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Resumo

Este trabalho apresenta uma análise introdutória de métodos para estimar o
Estado de Carga (State of Charge - SOC) em baterias de íons de lítio (Lithium-ion
Batteries - LIBs), resumindo conceitos-chave, abordando desafios e demonstrando
a aplicação do Filtro de Kalman (Kalman Filter - KF) como um desses métodos.
Inicia-se com uma visão geral fundamental sobre os princípios básicos das bate-
rias, estabelecendo os conhecimentos essenciais para compreender as técnicas de
estimativa do SOC. O papel dos Sistemas de Gerenciamento de Bateria (Battery
Management Systems - BMS) é explorado, destacando sua importância no moni-
toramento, proteção e otimização do desempenho das baterias, com foco na estima-
tiva do SOC. Uma revisão abrangente dos métodos de estimativa de SOC é con-
duzida, abrangendo abordagens como tabelas de consulta (lookup tables), contagem
de carga (Coulomb counting), métodos baseados em modelos, algoritmos baseados
em filtros e técnicas orientadas por dados. O estudo também identifica os principais
desafios na estimativa do SOC, incluindo imprecisões de medição, variabilidade entre
as células, sensibilidade à temperatura e limitações nos modelos de bateria, enfati-
zando o comportamento não linear dos efeitos do envelhecimento. Para demonstrar
a aplicação prática desses métodos, é introduzida uma representação de modelo em
espaço de estados de um sistema de bateria, ilustrando a viabilidade do uso do KF
para estimativa do SOC. Um algoritmo básico do KF é implementado e validado,
priorizando clareza e acessibilidade em vez de complexidade técnica completa. Por
fim, é realizada uma simulação baseada no Simulink do KF, fornecendo uma análise
dos resultados para avaliar a precisão, eficiência e áreas potenciais para otimização
futura. Este trabalho busca estabelecer uma base para pesquisas futuras e avanços
práticos nos métodos de estimativa do SOC para LIBs.

Palavras-chave: Estado de Carga (SOC), Baterias de Íons de Lítio (LIBs), Filtro
de Kalman (KF), Sistemas de Gerenciamento de Bateria (BMS).



Abstract

This work provides an introductory analysis of methods for estimating the
State of Charge (SOC) in Lithium-ion Batteries (LIBs), summarizing key concepts,
addressing challenges, and demonstrating the application of the Kalman Filter (KF)
as one of these methods. It begins with a foundational overview of battery fundamen-
tals to establish essential background knowledge for understanding SOC estimation
techniques. The role of Battery Management Systems (BMS) is explored, highlight-
ing their importance in monitoring, protecting, and optimizing battery performance,
focusing on SOC estimation. A comprehensive review of SOC estimation methods
is conducted, covering approaches such as lookup tables, Coulomb counting, model-
based methods, filter-based algorithms, and data-driven techniques. The study also
identifies key challenges in SOC estimation, including measurement inaccuracies, cell
variability, temperature sensitivity, and limitations in battery modeling, emphasiz-
ing the nonlinear behavior of aging effects. To demonstrate the practical application
of these methods, a simple state-space model representation of a battery system is
introduced, illustrating the feasibility of using the KF for SOC estimation. A basic
KF algorithm is implemented and validated, focusing on clarity and accessibility
rather than full technical complexity. Finally, a Simulink-based simulation of the
KF is performed, providing an analysis of the results to evaluate the accuracy, ef-
ficiency, and potential areas for further optimization. This work aims to establish
a foundation for future research and practical advancements in SOC estimation
methods for LIBs.

Keywords: State of Charge (SOC), Lithium-Ion Batteries (LIBs), Kalman Filter
(KF), Battery Management Systems (BMS).
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1 Introduction

1.1 Contextualization

Advances in renewable energy, energy storage, and intelligent sensing and control
technologies are radically transforming electrical energy systems. These developments
have popularized Distributed Generation (DG) (LI; NEJABATKHAH; TIAN, 2023),
which involves a bidirectional flow of electricity, particularly through alternative and
renewable energy sources integrated at the distribution level (CHOWDHURY; CHOWD-
HURY; CROSSLEY, 2009).

Photovoltaic solar energy is one of the most accessible forms of renewable energy
within DG, thanks to reduced photovoltaic module prices and minimal installation space
requirements (BARKER; BING, 2005). Despite its advantages, the seasonal nature of
solar energy presents challenges, making energy storage systems essential for storing excess
energy for future use during periods of scarcity (ZHU et al., 2023).

The transition to electric vehicles (EVs) is also reshaping the load profile of power
grids (HASAN et al., 2019). As EVs replace combustion vehicles, the demand for batteries
with higher energy capacity, longer lifespans, and improved safety features grows. This
shift amplifies the need for robust energy storage systems, with lithium-ion batteries
(LIBs) emerging as the preferred choice (ROUHOLAMINI et al., 2022).

Battery energy storage systems (BESS) have advanced rapidly due to the expan-
sion of renewable energy generation, smart grid technologies, EV production, and the
push to reduce CO2 emissions (LUO et al., 2015). Among storage options, LIBs stand
out for their high energy density, operating voltage of up to 3.7 V, low self-discharge rate,
and longer lifespan, making them ideal for BESS applications (HORIBA, 2014).

LIBs require control circuits to operate effectively, as they can be damaged if
used beyond specified limits, such as exceeding current, voltage, or power thresholds or
under extreme temperature conditions (HANNAN et al., 2018). A battery management
system (BMS) monitors and manages battery performance, ensuring optimal operation
and protection against overcharging or deep discharge (SWERDLOW, 2024). One of the
BMS’s most critical parameters is the state of charge (SOC), which indicates the amount
of energy available relative to the total capacity of the battery (HOW et al., 2019). The
SOC is typically expressed as a percentage, with 100% indicating a fully charged battery
and 0% indicating a fully discharged state (SWERDLOW, 2024). Although SOC is not
directly measurable, accurate estimation is essential to extend battery life and prevent
failures. Additionally, SOC estimates serve as inputs for other BMS functions, including
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state of health (SOH) assessment, cell balancing, and power calculations. The SOH refers
to the battery’s overall condition compared to its ideal performance when new. It is
typically expressed as a percentage and helps determine the battery’s remaining useful
life and capacity over time (ELMAHALLAWY et al., 2022). Accurate SOH estimation is
crucial for predicting battery lifespan and ensuring safe and efficient operation. SOH and
SOC estimations, however, are challenging due to factors like battery cycling and calendar
aging, ambient temperature, and various other operational conditions (XIA; QAHOUQ,
2021).

Accurate SOC estimation enhances safety by activating cutoff mechanisms when
necessary, reducing the risk of unexpected failures (UZAIR; ABBAS; HOSAIN, 2021). It
prevents battery damage, improves power system reliability, and ensures efficient opera-
tion. Additionally, reliable SOC estimation enables more efficient battery design, maxi-
mizing capacity utilization and delivering optimal power levels. Ultimately, accurate SOC
information can lead to significant cost savings by allowing the development of smaller,
more efficient battery packs (HOW et al., 2019).

Despite advancements, achieving accurate SOC estimation remains complex, par-
ticularly due to the interplay of factors like temperature fluctuations, cell aging, and
inconsistencies among individual cells. Various SOC estimation methods have been devel-
oped to address these challenges, each with its own strengths and limitations (RIVERA-
BARRERA; MUñOZ-GALEANO; SARMIENTO-MALDONADO, 2017). Striking a bal-
ance between estimation accuracy and computational demand is an ongoing challenge in
practical applications.

Among these estimation methods, filtering techniques such as the Kalman Filter
(KF) offer promising solutions for handling noisy sensor data and refining SOC estimates
over time. The KF is especially suitable for dynamic systems such as LIBs, as it enables
real-time SOC estimation by blending predictive modeling with sensor measurements,
reducing the impact of measurement errors (YUN et al., 2023).

This research proposes a study on lithium-ion battery systems, focusing on SOC
estimation methods. By analyzing and comparing various methods, with a particular
emphasis on implementing the KF, this study aims to identify an efficient SOC estimation
algorithm that balances accuracy and computational complexity. This, in turn, is expected
to improve the reliability and efficiency of LIBs in BESS applications, ultimately extending
battery life and optimizing energy storage system performance.
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1.2 Objectives

1.2.1 General Objectives

This work aims to provide an introductory analysis of various methods for estimat-
ing the State of Charge (SOC) of Lithium-ion Batteries (LIB), summarize key concepts,
highlight challenges, and demonstrate using the Kalman Filter (KF) as one of the methods
for estimating SOCs.

1.2.2 Specific Objectives

• Provide a foundational overview of battery fundamentals, including chemical compo-
sition, battery cell types, and equivalent circuit modeling, as an essential background
for SOC estimation methods.

• Examine the functions and importance of a BMS in monitoring, protecting, and
optimizing battery performance, emphasizing its role in the estimation of SOC.

• Conduct a comprehensive review of SOC estimation methods, covering lookup table
methods, Coulomb counting, model-based approaches, filter-based methods, and
data-driven techniques.

• Identify and discuss the main challenges in SOC estimation, including measurement
inaccuracies, cell variability, temperature sensitivity, and limitations in battery mod-
eling.

• Introduce and demonstrate a simple state-space model representation of a battery
system to illustrate the application of the KF for SOC estimation.

• Implement a basic KF algorithm to validate its feasibility for SOC estimation, fo-
cusing on simplicity rather than full technical complexity.

• Simulate the KF-based SOC estimation model in Simulink, analyzing the results to
evaluate accuracy, efficiency, and potential areas for further optimization.

1.3 Organization of the work

This work is organized into chapters that provide basic knowledge of lithium-ion
batteries and SOC estimation methods to a detailed methodology and simulation results
for the KF approach. The chapters are structured as follows:

• Chapter 1: Introduction - This chapter introduced the research topic, highlighted
the importance of accurate SOC estimation in lithium-ion batteries, and outlined
the objectives and motivation of this study.
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• Chapter 2: Bibliographic Review – This chapter provides a comprehensive review
of the relevant concepts. It covers battery fundamentals, the role of the BMS, and
various SOC estimation methods, including direct measurement, model-based ap-
proaches, filter-based techniques, and data-driven methods. The chapter also dis-
cusses challenges faced in SOC estimation.

• Chapter 3: Methodology – This chapter presents the methodology used in this re-
search, focusing on applying the KF for SOC estimation. It includes introducing
and demonstrating a simple state-space model representation of a battery system,
the KF equations, parameter tuning, and the simulation setup.

• Chapter 4: Results – This chapter discusses the results of the KF simulations con-
ducted in Simulink, analyzing the accuracy and performance of the SOC estimation.

• Conclusion – The final chapter summarizes the findings of the study, contributions,
and limitations and suggests potential directions for future research on the estima-
tion of SOC.
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2 Bibliographic Review

2.1 Battery System Fundamentals

2.1.1 Battery composition

The conventional battery pack, such as that found in an electric vehicle, consists
of an arrangement of battery modules made up of combinations of cells. Cells are the
smallest electrochemical units, providing a specific voltage according to their chemical
composition (LIU; ZHANG; WANG, 2023). Cells can be connected in series, parallel, or
combinations of both depending on the voltage and current required for the desired appli-
cation. Connecting cells in series increases the total voltage of the pack while connecting
them in parallel increases the overall capacity and available current (HORIBA, 2014).
Figure 1 shows the arrangements of Li-ion batteries.

Figure 1 – Schematic of Li-ion battery pack, module and cells. (a) Cell-to-module-to-pack structure; (b)
cell-to-pack structure.(LIU; ZHANG; WANG, 2023)

The nominal capacity of a cell, measured in ampere-hours (Ah), indicates how
much charge it can store (Ul Hassan et al., 2022). The unit C-rate is derived from this
capacity, representing the current required to charge or discharge the cell within one hour
(TEAM, 2008). This nominal capacity can also be used to calculate the energy stored in
the cell and its energy density, with the total energy storage capacity (kWh) being the
product of the nominal voltage and the capacity of the cell.

