
Scaling Stateful Network
Services on Multicore Architectures

Fabŕıcio Barbosa de Carvalho

Advisor: Prof. Ronaldo Alves Ferreira, Ph.D.

Submitted in partial fulfilment of the
requirements for the degree of
Doctor of Computer Science

Faculdade de Computação
Universidade Federal de Mato Grosso do Sul

November, 2024

Scaling Stateful Network
Services on Multicore Architectures

Fabŕıcio Barbosa de Carvalho

Advisor: Prof. Ronaldo Alves Ferreira, Ph.D.

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Computer Science

Faculdade de Computação
Universidade Federal de Mato Grosso do Sul

November, 2024

https://orcid.org/0000-0002-3481-4251
https://orcid.org/0000-0002-9144-7187

Abstract

In recent years, network speeds have surged while CPU speeds have plateaued,

making kernel-based networking stacks increasingly impractical, particularly for

multicore servers in datacenters. Consequently, kernel-bypass networking stacks

and multicore applications have become necessary to keep up with faster datacenter

networks. A large number of applications still require TCP for interoperability with

legacy applications. However, TCP processing is resource-intensive compared to

microsecond-scale applications, and its per-connection state complicates scheduling

across multicore architectures. The interaction between network stack and

application scheduling, whether on shared or different workers (e.g., cores), strongly

impacts performance by affecting cache usage, CPU pipeline efficiency, and memory

access patterns. Given the demands of high-speed networks, optimizing these

architectures is essential, yet many existing systems fail to address the performance

of TCP and its interactions with the application under real-world conditions.

One of the goals of this thesis is to investigate the effective scheduling of a TCP

stack alongside applications on multicore architectures, emphasizing the trade-offs

involved in allocating workers for both TCP and application processing. This thesis

takes a principled look at the relationship between a stateful network protocol with

strong guarantees for scheduling such a stack with multicore applications. To allow

fair comparisons, we design and implement Demieagle, a benchmark framework that

includes (i) a flexible, kernel-bypassing, microsecond-scale TCP stack that schedules

network processing and application requests with different multicore architectures

and (ii) a benchmark suite with workloads across a range of characteristics that

i

stress different trade-offs in multicore scheduling. Demieagle allows the execution

of “apples-to-apples” experiments to uncover the trade-offs of different multicore

scheduling policies and architectures; thus, guiding application programmers toward

an ideal scheduling policy for their workload.

In this thesis, we also address the complexity of scaling network functions.

Network Function Virtualization (NFV) promises better utilization of computational

resources by dynamically scaling resources on demand. However, most network

functions are stateful and require per-packet state updates. During a scaling

operation, workers need to synchronize access to a shared state to avoid race

conditions and to guarantee that network functions process packets in arrival order.

Unfortunately, the classic approach to control concurrent access to a shared state

with locks does not scale to today’s throughput and latency requirements. To

address these challenges, we design, implement, and evaluate Dyssect , a system

that enables dynamic scaling of stateful network functions by disaggregating their

states. By carefully coordinating actions between workers and a central controller,

Dyssect migrates shards and flows between workers for load balancing or traffic

prioritization without using locks or reordering packets. Also, Dyssect ’s state

disaggregation allows the offloading of stateful network functions to programmable

NICs and makes it easier to explore hardware-software trade-offs that better suit

specific network functions and traffic loads. Our experimental evaluation shows that

Dyssect reduces tail latency up to 32.04% and increases throughput up to 19.36%

compared to state-of-the-art competing solutions.

Keywords: Network Services, TCP, Stateful Network Functions, NFV.

ii

“I have not failed.

I’ve just found 10,000

ways that won’t work.”

— Thomas A. Edison
iii

Acknowledgements

First and foremost, I am deeply grateful to my parents, Elizabeth and Luiz Carlos;

my siblings, Luiz Carlos, Nayara, and Tatiana; and my nephews, Dario and

Natan. Your appreciation and encouragement of my academic achievements have

inspired me constantly. I am forever grateful for your presence in my life, and this

accomplishment is as much yours as it is mine.

I am sincerely grateful to my dedicated advisor, Professor Ronaldo Ferreira,

for his invaluable guidance, feedback, and support throughout my doctorate. His

extensive knowledge and experience were instrumental in completing this thesis, and

I am truly thankful for all the guidance he provided during this journey.

Thanks to Ronaldo’s encouragement, I had the opportunity to meet renowned

researchers such as Dr. Adam Belay, Dr. Brian Kernighan, Dr. Dan Ports, Dr. Irene

Zhang, Dr. Jennifer Rexford, Dr. Shan Lu, Dr. Simon Peter, Dr. Timothy Roscoe,

and Dr. Walter Willinger. Additionally, I visited premier research institutions in the

United States, including Columbia, Harvard, MIT, Microsoft Research, Princeton,

and the University of Washington.

While it is challenging to name everyone who supported me during this journey,

there are a few individuals whose significant contributions stood out at various stages

and in different aspects. My heartfelt thanks go to my dear friends, in lexicographic

order: André, Brivaldo, Diego (João Lucas), Luciana, Mayco, Nathalia, Rodrigo,

and all K4 friends. Your unwavering support, encouragement, and friendship were

a constant source of strength, especially during the challenging moments of my

iv

doctorate journey.

I am also grateful to Dr. Ítalo Cunha, Dr. Marcos Vieira, and Dr. Murali

Ramanathan for their invaluable contributions throughout my doctoral studies.

Their insights greatly improved the quality of my work. Their guidance enriched my

studies and was important in developing Dyssect , a work that I present in Chapter 5.

I am deeply grateful to Dr. Irene Zhang, Dr. Pedro Penna, and Mr. Anand

Bonde for providing unimaginable experiences during my internship at Microsoft

Research and to Mr. Joshua Fried and Mr. Matheus Stolet for their invaluable

assistance in developing parts of my doctoral thesis.

I would like to thank the thesis committee, Dr. Ítalo Cunha, Dr. Marcos Vieira,

Dr. Miguel Campista, and Dr. Weverton Cordeiro, for your time and effort in

evaluating my thesis. I greatly appreciate your valuable feedback, support, and

constructive criticism throughout this process. Thank you for participating in my

thesis defense and for your commitment to advancing academic excellence.

Finally, I am grateful to my colleagues at the College of Engineering (FAENG) of

the Federal University of Mato Grosso (UFMT) for their understanding and support,

which made my academic journey more enriching and enjoyable. I also extend my

thanks to RNP, the Brazilian National Research and Education Network, for funding

a fellowship that allowed me to work on the research project “Researching Internet

Routing Security in the Wild.”

v

List of Acronyms

CAIDA Center of Applied Internet Data Analysis

CCDF Complementary Cumulative Distribution Function

CDF Cumulative Distribution Function

cFCFS Centralized First Come First Serve

CLS Cluster Local Scratch

CPU Central Processing Unit

CTM Cluster Target Memory

DDIO Data Direct I/O

dFCFS Distributed First Come First Serve

DMA Direct Memory Access

DPDK Data Plane Development Kit

DRR Deficit Round Robin

DWT Discrete Wavelet Transform

eBPF Extended Berkeley Packet Filter

EMEM External Memory

FCFS First Come First Serve

FPC Flow Processing Core

FPGA Field Programmable Gate Arrays

Gbps Gigabits per Second

GRO Global Reordering

HOL Head-of-Line

IDS Intrusion Detection System

IMEM Internal Memory

IP Internet Protocol

IPC Inter-Process Communication

krps Thousand Request per Second

KVS Key-Value Store

LB Load Balancer

vi

LLC Last-Level Cache

LMEM Local Memory

LSB Least Significant Bit

MANO Management and Orchestration

MTU Maximum Transmission Unit

NAT Network Address Translation

NF Network Function

NFV Network Function Virtualization

NIC Network Interface Card

NUMA Non-Uniform Memory Access

PL Pipeline

RPC Remote Procedure Call

RQ Research Question

RSS Receive-Side Scaling

RTC Run-to-Completion

RTT Round-Trip Time

SLO Service-Level Objective

TCP Transmission Control Protocol

UDP User Datagram Protocol

VNF Virtual Network Function

WS Work-Stealing

vii

List of Algorithms

5.1 Central controller. 65

5.2 Packet processing at working cores. 67

5.3 Scaling operations of a working core. 68

viii

List of Figures

1.1 Evolution of NICs and processors over the years. 2

1.2 Illustration of the Receive Side Scaling (RSS) process. 2

1.3 Tail latencies for five different 8-core arrangements. 4

1.4 Throughput, IPC, and cache misses for different distributions. 7

4.1 Inline latencies using constant service times. 37

4.2 Inline latencies using bimodal distributions. 39

4.3 Different arrangements for the Dispatcher model with eight cores. . . 42

4.4 Dispatcher latencies using constant service times. 43

4.5 Dispatcher latencies using bimodal distributions. 45

4.6 Inline results using both hyperthreads on each CPU core. 48

4.7 Dispatcher results using both hyperthreads on each CPU core. 50

4.8 Dispatcher results using MEM-boundR and both NUMA nodes. 52

4.9 Dispatcher results using MEM-bound and both NUMA nodes. 53

4.10 LLC misses for MEM-boundR and MEM-bound applications. 54

4.11 RocksDB results comparing the Inline and Dispatcher models. 54

4.12 Guidelines for the Inline model based on the tail latencies. 57

4.13 Guidelines for the Dispatcher model based on the tail latencies. . . . 58

5.1 State management in Dyssect . 62

5.2 Dyssect overview. 63

ix

5.3 Offloading latency and its impact on the RTT. 78

5.4 Performance results for Use Case I. 79

5.5 Throughput of Dyssect for Use Case II. 81

5.6 Latency for NAT under low packet rate. 83

5.7 Packet losses for NAT under low and high packet rates. 83

5.8 Performance results of Dyssect using SmartNIC. 86

5.9 Performance results exploring Hardware, Software, and Hybrid. . . . 87

5.10 Latency exploring Hardware and Software. 88

5.11 Throughput exploring Hardware and Software. 89

5.12 Packet latencies using priority flows. 90

x

List of Tables

4.1 Classification of existing systems in the design space. 30

4.2 Application service times and distributions in our benchmark suite. . 32

5.1 Optimization variables and parameters. 72

5.2 Long-timescale optimization problem. 74

5.3 Short-timescale optimization problem. 75

5.4 Load balance optimization problem. 80

5.5 Average shard migrations of Dyssect and RSS++. 82

xi

Contents

1 Introduction 1

1.1 Stateful Transport Protocol . 3

1.2 Stateful Network Functions . 4

1.3 Problem Statement and Research Questions 7

1.4 Main Contributions . 10

1.5 Thesis Roadmap . 13

2 Background 14

2.1 Stateful Transport Protocol . 14

2.2 Network Functions . 16

2.3 Summary . 18

3 Related Work 19

3.1 Stateful Transport Protocol . 20

3.2 Stateful Network Functions . 24

3.3 Summary . 27

4 Multicore Scheduling in TCP Applications 28

4.1 Design Space of Multicore Scheduling 28

4.2 Benchmark Setup . 31

4.3 Worker Assignment and Queueing Model 34

xii

4.4 Spatial Scheduling and Co-location 47

4.5 Scheduling with NUMA Nodes . 51

4.6 Real Application Evaluation . 54

4.7 Guidelines . 56

4.8 Summary . 57

5 Dynamic Scaling of Stateful Network Functions 59

5.1 Dyssect . 59

5.2 Evaluation . 76

5.3 SmartNIC Offloading . 84

5.4 Summary . 90

6 Conclusion 92

6.1 Future Work . 93

Bibliography 95

A Publications 111

xiii

Chapter 1

Introduction

In the last decade, network speeds have grown exponentially, while CPU speeds

have remained stagnant. Figure 1.1a illustrates this mismatch and shows that the

network speed has increased at least four times while the maximum CPU clock of the

most popular processors used in datacenter servers did not increase at all. On the

other hand, Figure 1.1b shows that the number of cores in a processor has increased

significantly to compensate for the lack of higher clocks. As a result, kernel-based

networking stacks are increasingly unaffordable. Recent work has explored user-level

networking within the context of kernel-bypass operating systems [9, 108, 138] and

network functions [33, 42]. Since soon-to-be-released 800 Gbps NICs (Network

Interface Cards) can deliver an MTU-size packet every 15 nanoseconds, scalable

multicore network stacks and applications, such as network functions, will be critical

to keeping pace with even faster networks.

Previous research has explored multicore scheduling of application workloads in

detail [25, 37, 99]. While these systems explored a range of multicore designs for

managing application work queues, they each used a fixed design for scheduling

the networking stack. For example, shared-nothing systems [9, 108] use per-core

work queues and Receive-Side Scaling (RSS) to schedule both application work

and network protocol processing onto the same core to reduce latency and

1

Introduction 2

 0

 200

 400

 600

 800

 1000

 1980 1990 2000 2010 2020 2030
 0

 2

 4

 6

 8

 10
S

pe
ed

 (
G

bp
s)

C
lo

ck
 (

G
H

z)

Year

NIC
Intel CPU

AMD CPU

(a) Evolution of NIC speed and clock rates
for the AMD and Intel processors. The blue
and green lines show the maximum base
clock rates. .

 0

 200

 400

 600

 800

 1000

 1980 1990 2000 2010 2020 2030
 0

 40

 80

 120

 160

 200

S
pe

ed
 (

G
bp

s)

N
um

be
r

of
 C

or
es

Year

NIC
Intel CPU

AMD CPU

(b) Evolution of the number of cores in the
AMD and Intel processors.

Figure 1.1: NIC speeds, processor clock rates, and number of cores over the years.

synchronization. The NIC performs RSS by applying a hash function to the header

of incoming network packets, using packet fields such as source and destination IP

addresses and ports. It then uses the hash value’s Least Significant Bits (LSBs) to

index an indirection table, which directs the packet to the appropriate CPU core for

further processing, as shown in Figure 1.2. At the other extreme, some systems

separate network processing and application work on distinct cores for various

reasons, including fine-grained control over application work scheduling [25, 57],

extracting higher performance gains from batching and vectorization [65], or

privilege-separation [82].

H P

Hash (H)

Incoming
Packet

Hash Value LSB 0

RSS
Indirection Table

Core 0

Core 1

Core 2

Core n-1

…

Figure 1.2: Illustration of the Receive Side Scaling (RSS) process.

facom-ufms

Introduction 3

1.1 Stateful Transport Protocol

In this thesis, we argue that the network protocol stack should be treated as a

service that is as important to multicore scheduling as the application. We focus

on TCP stacks, which are crucial to the adoption of kernel-bypass systems in

datacenters. We do not consider network stacks that require a custom protocol [60]

or hardware [114]. TCP is a strict requirement for interoperability with legacy

applications where the client-side networking stack cannot be changed. While

many applications run exclusively within the datacenter, an increasing number of

applications rely on distributed services and require a microsecond-scale TCP stack

to guarantee service-level objectives, such as Key-Value Stores (KVS) [28, 85] and

real-time gaming applications [22,26].

Given that many microsecond-scale applications are relatively simple, TCP

processing can consume a large number of CPU cycles relative to the application

while being notoriously difficult to schedule on multicore architectures as the

protocol requires per-connection state. At microsecond scales, the multicore

architecture of the network stack and application, especially in relationship to each

other, has a large impact on performance. Small differences in architecture impact

cache utilization, CPU pipeline efficiency, and memory accesses, which have a large

relative impact on performance, especially at the tail. Since previous systems

either do not support all the features in TCP or do not evaluate the impact of

network scheduling on performance, it is impossible to compare how their proposed

scheduling policies would actually fare in the real world.

Figure 1.3 shows an example of how multicore architecture affects tail latency

(i.e., 99.9th percentile) for application request times of 1 µs (upper graph) and 100

µs (lower graph). The latency measurements represent Round-Trip Times (RTTs)

collected by the client, which sends several Thousand Requests per Second (krps)

to evaluate the server’s application performance under high request rates. Network

facom-ufms

Introduction 4

 0
 100
 200
 300
 400

 0 500 1000 1500 2000 2500 3000 3500 4000

1 µs

A1 A2 A3 A4 A5

99
.9

%
 L

at
en

cy
 (µ

s)

 0
 1000
 2000
 3000
 4000

0 10 20 30 40 50 60 70 80 90 100

100 µs

Offered Load (krps)

Figure 1.3: Tail latencies for five different 8-core arrangements (A1 to A5) to
process requests with 1 µs (top) and 100 µs (bottom) service time and increasing
offered load.

stack processing takes about 2 µs, which gives a processing ratio of 0.5 and 50,

respectively, between the application and network stack. The figure compares five

system configurations (A1 to A5) running on eight CPU cores. The configurations

differ in: (i) queueing policies (A2 and A4), (ii) the number of allocated cores

for network-stack processing (A1 and A3), whether the network processing and

application are co-located (A2 and A4) (iii), or separated (A1 and A3) on the same

cores, and whether hyperthreading is used (A5). We do not detail the different

configurations here (see Chapter 4); our primary goal is to show the wide range of

performance. For example, while configuration A1 performs the worst with a service

time of 1 µs, it outperforms three of the other four configurations when the service

time increases to 100 µs.

1.2 Stateful Network Functions

Network Function Virtualization (NFV) promises to reduce hardware costs

and increase network manageability by running network functions as software

facom-ufms

Introduction 5

applications on general-purpose commodity servers. The flexibility provided by

software implementations allows a network function (NF) to be dynamically scaled

out by adding new instances or allocating additional resources (e.g., CPU cores and

memory) when the traffic load increases. Similarly, when the traffic load decreases,

an NF should be scaled in by decreasing the number of instances or resources so that

hardware can be reallocated to other tasks or put to sleep to save energy. Network

functions can be composed to provide network services in what is known as a service

chain.

The vast majority of network functions are stateful (e.g., network monitors,

stateful firewalls, or load balancers) and may require state updates on a per-packet

basis. During a scaling operation, workers (i.e., CPU cores or hyperthreads)

need to synchronize access to a shared state to avoid race conditions and to

guarantee that NFs process packets in arrival order. The classic approach to control

concurrent access to a shared state is the use of locks. Unfortunately, locks decrease

performance [15] and may prevent network functions from operating at line rate in

the multi-gigabit links that are common today.

Several research proposals use state sharding to avoid the use of locks [27, 58,

61, 76, 86]. Sharding is a technique that partitions the (global) state of a network

function into disjoint state subsets (shards). Flows are mapped to shards using

the result of a hash function computed on a flow key (e.g., the 5-tuple), and each

shard is mapped to one worker to avoid concurrent accesses. Modern high-speed

NICs can hash incoming packets and place them in per-worker queues specified in a

RSS indirection table [51]. Workers poll their queues to receive and process packets

for their shards at high throughput. In this approach, statically mapping shards

to workers leads to load imbalance [6, 118], and using a centralized software packet

dispatcher does not scale to the line speed of the current high-speed links [57,61,99].

A recent effort proposes dynamic reassignments of shards to balance the load

between workers [6]. While this approach improves performance compared to RSS,

facom-ufms

Introduction 6

it is far from solving the problem. For instance, a shard might have multiple

large-volume flows that a single worker cannot handle, but unfortunately, the system

cannot allocate more workers to handle the load, as all the flows in a shard are

assigned to a single worker. Moreover, packets from high-priority flows might

experience higher delays in a queue behind packets from large-volume flows.

The current trend is to increase the NIC’s RSS indirection table (e.g., Mellanox

ConnectX-5 EN has 512 entries [96]) and, consequently, allow more shards to

reduce the likelihood of multiple large-volume flows (i.e., elephant flows) in a single

shard. Unfortunately, a large number of shards exacerbates the load imbalance [119]

between shards and requires migrations with higher frequency, leading to cache

invalidation and, consequently, loss of performance. Moreover, a large number of

shards reduces cache locality, as a worker has to address a large number of different

shards that might not all fit in its local cache. Also, some NICs may require hundreds

of milliseconds to update their RSS indirection table, which may hinder or reduce

the effectiveness of shard migrations.

A significant scalability barrier for deploying network functions in commodity

servers is the difference between processor and memory speeds, also known as the

memory-wall problem [134]. Cache memories mitigate this problem, but they work

well only if the network services take advantage of temporal and spatial localities

during packet processing. For example, Figure 1.4 shows the performance impact

of the number of shards in CPU performance metrics. In this simple experiment,

a single worker runs a NAT (Network Address Translation) and processes packets

from one million flows following a Zipf distribution with α = 1.1. As we can see,

the throughput drops up to 43.3% (29.8 vs. 16.9 Gbps) when we vary the number

of shards from 1 to 128. We attribute this decrease in throughput to the loss of

effectiveness of the CPU cache. We can see in Figures 1.4b and 1.4d that cache

misses increase as the number of shards increases, leading to fewer instructions per

cycle (Figures 1.4a and 1.4c).

facom-ufms

Introduction 7

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128
 0

 0.2

 0.4

 0.6

 0.8

 1
T

hr
ou

gh
pu

t (
G

bp
s)

IP
C

Number of Shards

Throughput

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128
 0

 0.2

 0.4

 0.6

 0.8

 1
T

hr
ou

gh
pu

t (
G

bp
s)

IP
C

Number of Shards

IPC

(a) Throughput and IPC

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128

C
ac

he
 M

is
s

(%
)

Number of Shards

L1

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128

C
ac

he
 M

is
s

(%
)

Number of Shards

L2

(b) Cache Miss

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128
 0

 0.2

 0.4

 0.6

 0.8

 1

T
hr

ou
gh

pu
t (

G
bp

s)

IP
C

Number of Shards

Throughput

 0

 10

 20

 30

 40

 50

1 2 4 8 16 32 64 128
 0

 0.2

 0.4

 0.6

 0.8

 1

T
hr

ou
gh

pu
t (

G
bp

s)

IP
C

Number of Shards

IPC

(c) Throughput and IPC

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128

C
ac

he
 M

is
s

(%
)

Number of Shards

L1

 0

 20

 40

 60

 80

 100

1 2 4 8 16 32 64 128

C
ac

he
 M

is
s

(%
)

Number of Shards

L2

(d) Cache Miss

Figure 1.4: Throughput, instructions per cycle (IPC), and cache misses for different
numbers of shards under workloads with Zipf (1.4a and 1.4b) and uniform (1.4c
and 1.4d) distributions.

1.3 Problem Statement and Research Questions

The previous sections discuss two network services, TCP network stacks and network

functions, that require an internal state for proper operation. Scaling these services

while maintaining their states consistent across multiple workers (i.e., CPU cores

or hyperthreads) presents significant challenges, particularly when each packet

demands a state update, as these updates may require synchronization mechanisms

that can degrade performance. Moreover, workload imbalances may result in some

workers being overloaded while others are underutilized, reducing the efficiency and

potential benefits of multicore architectures. Therefore, the problem statement of

this thesis can be summarized as follows:

Problem Statement: Efficiently updating state on a per-packet basis while

facom-ufms

Introduction 8

dynamically balancing the load between workers poses significant challenges to scaling

stateful network services on multicore architectures.

