

UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

GUILHERME DUARTE MOLTOCARO

PROPRIEDADES ELETRÔNICAS E ESPECTROSCÓPICAS DE COMPLEXOS DE METAIS DO GRUPO 11

GUILHERME DUARTE MOLTOCARO

PROPRIEDADES ELETRÔNICAS E ESPECTROSCÓPICAS DE COMPLEXOS DE METAIS DO GRUPO 11

Dissertação apresentada ao Programa de PósGraduação em química da Universidade Federal de Mato Grosso do Sul para obtenção do título de Mestre em Química (área de concentração: Química).

Orientador: Prof. Dr. Leandro Moreira de Campos Pinto

CAMPO GRANDE 2025 Esta obra é dedicada a: Vivian, minha querida esposa e melhor amiga.

Aos meus amáveis pais.

Agradecimentos

Ao Eterno, cuja sempiterna mão ajudadora e inigualável cuidado são infalíveis.

Agradeço a minha amada esposa Vivian por todo apoio e por ser o mair catalisador do meu crescimento como ser humano.

Aos meus pais por dispenderem tanta ajuda quanto lhes estava ao alcance.

Ao meu caro orientador Prof. Leandro por toda solicitude, mesmo requerida em horas inconvenientes.

Aos colegas de pesquisa, incluindo os colegas parceiros experimentais do LSCM sob liderança do prof. Gleison Antônio Casagrande. Eles sempre foram gentis ao responderem meus questionamentos.

Aos avaliadores da banca porque certamente dispensaram um bom tempo debruçados sobre este extenso texto.

Aos professores do PPGQ e funcionários do Instituto de Química por fazerem seu melhor para o bom funcionamento do Instituto de Química.

A CAPES pela concessão da bolsa.

RESUMO

A busca por novos materiais bioativos, como antibióticos e parasiticidas, baseados em química de coordenação, tem atraído o interesse de pesquisadores em todo o mundo. Complexos contendo estruturas presentes em agentes alopáticos, como os triazóis, amplamente encontrados em antifúngicos, antivirais e ansiolíticos, bem como as pirazolinas, que aparecem em antifúngicos, antivirais, analgésicos e quimioterápicos, podem melhorar características terapêuticas e reduzir a toxicidade. Este trabalho resulta de uma colaboração entre pesquisadores experimentais e teóricos, com o objetivo de compreender melhor as propriedades eletrônicas e espectroscópicas de novos materiais contendo os ligantes triazol e pirazolina coordenados a metais do grupo 11, cobre, prata e ouro. As simulações foram realizadas utilizando a Teoria do Funcional da Densidade (DFT), uma metodologia computacional amplamente consolidada, derivada da mecânica quântica, mas que emprega aproximações rigorosas, dado que a solução exata da equação de Schrödinger para sistemas de muitos elétrons interagentes é impraticável. Investigamos a eficiência da DFT e da DFT dependente do tempo (TD-DFT) na descrição da estrutura molecular e das transições eletrônicas de sete sistemas moleculares complexos. Os cálculos foram conduzidos com os programas Orca 5 e, principalmente, o Gaussian 16. Inicialmente, avaliamos a eficiência de diversos funcionais de troca e correlação. Os funcionais mais adeguados, considerando as limitações computacionais, foram selecionados para replicar a metodologia em outras estruturas. Os resultados mostraram uma boa concordância entre os dados experimentais e teóricos, especialmente para complexos de camada fechada, sem elétrons desemparelhados, com erros dentro do esperado segundo a literatura. As principais transições eletrônicas e os orbitais de fronteira envolvidos foram identificados, e as superfícies de densidade desses orbitais foram calculadas para visualização das transições. A ausência de freguências vibracionais imaginárias garantiu que as geometrias otimizadas correspondem a mínimos de energia, sendo os espectros de infravermelho simulados capazes de reproduzir os principais modos vibracionais, com valores próximos aos observados experimentalmente.

Palavras Chaves: Complexo de Cu^{II} ; Complexos de Ag^I; Complexos de Au^I; Simulação; Estrutura Eletrônica.

ABSTRACT

The search for new bioactive materials, such as antibiotics and antiparasitic agents based on coordination chemistry, has attracted the interest of researchers worldwide. Complexes featuring structural motifs commonly found in allopathic drugs, such as triazoles—widely present in antifungal, antiviral, and anxiolytic agents-and pyrazolines, which appear in antifungals, antivirals, analgesics, and chemotherapeutics, can enhance therapeutic properties while reducing toxicity. This work results from a collaboration between experimental and theoretical researchers aiming to better understand the electronic and spectroscopic properties of new materials containing triazole and pyrazoline ligands coordinated to group 11 metals, namely copper, silver, and gold. Simulations were performed using Density Functional Theory (DFT), a widely established computational methodology derived from quantum mechanics but employing rigorous approximations, as the exact solution to the Schrödinger equation for interacting many-electron systems is impractical. We investigated the efficiency of DFT and Time-Dependent DFT (TD-DFT) in describing the molecular structures and electronic transitions of seven complex molecular systems. Calculations were carried out using the Orca 5 and, primarily, the Gaussian 16 software packages. Initially, several exchange-correlation functionals were evaluated for their efficiency. The most suitable functionals, considering computational limitations, were selected to replicate the methodology on other structures. The results demonstrated good agreement between experimental and theoretical data, particularly for closed-shell complexes without unpaired electrons, with errors consistent with those reported in the literature. Key electronic transitions and the involved frontier orbitals were identified, and the orbital density surfaces were calculated to visualize these transitions. The absence of imaginary vibrational frequencies ensured that the optimized geometries correspond to energy minima, and the simulated infrared spectra successfully reproduced the main vibrational modes, with values reasonably close to experimental observations.

Keywords: Cu^{II} Complex; Ag^I Complexes; Au^I Complexes; Simulation; Electronic Structure.

LISTA DE FIGURAS

Figura 1: Representação da estrutura da sulfadiazina de prata	23
Figura 2: As faixas do espectro eletromagnético que de alguma forma interagem com a estrutura	1
molecular	26
Figura 3: Espectro de FTIR de uma amostra de óleo de rícino	27
Figura 4: Níveis de energia eletrônica e transições	30
Figura 5: A vibração assimétrica	33
Figura 6: Os níveis de energia indicados em azul, vermelho e verde são respectivamente:	
eletrônicos, vibracionais e rotacionais	34
Figura 7: Geometria octaédrica	36
Figura 8: Geometria quadrática	37
Figura 9: Representação de um complexo tetraédrico	37
Figura 10: Representação dos orbitais d	38
Figura 11: Divisão dos orbitais <i>d</i> em diferentes campos ligantes. Observa-se que a energia média	а
não se altera em relação à energia dos orbitais <i>d</i> em um ambiente de simetria esférica, tal qual en	m
um átomo livre	39
Figura 12: Perfil do espectro de absorção do íon [Ti(H ₂ O) ₆] ³⁺ obtido por simulação	40
Figura 13: Diagrama com os níveis de energia dos orbitais em uma análise de campo cristalino o	le
um complexo tetraédrico, baseado em (SHRIVER; ATKINS, 2006)	41
Figura 14: Ciclo de autoconsistência: solução iterativa da equação de Fock	50
Figura 15: Ciclo de autoconsistência do método DFT	59
Figura 16: Palestras realizadas em 23 e 24 de maio de 2019 em Louvain-la-Neuve (Bélgica)	63
Figura 17: Fluxograma que resume a escolha dos funcionais de troca e correlação	71
Figura 18: "Plage à Heist"	73
Figura 19: Os "cálculos mais símples" e as 10 transições eletrônicas foram feitos no Orca 5	74
Figura 20: Os ciclos de otimização do complexo de ouro-Cl-naftil acompanhados no software	
Gabedit 2.5.1	76
Figura 21: Estrutura molecular otimizada do complexo 1	77
Figura 22: Estrutura otimizada do complexo 2	79
Figura 23: Estrutura otimizada do complexo 3	80
Figura 24: Estrutura otimizada do complexo 4	81
Figura 25: Estrutura otimizada do complexo 5	83
Figura 26: Estrutura otimizada do complexo 6	84
Figura 27: Estrutura otimizada do complexo 7	85
Figura 28: Espectros eletrônicos de absorção experimental e calculado do complexo 1	87
Figura 29: Espectros eletrônicos de absorção experimental e calculado do complexo 1	87
Figura 30: Os orbitais calculados da Figura 31 foram obtidos na perspectiva apresentada nesta	
imagem	88
Figura 31: Dos 17 orbitais de fronteira, a maioria das transições importantes envolvem orbitais l	oeta
(11)	89
Figura 32: Espectros eletrônicos de absorção experimental e calculado do complexo 2	91
Figura 33: Espectros eletrônicos de absorção experimental e calculado do complexo 2 com a adi	i ção
do espectro calculado no vácuo. Fonte: do autor, 2024	92

Figura 34: Os orbitais calculados da Figura 35 foram obtidos na perspectiva apresentada nesta
imagem
Figura 35: Orbitais de fronteira envolvidos nas principais transições do complexo 2
Figura 36: Espectros eletrônicos de absorção experimental e calculado do complexo 396
Figura 37: Espectros eletrônicos de absorção experimental e calculado do complexo 3 com a adição
do espectro calculado considerando a molécula no vácuo. Fonte: do autor, 202497
Figura 38: Os orbitais calculados da Figura 39 foram obtidos na perspectiva apresentada nesta
imagem
Figura 39: Orbitais de fronteira envolvidos nas principais transições do complexo 3
Figura 40: Espectros eletrônicos de absorção experimental e calculado do complexo 4101
Figura 41: Espectros eletrônicos de absorção experimental e calculado do complexo 4 com a adição
do espectro calculado considerando a molécula no vácuo
Figura 42: Os orbitais calculados da Figura 43 foram obtidos na perspectiva apresentada nesta
imagem
Figura 43: Orbitais de fronteira envolvidos nas principais transições do complexo 4103
Figura 44: Espectros eletrônicos de absorção experimental e calculado do complexo 5105
Figura 45: Espectros eletrônicos de absorção experimental e calculado do complexo 5 com a adição
do espectro calculado considerando a molécula no vácuo
Figura 46: Os orbitais calculados da Figura 47 foram obtidos na perspectiva apresentada nesta
imagem
Figura 47: Orbitais de fronteira envolvidos nas principais transições do complexo 5107
Figura 48: Espectros eletrônicos de absorção experimental e calculado do complexo 6109
Figura 49: Espectros eletrônicos de absorção experimental e calculado do complexo 6 com a adição
do espectro calculado considerando a molécula no vácuo
Figura 50: Os orbitais calculados da Figura 51 foram obtidos na perspectiva apresentada nesta
imagem
Figura 51: Orbitais de fronteira envolvidos nas principais transições do complexo 6111
Figura 52: Espectros eletrônicos de absorção experimental e calculado do complexo 7113
Figura 53: Espectros eletrônicos de absorção experimental e calculado do complexo 7 com a adição
do espectro calculado considerando a molécula no vácuo Fonte: do autor, 2024113
Figura 54: Os orbitais calculados da Figura 55 foram obtidos na perspectiva apresentada nesta
imagem
Figura 55: Orbitais de fronteira envolvidos nas principais transições do complexo 7115
Figura 56: O modo vibracional usado como exemplo118
Figura 57: Espectro de FTIR experimental do complexo 1119
Figura 58: Escpectro de FTIR calculado do complexo 1119
Figura 59: Espectro de FTIR experimental do complexo 2120
Figura 60: Escpectro de FTIR calculado do complexo 2121
Figura 61: Espectro de FTIR experimental do complexo 3
Figura 62: Escpectro de FTIR calculado do complexo 3122
Figura 63: Espectro de FTIR experimental do complexo 4
Figura 64: Escpectro de FTIR calculado do complexo 4124
Figura 65: Espectro de FTIR experimental do complexo 5124
Figura 66: Escpectro de FTIR calculado do complexo 5125

