de formatacao utilizados nos testes.

Sistema de Arquivos Ferramenta / Versao

BSFS mkfs.bsfs v1.0

Ext4 mke2fs 1.47.3 (8-Jul-2025)
Btrfs btrfs-progs v6.17

ZFS zfs-2.3.4-1

4.9.1 Metodologia de Teste

Para a avaliacao de desempenho foram desenvolvidos roteiros de teste executados
diretamente sobre partigoes de disco formatadas (/dev/sdX) com cada um dos se-
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guintes sistemas de arquivos: BSFS, Ext4, ZFS e Btrfs. Ambos os procedimen-
tos utilizam os mesmos conjuntos de arquivos previamente gerados a partir de
/dev/urandom: 100 arquivos de 10 MiB e um arquivo tnico de 1 GiB, preservados
e reutilizados em todas as execugoes. Embora o dispositivo /dev/urandom produza
dados nao deterministicos, o uso de um conjunto fixo de arquivos assegura que to-
dos os sistemas de arquivos sejam submetidos a mesma carga de escrita, garantindo
reprodutibilidade dos testes e comparabilidade entre os resultados.

Em ambos os experimentos, cada ciclo consiste na gravacao e remocao dos 100
arquivos de 10 MiB com contetdo aleatério, na mesma ordem, 10 vezes. Em se-
guida, ocorre a gravagao e remocao do arquivo unico de 1 GiB, também por 10
vezes. No primeiro experimento, os testes no BSFS foram executados no browser
em sessao Unica, alimentados por comandos redirecionados de um arquivo de texto.
Esse procedimento permitiu reproduzir interagoes com o sistema de arquivos sem
intervengao manual.

O primeiro experimento foi conduzido em duas variagoes: a primeira executa ape-
nas a remocao dos arquivos apos cada ciclo, preservando as entradas de recuperacao
na arvore; a segunda inclui a execuc¢ao do comando de limpeza purge, que remove os
registros mais antigos da arvore de recuperagao e libera os blocos associados. Essa
distingao possibilita avaliar o impacto direto do mecanismo de recuperacao sobre
o desempenho do sistema. O sistema de arquivos registra o tempo de execucao de
cada operacao de gravacao por meio de um relégio monotonico interno.

O segundo experimento foi projeto para medir o desempenho dos sistemas de
arquivos Ext4, Btrfs e ZFS. Nesse caso, cada sistema de arquivos é avaliado sepa-
radamente sob as mesmas condicoes de carga e parametros de teste. Antes de cada
rodada, os arquivos anteriores sao removidos para evitar reutilizacao de dados e
interferéncia nos tempos subsequentes. A medicao de tempo baseia-se na captura
de timestamps em nanosegundos via date +%s%N e, entre as repeticoes, o cache de
paginas do kernel é limpo para minimizar o impacto de armazenamento em meméria.

4.9.2 Resultados e Discussao

Nesta subsecao, sao apresentados os resultados de tempo de gravacao de arquivos
para duas cargas: 100x10 MiB e 1x1 GiB. As Figuras 4.7 e 4.8 exibem, para cada
sistema de arquivos (BSFS nas variantes com e sem purge, além de Ext4, Btrfs e
ZFS), barras horizontais com o tempo médio (em segundos) e, em cada barra, os
valores de maximo e minimo observados ao longo de 10 repeticoes. Nesse contexto,
menor é melhor.
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Gravagao de Arquivos (100x10 MiB)

7FS | —
Ext4 H— -
o
—
4

Btris

BSFS (sem purge)

BSFS (com purge)

6 8 10 12
Tempo (s)

0 2

Figura 4.7: O grafico apresenta a média de dez execucoes na gravagao de 100
arquivos de 10 MiB em cada um dos sistemas de arquivos.

No cenério com purge, o BSF'S apresenta tempos médios estaveis e desempenho
competitivo frente aos sistemas em espaco de kernel. Essa vantagem relativa decorre
do menor volume de metadados atualizados a cada escrita e da auséncia de métodos
que garantem a integridade como journaling ou COW, mecanismos que, embora
elevem a confiabilidade, introduzem sobrecarga adicional no processo para estes
sistemas de arquivos.

Quando o purge nao € realizado entre cada teste, cada rm apenas move o arquivo
para a arvore de recuperacao, preservando metadados e blocos de dados alocados.
Assim, a cada ciclo de testes, o volume de entradas de recuperacao cresce linearmente
e 0s blocos permanecem indisponiveis ao alocador.