Several research efforts discuss the challenges a system must overcome to scale

stateful network services on multicore architectures [1,6,40,55,65,69,101,132,137].

For instance, depending on the service-time distribution of an application, the

network stack may become a bottleneck and require more workers than the

application, so determining the best assignment of workers to the application and

network stack is challenging. Also, scaling may require synchronization mechanisms

or state migration between workers to prevent race conditions, which may degrade

performance.

Scaling should also preserve flow-to-worker affinity to avoid packet reordering and

inter-core communication, which degrade overall performance. Packet reordering is

particularly damaging to TCP performance, as it blocks the sending window and

may reduce the congestion window, leading to lower goodput [12, 41, 69]. Also,

packet reordering can harm stateful network functions that rely on packets arriving

in order (e.g., stateful firewall), resulting in decreased performance or even service

disruption when packets arrive out of order. Many efforts [40,136,137] address such

issues by carefully orchestrating the migration of flows between stateful network

functions.

In this thesis, we overcome these challenges by addressing the following three

research questions:

RQ-1: How do worker assignments to network stack and application influence the

response latency in kernel-bypass systems?

We address the first research question in Chapter 4, where we systematically

evaluate the trade-offs involved in assigning workers to the network stack and

application. In particular, we consider the network stack processing and application

request processing equally important for multicore scheduling at microsecond-scale.

Investigating their interactions and placement on a multicore server is crucial for

facom-ufms

Introduction 9

assessing the performance of a system under different workloads. We define the

design space in three dimensions that include worker assignment to different stages of

packet processing, the queueing model, and worker placement in hardware resources,

such as hyperthreads and cores on the same or different NUMA (Non-Uniform

Memory Access) nodes. We classify existing systems in this design space, implement

models that cover the main points in the design space in a unified framework with a

fully-featured TCP stack, and evaluate the main combinations of worker assignment,

queueing model, and worker placement under different workloads.

RQ-2: How does redistributing the load across workers impact the performance of

stateful network functions?

We address the second research question in Chapter 5, where we discuss the

design, implementation, and evaluation of Dyssect , a system that disaggregates

state from network functions using a data structure that allows a packet to carry

a reference to its flow state. This mechanism is crucial for allowing fine-grained

migrations of individual flows between workers to achieve a more even load

distribution without introducing race conditions. By carefully coordinating flow

migration between workers and a centralized controller, Dyssect prevents packet

reordering, improves throughput, and reduces latency compared to competing

solutions.

RQ-3: How can programmable NICs impact the performance of stateful network

functions on multicore architectures?

After analyzing how redistributing load across workers affects the performance

of stateful network functions (RQ-2), Section 5.3 investigates the role that

programmable NICs may play in the performance of these functions, addressing

RQ-3. In this case, we advance the idea of state disaggregation by offloading

stateful network functions, or parts of them, onto programmable NICs, aiming

to further optimize network performance. This offloading strategy enables us to

investigate hardware and software trade-offs that are specific to network functions.

facom-ufms

Introduction 10

While offloading network functions to programmable NICs generally offers potential

performance gains, Section 5.3 reveals that these gains are not always achieved. This

finding is mainly due to the distinctive multicore architectures of programmable

NICs and the unique processing requirements of some network functions. For

example, some programmable NICs operate at significantly lower clock speeds

than general-purpose server processors (e.g., 800 MHz vs. 2 GHz). As a result,

running a network function that requires intensive packet payload processing, such

as an Intrusion Detection System (IDS), may lead to considerable performance

degradation.

1.4 Main Contributions

In this section, we present our main contributions to scaling stateful network

services on multicore architectures. In Section 1.4.1, we discuss our contributions

to investigating trade-offs in scheduling the network stack and applications

in kernel-bypass systems that seek to process requests at microsecond-scale.

Section 1.4.2 presents this thesis’ contributions to scaling stateful network functions.

1.4.1 Stateful Transport Protocol

This thesis is the first work to systematically study the trade-offs in various

multicore architectures for microsecond-scale networking stacks and applications.

For the network stack, we focus specifically on TCP, as it is a requirement

for interoperability with legacy applications. However, the findings we discuss

in Chapter 4 apply to other transport protocols that have to update state at

every received or transmitted packet. We classify the multicore architectures and

implement them in Demieagle, a benchmark framework that we designed to evaluate

different points in the design space. Demieagle consists of a flexible, kernel-bypassing

TCP stack and scheduler, built on the Demikernel [138] datapath operating system,

facom-ufms

Introduction 11

which provides a fully-featured TCP stack and flexibility for implementing different

scheduling policies. Using Demieagle’s flexible scheduler, we can directly compare

multicore architectures and scheduling strategies across various workloads, ensuring

an apples-to-apples comparison of the different architectures.

Demieagle also includes a workload generator that exercises our multicore

classification system by changing workload parameters that are directly affected

by the architecture. This workload generator demonstrates which workload

characteristics benefit from specific architectures and which are less efficient.

In addition, it serves as a tool for exploring other systems and whether their

performance characteristics match the expectations within our classification.

Finally, we offer guidelines to choose the best multicore architecture based on

the queueing model, the offered load, the average application service time (relative

to the network stack’s time), and the application memory footprint (small or large).

1.4.2 Stateful Network Functions

Based on the main findings and guidelines on multicore architecture that we discuss

in Chapter 4, we design, implement, and evaluate a system called Dyssect , which

scales stateful network functions. This system enhances NFV performance by

allowing lock-free state migration operations to balance the load, prioritize traffic,

and optimize resource usage while effectively meeting user-defined Service-Level

Objectives (SLOs). By using a hardware-software codesign, Dyssect circumvents

the many pitfalls of current approaches. First, it uses the hardware (the NIC’s RSS

indirection table) to steer packets to shards and to transfer shards between cores1,

avoiding the bottleneck of having a single core dispatching all the packets (e.g.,

RAMCloud [100], Shinjuku [57], Perséphone [25]). Second, Dyssect disaggregates

state from network functions using a data structure that allows a packet to carry

a reference to its flow state. This mechanism is crucial for allowing fine-grained

facom-ufms

Introduction 12

migrations of individual flows between cores to prioritize traffic or achieve more even

load distribution without introducing race conditions. By carefully coordinating

migration actions between cores and a centralized controller, Dyssect prevents

packet reordering and deadlocks. Third, because Dyssect can distribute traffic

at the flow level, it can use a smaller number of shards than other approaches

(e.g., RSS++ [6]) and avoid frequent shard transfers, overcoming the performance

penalties discussed above (Figure 1.4). Fourth, Dyssect assigns shards and flows to

cores using optimization models that capture long- and short-timescale behaviors of

the system to achieve operator-specified SLOs. Finally, the flexibility provided by

state disaggregation allows Dyssect to offload the processing of network functions to

a programmable NIC to reduce CPU load or satisfy latency guarantees of selected

flows.

We implemented Dyssect as user-level modules using BESS [43] with DPDK

(Data Plane Development Kit) for fast packet processing and Gurobi [98] for solving

our mathematical models. We also ported Dyssect to FastClick [7] to make a

fair comparison with RSS++, which is built on top of FastClick. Experimental

evaluations on a multicore server running multiple NFs and processing synthetic

and real traffic show that Dyssect reduces tail latency up to 32.04% and increases

throughput up to 19.36% compared to the state-of-the-art approaches that use

only sharding for partitioning the states of NFs. We also evaluate the trade-offs

of offloading processing of network functions to a programmable NIC. While the

general belief is that offloading processing to a programmable NIC always pays off,

our evaluation shows that, for some use cases, offloading a network function might

have negative impacts on performance.

1To maintain a consistent nomenclature, we use the word worker to refer to a CPU core or
hyperthread. However, in Chapter 5 and when discussing Dyssect , we use the term core with the
same meaning as worker. We make this distinction because we define different types of cores in
Dyssect , which makes sense in the context of network functions, as they generally run on cores
with hyperthreading disabled.

facom-ufms

Introduction 13

1.5 Thesis Roadmap

The remainder of this thesis is organized as follows. Chapter 2 provides essential

background information to establish the necessary foundation for the thesis.

Chapter 3 reviews related work, emphasizing recent developments in kernel-bypass

systems for network applications and functions. Chapter 4 examines multicore

scheduling for network applications that use the TCP protocol, highlighting the

equal importance of the network stack and application in the scheduling process.

Chapter 5 discusses the dynamic scaling of stateful network functions through state

disaggregation. Finally, Chapter 6 concludes the thesis and suggests directions for

future research.

facom-ufms

Chapter 2

Background

This chapter introduces the key concepts that are essential for understanding the

contributions of this thesis. Section 2.1 discusses some aspects of the implementation

of the TCP protocol that make it difficult to scale it on multicore architectures.

Section 2.2 introduces network functions and their key features. Finally, Section 2.3

summarizes the main aspects of stateful transport protocol and network functions

that are relevant to this thesis.

2.1 Stateful Transport Protocol

The Transmission Control Protocol (TCP) provides reliable, ordered, and error-free

data delivery to applications over a network. Implementing TCP on multicore

architectures is complex and involves many steps, from when a packet arrives from

the network to when it is delivered to the application. To start, either the operating

system or a kernel-bypass system must configure the NIC to deliver the packet to a

specific worker. More specifically, the NIC’s RSS indirection table is set up with a

number of queues matching the number of workers. The NIC then places the packet

in one of these queues based on a hash computed over the packet’s five-tuple.

Upon receiving a packet, the worker reads it from the queue and initiates the

14

Background 15

network-stack processing sequence. When the packet gets to TCP, the worker

examines the TCP header to retrieve essential information, such as source and

destination ports, that are necessary to locate the TCP Control Block (TCB). The

TCB is a data structure maintained for each active TCP connection that stores

the connection’s current state, including sequence and acknowledgment numbers,

window size, and pointers to the send and receive buffers. As packets are received,

the worker updates the TCB to ensure that the protocol manages in-order delivery

and handles retransmissions when necessary.

The process of sending packets mirrors that of the reception. To prepare a packet

for transmission, the worker constructs a TCP segment, including the appropriate

headers and payload, and places it in a send buffer for processing. Once ready, the

network stack transmits the segment through the NIC.

In multicore environments, where multiple workers can access the TCB,

synchronization may be required for handling shared data structures like the

receive and send buffers. For example, the TCP implementation in Linux uses

atomic operations, semaphores, readers-writer locks, and spinlocks to maintain data

integrity and prevent race conditions [46]. These mechanisms ensure that only one

worker can access or modify the TCB or buffers at any given time.

Scaling TCP applications requires adding more workers to process higher

workloads, whether for TCP or application processing. As the number of workers

increases, the complexity of coordinating and synchronizing them grows, especially

when TCP and application run on separate workers. Therefore, special care must be

devoted to the multicore architecture of the network stack to maintain low-latency

responses, as even minor delays in state synchronization can significantly impact

overall performance.

facom-ufms

Background 16

2.2 Network Functions

Network Functions (NFs), also called middleboxes or network appliances, are

components of the network that perform well-defined procedures on network

packets. Previously, network functions were black boxes with exclusive manufacturer

procedures, making them expensive and inflexible to custom operation within a

conventional network. However, Network Function Virtualization (NFV) promises

to reduce hardware costs and increase network manageability by running network

functions as software applications on general-purpose commodity servers.

There are two main classes of network functions: stateful and stateless. The

first class includes network functions that need state to perform the application

logic. For instance, a Network Address Translation (NAT) network function needs

to store the mapping between IP addresses to modify network packets. On the other

hand, stateless NFs do not need any additional state to process the packets (e.g.,

checksum, compression, and decompression).

The vast majority of network functions are stateful (e.g., network monitors,

stateful firewalls, or load balancers) and may require state updates per packet.

However, an NF can have more than one state and update the state on a per-flow

basis, too. For example, a NAT has an Address Pool state, which is updated on a

per-flow basis (when a new entry is created), and a NAT Entry state that is updated

per packet [132].

In NFV, there are two execution models in the existing frameworks [141]:

run-to-completion (RTC) and pipeline (PL). The RTC model [63, 104] executes

all NFs of a service chain on a single worker. On the other hand, the pipeline

model runs one NF per worker in a pipeline fashion [49, 81, 103]. Although RTC

performs better (in terms of throughput and latency) than PL due to inter-worker

communication, PL provides more flexibility during scaling operations.

Regardless of the execution model adopted by an NFV framework, packet

facom-ufms

Background 17

reordering is still a huge issue in packet processing. Network protocols assume that

packet reordering, packet loss, and packet corruption are infrequent events that

occur during data communication. For instance, TCP reduces throughput when

detecting packet reordering because its congestion control algorithm interprets these

issues as a signal that the network is congested [14, 105]. Several research efforts

present different techniques to measurement packet reordering [10,12,125,131,133],

indicating that this issue is present nowadays.

The flexibility provided by software implementations allows a network function to

be dynamically scaled out by adding new instances or allocating additional resources

(e.g., workers and memory) when the traffic load increases. Similarly, when the

traffic load decreases, an NF should be scaled in by decreasing the number of

instances or resources so that the hardware can be reallocated to other tasks or

put to sleep to save energy.

During a scaling operation, workers need to synchronize access to a shared state

to avoid race conditions and to guarantee that NFs process packets in arrival order.

The classic approach to controlling concurrent access to a shared state is the use of

locks. Unfortunately, locks decrease performance [15] and prevent network functions

from operating at line rate in the multi-gigabit links that are common today.

Several research proposals use state sharding to avoid the use of locks [27, 58,

61, 76, 86]. Sharding is a technique that partitions the (global) state of a network

function into disjoint state subsets (shards). Flows are mapped to shards using

the result of a hash function computed on a flow key (e.g., the 5-tuple), and each

shard is mapped to one worker to avoid concurrent accesses. Modern high-speed

NICs can hash incoming packets and place them in per-worker queues specified

in a Receive-Side Scaling (RSS) [51] indirection table. Workers retrieve incoming

packets through these queues. Also, recent NICs provide a FlowDirector [53], a

recent functionality to forward incoming packets to specific NIC queues based on

the 5-tuple. In this case, packets from a flow are forwarded to a specific queue and,

facom-ufms

Background 18

consequently, a specific worker.

2.3 Summary

This chapter covers two foundational concepts: stateful transport protocols and

stateful network functions. The Transmission Control Protocol (TCP) provides

reliable data packet delivery to applications over a network. In multicore

architectures, the implementation of TCP presents challenges, particularly in

managing the TCP state represented by the TCP Control Block (TCB). With

multiple workers accessing the TCB, synchronization may be necessary to prevent

race conditions and maintain data integrity. Mechanisms like mutexes and spinlocks

ensure that only one worker can access or modify the TCB at any time. As TCP

applications scale, effective coordination becomes crucial for preserving performance

and enabling low-latency responses.

Stateful network functions add complexity by maintaining network states crucial

for services such as Network Address Translation (NAT), Load Balancers (LBs), and

Intrusion Detection Systems (IDSs). Unlike stateless functions, which process each

packet independently, stateful functions require consistent state tracking to retain

connection information across distributed elements. This chapter addresses the

scalability and consistency challenges of stateful network functions across multiple

workers. Overcoming these challenges requires carefully designed strategies that

balance state distribution, minimize latency, and maximize throughput to ensure

efficiency and reliability in high-performance, large-scale systems.

facom-ufms

Chapter 3

Related Work

This chapter reviews the most relevant related work for this thesis. Section 3.1

begins with the stateful transport protocol, focusing on in-memory key-value stores,

which are essential to reduce response latency in datacenter applications. It

then discusses advancements in kernel-bypass technologies, which are designed

to eliminate operating system overhead and enhance network performance. The

section then considers various scheduling policies and assesses their impact on

resource allocation and system throughput across different workloads. Finally, the

section reviews spatial scheduling strategies, which seek to optimize task placement

to leverage hardware resources effectively within multicore architectures, such as

allocating a task to a worker on a local core or on a remote node’s core in a NUMA

server.

The second section considers stateful network functions, beginning with hardware

dispatchers that enhance packet processing by offloading critical tasks to specialized

hardware. Next, the section discusses software dispatchers that provide flexible and

scalable solutions through software-defined methods. It then reviews load-balancing

techniques, with a focus on efficiently distributing workloads across network

function instances, especially in contexts with large data flows. The section

also covers system-level optimizations, highlighting their impact in reducing

19

Related Work 20

latency and improving throughput. The section concludes with a discussion

of hardware-accelerated systems, which leverage specialized processors to handle

network functions at scale.

The chapter concludes by synthesizing the state-of-the-art in stateful network

protocol and network functions, illustrating how these developments align with this

thesis’s objectives. The insights gained from this review lay the foundation for the

approaches proposed in subsequent chapters.

3.1 Stateful Transport Protocol

3.1.1 In-memory key-value stores

Key-value storage systems increasingly adopt in-memory designs to meet the

demands of high-throughput and low-latency large-scale Internet services. Systems

such as RocksDB [28], Memcached [85], and Redis [115] use a range of techniques to

improve performance, including advanced data structures and algorithms [66,74–76],

system-level optimizations [32, 128], and new hardware capabilities [58, 59, 71, 71].

Our work, on the other hand, shows how the TCP stack and application scheduling

impact performance on multicore systems, revealing another source for performance

improvements on these systems.

3.1.2 Kernel-bypass systems

Kernel-bypass systems empower developers with full control over packet delivery

and processing and offer flexibility for building network applications, such

as implementing custom network stacks in user space. By bypassing the

general-purpose kernel in the data plane, these systems enhance performance but

also introduce new challenges. Recent research efforts have addressed issues such

as scheduling [25, 57, 111], interference management [21, 37, 79], network stack and

facom-ufms

Related Work 21

service optimization [55, 60, 65], and efficient I/O processing [9, 61, 108]. A key

challenge in developing kernel-bypass systems lies in effectively coupling network

stack and application processing. There are two primary models for this purpose:

Inline and Dispatcher. We briefly describe these models below, along with an

overview of existing systems that adopt each approach. We detail the Inline and

Dispatcher models and their configurations in Chapter 4.

3.1.2.1 Inline model

In the inline model, the network stack and application run on a single worker,

which generally leads to performance gains since there is no need for inter-core

communication. Arrakis [108] is the first system in this domain and bypasses the

kernel for I/O operations to let applications directly manage network and storage

resources, which results in lower overhead and increased throughput. IX [9] improves

this approach by implementing a data-plane operating system that reduces context

switching and cache contention, achieving ultra-low latency and high throughput

for network-intensive workloads. ZygOS [111] introduces a scalable multicore

architecture that balance network flows between workers, using work-stealing, and

ensures that application and network processing occur on the same worker, resulting

in lower latency and improved load balancing. Shenango [99] maximizes efficiency in

low-latency applications by dynamically allocating workers to handle varying loads

while keeping the application and network processing tightly coupled on the same

worker to minimize inter-core communication. Finally, Caladan [37] extends these

principles with a focus on high throughput and low latency. It runs the application

and network stack on the same worker and uses a software-defined scheduler that

optimizes core utilization.

facom-ufms

Related Work 22

3.1.2.2 Dispatcher model

In the Dispatcher Model, network processing and application work are split between

different sets of workers. mTCP [55] provides a high-performance, user-level TCP

stack for multicore servers, focusing on reducing context-switching overhead and

inter-core locking. The primary contribution of mTCP lies in enhancing TCP

efficiency for high-concurrency environments by employing lock-free data structures,

cache-aware thread placement, and efficient per-core resource management. TAS [65]

offers TCP acceleration as a service by moving typical TCP processing from the OS

kernel to a fast-path OS service on dedicated CPU cores. Its primary contribution

is isolating common-case TCP operations in a fast path while managing corner

cases in a slow path, which enhances throughput. RAMCloud [100] is a distributed

in-memory storage system for low-latency access to large datasets. Its main

contribution is using DRAM for distributed storage, achieving microsecond-level

access times through a log-structured mechanism for managing all storage and a

networking layer that bypasses the kernel to communicate directly with the NIC

using polling. Shinjuku [57] is a low-latency microservice execution system with

hardware-level preemption to guarantee microsecond-scale response times. Its main

contribution lies in exploring hardware support for virtualization to make frequent

preemptions without degrading performance. It provides low tail latency and high

throughput for various request distributions and service times. Perséphone [25]

is a kernel-bypass OS scheduler that minimizes tail latency for microsecond-scale

applications with service-time distributions with high dispersion. The primary

contribution of Perséphone is to provide a non-work-conserving policy that profiles

application requests and reserves cores for short requests, preventing them from

being blocked by longer ones. It achieves lower tail latencies and can handle higher

loads with fewer cores than existing kernel-bypass schedulers by mitigating the

head-of-line-blocking problem.

facom-ufms

Related Work 23

A key limitation in previous research, discussed in Section 3.1.2.1 and in

this section, is the use of different network-stack implementations when assessing

performance gains. This inconsistency makes it difficult to determine whether

reported gains come from the new approaches themselves or simply from differences

in network-stack implementations. For instance, some works [89,120] use a minimal

implementation of TCP that ignores several corner cases, which may save a few

nanoseconds. At microsecond-scale, small savings for processing each packet may

yield significant performance gains for a specific approach. In Chapter 4, we

address this issue by evaluating various configurations of the Inline and Dispatcher

models using the same network stack and scheduling framework under different

workloads. Using the same framework for evaluating the models allows us to isolate

the performance gains of each model under different conditions and identify the best

model and configuration for specific workloads.

3.1.3 Scheduling Policy Evaluation

Previous work has explored scheduling policies to understand their impact on

datacenter applications, focusing on optimizing throughput, reducing latency, or

evaluating different scheduling options. However, some works explore only a narrow

subset of configurations in the design space [57, 111] or rely on simulations that do

not account for independent scheduling of the network stack and application [83].

In contrast, we comprehensively evaluate various scheduling policies within a

unified evaluation framework that includes a fully-featured TCP stack of a real

datapath operating system. Our findings offer practical insights, guiding developers

toward implementing the most effective scheduling policies to meet their specific

requirements regarding workload and application characteristics.

facom-ufms

Related Work 24

3.1.4 Spatial Scheduling

Previous studies [29,38,57,94,95] have extensively explored spatial scheduling, often

focusing on specific aspects of CPU core placement (e.g., Caladan [37] optimizes

worker placement to reduce interference). However, some approaches either disable

hyperthreading or leave sibling hyperthreads idle, overlooking potential advantages

or disadvantages. In contrast, we thoroughly investigate all possible worker

placement strategies for both the network stack and the application while also

evaluating the potential performance benefits of utilizing additional resources from

a remote node in a NUMA server.

3.2 Stateful Network Functions

3.2.1 Intra-Server Hardware Dispatcher

Recent proposals, such as IX [8], Arrakis [108], and Sprayer [118], use RSS to direct

packets to workers. However, RSS assigns flows to workers based on the hash of some

fields of the packets, which may lead to CPU load imbalance and, consequently,

higher packet delays and underutilization of some workers. RSS++ [6] tries to

balance the load across workers by constantly updating the RSS indirection table.