Figura 67: Espectro de FTIR experimental do complexo 6	126
Figura 68: Espectro de FTIR calculado do complexo 6	127
Figura 69: Espectro de FTIR experimental do complexo 7	127
Figura 70: Escpectro de FTIR calculado do complexo 7	128
Figura 71: MEP do complexo 1	130
Figura 72: MEP do complexo 2	130
Figura 73: MEP do complexo 3	131
Figura 74: MEP do complexo 4 com a perspectiva selecionada para a imagem	131
Figura 75: MEP do complexo 5	132
Figura 76: MEP do complexo 6 com a perspectiva selecionada para a imagem	132
Figura 77: MEP do complexo 7	133

LISTA DE TABELAS

Tabela 1: Algumas propriedades dos elementos do grupo 11	21
Tabela 2: Energias de ionização em KJ/mol	24
Tabela 3: Absorção típica de cromóforos simples e isolados	30
Tabela 4: Intensidade das bandas espectroscópicas de diferentes transições	43
Tabela 5: Comparativo entre as funções de base escolhidas	70
Tabela 6: Distâncias em Å e ângulos	76
Tabela 7: Distâncias em Å e ângulos selecionados	78
Tabela 8: Distâncias em Å e ângulos da principais ligações do complexo 3	79
Tabela 9: Principais distâncias em Å e ângulos	80
Tabela 10: Distâncias em Å e ângulos	82
Tabela 11: Distâncias em Å e ângulos. Elaborada pelo autor, 2024	83
Tabela 12: Distâncias em Å e ângulos. Elaborada pelo autor, 2024	84
Tabela 13: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias,	
contribuições minoritárias	88
Tabela 14: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias,	
contribuições minoritárias	92
Tabela 15: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias,	
contribuições minoritárias	97
Tabela 16: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias,	
contribuições minoritárias	102
Tabela 17: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias,	
contribuições minoritárias	106
Tabela 18: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias,	
contribuições minoritárias	110
Tabela 19: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias,	
contribuições minoritárias	115
Tabela 20: Comparação das atribuições	120
Tabela 21: FTIR calculado dos complexos 2 e 3 comparados	122
Tabela 22: Comparativo dos resultados experimentais, fornecidos pela equipe experimental, e	
calculados	123
Tabela 23: FTIR calculado dos complexos 4 e 5 comparados	125
Tabela 24: Comparativo dos resultados experimentais, fornecidos pela equipe experimental, e	
calculados	126
Tabela 25: FTIR calculado dos complexos 6 e 7 comparados	128
Tabela 26: Comparativo dos resultados experimentais, fornecidos pela equipe experimental, e	
calculados	129

Lista de Abreviaturas e Símbolos

Å: Angstrom

B3LYP: Funcional B3LYP (Becke, 3-Parameter, Lee-Yang-Parr)

- cm⁻¹: Número de onda
- v: estiramento
- δ : deformação angular no plano
- y: deformação angular fora do plano
- ϵ_s : Constante dielétrica estática
- CPCM: Conductor-like Polarizable Continuum Model
- CT: Charge Transfer
- Δo: Parámetro de separação do campo cristalino
- Exc: Energia de troca e correlação
- eV: Elétron-volt
- EECL: Energia de Estabilização do Campo Ligante
- FCC: Face-Centered Cubic
- FTIR: Fourier Transform Infrared Spectroscopy
- GGA: Generalized Gradient Approximation
- GTO: Gaussian-Type Orbitals
- Ĥ: Operador Hamiltoniano
- HF: Hartree-Fock
- HPLC: High-Performance Liquid Chromatography
- HOMO: Highest Occupied Molecular Orbital
- IEFPCM: Integral Equation Formalism Polarizable Continuum Model
- IL: Intraligand Transitions
- IV: Infravermelho

KS-DFT: Kohn-Sham Density Functional Theory LDA: Local Density Approximation LLCT: Ligand-Ligand Charge Transfer LMCT: Ligand-Metal Charge Transfer λ : Comprimento de onda LUMO: Lowest Unoccupied Molecular Orbital LSDA: Local Spin Density Approximation **MEP: Molecular Electrostatic Potential** MLCT: Metal-Ligand Charge Transfer M11: Funcional M11 MN15: Funcional MN15 MO: Molecular Orbital μ: momento de transição de dipolo (M+X)LCT: Metal+Halide-Ligand Charge Transfer nm: Nanômetro N: Número de elétrons Nox: Número de oxidação **OM: Orbital Molecular** PBE: Funcional de Perdew-Burke-Ernzerhof PCM: Polarizable Continuum Model ψ: Função de onda PW91: Funcional PW91 (Perdew-Wang 1991) RMS: Raiz do quadrado médio da força **RHF: Restricted Hartree-Fock** RMN: Ressonância Magnética Nuclear

- SCF: Self-Consistent Field
- STO: Slater-Type Orbitals
- TM: Transition Metal
- Tda: Tamm-Dancoff Approximation
- TCC: Teoria do Campo Cristalino
- TCL: Teoria do Campo Ligante
- TOM: Teoria do Orbital Molecular
- UV: Ultravioleta
- UV-Vis: Ultravioleta-Visível
- vxc: Potencial de troca e correlação
- XC: Troca e correlação
- \hbar : Constante reduzida de Planck
- T: Operador de energia cinética
- Û: Operador do potencial
- V: Operador de interação
- ρ_0 : Densidade eletrônica
- XLCT: Halide-Ligand Charge Transfer

Sumário

1. INTRODUÇÃO	
2. OBJETIVO GERAL	20
2.1 Objetivos Específicos	20
3. REFERENCIAL TEÓRICO	21
3.1 Metais do Grupo 11	21
3.1.1 A química do cobre	21
3.1.2 A química da prata	22
3.1.3 A química do ouro	24
3.2 Interações da Luz com a Matéria: Fotoquímica e Fotofísica	25
3.3 Espectroscopia Molecular	
3.3.1 Espectroscopia no infravermelho com transformada de Fourie (FTIR)	27
3.3.2 Espectroscopia de absorção no ultravioleta e visível (UV-Vis)	
3.3.2.1 UV-Vis aplicado a complexos metálicos	
3.4 Desenvolvimento e Importância dos Métodos Teórico-Computacionais para a Qu	uímica44
3.5 Alguns Métodos Quânticos	
3.5.1 O método Hartree-Fock (HF)	
3.5.2 Métodos semi-empíricos de estruturas eletrônicas	51
3.5.3 A Teoria do funcional da densidade, DFT	
3.5.3.1 Teoremas de Hohemberg-Kohn	55
3.5.3.2 Equações de Kohn-Sham	57
3.5.3.1 Funcionais de troca-correlação	60
3.5.3.2 Funções de base	63
3.5.4 Simulação de espectroscopia UV-Vis com métodos computacionais	65
3.5.4.1 Modelagem dos efeitos de solvente	67
4. METODOLOGIA	70
5. RESULTADOS E DISCUSSÃO	75
5.1 Otimização de Geometrias	75
5.1.2 Distâncias e ângulos de ligação	
5.2 Espectroscopia de Absorção Molecular na Região do Ultravioleta e Visível (UV-	·Vis)86
5.3 Espectroscopia Vibracional na Região do Infravermelho com Transformada de F	ourie
(FTIR)	117
5.4 Mapa de Potencial Eletrostático (MEP)	129
6. CONCLUSÕES	
7. REFERÊNCIAS	
8. ANEXOS	141

1. INTRODUÇÃO

O sucesso das atividades humanas depende, em grande parte, da colaboração e de esforços conjuntos. Na investigação científica, os pesquisadores encontraram nas ferramentas computacionais um firme sustentáculo. Para a química e áreas correlatas, esse apoio frequentemente provém de ferramentas baseadas na mecânica quântica, cuja complexidade exige grande poder computacional.

Ao longo das últimas décadas, a Teoria do Funcional da Densidade (DFT) tornouse o método de escolha primária para a simulação de sistemas contendo até centenas de átomos, por oferecer bons resultados em um tempo computacional relativamente curto quando comparado a outros métodos. Desde seu desenvolvimento na década de 1960, a DFT não permaneceu estagnada. Pelo contrário, evoluiu continuamente graças aos esforços da comunidade científica, acompanhando os avanços da ciência da computação. Como evidência desse progresso, observa-se um volume cada vez maior de publicações científicas envolvendo DFT (HAUNSCHILD; BARTH; MARKX, 2016).

É notório como o advento dos antibióticos e outras drogas incrementou a longevidade e a qualidade de vida das pessoas, motivando a continuidade das pesquisas nessa área. A química de coordenação, que estuda compostos formados por íons metálicos ligados a moléculas ou íons chamados ligantes, revolucionou o tratamento do câncer no final da década de 1960 com o uso da cisplatina (cis-diaminodicloroplatina(II)). Até hoje, tanto a cisplatina quanto seus derivados são amplamente utilizados com essa finalidade. Devido ao seu potencial promissor, nas últimas duas décadas tem-se observado um aumento significativo no interesse por pesquisas que busquem desenvolver novos complexos com aplicações medicinais (HALL; HAMBLEY, 2002) (WONG; GIANDOMENICO, 1999) Devido ao seu potencial promissor, nas últimas duas décadas tem-se observado um aumento significativo no interesse por pesquisas que busquem desenvolver novos complexos com aplicações medicinais (FARRELL, 2002) (QADER et al., 2024).