Batteries can be packaged in various forms, Figure 2, including cylindrical, coin,
prismatic, thin and flat (TARASCON; ARMAND, 2001). They can also be differenti-



Chapter 2. Bibliographic Review 19

ated by their chemistry, with the most common types being Lead-Acid, Nickel-Cadmium
(NiCd), Nickel-Metal Hydride (NiMH), and Lithium-Ion (Li-ion) (HANNAN et al., 2018).
Among these, LIBs receive the most focus for BESS due to their higher energy density
and specific energy than the other types mentioned. LIBs operate at higher voltages,
typically around 3.7 V, and exhibit a relatively low self-discharge rate, allowing them to
retain most of their charge even after long storage periods (KUMAR et al., 2023). Table
1 presents the key parameters of EV batteries.

Figure 2 – Schematic drawing showing the shape and components of various Li-ion battery configurations.
a, Cylindrical; b, coin; c, prismatic; and d, thin and flat.(TARASCON; ARMAND, 2001)

Table 1 – Key details of batteries used in EV.(KUMAR et al., 2023)
Battery Nominal Power Density Energy Density Charging Life Self-Discharge Charging Discharging
Type Voltage (V) (W/kg) (W.h/kg) Efficiency (%) cycle rate (%/month) Temperature (ºC) Temperature (ºC)

Li-ion 3.2-3.7 250-680 100-270 80-90 600-3000 3-10 0 to 45 -20 to 60
NiCd 1.2 150 50-80 70-90 1000 20 0 to 45 -20 to 65
Lead Acid 2.0 180 30-50 50-95 200-300 5 -20 to 50 -20 to 50
NiMH 1.2 250-1000 60-120 65 300-600 30 0 to 45 -20 to 65

However, the disadvantage of Li-Ion batteries lies in their higher cost than other
options and the necessity of voltage equalization among cells (ASHRAF et al., 2024)
(HANNAN et al., 2018). Additionally, using control circuits is crucial to prevent over-
charging, as lithium-ion batteries are sensitive to this issue, which can lead to severe
damage and compromise safety and performance (HABIB et al., 2023).

2.1.2 Battery models

A model is a simplified representation of a physical system, process, or concept. In
the context of batteries, models play a crucial role in simulation and state estimation (HE
et al., 2012). Various approaches can be used to model a battery, with the most common
types being:
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• Equivalent Circuit Model: using voltage sources, resistors, and capacitors (LIU et
al., 2019);

• Electrochemical Model: considering the internal dynamics of the battery (LIU et
al., 2019);

• Thermal Model: acquire batteries’ thermal characteristics, can be divided into heat
generation model and heat transfer model (LIU et al., 2019);

• Data-Driven Model: utilizing machine learning and statistical techniques to learn
about battery behavior from experimental data (complex relationships and nonlin-
earity) (LIU et al., 2019);

• Coupled electro-thermal Model: acquire battery electric behaviors (e.g., current,
voltage) and thermal behaviors (e.g., surface/internal temperature) simultaneously
(LIU et al., 2019);

Table 2 presents different battery models with advantages and disadvantages.

Table 2 – A comparison of battery models (UZAIR; ABBAS; HOSAIN, 2021).

Type Advantages Disadvantages

Equivalent
Circuit
Model

Simple; Widely adopted in real-time applications;
good performance for low SOC range; accurate

temperature distribution prediction;
universally reliable

Less internal underlying reactions/information; needs testing
under exact conditions; invasive operation needed for some
measurements; real time measurement of some applications
not possible; parameter identification is difficult; requires
extensive domain knowledge & longer development time

Electro-
chemical
Model

Accurately represents the electrochemical process
within the battery; accurate temperature & voltage

measurement; better performance; simple;
universal reliability

Large computational overheads; needs extensive domain
knowledge & longer development time; needs testing under

exact conditions; invasive operation needed for some
measurements; real time measurement of some applications

not possible; parameter identification is difficult
Heat generation

Model Widely applied in real-time applications; reliable Not accurate enough to represent the thermal behavior of
battery; needs domain knowledge & longer development time

Heat transfer
Model

Captures temperature distribution; detects hot
spots in high-heat generation applications

Large computational overheads for real-time applications;
used for offline simulations

Data-driven
Model

Shorter development time; does not require extensive
domain knowledge; high accuracy

of voltage calculation

Requires large amount of data; unpredictable black box
model; efficiency depends on test data & training

approaches; difficulty in parameters tuning
Coupled

Electro-thermal
Model

Moderately accurate; Moderate physical
interpretability Complex; not suitable in real time applications

The Equivalent Circuit Model (ECM) employs essential circuits such as volt-
age source, resistors, and capacitors that describe the electrical behavior of the battery
(ADAIKKAPPAN; SATHIYAMOORTHY, 2022). ECMs vary in complexity, from simple
voltage sources to intricate networks with resistive, capacitive, and inductive components.
The following sections describe different ECM types.

2.1.2.1 Ideal Voltage Source

The most simplified model for a battery cell is the Ideal Voltage Source (IVS),
Figure 3. IVS is a simple way to represent a battery cell by treating it as a constant voltage
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source (PLETT, 2015). This model assumes no internal resistance, ignoring voltage drops
that typically occur inside the battery. As a result, the output voltage stays the same
regardless of the load, current draw, or state of charge. While this model is basic and
doesn’t account for real-life losses or changes, it serves as a useful starting point for
understanding battery behavior in ideal conditions.

Figure 3 – Battery model: Ideal Voltage Source.(PLETT, 2023)

The variables in Figure 3 are: OCV, the ideal constant open-circuit voltage; 𝑣(𝑡),
the terminal voltage equal to OCV in this model; and 𝑖(𝑡), the current flowing out of the
battery.

2.1.2.2 Open-Circuit Voltage

The Open-Circuit Voltage (OCV) model, Figure 4, builds upon the IVS by in-
corporating the dependence of voltage on the SOC (PLETT, 2015). In this model, the
output voltage varies according to the battery’s SOC (as defined by Equation 2.1), cre-
ating a more realistic reflection of battery behavior over time. However, the model still
lacks any representation of internal losses, as it omits impedance components. The OCV-
SOC relationship is typically nonlinear and may be influenced by factors such as ambient
temperature (CHATURVEDI et al., 2010).

𝑆𝑂𝐶 = 𝑄available

𝑄rated
(2.1)

In Equation 2.1, 𝑆𝑂𝐶 represents the State of Charge of the battery, 𝑄available

denotes the amount of charge currently available in the battery, and 𝑄rated is the total
rated capacity of the battery. The ratio defines the fraction of the battery’s capacity that
is currently usable, providing a measure of the battery’s remaining charge.

In Figure 4, the variable OCV(𝑧(𝑡)) represents the open-circuit voltage as a func-
tion of the state of charge (SOC), 𝑧(𝑡). The variables 𝑣(𝑡) and 𝑖(𝑡) remain as the terminal
voltage and the current flowing out of the battery, respectively, as previously defined.
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Figure 4 – Battery model: Open-Circuit Voltage.(PLETT, 2023)

2.1.2.3 Rint

The Rint model, Figure 5, incorporates internal losses into the system by in-
troducing a series resistance in conjunction with the OCV source (CHAN, 2000). This
resistance accounts for the internal dissipation as current flows through the battery, cap-
turing instantaneous voltage drops under load. The Rint model provides a more accurate
representation of a battery’s response to varying current demands. However, it remains
limited in scope due to its lack of capacitive or dynamic elements.

Figure 5 – Battery model: Rint.(PLETT, 2023)

In Figure 5, the variable 𝑅0 represents the internal resistance of the battery, cap-
turing the voltage drop due to internal dissipation. The variables OCV(𝑧(𝑡)), 𝑣(𝑡), and
𝑖(𝑡) remain as previously defined.

2.1.2.4 Thévenin

The Thévenin model, Figure 6, extends the Rint model by adding a parallel
resistor-capacitor (RC) network to simulate the dynamic behavior of a battery under load
(ADAIKKAPPAN; SATHIYAMOORTHY, 2022). The RC network introduces a time-
dependent response to the model, representing the transient voltage relaxation observed
in real batteries following a load change. This configuration allows the model to capture
both instantaneous and delayed responses to current fluctuations, providing a closer ap-
proximation of battery performance under dynamic operating conditions (HE; XIONG;
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FAN, 2011). Due to its relative simplicity and improved accuracy, the Thévenin model is
widely adopted in applications where both steady-state and transient behavior need to be
considered (RIVERA-BARRERA; MUñOZ-GALEANO; SARMIENTO-MALDONADO,
2017).

Figure 6 – Battery model: Thévenin.(PLETT, 2023)

In Figure 6, 𝑅1 and 𝐶1 form the RC network, representing the transient voltage
relaxation behavior of the battery.

2.1.2.5 Randles

The Randles model, Figure 7, is a more advanced way to represent battery behav-
ior, adding a component called the Warburg impedance (Zw) inside the RC network and
resistance (SIMIć et al., 2022). This Warburg impedance varies with frequency, helping to
capture the slower, diffusion-related effects seen in batteries at different frequencies (ES-
TALLER et al., 2022). This feature is especially useful for modeling how battery voltage
changes more slowly due to diffusion processes inside the cell. The Randles model is more
complex because the Warburg impedance doesn’t have a straightforward mathematical
expression, making it harder to simulate accurately (ESTALLER et al., 2022).

Figure 7 – Battery model: Randles.(PLETT, 2023)

In Figure 7, 𝑍𝑊 represents the Warburg impedance, capturing diffusion-related
effects within the battery. 𝐶𝑑𝑙 is the double-layer capacitance, and 𝑅𝑐𝑡 is the charge transfer
resistance, both modeling electrochemical processes.
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2.1.2.6 Thévenin model with additional R-C pairs

The Thévenin model with additional RC pairs, also known as DP model (HE;
XIONG; FAN, 2011), Figure 8, offers an alternative to the Randles model by replicating
the effect of the Warburg impedance through a series of parallel RC networks (HE et
al., 2011). By adding one or more RC pairs, this model can approximate the frequency-
dependent behavior of the Warburg element without requiring its exact formulation. De-
pending on the application, a limited number of RC branches can achieve a close approx-
imation to the behavior of an ideal Warburg impedance, making this approach a flexible
and computationally manageable solution for complex systems (PLETT, 2015).

Figure 8 – Battery model: Thévenin with additional R-C pairs.(PLETT, 2023)

In Figure 8, 𝑅1, 𝐶1, 𝑅2, and 𝐶2 form multiple RC pairs to approximate the
frequency-dependent behavior of the Warburg impedance.

2.2 Battery Management System

The BMS is an essential component in battery systems, consisting of sensors, ac-
tuators, controllers, and communication (XIONG et al., 2018). It is an electronic system
that manages a rechargeable battery pack by monitoring its state and parameters (KU-
MAR et al., 2023). The BMS ensures the safety, efficiency, and optimal lifespan of the
battery while interconnecting all system components. The BMS plays a critical role in
protecting both the battery and the end user from potential hazards (HOW et al., 2019).
The block diagram in Figure 9 highlights the complexity and importance of the BMS.

The BMS integrates hardware and software, Figure 10, to connect all battery
components and maintain overall control (KUMAR et al., 2023). The hardware consists
of safety circuits, sensors, thermal management, and communication systems, while the
software handles battery parameters, SOC, SOH, cell balancing, fault detection, and user
interfaces (HANNAN et al., 2017). Even within the same manufacturing batch, battery
cells can vary in parameters by 1% or more, making a sophisticated BMS essential for
managing these differences (NAGUIB; KOLLMEYER; EMADI, 2021). SOC cannot be
measured directly, so an estimator is required for accurate SOC reporting.
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Figure 9 – Overview of the BMS hardware and software components (HOW et al., 2019).

Figure 10 – Overview of the BMS hardware and software components (KUMAR et al., 2023).

The general functions of the BMS include:

• Sensor monitoring;

• Protection;

• Interface;

• Performance management;

• Diagnostic.

2.2.1 Sensor Monitoring

The BMS must monitor the voltage of each battery cell, as voltage imbalances
indicate the need for cell equalization (SRIDIVYA; GORANTLA, 2023). It should also
measure overall battery current to assess circuit protection and monitor temperatures
within the module, as cell performance and degradation depend heavily on temperature
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(HANNAN et al., 2018). As previously mentioned, examples include electric vehicles,
where precise monitoring helps maintain safety and prolong battery life (LIU et al., 2019).