Still, it can only balance the load at the shard level and requires updates at a rate

that some commercial NICs cannot sustain [6, 19].

Flow Director [53] allows a better traffic distribution than RSS by using a match

table that associates flows and processing workers. Flow Director does not use a

hash function to direct the packets but requires one rule for each flow to provide

fine-grained flow management, limiting the number of flows it can handle. Also,

Flow Director is a proprietary technology supported only by specific NIC models

from some brands. Affinity-Accept [107] is an example of a recent system that uses

Flow Director.

facom-ufms

Related Work 25

3.2.2 Intra-Server Software Dispatcher

Shenango [99] introduces a dynamic threading architecture that allows applications

to efficiently use workers to adapt the system to varying workloads to maintain

low latency and high performance. Caladan [37], on the other hand, enhances the

efficiency of multicore systems by implementing scheduling algorithms that mitigate

interference and reduce latency, also yielding high throughput. Perséphone [25] load

balances the requests between workers and minimizes inter-thread interference to

guarantee service-level objectives for latency-sensitive applications. Shinjuku [57]

handles events to guarantee an ultra-fast response by managing task queues

with precision to deliver sub-microsecond response times, essential for real-time

processing needs. ZygOS [111] distributes flows evenly between workers to prevent

bottlenecks and maintain a low-latency response consistently. Minos [27] integrates

hardware and software to refine thread scheduling and resource management and

ensure high efficiency in multicore environments to guarantee low latency for

applications. These systems are intra-server software dispatchers that use a set

of workers to fetch packets from the NIC and forward them to other application

workers. While these works reduce tail latency, they neither support stateful network

functions nor guarantee packet ordering.

3.2.3 Inter-Server Load Balancing

StatelessNF [56] manages stateless network functions and balances the load between

the functions by avoiding the complexities of maintaining state information across

servers, which facilitates scaling and fault tolerance. OpenNF [39] builds on stateless

network functions and provides a flexible platform for managing network functions

that dynamically balances load and migrates state between servers to optimize

performance and resource utilization. Split/Merge [113] offers a mechanism for

dividing and consolidating network flows across servers. It enables fine-grained

facom-ufms

Related Work 26

control for balancing the load and minimizing the impact of traffic spikes. S6 [132]

focuses on efficient state management to scale stateful applications across servers

without sacrificing performance, making it ideal for scenarios where state consistency

is critical. isRSS [97] uses receive-side scaling to distribute incoming network traffic

across multiple servers, optimize CPU usage, and reduce bottlenecks when the traffic

load increases. E2 [103] introduces an elastic execution framework that adjusts

resource allocation across servers in response to workload variations, which ensures

balanced load distribution and maintains high performance in distributed network

environments. All these systems implement state migration for stateful network

functions to balance the load across servers, which differs from our approach in

Chapter 5 to balance the load inside a server.

3.2.4 System-Level Optimizations

Some efforts improve the processing of a service chain by exploiting hardware

features [34, 35], performing code optimizations [33], or eliminating redundant

computations. Reframer [41] delays some packets and explores system caches to

improve throughput. CacheDirector [34] places the first 64 bytes of the packet in

the Last-Level Cache (LLC) slice closest to the processing core and [35] optimizes

Data Direct I/O (DDIO) [52] for reducing processing delays. PacketMill [33] uses

code-optimization techniques and a new metadata management model to eliminate

redundant NF computations inside a server. OpenBox [16] separates control and

data planes to eliminate redundant computations in NFs on a service chain inside

and across servers.

3.2.5 Hardware-Based Systems

A recent trend to accelerate network functions is the use of programmable or

(FPGA – Field Programmable Gate Array)-based NICs. NICA [30] accelerates the

facom-ufms

Related Work 27

application data plane on FPGA-based Programmable NICs (F-NICs), offloading

part of the network traffic to be processed by the NIC. EBPFlow [102] offloads

eBPF (Extended Berkeley Packet Filter [129]) programs to the FPGA programmable

NIC. AccelNet [36] offloads networking stack to hardware using custom Azure

Programmable NICs based on FPGAs. FlexNIC [64] proposes a flexible DMA

(Direct Memory Access) programming interface for network I/O, inserting packet

processing rules into the NIC. iPipe [77] offloads distributed applications onto

Programmable NICs using a hybrid scheduler, combining (FCFS – First Come First

Serve) and (DRR – Deficit Round Robin)-based processor sharing. ClickNP [70]

exposes a modular programming abstraction to accelerate NFs with FPGA

programmable devices.

3.3 Summary

This chapter reviews research efforts aimed at scaling network services across various

environments, including intra- and inter-server setups, as well as both stateless

and stateful service architectures. We discuss the challenges inherent to stateful

applications, particularly the need to manage both application and TCP protocol

states. These challenges underscore the critical importance of worker allocation

strategies, as choosing which worker executes application tasks and network stack

operations can influence performance. Similarly, stateful network functions require

load-balancing mechanisms to achieve high throughput and reduced latencies,

especially when handling long-lived and large-volume flows (i.e., elephant flows).

The related work reviewed in this chapter highlights the importance of

overcoming these challenges to optimize performance in stateful systems. We discuss

how foundational studies on worker assignment and load balancing directly inform

and support this thesis’s goals, providing the foundation for the proposed approaches

and their significance in advancing the field.

facom-ufms

Chapter 4

Multicore Scheduling in TCP

Applications

In this chapter, we examine how the scheduling of the network stack affects the

performance of applications with service times on the order of a few microseconds.

Specifically, we outline the design space, discuss various trade-offs, evaluate different

architectures, and offer guidelines for selecting a multicore architecture based on key

factors, including application service time, offered load, and queueing model.

4.1 Design Space of Multicore Scheduling

We consider TCP network processing and application request processing equally

important for multicore scheduling at microsecond-scale. Investigating their

interaction and placement on a multicore server is crucial for assessing the

performance of a system under different workloads. In this section, we outline the

system model and define the design space dimensions used to classify and evaluate

multicore architectures.

28

Multicore Scheduling in TCP Applications 29

4.1.1 System Model

We assume a kernel-bypass system that runs at microsecond-scale using

commonly-available datacenter hardware [4,77,109,117,127], similar to many recent

systems [29, 37, 55, 60, 82, 108]. The hardware includes a high-performance network

of at least 100 Gbps and a Non-Uniform Memory Access (NUMA) server with

multicore CPUs of 2 GHz or higher with common features such as multi-level caching

and hyperthreading. The TCP stack is fully featured and takes about 1.81 µs to

receive and 0.19 µs to send a packet (i.e., ∼2 µs for total network processing),

including background work for retransmission and congestion and flow control.

These times are based on the Demieagle TCP stack but are representative of other

TCP stacks [108]. However, for our evaluation, the ratio between the application

service time and the processing time of the TCP stack is more important than its

absolute time.

We also assume an (RPC – Remote Procedure Call)-processing application where

service times follow different distributions. Each application request goes through

four stages of work: NIC packet delivery, inbound TCP processing, application

processing, and outbound TCP processing. These four work units must be scheduled

in sequence, but there are no other limitations to how or when they are scheduled.

4.1.2 Multicore Scheduling Design Classification

The design space for scheduling RPC processing spans three dimensions: (i) worker

assignment, which maps processing stages to a set of one or more workers; (ii)

queueing model, which defines the number of queues between workers and the

queueing discipline; and (iii) spatial scheduling, which allocates workers to the

server’s hardware resources (i.e., cores and hyperthreads).

facom-ufms

Multicore Scheduling in TCP Applications 30

Table 4.1: Classification of existing systems in the design space.

System
Worker Assignment Queueing Model Spatial Scheduling

Inline Dispatcher
Centralized Distributed Work-stealing

HT SN MN
(cFCFS) (dFCFS) (WS)

Demikernel [138] ✓ ✓ ✗ – ✗

Arrakis [108] ✓ ✓ – – ✗

IX [9] ✓ ✓ ✓ – ✗

ZygOS [111] ✓ ✓ ✓ ✓ ✗

Shenango [99] ✓ ✓ ✓ ✓ ✗

Caladan [37] ✓ ✓ ✓ ✓ ✗

Shinjuku [57] ✓ ✓ ✓ ✓ ✗

RamCloud [100] ✓ ✓ – – ✗

mTCP [55] ✓ ✓ ✓ – ✗

TAS [65] ✓ ✓ ✓ – ✗

Perséphone [25] ✓ ✓ – – ✗

Demieagle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4.1.2.1 Worker Assignment

Each stage of request handling must be assigned to one or more workers for

processing. The number of workers assigned to each stage may vary depending

on the characteristics of the workload. Additionally, a stage can be combined

with the previous stage to run inline on the same worker. For example, NIC

polling and packet processing may be combined into a single stage in the same

worker. We focus primarily on two predominant models used by many existing

systems [9,25,37,57,99,138]: an Inline model where all stages are combined to run

sequentially in each worker, and a Dispatcher model where network processing and

application work are split between different sets of workers.

4.1.2.2 Queueing Model

For queueing models, we consider three approaches: (i) a centralized model

(cFCFS), where workers for a given stage share a single centralized queue; (ii) a

distributed model (dFCFS), where each worker in a given stage has its own queue

from the previous stage; and (iii) a work-stealing model (WS), which is similar to

dFCFS, but workers steal packets from other workers’ queues when idle. Depending

on the allocation of stages to workers, there can be more than one queueing model

simultaneously in use. We only consider FCFS-based processing as recent work has

shown that it provides the best tail latency across workloads [83]. Although other

queueing disciplines are possible, they would significantly expand the design space,

facom-ufms

Multicore Scheduling in TCP Applications 31

so we limit our investigation to FCFS for simplicity.

4.1.2.3 Spatial Scheduling

The final dimension of the design space is spatial scheduling, which maps workers

to cores. Here we consider worker placement when different cores have non-uniform

memory accesses (NUMA) or when cores share underlying physical execution units

(hyperthreads). These decisions can have large impacts on the performance of the

overall system, particularly at microsecond-scale.

We classify spatial scheduling depending on where workers run using the

following acronyms: using hyperthreads to share a physical core between workers

(HT), using cores on a single NUMA node (SN), and using cores spanning multiple

NUMA nodes (MN).

Table 4.1 shows how existing systems fit in our design classification. While

Demieagle covers all points within this design space, our goal is not to compare the

performance of Demieagle with these systems. Instead, our objective is to assess

the impact of each design choice within the space.

4.2 Benchmark Setup

To evaluate multicore architectures within the design space defined in Section 4.1, we

define a benchmark suite designed to test points in the design space using different

workloads and application types. This section describes workloads, experimental

setup, and implementation details of our benchmark.

4.2.1 Workload Characterization

The first workload characteristic represents application types by their service times.

To mimic different applications [5, 24, 93], we consider the following service-time

distributions:

facom-ufms

Multicore Scheduling in TCP Applications 32

• Constant: applications that execute the same number of instructions,

regardless of the request type, in order to represent the specified service time.

• Bimodal: applications with different processing times depending on the

request type. We use two commonly studied bimodal distributions in

which a fraction of the requests complete in 1 µs while the other requests

complete in 100 µs [25, 57]. These service times mimic read and write-heavy

workloads [135]. We model these workloads exhibiting different service times

after examples found in academic and industry references [2, 5, 18,23,88].

Table 4.2 summarizes the service times and distributions in our benchmark.

The application service times of 1, 10, and 100 µs represent ratios of

application-to-network processing times of about 0.5, 5, and 50, respectively, as

the network stack runs in about 2 µs.

Table 4.2: Application service times and distributions in our benchmark suite. The
network-stack processing time is ∼2 µs for all scenarios.

Distribution Service Time (µs)

Constant 1, 10, 100

Bimodal1
Group A (99.5%) Group B (0.5%)

µA = 1 µB = 100

Bimodal2
Group A (50%) Group B (50%)

µA = 1 µB = 100

The second workload characteristic is the application memory footprint. The

benchmark includes tests for the following types of applications:

• Small memory footprint: an application that repeatedly calculates the

square root of floating-point numbers. We call this application CPU-bound.

• Large memory footprint: applications that read memory buffers in different

ways, with buffer sizes ranging from 20% to 80% of the LLC size. The

MEM-bound application reads the buffer in strides, while MEM-boundR reads

it randomly.

facom-ufms

Multicore Scheduling in TCP Applications 33

These applications have computational and memory access patterns that cause

the cache to load and unload data differently and expose performance bottlenecks

in the system, such as cache inefficiency, excessive memory access, and contention

on CPU execution units.

4.2.1.1 Calibration

We calibrate each application to match target service times using a single worker

and adjusting the number of instructions (e.g., square root computations or memory

reads) the worker executes. At the start, the worker executes a single instruction

and measures the difference between the two timestamps taken before and after the

instruction. If the measured time is less than the target service time, we double

the number of instructions and repeat the measurement. This process continues

until the time difference exceeds the target. At that point, we reduce the number

of instructions by one unit. We repeat this process until the measured time is

sufficiently close to the target. For example, the CPU-bound application requires

248 instructions to achieve a service time of 1 µs on our server. As we use a

single worker to calibrate the service times, actual execution times may differ for

multiple workers due to aggregated high-memory reading access on the worker

buffers or execution-unit contention. We ensure that compiler optimizations do

not change the application in ways that affect our setup, for example, by using

std::hint::black box from Rust.

4.2.2 Experimental Setup and Implementation

We evaluate the multicore architectures on a testbed consisting of two servers

connected in a classic traffic generator and device-under-test configuration. Each

server has two Intel(R) Xeon(R) Silver 4114 (10-cores @2.20 GHz), 128 GB of RAM,

and a dual-port NVIDIA ConnectX-6 100 Gbps NIC. We disable Turbo Boost,

facom-ufms

Multicore Scheduling in TCP Applications 34

isolate nine physical cores from the Linux scheduler per processor (18 hyperthreads),

and reserve 64 GB of hugepages for DPDK. We use Linux’s perf stat command for

collecting processor statistics.

The client is an open-loop generator that generates requests using the exponential

distribution to model bursty traffic. It establishes TCP connections with the server,

with the number of connections determined by the number of application workers

on the server. The client sends the requests in 128-byte packets and processes the

replies to measure the performance metrics, avoiding, therefore, instrumentation on

the server that would interfere with the performance measurements. The client

is implemented in C with DPDK, using multithreading to handle RX and TX

operations separately. We run ten independent experiment rounds for 20 seconds

each, with the first half serving as a warm-up period, and report the 99.9th percentile

round-trip latencies [44,72,87,123,139] of applications with a confidence interval of

95%.

The server uses the Demikernel datapath OS [138] to implement the Inline and

Dispatcher models described in Section 4.1. We use one spinlock for each TCP

session state (i.e., TCP control block) to prevent race conditions in models that allow

multiple cores to update the control block, while also minimizing lock contention.

Additionally, we use RSS with DPDK’s rte flow to deliver the packets across

multiple NIC queues and ensure an equal distribution of TCP sessions between

the cores. This distribution prevents imbalances in the number of TCP sessions per

worker that could affect the performance evaluation of the different architectures.

4.3 Worker Assignment and Queueing Model

This section examines various worker assignments and queueing models for

scheduling network and application processing, highlighting how each configuration

impacts performance differently. Despite these differences, existing systems rarely

facom-ufms

Multicore Scheduling in TCP Applications 35

account for these factors in their design. Typically, systems aim to minimize latency

and maximize throughput, often involving multiple cores to handle high request rates

and achieve efficient utilization. In queueing theory, centralized scheduling tends to

offer the best utilization and lowest latency by routing work to the most available

worker. However, in practice, centralized scheduling faces scaling bottlenecks on

multicore architectures at microsecond timescales. These limitations have led

kernel-bypass systems to adopt two distinct approaches for network processing on

multicore architectures.

The first approach, used in many kernel-bypass systems, is the Inline model,

where each worker core handles both network and application processing. The set

of workers can either share a single NIC queue or configure the NIC to use Receive

Side Scaling (RSS) to distribute packets across per-worker NIC queues. We explore

each approach in Section 4.3.1.

In the Dispatcher model, a dedicated worker handles incoming network traffic

and dispatches each request to an available application worker. This model allows

greater control over CPU time allocation between network and application tasks,

flexibility in selecting CPU resources (such as scheduling on different hyperthreads

or NUMA nodes), and the ability to run the application and networking stack in

separate security domains. However, the dispatcher itself can become a bottleneck,

capping the application’s total throughput. We next delve into each approach and

examine different design choices within each one.

4.3.1 Inline Model

In the Inline model, the network stack and application logic run on the

same worker. Packet delivery and request processing can follow different

queueing models—dFCFS, cFCFS, or work-stealing (WS)—each introducing specific

challenges and trade-offs that impact performance.

facom-ufms

Multicore Scheduling in TCP Applications 36

To scale the Inline model across many workers, systems require efficient traffic

distribution methods. We explore two approaches, each supporting different

queueing policies. The first uses a centralized single packet queue, polled by

all workers, allowing requests to be processed in a first-come-first-serve manner

(cFCFS). A spinlock protects the queue, ensuring each packet is delivered to a single

core. However, since packets from the same TCP connection might be processed on

different cores, the TCP connection state also requires protection via spinlocks.

Spinlocks, however, do not scale well across cores [15]. To reduce cross-core

coherence traffic, the second model employs per-worker NIC queues, eliminating the

need for locks. Traffic is distributed across these queues using RSS, which guarantees

that packets from the same flow always reach the same queue, avoiding the need

for per-connection locking. Systems like IX and Arrakis use this shared-nothing

approach, leading to a distributed FCFS (dFCFS) policy. While this approach

maximizes per-core throughput and efficiency, it is susceptible to head-of-line (HOL)

blocking, where requests that could run on an otherwise idle worker are forced to

queue while their assigned core processes a different request.

Work-stealing offers a middle ground between cFCFS and dFCFS. In this model,

each worker has its own network queue but can steal work from others when idle.

This alleviates load imbalances and helps reduce tail latency. To enable stealing

and allow multiple cores to process the same flow, spinlocks protect each queue

and individual connection states. Unlike the centralized model, these spinlocks are

typically acquired by the same core, making the operation significantly cheaper than

acquiring a spinlock from a different core’s cache. As a result, work-stealing scales

more effectively than cFCFS.

facom-ufms

Multicore Scheduling in TCP Applications 37

4.3.1.1 Inline Model Evaluation

InlineC InlineD InlineWS

 0

 25

 50

 75

 100

0 500 1000 1500 2000 2500 3000

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(a) CPU-bound (Const. - 1 µs)

 0

 25

 50

 75

 100

0 250 500 750 1000 1250 1500

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(b) MEM-bound (Const. - 1 µs)

 0

 100

 200

 300

 400

0 150 300 450 600 750 900

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(c) CPU-bound (Const. - 10 µs)

 0

 250

 500

 750

1000

0 50 100 150 200 250 300

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(d) MEM-bound (Const. - 10 µs)

 0

 250

 500

 750

1000

0 20 40 60 80 100 120

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(e) CPU-bound (Const. - 100 µs)

 0

1000

2000

3000

4000

0 5 10 15 20 25 30

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(f) MEM-bound (Const. - 100 µs)

Figure 4.1: The Inline model results running CPU-bound and MEM-bound

applications using the constant service times of 1, 10, and 100 µs, where light
red, black, and purple lines represent cFCFS, dFCFS, WS, respectively.

We start with a simple and well studied experiment where we measure the tail

latency as a function of the offered load to an application performing synthetic work

for each request. We vary the service times used to show how the ideal queueing

facom-ufms

Multicore Scheduling in TCP Applications 38

policy varies by workload.

We evaluated the Inline model with eight workers using two synthetic

applications: CPU-bound and MEM-bound. The MEM-bound workers access private

buffer regions, sized to 80% of the LLC, which generates DRAM traffic when

multiple workers are active. We tested three queueing models: cFCFS, dFCFS, and

work-stealing (WS), with service times of 1, 10, and 100 µs for both applications.

Figure 4.1 shows that, as expected, cFCFS consistently achieves the lowest tail

latency of each approach. However, with service times of 1 µs and 10 µs the spinlock

prevents the application from achieving full throughput. At 1 µs, dFCFS is able to

scale to full throughput, and because of the small service times, it does not suffer

badly from HOL blocking. WS also scales to full throughput, but with increased

latency due to synchronization overheads. However, at 10 µs service times, dFCFS

increasingly suffers from HOL blocking and its tail latency worsens, leading to WS

achieving lower tail latency than dFCFS and higher throughput than cFCFS. At

100 µs service times, the cost of spin locking the centralized queue is small enough

that cFCFS can achieve full throughput, with significantly lower latency than the

other two approaches.

Finding 1: cFCFS is an optimal scheduling policy for tail latency [72, 83], but the

overhead of inter-core coordination (i.e., locking) dominates when service times are

low. At lower service times, approaches that sacrifice perfect fairness (dFCFS and

WS) achieve higher throughputs.

Finding 2: WS effectively mitigates HOL blocking without creating new bottlenecks,

but incurs non-trivial overheads that can be avoided when service times are

particularly low or high.

Despite the initial calibration for the MEM-bound application, multiple buffers,

the strided access, and the buffer size result in higher service times due to increased

cache misses and memory accesses. Figures 4.1b and 4.1f show that the actual

facom-ufms

Multicore Scheduling in TCP Applications 39

service times differ significantly from the 1 and 100 µs that were initially calibrated.

In both cases, however, cFCFS consistently outperforms the distributed models. As

the service time increases to 100 µs, the performance gap between the centralized

and distributed models becomes more pronounced, with cFCFS outperforming the

others (see Figure 4.1f), similar to the CPU-bound application.

InlineC InlineD InlineWS

 0

 150

 300

 450

 600

0 450 900 1350 1800 2250 2700

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(a) CPU-bound
Bimodal1

(99.5 – 1, 0.5 – 100)

 0

 250

 500

 750

1000

0 250 500 750 1000 1250 1500

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(b) MEM-bound
Bimodal1

(99.5 – 1, 0.5 – 100)

 0

1000

2000

3000

4000

0 30 60 90 120 150 180

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(c) CPU-bound
Bimodal2

(50 – 1, 50 – 100)

 0

1000

2000

3000

4000

0 10 20 30 40 50 60

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(d) MEM-bound
Bimodal2

(50 – 1, 50 – 100)

Figure 4.2: The Inline model results running CPU-bound and MEM-bound

applications using the bimodal distributions, respectively, where light red, black,
and purple lines represent cFCFS, dFCFS, WS, respectively.

We also evaluate the performance of the Inline model using the bimodal

distributions in Table 4.2, using the same CPU-bound and MEM-bound applications.

These distributions exhibit a dual-peaked pattern, representing two types of

facom-ufms

Multicore Scheduling in TCP Applications 40

requests: short (1 µs) and long (100 µs) service times, which are common in

datacenter applications.