Um número não pequeno de publicações na área de química de coordenação inclui cálculos DFT como parte de suas abordagens teóricas. As predições derivadas desses cálculos podem abranger propriedades eletrônicas e estruturais, interpretação de dados espectroscópicos, estudos de mecanismos de reação, propriedades magnéticas e potenciais de oxidação e redução (CHERMETTE, 1998) (AMRI et al., 2024). Este trabalho tem o papel de ajudar a interpretar e validar dados obtidos experimentalmente, proporcionando epifanias que dificilmente são acessíveis por métodos puramente experimentais. Também é resultado da colaboração entre pesquisadores experimentais e teóricos-computacionais, buscando uma melhor compreensão de novos materiais sintetizados: um complexo de cobre (II), dois complexos de prata (I) e quatro complexos de ouro (I). Esses compostos possuem em comum o uso de ligantes heterocíclicos, que são frequentemente bons complexantes e doadores de densidade eletrônica. Estima-se

que compostos heterocíclicos correspondam a mais da metade dos produtos naturais conhecidos (NONGPIUR et al., 2022).

Os cálculos realizados para esses novos materiais, dentro da abordagem DFT e TD-DFT, incluem:

- Geometria molecular;
- Propriedades espectroscópicas eletrônicas e vibracionais, com a obtenção dos orbitais de fronteira envolvidos nas principais transições eletrônicas e modos vibracionais;
- Mapas de potencial eletrostático para uma melhor compreensão da distribuição de cargas.

Os resultados obtidos foram comparados com dados experimentais, quando disponíveis.

2. OBJETIVO GERAL

Estudar, utilizando ferramentas computacionais, as propriedades eletrônicas, espectroscópicas e geométricas de complexos metálicos do grupo 11 (cobre, prata e ouro). Esses complexos incluem: um complexo de cobre com ligante triazol; dois complexos de prata e quatro de ouro, ambos contendo ligantes do tipo pirazolina substituída. Correlacionar os resultados obtidos por cálculos baseados na Teoria do Funcional da Densidade (DFT) e na Teoria do Funcional da Densidade Dependente do Tempo (TD-DFT) com os dados experimentais.

2.1 Objetivos Específicos

 I) Realizar cálculos com diferentes metodologias e níveis de sofisticação teórica para melhor reproduzir os dados experimentais, especialmente os espectros de absorção na região do ultravioleta/visível (UV-Vis).

II) Otimizar as estruturas geométricas dos complexos, identificando as conformações mais estáveis e de menor energia.

III) Realizar cálculos TD-DFT para obter os espectros UV-Vis dos sete complexos e simular os espectros de FTIR por meio de cálculos de frequências vibracionais.

IV) Atribuir as principais transições eletrônicas responsáveis pelos espectros UV-Vis, identificando os orbitais moleculares (do tipo Kohn-Sham) envolvidos.

3. REFERENCIAL TEÓRICO

3.1 Metais do Grupo 11

Os elementos naturais do grupo 11 — cobre, prata e ouro — são historicamente conhecidos como metais de cunhagem, devido ao uso em moedas desde a antiguidade. Esses metais são mencionados em textos antigos, como no Pentateuco (ver Ex 27:2; Nm 10:2; Ex 25:11).

Tabela 1: Algumas propriedades dos elementos do grupo 11 (Royal Society of Chemistry, 2011)

Elemento	Número atômico	Configuração eletrônica	Massa atômica relativa	Raio atômico, não ligado (Å)	Ponto de Fusão (K)	Massa específica (Kg/m³)	Estados de oxidação (mais abundante; mais raros)
Cu	29	[Ar] 4s ¹ 3d ¹⁰	63,5	1,96	1357,8	8960	+1, +2; +3
Ag	47	[Kr] 5s ¹ 4 d ¹⁰	107,9	2,11	1234,9	10500	+1; +2, +3
Au	79	[Xe] 6s ¹ 5 <i>d</i> ¹⁰	197	2,14	1337,3	19300	+1, +3; +2, +5

Os metais localizados à direita no bloco d da Tabela periódica são resistentes à oxidação, não sendo suscetíveis a ela pelo íon hidrogênio sob condições padrão. Para o estado de oxidação +1 (NOx +1), os complexos desses elementos são frequentemente lineares, o que se acredita ser uma consequência de híbridos colineares spd. Isso ocorre porque os orbitais *s*, *p* e *d* mais externos possuem energias próximas. (SHRIVER; ATKINS, 2006)

3.1.1 A química do cobre

O cobre é um metal de coloração avermelhada característica, amplamente conhecido por sua ductilidade, maleabilidade e excelente condução de eletricidade e calor. Embora seja quimicamente mais reativo que a prata e o ouro, também pode ser encontrado na natureza na forma elementar. Assim como a prata e o ouro, o cobre cristaliza em uma estrutura cúbica de face centrada (FCC, do inglês *face-centered cubic*). O nome "cobre" tem origem etimológica na ilha de Chipre, local de extração do metal na época romana. Atualmente, o Chile é o maior produtor mundial de cobre (Encyclopaedia Britannica 2023).

Segundo Massey (MASSEY et al., 1973), a camada 3d do cobre, quando completamente preenchida, exerce menor efeito de blindagem sobre os elétrons da camada s. Isso faz com que esses elétrons estejam sob forças atrativas mais intensas do núcleo, em comparação com os elétrons s do potássio. Embora uma análise superficial

das configurações eletrônicas dos dois elementos pudesse sugerir semelhanças químicas com os metais alcalinos, essas similaridades são restritas. Entre elas, destaca-se que os compostos monovalentes de cobre são diamagnéticos e, geralmente, incolores, exceto na presença de ânions paramagnéticos ou coloridos.

Massey também pontua que a estabilidade dos estados de oxidação 0, +1 e +2 do cobre depende fortemente do ambiente químico. Em fase gasosa e em soluções onde a interação do íon de cobre com o entorno é essencialmente eletrostática, o íon Cu¹ é mais estável. Por outro lado, em solventes não aquosos e não complexantes, o íon Cu¹ apresenta uma energia de solvatação muito menor do que na água, tornando o estado cúprico mais estável.

A química dos complexos de cobre (II) é particularmente rica. Massey descreve esses complexos como "excessivamente numerosos" (p. 59), refletindo a abundância de compostos deste tipo já conhecidos à época da publicação de sua obra, em 1973. Certamente, muitos outros foram sintetizados desde então. No estado sólido, o número usual de ligantes monodentados em complexos de cobre (II) é quatro. Contudo, dependendo da natureza do ligante, podem ser observadas coordenações com 2, 5 ou 6 ligantes, especialmente em casos onde ânions contribuem para completar uma geometria octaédrica distorcida ao redor do metal.

O cobre também desempenha funções fundamentais em organismos vivos, sendo um elemento endógeno em mamíferos. A deficiência de cobre em mamíferos apresenta manifestações características conhecidas desde a década de 1930 Dentre as funções biológicas em que o cobre participa, destacam-se: (FOX, 2003).

- Fotossíntese (GORMAN; LEVINE, 1966).
- Ação catalítica de enzimas (GORMAN; LEVINE, 1966); (ASKWITH et al., 1994).
- Respiração aeróbica em eucariotos (CULOTTA et al., 1999).

No campo terapêutico, os complexos de cobre têm se mostrado compostos bioativos promissores. Drogas complexadas, em contraste com medicamentos tradicionais, podem apresentar maior atividade anti-inflamatória e antiulcerogênica, além de menor toxicidade ao sistema gastrointestinal (LAKOVIDIS; DELIMARIS; PIPERAKIS, 2011).

3.1.2 A química da prata

O aspecto branco e lustroso da prata, aliado à sua resistência à oxidação atmosférica, torna esse metal altamente atrativo e valioso para aplicações decorativas, ornamentais e na confecção de joias. Dentre todos os metais, a prata possui a maior condutividade elétrica e térmica. Na crosta terrestre, sua abundância é de apenas 0,05 partes por milhão.

A palavra "prata" tem origem no latim. Em latim, o termo para prata era *argentum*, que deu origem a palavras como "plata" em espanhol, "argento" em italiano e "argent" em francês. Em português, o termo também deriva de *argentum*. Atualmente, o México é o maior produtor mundial de prata (Encyclopaedia Britannica 2023).

A prata é considerada o metal mais reativo dentre os chamados "nobres" — irídio, ouro, paládio, platina, prata, ródio e rutênio. N. R. Thompson (MASSEY et al., 1973), em um capítulo dedicado à prata (p. 79), destaca que, ao analisar sua configuração eletrônica $(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^1)$, poder-se-ia, à primeira vista, inferir uma semelhança química com o rubídio $(1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1)$. No entanto, os efeitos da camada 4d preenchida na prata reduzem sua reatividade devido a um maior efeito de blindagem, em contraste com o rubídio, cujo elétron 5s apresenta um baixo potencial de ionização. Essa comparação, portanto, é considerada "infrutífera".

Na química de coordenação, o íon prata (Ag⁺) apresenta características notáveis, como ser um aceptor macio com uma esfera de coordenação apreciavelmente flexível. Isso permite que diferentes ligantes, com variadas geometrias, se coordenem ao íon prata. Apesar disso, o Ag(I) apresenta uma forte tendência à coordenação linear. Acreditase que essa flexibilidade geométrica decorra da ausência de direcionalidade estereométrica típica de sua configuração *d*¹⁰ (HUTCHINSON et al., 2012).

Embora a prata não seja endógena em sistemas biológicos, sua história em aplicações médicas é notável. As propriedades antimicrobianas desse metal são amplamente utilizadas no tratamento externo de infecções e queimaduras, condições altamente suscetíveis a quadros infecciosos. Produtos disponíveis no mercado, como bandagens contendo sulfadiazina de prata (conferir Figura 1) ou nanomateriais de prata, são eficazes nesse contexto. A prata e muitos de seus compostos apresentam um efeito oligodinâmico, ou seja, ação antimicrobiana em baixas concentrações. Esse efeito é atribuído à capacidade do íon prata de danificar irreversivelmente os sistemas enzimáticos presentes nas membranas celulares de patógenos (MEDICI et al., 2019). Pesquisas atuais buscam incorporar íons prata no design de novos antimicrobianos de amplo espectro (ŻYRO et al., 2019).

Figura 1: Representação da estrutura da sulfadiazina de prata Fonte: do autor, 2024.