For control purposes, the BMS should operate contactors connecting the battery to
the load and the pre-charging circuit to ensure parameters stay within safe limits during
charge and discharge cycles (HABIB et al., 2023).

2.2.2 Protection

The BMS must prevent overcharging, overcurrent, excessive discharge, short cir-
cuits, and extreme temperatures (KUMAR et al., 2023). Beyond cell safety, it also ensures
operator safety during failures, which could otherwise lead to severe damage, including
explosions (HANNAN et al., 2018). The BMS must trigger safety mechanisms, like discon-
nection protection relays shown in Figure 11 when unsafe conditions are detected (HABIB
et al., 2023). This protective function helps safeguard battery banks during unexpected
power surges.

Figure 11 – BMS bloc diagram (HABIB et al., 2023).

2.2.3 Interface

The interface enables communication with external systems such as electric vehicle
control units or energy management systems (KUMAR et al., 2023). This communication
facilitates charging control, auxiliary testing, and data storage for tracking battery sta-
tus and safety alerts (HANNAN et al., 2017). The Controller Area Network (CAN) bus
protocol is commonly used, providing reliable data transfer (KUMAR et al., 2023). Other
protocols like Modbus and Local Interconnect Network (LIN) can be found in specific
industrial applications to enhance compatibility (HABIB et al., 2023).
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2.2.4 Performance Management

BMS performance management involves monitoring temperature, current, and
SOC, and using this data to decide on cell balancing for optimal battery efficiency and
lifespan (KUMAR et al., 2023). Estimating how much energy is stored and how much
power can be delivered is essential for system reliability (KUMAR et al., 2023). Advanced
SOC estimators, such as Kalman filters and Neural Network (NN) algorithms, can improve
accuracy in various operational conditions (HOW et al., 2019).

2.2.5 Diagnostic

The BMS must detect and diagnose potential issues, such as cell imbalances, ca-
pacity degradation, and component failures (KUMAR et al., 2023). Detailed diagnos-
tics provide insights into the battery’s SOH and offer maintenance recommendations
(BERECIBAR et al., 2016). However, there is no single definition for the battery SOH.
A general description of it can be given as: (LIU et al., 2019).

𝑆𝑂𝐻(𝑡) = 𝑆𝑂𝐻(𝑡0) +
∫︁ 𝑡

𝑡0
𝛿func(𝐼, 𝑇, 𝑆𝑂𝐶, others) 𝑑𝜏 (2.2)

In Equation 2.2, 𝑆𝑂𝐻(𝑡) represents the State of Health of the battery at time 𝑡,
and 𝑆𝑂𝐻(𝑡0) is the initial SOH at time 𝑡0. The term 𝛿func(𝐼, 𝑇, 𝑆𝑂𝐶, others) represents a
function that models the rate of SOH change, depending on the current 𝐼, temperature 𝑇 ,
state of charge (SOC), and other influencing factors. The integral computes the cumulative
effect of these variables on the SOH over time, starting from 𝑡0 to 𝑡.

Thus, the battery SOH can be estimated by the internal resistance or usable ca-
pacity as a kind of prediction regime changes in computer science field (ARABMAKKI;
KANTARDZIC, 2017).

• Cell capacity: Reduction in charge storage over time (LIU et al., 2019).

𝑆𝑂𝐻 = 𝑄aged

𝑄𝑛

× 100% (2.3)

In Equation 2.3, 𝑆𝑂𝐻 represents the State of Health of the battery, expressed as a
percentage. 𝑄aged is the aged or remaining charge capacity of the battery, and 𝑄𝑛

is the nominal or rated charge capacity.

• Internal resistance: Increase in resistance leads to power reduction (LIU et al., 2019).

𝑆𝑂𝐻 = 1 − 𝑅inc

𝑅𝑛

× 100% (2.4)
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In Equation 2.4, 𝑆𝑂𝐻 represents the State of Health of the battery, expressed as a
percentage. 𝑅inc is the incremental increase in the internal resistance of the battery,
and 𝑅𝑛 is the nominal internal resistance.

In conclusion, the BMS is vital for ensuring the safety, efficiency, and longevity
of battery systems. It combines hardware and software to monitor and control battery
operations, protecting both the battery and users (KUMAR et al., 2023).

With ongoing advancements in battery technology, modern BMS designs incorpo-
rate more sophisticated algorithms and predictive tools to enhance overall performance
and reliability (HASIB et al., 2021).

Figure 12 – BMS functionalities (OMARIBA; ZHANG; SUN, 2018).

2.3 Battery State of Charge estimation methods

As mentioned before a battery’s SOC indicates the amount of energy available
relative to its total capacity (HOW et al., 2019). The SOC is typically expressed as
a percentage, where one hundred percent represents a fully charged battery and zero
percent indicates a completely discharged battery.

Accurately estimating the SOC is essential for ensuring the power system’s effi-
ciency and safety. It provides critical information about when the battery needs to be
recharged or if it is at risk of overcharging.

The terminal voltage of the battery cell is directly dependent on the SOC, which
is affected by the battery’s SOH. The SOC reflects the energy available in the battery,
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while the SOH indicates the battery’s ability to store and provide energy compared to its
original condition.

There are many methods to estimate the SOC, which can be divided into six main
categories: lookup table methods, ampere-hour integration method, model-based estima-
tion, filter-based estimation, data-driven estimation, and hybrid methods, as presented
in Figure 13. Direct methods involve the use of sensors to measure voltage and current.
The ampere-hour integration method, also known as coulomb counting, estimates SOC by
measuring the battery’s discharge current and integrating it over time. Model-based esti-
mation relies on mathematical models of battery behavior to predict SOC based on known
parameters. Filter-based estimation techniques like KF utilize sensor data to refine SOC
estimates over time. Data-driven estimation methods use machine learning algorithms to
analyze historical data and identify patterns for predicting SOC. Lastly, hybrid methods
combine elements from different approaches to improve accuracy and robustness (HAN-
NAN et al., 2017) (SHETE et al., 2021) (RIVERA-BARRERA; MUñOZ-GALEANO;
SARMIENTO-MALDONADO, 2017)(KUMAR et al., 2023)(XIONG et al., 2018)(QAYS
et al., 2022)(HOW et al., 2019).

Figure 13 – Classification of SOC estimation methods - Modified from (HOW et al., 2019).

2.3.1 Lookup Table Methods

Lookup table methods rely on pre-constructed data tables to estimate the SOC
based on measurable parameters such as voltage and current. However, this approach has
some limitations. The accuracy of SOC estimation can degrade with rising temperatures
and aging effects of the battery, as these factors can alter the underlying characteristics
used to construct the lookup tables. Additionally, lookup table methods can be slower to
update the SOC, impacting the accuracy and responsiveness of the battery management
system (XIONG et al., 2018).
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2.3.1.1 Open Circuit Voltage Method

The OCV estimation method uses a look-up table that captures the direct relation-
ship between SOC and external battery parameters, such as OCV and impedance. This
method involves creating a detailed table of these relationships by conducting extensive
laboratory experiments to characterize the battery’s behavior across various SOC levels
(RIVERA-BARRERA; MUñOZ-GALEANO; SARMIENTO-MALDONADO, 2017). The
OCV look-up table method is conceptually simple and suitable for estimating SOC in the
laboratory or well-controlled environment.

SOC = 𝑓−1(OCV). (2.5)

In Equation 2.5, SOC represents the State of Charge of the battery, and 𝑓−1(OCV) denotes
the inverse function that maps the open-circuit voltage (OCV) to the corresponding SOC
value.

2.3.1.2 AC impedance

The impedance-based estimation method analyzes the battery’s impedance re-
sponse at specific AC frequencies, where voltage and current values are accurately recorded
during charging and discharging (RODRIGUES; MUNICHANDRAIAH; SHUKLA, 2000).
This approach enables SOC estimation by tracking impedance changes over time. How-
ever, a key limitation of this method is its dependency on life cycle-sensitive factors, as
the battery’s impedance parameters can shift with age, temperature, and usage patterns.
These changes can reduce the model’s accuracy over time, making regular calibration or
adjustment necessary for reliable SOC estimation.

2.3.2 Coulomb Counting

Coulomb counting (CC) is a widely used method for SOC estimation that deter-
mines SOC by measuring the battery’s discharge current and integrating it over time (NG
et al., 2009). Known for its simplicity, this method can provide reasonably accurate SOC
estimates under specific conditions:

• The initial SOC must be accurately known.

• Current sensors need precise calibration.

• The battery’s maximum capacity should be regularly re-calibrated for operating
conditions and aging effects.

SOC(𝑡) = SOC(𝑡0) + 1
𝐶𝑛

∫︁ 𝑡0+𝑡

𝑡0
𝐼bat(𝑑𝜏) × 100% (2.6)
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In Equation 2.6, SOC(𝑡) represents the State of Charge of the battery at time 𝑡,
and SOC(𝑡0) is the initial SOC at time 𝑡0. 𝐶𝑛 is the nominal capacity of the battery,
and 𝐼bat is the battery current. The integral computes the charge or discharge over time,
normalized by the battery’s capacity, to determine the change in SOC. The result is
expressed as a percentage.

As an open-loop algorithm, CC can accumulate errors over time. Even minor mea-
surement inaccuracies can lead to significant SOC estimation errors due to the cumulative
nature of the integration process. An accurate initial SOC and highly reliable current
sensors are essential for effective operation. Due to these limitations, coulomb counting is
often used alongside other methods, such as model-based or data-driven approaches, to
improve reliability and robustness.

2.3.3 Model Based Estimation

Model-based methods rely on mathematical models to predict the SOC based
on known parameters. The precision of model-based estimation heavily depends on the
accuracy of the underlying model, making it crucial to have a well-validated representa-
tion of the battery behavior. The most commonly used models can be roughly summa-
rized as three types: electrochemical model, equivalent circuit model, and electrochemical
impedance model (XIONG et al., 2018).

2.3.3.1 Equivalent Circuit Model

The equivalent circuit model (ECM) is popularly used for model-based SOC esti-
mation in battery systems. It simplifies the battery’s behavior using electrical components
like resistors, capacitors, and voltage sources (XIONG et al., 2018). A widely used ECM
is the Thevenin equivalent circuit model, which includes key elements such as R0, repre-
senting the battery’s ohmic resistance, and Rth and Cth, which model the polarization
resistance and capacitance, respectively. These components capture the battery’s transient
response during the charging and discharging. The ECM effectively balances simplicity
and accuracy, making it suitable for SOC estimation and dynamic behavior analysis in
BMS and energy management applications.

2.3.3.2 Electrochemical Model

The electrochemical model (EM) helps explain how a battery works by describing
the movement of materials, energy, and charges within the cell (CORNO et al., 2015). It
provides detailed information about overall cell behavior, like current and voltage, and in-
ternal properties, such as concentration, potential, and temperature. EMs are particularly
useful for predicting how the battery’s internal states, like solid/electrolyte concentrations
and electrode potentials, change over time and space. Popular models for estimating the
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SOC include the simpler one-dimensional (1D) model (SMITH; RAHN; WANG, 2008)
and the more detailed pseudo two-dimensional (P2D) model (HAN et al., 2015).

2.3.3.3 Electrochemical Impedance Stereoscopy

The Electrochemical Impedance Spectroscopy (EIS) estimation method applies a
sinusoidal voltage or current to the battery and analyzes the response to determine the
battery’s SOC. By examining how the battery’s impedance varies with different frequen-
cies, EIS provides insights into the internal electrochemical processes, which indicate the
SOC (XU et al., 2013). This approach is particularly effective for capturing detailed in-
formation about the battery’s condition, though it requires specialized equipment and is
typically applied in controlled settings or laboratory environments.

2.3.4 Filter Based Estimation

It is noticeable from the generic diagram for a filter-based estimation process (Fig-
ure 14) that adaptive filter methods inherently depend on a model, making them a fusion
of model-based approaches and filtering techniques (HOW et al., 2019). Among these
methods, the Kalman Filter is the most widely used for SOC estimation. The feedback
technique is applied to modify the output by following its input. It is a self-designing
system that can routinely regulate the output, significantly improving accuracy (DIN;
ABDEL-HAFEZ; HUSSEIN, 2016).