Figure 4.2a shows the latency results for the Bimodal1 distribution (99.5% short

requests, 0.5% long requests) applied to the CPU-bound application. In this case,

cFCFS outperforms the distributed queueing models until it reaches its capacity

limit, where the single queue can no longer handle all incoming packets. With the

significant separation between the short (99.5% at 1 µs) and long (0.5% at 100 µs)

requests, WS mitigates HOL blocking, resulting in better tail latencies. With the

Bimodal2 distribution (50% short, 50% long requests) for CPU-bound, the single

queue of cFCFS does not become a bottleneck, allowing cFCFS to outperform both

distributed queueing models, as shown in Figure 4.2c.

For the MEM-bound application, which has a large memory footprint, the cFCFS

model does not experience the single-queue bottleneck seen with CPU-bound (Figure

4.2a). Consequently, cFCFS achieves the best tail latencies up to 800 krps for the

Bimodal1 distribution and across all evaluated offered loads for Bimodal2, as shown

in Figures 4.2b and 4.2d.

Similarly to CPU-bound, WS effectively handles higher loads in the Bimodal1

scenario by mitigating HOL blocking.

Finding 3: High variability in service times favors centralized queueing models

which reduce HOL blocking, leading to lower latencies.

The Inline model presents some drawbacks, such as inefficient utilization of

multicore systems, as both the network stack and application are bound to a

single worker, limiting load distribution. It reduces flexibility in resource allocation,

making it impossible to prioritize network stack or application during changing

workloads. For example, when the application’s service time is high, the network

stack runs less frequently, which can lead to packet drops and performance

degradation as TCP must buffer out-of-order packets before delivering them to the

facom-ufms

Multicore Scheduling in TCP Applications 41

application. Also, running the network stack and the application sequentially can

reduce cache efficiency, as one task may replace the cached data of the other one.

4.3.2 Dispatcher Model

In the Dispatcher model, the network stack and application logic run on separate

workers, enabling independent scaling of both tasks based on workload demands.

This separation allows flexible allocation of resources—for example, dedicating more

workers to network processing in cases where TCP handling takes longer than

application processing, which is common in microservice-based systems. By isolating

network and application tasks on different workers, cache locality is improved,

boosting overall performance.

The number of dispatchers in this model can vary from 1 to N, where each

dispatcher handles both network packet reception and the dispatching of requests

to application workers. A dispatcher polls its NIC queue, runs the network stack,

and forwards application requests to an idle worker in its pool of workers. After

completing the request, the application workers send the response back to the same

dispatcher, which transmits the reply over the network.

To scale the system as the load increases, additional dispatchers can be

introduced, each with its own NIC queue and set of application workers. Traffic is

partitioned among dispatchers using RSS, allowing each dispatcher to be responsible

for maintaining the TCP state for its own flows without synchronizing with others.

The Dispatcher model allows for flexible configurations of CPU cores and

hyperthreads. Figure 4.3 illustrates several possible setups using eight physical cores

with two hyperthreads each. With one hyperthread left idle, we consider three core

allocation options: (i) assign one core to the network stack and the remaining seven

to the application (Figure 4.3a), (ii) assign two cores to the network stack and six to

the application (Figure 4.3b), or (iii) allocate four cores to both the network stack

facom-ufms

Multicore Scheduling in TCP Applications 42

(a) (b) (c) (d)

Network
Stack

Application

CPU core

Hyperthreads

Figure 4.3: Different arrangements for the Dispatcher model with eight cores. Using
a single hyperthread per core, the configurations are: (a) 1+7, (b) 2+6, and (c)
4+4, where the first and second numbers represent the quantity of network-stack
and application workers, respectively. With both hyperthreads active on a core,
we have (d) one runs the network stack while the other runs the application.

and application (Figure 4.3c). These configurations are labeled “1+7,” “2+6,” and

“4+4,” respectively. Additional configurations are possible when both hyperthreads

are used. Figure 4.3d illustrates a setup where one hyperthread runs the network

stack and the other runs the application on the same core.

4.3.2.1 Dispatcher Model Evaluation

In this section, we evaluate the Dispatcher model using the CPU-bound and

MEM-bound applications with eight workers and the service times in Table 4.2, as

in Section 4.3.1.1. We evaluate the performance of the model using 1, 2, and

4 workers for network-stack processing, corresponding to Figures 4.3a, 4.3b, and

4.3c, respectively. We label these configurations as Dispatcher 1:7, Dispatcher 2:6,

Dispatcher 4:4. This evaluation presents tail latencies for constant service times of

1, 10, and 100 µs and the bimodal distributions. In all scenarios, we use a single

hyperthread from each core and leave its sibling idle. We investigate the performance

impacts of hyperthreading in Section 4.4.

facom-ufms

Multicore Scheduling in TCP Applications 43

Dispatcher 1:7 Dispatcher 2:6 Dispatcher 4:4

 0

 100

 200

 300

 400

0 400 800 1200 1600 2000

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(a) CPU-bound (Const. - 1 µs)

 0

 100

 200

 300

 400

0 400 800 1200 1600 2000

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(b) MEM-bound (Const. - 1 µs)

 0

 100

 200

 300

 400

0 150 300 450 600 750 900

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(c) CPU-bound (Const. - 10 µs)

 0

 100

 200

 300

 400

0 50 100 150 200 250 300

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(d) MEM-bound (Const. - 10 µs)

 0

 500

1000

1500

2000

0 30 60 90 120 150 180

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(e) CPU-bound (Const. - 100 µs)

 0

2000

4000

6000

8000

0 5 10 15 20 25 30 35

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(f) MEM-bound (Const. - 100 µs)

Figure 4.4: The Dispatcher model results running CPU-bound and MEM-bound

applications using the constant service times of 1, 10, and 100 µs, where orange,
blue, and red lines represent Dispatcher 1:7, Dispatcher 2:6, and Dispatcher 4:4,
respectively.

We can balance the allocation of workers between the network stack and

application depending on the workload, emphasizing the network stack’s critical role

in performance. Figure 4.4a shows the tail latencies for the different configurations

when the CPU-bound application runs with a service time of 1 µs. In this experiment,

facom-ufms

Multicore Scheduling in TCP Applications 44

we observe that the network stack becomes the bottleneck as the offered load

increases. For example, the Dispatcher 1:7 configuration reaches its processing limit

at 400 krps because a single network-stack worker cannot handle the incoming packet

rate, leaving the application workers idle.

Finding 4: In the Dispatcher model, the network stack becomes the bottleneck at

high packet rates when the application service time is low.

Conversely, when the service time increases, the bottleneck shifts to the

application workers. Compared to the 1 µs service time in Figure 4.4a, the bottleneck

shifts from the network stack to the application as service times increase. Figure 4.4c

shows the tail latency with a 10 µs service time, where Dispatcher 2:6 outperforms

the other two configurations, as the single network-stack worker in Dispatcher

1:7 becomes a bottleneck. In contrast, for a 100 µs service time, Dispatcher 1:7

outperforms the other two configurations, as shown in Figure 4.4e. By decoupling

the network-stack processing from the application, the Dispatcher model allows the

allocation of more workers to process the application requests without interference

from the network-stack processing.

facom-ufms

Multicore Scheduling in TCP Applications 45

Dispatcher 1:7 Dispatcher 2:6 Dispatcher 4:4

 0

 200

 400

 600

 800

0 500 1000 1500 2000

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(a) CPU-bound
Bimodal1

(99.5 – 1, 0.5 – 100)

 0

 200

 400

 600

 800

0 200 400 600 800 1000 1200

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(b) MEM-bound
Bimodal1

(99.5 – 1, 0.5 – 100)

 0

1000

2000

3000

4000

0 30 60 90 120 150 180

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(c) CPU-bound
Bimodal2

(50 – 1, 50 – 100)

 0

1000

2000

3000

4000

0 10 20 30 40 50 60 70

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(d) MEM-bound
Bimodal2

(50 – 1, 50 – 100)

Figure 4.5: The Dispatcher model results running CPU-bound and MEM-bound

applications using the bimodal distributions, respectively, where orange, blue, and
red lines represent Dispatcher 1:7, Dispatcher 2:6, and Dispatcher 4:4, respectively.

We also evaluate the Dispatcher model using the MEM-bound application, which

introduces significant cache pressure due to its large memory footprint (80% of LLC

size) and 63-byte stride iterations. In this case, memory accesses span different

cache lines at a 63/64 rate, resulting in 63 cache misses and 1 cache hit for every

64 memory accesses. This evaluation shows that under high cache pressure, system

performance is primarily constrained by memory access patterns rather than the

ratio of application to network-stack workers. Figure 4.4b presents the tail latency

with a 1 µs service time and shows that the results are similar to those from the

CPU-bound application. While the different configurations perform similarly at low

facom-ufms

Multicore Scheduling in TCP Applications 46

service times, higher service times of 10 and 100 µs reveal the impact of the large

memory footprint, causing more memory accesses and capping throughput at 250

krps and 30 krps, respectively, as shown in Figures 4.4d and 4.4f. These findings

suggest that in memory-bound applications with high service times, the Dispatcher

model’s performance is primarily constrained by cache pressure, indicating that

optimizing cache and memory access is more critical than adjusting the ratio of

application-to-network workers.

Finding 5: In the Dispatcher model, optimizing cache and memory access is

more important than adjusting the ratio of application-to-network workers for

memory-intensive applications with high service times.

To account for different request types and access distributions, we evaluate the

Dispatcher model using the bimodal distributions in Table 4.2 for both CPU-bound

and MEM-bound. In the Bimodal1 distribution (99.5% short requests), the number

of network-stack workers significantly impacts tail latency for both applications, as

shown in Figures 4.5a and 4.5b. In the Bimodal2 distribution (50% short, 50% long

requests), the number of application workers plays a more critical role, particularly

for the CPU-bound application (Figure 4.5c). However, for the memory-intensive

MEM-bound application, as shown in Figure 4.5d, the 1+7 and 2+6 configurations

exhibit similar performance, as the number of application workers is the primary

factor. The 4+4 configuration, with fewer application workers, results in the highest

tail latencies, as the network-stack workers are underutilized while the application

workers are insufficient to handle the workload.

Finding 6: In the Dispatcher model, as service time increases, the number of

application workers becomes the bottleneck, and increasing their number while

keeping enough network-stack workers reduces latency.

While the Dispatcher model allows independent scaling of network-stack and

application workers, it also presents some shortcomings. First, inter-worker

facom-ufms

Multicore Scheduling in TCP Applications 47

communication, which involves different cores or hyperthreads, is required to route

requests to application workers and receive their replies. Second, it is essential

to minimizing delays in the handoff process both from the moment a request is

ready after TCP stack processing to when it reaches the application worker, and

from when the application worker completes the reply to when the network-stack

worker prepares the outgoing packets. This optimization is especially important

for latency-sensitive applications, where even small transition delays can have a

significant impact on performance.

4.4 Spatial Scheduling and Co-location

Hardware elements like caches, hyperthreads, and NUMA nodes can significantly

influence the performance of network applications, particularly when the response

time must be in the order of a few microseconds. Cache misses, for instance, can

introduce delays, revealing the trade-offs between cache size, data access patterns,

and processing efficiency. Hyperthreading adds another complexity dimension, as

sibling hyperthreads share the core’s resources (e.g., execution engine and caches),

which may negatively impact the processing latency, especially at the tail. NUMA

nodes have private resources (e.g., L1, L2, and L3) and can access local memory

much faster than the remote ones [80]. Striking a balance on where to place the

different components of a network application is challenging. For instance, using the

additional resources (e.g., caches) of a remote node may pay off the price of crossing

the nodes’ interconnect.

4.4.1 Scheduling with Hyperthreads

With hyperthreading, the operating system treats each physical core with two

hyperthreads as two logical processors, allowing two tasks to be scheduled on the

same core, one per hyperthread. In the Inline model, where both the network

facom-ufms

Multicore Scheduling in TCP Applications 48

stack and the application run on the same worker, the hyperthreads can either

operate independently as two workers or one hyperthread can be idle, allowing its

sibling to use the core’s full resources. Since memory access patterns also influence

hyperthreading performance, we evaluate both placements for the Inline model using

the CPU-bound and MEM-bound applications.

InlineD InlineDHT

 0

 100

 200

 300

 400

0 1000 2000 3000 4000

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(a) CPU-bound
(Const. - 1 µs)

 0

 50

 100

 150

 200

0 300 600 900 1200 1500 1800

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(b) MEM-bound
(Const. - 1 µs)

 0

1000

2000

3000

4000

0 20 40 60 80 100

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(c) CPU-bound
(Const. - 100 µs)

 0

1000

2000

3000

4000

0 5 10 15 20 25 30

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(d) MEM-bound
(Const. - 100 µs)

Figure 4.6: The Inline model (dFCFS) results using both hyperthreads on each
CPU core running CPU-bound and MEM-bound applications, where black and blue
lines represent making the sibling hyperthread idle and using both hyperthreads
on each CPU core, respectively.

We evaluate the Inline model with dFCFS using one or both hyperthreads on

the same core across eight CPU cores (i.e., 8 or 16 workers). For the CPU-bound

application with a 1 µs service time, Figure 4.6a shows that running the workers on

both hyperthreads (InlineDHT
) results in slightly higher tail latencies at low loads

facom-ufms

Multicore Scheduling in TCP Applications 49

but about 25% higher throughput than using a single worker on one hyperthread

(InlineD), allowing the system to handle a higher offered load. When the service

time increases to 100 µs, the tail latency remains higher with both hyperthreads

active and there is no significant difference in throughput as seen in Figure 4.6c.

For the MEM-bound application, similar behavior is observed with the 1 µs

service time: two hyperthreads increase tail latency at low loads but also increase

throughput, as depicted in Figure 4.6b. However, when service time increases to

100 µs, having the sibling hyperthread idle improves both latency and throughput

(Figure 4.6d). Leaving a hyperthread idle improves performance by reducing

competition for shared resources within the CPU core (e.g., cache), allowing the

active hyperthread to fully use these resources without interference.

For the memory-intensive applications MEM-bound, additional hyperthreads

exacerbate memory accesses and cache misses because each worker uses a buffer that

occupies 80% of the LLC. These frequent memory accesses, resulting from inefficient

cache usage, reduce the system’s capacity to handle higher loads. Consequently, the

combined effects of execution unit contention, reduced cache efficiency, and increased

memory accesses lead to lower throughput for the MEM-bound application with 16

hyperthreads compared to using just eight.

Finding 7: In the Inline model with dFCFS, using both hyperthreads of a CPU core

increases the latency when the offered load is low for both types of applications.

facom-ufms

Multicore Scheduling in TCP Applications 50

Single HT Active Both HTs Active

 0

 100

 200

 300

 400

0 500 1000 1500 2000 2500 3000

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(a) CPU-bound
(Const. - 1 µs)

 0

 50

 100

 150

 200

0 500 1000 1500 2000

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(b) MEM-bound
(Const. - 1 µs)

 0

1000

2000

3000

4000

0 10 20 30 40 50 60

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(c) CPU-bound
(Const. - 100 µs)

 0

1000

2000

3000

4000

0 10 20 30 40

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(d) MEM-bound
(Const. - 100 µs)

Figure 4.7: The Dispatcher model results using both hyperthreads on each CPU
core running CPU-bound and MEM-bound applications, where red and green lines
represent making the sibling hyperthread idle and using both hyperthreads on
each CPU core, respectively.

To evaluate the Dispatcher model with hyperthreading, we use the configurations

shown in Figure 4.3: (i) Figure 4.3c, where the sibling hyperthread is idle, with four

workers dedicated to the network stack and four to the application and (ii) Figure

4.3d, where each core runs both the network stack and application on separate

hyperthreads.

Figures 4.7a and 4.7c show tail latencies for the CPU-bound application with 1

and 100 µs service times, respectively. For the 1 µs case, using both hyperthreads

(green line) results in higher throughput than leaving the sibling hyperthread idle

(red line), as shown in Figure 4.7a. Even with a 100 µs service time, running both

facom-ufms

Multicore Scheduling in TCP Applications 51

network stack and application on each core yields the highest throughput. However,

using only a single hyperthread per core (red line) at lower offered loads results in

the lowest tail latency, as depicted in Figure 4.7c.

For the MEM-bound application with a 1 µs service time, using both hyperthreads

increases throughput, but the difference between running the network stack on both

hyperthreads or not (red and green lines) is considerable at low offered load, as shown

in Figure 4.7b. At 100 µs service time, the large memory footprint severely limits

the throughput, regardless of hyperthreading or the Dispatcher model configuration,

capping it at around 25 krps. However, running both the network stack and the

application on the same core (green line) produces the better latency results, as seen

in Figure 4.7d.

Finding 8: Running CPU-intensive applications with lower service times on both

hyperthreads improves throughput in both Inline and Dispatcher models but increases

tail latency at low offered loads.

4.5 Scheduling with NUMA Nodes

We evaluate the impact of scheduling application workers across local and remote

NUMA nodes on throughput and latency using two memory-intensive applications.

The first is MEM-boundR, where each worker accesses its buffer randomly, and the

second is MEM-bound, where each worker iterates over its buffer with a 63-byte stride.

The purpose of using random and strided memory access patterns is to stress

the cache by frequently loading and unloading different data, exposing performance

bottlenecks. In this experiment, we assign a single worker to handle the network

stack on the local NUMA node, i.e., the NUMA node where the NIC is connected,

and distribute eight application workers as follows:

• All application workers run on the local NUMA node where the NIC is attached

(labeled as “L / L”);

facom-ufms

Multicore Scheduling in TCP Applications 52

10-4

10-2

100
20% of LLC

L / L L / R R / R 99.9 th
CC

D
F

10-4

10-2

100
40% of LLC

10-4

10-2

100

 0 100 200 300 400

60% of LLC

10-4

10-2

100

 0 100 200 300 400

80% of LLC

RTT Latency (µs)

Figure 4.8: The Dispatcher model results using both NUMA nodes running
MEM-boundR application, where the red, orange, and blue lines represent using only
the local NUMA node, both local and remote NUMA nodes, and only the remote
NUMA node, respectively.

• Half of the application workers run on the local NUMA node, and the other

half in the remote NUMA node (labeled as “L / R”);

• All application workers run on the remote NUMA node, where the NIC is not

attached (labeled “R / R”)

We evaluate both applications with the buffer size of each worker varying as a

function of the LLC size. The workload is fixed at 10 krps, with a constant number

of iterations over the buffer calibrated to take 100 µs. Note that the actual service

time may be longer depending on the memory-access pattern and cache pressure.

Figure 4.8 shows the CCDF (Complementary Cumulative Distribution Function)

latency for MEM-boundR with eight application workers and buffer sizes of 20%, 40%,

60%, and 80% of the LLC size. The results indicate no significant differences in

performance across different NUMA node configurations. Additionally, there is

minimal LLC contention, even when each buffer occupies 80% of the LLC (Figure

facom-ufms

Multicore Scheduling in TCP Applications 53

10-4

10-2

100
20% of LLC

L / L L / R R / R 99.9 th
CC

D
F

10-4

10-2

100
40% of LLC

10-4

10-2

100

 0 200 400 600 800

60% of LLC

10-4

10-2

100

 0 200 400 600 800

80% of LLC

RTT Latency (µs)

Figure 4.9: The Dispatcher model results using both NUMA nodes running
MEM-bound application, where the red, orange, and blue lines represent using only
the local NUMA node, both local and remote NUMA nodes, and only the remote
NUMA node, respectively.

4.10a).

Finding 9: Random iteration over the memory buffers makes no significant

difference in latency, regardless of application buffer size or NUMA node

configuration.

In contrast, the MEM-bound application, which was tested using the same

parameters, yields different results. Figure 4.9 shows the latency for the same buffer

sizes used in the previous experiment. While the “L / L” configuration is competitive

at 20%, it becomes much worse as the buffer size increases. Starting at 40%, the

“L / R” configuration consistently provides much better latency. This improvement

is attributed to using the additional LLC cache space on the remote NUMA node,

which reduces cache misses (Figure 4.10b). Furthermore, using the additional LLC

cache space on the remote NUMA node helps the “R/R” configuration to achieve

lower latency than “L / L”. Note that the network worker is still on the local node.

facom-ufms

Multicore Scheduling in TCP Applications 54

 0

 25

 50

 75

 100

20 40 60 80

LL
C

m
is

se
s

(%
)

Buffer size (% of LLC size)

L / L
L / R
R / R

(a) MEM-boundR

 0

 25

 50

 75

 100

20 40 60 80

LL
C

m
is

se
s

(%
)

Buffer size (% of LLC size)

L / L
L / R
R / R

(b) MEM-bound

Figure 4.10: LLC misses for MEM-boundR and MEM-bound applications, where we
vary the buffer size and red, orange, and blue lines represent scheduling application
workers in local NUMA node, both NUMA nodes, and remote NUMA node,
respectively.

InlineD Dispatcher 1:7 Dispatcher 2:6 Dispatcher 4:4

 0

 500

1000

1500

2000

0 300 600 900 1200 1500 1800

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(a) (99.5 – GET, 0.5 – SCAN)

 0

 500

1000

1500

2000

0 15 30 45 60 75 90

99
.9

%
 L

at
en

cy
 (µ

s)

Offered Load (krps)

(b) (50 – GET, 50 – SCAN)

Figure 4.11: RocksDB results comparing the Inline and Dispatcher models for
different GET/SCAN request proportions: (a) 99.5% / 0.5% and (b) 50% / 50%.

Finding 10: Strided memory access with large strides shows significant latency

improvements when utilizing both NUMA nodes, particularly due to reduced cache

misses.

4.6 Real Application Evaluation

In Sections 4.3 and 4.4, we evaluate the performance of the Inline and Dispatcher

models in controlled settings where the behavior of the applications is well-defined.

facom-ufms

Multicore Scheduling in TCP Applications 55

These settings allow us to simulate resource contention and memory access patterns

to identify architectural bottlenecks. To ensure that our results are applicable to

real-world scenarios, we integrate RocksDB [28], an embedded high-performance key

value database commonly used in storage systems and real-time data processing, into

Demieagle and evaluate its performance under various workloads.

In our experiments, we send two types of requests to RocksDB: GET and

SCAN. GET requests, which we classify as “short,” typically complete in ∼1 µs.

SCAN requests, classified as “long,” take ∼200 µs to finish. The database contains

10,000 keys. A GET request randomly accesses one of the existing keys. SCAN

operations, on the other hand, sequentially traverse all keys, resulting in longer

service times.

We evaluate the Inline model with dFCFS and various configurations of the

Dispatcher model with two distributions: 99.5% short and 0.5% long requests (as in

Bimodal1) and an even split of 50% short and 50% long requests (as in Bimodal2).

Figure 4.11a illustrates the tail latency for InlineC, Dispatcher 1:7, Dispatcher

2:6, and Dispatcher 4:4 models under a 99.5% short and 0.5% long request

distribution. Similar to our synthetic experiments, the number of network-stack

workers is the primary bottleneck in the Dispatcher model. However, until the

protocol stack limit is reached, the Dispatcher model (2+6 configuration) achieves

lower tail latencies than the Inline model. The 4+4 configuration, despite exhibiting

the worst tail latency, reaches the highest load, matching the performance of the

Inline model. Notably, dFCFS achieves the lowest tail latency at higher loads during

this experiment.