3.1.3 A química do ouro

O ouro foi provavelmente o primeiro metal puro descoberto pela humanidade. É um dos elementos mais densos e um excelente condutor de eletricidade e calor. Sua maleabilidade é extraordinária: uma onça troy (unidade de massa usada para o ouro, equivalente a 31,1035 g) pode ser transformada em uma folha com aproximadamente 17 m². Historicamente, as qualidades únicas do ouro o tornaram um meio universal de troca e um importante lastro para o papel-moeda. No entanto, o ouro puro (mais de 99%, conhecido como ouro 24 quilates) pode não ser adequado para joias ou objetos maciços, pois deforma-se com facilidade. Para melhorar suas propriedades mecânicas e ajustar sua cor, são criadas ligas com metais como prata, platina, paládio e cobre (Encyclopaedia Britannica, 2023).

O ouro é encontrado em baixas concentrações em todas as rochas ígneas, com uma abundância estimada de 0,005 partes por milhão na crosta terrestre. Ele ocorre principalmente na forma nativa, quimicamente não combinado, exceto em associações com telúrio, selênio e bismuto. Diferentemente do cobre e da prata, que possuem mais de um isótopo natural, o ouro possui apenas o isótopo ouro-197 (ibid.)

No livro de Massey et al. (1973), os autores B. F. G. Johnson e R. Davis destacam pontos interessantes sobre o ouro. Apesar de seu número atômico ser 32 unidades maior que o da prata, seu raio atômico é apenas ligeiramente maior (2,14 Å contra 2,11 Å). Isso ocorre devido à contração lantanídica, um efeito resultante da ocupação de orbitais *4f* que não penetram tão eficientemente na nuvem eletrônica externa. Como o cobre e a prata, o ouro possui um único elétron do tipo s fora de uma camada *d* completa, apresentando a configuração eletrônica $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6 5d^{10} 6s^1$.

Os valores relativamente baixos da segunda e terceira energias de ionização do ouro (Tabela 2) explicam a importância do estado Au³⁺.

Elemento	1º Energia de ionização	2º Energia de ionização	3º Energia de ionização	4º Energia de ionização
Cobre	745,5	1957,9	3555	5536
Prata	731	2070	3361	4730
Ouro	890,1	1980	2870	3660

Tabela 2: Energias de ionização em KJ/mol

Elaborada pelo autor, 2024

Percebe-se, nas bibliografias, que não há elementos químicos mais pesado que o iodo (Z = 53) participando em processos bioquímicos (ao menos para organismos superiores). Mas, semelhantemente à prata, as aplicações tecnológicas de compostos de ouro são relevantes para as áreas médicas. Essa história começou em 1890, quando o bacteriologista alemão Robert Koch descobriu que o cianeto de ouro, mesmo em baixas

concentrações, inibia completamente o crescimento de bacilos causadores da tuberculose (BENEDEK, 2004). Atualmente, enxerga-se um grande potencial terapêutico nos complexos de ouro para diversos tratamentos como: câncer (YEO; OOI; TIEKINK, 2004), infecções em humanos (RATIA; SOENGAS; SOTO, 2022) e animais (RATIA et al., 2022). A química de coordenação, mesmo para elementos nobres como o ouro, oferece ótimas oportunidades para o desenvolvimento de novas drogas.

3.2 Interações da Luz com a Matéria: Fotoquímica e Fotofísica.

A definição da IUPAC (IUPAC, 2006) para fotoquímica é: "O ramo da química que se preocupa com os efeitos químicos da luz (UV distante ao IV)." Logo, esse termo serve para descrever reações químicas causadas por luz, mesmo que fora do espectro visível. Não somente por fornecer energia necessária para impulsionar transformações químicas, a luz é importante em vários processos químicos que, sem os rearranjos desencadeados pelos estados fotoexcitados, seriam proibidos pela simetria em seus estados fundamentais. As mesmas cicloadições desencadeadas pela luz UV que nos causam danos ao DNA e podem levar ao câncer de pele também são muito usadas pelos químicos orgânicos sintéticos, pois permitem a conversão de hidrocarbonetos insaturados em cicloalcanos mais complexos.' Possivelmente a reação fotoquímica mais importante ocorrendo em nossos corpos é a fotoisomerização cis-trans da base de Schiff protonada do 11-cis-retinal, o "cromóforo da visão". (KUBLI-GARFIAS, 2011) Nesse fenômeno, a luz promove elétrons de orbitais π (ligante) para π^* (antiligante), onde há uma região internuclear sem densidade eletrônica, um nó, que permite a ligação dupla rotacionar: possibilitando a isomerização (GLUSAC, 2016)

Por outro lado, quando a interação da luz com a matéria não provoca mudanças químicas, estamos falando de fotofísica. Fenômenos como absorção, emissão, espalhamento, fluorescência, fosforescência são todos fotofísicos. Essa disciplina é a chave para compreensão de propriedades espectroscópicas. Historicamente, o termo espectroscopia se refere ao ramo da ciência no qual luz (radiação visível) é decomposta em seus comprimentos de onda para produzir espectros, o que, aliás, desempenhou um papel fundamental no desenvolvimento da moderna teoria atômica. Adicionalmente, espectros mostraram-se ser uma poderosa ferramenta para obter informações sobre a estrutura, composição e condição física ou química das substâncias (SKOOG; WEST; HOLLER, 1988).

Com o passar do tempo, o significado de espectroscopia deixou de se limitar à luz visível e passou a incluir outros tipos de radiação eletromagnética (desde rádio frequência até raios x) ou mesmo técnicas que não envolvem luz, como a espectroscopia de elétrons (Ibid. p. 457). A espectroscopia (nos limitaremos às técnicas que envolvem radiação eletromagnética) coleta dados, costumeiramente chamados de espectros, e os exprime em função da frequência ou comprimentos de onda. Ela funciona, então, observando como a radiação incidente e absorvida afeta os elétrons e ligações de uma amostra. Por

ser a interação dependente do comprimento de onda da radiação, existem muitos tipos de espectroscopia (HELMENSTINE, 2021).

3.3 Espectroscopia Molecular

A Figura 2, inspirada em Stedwell e Polfer (STEDWELL; POLFER, 2013), mostra as porções do espectro e os tipos de transições provocadas na estrutura molecular.

Figura 2: As faixas do espectro eletromagnético que de alguma forma interagem com a estrutura molecular

Fonte: do autor, 2024.

A espectroscopia roto-vibracional, que opera na faixa de micro-ondas, é uma técnica utilizada para determinar a estrutura molecular, especialmente de moléculas pequenas e menos complexas. Ela possui aplicações significativas na área de astroquímica (ASVANI; SCHLEMMER, 2021).

Na região do infravermelho, as energias dos fótons variam de 0,001 a 1,7 eV e correspondem às diferenças de energia entre os estados vibracionais quânticos das moléculas. Quando a energia de um fóton coincide com essa diferença de energia, a molécula pode absorvê-lo e transitar entre estados vibracionais. Essas transições de energia são frequentemente modeladas como osciladores harmônicos, sistemas em que o deslocamento da posição de equilíbrio resulta em uma força restauradora proporcional ao deslocamento (ZIELINSK et al., 2005).

Por outro lado, uma transição eletrônica ocorre quando um elétron dentro do mesmo sistema molecular (ou atômico) é promovido de um estado eletrônico de menor energia (estado fundamental) para um de maior energia (estado excitado). Esse fenômeno espectral acontece quando fótons de uma fonte de luz são absorvidos por uma amostra contendo o analito. Como resultado, a configuração eletrônica da amostra é alterada para um estado excitado, dependendo da energia da luz incidente, que é

diretamente proporcional à frequência e inversamente proporcional ao comprimento de onda.

Os estados excitados, em geral, são instáveis e de curta duração. Quando o sistema relaxa e retorna ao estado fundamental, parte da energia absorvida é emitida na forma de luz, enquanto outra parte é dissipada por meio de relaxamento vibracional do estado excitado. (PAVIA et al., 2015).

3.3.1 Espectroscopia no infravermelho com transformada de Fourie (FTIR)

Como pode ser visto na Figura 3, espectros desse tipo são, em geral, bastante complexos: a discussão do porquê e outros aspectos teóricos será feita, nesta seção (com exceção do último parágrafo), com base no capítulo 2 do livro **"Identificação Espectrométrica de Compostos Orgânicos"** (SILVERSTIN; WEBSTER; KIEMLE, 2005)

Figura 3: Espectro de FTIR de uma amostra de óleo de rícino obtido em quipamento Nicolet® iS5 com acessório de refletância atenuada total Fonte: do autor, 2021.

Mesmo para moléculas simples os espectros de FTIR (da sigla em inglês "*Fourie-transform Infrared*") podem ser bastante complexos e a resposta breve do porquê é: "há muitos graus de liberdade". Nesse contexto, graus de liberdade referem-se aos modos pelos quais as ligações podem se movimentar: axialmente, ao longo da ligação, causando variação nas distâncias interatômicas; ou angularmente, com os átomos movendo-se de um lado para o outro em relação uns aos outros.

O número de graus de liberdade de uma molécula equivale ao número de graus de liberdade de seus átomos considerados individualmente (três, um para cada dimensão espacial). No entanto, o número teórico de vibrações raramente é observado experimentalmente. Isso ocorre devido a fatores como:

- · Transições vibracionais fora da faixa operacional do equipamento;
- · Intensidades muito fracas para serem detectadas;
- Vibrações que coalescem devido à proximidade de suas frequências;

• Modos vibracionais que não alteram o momento de dipolo da molécula.

A espectroscopia Raman é complementar à FTIR, pois pode detectar vibrações moleculares que não alteram significativamente o dipolo da molécula. Isso é possível porque a técnica se baseia na variação da polarizabilidade molecular, que ainda pode ser observada.

Embora o espectro de infravermelho seja característico de cada molécula como um todo, certos grupos de átomos geram bandas que sempre aparecem em regiões específicas, independentemente da molécula. Essa característica é o grande trunfo da técnica: identificar a presença ou ausência de grupos funcionais — uma informação extremamente valiosa para os químicos.

A frequência vibracional pode ser estimada aproximadamente aplicando-se a lei de Hooke, tratando os dois átomos envolvidos na ligação como osciladores harmônicos simples:

$$v = \frac{1}{2\pi c} \sqrt{\frac{f}{Mr}}$$
em que:
(1)

ν é a frequência vibracional (cm⁻¹);

- c é a velocidade da luz (cm/s);
- f a constante de força da ligação (dyn/cm)
- Mr é a massa reduzida, tal que Mr = (MxMy)/(Mx + My) sendo Mx e My as massas (g) dos átomos envolvidos na ligação.

O valor de f é próximo de 5 x 10^5 dyn/cm para ligações simples. O dobro e o triplo desse valor são, como se pode esperar, os valores para as ligações duplas e triplas respectivamente.