Figure 14 – A general Block Diagram of model based SOC estimation method.(KUMAR et al., 2023)

2.3.4.1 Kalman Filter

The KF is a widely used recursive algorithm for estimating the state of a dynamic
system in real-time. In the context of SOC estimation, it operates by combining prior
state estimates with incoming sensor data to produce an optimal estimation of the SOC,
continuously adjusting as new data becomes available. One of the key advantages of
the KF is its ability to handle measurement noise and process disturbances, which are
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common in battery systems (HANNAN et al., 2017). The KF assumes that system and
measurement noise follows a Gaussian distribution, allowing it to minimize the mean-
square error of its estimates under these assumptions.

However, the KF’s performance can be sensitive to inaccuracies in the model pa-
rameters, such as battery impedance or temperature-related variations. An accurate model
of the battery is crucial to maintain reliable SOC estimates. When implemented in SOC
estimation, the KF uses a battery model (often an equivalent circuit model) to predict
SOC and then corrects this prediction with measured terminal voltage values, refining its
accuracy over time. Despite these sensitivities, the KF remains a popular choice in SOC
estimation due to its efficiency and adaptability in real-time applications (TING et al.,
2014).

While the KF is a powerful tool for linear systems with Gaussian noise, many
real-world problems involve nonlinear dynamics and non-Gaussian noise distributions.
Several variants of the Kalman Filter have been developed to address these challenges,
each introducing modifications to accommodate different system characteristics. Some
of these variants include the Extended Kalman Filter (EKF), the Adaptive Extended
Kalman Filter (AEKF), the Unscented Kalman Filter (UKF), and the Ensemble Kalman
Filter (EnKF).

• Extended Kalman Filter (EKF): The EKF extends the Kalman Filter to nonlinear
systems by linearizing the system dynamics and measurement equations. Nonlinear
functions are approximated by their first-order Taylor expansion around the current
estimate. The linearized equations are then used in the standard Kalman Filter
framework for prediction and update (PLETT, 2004).

• Adaptive Extended Kalman Filter (AEKF): The AEKF improves the EKF by ad-
dressing sensitivity to incorrect system model parameters or noise statistics. It dy-
namically adapts the process and measurement noise covariance matrices based on
the observed system behavior. This adaptability improves robustness against model
mismatches and enhances accuracy in dynamic environments (SUN et al., 2021).

• Unscented Kalman Filter (UKF): The UKF avoids linearization by representing the
state distribution using a set of carefully chosen sample points, known as sigma
points. These sigma points are propagated through the nonlinear system to capture
the transformed mean and covariance, capturing higher-order effects compared to
the EKF (TIAN et al., 2014).

• Ensemble Kalman Filter (EnKF): The EnKF is designed for large-scale systems and
employs a Monte Carlo method. It generates an ensemble of states to represent the
state distribution. Each ensemble member is propagated through the system, and
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the results are combined to update the state estimate and covariance (LI et al.,
2022).

Table 3 presents a comparison of the different types of KF discussed, highlighting
their respective advantages and disadvantages. Such analysis is crucial for selecting the
most suitable filter based on the specific requirements and constraints of the application.

Table 3 – Advantages and disadvantages of filter-based SOC estimation approaches (Ul Hassan et al.,
2022).

Method Advantages Disadvantages

Kalman Filter (KF)
Can estimate SoC even when states are affected by

external perturbations; Provides real-time,
high-accuracy estimations.

Performance depends on model uncertainties;
Degrades with variations in physical parameters,

noise levels, and initial conditions;
High computational complexity.

Extended Kalman Filter (EKF)
Improves resilience to state prediction errors;

Can estimate SoC in noisy and inaccurate
initial conditions.

Lacks robustness; Struggles with linearization errors;
Errors are significant in nonlinear systems like solar PV.

Adaptive Extended Kalman Filter (AEKF)
More stable than EKF;

Does not require Jacobian matrix calculations;
Robust for online real-time estimation.

Computationally expensive; Requires long calculations
and many iterations compared to KF and EKF methods.

Unscented Kalman Filter (UKF) Effective for higher-order nonlinear systems;
Does not rely on Gaussian noise.

Low robustness under system modeling ambiguities;
Perturbations can lead to erroneous SoC results.

Ensemble Kalman Filter (EnKF)
Simplifies internal battery dynamics estimation;

Avoids covariance or Jacobian matrix calculations;
Reduces computational resource requirements.

Still requires well-modeled conditions for accurate estimations;
May face complexity in advanced systems.

To determine the ECM to be used with the filter, it is essential to have data
from the battery. These data provide the necessary parameters to accurately represent
the battery’s behavior in the model. Such information can typically be obtained from
experimental measurements or publicly available datasets. Some datasets that include the
required battery data are specified in Table 4, offering a valuable resource for parameter
extraction and model validation.

2.3.4.2 𝐻∞ Filter

The 𝐻∞ filter is a robust estimation method that extends beyond the KF’s frame-
work to handle uncertainties more effectively. Unlike the KF, which assumes Gaussian
noise, the 𝐻∞ filter is designed to be less dependent on noise distribution assumptions
(YU; XIONG; LIN, 2017). This approach makes it particularly suitable for SOC estima-
tion in environments with high uncertainty, such as when battery parameters fluctuate
due to age, temperature changes, or operating conditions. By minimizing the worst-case
error, the 𝐻∞ filter can provide more consistent SOC estimates when precise system
modeling is difficult or unexpected disturbances occur.

While the 𝐻∞ filter may not achieve the same optimality as the KF in well-defined
systems with Gaussian noise, it offers improved robustness in cases of model uncertainty
and measurement variability. This robustness makes the 𝐻∞ filter an attractive option for
SOC estimation in challenging environments where battery behavior may not conform to
strict model assumptions. However, implementing the 𝐻∞ filter can be computationally
intensive, and trade-offs in accuracy may be necessary under low-variability conditions.
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Table 4 – Dataset Information (HASIB et al., 2021) (VIDAL et al., 2020) (HOW et al., 2019)

Institution Dataset Description Ref.
TOYOTA
Research Institute

The battery dataset of Li-ion
Phosphate/Graphite cells, consists of 124
commercial LIBs cycled to breakdown
data beneath the fast-changing
parameters.

(TOYOTA Research Institute, 2020)

Mendeley Panasonic 18650PF Li-ion Battery Data
collected under controlled conditions.

(Mendeley, 2018)

IEEE Data Port Automotive Li-ion cell data set, including
Li-polymer cell model ePLB C020.

(IEEE Data Port, 2018)

U.S. Government’s
Open Data

Commercially usable lithium-ion 18650
sized batteries tested for aging and
performance under controlled conditions.

(U.S. Government’s Open Data, 2020)

Science Direct LiFePO4 category LIB demeanor and the
Maxwell ultracapacitor demeanor across
dynamic conditions.

(Science Direct, 2017)

CALCE Battery
Research Group

Battery parameters data sets, including
many different battery models for testing
and analysis.

(CALCE Battery Research Group, 2017)

Department of
Automation,
USTC

Experimental data of LIB and
ultracapacitor under DST and UDDS
profiles at room temperature.

(Department of Automation, USTC, 2016)

NASA Predicting Battery Life for Electric UAVs
based on collected datasets and
analytical models.

(NASA, 2019)

SGT Inc., NASA
Ames Research
Center

Randomized Battery Usage Data Set
collected for broad range of conditions
from NASA Ames Research Center.

(SGT Inc., NASA Ames Research Center, 2019)

2.3.5 Data-driven Estimation

Data-driven methods utilize machine learning algorithms to analyze historical data
and identify patterns for predicting SOC (VIDAL et al., 2020). These methods tend to
be more accurate due to their feedback schemes, allowing them to adapt to changes in
battery behavior over time. The precision of these methods heavily relies on the amount
of data available for training; a larger and more diverse dataset can significantly improve
the accuracy of the SOC predictions.

2.3.5.1 Neural Network

The NN estimation method for SOC leverages machine learning to model the
complex relationship between battery parameters and SOC. In this approach, the input
layer receives a vector of instantaneous values for current, voltage, and temperature,
while the output layer provides the instantaneous SOC estimate (HOW et al., 2019). A
non-linear mapping is developed that accurately captures the relationship between these
variables without requiring prior knowledge of the battery’s internal structure by training
the NN with input-output pairs. The accuracy of the NN model depends on carefully
selecting the hidden layers, neurons per layer, and suitable activation functions, which
allow the network to capture the nuanced dependencies between the inputs and the SOC
output. A representation of the NN structure is given by Figure 15.
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Figure 15 – Architecture of 2-layer neural network to estimated SOC at every time step.(CHEMALI et
al., 2018)

2.3.5.2 Deep Learning

Deep learning (DL) estimation methods leverage neural networks with multiple
hidden layers, as represented in Figure 16, to model complex relationships in SOC esti-
mation (CHEMALI et al., 2018). These methods include deep neural networks (DNN),
deep convolutional neural networks (DCNN), deep recurrent neural networks (DRNN),
long short-term memory networks (LSTM), and others. DL methods can capture intricate
patterns in battery data by using more than two hidden layers, improving estimation ac-
curacy even in highly non-linear scenarios. Each DL model type offers unique advantages;
for instance, DCNNs are effective in pattern recognition, while LSTMs excel in capturing
temporal dependencies, making deep learning a versatile approach for SOC estimation.

2.3.5.3 Fuzzy Logic

The fuzzy logic estimation method for SOC operates on partial truth, with truth
values ranging from completely true to false, depending on input values between 0 and
1. Unlike traditional binary logic, fuzzy logic allows for intermediate values, handling
uncertainties and non-linearities in battery SOC estimation (SALKIND et al., 1999).
This approach is beneficial where precise measurements are difficult, offering a flexible
way to interpret a range of SOC conditions.

Fuzzy logic systems use input parameters such as voltage, current, and tempera-
ture to estimate SOC in lithium-ion batteries. These inputs are converted into fuzzy sets
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Figure 16 – Architecture of Deep Neural Network (DNN) to estimated SOC at every time step.(DAI et
al., 2015)

through fuzzification, assigning degrees of membership to predefined linguistic variables
(e.g., "low," "medium," "high"). The fuzzified inputs are processed using fuzzy inference
rules constructed from expert knowledge to capture battery behavior under different con-
ditions.

The inference engine applies these rules to generate an intermediate output, which
is then converted into a numerical SOC estimate through defuzzification. While powerful,
fuzzy logic requires complex computations and sufficient memory for membership func-
tions and rules. Figure 17 graphically illustrates a basic Adaptive neuro-fuzzy inference
system (ANFIS) structure with five layers.

Figure 17 – Basic architecture of ANFIS.(TARASCON; ARMAND, 2001)
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2.3.5.4 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm used
primarily for classification tasks, though it can also be used for regression. The SVM es-
timation method constructs hyperplanes in high-dimensional space to effectively separate
data from different classes, making it useful for SOC estimation (ANTóN et al., 2013).
In this context, support vector regression (SVR), a variant of SVM, is commonly used
to predict the SOC of LIB based on input variables such as cell current, voltage, and
temperature (VIDAL et al., 2020). The SVM approach is well-suited to nonlinear estima-
tion problems due to its robustness against minor system variations, providing reliable
SOC predictions even when the battery system experiences slight changes in operating
conditions.

2.3.6 Hybrid Methods

Hybrid methods combine two or more algorithms to leverage the strengths of
each approach (HOW et al., 2019). For instance, model-based and data-driven methods
can be integrated to examine SOC, enhancing overall performance and delivering more
accurate results. A common technique within hybrid methods is using genetic algorithms
to optimize the parameters of the ECM, further improving the estimation process (CHEN
et al., 2016).

An overview of the principal estimation methods with advantages and disadvan-
tages is shown in Table 5.

Table 5 – Advantages and disadvantages of SOC methods (HANNAN et al., 2017)(RIVERA-BARRERA;
MUñOZ-GALEANO; SARMIENTO-MALDONADO, 2017)(QAYS et al., 2022).

Method Advantages Disadvantages

OCV Easy to implement;
High precision.

Takes long rest time to reach an equilibrium condition;
Only applicable off-line.

CC Easy to implement;
Less power consumption.

Has inaccurate results due to uncertain disturbances;
Difficulties in determining the initial value of SOC

which causes cumulative effects.
ECM Suitable for new batteries. Time consuming and costly; Aging effect is high.

EIS Online, low cost; Achieve good accuracy
if impedance value is normalized.