In contrast, Figure 4.11b shows the results for an even distribution of GET

and SCAN requests. Here, the number of application workers becomes the

dominant factor affecting performance due to the high volume of SCAN requests.

Consequently, the bottleneck shifts from the network stack to the application

workers. In this scenario, the Dispatcher model (1+7 configuration) delivers better

facom-ufms

Multicore Scheduling in TCP Applications 56

tail latencies than the Inline model across the board.

Evaluating real-world applications like RocksDB introduces uncontrolled factors,

such as application locks and memory-access patterns. However, the findings

obtained with the synthetic applications and reported in Sections 4.3.1 and 4.3.2

match the results observed with RocksDB, attesting to the representativeness of our

synthetic applications.

4.7 Guidelines

Figures 4.12a and 4.12b provide flowcharts to guide the selection of the models

discussed in Section 4.3.1. Figure 4.12a guides the selection of the queueing

model (cFCFS, dFCFS, or WS) based on three key factors: Offered Load (low or

high), Average Service Time (relative to the network stack’s time), and Application

Memory Footprint (small or large). Figure 4.12b adds hyperthreading to these

two factors to decide when both hyperthreads should be used in a core. The figures

referenced in the labels of each flowchart show the experimental results that support

each decision.

Figures 4.13a, 4.13b, and 4.13c cover the models from Section 4.3.2, summarizing

key findings for the Dispatcher model. Figure 4.13a provides guidelines for spatial

scheduling with NUMA based on the Memory Access Pattern (strided or random).

Figure 4.13b offers hyperthreading guidelines focused on the Offered Load (low or

high). Figure 4.13c illustrates the decisions based on the number of network-stack

and applications worker, considering Average Service Time (relative to the network

stack’s time), Time Variability (constant or variable), and Offered Load.

facom-ufms

Multicore Scheduling in TCP Applications 57

cFCFS WS dFCFS

Offered
LoadLow

Average
Service

Time

High

≫ NS time

> NS time

< NS time

App
Memory
Footprint

SmallLarge

Queueing Model
Inline

(a) Based on Figures 4.1 and 4.2.

Inline

Offered
Load

InlineHT

Average
Service

Time

High

Low

Spatial Scheduling: Hyperthreading
Inline

≫ NS time

< NS time

(b) Based on Figure 4.6.

Figure 4.12: Guidelines for selecting a model for the Inline model based on the tail
latencies for the cases evaluated in Sections 4.3 and 4.4, where NS means Network
Stack and A means Application.

4.8 Summary

In this chapter, we analyze the trade-offs associated with different multicore

architectures tailored for microsecond-scale network applications. We classify

these architectures and introduce a new benchmark suite that explores various

points in the design space, offering a structured way to evaluate each approach.

The benchmark framework, Demieagle, is designed to support and test these

classified architectures, facilitating direct comparisons between different multicore

architectures and scheduling policies across various synthetic and real-world

workloads.

Using Demieagle, we extensively evaluate all classified architectures, including

synthetic workloads and a real-world application, highlighting key performance

characteristics and limitations. Our three main contributions are (i) a classification

facom-ufms

Multicore Scheduling in TCP Applications 58

L/R R/R

Memory
Access
Pattern

L/L

Random

Stride

Spatial Scheduling: NUMA
Dispatcher

(a) Based on Figures 4.8 and
4.9.

Single HT
Active

Spatial Scheduling: Hyperthreading
Dispatcher

Offered
Load

Low

Both HTs
Active

High

(b) Based on Figure 4.7.

1/7 2/6

Average
Service

Time

4/4

≫ NS time

Time
Variability

Constant

Offered
Load

Variable

Low High

< NS time

> NS time

Worker Ratio (NS/A)
Dispatcher

(c) Based on Figures 4.4 and
4.5.

Figure 4.13: Guidelines for selecting a model for the Dispatcher model based on
the tail latencies for the cases evaluated in Sections 4.3 and 4.4, where NS means
Network Stack and A means Application.

of multicore architectures, (ii) the design and implementation of Demieagle, and

(iii) a detailed evaluation to provide valuable insights for system developers. The

findings from our evaluation enable better decision-making when optimizing network

stacks and applications for microsecond-scale environments, addressing the need for

efficient resource utilization, scalability, and low latency.

facom-ufms

Chapter 5

Dynamic Scaling of Stateful

Network Functions

In this chapter, we apply the ideas from the previous chapter regarding multicore

architectures for fast packet processing and present the design, correctness analysis,

and performance evaluation of Dyssect , a system that improves NFV performance

by allowing lock-less state-migration operations to achieve load balancing, prioritize

traffic, and minimize resources while satisfying user-specified Service-Level Objective

(SLO) requirements. By using a hardware-software codesign, Dyssect circumvents

the many pitfalls of current approaches.

5.1 Dyssect

Dyssect manages the workload of stateful VNF (Virtual Network Function) chains

with the goal of processing packets at tens of Gbps using general-purpose hardware.

We propose a novel architecture for packet processing. Dyssect ’s key contribution

is a set of techniques that provide fine control over flow-to-core assignments

and overcome limitations that hinder cache locality (see the results we show in

Figure 1.4), significantly improving packet processing throughput.

59

Dynamic Scaling of Stateful Network Functions 60

Dyssect achieves fine control over flow-to-core assignments by combining three

techniques. First, Dyssect stores pointers to flow states in a data structure and

attaches a reference to this structure in the packet metadata, amortizing lookup costs

and enabling any core to process packets from any flow (Section 5.1.1). Second, we

propose distributed, high-performance, lock-free synchronization mechanisms that

allow a core to offload processing of a flow to another core while guaranteeing in-order

packet processing (Section 5.1.2). Finally, we design optimization models that

compute flow-to-core assignments to minimize operational costs, distribute traffic

load, maximize throughput, and meet SLO latency constraints (Section 5.1.3).

Certain states in network functions, such as the NAT pool of addresses and

ports, have a global scope and cannot be partitioned per flow through sharding.

Since Dyssect depends on sharding, it only supports network functions with

per-flow state. In this case, disjoint sets of flows can be allocated to different

instances of a network function, and each instance has exclusive access to its

flows’ states, precluding the need for communication and synchronization across

instances.However, some systems [39, 40, 56, 112, 113, 121, 132] deal with network

functions (e.g., Bro [106], PRADS [110], Snort [122], Suricata [126]) in which

multiple instances share the network function state. In this case, these systems

require synchronization and coordination mechanisms to ensure consistency and

avoid conflicts to provide scaling of stateful network functions. Dyssect supports

network functions where state partitioning is essential for a network function to

process packets at high speed, as synchronizing accesses to the shared state does

not scale, especially in network functions that need to update their states for every

packet. This is the case for many common network functions, including stateful

firewalls and load balancers [132, 140]. Dyssect assumes that service chains employ

the run-to-completion model (RTC), i.e., all network functions in the service chain

process the packet without yielding the CPU. The RTC model is also assumed in

many frameworks, particularly those which aim at providing low latency and high

facom-ufms

Dynamic Scaling of Stateful Network Functions 61

throughput for packet processing [7, 63,68,116].

5.1.1 State Management

Dyssect partitions flows, and thus the state of a network function, into S shards such

that S is a power-of-two and S ≤ E, where E is the maximum number of entries in

the NIC’s RSS indirection table. This partitioning allows us to efficiently identify

the shard of a packet by using the log2 S least significant bits of a hash value on

the packet’s flow key (e.g., 5-tuple for TCP or UDP). Dyssect avoids computing the

hash in software and instead uses the same RSS hash value that the NIC computes

to direct packets to cores. As RSS places all packets of a shard on one core, Dyssect

avoids the use of locks for accessing the shard.

5.1.1.1 State Initialization

A recent study shows that state lookup represents a significant cost for packet

processing in software [130]. This cost compounds when we have a service chain

with multiple network functions, as each network function does a lookup to find its

state associated with the packet. Dyssect disaggregates the states from the network

functions by keeping one hash table for each shard, containing one entry for each

flow; these are referred to as the flow table and flow entry, respectively. A flow entry

is an array with n pointers, where n is the length of the service chain, and the ith

pointer points to the flow state of its ith network function. Dyssect adds a reference

to the flow entry into the packet metadata.

During the initialization of the service chain (i.e., before any packet is processed),

each network function calls the function InitState() to receive a handle from the

framework. Dyssect uses this handle to associate each network function to one

element in the array of pointers, and the network functions use the handles when

calling other Dyssect functions.

facom-ufms

Dynamic Scaling of Stateful Network Functions 62

...

H PMH P

Hash (H)
Flow
Key

Flow
Entry

Insert metadata NF0
State

NF1
State

NF2
State

Packet Packet

GetState

State Table

GetState
GetState

Figure 5.1: State management in Dyssect .

When a network function receives a packet, it first calls GetState() to retrieve the

associated state. If the packet is the first of its flow, Dyssect returns a null pointer.

In this case, the network function allocates the state for the flow and invokes the

function InsertState() with a pointer to the flow state just allocated, its handle, and

the packet. Dyssect stores the flow’s state pointer in the flow entry in the respective

flow table. It uses the flow key (e.g., 5-tuple for TCP and UDP) associated with

the packet to determine the flow entry in the hash table.

5.1.1.2 State Lookup

For subsequent packets of the flow, Dyssect does a single lookup in its data structure

when it retrieves a packet from the NIC queue. To avoid further lookups for the

packet, Dyssect inserts into the packet metadata a pointer to the flow entry, which

has an 8-byte pointer to each NF’s state. To get its state, each network function

calls GetState() passing as parameters its handle and the packet. With the handle

and the metadata in the packet, Dyssect can return a reference of the network

function’s state by dereferencing the packet metadata pointer without doing new

lookups. Figure 5.1 shows an overview of this process.

5.1.1.3 State Cleanup

When a network function finishes processing a flow (e.g., by observing TCP FIN flags

or from a timeout), it must call the DeleteState(). The DeleteState() function assigns

facom-ufms

Dynamic Scaling of Stateful Network Functions 63

null to the state pointer associated with the network function in the terminating

flow’s entry. When all pointers in a flow entry become null, Dyssect removes the

flow entry from the shard’s hash table. Each network function manages its own state,

allocating the necessary amount of memory for its state and releasing memory when

a flow ends; Dyssect only manages access to state via (opaque) pointers.

5.1.2 Flow Assignment

Dyssect combines two mechanisms for assigning flows to cores (see Figure 5.2). The

first mechanism is coarse-grained and maps shards to cores. We leverage the NIC

hardware and use its RSS capability. Each shard s comprises all entries of the RSS

indirection table whose log2 S least significant bits are equal to s. To assign shard

s to a core, Dyssect updates all of s’s entries in the RSS table to point to the core.

Dyssect ensures all RSS entries of a shard s map to the same core.

The second mechanism is fine-grained and assigns a subset of flows in a shard to

an offloading core. Dyssect employs the fine-grained flow assignment mechanism

to balance the load between cores, prioritize certain types of traffic or meet

operator-defined SLOs, as we discuss in Section 5.1.3.

Dyssect uses CPU cores as either working or offloading cores. A working

core polls its NIC queue to retrieve batches of packets assigned to it using the

Working core 0
Working core 1
Working core 2
Working core 3

Hash
Function

0
1
0
1
2
3
2
2

Offloading core 0
Offloading core 1

RSS Indirection Table

Update RSS table

Migrate shards
Define fraction r of traffic
that is sent to offloading

cores

Traffic

Controller

0
1
2
3

n-1

...

Figure 5.2: Dyssect overview.

facom-ufms

Dynamic Scaling of Stateful Network Functions 64

coarse-grained RSS-based mechanism. For each packet in a batch, the working core

performs a lookup in the shard’s flow table to retrieve the corresponding flow entry,

and adds a pointer to the flow entry into the packet metadata (Section 5.1.1). The

working core then verifies if the packet belongs to a flow that should be sent to an

offloading core (henceforth called an offloading flow) (see Section 5.1.2.2). We use

the term offloading core to refer to a core that processes offloading flows. Offloading

cores do not have any extra functionality nor are more powerful than working cores.

Each working core is mapped to zero or one offloading core, i.e., a working core

either does not offload any packets or offloads packets to a single offloading core.

This restriction simplifies coordination across cores during scaling operations, which

change the mapping between working and offloading cores to redistribute traffic load.

An offloading core receives packets from one or more working cores. Offloading cores

maintain one queue for each working core it receives packets from and poll all queues

in a round-robin fashion.

5.1.2.1 Dyssect Controller

The coarse- and fine-grained flow assignment mechanisms are centrally controlled,

and flow assignment changes require coordination across cores to avoid packet

reordering and race conditions in the data plane.

Algorithm 5.1 summarizes the operation of Dyssect ’s centralized controller. The

controller maintains the number of active working and offloading cores (nw and no),

a vector with the ratio (r) of each shard’s traffic that should be offloaded to the

corresponding offloading core, the association between shards and working cores

(A), and the mapping of working cores to offloading cores (O).

The controller performs autoscaling operations periodically (Line 4). On each

iteration, the controller builds a set of signals specifying autoscaling operations to be

executed by each core (initialization in Line 5 and notification in Line 19). Over long

timescales (Line 6), the controller runs an optimization that computes the number

facom-ufms

Dynamic Scaling of Stateful Network Functions 65

Algorithm 5.1 Central controller.

Require: Short and long-term optimization periods ϵ and τ
Require: Number of cores C and number of shards S
1: nw ← C
2: no ← 0
3: r ← {0 for each s ∈ S}
4: at every ϵms do
5: Reset signal[w] for all working cores
6: if τ s has elapsed then
7: nw, no ← longTimescaleSolver(C, S)

8: A,O, r ← shortTimescaleSolver(nw, no)
9: for each s ∈ S that rs changed do
10: signal[shards[s].owner].offloadRatioChange ← true

11: for each (s, w) assignment changed ∈ A do
12: shards[s].newOwner ← w
13: shards[s].hold ← true

14: updateRSSTable()

15: for each (s, w) assignment changed ∈ A do
16: signal[shards[s].owner].migrations += (s, w)

17: for each (w, o) mapping changed ∈ O do
18: signal[w].newOffloadingCore ← o

19: Send signal[w] to each working core w
20: end end at

of working and offloading cores.

On every autoscaling operation, the controller runs a short-timescale solver.

The short-timescale solver receives as input the current number of active working

and offloading cores (computed by the long-timescale optimization), and updates

the shard-to-core assignments, mapping between working and offloading cores, and

offload ratios (Line 8).2 For each offload ratio, assignment or mapping changes

(Lines 9, 11, and 17), the controller updates signal accordingly (Lines 10, 16, and

18).

For each shard s that will migrate to another working core, the controller

2It is possible that the optimization keeps offload ratios constant. However, updating offload
ratios has an impact on packet processing performance that is proportional to the ratio differences
(Section 5.1.2.2), and there is no significant impact for signaling when there is no change in offload
ratios.

facom-ufms

Dynamic Scaling of Stateful Network Functions 66

configures the working core w receiving the shard to hold packets from s in a queue

for later processing (shards[s].hold, Line 13). This temporary delay allows s’s previous

working core (shards[s].owner) to finish processing any packets from s it may have

retrieved from the network. The shards[s].hold operation takes effect immediately,

before the controller updates the RSS indirection table (Line 14), which will cause

packets from s to go into w’s queue.

5.1.2.2 Dyssect Data plane

Working and offloading cores process packets continuously with efficient, lock-free

synchronization. The main constraint on the data plane is ensuring packets from a

flow are processed in order. Our insight is to delay processing of flows whose shards

are assigned to different cores or flows that start or stop being offloaded. This delay

allows the previous core to finish processing any pending packets for reassigned flows

before the new core starts processing. To minimize delay, Dyssect only enqueues

packets for flows that are reassigned during scaling operations. Processing of flows

that are not reassigned is not delayed.

Dyssect maintains multiple queues (denoted with Q in the pseudocode). Queues

are written to by a single core, and read from by a single core, although the writer

and reader may be different for any single queue.3

Dyssect queues support a cycling operation, which allows cores to wait for packets

queued before the start of the cycling operation to be processed while still being able

to enqueue packets to the queue. A queue’s writer core can start a cycling operation

by setting a flag in the queue. On first seeing the flag, the reader process saves

the current number of packets in the queue. The reader core clears the cycling flag

after that many packets are processed from the queue, which signals to the writer

core that the cycling has finished. The main idea is that the reading core has to

process all the enqueued packets on a queue Q when the migration starts before Q

facom-ufms

Dynamic Scaling of Stateful Network Functions 67

Algorithm 5.2 Packet processing at working cores.

1: procedure ProcessPackets
2: for each shard s assigned to this core do
3: if |self.Qheld

s | > 1 and not shard[s].hold then
4: RunSFC(self.Qheld

s)

5: for each packet p in self.QNIC do
6: s← getShard(p)

7: if shard[s].hold then
8: self.Qheld

s ≪ p
9: else if isOffloaded(p, rs) then
10: self.Qoffloading ≪ p
11: else if self.offloadRatioChange and
12: isOffloaded(p, rolds) then
13: self.Qpending

s ≪ p
14: else
15: RunSFC(p)

is reassigned to another core to process new arriving packets.

Algorithm 5.2 shows how working cores handle incoming packets. Packet

processing is performed continuously. Before processing packets arriving from the

network, the working core checks if there are any packets waiting to be processed

for held shards that have finished migration to this core; these packets are processed

immediately (Lines 2–4). The working core then processes packets arriving from the

network (Line 5). For each packet, the working core first checks if the shard is under

migration but still being processed by its previous core (Line 7); in this case, the

working core enqueues the packet in a temporary queue to delay processing until

the shard migration has finished (Line 8, see also Lines 2–4). Second, the working

core checks if the packet belongs to a flow which is offloaded to the offloading core

(Line 9), i.e., a flow within the ratio r defined by the controller; in this case, the

working core enqueues the packet in its offloading’s core processing queue (Line 10).

Lines 11–13 handle the case where shard offload ratios are being updated and some

flows that were previously offloaded are no longer offloaded (i.e., rolds > rs). In this

3Race-free writing and reading by multiple cores are achieved by using lock-free queues
implemented using circular buffers.

facom-ufms

Dynamic Scaling of Stateful Network Functions 68

Algorithm 5.3 Scaling operations of a working core.

1: procedure UpdateOffloadRatio
2: Qold ← self.Qoffloading

3: self.Qoffloading ← createQueue()

4: wait until Qold = ∅
5: self.offloadingCore.swapQueue(Qold, self.Qoffloading)
6: self.offloadRatioChange ← false
7: RunSFC(self.Qpending)

8: procedure ChangeOffloadingCore
9: Qold ← self.Qoffloading

10: self.Qoffloading ← createQueue()

11: wait until Qold = ∅
12: self.offloadingCore.removeQueue(Qold)
13: self.offloadingCore ← self.newOffloadingCore

14: self.offloadingCore.addQueue(Qoffloading)

15: procedure ChangeShardAssignments
16: wait until QNIC cycles
17: wait until Qoffloading cycles
18: for each (s, w) ∈ self.migrations do
19: shards[s].hold ← false

20: self.migrations ← ∅

case, the working core needs to wait for the offloading core to finish processing any

packets from these flows before proceeding. If the packet belongs to one such flow,

the working core enqueues the packet in a temporary queue for processing after

the offloading core has finished processing any previous packets from these flows.

Finally, if none of the previous conditions apply, the packet can be immediately

processed (Lines 14–15). Although Algorithm 5.2 processes one packet at a time

for clarity, Dyssect ’s implementation operates over batches of packets for improved

performance.

Algorithm 5.3 shows pseudocode for how working cores handle scaling operations.

These functions are called as needed, in order, whenever a signal is received from

the controller (see Algorithm 5.1, Line 17). When updating offload ratios, the

working core replaces self.Qoffloading with a new queue (Lines 2–3). The working

core waits until its offloading core finishes processing all packets in Qold (Line 4),

facom-ufms

Dynamic Scaling of Stateful Network Functions 69

and then swaps the offloading queue with the new one (Line 5). During this wait,

ProcessPackets executes normally and stores packets that will be offloaded to

the offloading core in self.Qoffloading (see Algorithm 5.2, Line 10). After the offloading

core has finished clearing Qold, the working core processes any pending packets in

self.Qpending (Lines 6–7, also Lines 11–13 in Algorithm 5.2).

Changing offloading cores is equivalent, with two differences:

self.offloadRatioChange is false and self.Qpending = ∅, as the offload ratio is updated

before changing the offloading core (functions are called in order); and queues are

removed and added to different cores (Lines 12–14).

When changing shard assignments, remember that the controller updates the

RSS tables before signaling working cores (Algorithm 5.1, Lines 13–14). Before

telling other cores that they can start processing packets for the migrated shards, the

working core processes all packets it received from the network and offloaded to its

offloading core (Lines 16–17). The working core then updates the other cores’ states

to resume processing of the migrated shards (Lines 18–20, see also Algorithm 5.2,

Lines 2–4).

Offloading cores have a significantly simpler data plane (no pseudocode shown).

An offloading core has one queue for each working core that offloads traffic to

it. Offloading cores poll queues in round-robin fashion and process one batch of

packets from each queue before proceeding to the next queue. The participation of

offloading cores in migration operations is limited to informing working cores when a

queue cycling operation completes and implementing the addQueue, swapQueue, and

removeQueue operations.

5.1.2.3 Correctness Analysis

To show that Dyssect does not introduce deadlocks or packet reordering, we define

the following terms and then formally state its guarantees.

• Flow F constitutes a sequence of packets with the same flow key ordered by

facom-ufms

Dynamic Scaling of Stateful Network Functions 70

their time of insertion in QNIC.

• For any packet p ∈ F , epI and epR represent the events corresponding to

insertion of packet p in QNIC and final processing of the packet in RunSFC(p),

respectively.

• The relation ≺ is defined on any two events ei and ej such that ei ≺ ej iff the

timestamp associated with ei is less than ej. Relation ≺ satisfies transitivity

but is neither reflexive nor symmetric.

Property 1. Deadlock freedom: For any packet p in any network flow F , if epI exists,

then epR also exists.

Property 2. Packet ordering: For any network flow F , for any two packets pi, pj

∈ F , if epiI ≺ e
pj
I , then epiR ≺ e

pj
R

Theorem 5.1.1 (Correctness). Dyssect algorithm guarantees deadlock freedom and

packet ordering.

Proof. We informally outline the proof sketch. We show that deadlock freedom and

packet ordering are guaranteed by construction.

Deadlock freedom: There are five locations that can block the processing of

packets: Line 3 in Algorithm 5.2 plus Lines 4, 11, 16 and 17 in Algorithm 5.3.

Because the processing of packets can be disabled by the controller (Line 11,

Algorithm 5.1), packets may be held in Qheld. However, the duration of this

hold is until their processing is enabled by the old owner of the shard (Line 19,

Algorithm 5.3). Further, only the controller can disable the processing of packets,

preventing any cyclic dependencies among working cores.