A importância da espectroscopia na região do infravermelho não é limitada à química orgânica e faz várias décadas que ela é usada na química de coordenação (NATHAN, 1974). O FTIR é especialmente útil para identificar grupos funcionais envolvidos na coordenação e fornecer informações sobre a geometria de complexos metálicos (BUTLER; SEDMAN; ISMAIL, 1984).

3.3.2 Espectroscopia de absorção no ultravioleta e visível (UV-Vis)

Desenvolvidos por Arnold O. Beckman (1900–2004), os primeiros equipamentos comerciais, Model DU e DU-2 — uma pequena modificação do modelo original —, surgiram no início da década de 1940. Até 1976, quando sua produção foi encerrada, mais de 30 mil unidades haviam sido vendidas (SIMONI et al., 2003). "A espectroscopia molecular de absorção no ultravioleta/visível... é provavelmente mais largamente usada

em química e laboratórios clínicos ao redor do mundo do que qualquer outro processo único." (SKOOG; WEST; HOLLER, 1988) Essa afirmação embora antiga, permanece, ainda, verdadeira (AKASH; REHMAN, 2020).

É razoável conjecturar os motivos para esse sucesso quase secular. A técnica é amplamente utilizada em diversas áreas, como química analítica, bioquímica, farmacologia e controle de qualidade, devido à sua aplicabilidade a uma ampla gama de substâncias. Além disso, sua operação e aquisição de dados são simples e geralmente rápidas. O custo de aquisição e operação dos equipamentos é relativamente baixo, e eles podem ser acoplados a cromatógrafos do tipo HPLC (*High-Performance Liquid Chromatography*).

Embora muitos grupos funcionais sejam "transparentes" à porção do espectro correspondente ao ultravioleta e ao visível — cujo intervalo típico na técnica varia de 200 a 800 nm —, o que limita sua utilidade para investigações estruturais, a combinação de UV-Vis com técnicas como ressonância magnética nuclear (RMN) e espectroscopia no infravermelho pode resultar em informações valiosas. Além disso, a espectroscopia UV-Vis pode fornecer dados sobre fenômenos como transferência de carga, efeito Jahn-Teller e distorções moleculares (PAVIA et al., 2015).

Como mostrado na Figura 2, os comprimentos de onda na faixa UV-Vis são responsáveis por transições entre níveis de energia eletrônica. Nesses casos, átomos ou moléculas passam de um estado de baixa energia (estado fundamental) para um estado de maior energia (estado excitado). Geralmente, a transição mais provável é do tipo HOMO \rightarrow LUMO (*Highest Occupied Molecular Orbital* e *Lowest Unoccupied Molecular Orbital*, respectivamente), ou seja, do orbital molecular ocupado de maior energia para o orbital molecular desocupado de menor energia.

A maioria das moléculas apresenta níveis de energia eletrônica variando entre 125 e 650 kJ/mol. A Figura 4, Baseada em PAVIA et al., 2015, ilustra uma progressão típica desses níveis. Para muitos propósitos, a transição que envolve o menor *gap* de energia é a mais relevante (ibid. ps. 577–578).

Figura 4: Níveis de energia eletrônica e transições. Orbitais n são orbitais não ligados; $\pi^* e \sigma^*$ são orbitais antiligantes

Fonte: do autor, 2024.

"Grupos com bandas de absorção óptica características são chamados cromóforos (do grego para 'portador de cor'), e sua presença muitas vezes é responsável pelas cores das substâncias". Os cromóforos estão relacionados aos tipos de transições, por exemplo, C=O do grupo carbonílico tem transição $n \rightarrow \pi^*$. E quando presente em uma dada molécula, uma absorção próxima a 290 nm é esperada, ainda que a precisa localização dependa da estrutura molecular como um todo (ATKINS; DE DEPAULA; KEELER, 2018).

A Tabela 3, retirada de PAVIA et al., 2015 p. 586 exprime dados dos cromóforos isolados. É importante salientar que comprimentos de onda abaixo de 190 nm enfrentam desafios experimentais significativos, pois tanto os componentes da atmosfera quanto o quartzo absorvem nessa faixa. Nessas condições, é necessário operar em vácuo e utilizar materiais ópticos específicos, como fluoreto de lítio (SKOOG; WEST; HOLLER, 1988 pág. 507)

Classe	Transição	λ _{máx} (nm)	Log da absortividade
			molar ε
R–OH	$n \rightarrow \sigma^{\star}$	180	2,5
R–O-R	$n \rightarrow \sigma^*$	180	3,5
R–NH2	$n \rightarrow \sigma^*$	190	3,5
R–SH	n→σ*	210	3,0
R2C=CR2	n → σ*	175	3,0
R-C≡C-R	$\pi \to \pi^{\star}$	170	3,0
R–C≡N	$\pi \rightarrow \pi^{\star}$	160	<1,0
R–N=N–R	n → π*	340	<1,0
R–NO ₂	n → π*	271	<1,0
R–CHO	$\pi \rightarrow \pi^{\star}$	190	2,0
	n → π*	290	1,0
R ₂ CO	$\pi \rightarrow \pi^{\star}$	180	3,0
	n → π*	280	1,5
RCOOH	n → π*	205	1,5
RCOOR'	$n \rightarrow \pi^*$	205	1,5
RCONH ₂	$n \to \pi^{\star}$	210	1,5

Tabela 3: Absorção típica de cromóforos simples e isolados

Fonte: PAVIA et al., 2015.

Nem todas as transições eletrônicas são igualmente prováveis. A probabilidade de uma transição entre dois estados, durante a absorção de um fóton, é quantificada pela *força do oscilador* f. Este parâmetro é proporcional ao quadrado do elemento de matriz do operador de dipolo elétrico entre os estados inicial (i) e final (f):

$$f_{if} \propto |\langle \psi_f | r | \psi_i \rangle|^2$$

ou ainda $f_{if} \propto |\mu_{if}|^2$ (3) falaremos mais de μ_{if} , o momento de transição de dipolo, na seção 3.3.2.1

 ψ (psi minúsculo) é a função de onda e *r*, um vetor, é o operador de dipolo elétrico, que representa a posição do elétron no espaço. A constante de proporcionalidade é $2m_e\omega_{ir}/3\hbar e^2$. Portanto:

$$f_{if} = \frac{2m_e \omega_{if}}{3\hbar e^2} \left| \left\langle \psi_f | r | \psi_i \right\rangle \right|^2 \tag{4}$$

De forma que:

- $m_e \acute{e}$ a massa do elétron.
- $\omega_{if} \acute{e}$ a frequência angular da transição.
- \hbar é a constante de Planck reduzida, h/2 π .
- e é a carga do elétron.

(SOBELMAN, 1992) e (MCHALE, 2017)

(2)

As chamadas transições permitidas têm grande força do oscilador – e uma alta probabilidade de ocorrer – ao passo que as ditas proibidas, quando ocorrem, têm um número pequeno. O que assim as definem são as regras de seleção que "caracterizam a mudança nos números quânticos de um átomo ou íon sob a interação com a radiação eletromagnética." Exitem as regras de seleção exatas e aproximadas. As exatas se aplicam às condições teóricas estritamente atendidas, aplicável em poucas circunstâncias. Para sistemas químicos que refletem a realidade experimental complexa dos sólidos e moléculas poliatômicas, onde interações adicionais são sentidas, as regras de seleção serão aproximadas (SHEVELKO, 1997). No que diz respeito às mudanças no momento angular, As regras de seleção mais relevantes incluem:

$$\Delta \Lambda = 0, \pm 1; \Delta S = 0; \Delta \Sigma = 0; \Delta \Omega = 0, \pm 1$$

aqui $\Omega = \Lambda + \Sigma$ é o número quântico para o momento angular total (orbital e de spin) ao longo do eixo internuclear. Assim como nos átomos, a origem dessas regras está na conservação do momento angular durante uma transição e no fato de que um fóton possui um spin igual a 1. Existem duas regras de seleção relacionadas às mudanças de simetria. Primeiramente, para termos Σ , apenas transições $\Sigma + \leftrightarrow \Sigma + e \Sigma - \leftrightarrow \Sigma - são$ permitidas. Em segundo lugar, a regra de seleção de Laporte para moléculas centrossimétricas (aquelas com centro de inversão) e átomos afirma que: as únicas transições permitidas são aquelas acompanhadas por uma mudança de paridade. Ou seja, transições u \rightarrow g e g \rightarrow u são permitidas, mas transições g \rightarrow g e u \rightarrow u são proibidas. (ATKINS; DE PAULA; KEELER, 2018). Os dados da Tabela 3, junto aos critérios de seleção, nos permitem concluir que as transições n $\rightarrow \sigma^*$ e n $\rightarrow \pi^*$ são proibidas em molécula não seja centrossimétrica, a regra de Laporte não se aplica estritamente, permitindo alguma intensidade para essa transição, evidenciada pelo log ϵ ser pequeno mas existir.

Há casos em que uma transição $g \rightarrow g$ proibida pode, caso o centro de simetria for eliminado por uma vibração assimétrica (como na Figura 5), tornar-se permitida, ainda que fracamente. Transições desse tipo são chamadas vibrônicas. (Ibid., p. 462)

Figura 5: Uma transição d-d é parcialmente proibida por não haver mudança de paridade. A vibração assimétrica, porém, pode fazer desaparecer a simetria de inversão não sendo mais aplicada a classificação g, u. "A remoção do centro de simetria dá origem a uma transição vibracionalmente permitida." Figura e texto baseados em ATIKINS; DE PAULA; KEELER, 2018. p. 462

Fonte: do autor, 2024.

Transições eletrônicas podem ser acompanhadas por mudanças nos níveis de energia rotacional e vibracional (Ibid. p. 465). Na prática, isso leva ao alargamento das bandas observadas nos espectros UV-Vis de moléculas poliatômicas. Por exemplo, na molécula de benzeno, as transições $\pi \rightarrow \pi *$ estão associadas a múltiplas transições vibracionais, resultando em um espectro alargado, sem absorções nítidas. Esse fenômeno é conhecido como **acoplamento vibrônico**. Durante a absorção de luz, a molécula pode realizar transições para diferentes níveis vibracionais no estado excitado, gerando uma série de picos finos superpostos dentro de uma banda mais ampla (MCHALE, 2017).

A Figura 6 (figura e texto baseados em <u>BARONE et al., 2021</u>) esquematiza os níveis de energia molecular e os tipos de transições possíveis, que são determinados pela resolução das equações de Schrödinger apropriadas.

Figura 6: Os níveis de energia indicados em azul, vermelho e verde são respectivamente: eletrônicos, vibracionais e rotacionais. As setas azuis indicam mudanças no estado eletrônico, as setas mais grossas indicam transições eletrônicas, as de largura intermediária indicam transições vibrônicas e as mais finas as rovibrônicas. As setas vermelhas são para mudanças vibracionais (da esquerda para a direita: transições vibracionais e rovibracionais). As setas verdes envolvem apenas as de níveis de energia rotacionais

Fonte: do autor, 2024.