Results have an impact on aging and temperature;
suitable only for identical charging conditions.

KF
Accurately estimates states affected by

external disturbances such as noises
governed by a Gaussian distribution.

Can not be used directly for state prediction of a non-linear system;
It requires highly complex mathematical calculations; Possibilities
of divergence due to an inaccurate model and complex calculation.

H Satisfactory performance in terms of accuracy,
computational cost and time efficiency.

Aging, hysteresis, and temperature effects could deviate
the accuracy of the model.

NN Capable of working in battery non-linear conditions. Need large memory storage to store the trained data.

FL
Performs well in modeling a non-linear dynamic system;
Effective in predicting any suitable degree of accuracy

considering charging state, aging, and temperature.

Require large memory unit;
Has a complex computation;
Needs costly processing unit.

SVM
Performs well in non-linear and high dimension models;

Predict the SOC quickly and accurately by using the
right training data.

Has high complex computation; Trial and error process is
needed to adjust the parameters of the model which is

time-consuming.

Hybrid Not only reduces the cost of the system but also makes
the estimation results more effective and reliable.

Combining two or three methods is a laborious task;
Has high complex computation.
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2.4 Challenges in SOC estimation

Estimating the SOC of LIB presents several key challenges that must be addressed
to improve the algorithms’ accuracy, effectiveness, and robustness while maintaining low
computational complexity (HOW et al., 2019). The inconsistency of SOC among individ-
ual battery cells due to physical property changes after repeated charging and discharging
cycles can complicate estimation processes (BRAGARD et al., 2010). Addressing these
challenges is essential for developing more accurate and reliable SOC estimation methods
that can be effectively implemented in practical applications, ensuring optimal perfor-
mance and safety in battery management systems.

2.4.1 Battery Model Limitation

Estimating the State of Charge (SOC) depends heavily on the accuracy of the
battery model used. The estimation can be unreliable if the model is too simple or in-
accurate (ZHANG et al., 2018). In addition, many models do not consider the battery
hysteresis effect, losing accuracy (HANNAN et al., 2017). These challenges highlight the
need for a well-designed model to ensure reliable SOC estimation even under different
load conditions.

2.4.2 Cell Inconsistency

The inconsistency of SOC across individual battery cells within a LIB pack is a
significant issue, leading to challenges in delivering accurate information regarding the
overall pack SOC. Many factors cause cells in a pack to age at different rates, such as
variances in manufacturing processes and uneven temperature distribution (NAGUIB;
KOLLMEYER; EMADI, 2021).

Impurities in cell materials and manufacturing tolerances introduce inconsistencies
from the start. These factors result in initial disparities in cell parameters, such as capacity
and internal resistance.

The method is used to group cells within the pack, and cell-to-bus bar contact
resistance variations can cause unequal electrical connections. This leads to unequal con-
tributions from each cell, creating an inherent inconsistency at the beginning of the pack’s
life.

As the battery pack operates, these initial inconsistencies lead to:

• SOC Imbalance: Variations in the SOC among cells.

• Unequal Depth of Discharge (DOD): Some cells experience deeper discharges than
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others. The DOD describes the emptiness of the battery (conversely to the SOC).

𝐷𝑂𝐷(𝑡) = 1 − 𝑆𝑂𝐶(𝑡) (2.7)

In Equation 2.7, 𝐷𝑂𝐷(𝑡) represents the Depth of Discharge of the battery at time 𝑡,
and 𝑆𝑂𝐶(𝑡) is the State of Charge at the same time. The equation describes 𝐷𝑂𝐷(𝑡)
as the complement of 𝑆𝑂𝐶(𝑡), indicating how much of the battery’s capacity has
been used.

• Voltage and Current Distribution Issues: Cells may exhibit uneven voltage and cur-
rent levels.

• Temperature Imbalance: Uneven current flow and resistance lead to hot spots, caus-
ing uneven temperature distribution.

These inconsistencies impact overall pack performance, leading to inhomogeneous
cell degradation and accelerated pack aging.

2.4.3 Cell Unbalancing

Different charge levels among cells can lead to further inaccuracies (ZHANG et
al., 2018). It is necessary to have a method of balancing the pack to prevent cell SOC
differences from growing over time (HANNAN et al., 2017). In the case that the difference
in SOC between cells becomes too large, the usable capacity will be substantially reduced
due to the fullest cell limiting the maximum charge and the emptiest cell limiting the
minimum charge (HOW et al., 2019), that limited behavior is exemplified in Figure 18.

Figure 18 – The impact of the SOC imbalance on 4-cell battery pack during charging and discharging
scenarios.(NAGUIB; KOLLMEYER; EMADI, 2021)

To overcome this drawback, methods have been developed to balance battery cells.
These methods are categorized into passive and active balancing techniques, having dis-
sipative or non-dissipative characteristics. A comparison of the two balancing groups is
given in Figure 19. Table 6 gives the advantages and disadvantages of the most used
balancing methods.
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Figure 19 – A comparison between dissipative and non-dissipative cell balancing methods.(NAGUIB;
KOLLMEYER; EMADI, 2021)

2.4.3.1 Passive balancing method

The passive balancing method for LIBs keeps the battery pack balanced by using
resistors to remove extra energy from overcharged cells (UZAIR; ABBAS; HOSAIN, 2021).
This process continues until the charge of the overcharged cells matches the lower-charged
cells. However, this method wastes energy as heat, which can reduce the battery’s overall
efficiency. It should not be used during discharging, as it only removes extra energy instead
of redistributing it.

A common way to do passive balancing is with shunt resistors. This can be done
using fixed resistors or controlled shunt resistors. Fixed resistors always bypass current to
remove energy (KUTKUT; DIVAN, 1996), while controlled shunt resistors use switches
or relays to discharge only the overcharged cells, which is more efficient (CADAR; PE-
TREUS; PATARAU, 2010).

While passive balancing is simple and cheap, it is less effective than active bal-
ancing, especially for large or high-performance battery packs. It works best for low-cost
systems or as a backup method during charging.

2.4.3.2 Active balancing method

Active balancing methods are more efficient as they minimize energy loss and en-
sure the cells in a battery pack maintain optimal charge levels (AHMAD et al., 2019).
Below are some common active balancing techniques used in high-performance applica-
tions.

Capacitor Based: capacitors are utilized to transfer the energy between adjacent
cells or from the pack to the cell, thus achieving cell balancing, the basic principle is that a
capacitor is charged while connected in parallel with a higher voltage cell and discharged
while connected in parallel with a lower voltage cell (KIM et al., 2014).
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Inductor Based: one (pack to the weakest cells) or more inductors (senses the
voltage difference of the two neighboring cells in which the higher cell must be switched on
first to transfer the energy to the weakest cell) are utilized for cell balancing. The inductor-
based cell balancing methods have a relatively higher balancing speed and efficiency.
However, they have higher switch current stress (PHUNG; COLLET; CREBIER, 2014).

Transformer Based: can perform isolated power transfer between cells and the pack
and individual cells (LI; MI; ZHANG, 2013).

Converter Based: Typically, one converter per cell is utilized, and the converters
transfer power between adjacent cells. Rather than simply allowing the voltage of cells to
be matched like many of the prior methods discussed, the converters can control the flow
power in any way the BMS commands, allowing more flexibility for managing the SOC
of the cells (LEE et al., 2015).
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Table 6 – A comparison of cell balancing methods in lithium-ion battery packs.(NAGUIB; KOLLMEYER;
EMADI, 2021)

Method Advantage Disadvantage

Dissipative
balancing

Fixed
resistors

Easy to implement,
low cost

Low balancing speed,
continuous heat
dissipation and
pack discharge

Switched
resistors

High balancing speed,
relatively lower loss

More cost, limited to
low power due to

need to dissipate loss

Capacitor-based
balancing

Double tiered
switched capacitors

Adequate balancing
speed, modularity,

simple control

High number of
switches, high cost,

current spikes
Single tiered

switched capacitors
Fewer components,

more efficient
Low balancing speed,

current spikes

Inductor-based
balancing

Single
inductor

Satisfactory balancing
speed, higher efficiency

Complex control,
high cost

Multi-inductor Good balancing speed,
less control complexity High cost

Transformer
-based

balancing

Multiple
transformers

Good modular design,
good balancing speed

Very high cost, less
efficient, large size

Multi windings
transformer

Relatively
compact

Less efficient, limited
number of cells

Switched
transformer

Lower magnetic losses,
relatively compact

High cost, complex
control is needed

Common
Converter-based

balancing

Buck-Boost
converter

Good efficiency,
satisfactory balancing

speed

Larger size, cost,
complex control

is needed
Cuk

converter
Good balancing speed,
satisfactory efficiency

Complex control is
needed, relatively large size

Flyback
converter

Fewer components,
less complex control,
fast balancing speed

Transformer needed

Multi-module full
bridge converter

Can be scaled to high
power applications,

good balancing speed

Large size, high cost,
complex control

is needed
Quasi-resonant

converter
Easy to implement,

relatively higher efficiency Higher cost, and larger size

2.4.4 Data measurements

Accurate estimation of the SOC relies heavily on the precision of current and volt-
age sensors used in the BMS. Errors in these sensors can lead to significant discrepancies
in SOC readings, adversely affecting battery performance, safety, and reliability. Also,
equipment precision, noise impact, and electromagnetic interference can interfere with
data measurement from the test bench (HOW et al., 2019).
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2.4.5 Real time estimation

Real-time estimation of SOC faces significant challenges due to the limitations
of low-cost BMS, which often have restricted memory and processing power. Accurately
estimating SOC under real-world conditions is further complicated by temperature fluc-
tuations, noise, and unknown initial SOC (HOW et al., 2019).

2.4.6 Charging strategy

Charging strategies significantly affect SOC estimation, particularly under dy-
namic operating conditions. Variations in charge and discharge current rates can introduce
inaccuracies, as the battery’s behavior under rapid changes is complex to model (HAN-
NAN et al., 2017). Additionally, differences in self-discharge rates across cells can lead to
imbalances, further complicating SOC calculations. These factors make it challenging to
develop reliable SOC estimation methods that can adapt to varying charging conditions
while maintaining accuracy (HOW et al., 2019).

2.4.7 Thermal runaway

Estimating the SOC under high-temperature conditions poses a significant chal-
lenge, especially in EV applications (HANNAN et al., 2018). Thermal runaway - a rapid,
uncontrollable rise in temperature - can result from mechanical, electrical, or thermal
abuse of the battery and presents a serious safety concern. High temperatures impact the
accuracy of SOC estimation as they alter battery behavior and can lead to degradation or
failure, thus requiring further research and more sophisticated SOC estimation methods
to ensure reliable performance and safety under these conditions (HOW et al., 2019).

2.4.8 Aging

Battery aging introduces several challenges to SOC estimation by altering key
battery properties such as internal resistance, capacitance, and available power (ZHANG
et al., 2018). As a battery ages, degradation processes like the decomposition of the
solid electrolyte interphase (SEI), deposition at the anode, metal dissolution, and loss of
active material lead to reduced accuracy in SOC calculations. Additionally, factors such
as lithium plating and structural damage during overcharge or over-discharge further
complicate the estimation.

Aging effects vary with conditions like high-rate cycling, high or low temperatures,
and prolonged high SOC storage, Figure 20 simplifies some important aging factors. These
conditions accelerate material degradation, making SOC estimation increasingly unreli-
able over time. Addressing these challenges requires dynamic models capable of adapting
to aging-induced changes in battery behavior.
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Figure 20 – Causes for battery ageing at anode and their effects (WU et al., 2015).

Temperature significantly affects lithium-ion battery aging and SOC estimation.
Low temperatures increase internal resistance, reducing capacity, while high temperatures
accelerate degradation and risk of failure. Optimal operation between 15°C and 50°C, as
represented in Figure 21, minimizes aging, preserves performance, and supports reliable
SOC estimation, highlighting the importance of proper thermal management (HANNAN
et al., 2017).

Figure 21 – Lifecycle and temperature. (HANNAN et al., 2018).