The waits in Algorithm 5.3 also cannot block the processing of packets. This is

because Lines 4, 11 and 17 are associated with waiting on the packets in Qoffloading

being processed. By construction, the offloading core never blocks, thereby bounding

facom-ufms

Dynamic Scaling of Stateful Network Functions 71

these waits. The wait at Line 16 is also bounded because the loop at Line 5 in

Algorithm 5.2 never blocks.

Hence, epR exists for every epI event.

Packet ordering: Packet ordering is trivially satisfied when packets are processed

by the same core. Packets can be processed by different cores when the controller

reassigns shards, offloading cores, or changes the offload ratio. In each case, we show

that the definition still holds.

UpdateOffloadRatio: Consider any two packets, p, q ∈ F such that epI ≺ eqI .

There are four possibilities based on the cores where the packets are processed.

• If p and q are processed by the working core, epR ≺ eqR holds because both

packets are processed by Line 15 in Algorithm 5.2.

• If p and q are processed by the offloading core, epR ≺ eqR holds because both

packets are queued for processing in Line 10 of Algorithm 5.2 and processed

in order by the offloading core.

• If p and q are processed by the offloading and working cores respectively (i.e.,

packet p is queued in Line 10 and packet q is queued in Line 13 of Algorithm

2), epR ≺ eqR holds because of Lines 4 and 7 in Algorithm 5.3.

• If p and q are processed by the working and offloading cores respectively, then

epR ≺ eqR holds because p is immediately processed by Line 15 of Algorithm 5.2

before packet q is queued for processing at Line 10 of Algorithm 5.2.

ChangeOffloadingCore: For any two packets, p, q ∈ F , if p is already in the

old offloading core and q needs to be processed by the new offloading core, Dyssect

guarantees epR ≺ eqR because the new offloading core adds the new offloading queue

at Lines 13–14 in Algorithm 5.3 which happens only after the old offloading core is

emptied at Line 11.

facom-ufms

Dynamic Scaling of Stateful Network Functions 72

Table 5.1: Optimization variables and parameters.

Decision Variables

As,c Assignment of shards to working cores; 1 if shard s is
assigned to working core c, else 0

Oc,k Mapping of working cores to offloading cores; 1 if
working core c offloads traffic to offloading core k, else 0

rs Ratio of shard s’s traffic to offloading core
nw, no Number of working and offloading cores, respectively

Dependent Variables

wc 1 if c is an active working core, else 0
fk 1 if k is an active offloading core, else 0
uwc , u

o
k Utilization of working core c and offloading core k

Input Parameters and Constants

α Scale value for the multi-objective function
rmax
s Total fraction of shard s’s traffic to offload
uwmax, u

o
max Maximum working and offloading core utilization

T Load target for working and offloading cores
Ls Core utilization required to process shard s’s traffic
cap,csp CV of priority packet interarrival times and proc. times
car,csr As above, for regular flow packets
T p, T r Mean processing time for priority and regular packets
slop, slor Max. queueing delay for priority and regular packets

Aold Previous assignment of shards to working cores

Oold Previous mapping of working cores to offloading cores

ChangeShardAssignments: Packets in F will flow into the new working core

with the changed assignment (Line 12 in Algorithm 5.1), but are not yet processed

as the controller disables their processing at Line 11 of Algorithm 5.1. Processing

is enabled only at Line 19 in Algorithm 5.3 after the packets in Qoffloading and QNIC

are cycled in Lines 16–17.

Hence, epR ≺ eqR is guaranteed.

facom-ufms

Dynamic Scaling of Stateful Network Functions 73

5.1.3 Flow Assignment Optimization

5.1.3.1 Long-timescale Optimization

The long-timescale optimization problem is shown in Table 5.2. The objective

function (Eq. 5.1) minimizes resource utilization, expressed as the number of active

working and offloading cores. Equation 5.2 ensures that there is at least one active

working core and limits the maximum to all available cores. Equation 5.3 enforces

that each shard s is assigned one working core c. Table 5.1 describes the notation

used in the models.

Equation 5.4 ensures no shards are assigned to inactive working cores. The first

half of Equation 5.5 enforces that a working core with offloaded flows has one active

offloading core; the second half enforces that no offloading core is assigned to an

inactive working core and that at most one offloading core is assigned to an active

working core. Equation 5.6 enforces that an active working core has at least one

shard assigned to it. Equation 5.7 ensures that no working core offloads traffic to

an inactive offloading core. Equation 5.8 defines the relation between working and

offloading cores; it requires that each offloading core is assigned to at least two

working cores, to ensure that the offload core can be fully utilized. Equation 5.9

restricts the fraction of shard s’s traffic offloaded to the offloading core to rmax
s .

The assignment of shards to working cores A, mapping of working cores to

offloading cores O, and the fraction of each shard s’s traffic offloaded to offloading

cores rs are ultimately defined by the maximum utilization of each core that still

satisfies SLO requirements. Equations 5.10 and 5.11 define the utilization of active

working and active offloading cores, respectively, as a sum across all shards assigned

or offloaded to that core, taking into consideration the fraction of each shard that

is offloaded to an offloading core.

We model each core as a queue and limit core utilization such that packet wait

(queueing) times in the system satisfy a target SLO. We make no assumptions on

facom-ufms

Dynamic Scaling of Stateful Network Functions 74

Table 5.2: Long-timescale optimization problem.

minimize
∑
i∈C

(wi + fi) , subject to (5.1)

1 ≤
∑
i∈C

(wi + fi) ≤ |C| (5.2)∑
c∈C

As,c = 1 ∀s ∈ S (5.3)

As,c ≤ wc ∀s ∈ S, c ∈ C (5.4)

rsAs,c ≤
∑
k∈C

Oc,k ≤ wc ∀s ∈ S, c ∈ C (5.5)∑
s∈S

As,c ≥ 1 ∀c ∈ C with wc = 1 (5.6)

Oc,k ≤ fk ∀c ∈ C, k ∈ C (5.7)∑
c∈C

Oc,k ≥ 2 ∀k ∈ C with fk = 1 (5.8)

0 ≤ rs ≤ rmax
s ≤ 1 ∀s ∈ S (5.9)

uwc = wc

∑
s∈S

LsAs,c(1− rs) ∀c ∈ C (5.10)

uok = fk
∑
c∈C

(
Oc,k

∑
s∈S

LsAs,crs
)

∀k ∈ C (5.11)

(uwc
1− uwc

)(cap)2 + (csp)2

2
T p ≤ slop ∀c ∈ C (5.12)(uok

1− uok

)(car)2 + (csr)2

2
T r ≤ slor ∀k ∈ C (5.13)

uwc ≤ uwmax ∀c ∈ C (5.14)

uok ≤ uomax ∀k ∈ C (5.15)

the packet arrival process or the NFV processing times, and model each core as

a G/G/1 queue.4 We compute the mean packet wait time as a function of core

utilization using Kingman’s formula [67]. Equations 5.12 and 5.13 capture the SLO

requirement on the mean packet wait times.5 The coefficients of variation of packet

interarrival times and packet processing times (ca and cs) are estimated offline prior

to model execution. The mean packet processing times (Tw and T e) are computed

as a function of the number of flows assigned to the core using a piecewise linear

function estimated offline. If packet interarrival times and NFV processing times

facom-ufms

Dynamic Scaling of Stateful Network Functions 75

Table 5.3: Short-timescale optimization problem.

minimize F (A−Aold) + F (O −Oold), (5.16)

subject to Equations 5.2–5.13, and

uwc < 1 ∀c ∈ C (5.17)

uok < 1 ∀k ∈ C (5.18)∑
c∈C

wc = nw (5.19)∑
k∈C

fk = no (5.20)

have low variation and can be modeled by an M/M/1 queue, then Equations 5.12

and 5.13 can be changed to use the exact distribution of packet wait times instead

of Kingman’s formula for more precise SLO bounds.

5.1.3.2 Short-timescale Optimization

Core utilizations are bounded by Equations 5.14 and 5.15, which limit utilization to

the thresholds uw
max and uo

max. These thresholds can be used to prevent solutions from

running cores too close to 100% utilization. We limit utilization as a safety measure

to allow some spare processing capacity in the case of traffic bursts, providing

flexibility to the short-timescale optimization and mitigating the risk of performance

degradation or packet loss during unexpected traffic bursts.

The short-timescale optimization, shown in Table 5.3, receives as input Aold,

Oold, nw, and no, the previous shard assignments, previous offloading core

associations, the number of working cores, and the number of offloading cores,

respectively. The short-timescale model does not change the number of active

working and offloading cores (Eqs. 5.19 and 5.20). It computes A, O, and rs

to minimize the number of shard migrations and offloading core reassociations

4Although a G/G/1/k queue would capture the finite size of packet buffers, a G/G/1 queue has
higher wait times for the same utilization. This makes our proposed model conservative compared
to a G/G/1/k queue.

facom-ufms

Dynamic Scaling of Stateful Network Functions 76

(Eq. 5.16) subject to SLO constraints. Function F computes the number of shard

migrations and offloading core reassociations from the number of positive entries in

the difference matrices A−Aold and O −Oold, respectively.

The short-term optimization includes all restrictions in the long-timescale

optimization (not shown), except restrictions given by Equations 5.14 and 5.15.

These constraints are replaced by Equations 5.17 and 5.18, allowing the

short-timescale optimization to use spare core processing capacity in case of traffic

bursts. However, the core utilization is still limited by the SLO constraints in

Equations 5.12 and 5.13.

5.2 Evaluation

We evaluate Dyssect with two use cases to show how fine-grained flow management

reduces tail latency and increases throughput. We use a third use case to evaluate

tail latency and packet loss rates of Dyssect and RSS++ operating under high load.

In the fourth use case, we show that state disaggregation allows offloading some

functionalities to a SmartNIC.6 We show the performance impacts in the function

offloaded to the NIC and processor metrics, such as L1 and L2 cache misses and

instructions per cycle.

5.2.1 General Setup

Our testbed comprises two servers connected in a classical configuration of Traffic

Generator and Device-Under-Test. Each server has two Intel(R) Xeon(R) Silver 4114

(10-cores @2.20 GHz), 128 GB of RAM, and a dual-port Netronome NFP-4000 40

GbE NIC. We disable hyperthreading, C-states and CPU frequency scaling, Turbo

Boost, and uncore power scaling to reduce measurement variance and allow for

5The total packet processing time also includes polling time and the NFV processing time.
SLOs can be defined on the total packet processing time by subtracting the polling time and NFV
processing time prior to setting the mean packet wait time used in Equations 5.12 and 5.13.

facom-ufms

Dynamic Scaling of Stateful Network Functions 77

reproducibility of our results. We use only one processor to avoid crossing the Ultra

Path Interconnect that connects the two processors, isolate eight cores from the

Linux scheduler for packet processing, and reserve 64 huge pages (1 GB each) for

DPDK. We use the Linux’s perf stat command for collecting processor statistics.

For all experiments, we set the warm-up time to 30 s and the execution time

to 60 s, and report results with 95% confidence intervals from 10 independent runs.

We use real and synthetic traffic traces. The real trace is from CAIDA (Center of

Applied Internet Data Analysis) [17] and contains 1, 835, 436 TCP flows with an

average packet size of 1001 bytes. We also create synthetic traces of 1M flows with

a Zipf flow size distribution by varying the exponent α. We set the packet size to

1001 bytes, the average in the CAIDA trace.

5.2.2 Offloading Costs

Dyssect uses offloading cores to redistribute traffic and prioritize certain types

of traffic based on operator-defined SLOs (as discussed in Section 5.1.3). Each

offloading core receives packets from an exclusive queue, where packets are enqueued

by working cores based on the controller-calculated shard ratio (as discussed in

Section 5.1.2.1). To demonstrate the cost and impact of offloading, we ran an

experiment with one working core and one offloading core receiving packets from a

single flow at a low packet rate of 100 kpps. During the experiment, the working

core only performs a state lookup and does not run any network function to focus

on the offload overhead. This experiment has two phases. In the first phase, we

set r = 0 for all shards to ensure that packets are not enqueued to the offloading

core and measure the RTT (Round-Trip Time) latency. In the second phase, we set

r = 1 for all shards to ensure that the working core enqueues all the packets to the

offloading cores and measure the queue delay and the RTT.

Figure 5.3a shows the CDF (Cumulative Distribution Function) of the offloading

6In this thesis, we use “SmartNICs” and “Programmable NICs” interchangeably.

facom-ufms

Dynamic Scaling of Stateful Network Functions 78

latency considering 99.5% of the samples. The median, mean, and maximum

latencies are 139 ns, 166.93 ns, and 518 ns, respectively. Figure 5.3b shows the

offloading impact on the RTT. We observe that the overhead is insignificant even

when the RTT is in the order of a few microseconds, which opens possibilities and

brings benefits when prioritizing certain types of traffic or meeting SLOs defined by

the operator, as we show in Sections 5.2.3, 5.2.4, 5.3, and 5.2.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Time (ns)

(a) Latency distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
D

F

Time (us)

Working core
Offloading core

(b) RTT Latency.

Figure 5.3: Offloading latency (Figure 5.3a) and its impact on the RTT
(Figure 5.3b).

5.2.3 Use Case I: Traffic Class Prioritization

In this use case, Dyssect runs the optimization models (Tables 5.2 and 5.3), with the

long and short-timescales set to τ = 1 s and ϵ = 100ms, respectively. We use traffic

classes with two different priorities specified by the SLOs in Equations 5.12 and 5.13.

The high-priority flows are always processed by working cores while working or

offloading cores can process low-priority flows depending on the model output.

We use the CAIDA trace, which has a very skewed distribution with a few large

and long-lived flows concentrating the bulk of the traffic load. To be conservative,

we consider short flows and 0.1% of the traffic as high priority, which results in

753, 725 high-priority flows. A service chain with two network functions processes

all the packets regardless of the core used. The first network function is a NAT that

updates the source IP address and TCP port and recomputes both IP and TCP

facom-ufms

Dynamic Scaling of Stateful Network Functions 79

checksums. The second network function is an IDS that executes an automaton to

search patterns on the TCP payload to represent CPU-intensive functions. Every

10s, scale the traffic by changing inter-packet gaps to simulate throughputs from

∼2.5 to ∼22 Gbps, but we keep the same flows and packet ordering.

Figure 5.4 compares the performance results of Dyssect with the results of

RSS++. Dyssect can process the same or higher traffic load as RSS++ (Figure 5.4a)

using the same amount or fewer cores (Figure 5.4b), without causing traffic

disruptions while migrating shards and flows (steps).

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50 55 60

T
hr

ou
gh

pu
t (

G
bp

s)

Time (s)

Source
Dyssect
RSS++

(a) Throughput.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40 45 50 55 60

N
um

be
r

of
 c

or
es

Time (s)

Dyssect
RSS++

(b) Number of cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800

C
D

F

RTT (us)

Dyssect (high-priority)
RSS++ (high-priority)
Dyssect (low-priority)
RSS++ (low-priority)

(c) Latency.

 0
 100
 200
 300
 400
 500
 600
 700
 800

Dyssect RSS++

S
ha

rd
 M

ig
ra

tio
ns

(d) Shard Migrations.

Figure 5.4: Performance results for Use Case I using the CAIDA trace, with 95%
confidence intervals.

Dyssect can prioritize some flows to have lower latency, something that RSS++

cannot do, as it handles traffic at the granularity of shards. Figure 5.4c shows the

99.5% tail latencies. Compared to RSS++, Dyssect reduces the tail latency of the

high-priority traffic (solid lines) from 728.07 µs to 494.77 µs (a 32.04% reduction),

without compromising the low priority traffic (dashed lines). Figure 5.4d shows that

facom-ufms

Dynamic Scaling of Stateful Network Functions 80

Dyssect achieves its results performing less than 9% the number of shard migrations

performed by RSS++ (67.4 vs. 758.3). This result is significant, as some NICs

require a large amount of time to update their indirection tables. We evaluated the

NICs BCM57416 NetXtreme-E Dual-Media (10G), Netronome NFP-4000 (40G),

and Mellanox ConnectX-4 (100G) and obtained the following update times: 228.05

(±1.08) µs, 1073.67 (±2.97) µs, and 359, 226.71 (±9, 491.81) µs, respectively. Each

update in the Mellanox NIC takes more than 350 ms as it has to restart the NIC.

5.2.4 Use Case II: Alternate Optimization Targets

The modularity and flexibility of Dyssect allow for different optimization models

whose objective functions may maximize other performance metrics. We compare

the performance of Dyssect using an optimization model that balances load across

cores against RSS++, which also attempts to balance the load.

Table 5.4 describes an optimization model that minimizes the quadratic

difference between a target value T and the utilization of a core for all working and

offloading cores. The third term of the objective function is Equation 5.16 scaled

by a (small) factor α to reduce the number of shard migrations and offloading core

reassociations when the load is balanced.

Table 5.4: Load balance optimization problem.

minimize
∑
c∈C

(uwc − T)2 +
∑
k∈C

(uok − T)2 + α(Eq. 5.16), (5.21)

subject to Equations 5.2 – 5.11 and Equations 5.19 – 5.20

We quantify the impact the load balancing model and the state disaggregation

have on the performance in terms of the average number of shard migrations and

throughput. For reference, we compare against the standard RSS load balancing

scheme and RSS++. We also compare against a modified version of Dyssect that

employs state disaggregation (labeled “State Disag”) but uses RSS load balancing

facom-ufms

Dynamic Scaling of Stateful Network Functions 81

instead of an optimization model; our goal is to isolate the performance gains

afforded by state disaggregation and the optimization.

For the traffic load, we send packets at 36 Gbps (90% of the link capacity) from

synthetic traces generated using Zipf distributions with α varying from 0.7 to 1.1 in

increments of 0.1. We use the same service chain as in Use Case 1 (Section 5.2.3)

and eight cores for packet processing for all four approaches (RSS, RSS++, State

Disag, and Dyssect). Since Dyssect allows the transfer of flows to offloading cores,

we use one as offloading core and seven as working cores. In this Use Case, we do

not use the long-term model of Table 5.2 to minimize the number of cores, as we

want to measure the throughput the system can achieve with a fixed number of cores

under heavy load. We use 128 shards (default value of the NIC) for RSS++7 and 16

for RSS and Dyssect . RSS++ does not accept a smaller number, and 128 is better

for improving its load balancing, as it migrates only shards and not individual flows.

We also quantify the performance when the batch size changes using four different

sizes (1, 4, 16, 32).

 0
 10
 20
 30
 40

Parameter α of the Zipf Distribution

T
hr

ou
gh

pu
t (

G
bp

s)

(a) Batch Size = 1

RSS

Parameter α of the Zipf Distribution

T
hr

ou
gh

pu
t (

G
bp

s)

(b) Batch Size = 4

RSS++

0
10
20
30
40

0.7 0.8 0.9 1.0 1.1
Parameter α of the Zipf Distribution

T
hr

ou
gh

pu
t (

G
bp

s)

(c) Batch Size = 16

State Disag

0.7 0.8 0.9 1.0 1.1
Parameter α of the Zipf Distribution

T
hr

ou
gh

pu
t (

G
bp

s)

(d) Batch Size = 32

Dyssect

Figure 5.5: Throughput of Dyssect compared to RSS and RSS++ for different
batch sizes and α parameters of the Zipf distribution.

Figure 5.5 shows the throughput of the four approaches under different batch

7This one-to-one mapping is not a fundamental limitation of RSS++, as it could use fewer
shards at the cost of decreasing its allocation granularity and reducing its ability to balance the
load across cores.

facom-ufms

Dynamic Scaling of Stateful Network Functions 82

Table 5.5: Average shard migrations of Dyssect and RSS++, varying the batch
size (B) and α of the Zipf distribution.

Dyssect α = 0.7 α = 0.9 α = 1.1
B = 1 0.00 ± 0.00 0.00 ± 0.00 3.60 ± 0.57
B = 4 0.20 ± 0.37 0.00 ± 0.00 4.80 ± 1.23
B = 16 0.30 ± 0.56 0.10 ± 0.19 4.00 ± 0.83
B = 32 0.60 ± 0.74 0.40 ± 0.50 4.30 ± 1.47

RSS++ α = 0.7 α = 0.9 α = 1.1
B = 1 15.50 ± 2.57 42.90 ± 6.87 44.20 ± 3.29
B = 4 47.20 ± 5.33 76.10 ± 6.92 75.00 ± 6.37
B = 16 42.10 ± 6.76 124.00 ± 13.68 264.40 ± 13.15
B = 32 294.40 ± 63.18 739.30 ± 137.09 1058.30 ± 93.19

sizes and α values. As we can see, Dyssect outperforms all the other three approaches

in all scenarios. We can also see that the performance gains come from both state

disaggregation and the optimization model, with the state disaggregation having

more impact on more skewed flow size distributions (higher α). The performance

gains of Dyssect over RSS++ varied from 4.11% (α = 0.7 and batch size 1) to

19.36% (α = 1.1 and batch size 4), and from 6.67% to 25.97% in comparison with

RSS. Note that the performance gains can be even higher in longer service chains,

as Dyssect would save lookups in the other network functions. Table 5.5 shows the

absolute number of shard migrations performed by Dyssect and RSS++ averaged

over the 10 experiment runs. Dyssect achieves higher throughput with fewer shard

migrations in all scenarios.

5.2.5 Use Case III: High Packet Rates

To assess how Dyssect compares to RSS++ under high packet rates, we run an

experiment with a single NAT processing 128-byte packets with interarrival times

drawn from a Zipf distribution (α = 1.1) and 1M flows, 0.1% of which are high

priority. Dyssect uses seven working cores and one offloading core, while RSS++

uses eight cores. To keep the same number of cores throughout the experiment,

we disable the long-timescale optimization model for Dyssect and the auto scale for

RSS++. However, both systems still dynamically migrate shards and flows between

facom-ufms

Dynamic Scaling of Stateful Network Functions 83

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8

p9
9.

5
La

te
nc

y
(µ

s)

Offered Load (Mpps)

Dyssect (high-priority)
RSS++ (high-priority)
Dyssect (low-priority)
RSS++ (low-priority)

Figure 5.6: Latency results for NAT processing under increasing offered load.

0.0

0.5

1.0

1.5

2.0

 1 2 3 4 5 6 7 8

P
ac

ke
t L

os
s

(%
)

Offered Load (Mpps)

Dyssect
RSS++

(a) Packet loss.

 0

 10

 20

 30

 40

 50

 60

 10 12 14 16 18 20

P
ac

ke
t L

os
s

(%
)

Offered Load (Mpps)

Dyssect
RSS++

(b) Packet loss.

Figure 5.7: Packet loss results for NAT processing under increasing offered load.

cores.

Figure 5.6 shows the tail latency (99.5 percentile) for high and low-priority flows.