Embora a absorção de radiação UV seja causada pela excitação de elétrons do estado fundamental para o estado excitado, os núcleos atômicos influenciam diretamente a força de ligação desses elétrons. Isso, por sua vez, afeta a diferença de energia entre os estados fundamental e excitado, determinando os comprimentos de onda da radiação absorvida. Assim, a energia característica de uma transição é uma propriedade do grupo de átomos que forma o **cromóforo** e não apenas dos elétrons envolvidos (PAVIA et al., 2015).

O solvente pode influenciar significativamente os espectros UV-Vis do soluto. Propriedades como a constante dielétrica (ϵ_s) e o índice de refração (n) afetam o comportamento espectral. Além disso, interações moleculares específicas, tratadas pela mecânica quântica, podem alterar as energias de solvatação no estado fundamental (ΔE_s ") e no estado excitado (ΔE_s '):

 $h(v_{sol} - v_{gás}) = h\Delta v = \Delta e_s$ "- ΔEs '

(5)

- Se o estado fundamental for mais estabilizado pelo solvente que o excitado, ocorre um deslocamento para comprimentos de onda menores (deslocamento para o azul, ou blue-shift).
- Se o estado excitado for mais estabilizado, ocorre um deslocamento para comprimentos de onda maiores (**deslocamento para o vermelho**, ou *red-shift*).

Esses deslocamentos, conhecidos como **deslocamentos hipsocrômicos** (para o azul) e **batocrômicos** (para o vermelho), são efeitos **solvatocrômicos** e estão relacionados à conjugação eletrônica e à presença de grupos retiradores ou doadores de densidade eletrônica no cromóforo (MCHALE, 2017)(PAVIA et al., 2015).

A relação funcional que descreve a absorção de luz (A) com a concentração do analito (c), bem como o caminho percorrido pela luz, comumente chamado de caminho óptico, (b) é chamada de lei de Lambert-Beer, que pode ser expressa matematicamente:

$$A = \frac{\log P_0}{\log P} = abc \tag{6}$$

onde:

- P₀ é a intensidade da luz incidente (antes de passar pela solução),
- P é a intensidade da luz transmitida (depois de passar pela solução),
- a é a constante de proporcionalidade chamada de absortividade, que quando expressa em mols/L e b em centímetros, a constante é chamada de absortividade molar, além de ser dado um símbolo especial, ε.

Há algumas limitações para que a lei seja aplicável:

- 1. Uso de luz monocromática
- 2. Solução homogênea
- 3. Concentrações muito altas devem ser diluídas para evitar desvios devido a interações moleculares¹.
- 4. As moléculas analisadas não devem reagir entre si.

(SKOOG; WEST; HOLLER, 1988)

A lei também se aplica a misturas homogênea s não reativas, com a absorção total sendo a soma das absorções individuais:

$$A_{\text{total}} = A_1 + A_2 + A_3 + \dots + A_n = \varepsilon_1 b c_1 + \varepsilon_2 b c_2 + \varepsilon_3 b c_3 + \dots + \varepsilon_n b c_n$$
(7)

Aqui, os índices correspondem aos componentes individuais da mistura (Ibid. p. 468).

¹ N. do A.: A lei de Lambert-Beer é, inclusive, uma "lei limite", ou seja, valida apenas dentro de certos limites, que aqui seria no limite da concentração tendendo a zero.

3.3.2.1 UV-Vis aplicado a complexos metálicos

Antes de discutirmos a relevância da técnica na caracterização de complexos metálicos, é importante abordar alguns conceitos fundamentais para uma melhor compreensão do assunto.

O termo "complexo metálico" se refere a um átomo ou íon metálico central que está rodeado por uma série de ligantes. Esses complexos desempenham um papel significativo na química inorgânica, especialmente em relação aos elementos do bloco d, embora íons metálicos dos blocos s e p também formem complexos. Ligantes são íons ou moléculas que existem independentemente. Portanto, um complexo é uma combinação de um ácido de Lewis (representado pela espécie metálica central) com um número de bases de Lewis (os ligantes) (SHRIVER; ATKINS, 2006).

Complexos de geometria octaédrica: O íon metálico é rodeado por seis ligantes, conforme mostrado na Figura 7. Existem duas posições principais: axial e equatorial. Considerando um plano, como o plano xy, que contém quatro ligantes em arranjo quadrado, esta é a posição equatorial. As posições axiais são as verticais (os átomos destacados, acima e abaixo, na Figura 7, onde o íon metálico central está representado na cor rosa), ao longo do eixo z no nosso exemplo. Todos os ângulos de ligação são de 90 graus. Caso os ângulos ou os comprimentos das ligações variem, a estrutura deixa de ser um octaedro regular e passa a ser um octaedro distorcido (SRIDHARAN, 2016).

Figura 7: Geometria octaédrica Fonte: do autor, 2024.

Complexos de geometria quadrática: Esse arranjo é considerado um caso extremo de um complexo octaédrico distorcido ao longo do eixo z, como se os ligantes axiais fossem "removidos até o infinito", restando, assim, apenas o quadrado planar (Ibid. p. 19). Um exemplo desse tipo de geometria é mostrado na Figura 8.

Figura 8: Geometria quadrática Fonte: do autor, 2024.

Complexos de geometria tetraédrica: Neste caso, o íon central é rodeado por quatro ligantes. No entanto, não é possível posicioná-los todos em um único plano. Os ligantes se dispõem ao redor do íon metálico central, situados entre os eixos.

Figura 9: Representação de um complexo tetraédrico Fonte: do autor, 2024.

Trataremos, a seguir, da relação entre estrutura eletrônica e ligações químicas com os espectros UV-Vis:

Teoria do Campo Cristalino (TCC): A teoria do campo cristalino baseia-se no desdobramento dos orbitais *d* em grupos de energias distintas. Além disso, considera-se o par isolado de elétrons do ligante como um ponto de carga negativa (ou, em um dipolo elétrico, como uma carga parcial negativa), que repele os elétrons dos orbitais *d* do íon metálico central. Assim, contrariamente a um íon metálico livre, os cinco orbitais *d* não possuem a mesma energia, o que resulta na quebra de degenerescência (SHRIVER; ATKINS, 2006).

Elétrons *d* apontados ao longo do eixo cartesiano e diretamente para os ligantes são, nominalmente, d_{z^2} e $d_{x^2-y^2}$ e os que apontam entre os ligantes são d_{xy} , d_{yz} e d_{zx} .

Figura 10: Representação dos orbitais d. Os orbitais dz² e dx²-y² têm simetria do tipo e_g e os orbitais d_{xy}, d_{yz} e d_{zx}: t_{2g}. Autoria da imagem: CK-12 Foundation. Este arquivo está licenciado sob "Creative Commons Attribution-Share Alike 3.0 Unported" e disponível em: https://commons.wikimedia.org/wiki/File:D_orbitals.png

A separação dos orbitais é chamada de parâmetro de desdobramento do campo cristalino. A Figura 11, inspirada em (DE ALMEIDA, 2008), (SHRIVER; ATKINS, 2006) e (MACKAY, K. M.; MACKAY, R. A.; HENDERSON, 2004) esquematiza as energias dos orbitais *d* em um campo cristalino octaédrico, tetragonal e quadrado planar.

Figura 11: Divisão dos orbitais *d* em diferentes campos ligantes. Observa-se que a energia média não se altera em relação à energia dos orbitais *d* em um ambiente de simetria esférica, tal qual em um átomo livre

Fonte: do autor 2024.

As distorções tetragonais representam exemplos particulares do efeito Jahn-Teller: "Se a configuração eletrônica fundamental de um complexo não-linear apresenta degenerescência orbital, o complexo distorcerá para remover a degenerescência e alcançar a menor energia" (SHRIVER; ATKINS, 2006).

"A propriedade mais simples que pode ser interpretada pela teoria do campo cristalino é o espectro de absorção de um complexo contendo um elétron." Usaremos como exemplo o espectro do íon hexaquatitânio (III) d¹ $[Ti(H_2O)_6]^{3+}$ a teoria do campo cristalino atribui à transição $t_{2g} \rightarrow e_g$ ao máximo de absorção em 20.300 cm⁻¹, que podemos apontar como sendo o Δ_0 do complexo (Ibid. pág. 256).

Figura 12: Perfil do espectro de absorção do íon $[Ti(H_2O)_6]^{3+}$ obtido por simulação. Os valores foram ajustados para os experimentais (retirados de SHRIVER; ATKINS, 2006 pág. 257); a outra banda de absorbância mais fraca, por volta de 25.000 cm⁻¹, não foi calculada (conferir os detalhes no Anexo) Fonte: do autor, 2024.

Para os complexos com mais de um elétron *d*, os valores de Δ_0 são mais complicados por conta de a energia de uma transição depender não somente das energias dos orbitais mas também das energias de repulsão entre os vários elétrons. (Ibid. p. 256)

Baseando-se nas observações de que o parâmetro de desdobramento do campo cristalino (Δ o) varia sistematicamente com a identidade do ligante, Tsuchida (TSUCHIDA, 1938) propôs o que ficou conhecido como *série espectroquímica*. Os principais pontos a serem observados são: os valores de Δ o também dependem do íon metálico, o que impossibilita a definição de um ligante como "forte" ou "fraco" de forma absoluta. Os termos "forte" e "fraco" referem-se à capacidade do ligante de causar uma separação significativa ou não nos níveis de energia dos orbitais do metal. Δ o tende a aumentar com o aumento no número de oxidação do metal e diminui ao descer em um grupo da Tabela periódica (SHRIVER; ATKINS, 2006).

A diferença de energia entre os orbitais *d* separados e os cinco orbitais degenerados é chamada de Energia de Estabilização do Campo Cristalino (EECC). A EECC representa um incremento de energia ao sistema, que deve ser somado às demais energias, tanto atrativas quanto repulsivas. As transições *d-d* são responsáveis pelas cores observadas na maioria dos compostos de metais de transição (MACKAY, K. M.; MACKAY, R. A.; HENDERSON, 2004).

Como mostrado na Figura 13, um campo cristalino tetraédrico desdobra os orbitais *d* em dois conjuntos: um duplamente degenerado e outro triplamente degenerado. As energias de estabilização do campo ligante podem ser calculadas da mesma forma que para os complexos octaédricos; no entanto, a ordem de ocupação dos orbitais é diferente (e_g antes de t₂).