These aging conditions cause gradual changes in battery performance, making it
difficult to track the real-time SOH (HANNAN et al., 2017) and remaining capacity of
the battery (HOW et al., 2019). As a result, SOC estimation becomes less reliable over
time.
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Figure 22 shows how battery aging is complex and difficult to estimate due to the
many factors involved (UZAIR; ABBAS; HOSAIN, 2021) (RABENHORST; WELLER;
BIRKE, 2021) (BIRKL et al., 2017). Battery aging can be divided into calendar aging,
which happens over time even without use, and cycling aging, caused by charging and
discharging (YARIMCA; CETKIN, 2024). Those two types of aging make it even harder
to predict how a battery will degrade.

Figure 22 – Degradation factors (EXPLAINED, 2019).

2.4.9 Pack estimation

The use of battery packs, consisting of multiple connected cells, introduces chal-
lenges in accurately estimating the SOC due to variations in individual cell performance
and non-uniform characteristics within the pack (HOW et al., 2019). Pack SOC estima-
tion methods, therefore, aim to simplify the estimation process and improve accuracy
by lumping the cells together as a single large cell, by estimating the SOC of some cells
at a lower update rate, or by estimating cell SOC difference compared to a mean cell
(NAGUIB; KOLLMEYER; EMADI, 2021). Those methods are discussed below:

2.4.9.1 Individual cell estimation

A straightforward method of pack SOC estimation is to implement a single SOC
estimator for each cell. The pack SOC is then determined as a function of the individual
cell SOCs, Figure 14, with the minimum cell SOC used to represent pack SOC during
discharging and the maximum cell SOC used during charging.

2.4.9.2 Lumped cell estimation

If the cells in a battery pack have similar characteristics, it may be suitable to
consider the pack to be one large cell and estimate SOC as a function of the overall pack
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Figure 23 – Individual cell SOC estimation method.(NAGUIB; KOLLMEYER; EMADI, 2021)

voltage and current, Figure 24,. This method would be a good option for less dynamic
applications where the SOC imbalance of cells is not expected to be large. However, this
method can lead to accelerated aging of the pack’s weakest cell and poor estimation of
pack SOC if cell characteristics vary too much.

Figure 24 – Lumped cell SOC estimation method.(NAGUIB; KOLLMEYER; EMADI, 2021)

2.4.9.3 Reference cell estimation

A single cell from the pack, referred to as the reference cell, can be selected to
represent the pack performance, Figure 25. The SOC of the reference cell is then esti-
mated using a higher bandwidth, which is a more accurate SOC estimation method. The
remaining cells may have a simpler, lower bandwidth SOC estimation method, allowing
for a good pack SOC estimate without needing a full performance estimator for each cell.
The reference cell is typically chosen based on the weakest cell.

Figure 25 – Reference cell SOC estimation method.(NAGUIB; KOLLMEYER; EMADI, 2021)

2.4.9.4 Mean cell and difference estimation

Mean cell SOC is estimated based on the mean of all the cell voltages and tem-
peratures in each cell, Figure 26. The difference in SOC, SOC compared to the mean
cell, is estimated as a function of the difference between the individual and mean cell
voltage, Vcell, and temperature, Vtemp, using simple cell difference models. An accu-
rate, higher bandwidth method is used for estimating the mean cell SOC, and a simpler,
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lower bandwidth method is used to estimate the SOC values. As a result, mean cell and
difference estimation methods typically estimate cell SOC and thus the pack SOC with
good accuracy and low computational complexity compared to other methods. It may also
include the difference in internal resistance, capacity, temperature, polarization voltage,
and OCV.

Figure 26 – Mean cell and difference SOC estimation method.(NAGUIB; KOLLMEYER; EMADI, 2021)
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3 Methodology

3.1 Introduction to the Kalman Filter in SOC Estimation

The Kalman Filter is a recursive, optimal estimation algorithm designed for situa-
tions where the variable of interest cannot be measured directly and must be inferred from
related noisy observations. It is particularly effective in systems where measurements are
collected from multiple sensors, which may each contribute noise or uncertainty (MAT-
LAB, 2016). By combining these imprecise measurements with a predictive model of the
system, the KF estimates the hidden states of a dynamic system, reducing uncertainty
and improving accuracy (BECKER, 2023).

Named after Rudolf E. Kálmán, who introduced it as a recursive solution to the
discrete-data linear filtering problem (KALMAN, 1960), the KF operates in two main
steps: prediction, which estimates the system’s state using a mathematical model, and
correction, which updates this estimate by integrating new measurements and weighting
them based on their reliability.

The KF is widely applied in engineering fields. For example, navigation systems
combine noisy measurements from GPS, accelerometers, and odometers to accurately
track the positions of vehicles or aircraft (MATLAB, 2016). Similarly, it is used in sig-
nal processing to filter out noise in sensor data and in control systems to optimize the
performance of robotic systems and industrial processes.

In lithium-ion battery management, the KF is crucial for estimating the state of
charge (SOC), a variable that cannot be directly measured. Instead, SOC must be inferred
from indirect and noisy measurements, which are influenced by temperature, current, and
battery aging factors. The KF continuously updates its estimates as new sensor data
becomes available, making it robust to system noise and measurement uncertainty (Ul
Hassan et al., 2022). This capability ensures real-time monitoring, improving battery
performance, longevity, and safety.

Unlike simpler filters such as the 𝛼-𝛽-𝛾 filter, which rely on fixed or iteration-
specific weighting coefficients and do not explicitly address uncertainty, the KF incor-
porates probabilistic models of uncertainty in both the system dynamics and the mea-
surements (TENNE; SINGH, 2000). This makes it a more versatile and reliable tool for
systems with dynamic variability and noisy environments.
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3.2 Kalman Filter as a state observer

The KF acts as a state observer in this system, where the primary variable of
interest is the SOC of the battery. Since SOC cannot be measured directly, the KF relies
on indirect measurements (PLETT, 2015), (GREWAL; ANDREWS, 2001).

As illustrated in Figure 27, the process involves comparing the indirect measure-
ments, in this case the measured voltage, from the battery with the estimated voltage
produced by the battery model. The battery ECM Thévenin model with additional R-C
pair simulates the dynamic behavior of the battery. The KF minimizes the difference (er-
ror) between the measured and estimated voltages through its recursive correction step.
This comparison validates the battery model, ensuring it accurately predicts the SOC.

By continuously updating its estimates, the KF adapts to variations caused by
external factors like load current, temperature, and battery aging. This process enables
robust and reliable SOC estimation, even in noise or measurement uncertainty.

Figure 27 – General process of SOC estimation with filtering algorithm (XU et al., 2024).

3.3 Background Concepts for KF Equations

It is important to define several key concepts to provide a foundation for under-
standing the KF. Figures 28 and 29 visually illustrate these concepts, which form the
backbone of KF functionality (GREWAL; ANDREWS, 2001).
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• Mean: The mean (𝜇) is the central value of a distribution, often referred to as
the "expected value." The predicted state estimate (𝑥̂𝑘−1), measurement (𝑦𝑘), and
optimal state estimate (𝑥̂𝑘) each has its own mean values, representing the most
likely value for each respective estimate.

Figure 28 – Illustration of measurement accuracy (bias), precision (uncertainty), and the expected value
of the measurements, represented by the probability density function (PDF) (BECKER, 2023).

• Variance and standard deviation: Variance (𝜎2) quantifies the spread of a distribu-
tion, indicating how much the values deviate from the mean. Its square root, the
standard deviation (𝜎), provides a measure of spread in the same units as the data.
In Figure 28, the spread of the probability density function (PDF) is characterized
by 𝜎, which shows the precision (uncertainty) of measurements.

• Bias: Bias refers to the difference between the expected value of an estimate and the
true value of the variable being measured. Figure 28 highlights the accuracy (bias)
as the distance between the true value and the measurement mean (𝜇𝑥).

• Gaussian distribution: A Gaussian distribution, or normal distribution, is a specific
type of probability distribution that is symmetric and bell-shaped. It is fully char-
acterized by its mean (𝜇) and variance (𝜎2). Both Figures 28 and 29 show examples
of Gaussian distributions.

• Probability density function (PDF): A PDF represents the likelihood of a random
variable taking specific values. The shape of a PDF, such as the Gaussian curves,
illustrates the relative probabilities of different outcomes.

• Covariance: Covariance measures the relationship between two random variables,
capturing how changes in one variable are associated with changes in another. In
the KF, the covariance matrix quantifies uncertainties in state estimates and their
correlation with measurement errors.
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Figure 29 demonstrates how the KF combines the predicted state estimate (blue
curve) and the measurement (orange curve) to produce an optimal state estimate (gray
curve). By weighting these based on their respective variances, the KF minimizes uncer-
tainty and produces an estimate. This process demonstrates how the KF utilizes statistical
principles like PDFs, Gaussian distributions, and covariance to achieve state estimation.

Figure 29 – Kalman Filter process showing predicted state, measurement, and optimal estimate through
Gaussian distributions (MATLAB, 2016).

3.4 State-Space Model for the Thévenin Model

The Thévenin model is a simplified way to represent how a battery behaves during
charging or discharging. This model captures both the instantaneous response (how the
voltage reacts immediately) and the transient response (how the voltage stabilizes over
time) (PLETT, 2015).

3.4.1 Components of the Thévenin Model

The Thévenin model consists of the following components:

• Open-Circuit Voltage (𝑉𝑂𝐶): The ideal voltage of the battery when no current is
flowing. It depends on the battery’s SOC, which indicates how full or empty the
battery is.

• Internal Resistance (𝑅0): A resistance inside the battery that causes a voltage drop
when current flows.

• Parallel RC Network (𝑅1, 𝐶1): This network models how the battery reacts to sudden
changes in load. The resistor 𝑅1 slows down the adjustment of voltage, while the
capacitor 𝐶1 temporarily stores energy during transitions.

3.4.2 State Variables

To model the battery, we define two key state variables:
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• 𝑆𝑂𝐶: representing how much energy is left in the battery.

• 𝑉1: voltage across the RC network, representing the battery’s slower response to
changes.

These are grouped into a state vector:

𝑥 =
⎡⎣𝑆𝑂𝐶

𝑉1

⎤⎦ . (3.1)

3.4.3 State Transition Equation

The battery’s behavior over time is described by:

1. How 𝑆𝑂𝐶 changes: The SOC decreases when current (𝑖) is drawn from the battery:

𝑑𝑆𝑂𝐶

𝑑𝑡
= − 𝑖

3600 · 𝐴𝐻
, (3.2)

where 𝐴𝐻 is the battery’s capacity in ampere-hours, and 3600 converts hours to
seconds.

2. How 𝑉1 changes: The transient voltage 𝑉1 evolves based on the current (𝑖) and the
RC network properties:

𝑑𝑉1

𝑑𝑡
= 𝑖

𝐶1
− 𝑉1

𝑅1 · 𝐶1
. (3.3)

In discrete time (step 𝑘), these equations are combined into the state-space form:

𝑥𝑘 = 𝐴 · 𝑥𝑘−1 + 𝐵 · 𝑢𝑘 + 𝑤𝑘, (3.4)

where:

• 𝐴: Describes how the state (𝑆𝑂𝐶 and 𝑉1) evolves over time.

• 𝐵: Describes how the input current (𝑖) affects the state.

• 𝑢𝑘 = 𝑖: Is the input current.

• 𝑤𝑘: Represents process noise.

3.4.4 Measurement Equation

The measured terminal voltage (𝑉𝑡) is given by (HURIA et al., 2013):

𝑉𝑡 = 𝑉𝑂𝐶(𝑆𝑂𝐶) − 𝑖𝑅0 − 𝑉1, (3.5)

which relates the SOC and transient voltage 𝑉1 to the output voltage.
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In matrix form:
𝑧𝑘 = 𝐻 · 𝑥𝑘 + 𝑣𝑘, (3.6)

where:

• 𝐻: Maps the state vector (𝑆𝑂𝐶, 𝑉1) to the terminal voltage.

• 𝑣𝑘: Represents measurement noise.

3.4.5 Final Matrices

The state-space matrices for the Thévenin model in discrete time are:

3.4.5.1 State Transition Matrix (𝐴)

This matrix captures how the 𝑆𝑂𝐶 and 𝑉1 evolve without external inputs:

𝐴 =
⎡⎣1 0
0 𝑒

− 𝑇𝑠
𝑅1·𝐶1

⎤⎦ , (3.7)

where 𝑇𝑠 is the sampling time.