Dyssect exhibits lower latency for high-priority traffic due to prioritization, while

low-priority flow latencies are comparable between the two systems. However, there

is a significant difference when the packet rate increases. Figure 5.7a displays the

packet loss observed during the same experiment. Although both systems start

dropping packets when we increase the offered load, we also evaluate how Dyssect

and RSS++ behave when they receive even higher packet rates. Figure 5.7b shows

the packet drop for both systems up to 20 Mpps offered load. In this case, we can

see a significantly better performance from Dyssect .

facom-ufms

Dynamic Scaling of Stateful Network Functions 84

5.3 SmartNIC Offloading

In this section, we show how Dyssect can take advantage of state disaggregation

by evaluating trade-offs of entirely or partially offloading the processing of a service

chain to a SmartNIC. First, we assess the impacts of offloading to the SmartNIC the

lookup function for a subset of flows defined by the controller. Second, we evaluate

the hardware-software trade-offs of executing a SFC on the SmartNIC (Hardware),

on the server CPU (Software), or on both (Hybrid). Finally, we show that the state

disaggregation provided by Dyssect allows online migration of flow processing of

stateful network functions from and to the NIC without traffic disruptions.

5.3.1 Packet Steering and Memory Management

The Netronome NFP-4000 features five memory types: LMEM (Local Memory),

CLS (Cluster Local Scratch), CTM (Cluster Target Memory), IMEM (Internal

Memory), and EMEM (External Memory), which vary in their memory latency,

with LMEM having the lowest latency (1-3 cycles) and EMEM having the highest

(150-500 cycles) [90]. Despite the preference for LMEM, the SmartNIC allocates

packets and flow states to slower memory areas. Additionally, the NFP-4000 has 60

Flow Processing Cores (FPCs) that can concurrently access flow states to process

incoming packets, regardless of their traffic class or flow-affinity limitations.

To prevent race conditions, minimize contention, and meet SmartNIC’s memory

limits, we implement one semaphore for each hash table entry, which contains a

few buckets with flow states. Using one semaphore per flow is not feasible due to

memory constraints, although it would provide lower latency. The FPC computes

the hash of the incoming packet’s 5-tuple to determine its corresponding table entry.

Since different FPCs can process packets from the same flow (i.e., the FPCs do

not respect flow affinity), we enable the Global Reordering (GRO) module of the

facom-ufms

Dynamic Scaling of Stateful Network Functions 85

NFP-4000 [91] to prevent packet reordering by the NIC.

5.3.2 Lookup Function Offloading

We offload to the SmartNIC the flow entry lookup function for a subset of flows

defined by the controller.8 When receiving the first packet of a flow that should be

offloaded to the NIC, the working core inserts a rule in the NIC matching the flow

5-tuple and associates the rule with the address of the newly created flow entry.

For subsequent packets, the NIC performs the lookup and inserts the address into

the packet metadata. On receiving a packet, the working core skips the lookup if

the metadata already contains an address. By offloading large-volume flows to the

NIC [11,31,62,73,78], we can decrease packet processing times and free CPU cycles.

To evaluate the performance gains of offloading the lookup function to a

programmable NIC (Netronome NFP-4000), we use a single core to process traffic

from our synthetic trace with Zipf parameter α = 1.1. A single core allows us to

collect precise statistics of L1 and L2 cache misses and instructions per cycle without

interference from other cores. The controller selects 1% of the flows with the largest

volumes to be offloaded to the NIC (10, 000 flows). We vary the packet size and set

the load to 1 Gbps to collect performance metrics without overloading the single

core.

Figure 5.8a shows that average lookup times decrease significantly when

Dyssect uses a SmartNIC, as expected. However, the takeaway of this experiment

is that offloading reduces not only the lookup time but also improves the CPU

performance metrics, such as instructions per cycle (Figure 5.8b) and miss rates for

L1 (Figure 5.8c) and L2 (Figure 5.8d) caches. Note that we show the average time

of all lookups, including the ones performed on the NIC and the others performed

on the CPU.

8Handling each flow requires one P4 rule in the Netronome NFP-4000 NIC, which supports
about 12K rules in a P4 table.

facom-ufms

Dynamic Scaling of Stateful Network Functions 86

 0

 1.1

 2.2

 3.3

128 256 512 1024 1518

Lo
ok

up
 T

im
e

(µ
s)

Packet Size (bytes)

Dyssect
Dyssect + SmartNIC

(a) Average Lookup Time.

 0

 1.1

 2.2

 3.3

128 256 512 1024 1518

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Packet Size (bytes)

Dyssect
Dyssect + SmartNIC

(b) Instructions per Cycle.

 0

 4

 8

 12

 16

128 256 512 1024 1518

L1
 M

is
s

(%
)

Packet Size (bytes)

Dyssect
Dyssect + SmartNIC

(c) L1 Cache Miss.

 0

 20

 40

 60

 80

 100

128 256 512 1024 1518

L2
 M

is
s

(%
)

Packet Size (bytes)

Dyssect
Dyssect + SmartNIC

(d) L2 Cache Miss.

Figure 5.8: Average lookup times, instructions per cycle, L1 and L2 cache-miss
rates of Dyssect with and without offloading to the SmartNIC.

5.3.3 Hardware-Software Trade-offs

The general belief is that offloading network processing to the NIC always pays

off [3, 36, 45, 48, 50, 77, 84, 109, 124]. However, depending on the characteristics of

a network function and the traffic workload, this belief might not be accurate, as

the NICs have limitations that can slow down the processing, such as low clock and

memory speeds. In this section, we investigate performance gains and overheads

of offloading processing to a programmable NIC. We start by investigating the

performance of three models of execution. First, we run the entire service chain,

comprising one NAT and one IDS network functions, in the programmable NIC

(Hardware). Second, we run the same service chain on the server using a single

core and the same configuration defined in Section 5.2.1 (Software). Finally, we use

a hybrid model in which the NIC processes the packets of high-priority flows and

facom-ufms

Dynamic Scaling of Stateful Network Functions 87

 0

 1

 2

 3

 4

 5

 6

Hardware Software Hybrid

La
te

nc
y

(m
s)

High-priority
Low-priority

(a) Latency.

 0

 4

 8

 12

 16

 20

 24

Hardware Software Hybrid

T
hr

ou
gh

pu
t (

G
bp

s)

(b) Throughput.

Figure 5.9: Latency (5.9a) and throughput (5.9b) results for processing a service
chain on the NIC (Hardware), on the CPU of the host (Software), or on both
(Hybrid).

forwards the other packets to the server CPU (Hybrid). We use the same parameters

as the ones in Use Case II in Section 5.2.4 (i.e., 1M flows, α=1.1, Batch=32, CPU

clock fixed at 2.2 GHz, and 1500-byte packets.

Figures 5.9a and 5.9b show latency and throughput, respectively, for the three

models of execution for the service chain processing 1500-byte packets. As we

can see, running the entire service chain on the NIC yields the worst result. We

can explain this result by observing two main characteristics of the NIC and the

traffic load. First, although the Netronome NFP-4000 has 60 Flow Processing Cores

(FPCs), each core has a clock of only 800 MHz. Therefore, iterating over the payload

of a large packet takes significantly more time than executing the same task at the

host CPU, which runs at 2.2 GHz. Second, the service chain requires state update for

each packet. As different FPCs can process packets of the same flow simultaneously,

we need to synchronize access to the states stored at the NIC. Even though we use

one semaphore for each hash table entry, where each entry has a small set of buckets

containing the flow states, the skewed Zipf distribution increases contention at a few

semaphores and slows the processing. For the hybrid execution model, semaphore

contention is very low, as the NIC processes the full service chain only for a small

number of high-priority flows with low bit rate. As a takeaway of this experiment,

facom-ufms

Dynamic Scaling of Stateful Network Functions 88

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
D

F

RTT (ms)

Software
Hardware

(a) Latency for 1500-byte packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

RTT (us)

Software
Hardware

(b) Latency for 128-byte packets.

Figure 5.10: Latency results for processing a service chain on the NIC (Hardware)
or on the host (Software) for different packet sizes.

we argue that we must offload processing to the NIC with parsimony, as some tasks

are better executed at the host CPU.

Processing large packets also stresses the memory of the NIC. For a large packet,

the NIC cannot store the entire packet on its fastest memory (e.g., Local Memory,

LMEM) and has to split and store it into slower memory regions, such as Cluster

Local Scratch (CLS) or Cluster Target Memory (CTM) [90]. To investigate the

combined effect of clock and memory speeds, we executed another experiment to

collect packet latencies when executing a service chain with 1500-byte and 128-byte

packets. Figure 5.10a shows the latency CDF observing the 99.9% lowest values

(i.e., 99.9th percentile) for 1500-byte packets. As we can see, the latencies are

significantly higher for large packets when the service chain is processed entirely on

the NIC. On the other hand, Figure 5.10b shows that when the packet size is small,

the NIC can process the service chain much faster than if the packets were processed

on the host. Finally, Figure 5.11 shows that the throughput is slightly higher (4.23

vs. 4.07 Gbps) when the service chain is processed on the NIC with smaller packets

and significantly higher (23.6 vs. 14.8 Gbps) when the service chain is processed on

the host with large packets.

facom-ufms

Dynamic Scaling of Stateful Network Functions 89

 0

 5

 10

 15

 20

 25

 30

128 1500

T
hr

ou
gh

pu
t (

G
bp

s)

Packet size (bytes)

Software
Hardware

Figure 5.11: Throughput for processing a service chain on the NIC (Hardware) or
on the host (Software) for different packet sizes.

5.3.4 Seamless Migration

Dyssect lets a packet carry a reference to a memory region that stores the states of

the network functions that process it. This mechanism brings a lot of flexibility to

the placement of a network function, as Dyssect can move its state and change the

location where a packet is processed to achieve different performance objectives.

In particular, this flexibility allows the Dyssect Controller to offload a network

function to a programmable NIC and control if and when the NIC processes a

specific set of flows. To facilitate the interaction with the NIC, the Netronome

NFP-4000 programmable NIC offers a mechanism to map its internal memory into

the address space of a user process, which allows the Dyssect Controller to move

memory regions seamlessly from the host to the NIC and vice-versa.

To evaluate Dyssect ’s ability to seamlessly migrate flow processing to and from

the NIC on the fly, we measure the RTT of two flows of different types (high and

low priorities) during 60 seconds. Initially, the NIC processes the packets only from

the high-priority flows, and a single core of the CPU processes the low-priority ones.

In this experiment, we use a single network function running a NAT, and we use

128-byte packets to carry timestamps in their payloads for computing the RTT of

the traffic going through the NAT. Since the NAT does not iterate over the packet

facom-ufms

Dynamic Scaling of Stateful Network Functions 90

payload, the packet size is unimportant.

Figure 5.12 shows the latencies for the two flows. At 15 seconds, the Dyssect

Controller signals the NIC to start processing the packets from the low-priority flow.

Then, after 10 seconds, the Dyssect Controller moves the state and processing of

the low-priority flow back to the CPU memory. Similarly, these transfers repeat at

35, 40, and 50 seconds. As we can see, when the NIC processes the packets from

the low-priority flow, their latencies decrease to similar values of the ones from the

high-priority flow. Also, processing transfer between the NIC and the host CPU

does not cause traffic disruption or packet losses.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

La
te

nc
y

(µ
s)

Time

High-priority
Low-priority

Figure 5.12: Packet latencies for high- and low-priority flows when the processing
of the low-priority flow moves to and from the NIC in different moments.

5.4 Summary

In this chapter, we present Dyssect , a system that dynamically scales stateful NFs

by disaggregating the states of network functions and seamlessly migrating them

between cores while still preventing race conditions and packet reordering. To

dispatch the incoming packets to cores, Dyssect uses a coarse-grained mechanism

that maps the NIC’s indirection table entries, and consequently shards, to cores

and a fine-grained mechanism that assigns a subset of flows to offloading cores.

Dyssect ’s state management moves fractions of traffic between cores with zero-copy

facom-ufms

Dynamic Scaling of Stateful Network Functions 91

operations and no unnecessary lookups to meet service-level objectives, such as

latency constraints and load balancing. Dyssect can also offload the processing of

a service chain (or part of it) to a programmable NIC to alleviate the CPU load or

satisfy latency guarantees of selected flows.

Our experimental evaluations with real and synthetic traffic show that Dyssect

increases throughput up to 19.36% and reduces tail latency up to 32.04% compared

with RSS++, the state-of-the-art for load-balancing within a server. We also

show the benefits and pitfalls of offloading the processing of a service chain to a

programmable NIC.

Dyssect aligns with the NFV-MANO [92] principles, which were designed to

dictate how to manage and orchestrate Virtual Network Functions (VNF) within

scalable infrastructures. Dyssect creates VNF instances dynamically based on load,

balances the workload efficiently across cores executing the network function chain,

and maximizes resource utilization. Dyssect directly addresses the scalability and

dynamic-management goals that are central to NFV-MANO by ensuring flexible

and controlled scaling.

Although Dyssect ’s primary goal is to balance loads within a server by

distributing packets across cores, it can also be adapted for inter-server load

balancing because of its state disaggregation. With Dyssect ’s state management

and the existence of the Controller, packets from specific flows can be forwarded to

different servers at various phases: before processing a network function chain, after

completing a function within the chain, or even at the end of the chain. This

approach shows how inter-server load balancing, combined with Dyssect ’s state

management and the state disaggregation of network functions, can significantly

enhance the load distribution.

facom-ufms

Chapter 6

Conclusion

This thesis presents our research on scaling stateful network services on multicore

architectures. We explore two network services, TCP network stacks and network

functions, that need to maintain consistent state during scaling and workload

redistribution across the workers. In Chapters 4 and 5, we address the primary

challenges of this thesis: efficiently updating state on a per-packet basis while

dynamically balancing the workload across cores in stateful network services on

multicore architectures.

In Chapter 4, we systematically evaluate, with synthetic and real-world

workloads, multicore architectures for microsecond-scale network applications using

TCP. We evaluate the impact of worker configurations using local and remote NUMA

nodes on performance, revealing limitations and opportunities for optimization.

Evaluated strategies dedicate more workers to the protocol stack or to the

application based on specific workload demands. We evaluate the architectures and

strategies with Demieagle, a benchmark framework that we developed to evaluate

the multicore architectures under the same conditions, including a full-featured TCP

stack and a flexible scheduler based on Demikernel [138].

In Chapter 5, we present Dyssect , a system designed to enhance the performance

of stateful network functions through dynamic core scaling and state disaggregation.

92

Conclusion 93

Dyssect facilitates seamless state migration between cores by providing exclusive

access to the network-function states. It employs a coarse-grained approach to

distribute incoming packets across cores by mapping NIC indirection table entries

to shards, along with a fine-grained method that assigns specific flows within a

shard to an offloading core. This state management enables Dyssect to redirect

traffic between workers using zero-copy operations, which minimizes latency and

facilitates effective load balancing.

Exploring state disaggregation and extending state management in Dyssect allow

us to offload stateful network functions to programmable NICs. This offloading

enables us to examine tailored hardware-software trade-offs for service chains (i.e., a

sequence of interconnected network functions). While offloading network functions

to programmable NICs typically promises performance gains, our findings reveal

that this strategy does not always yield the expected results, primarily due to the

diverse multicore architectures of programmable NICs and the specific processing

requirements of network functions.

6.1 Future Work

This thesis contributes to a better understanding of the interactions between network

stack and application and the trade-offs for dynamically scaling stateful network

functions, but some challenges and open problems still remain. This section lists

some of these research opportunities for future work on TCP applications and

stateful network functions.

Our exploration of the design space for investigating joint scheduling of network

stack and application considers only FCFS-based processing the workers. Although

recent research has shown that this approach provides the best tail latency across

workloads [83], future research may extend this design space by exploring various

queueing disciplines and considering the simultaneous use of multiple queueing

facom-ufms

Conclusion 94

models.

Building upon the insights presented in Chapter 4, we plan to integrate our

findings into a kernel-bypass system to enable the dynamic selection of different

models from the design space at runtime depending on the workload. Given that

requests from applications using the TCP protocol may exhibit varying service times,

mainly due to load fluctuations, dynamically adapting the models to better reflect

the proposed guidelines would be a valuable extension of this work. Specifically, this

future approach will focus on understanding application behavior and investigating

how modifying runtime models could optimize performance. For instance, one

potential strategy involves temporarily leaving a hyperthread idle to minimize

resource contention and activating both hyperthreads to process the protocol stack

or application when the workload increases, ensuring more efficient utilization of

available resources. Another possibility is to use machine learning to understand

system behavior [54] and design control algorithms to dynamically adapt the system

or predict which model to use during certain periods.

This thesis presents guidelines for developing scalable stateful network functions

by addressing resource management challenges, including synchronization, state

migration, and load balancing. We focus on overcoming these obstacles by leveraging

programmable NICs and improving load distribution across cores. Our findings

demonstrate that, contrary to common assumptions, offloading packet processing

to programmable NICs does not always yield performance benefits. Although

Dyssect leverages these NICs for improved performance, further opportunities

remain for future exploration, such as allowing the NIC to manage load balancing

by dynamically selecting optimal workers on a server or even routing packets across

servers to achieve inter-server load balancing. These challenges highlight promising

directions for future research.

facom-ufms

Bibliography

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,

S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In Proc. of

ACM SIGCOMM, 2010.

[2] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman, and

N. DeBardeleben. On the diversity of cluster workloads and its impact on

research results. In Proc. of USENIX ATC, 2018.

[3] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and

D. Wentzlaff. Enabling Programmable Transport Protocols in High-Speed

NICs. In Proc. of USENIX NSDI, 2020.

[4] S. Arslan, S. Ibanez, A. Mallery, C. Kim, and N. McKeown. NanoTransport:

A Low-Latency, Programmable Transport Layer for NICs. In Proc. of ACM

SOSR, 2021.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload

Analysis of a Large-Scale Key-Value Store. In Proc. of ACM SIGMETRICS,

2012.

[6] T. Barbette, G. P. Katsikas, G. Q. Maguire, and D. Kostić. RSS++: Load

and State-Aware Receive Side Scaling. In Proc. of ACM CoNEXT, 2019.

[7] T. Barbette, C. Soldani, and L. Mathy. Fast Userspace Packet Processing. In

Proc. of ACM/IEEE ANCS, 2015.

95

BIBLIOGRAPHY 96

[8] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and E. Bugnion.

IX: A Protected Dataplane Operating System for High Throughput and Low

Latency. In Proc. of USENIX OSDI, 2014.

[9] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman, C. Kozyrakis,

and E. Bugnion. The IX Operating System: Combining Low Latency, High

Throughput, and Efficiency in a Protected Dataplane. ACM Transactions of

Computer Systems, 2016.

[10] J. Bellardo and S. Savage. Measuring Packet Reordering. In Proc. of ACM

SIGCOMM, 2002.

[11] R. Ben Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner.

Randomized Admission Policy for Efficient Top-k, Frequency, and Volume

Estimation. IEEE/ACM Transactions on Networking, 2019.

[12] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet Reordering is Not

Pathological Network Behavior. IEEE/ACM Transactions on Networking,

Dec. 1999.

[13] M. Berghetti, F. B. Carvalho, and R. Ferreira. AFP: Um Escalonador

de Requisições de Microsserviços Guiado por Feedback. In Anais do XLII

Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos, Porto

Alegre, RS, Brasil, 2024. SBC.

[14] E. Blanton and M. Allman. On Making TCP More Robust to Packet

Reordering. ACM SIGCOMM Computer Communication Review, 2002.

[15] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-Scalable

Locks Are Dangerous. In Proc. of the Linux Symposium, 2012.

facom-ufms

BIBLIOGRAPHY 97

[16] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: A Software-Defined

Framework for Developing, Deploying, and Managing Network Functions. In

Proc. of ACM SIGCOMM, 2016.

[17] CAIDA Data Monitors. Available at https://www.caida.org/catalog/

datasets/monitors/ [Online. Accessed on 2024/09/22].

[18] Z. Cao, V. Tarasov, H. P. Raman, D. Hildebrand, and E. Zadok. On the

Performance Variation in Modern Storage Stacks. In Proc. of USENIX FAST,

2017.

[19] F. B. Carvalho, R. A. Ferreira, I. Cunha, M. A. M. Vieira, and M. K.

Ramanathan. Dyssect: Dynamic Scaling of Stateful Network Functions. In

Proc. of IEEE INFOCOM, 2022.

[20] F. B. Carvalho, R. A. Ferreira, I. Cunha, M. A. M. Vieira, and M. K.

Ramanathan. State Disaggregation for Dynamic Scaling of Network Functions.

IEEE/ACM Transactions on Networking, 2024.

[21] S. Chen, C. Delimitrou, and J. F. Mart́ınez. PARTIES: QoS-Aware Resource

Partitioning for Multiple Interactive Services. In Proc. of ACM ASPLOS,

2019.

[22] M. Claypool and K. Claypool. Latency and player actions in online games.

Communications of the ACM, 2006.

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking Cloud Serving Systems with YCSB. In Proc. of ACM SoCC,

2010.

[24] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:

Amazon’s Highly Available Key-Value Store. In Proc. of ACM SOSP, 2007.

facom-ufms

https://www.caida.org/catalog/datasets/monitors/
https://www.caida.org/catalog/datasets/monitors/

BIBLIOGRAPHY 98

[25] H. M. Demoulin, J. Fried, I. Pedisich, M. Kogias, B. T. Loo, L. T. X. Phan,

and I. Zhang. When Idling is Ideal: Optimizing Tail-Latency for Heavy-Tailed

Datacenter Workloads with Perséphone. In Proc. of ACM SOSP, 2021.

[26] M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors affecting players’

performance and perception in multiplayer games. In Proc. of ACM

SIGCOMM Workshop on Network and System Support for Games, 2005.

[27] D. Didona and W. Zwaenepoel. Size-aware Sharding For Improving Tail

Latencies in In-memory Key-value Stores. In Proc. of USENIX NSDI, 2019.

[28] S. Dong, A. Kryczka, Y. Jin, and M. Stumm. RocksDB: Evolution of

Development Priorities in a Key-value Store Serving Large-scale Applications.

ACM Transactions on Storage, 2021.

[29] A. Dragojevic, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast Remote

Memory. In Proc. of USENIX NSDI, 2014.

[30] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein. NICA: An

Infrastructure for Inline Acceleration of Network Applications. In Proc. of

USENIX ATC, 2019.

[31] C. Estan and G. Varghese. New Directions in Traffic Measurement and

Accounting. In Proc. of ACM SIGCOMM, 2002.

[32] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: compact and concurrent

MemCache with dumber caching and smarter hashing. In Proc. of USENIX

NSDI, 2013.

[33] A. Farshin, T. Barbette, A. Roozbeh, G. Q. Maguire Jr., and D. Kostić.

PacketMill: Toward per-Core 100-Gbps Networking. In Proc. of ACM

ASPLOS, 2021.

facom-ufms

BIBLIOGRAPHY 99

[34] A. Farshin, A. Roozbeh, G. Q. Maguire, and D. Kostić. Make the Most out

of Last Level Cache in Intel Processors. In Proc. of ACM EuroSys, 2019.