Figura 13: Diagrama com os níveis de energia dos orbitais em uma análise de campo cristalino de um complexo tetraédrico, baseado em (SHRIVER; ATKINS, 2006) Fonte: do autor, 2024.

Para além de considerar as interações puramente eletrostáticas, com cargas pontuais, a **Teoria do Campo Ligante** (TCL) é uma extensão da Teoria do Campo Cristalino (TCC), incorporando a sobreposição dos orbitais do metal com os orbitais dos ligantes. Essa abordagem é uma aplicação da Teoria dos Orbitais Moleculares (TOM), focada nos orbitais *d* do átomo metálico central, oferecendo uma ferramenta mais precisa para compreender Δ o (Ibid. Pág. 265). Segundo Levine (LEVINE, 2014) a TCL é "um método aproximado da mecânica quântica para prever e explicar as propriedades de íons complexos de metais de transição."

Sendo a TCL uma aplicação da TOM, as ligações envolvendo a combinação frontal dos orbitais *s* e *p* do ligante com os orbitais *d* do metal são classificadas como ligações σ . Em campos octaédricos, a presença de ligantes sigma fortes tende a aumentar Δ o, devido à repulsão direta entre os orbitais σ dos ligantes e os orbitais *d* do metal. Como resultado, o *gap* de energia entre os orbitais de mais alta e mais baixa energia aumenta.

Os ligantes π podem ser classificados como π -doador ou π -receptor. No caso de ligantes π -doador, os orbitais π preenchidos ao longo do eixo metal-ligante têm energias próximas, mas um pouco menores que as dos orbitais *d* do metal. Esses ligantes geralmente não possuem orbitais π vazios de baixa energia, então considera-se apenas os orbitais preenchidos ao avaliar os efeitos da ligação π em complexos. No caso de ligantes π -receptor, o ligante possui orbitais π com energias normalmente mais baixas que os orbitais t2g do metal e também tem orbitais π vazios, que podem receber densidade eletrônica dos orbitais d do metal.

A série espectroquímica pode ser interpretada grosso modo pelos efeitos π : o desdobramento do campo ligante aumenta conforme a ordem: π -doador < π -doador fraco < nenhum efeito π < π -receptor. A série espectroquímica, do mais fraco ao mais forte, é a seguinte: (SHRIVER; ATKINS, 2006)

 $I^{-} < Br^{-} < S^{2-} < SCN^{-} < CI^{-} < NO3^{-} < F^{-} < OH^{-} < H_2O < NH_3 < NO_2^{-} < CN^{-} < CO^{-}$

Há transições com bandas intensas, cujas posições variam dependendo da polaridade do solvente utilizado na obtenção do espectro. Estas são as transições do tipo CT (transferência de carga, *charge transfer*). Já as bandas de transições *d-d* não alteram sua posição com a mudança da polaridade do solvente.

A transferência de carga (CT) refere-se à movimentação de elétrons do metal para o ligante ou vice-versa, sendo também chamada de "espectros redox". Quando as bandas de CT diminuem na região do visível, o complexo apresenta intensa coloração. O espectro CT terá baixa energia quando as cargas (elétrons) puderem fluir facilmente do ligante para o metal, o que ocorre quando o metal é um bom agente oxidante e o ligante, um bom agente redutor. As transições CT e *d-d* podem ser difíceis de distinguir quando as funções de onda dos orbitais do metal e do ligante se "misturam extensivamente" (MCHALE, 2017).

- Transição de Transferência de Carga Ligante-Metal (LMCT): Nesse tipo de transição, as cargas (elétrons) fluem dos orbitais dos ligantes para os orbitais π do metal. Isso ocorre quando os ligantes possuem pares de elétrons não ligados ou quando os orbitais π dos metais têm baixa energia. Este tipo de transição é comum quando os metais estão em altos números de oxidação, tornando-os mais facilmente redutíveis.
- Transição de Transferência de Carga Metal–Ligante (MLCT): Observada principalmente em complexos contendo ligantes aromáticos, que possuem orbitais π* com baixa energia. Os metais nesses complexos estão com números de oxidação baixos, o que faz com que seus orbitais *d* tenham alta energia. Como resultado, a transição MLCT ocorre em baixa energia (Ibid. Pág. 64 e 65).

Em seguida, discutiremos a intensidade, largura e forma das bandas eletrônicas dos complexos metálicos. Retomaremos as regras de seleção e outros aspectos importantes.

Para entender a intensidade das transições, é necessário avaliar o acoplamento do complexo com o campo eletromagnético. Transições intensas indicam um acoplamento forte, e o contrário também é verdadeiro. A força do acoplamento, quando um elétron faz uma transição entre os estados iniciais (ψ i) e finais (ψ f), é calculada pelo momento de transição de dipolo (μ), que é definido como a integral:

$$\mu_{fi} = \int \psi *_{f} r \psi_{i} dr \tag{8}$$

(*dr* indica a integração sobre todas as coordenadas espaciais)

onde, como já vimos, r é o operador de dipolo elétrico (SHRIVER; ATKINS, 2006). A equação que exprime a força do oscilador f_{if} é, então, diretamente proporcional a $|\mu_{fi}|^2$. Mas a força do oscilador é uma quantidade adimensional ao passo que o momento de transição de dipolo tem dimensões de carga elétrica *vezes* espaço (normalmente C.m ou debye, D). O momento μ pode ser interpretado como uma medida do impulso que uma transição dá ao campo eletromagnético. Caso esse impulso seja zero, tem-se uma transição proibida; um impulso grande corresponde a uma intensa transição. Transições calculadas proibidas podem ocorrer caso os pressupostos para o cálculo do momento de transição de dipolo forem inválidas, como supor uma simetria maior que a real. (Ibid. pág. 487)

A largura das bandas observadas nos espectros eletrônicos pode ser influenciada por vários fatores, conforme resumido por McHale (MCHALE, 2017):

As bandas são amplas dadas a presença de várias transições muito próximas, como resultado, há uma fusão que resulta em um alargamento. Mas há outros fatores que podem influenciar a forma de uma banda:

- Vibração: causa variação na separação ligante-metal, alargando a banda.
- Acoplamento *spin*-órbita: cria mais níveis de energia próximos, aumentando a largura.
- Efeito Jahn-Teller: quebra níveis degenerados, também aumentando a largura. O alargamento pode ser de até 1000 cm⁻¹.
- Bandas advindas de transferência de cargas (CT): são especialmente largas devido às múltiplas transições próximas. O alargamento é ainda mais amplo que 1000 cm⁻¹.

Sobre a forma das bandas:

 Interação vibracional – As bandas são frequentemente assimétricas devido à interação vibracional e bandas simétricas são esperadas apenas a baixas temperaturas.

Já que mencionamos a dependência da temperatura, é importante sempre ter em vista que ao se comparar intensidades de bandas, é razoável fazê-lo nas mesmas temperaturas.

- Acoplamento *spin*-órbita: causa assimetria nas bandas. Remove, se presentes, as degenerescências dos termos; causa divisão não uniforme.
- Redução da Simetria (dos ligantes): leva os termos E e T (tipos de estados eletrônicos resultantes da interação orbital dos íons metálicos e dos ligantes) a serem divididos, não necessariamente de forma simétrica.

"Apesar desses fatores, os espectros obtidos em solução são quase simétricos. A razão pode ser que todos esses três fatores possam operar simultaneamente para dar uma forma média, que pode ser quase simétrica." (Ibid. p. 54)

Uma questão que já respondemos é o porquê de transições *d-d* proibidas por Laporte acontecerem. Mas a pertinência do assunto requer um aprofundamento adicional. Basicamente há duas formas da regra de seleção de Laporte ser relaxada:

- 1. Por um leve afastamento de uma simetria centrossimétrica perfeita (quiçá imposta pelo ambiente de empacotamento cristalino do complexo; ou uma assimetria intrínseca dos ligantes poliatômicos).
- A vibração assimétrica que também destrói seu centro de inversão (conferir Figura 4).

As transições proibidas por spin, no entanto, são ainda menos intensas que as proibidas por Laporte. (SHRIVER; ATKINS, 2006) A Tabela 4 (MACHALE, 2017. p. 52) compara os tipos de transição em termos da força do oscilador, *f*, e o coeficiente de extinção, ε.

Tipo da transição	f	3
Proibido por spin e Laporte	10-7	10-1
Permitida por spin, proibida por Laporte	10 ⁻⁵	10
Permitida por spin e Laporte mas com mistura d - p (T _d)	10 ⁻³	10 ²
Permitida por spin, proibida por Laporte mas com roubo de intensidade	10 ⁻²	10 ³
Permitida por spin e por Laporte (CT)	10-1	10 ⁴

Fonte: MACHALE, 2017. p. 52.

3.4 Desenvolvimento e Importância dos Métodos Teórico-Computacionais para a Química

Antes de iniciarmos esta seção, é importante mencionar que as ferramentas computacionais em química podem ser baseadas em métodos quânticos ou clássicos: cada qual tem a sua serventia no que diz respeito ao tamanho do sistema estudado e a escala de tempo envolvido nos fenômenos. Os métodos **quânticos** são usados para modelar sistemas a nível atômico e molecular e são essenciais para estudar propriedades fundamentais, enquanto os métodos **clássicos** são frequentemente aplicados a sistemas maiores, onde os efeitos quânticos podem ser ignorados. Nós neste texto, porém, nos concentraremos exclusivamente nos métodos quânticos, especialmente na Teoria do Funcional da Densidade, DFT.

A química é uma ciência eminentemente empírica, prática. Qual seria, então a necessidade e as vantagens de usar computadores na pesquisa química? Qual a necessidade de simular o real? Logicamente não estamos a entrar na trivialidade do uso de computadores no estudo e ensino, na aquisição e tratamento matemático e estatístico de dados: coisa que qualquer aluno de graduação das áreas afins, eventualmente, terá de lidar. Falamos, então, na possibilidade, dentre muitas outras, de prever mecanismos de reação, propriedades moleculares, termodinâmicas e espectrométricas de sistemas químicos. O sucesso da área pode ser medido pelo número de livros e artigos publicados; há mesmo, um bom número de revistas indexadas que publicam regularmente artigos de química computacional (o leitor pode conferir uma lista de, atualmente, 29 revistas e seus respectivos fatores de impacto em *"Computational Chemistry Driven Discoveries"* da University of New England em <u>https://www.chemtheorist.com/comp-chem-journals.html</u> [último acesso em 07 de julho de 2024]).