Nesse contexto, a politica first-fit adotada pelo BSF'S se mostra ineficiente por
efetuar varreduras lineares no bitmap em busca do primeiro intervalo contiguo com
tamanho suficiente, tendo desempenho impactado com a fragmentacao crescente
da particao. Os segmentos livres tornam-se menores e mais esparsos, prolongando
as buscas e degradando a localidade. O efeito acumulado manifesta-se em dois
pontos: no alocador de blocos, cujas varreduras ficam progressivamente mais longas
a medida que o espaco contiguo diminui; e na coleta emergencial de espaco, que
precisa percorrer a arvore de recuperagao para liberar intervalos (bspans) quando
a pressao por blocos aumenta. O custo dominante, portanto, estda na alocacao e na
coleta, nao na travessia das arvores B.
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Gravagao de Arquivos (1x1 GiB)

ZFS | ——— -
Ext4 Hﬂ -
Btrfs [ —F—— -

BSFS (sem purge) | ; | : -

BSFS (com purge) | ! -
0 2 4 6 8 10 12 14 16 18
Tempo (s)

Figura 4.8: O grafico apresenta a média de dez execugoes na gravacao de um
arquivo de 1 GiB em cada um dos sistemas de arquivos.

A manutencao das arvores B para diretorios, i-nodes e bspans introduz custos
logaritmicos para busca e atualizagao, os quais permanecem secundarios diante do
trabalho extra do alocador sob fragmentacao e da necessidade de liberar espago ao
atingir alta ocupacao. Assim, o aumento do tempo ao longo das rodadas nao decorre
de lentidao estrutural das arvores, mas do comportamento intencional do BSFS em
reter versoes na recuperacao quando o purge nao ¢ aplicado, somado a sensibilidade
do first-fit a fragmentacao.

Apesar de nao ter se mostrado o principal fator responsavel pela diferenca de
desempenho, a execucao do BSFS em espaco de usudrio exerce influéncia nos resul-
tados. Enquanto sistemas como Ext4, Btrfs e ZFS operam em modo kernel, o BSFS
depende de chamadas de sistema para interagir com o hardware e com o préprio
nicleo do sistema operacional. Cada operacao de leitura ou escrita em disco implica
transicoes entre os modos de usuario e de kernel, trocas de contexto e verificacoes de
protecao de memoéria. Esses procedimentos acrescentam um overhead adicional, que
nao estd presente nas implementacoes nativas em espago de kernel. Love [9] discorre
que cada chamada de sistema envolve uma alternancia de contexto entre esses dois
modos de execucgao, o que resulta em um custo mensuravel de tempo mesmo em
sistemas otimizados como o Linux.

Para trabalhos futuros, é necessario planejar um novo mecanismo de gerencia-
mento de blocos livres, buscando uma abordagem mais eficiente e integrada a légica
de recuperagao de arquivos. A atual estratégia de varredura sequencial (first-fit)
mostrou-se funcional, mas pouco adaptavel a cenarios de fragmentacao e retencao
prolongada de dados. Solugoes alternativas, como alocadores baseados em agrupa-
mento, ou estruturas hierarquicas de bitmap, podem melhorar a previsibilidade e
reduzir o custo das operacoes de alocagao. Além disso, uma readequacao do projeto
para execucao em espacgo de kernel é desejavel, de modo a eliminar o overhead as-
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sociado as chamadas de sistema e permitir integragao direta com as rotinas nativas
de entrada e saida (I/0) do Linux, possibilitando uma avaliacdo de desempenho
comparavel aos outros sistemas de arquivos.

4.10 Sumario

Este capitulo apresentou a implementagao do Basic Solution File System (BSFS),
um sistema de arquivos desenvolvido em linguagem C e executado inteiramente em
espaco de usudrio no ambiente Linux. Foram descritas suas principais estruturas
internas: o superbloco, responsavel pela configuracao e localizacao das demais areas
do sistema; o gerenciamento de blocos livres baseado em bitmaps encadeados; e o uso
de arvores B como estrutura para indexacao de i-nodes, blocos de dados e diretorios.

Destacou-se o modelo hibrido de enderecamento, que combina listas diretas de
bspans para arquivos pequenos e arvores B dedicadas para arquivos maiores, bem
como o mecanismo de recuperacao de arquivos excluidos, implementado por meio
de estruturas rec_entry_t armazenadas em uma arvore de recuperacao indepen-
dente. Também foram detalhados os utilitarios do sistema, incluindo o formatador
mkfs.bsfs e o interpretador interativo browser, que oferece uma interface seme-
lhante a um shell tradicional, com comandos de manipulacao de arquivos e diretorios,
além das operacoes especificas de recuperacgao, restauragao e remocao de registros.