[35] A. Farshin, A. Roozbeh, G. Q. Maguire, and D. Kostić. Reexamining

Direct Cache Access to Optimize I/O Intensive Applications for

Multi-Hundred-Gigabit Networks. In Proc. of USENIX ATC, 2020.

[36] D. Firestone et al. Azure Accelerated Networking: SmartNICs in the Public

Cloud. In Proc. of USENIX NSDI, 2018.

[37] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan: Mitigating

Interference at Microsecond Timescales. In Proc. of USENIX OSDI, 2020.

[38] V. Gavrielatos, A. Katsarakis, A. Joshi, N. Oswald, B. Grot, and

V. Nagarajan. Scale-out ccNUMA: exploiting skew with strongly consistent

caching. In Proc. of ACM EuroSys, 2018.

[39] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,

T. Benson, V. Sekar, and A. Akella. Stratos: A Network-Aware Orchestration

Layer for Virtual Middleboxes in Clouds, 2014.

[40] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,

S. Das, and A. Akella. OpenNF: Enabling Innovation in Network Function

Control. In Proc. of ACM SIGCOMM, 2014.

[41] H. Ghasemirahni, T. Barbette, G. P. Katsikas, A. Farshin, A. Roozbeh,

M. Girondi, M. Chiesa, G. Q. M. Jr., and D. Kostić. Packet Order Matters!

Improving Application Performance by Deliberately Delaying Packets. In

Proc. of USENIX NSDI, 2022.

[42] H. Ghasemirahni, A. Farshin, M. Scazzariello, G. Q. Maguire, D. Kostić, and

M. Chiesa. FAJITA: Stateful Packet Processing at 100 Million pps. Proc.

ACM Netw., 2024.

facom-ufms

BIBLIOGRAPHY 100

[43] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy. SoftNIC:

A Software NIC to Augment Hardware. Technical report, EECS Department,

University of California, Berkeley, 2015.

[44] M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini, and K. S.

McKinley. Exploiting Heterogeneity for Tail Latency and Energy Efficiency.

In Proc. of IEEE/ACM MICRO, 2017.

[45] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer. Towards

Understanding the Performance of P4 Programmable Hardware. In Proc. of

ACM/IEEE ANCS, 2019.

[46] T. Herbert. The Linux TCP/IP Stack: Networking for Embedded Systems

(Networking Series). Charles River Media, Inc., USA, 2004.

[47] B. R. Huaytalla, A. S. Jacobs, M. V. B. Silva, F. B. Carvalho, R. A. Ferreira,

W. Willinger, and L. Z. Granville. DWT in P4: Periodicity Detection in the

Data Plane. In Prof. of IEEE GLOBECOM, 2022.

[48] J. T. Humphries, K. Kaffes, D. Mazières, and C. Kozyrakis. Mind the Gap: A

Case for Informed Request Scheduling at the NIC. In Proc. of ACM HotNets,

2019.

[49] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM: High Performance

and Flexible Networking Using Virtualization on Commodity Platforms. In

Proc. of USENIX NSDI, 2014.

[50] S. Ibanez, M. Shahbaz, and N. McKeown. The Case for a Network Fast Path

to the CPU. In Proc. of ACM HotNets, 2019.

[51] Intel. Improving Network Performance in Multi-Core Systems. Available

at http://www.intel.com/content/dam/support/us/en/documents/

network/sb/318483001us2.pdf [Online. Accessed on 2024/09/22].

facom-ufms

http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf

BIBLIOGRAPHY 101

[52] Intel. Intel® Data Direct I/O Technology. Available at https://www.intel.

com/content/www/us/en/io/data-direct-i-o-technology.html [Online.

Accessed on 2024/09/22].

[53] Intel. Introduction to Intel Ethernet Flow Director and Memcached

Performance. Available at https://www.intel.com/content/dam/

www/public/us/en/documents/white-papers/intel-ethernet-flow-

director.pdf [Online. Accessed on 2024/09/22].

[54] A. S. Jacobs, R. Beltiukov, W. Willinger, R. A. Ferreira, A. Gupta, and

L. Granville. AI/ML and Cybersecurity: The Emperor has no Clothes. In

ACM Conference on Computer and Communications Security (ACM CCS’22),

Los Angeles, CA, USA, November 2022.

[55] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park.

MTCP: A Highly Scalable User-Level TCP Stack for Multicore Systems. In

Proc. of USENIX NSDI, 2014.

[56] M. Kablan, A. Alsudais, E. Keller, and F. Le. Stateless Network Functions:

Breaking the Tight Coupling of State and Processing. In Proc. of USENIX

NSDI, 2017.

[57] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and

C. Kozyrakis. Shinjuku: Preemptive Scheduling for usecond-Scale Tail

Latency. In Proc. of USENIX NSDI, 2019.

[58] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA Efficiently for

Key-Value Services. In Proc. of ACM SIGCOMM, 2014.

[59] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for high

performance RDMA systems. In Proc. of USENIX ATC, 2016.

facom-ufms

https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf

BIBLIOGRAPHY 102

[60] A. Kalia, M. Kaminsky, and D. G. Andersen. Datacenter rpcs can be general

and fast. In Proc. of USENIX NSDI, 2019.

[61] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat. Chronos:

Predictable Low Latency for Data Center Applications. In Proc. of ACM

SoCC, 2012.

[62] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A Simple Algorithm

for Finding Frequent Elements in Streams and Bags. ACM Transactions on

Database Systems, 2003.

[63] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. Maguire.

Metron: NFV Service Chains at the True Speed of the Underlying Hardware.

In Proc. of USENIX NSDI, 2018.

[64] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishnamurthy.

High Performance Packet Processing with FlexNIC. In Proc. of ACM

ASPLOS, 2016.

[65] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and

T. Anderson. TAS: TCP Acceleration as an OS Service. In Proc. of ACM

EuroSys, 2019.

[66] A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia, S. Yang, and J. Ousterhout. SLIK:

scalable low-latency indexes for a key-value store. In Proc. of USENIX ATC,

2016.

[67] J. F. C. Kingman. The Single Server Queue in Heavy Traffic. Mathematical

Proceedings of the Cambridge Philosophical Society, 1961.

[68] S. Laki, D. Horpácsi, P. Vörös, R. Kitlei, D. Leskó, and M. Tejfel. High

Speed Packet Forwarding Compiled from Protocol Independent Data Plane

Specifications. In Proc. of ACM SIGCOMM, 2016.

facom-ufms

BIBLIOGRAPHY 103

[69] K.-c. Leung, V. O. Li, and D. Yang. An Overview of Packet Reordering in

Transmission Control Protocol (TCP): Problems, Solutions, and Challenges.

IEEE Transactions on Parallel and Distributed Systems, 2007.

[70] B. Li et al. ClickNP: Highly Flexible and High Performance Network

Processing with Reconfigurable Hardware. In Proc. of ACM SIGCOMM, 2016.

[71] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and

L. Zhang. KV-Direct: High-Performance In-Memory Key-Value Store with

Programmable NIC. In Proc. of ACM SOSP, 2017.

[72] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales of the Tail:

Hardware, OS, and Application-Level Sources of Tail Latency. In Proc. of

ACM SoCC, 2014.

[73] T. Li, S. Chen, and Y. Ling. Per-Flow Traffic Measurement through

Randomized Counter Sharing. IEEE/ACM Transactions on Networking, 2012.

[74] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman. Algorithmic

improvements for fast concurrent Cuckoo hashing. In Proc. of ACM EuroSys,

2014.

[75] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: a memory-efficient,

high-performance key-value store. In Proc. of ACM SOSP, 2011.

[76] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A Holistic

Approach to Fast in-Memory Key-Value Storage. In Proc. of USENIX NSDI,

2014.

[77] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta.

Offloading Distributed Applications onto SmartNICs Using iPipe. In Proc.

of ACM SIGCOMM, 2019.

facom-ufms

BIBLIOGRAPHY 104

[78] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One Sketch

to Rule Them All: Rethinking Network Flow Monitoring with UnivMon. In

Proc. of ACM SIGCOMM, 2016.

[79] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis.

Heracles: Improving Resource Efficiency at Scale. In Proc. of ACM/IEEE

ISCA, 2015.

[80] Z. Majo and T. R. Gross. (Mis)understanding the NUMA memory system

performance of multithreaded workloads. In Proc. of IEEE IISWC, 2013.

[81] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and

F. Huici. ClickOS and the Art of Network Function Virtualization. In Proc.

of USENIX NSDI, 2014.

[82] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Contavalli,

M. Dalton, N. Dukkipati, W. C. Evans, S. Gribble, N. Kidd, R. Kononov,

G. Kumar, C. Mauer, E. Musick, L. Olson, E. Rubow, M. Ryan,

K. Springborn, P. Turner, V. Valancius, X. Wang, and A. Vahdat. Snap:

A Microkernel Approach to Host Networking. In Proc. of ACM SOSP, 2019.

[83] S. McClure, A. Ousterhout, S. Shenker, and S. Ratnasamy. Efficient

Scheduling Policies for Microsecond-Scale Tasks. In Prof. of USENIX NSDI,

Apr. 2022.

[84] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and

G. Porter. Expanding across Time to Deliver Bandwidth Efficiency and Low

Latency. In Proc. of USENIX NSDI, 2020.

[85] Memcached. Available at https://memcached.org [Online. Accessed on

2024/09/22].

facom-ufms

https://memcached.org

BIBLIOGRAPHY 105

[86] Z. Metreveli, N. Zeldovich, and M. F. Kaashoek. CPHASH: A

Cache-Partitioned Hash Table. In Proc. of ACM SIGPLAN, 2012.

[87] A. Mirhosseini, A. Sriraman, and T. F. Wenisch. Enhancing Server Efficiency

in the Face of Killer Microseconds. In Proc. of IEEE HPCA, 2019.

[88] P. A. Misra, M. F. Borge, I. Goiri, A. R. Lebeck, W. Zwaenepoel, and

R. Bianchini. Managing Tail Latency in Datacenter-Scale File Systems Under

Production Constraints. In Proc. of ACM EuroSys, 2019.

[89] Y. Moon, S. Lee, M. A. Jamshed, and K. Park. AccelTCP: Accelerating

Network Applications with Stateful TCP Offloading. In Proc. of USENIX

NSDI, 2020.

[90] Netronome Systems, Inc. Netronome: The Joy of Micro-C.

[91] Netronome Systems, Inc. NFP-4000 Theory of Operation. White paper,

Netronome, 2016.

[92] NFV-MANO. Available at https://www.etsi.org/deliver/etsi_gs/

nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf [Online.

Accessed on 2024/11/10].

[93] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,

R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and

V. Venkataramani. Scaling Memcache at Facebook. In Proc. of USENIX

NSDI, 2013.

[94] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-out NUMA.

In Proc. of ACM ASPLOS, 2014.

[95] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. The Case for

RackOut: Scalable Data Serving Using Rack-Scale Systems. In Proc. of ACM

SoCC, 2016.

facom-ufms

https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf

BIBLIOGRAPHY 106

[96] NVIDIA. ConnectX 5 EN. Available at https://www.mellanox.

com/products/ethernet-adapters/connectx-5-en [Online. Accessed on

2024/09/22].

[97] A. Oeldemann, F. Biersack, T. Wild, and A. Herkersdorf. Inter-Server RSS:

Extending Receive Side Scaling for Inter-Server Workload Distribution. In

Proc. of Euromicro International Conference on PDP, 2020.

[98] G. Optimization. Available at https://www.gurobi.com [Online. Accessed

on 2024/09/22].

[99] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan. Shenango:

Achieving High CPU Efficiency for Latency-Sensitive Datacenter Workloads.

In Proc. of USENIX NSDI, 2019.

[100] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,

D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman, and

S. Yang. The ramcloud storage system. ACM Transactions of Computer

Systems, 2015.

[101] C. Paasch and O. Bonaventure. Multipath TCP. Communications of the

ACM, 2014.

[102] R. D. G. Paćıfico, L. F. S. Duarte, M. S. Castanho, L. F. M. Vieira, J. A. Nacif,

and M. A. M. Vieira. eBPFlow: A Hardware/Software Platform to Seamlessly

Offload Network Functions Leveraging eBPF. IEEE/ACM Transactions on

Networking, pages 1319–1332, 2024.

[103] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and

S. Shenker. E2: A Framework for NFV Applications. In Proc. of ACM SOSP,

2015.

facom-ufms

https://www.mellanox.com/products/ethernet-adapters/connectx-5-en
https://www.mellanox.com/products/ethernet-adapters/connectx-5-en
https://www.gurobi.com

BIBLIOGRAPHY 107

[104] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker.

NetBricks: Taking the V out of NFV. In Proc. of USENIX OSDI, 2016.

[105] V. Paxson. End-to-End Internet Packet Dynamics. In Proc. of ACM

SIGCOMM, 1997.

[106] V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. In

Prof. of USENIX Security, Jan. 1998.

[107] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving Network

Connection Locality on Multicore Systems. In Proc. of ACM EuroSys, 2012.

[108] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,

T. Anderson, and T. Roscoe. Arrakis: The Operating System is the Control

Plane. In Proc. of USENIX OSDI, 2014.

[109] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and

T. Anderson. Floem: A Programming System for NIC-Accelerated Network

Applications. In Proc. of USENIX NSDI, 2018.

[110] PRADS. Available at http://manpages.ubuntu.com/manpages/wily/man1/

prads.1.html [Online. Accessed on 2024/09/22].

[111] G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achieving Low Tail Latency

for Microsecond-Scale Networked Tasks. In Proc. of ACM SOSP, 2017.

[112] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico Replication: A High

Availability Framework for Middleboxes. In Proc. of ACM SOCC, 2013.

[113] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/Merge:

System Support for Elastic Execution in Virtual Middleboxes. In Proc. of

USENIX NSDI, 2013.

facom-ufms

http://manpages.ubuntu.com/manpages/wily/man1/prads.1.html
http://manpages.ubuntu.com/manpages/wily/man1/prads.1.html

BIBLIOGRAPHY 108

[114] R. J. Recio, P. R. Culley, D. Garcia, B. Metzler, and J. Hilland. RFC 5040:

A Remote Direct Memory Access Protocol Specification, 2007.

[115] Redis. Available at https://redis.io [Online. Accessed on 2024/09/22].

[116] L. Rizzo and G. Lettieri. VALE, a Switched Ethernet for Virtual Machines.

In Proc. of ACM CoNEXT, 2012.

[117] A. Rucker, M. Shahbaz, T. Swamy, and K. Olukotun. Elastic RSS:

Co-Scheduling Packets and Cores Using Programmable NICs. In Proc. of

ACM APNet, 2019.

[118] H. Sadok, M. E. M. Campista, and L. H. M. K. Costa. A Case for Spraying

Packets in Software Middleboxes. In Proc. of ACM HotNets, 2018.

[119] L. Saino, I. Psaras, and G. Pavlou. Understanding Sharded Caching Systems.

In Proc. of IEEE INFOCOM, 2016.

[120] R. Shashidhara, T. Stamler, A. Kaufmann, and S. Peter. FlexTOE: Flexible

TCP Offload with Fine-Grained Parallelism. In Proc. of USENIX NSDI, 2022.

[121] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,

M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker.

Rollback-Recovery for Middleboxes. In Proc. of ACM SIGCOMM, 2015.

[122] Snort. Available at https://www.snort.org/snort3 [Online. Accessed on

2024/09/22].

[123] A. Sriraman, A. Dhanotia, and T. F. Wenisch. SoftSKU: Optimizing Server

Architectures for Microservice Diversity @scale. In Proc. of ACM/IEEE ISCA,

2019.

[124] B. Stephens, A. Akella, and M. M. Swift. Your Programmable NIC Should

Be a Programmable Switch. In Proc. of ACM HotNets, 2018.

facom-ufms

https://redis.io
https://www.snort.org/snort3

BIBLIOGRAPHY 109

[125] W. Stevens. RFC2001: TCP Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms, 1997.

[126] Suricata. Available at https://suricata-ids.org/l [Online. Accessed on

2024/09/22].

[127] M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos, and

A. Daglis. The NeBuLa RPC-Optimized Architecture. In Proc. of ACM/IEEE

ISCA, 2020.

[128] V. Vasudevan, M. Kaminsky, and D. G. Andersen. Using vector interfaces to

deliver millions of IOPS from a networked key-value storage server. In Proc.

of ACM SoCC, 2012.

[129] M. A. M. Vieira, M. S. Castanho, R. D. G. Paćıfico, E. R. S. Santos, E. P. M. C.

Júnior, and L. F. M. Vieira. Fast Packet Processing with eBPF and XDP:

Concepts, Code, Challenges, and Applications. ACM Computing Surveys,

2020.

[130] Y. Wang, S. Gobriel, R. Wang, T.-Y. C. Tai, and C. Dumitrescu. Hash Table

Design and Optimization for Software Virtual Switches. In Proc. of ACM

KBNets, 2018.

[131] Y. Wang, G. Lu, and X. Li. A Study of Internet Packet Reordering. In

Information Networking. Networking Technologies for Broadband and Mobile

Networks, 2004.

[132] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker. Elastic

Scaling of Stateful Network Functions. In Proc. of USENIX NSDI, 2018.

[133] W. Wu, P. DeMar, and M. Crawford. Why Can Some Advanced Ethernet

NICs Cause Packet Reordering? IEEE Communications Letters, 2011.

facom-ufms

https://suricata-ids.org/l

BIBLIOGRAPHY 110

[134] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the

Obvious. ACM SIGARCH Computer Architecture News, 1995.

[135] J. Yang, Y. Yue, and K. V. Rashmi. A Large Scale Analysis of Hundreds of

In-Memory Cache Clusters at Twitter. In Proc. of USENIX OSDI, 2020.

[136] P. Zave, F. B. Carvalho, R. A. Ferreira, J. Rexford, M. Morimoto, and X. K.

Zou. A Verified Session Protocol for Dynamic Service Chaining. IEEE/ACM

Transactions on Networking, 2021.

[137] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford. Dynamic

Service Chaining with Dysco. In Proc. of ACM SIGCOMM, 2017.

[138] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija,

A. Martinez, J. Liu, A. K. Simpson, S. Jayakar, P. H. Penna, M. Demoulin,

P. Choudhury, and A. Badam. The Demikernel Datapath OS Architecture for

Microsecond-Scale Datacenter Systems. In Proc. of ACM SOSP, 2021.

[139] Y. Zhang, D. Meisner, J. Mars, and L. Tang. Treadmill: Attributing the

Source of Tail Latency through Precise Load Testing and Statistical Inference.

In Proc. of ACM/IEEE ISCA, 2016.

[140] P. Zheng, W. Feng, A. Narayanan, and Z.-L. Zhang. NFV Performance

Profiling on Multi-core Servers. In Proc. of IFIP Networking Conference

(Networking), 2020.

[141] P. Zheng, A. Narayanan, and Z.-L. Zhang. A Closer Look at NFV Execution

Models. In Proc. of ACM APNet, 2019.

facom-ufms

Appendix A

Publications

We submitted the results of Chapter 4 to publication and presented the results of

Chapter 5 at IEEE INFOCOM 2022. An extended version of the INFOCOM paper

was published in the IEEE/ACM Transactions on Networking in 2024. Additionally,

we contributed to publications in other conferences, such as IEEE GLOBECOM and

the Brazilian Symposium on Computer Networks and Distributed Systems (SBRC).

We produced the following manuscripts during the development of this thesis:

• CARVALHO, F. B.; FERREIRA, R. A.; CUNHA, Í.; VIEIRA, M. A. M.;

RAMANATHAN, M. K.Dyssect: Dynamic Scaling of Stateful Network

Functions. In IEEE INFOCOM 2022 IEEE Conference on Computer

Communications, p. 1529-1538, 2022 [19].

• CARVALHO, F. B.; FERREIRA, R. A.; CUNHA, Í.; VIEIRA, M. A. M.;

RAMANATHAN, M. K. State Disaggregation for Dynamic Scaling of

Network Functions. In IEEE/ACM Transactions on Networking, v. 32, p.

81-95, 2024 [20].

• CARVALHO, F. B.; FRIED, J. STOLET, M.; SUNEJA, P.; PENNA,

P. H.; BONDE, A.; ZHANG, I.; KAUFMANN, A.; FERREIRA, R. A. A

Principled Approach to Multicore Scheduling in the Microsecond

111

Publications 112

Era. Submitted to publication.

• ZAVE, P.; CARVALHO, F. B.; FERREIRA, R. A.; REXFORD, J.;

MORIMOTO, M.; ZOU, X. K. A Verified Session Protocol for Dynamic

Service Chaining. In IEEE/ACM Transactions on Networking, v. 28, p.

423-437, 2021 [136].

• HUAYTALLA, B. R.; JACOBS, A. S.; SILVA, M. V. B.; CARVALHO, F.

B.; FERREIRA, R. A.; WILLINGER, W.; GRANVILLE, L. Z. DWT in

P4: Periodicity Detection in the Data Plane. In GLOBECOM 2022 -

2022 IEEE Global Communications Conference, Rio de Janeiro, RJ, Brazil, p.

6343-6348, 2022 [47].

• BERGHETTI, M. S.; CARVALHO, F. B.; FERREIRA, R. A. AFP: Um

Escalonador de Requisições de Microsserviços Guiado por Feedback.

In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribúıdos

(SBRC), Niterói, RJ, Brazil, p. 1134-1147, 2024 [13] (In Portuguese).

Although not directly related to the core topic of this thesis, our previous work on

dynamic service chaining [136] provided valuable experience in implementation and

performance evaluation, which was instrumental in acquiring the knowledge of fast

packet processing that we later applied to the development of Dyssect (Chapter 5).

Furthermore, our work in [47] gave us essential experience with the data plane in

programmable NICs, where we implemented a DWT method to develop an energy

function-based technique to detect periodic patterns in network traffic in real-time

and at line rate. Furthermore, the research in [13] helped me initiate the mentoring

of master’s students, an invaluable skill for any researcher. In summary, these

publications contributed significantly to both the development of this thesis and my

broader education, increasing my knowledge and shaping my research.

facom-ufms

	Introduction
	Stateful Transport Protocol
	Stateful Network Functions
	Problem Statement and Research Questions
	Main Contributions
	Thesis Roadmap

	Background
	Stateful Transport Protocol
	Network Functions
	Summary

	Related Work
	Stateful Transport Protocol
	Stateful Network Functions
	Summary

	Multicore Scheduling in TCP Applications
	Design Space of Multicore Scheduling
	Benchmark Setup
	Worker Assignment and Queueing Model
	Spatial Scheduling and Co-location
	Scheduling with NUMA Nodes
	Real Application Evaluation
	Guidelines
	Summary

	Dynamic Scaling of Stateful Network Functions
	Dyssect
	Evaluation
	SmartNIC Offloading
	Summary

	Conclusion
	Future Work

	Bibliography
	Publications