3.4.5.2 Control Input Matrix (𝐵)

This matrix captures how the input current (𝑖) affects 𝑆𝑂𝐶 and 𝑉1:

𝐵 =
⎡⎣− 𝑇𝑠

3600·𝐴𝐻
1

𝐶1

⎤⎦ . (3.8)

3.4.5.3 Measurement Matrix (𝐻)

This matrix maps the state (𝑆𝑂𝐶, 𝑉1) to the measured terminal voltage (𝑉𝑡):

𝐻 =
[︁

𝜕𝑉𝑂𝐶

𝜕𝑆𝑂𝐶
−1

]︁
. (3.9)

3.4.6 Explanation of the Matrices

• State Transition Matrix (𝐴): The first row (1, 0) shows that 𝑆𝑂𝐶 does not depend
on 𝑉1. The second row shows that 𝑉1 decays over time due to the RC network, with
an exponential factor (𝑒− 𝑇𝑠

𝑅1·𝐶1 ) modeling the delay.

• Control Input Matrix (𝐵): The first row models how current (𝑖) reduces 𝑆𝑂𝐶 over
time. The second row models how current directly affects the voltage 𝑉1 through
the capacitor 𝐶1.
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• Measurement Matrix (𝐻): The first term ( 𝜕𝑉𝑂𝐶

𝜕𝑆𝑂𝐶
) relates SOC to the open-circuit

voltage (𝑉𝑂𝐶). The second term (−1) accounts for the contribution of 𝑉1 to the
terminal voltage.

This state-space model allows us to:

1. Predict how 𝑆𝑂𝐶 and 𝑉1 change over time based on the current.

2. Estimate 𝑆𝑂𝐶 using measurable quantities like the terminal voltage (𝑉𝑡).

3. Handle dynamic and noisy systems using tools like the Kalman Filter.

These equations provide the foundation for representing the battery’s behavior
dynamically and are critical for implementing the KF for SOC estimation.

3.5 Kalman Filter Equations and Implementation

The KF operates in a recursive manner, alternating between two main steps: pre-
diction and update (GREWAL; ANDREWS, 2001), (SARKKA, 2007). These steps are
illustrated in Figure 30.

Figure 30 – Conceptual representation of the Kalman Filter process (RIMSHA et al., 2023).

In the prediction step, the state and error covariance are estimated based on the
system’s dynamics. In the update step, these predictions are corrected using measurements
to produce an improved estimate.

To further illustrate the Kalman Filter update process, Figure 31 shows how the
prior state estimate and measurement information are combined to produce the current
state estimate.
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Figure 31 – Illustration of the KF’s prediction and update process, showing how prior estimates and
measurements are combined to produce the current state estimate (BECKER, 2023).

Figure 32 provides a detailed schematic representation of the Kalman Filter, incor-
porating the five mathematical KF equations that will be described, and the relationships
between the variables.

Figure 32 – Detailed schematic of the Kalman Filter algorithm (Ul Hassan et al., 2022).

3.5.1 Prediction Phase

During the prediction phase, the KF uses the system model to predict the next
state (𝑥𝑘) and its uncertainty (𝑃𝑘) based on the current state estimate and the input:

𝑥̂𝑘|𝑘−1 = 𝐴 · 𝑥̂𝑘−1|𝑘−1 + 𝐵 · 𝑢𝑘, (3.10)

where:
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• 𝑥̂𝑘|𝑘−1: The predicted state vector at step 𝑘.

• 𝐴: The state transition matrix.

• 𝐵: The control input matrix.

• 𝑢𝑘: The input current (𝑖).

The uncertainty of the predicted state is given by:

𝑃𝑘|𝑘−1 = 𝐴 · 𝑃𝑘−1|𝑘−1 · 𝐴𝑇 + 𝑄, (3.11)

where:

• 𝑃𝑘|𝑘−1: The predicted state covariance matrix.

• 𝑃𝑘−1|𝑘−1: The state covariance matrix from the previous step.

• 𝑄: The process noise covariance matrix.

3.5.2 Correction Phase

In the correction phase, the KF adjusts its predictions using the measurement 𝑧𝑘

(in this case, the terminal voltage 𝑉𝑡) to refine the state estimate:

𝐾𝑘 = 𝑃𝑘|𝑘−1 · 𝐻𝑇 · (𝐻 · 𝑃𝑘|𝑘−1 · 𝐻𝑇 + 𝑅)−1, (3.12)

where:

• 𝐾𝑘: The Kalman gain matrix, which determines how much the prediction is adjusted
based on the measurement.

• 𝐻: The measurement matrix.

• 𝑅: The measurement noise covariance matrix.

The updated state estimate is calculated as:

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘 · (𝑧𝑘 − 𝐻 · 𝑥̂𝑘|𝑘−1), (3.13)

where:

• 𝑧𝑘: The measured terminal voltage.

• 𝐻 · 𝑥̂𝑘|𝑘−1: The predicted terminal voltage based on the state estimate.
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Finally, the uncertainty of the updated state is:

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘 · 𝐻) · 𝑃𝑘|𝑘−1, (3.14)

where:

• 𝑃𝑘|𝑘: The updated state covariance matrix.

• 𝐼: The identity matrix.

matrix.

The summary of the steps with the inputs is drawn on the flowchart of Figure 33
for one iteration.

Figure 33 – Flowchart of Kalman filter for one iteration (RIMSHA et al., 2023).

3.5.3 Understanding Q and R

The matrices 𝑄 and 𝑅 are critical to the KF’s performance as they represent the
noise in the system (MERWE; WAN, 2001), (SARKKA, 2007):
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3.5.3.1 Process Noise Covariance (𝑄)

The matrix 𝑄 models the uncertainty in the system dynamics. It accounts for:

• Variability in the battery’s internal parameters (e.g., 𝑅1, 𝐶1).

• Unmodeled dynamics, such as temperature effects.

• Errors in the input current measurement (𝑖).

In the Thévenin model, 𝑄 is typically a diagonal matrix:

𝑄 =
⎡⎣𝜎2

𝑆𝑂𝐶 0
0 𝜎2

𝑉1

⎤⎦ , (3.15)

where:

• 𝜎2
𝑆𝑂𝐶 : The variance of the process noise for SOC.

• 𝜎2
𝑉1 : The variance of the process noise for 𝑉1.

3.5.3.2 Measurement Noise Covariance (𝑅)

The matrix 𝑅 represents the uncertainty in the measurements. It accounts for:

• Noise in the terminal voltage (𝑉𝑡) sensor.

• Imprecision in measuring the open-circuit voltage (𝑉𝑂𝐶).

For a single measurement (terminal voltage), 𝑅 is a scalar:

𝑅 = 𝜎2
𝑉𝑡

, (3.16)

where:

• 𝜎2
𝑉𝑡

: The variance of the measurement noise for the terminal voltage.

3.5.3.3 Balancing Q and R

The values of 𝑄 and 𝑅 are chosen based on the expected noise levels in the system
and measurements:

• A larger 𝑄 assumes more variability in the system dynamics, making the KF rely
more on measurements (𝑧𝑘).

• A larger 𝑅 assumes more noise in the measurements, making the KF rely more on
the system model.

Proper tuning of 𝑄 and 𝑅 is critical to achieve accurate SOC estimation.
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3.6 Simulation and Validation

Accurate estimation of SOC in batteries requires a robust algorithm capable of
handling the nonlinearities inherent in battery behavior (HURIA et al., 2013), (XU et
al., 2024). In this study, the simulation and validation were conducted using MATLAB
Simulink, which provides a pre-configured block for SOC estimation. This block leverages
the Extended Kalman Filter (EKF), offering a real-time solution tailored to nonlinear
battery models.

3.6.1 Simulink EKF Implementation

The MATLAB Simulink block automates the implementation of the EKF, mak-
ing it highly suitable for real-world applications(MATHWORKS, 2024). It is crucial to
emphasize that:

• The Simulink block automatically derives the discretized state-space equations for
the battery model, including the Jacobian matrices needed for EKF linearization.

• This automation ensures the EKF captures the nonlinear dynamics of the battery,
including the relationship between SOC and terminal voltage, without requiring
manual derivation of the equations.

By handling these tasks internally, the Simulink block simplifies the process while
maintaining accuracy. It computes:

• The state transition matrix (𝐹𝑑), capturing the dynamics of SOC and transient
voltage over time.

• The measurement matrix (𝐻𝑑), relating the states (SOC and 𝑉1) to the measured
terminal voltage.

• The control input matrix (𝐺𝑑), modeling the influence of the input current (𝑖) on
the state variables.

These matrices, which were introduced in earlier sections, are derived automati-
cally for every time step during simulation, allowing for seamless real-time SOC estima-
tion.

The Simulink block makes implementing the EKF much easier, but the KF theory
discussed in this work is still important. The KF principles, like the state-space model,
prediction, and correction steps, are the foundation of the EKF. The main difference is
how the EKF handles nonlinearities:
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• The EKF extends the KF by linearizing the system around the current state using
Jacobian matrices.

• Simulink manages this process internally, making it possible to perform real-time
computations for nonlinear battery models.
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4 Results

4.1 Results and Analysis

In this section, we evaluate the performance of the KF for SOC estimation by
varying the filter parameters while keeping the battery model parameters fixed. The sim-
ulation was conducted using MATLAB Simulink, as shown in Figure 34, which provides
a comprehensive framework for SOC estimation using a built-in Kalman Filter block.

Figure 34 – Simulink model for SOC estimation using Kalman Filter (MATHWORKS, 2024).

The fixed initial parameters for the battery, including its capacity, thermal charac-
teristics, and initial state of charge, are summarized in Table 7, are based on experimental
data offered by the MATLAB/Simulink database (MATHWORKS, 2024).

Table 7 – Fixed Parameters for the Battery Model

Parameter Value
Cell capacity (𝐴𝐻) 27 A · h
Thermal mass (𝐶𝑚) 100 J/K
Cell area (𝐴) 0.1019 m2

Heat transfer coefficient (ℎ𝑐𝑜𝑛𝑣) 5 W/(K · m2)
Initial SOC (𝑆𝑂𝐶0) 0.5

Initializing the battery parameters (𝑉0,𝑅0, 𝑅1, and 𝐶1 ) in Table 8,9, 10 and 11,
based on experimental data offered by the MATLAB/Simulink database.

A time constant 𝜏1 for the parallel section relates the polarization resistance (𝑅1)
and the parallel RC capacitance (𝐶1) using the relationship:

𝐶1 = 𝜏1

𝑅1
. (4.1)
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Table 8 – OCV, V0(SOC, T), (V) (MATHWORKS, 2024)

5°C 20°C 40°C
SOC 0 3.49 3.50 3.51

SOC 0.1 3.55 3.57 3.56
SOC 0.25 3.62 3.63 3.64
SOC 0.5 3.71 3.71 3.72

SOC 0.75 3.91 3.93 3.94
SOC 0.9 4.07 4.08 4.08
SOC 1.0 4.19 4.19 4.19

Table 9 – Terminal resistance, R0(SOC, T), (ohm) (MATHWORKS, 2024)

5°C 20°C 40°C
SOC 0 0.0117 0.0085 0.0090

SOC 0.1 0.0110 0.0085 0.0090
SOC 0.25 0.0114 0.0087 0.0092
SOC 0.5 0.0107 0.0082 0.0088

SOC 0.75 0.0107 0.0083 0.0091
SOC 0.9 0.0113 0.0085 0.0089
SOC 1.0 0.0116 0.0085 0.0089

Table 10 – First polarization resistance, R1(SOC, T), (ohm) (MATHWORKS, 2024)

5°C 20°C 40°C
SOC 0 0.0109 0.0029 0.0013

SOC 0.1 0.0069 0.0024 0.0012
SOC 0.25 0.0047 0.0026 0.0013
SOC 0.5 0.0034 0.0016 0.0010

SOC 0.75 0.0033 0.0023 0.0014
SOC 0.9 0.0033 0.0018 0.0011
SOC 1.0 0.0028 0.0017 0.0011

Table 11 – First time constant, tau1(SOC, T), (s) (MATHWORKS, 2024)

5°C 20°C 40°C
SOC 0 20 36 39

SOC 0.1 31 45 39
SOC 0.25 109 105 61
SOC 0.5 36 29 26

SOC 0.75 59 77 67
SOC 0.9 40 33 29
SOC 1.0 25 39 33

The parameters analyzed are:

• Process noise covariance (𝑄).