Os testes de desempenho compararam o BSFS a sistemas de arquivos utilizados
com o Linux, como Ext4, Btrfs e ZFS, em diferentes cenarios de escrita sequencial.
Os resultados mostraram que o BSFS apresenta tempos de escrita maiores quando
a rotina de purge nao é executada, devido ao acimulo de metadados na arvore de
recuperacao e a fragmentagao crescente do espaco livre. Identificou-se que o uso do
algoritmo first-fit para alocacao de blocos e a auséncia de estratégias de agrupamento
agravam o tempo de busca em situacgoes de alta ocupagao. Por outro lado, quando
o purge ¢ aplicado entre as execugoes, o desempenho torna-se estavel e préximo ao
dos sistemas de arquivos de referéncia.

Também foi discutido o impacto do BSF'S operar em espaco de usuario, o que
implica um overhead adicional decorrente das transicoes entre os modos de execucao
e das chamadas de sistema necessarias para interacao com o kernel. Apesar disso, o
sistema de arquivos se mostrou funcional, consistente e capaz de recuperar arquivos
excluidos sem perda de integridade.
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Conclusao

Art is never finished, only abandoned.

— Leonardo da Vinci

Este capitulo apresenta as consideracoes finais a respeito do desenvolvimento e
avaliagao do Basic Solution File System (BSFS), consolidando os resultados obtidos
e destacando as principais limitagoes e possibilidades de evolucao do projeto.

O Capitulo 1 introduziu o contexto e a motivagao para o estudo, ressaltando
a importancia dos sistemas de arquivos na organizacao e persisténcia de dados em
sistemas operacionais do tipo Unix. O Capitulo 2 abordou os fundamentos tedricos
necessarios a implementacao de um sistema de arquivos, discutindo conceitos como
i-nodes, diretorios, gerenciamento de espaco livre com bitmaps e o impacto do ta-
manho de blocos no desempenho. O Capitulo 3 apresentou os principais sistemas de
arquivos utilizados em ambientes Linux: Ext2, Ext3, Ext4, ZFS e Btrfs, destacando
suas arquiteturas, os mecanismos de gerenciamento de metadados e as estratégias
empregadas para organizacgao, alocagao e preservacao de integridade. Por fim, o
Capitulo 4 descreveu detalhadamente a implementagao do BSFS, suas estruturas
de dados e os resultados comparativos de desempenho em relacao aos sistemas de
arquivos abordados anteriormente.

O BSFS atingiu o objetivo proposto de implementar um sistema de arquivos
funcional em espaco de usuério, projetado para operar sobre dispositivos de blocos
no Linux. Sua principal colaboracao foi um mecanismo para recuperacao nativa de
arquivos excluidos, ausente nos sistemas convencionais, que mantém registros estru-
turados de metadados e blocos de dados para restauracao futura. Embora o sistema
nao tenha apresentado desempenho competitivo quando a légica de recuperagao é
aplicada em comparacao a sistemas de arquivos otimizados como Ext4, ZFS e Btrfs,
o BSFS cumpriu seu papel como experimento pratico e prova de conceito, demons-
trando a viabilidade de uma implementacao em espaco de usudrio.
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As principais limitagoes observadas no BSFS estao relacionadas a sua arqui-
tetura e as decisoes de projeto adotadas. O mecanismo de recuperacao, embora
funcional, tende a aumentar o volume de metadados mantidos em disco, especial-
mente quando a rotina de limpeza (purge) nao é executada com frequéncia, o que
leva ao crescimento continuo da arvore de recuperacao e a ocupacao prolongada de
blocos. Em conjunto, a politica de alocacao baseada em first-fit mostrou-se sensivel
a fragmentacao, uma vez que realiza varreduras lineares no bitmap até localizar o
primeiro intervalo contiguo livre, tornando-se progressivamente menos eficiente a
medida que o espaco disponivel se fragmenta. Essa combinacao faz com que o custo
de alocacao e coleta de blocos se torne o principal gargalo de desempenho do sistema.

Além dessas limitagoes, o BSFS opera integralmente em espaco de usuario, o
que impoe uma sobrecarga adicional decorrente das transicoes entre os modos de
execucao e das chamadas de sistema necessarias para acesso ao disco. O BSFS ainda
carece de recursos avangados presentes em sistemas de arquivos modernos, como
mecanismos de concorréncia e paralelismo, estratégias de alocagao por localidade
e suporte a journaling, que poderiam ampliar sua confiabilidade e eficiéncia em
cenarios reais de uso.