• Measurement noise covariance (𝑅).

• Initial SOC estimate (𝑆𝑂𝐶0).
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• Initial error covariance (𝑃0).

• Sampling time (𝑇𝑠).

Each experiment changes one parameter at a time, and the remaining parameters are
fixed to their initial values shown in Table 12. The aim is to analyze the sensitivity of
the SOC estimation to these parameters and observe how they affect estimation accuracy
and convergence.

Table 12 – Kalman Filter Parameters (MATHWORKS, 2024)

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 1 s

For the initial parameter from Table 12, the SOC curve obtained is shown in Figure
35.

Figure 35 – Result for MATLAB dataset (MATHWORKS, 2024).

4.1.1 Variation of Process Noise Covariance Q

The process noise covariance matrix (𝑄) reflects the uncertainty in the system
dynamics. To evaluate its effect, we vary 𝑄 across three different configurations:



Chapter 4. Results 65

1. Low Process Noise (𝑄 =
⎡⎣1 × 10−6 0

0 1 × 10−6

⎤⎦): In this scenario, the filter assumes

the system model is highly accurate. This is expected to make the filter slower to
adapt to real-time changes, potentially resulting in lagging SOC estimates.

For an even lower Process Noise, Q later will be set to (𝑄 =
⎡⎣1 × 10−8 0

0 1 × 10−8

⎤⎦).

Table 13 – Kalman Filter Parameters Low Process Noise

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−6 0

0 1 × 10−6

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 1 s

The SOC estimation curves for each configuration are shown in Figures 36 and 37.

Figure 36 – SOC estimation for Low Process Noise.

2. High Process Noise (𝑄 =
⎡⎣1 × 10−3 0

0 1 × 10−3

⎤⎦): Here, the filter assumes significant

uncertainty in the system dynamics. It is expected to respond more quickly to
changes but may also introduce more noise into the SOC estimates.

For an even higher Process Noise, Q will later be set to (𝑄 =
⎡⎣1 × 10−2 0

0 1 × 10−2

⎤⎦).

The SOC estimation curves for each configuration are shown in Figure 38 and 39.
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Figure 37 – SOC estimation for even Lower Process Noise.

Table 14 – Kalman Filter Parameters High Process Noise

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−3 0

0 1 × 10−3

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 1 s

4.1.2 Variation of Measurement Noise Covariance R

The measurement noise covariance (𝑅) models the noise in the terminal voltage
measurements. The following configurations are tested:

1. Low Measurement Noise (𝑅 = 0.35): The filter assumes the measurements are highly
reliable. It is expected to rely heavily on the measurements, which could lead to
instability if the actual measurements are noisy.

The SOC estimation curve for Table 15 configuration is shown in Figure 40.

2. High Measurement Noise (𝑅 = 1.4): The filter assumes noisy measurements and
relies more on the system model. This may result in smoother but slower SOC
estimates.

The SOC estimation curve for Table 16 configuration is shown in Figure 41.
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Figure 38 – SOC estimation for High Process Noise.

Figure 39 – SOC estimation for even Higher Process Noise.

4.1.3 Variation of Initial SOC Estimate (𝑆𝑂𝐶0)

The initial SOC estimate (𝑆𝑂𝐶0) influences how quickly the filter converges to
the true SOC. The following configurations are analyzed:

1. Underestimated SOC (𝑆𝑂𝐶0 = 0.1): The initial SOC is set significantly lower than
the actual initial SOC.
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Table 15 – Kalman Filter Parameters Low Measurement Noise

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 0.35

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 1 s

Figure 40 – SOC estimation for Low Measurement Noise.

Table 16 – Kalman Filter Parameters High Measurement Noise

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 1.4

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 1 s

The SOC estimation curve for Table 17 configuration is shown in Figure 42.

2. Overestimated SOC (𝑆𝑂𝐶0 = 0.95): The initial SOC is set higher than the actual
initial SOC. Similar to the underestimated case, convergence is expected to take
longer.

The SOC estimation curve for Table 18 configuration is shown in Figure 43.
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Figure 41 – SOC estimation for High Measurement Noise.

Table 17 – Kalman Filter Parameters for Underestimated SOC

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.1
Sampling time (Ts) 1 s

Table 18 – Kalman Filter Parameters for Overestimated SOC

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.95
Sampling time (Ts) 1 s

4.1.4 Variation of Initial Error Covariance (𝑃0)

The initial error covariance matrix (𝑃0) reflects the filter’s initial uncertainty about
the states. The following configurations are tested:
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Figure 42 – SOC estimation for initial underestimated SOC.

Figure 43 – SOC estimation for initial overestimated SOC.

1. Low Initial Uncertainty (𝑃0 =
⎡⎣1 × 10−6 0

0 0.1

⎤⎦): The filter assumes high confidence

in the initial state estimates. This may lead to slower adaptation if the initial esti-
mate is incorrect.

The SOC estimation curve for Table 19 configuration is shown in Figure 44.
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Table 19 – Kalman Filter Parameters for Low Initial Uncertainty

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−6 0

0 0.1

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 1 s

Figure 44 – SOC estimation for Low Initial Uncertainty.

2. High Initial Uncertainty (𝑃0 =
⎡⎣1 × 10−3 0

0 10

⎤⎦): The filter assumes significant un-

certainty in the initial state estimates. It is expected to adapt more quickly but may
be more prone to oscillations.

Table 20 – Kalman Filter Parameters for High Initial Uncertainty

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−3 0

0 10

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 1 s

The SOC estimation curve for Table 20 configuration is shown in Figure 45.
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Figure 45 – SOC estimation for High Initial Uncertainty.

4.1.5 Variation of Sampling Time (𝑇𝑠)

Sampling time (𝑇𝑠) determines how frequently the filter updates its state and
measurement estimates. The following configurations are analyzed:

1. Fast sampling (𝑇𝑠 = 0.5 s): The filter processes measurements more frequently. This
is expected to make the SOC estimate more responsive to changes but may also
introduce more noise due to higher sensitivity to measurement variations.

Table 21 – Kalman Filter Parameters for Fast Sampling (𝑇𝑠 = 0.5 s)

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 0.5 s

The SOC estimation curve for Table 21 configuration is shown in Figure 46.

2. Slow sampling (𝑇𝑠 = 2 s): The filter processes measurements less frequently. This is
expected to result in smoother SOC estimates but may lag behind rapid changes in
SOC.

The SOC estimation curve for Table 22 configuration is shown in Figure 47.
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Figure 46 – SOC estimation for fast sampling (𝑇𝑠 = 0.5 s).

Table 22 – Kalman Filter Parameters for Slow Sampling (𝑇𝑠 = 2 s)

Parameter Value

Process noise covariance (Q)
[︃
1 × 10−4 0

0 1 × 10−4

]︃
Measurement noise covariance (R) 0.7

Initial error covariance (P0)
[︃
1 × 10−5 0

0 1

]︃
Initial SOC for the estimator (SOC0) 0.8
Sampling time (Ts) 2 s

4.1.6 Discussion

The results demonstrate how different filter parameters influence SOC estimation:

• 𝑄: Higher process noise makes the system respond faster but adds more fluctuations,
while lower process noise slows down the response but provides smoother estimates.

For 𝑄 = 10−2, as shown in Figure 39, the SOC estimation was highly responsive
to dynamic changes but exhibited significant noise in the estimated curve, as ex-
pected. Reducing 𝑄 to 10−3 (Figure 38) resulted in a more balanced behavior, with
improved stability and reduced noise. For 𝑄 = 10−6 (Figure 36), the estimation
became smoother and more stable, but minor lags were observed during transitions.
Finally, with 𝑄 = 10−8 (Figure 37), the estimation was overly smooth and lagged
significantly, confirming that very small 𝑄 values overly restrict adaptability to rapid
changes.
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Figure 47 – SOC estimation for slow sampling (𝑇𝑠 = 2 s).

• 𝑅: Higher measurement noise smooths the SOC estimate but makes it less respon-
sive. In comparison, lower measurement noise makes the filter more sensitive to noise
in measurements (the filter will trust the predictions more than the measurements).

For 𝑅 = 0.35, Figure 40 illustrates that the SOC estimation balanced responsiveness
and noise suppression. Increasing 𝑅 to 1.4 (Figure 41) prioritized smoothness, with
minimal noise in the estimation, but introduced noticeable lag during dynamic SOC
changes. This behavior aligns with the theoretical trade-off between reliance on the
model and the measurements.

• 𝑆𝑂𝐶0: Accurate initialization minimizes convergence time, while poor initialization
delays convergence.

For an underestimated initial SOC of 𝑆𝑂𝐶0 = 0.1 (Figure 42), the filter exhibited
delayed convergence due to the large initial error, requiring more time to align with
the true SOC. Conversely, for 𝑆𝑂𝐶0 = 0.95 (Figure 43), the convergence was faster
as the initial error was smaller. Both cases demonstrate the filter’s robustness.

• 𝑃0: Higher initial uncertainty enables faster adaptation but risks oscillations, while
lower uncertainty slows adaptation.

The figures for 𝑃0 =
⎡⎣10−6 0

0 0.1

⎤⎦ (Figure 44) and 𝑃0 =
⎡⎣10−3 0

0 10

⎤⎦ (Figure 45)

appear visually similar, with no significant difference in the SOC estimation curves.
This lack of observable difference could be attributed to the KF’s ability to adapt
to initial conditions quickly. Once the filter begins receiving measurements, the in-
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fluence of the initial error covariance diminishes, especially if the system dynamics
are well-modeled and the process and measurement noises (𝑄 and 𝑅) are appro-
priately tuned. Another possible reason is that the system’s dynamics and noise
characteristics might overshadow the initial uncertainty defined by 𝑃0, making its
effect negligible in this case.

• 𝑇𝑠: Smaller 𝑇𝑠 makes the filter more responsive but noisier, while larger 𝑇𝑠 smooths
the estimate but slows the response.

For 𝑇𝑠 = 0.5 s, shown in Figure 46, the SOC estimation closely followed the real SOC
but exhibited more noise due to frequent updates. For 𝑇𝑠 = 2 s, as shown in Figure
47, the estimation was smoother but showed slight lag during rapid SOC transitions,
as expected. These results demonstrate the trade-off between responsiveness and
noise suppression when adjusting the sampling time.

These insights guide the selection of filter parameters for optimal SOC estimation
in different operating conditions.
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Conclusions and Final Considerations

This work introduced the main concepts related to LIBs and SOC estimation
methods, aiming to provide a clear and accessible overview of this important topic. It
covered the basics of battery systems, battery management systems, and various SOC
estimation techniques, giving readers a foundational understanding of the methods used
in this field.

The study discussed several SOC estimation methods, such as lookup tables,
Coulomb counting, model-based approaches, filter-based methods, and data-driven tech-
niques. Each method’s strengths and weaknesses were highlighted, along with the chal-
lenges they address, like cell inconsistencies, aging effects, and real-time implementation.

To demonstrate how SOC estimation can be applied in practice, the KF was imple-
mented using a simple state-space model for the Thévenin battery model. The simulation
explored the effects of various parameter adjustments, such as process noise, measure-
ment noise, initial state estimates, and sampling time, on SOC estimation. The results
aligned with theoretical expectations, showcasing the KF’s adaptability and robustness
in handling different scenarios. This reinforced the importance of parameter tuning to
balance accuracy, responsiveness, and noise suppression. Moreover, the study emphasized
that while the implementation used standard KF equations, the MATLAB Simulink block
applied the EKF internally, making it suitable for real-time nonlinear battery models.

This study is an introductory step into the topic of SOC estimation. Future re-
search can explore the use of datasets or experimental data from test benches to validate
and compare different estimation models under varying conditions. Additionally, further
work could focus on advanced methods, such as improving EKF and AKF, to address
practical challenges like sensor inaccuracies, cell balancing, and the nonlinear behavior
of aging effects on battery performance. These efforts will help develop better and more
reliable battery management systems.

In conclusion, this work provides a starting point for learning about SOC esti-
mation methods. By summarizing key concepts and demonstrating a practical example,
it sets the stage for further research that can improve the performance and safety of
lithium-ion batteries.
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