5.1 Trabalhos Futuros

Como trabalhos futuros, propoe-se a adaptacao do BSFS para operacao em modo
kernel, por meio da implementacao de um modulo dedicado ao Linux. Essa im-
plementacao permitiria eliminar a sobrecarga associada as chamadas de sistema e
possibilitaria integracao direta com as rotinas nativas de entrada e saida (1/0), apro-

ximando o desempenho do sistema de arquivos ao de implementacoes como Ext4,
ZFS e Btrfs.

Outra linha de aprimoramento envolve o redesenho do mecanismo de geren-
ciamento de blocos livres. A estratégia atual, baseada em varredura sequencial
(first-fit), mostrou-se simples e funcional, mas pouco eficiente em cenérios de alta
fragmentacao e retencao prolongada de dados. O desenvolvimento de um alocador
mais sofisticado, possivelmente baseado em agrupamento de blocos, em estruturas
hierarquicas de bitmap ou em algoritmos de alocacao que consideram a localidade
de blocos de um mesmo arquivo, poderia reduzir o custo das operagoes e melhorar
o desempenho.

Além disso, a introducao de suporte a concorréncia e paralelismo nas rotinas de
leitura e escrita constitui um passo esperado na evolucao do sistema, de modo a
aproveitar arquiteturas multicore modernas e permitir processamento simultaneo de
diferentes regioes das arvores de metadados.

Por fim, a implementagao de mecanismos de preservagao de consisténcia, como
journaling ou politicas baseadas em Copy-on- Write (COW), representa um passo re-
levante para ampliar a confiabilidade do BSFS. Um médulo de journaling permitiria
registrar transagoes de metadados e operagoes criticas, possibilitando a recuperagao
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automatica apds falhas inesperadas. Alternativamente, a adocao de uma politica
COW evitaria a sobrescrita direta de dados e metadados, preservando versoes an-
teriores até a finalizacao das atualizagoes. Em ambos os casos, a combinacao com
verificagoes de integridade baseadas em checksums permitiria que o BSFS evoluisse
para uma plataforma experimental mais robusta para estudos de tolerancia a falhas
e recuperagao em sistemas de arquivos.

5.2 Consideracoes Finais

O desenvolvimento do BSF'S permitiu compreender de maneira pratica os principios
de funcionamento interno de sistemas de arquivos, consolidando o aprendizado
tedrico sobre organizacao, persisténcia e gerenciamento de dados em sistemas ope-
racionais. Mais do que um sistema de arquivos funcional, o BSFS representa um
exercicio de engenharia de software de baixo nivel, cujo valor reside na aplicacao dos
conceitos fundamentais de arquitetura de sistemas, estruturas de dados e controle
de armazenamento em um projeto completo e experimental. O cédigo fonte [21]
estd disponivel online sob a licenca GPLv3.
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Apeéendice A

Exemplo de Uso do BSFS

Neste apéndice serda mostrado um exemplo de formatacao de dispositivo utilizando
o BSFS, criando arquivos e restaurando um arquivo removido acidentalmente pelo
usuario.

A.1 Formatando um dispositivo com o BSFS

Apés compilar o projeto, vocé pode formatar uma imagem baseada em arquivo (ou
até mesmo um dispositivo de bloco) e exploréd-la por meio do navegador (browser)
do BSFS.

O primeiro passo é criar uma imagem cujo tamanho é multiplo de 4096 bytes.
No exemplo a seguir serd criada uma imagem de 8 MiB:

$ dd if=/dev/zero of=bsfs.img bs=1M count=8

8+0 registos entrados

8+0 registos saidos

8388608 bytes (8,4 MB, 8,0 MiB) copiados, 0,00399782 s, 2,1 GB/s

O préximo passo é formatar o arquivo criado:

$ ./bin/mkfs.bsfs bsfs.img
BSFS formatted successfully
Partition size (bytes): 8388608
Block size (bytes): 4096

Total blocks: 2048

Block bitmap (start,total): 1,1
Data block start: 2

Inode root block: 2

Root inode: 1

E importante destacar que é possivel formatar um dispositivo de blocos como, por
exemplo, uma particao de disco /dev/sdal. O formatador ird gravar o superbloco,
inicializar o mapa de bits do bloco, a arvores B de i-nodes e criar as entradas do
diretorio raiz.
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A.2 Criando arquivos

Agora serao criados quatro arquivos de maneiras diferentes utilizando o browser
do BSFS. O primeiro passo é acessar o sistema de arquivos recém criado com o
browser:

$ ./bin/browser bsfs.img

BSFS Browser

Partition: bsfs.img

Type "help" for available commands or "info" for filesystem details
BSFS:/>

O browser suporta diversos comandos similares aos do Linux. Abaixo o comando
help:

BSFS:/> help
BSFS Browser Commands:

Navigation:
cd <directory> - Change current directory
whoami - Show current uid/gid and umask
su <uid> [gid] - Switch session identity (testing)
umask [octall - Show/set umask
pwd - Print current working directory
1s [directory] - List directory contents
list [directory] - List directory contents (alias for 1s)

Directory Operatiomns:
mkdir <directory> - Create a new directory
rmdir <directory> - Remove an empty directory

File Operations:

touch <filename> - Create an empty file

rm <filename> - Remove a file (rm --all [dir] sweeps files with timing)
cp <src> <dest> - Copy a file

mv <src> <dest> - Move/rename a file or directory

cat <filename> - Display file contents

£ill <count> <size> [prefix] [bs=<n>] [pattern=index|zero|random]
Create many files and print elapsed time (size/bs accept K/M/G)
chmod <mode> <path>- Change permissions (octal, e.g., 755)
chown <uid> <path> - Change file owner (root only)
chgrp <gid> <path> - Change file group (root only)
echo <text> - Display text or write to file
echo "text" > file - Write text to file (overwrite)
echo "text" >> file - Append text to file
dd if=<src> of=<dest> bs=<size> count=<blocks> - Create files of specific size
Example: dd if=/dev/zero of=testfile bs=1M count=10 (creates 10MB file)

System:
info - Display filesystem information
Recovery:
recovery [name] - List recovery entries (optionally filter by name)

restore <id|name> [dir] - Restore a deleted file by recovery id or by original name
(optional dest dir)

purge [id|loldest N|expired] - Purge recovery entries (default: older than 30 days)

help - Display this help message

exit - Exit the BSFS browser
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Agora, serao criados os quatro arquivos:

BSFS:/> touch file.txt
File created: file.txt

BSFS:/> dd if=/dev/zero of=block.img bs=1M count=1
dd: copying 1 blocks of 1048576 bytes each...

dd: 1 blocks (1048576 bytes) copied

dd: completed in 3.978 ms (251.41 MiB/s)

BSFS:/> echo "Prof. Brivaldo" > name.txt
Text written to file: name.txt

BSFS:/> echo "BSFS FileSystem" > othername.txt
Text written to file: othername.txt

Foram criados os arquivos: file.txt vazio, block.img de 1MiB de dados do
/dev/zero, name.txt contendo o texto "Prof. Brivaldo" e othername.txt con-
tendo o texto "BSFS FileSystem".

No préximo passo, é verificada a existéncia dos arquivos usando o comando de
listagem 1s e o conteudo de um dos arquivos, para garantir que os dados estao
corretos:

BSFS:/> 1s

Listing directory:

Name Type
DIR

o0 DIR

name.txt FILE

file.txt FILE

othername.txt FILE

block.img FILE

BSFS:/> cat name.txt
"Prof. Brivaldo"

Nesta etapa, o arquivo othername.txt sera removido:

BSFS:/> rm othername.txt
File removed: othername.txt

BSFS:/> 1s

Listing directory:

Name Type
DIR

o0 DIR

name.txt FILE

file.txt FILE

block.img FILE

O préximo passo é recuperar um arquivo removido. Notem que o arquivo nao
aparece mais no sistema de arquivos ao executar o comando 1s.
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A.3 Recuperando um arquivo removido

E, com o comando restore, o arquivo othername.txt sera recuperado:

BSFS:/> recovery
Recovery entries:
ID Type Size Deleted At Retain Until ParentIno Name

1 FILE 18 2025-11-13 08:44:08 2025-12-13 08:44:08 1 othername.txt

Ao se digitar o comando recovery, a estrutura de dados do BSFS de recu-
peracao é acessada para verificar os arquivos que foram removidos, mostrando suas
informagoes como o nome do arquivo, quando foi removido e até quando sua retencao
é esperada. O proximo passo é recupera-lo com o comando restore:

BSFS:/> restore othername.txt
Restored ’othername.txt’ (id 1)

BSFS:/> 1s

Listing directory:

Name Type
DIR

o0 DIR

name.txt FILE

file.txt FILE

othername.txt FILE

block.img FILE

BSFS:/> cat othername.txt
"BSFS FileSystem"

No exemplo, o arquivo foi restaurado pelo seu nome (poderia ter sido restaurado
pelo ID na tabela de recuperagdo). Como observado, o arquivo foi restaurado e
voltou a aparecer no sistema de arquivos ao executar o 1s e o seu contetido continuou

intacto. Com isso, estd finalizada a demonstracao de uso, formatacao e recuperacao
do BSFS.
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