Embora se possa pensar que o uso de computadores em química seja algo recente, a verdade é que a história da química computacional remonta a décadas passadas. O primeiro artigo no **Journal of Chemical Education** a abordar o uso moderno de computadores em química é de 1961 (RODRIGUES; CARIDADE, 2022), escrito por A. H. Sporer. "The Role of Chemistry in Computers." J. Chem. Educ. 38 (1961): 323-235. O primeiro cálculo, baseado nas ideias de Douglas Hartree e Vladmir Fock, do tipo *ab initio* (que do latim significa "do início") em um computador programável aconteceu no Massachusetts Institute of Technology em 1956. Em 1960 Kołos e Roothaan obtiveram o espectro da molécula de hidrogênio com uma acurácia, até então, sem precedentes. Comparada a outros ramos contemporâneos da ciência, a química quântica está em "posição muito melhor, podendo até ser considerada excepcional nas ciências". Tal sucesso se explica em algumas circunstâncias muito favoráveis:

- Átomos é moléculas são constituídos por apenas dois tipos de partículas: núcleos e elétrons.
- As modernas correções de eletrodinâmica quântica podem ser seguramente negligenciadas na maior parte das aplicações.
- Núcleos atômicos são milhares de vezes mais pesados que os elétrons: isso torna a resolução da equação de Schrödinger muito mais simples. Na aproximação de Born-Oppenheimer, os graus de liberdade do núcleo é desacoplado dos graus de liberdade dos elétrons; assume-se que a função de onda total é um produto das funções de onda eletrônica e daquela que descreve o movimento nuclear (LESZCZYNSKI, 2012).

A química computacional desenvolveu-se concomitantemente ao avanço da mecânica quântica, pois é uma ferramenta que tornou possível realizar cálculos de estrutura eletrônica, que envolvem milhões de operações matemáticas, em tempo hábil. (RODRIGUES; CARIDADE, 2022) No entanto, foi no início dos anos 70 que se iniciou a "era dos programas gigantes". O programa mais conhecido é o GAUSSIAN, que até hoje

é comercializado, mas cujo projeto inicial foi liderado pelo próprio John Pople, ganhador do prêmio Nobel de Química em 1998, ao lado de Walter Kohn (cujos trabalhos faremos frequentes referências nas seções seguintes). Com esses programas, começou a possibilidade de estimar por cálculos muitas quantidades físicas com diferentes níveis de sofisticação, ou seja, com menos ou mais aproximações. (LESZCZYNSKI, 2012)

Já que citamos os ganhadores do **prêmio Nobel de Química** de 1998, um interessante artigo de revisão de **Russel J. Boyd** (BOYD, 2024), intitulado "*The Nobel History of Computational Chemistry: A Personal Perspective*" (em tradução livre: "A História do Nobel da Química Computacional: Uma Perspectiva Pessoal"), lista e explica, em ordem cronológica, os prêmios conferidos aos trabalhos que contêm uma significativa componente teórica. São 14 prêmios: começando em 1901 com **Jacobus Henricus van't Hoff** e terminando em 2013 com **Martin Karplus**, **Michael Levitt** e **Arieh Warshel**. Adicionalmente, o autor lista 28 dos laureados na área da física que são relevantes para a química teórica e computacional.

Prever não significa necessariamente compreender. É de extrema importância para a **química** não estudar casos particulares um a um, mas sim derivar algumas regras gerais: "É de fundamental importância na química que um grupo de átomos com um certo padrão de ligação (grupo funcional) represente uma entidade que se comporta de forma semelhante quando presente em diferentes moléculas... O poder da química vem de analogias e semelhanças, bem como de tendências, e não da capacidade de prever propriedades". Em casos excepcionais, tal habilidade é, sem dúvidas, importante para a eficiência. Contudo, "prever por computação não significa compreensão". Sem podermos comparar resultados entre diferentes moléculas, até mesmo o cenário mais perfeito nos deixaria às escuras: "ficaríamos sem química". Computadores, com suas impressionantes velocidades para realizar cálculos, são indispensáveis atualmente; eles nos ajudam a criar modelos que simplificam a realidade, tornando-a cognoscível "com o que estamos a brincar em química²", Handbook of Computational Chemistry (LESZCZYNSKI, 2012) no capítulo 1, de autoria de Lucjan Piela.

Poderíamos listar muitas pesquisas e áreas onde os ferramentais teóticocomputacionas obtiveram êxito. Selecionamos alguns casos que servirão de exemplo sem nos determos aos detalhes:

- Descrição teórica de novos materiais: antes de ouvirmos falar de grafeno, um artigo de 1994 (TAKEDA; SHIRAISHI, 1994) já discutia teoricamente (mesmo que a título de simplificação de cálculo) materiais 2D de silício e germânio. Em um artigo de 2010 (HOUSSA et al., 2010) exprimiu por cálculos de primeiros princípios (*ab initio*), as propriedades eletrônicas do germânio bidimensional, "germaneno"; mas foi só em 2014 que o material foi de fato sintetizado. (DÁVILA et al., 2014)
- 2. Catalisadores: este trabalho é tanto teórico quanto experimental (ZENG et al., 2014).

^{2 &}quot;what we are playing with in chemistry", no original.

- Semicondutores: neste artigo, na área da física da matéria condensada, os autores realizaram estudo de estrutura eletrônica para semicondutores. (GE-QI MAO et al., 2022). Pode-se ver que as formas de previsão teórica são essencialmente multidisciplinares, envolvem química, física; computação e programação.
- 4. Desenho racional de novos fármacos: há mais de 20 anos, em 2001, Charles J. Manly, Shirley Louise-May e Jack D. Hammer escreveram uma revisão sobre o impacto da informática e química computacional na síntese e triagem de candidatos a medicamentos (MANLY; LOUISE-MAY; HAMMER, 2001). Certamente, o estado da arte se desenvolveu desde então, e o impacto da química computacional na indústria farmacêutica é notável. (HILLISCH; HEINRICH; WILD, 2015)

3.5 Alguns Métodos Quânticos

A partir dos anos de 1900, começa a surgir um novo mundo descortinado por cientistas como Max Planck, que propôs a ideia de discretização da energia; Albert Einstein, que explicou o efeito fotoelétrico; Werner Heisenberg, Max Bohr e Pascual Jordan, que, no mesmo ano (1925), desenvolveram a mecânica matricial – a primeira formulação capaz de explicar coerentemente fenômenos de emissão e absorção de radiação eletromagnética. Em 1926, Schrödinger formulou o que hoje chamamos de mecânica ondulatória. Instigado, provavelmente, pela indagação do professor Peter Debye, dirigida a ele enquanto palestrava na Universidade Técnica em Zurique, em novembro do ano anterior: "Você está contando sobre ondas, mas onde está a equação das ondas em sua palestra"? Ambas as formulações, de Heisenberg e Schrödinger, revelaram-se equivalentes e são agora conhecidas como mecânica quântica (não relativística). Apenas mais tarde, Paul Dirac, em 1928, descreveu partículas relativísticas com spin ½, como o elétron, incorporando as ideias de Einstein na teoria quântica pela primeira vez. (PIELA, 2020)

Dentro em breve, a famosa frase³ de Paul A. M. Dirac completará um século:

"As leis físicas subjacentes à teoria matemática de uma larga parte da Física e de toda a Química são, portanto, completamente conhecidas, sendo a única dificuldade o fato de a aplicação destas leis conduzir a equações demasiadas complicadas para serem resolvidas. É por isso desejável desenvolver métodos práticos de aplicação da mecânica quântica que ofereçam uma explicação das

³ No original: "The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation." em Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 123, No. 792 http://doi.org/10.1098/rspa.1929.0094 (6 April de 1929).

principais características dos sistemas atômicos complexos sem recorrer a muitos cálculos."

Havemos de concordar com o professor Luiz Carlos G. Freitas (FREITAS; OLIVEIRA, 2018) que essa frase tem "um forte cunho reducionista". E até uma licença poética⁴. Mas, talvez, muitas mentes excepcionais tenham sido instigadas pela ideia de Dirac de "desenvolver métodos práticos de aplicação da mecânica quântica...".

A fim de ilustrarmos o quão necessário é ter os "métodos práticos de aplicação da mecânica quântica", ponderaremos sobre o problema de muitos corpos interagentes com um exercício retirado do curso "*Density Functional Theory*" da *École Polytechnique* (Paris, França), disponível gratuitamente em: <u>https://www.coursera.org/learn/density-functional-theory/home/welcome</u>. Basicamente a pergunta é: **qual o tamanho de um disco rígido para conter o arquivo com a função de onda no espaço real, para um único átomo de alumínio considerando apenas os graus de liberdade eletrônicos?** (a questão está impondo a aproximação de Born-Oppenheimer) Quando consideramos a discretização pedida pelo exercício, de 100 pontos por coordenada, temos (100)^{3N} sendo 3N os graus de liberdade eletrônicos. Sendo N = 13, temos (100)³⁹. Para cada ponto são necessários 8 bytes: 4 bytes para a parte real e 4 bytes para a complexa, de forma que a quantidade em bytes para armazenar essa função de onda são de espantosos 8x10⁷⁸ bytes, um número comparável ao que se supõem existir de átomos no Universo! A resposta correta nas opções de múltipla escolha é "um disco rígido do tamanho da Via Láctea não seria grande o suficiente." Uma resposta bastante modesta (BELL, 2011) (MONTINA, 2008).

Mesmo que fosse possível matematicamente resolver a equação de Schrödinger para sistemas de muitas partículas interagentes, nem sequer teríamos capacidade de armazenar tais informações. Fica, portanto, evidente que há uma grande necessidade de abordagens alternativas que, ainda assim, sejam capazes de fornecer bons resultados.

3.5.1 O método Hartree-Fock (HF)

Em estrutura eletrônica, o método HF busca uma solução aproximada para o estado fundamental de um sistema de elétrons num átomo, molécula ou em um sólido considerando unicamente o determinante de Slater. (VIANNA; FAZZIO; CANUTO, 2018)

Partículas fermiônicas como os elétrons têm o princípio da indistinguibilidade, o que exige que a função de onda que descreve um sistema multieletrônico seja antissimétrica diante de uma troca das coordenadas de dois desses elétrons. Antissimetria é característica dos determinantes; neste contexto, é uma construção matemática usada para garantir que a função de onda de muitos elétrons obedeça ao princípio da exclusão de Pauli (que impede que dois elétrons ocupem os mesmos estados quânticos

⁴ Convidamos o leitor a refletir no seguinte paralelo: para termos uma perspectiva absolutamente real do nosso lar cósmico, que chamamos de Via Láctea, seria necessário que saíssemos dele para o fotografar. Conhecer "toda a química" pela resolução da equação de Schrödinger de sistemas químicos com dezenas ou centenas de elétrons pode até ser fantasiada da mesma forma que uma viagem intergalática, mas é tão impraticável para nós hoje, quanto o é sairmos da Via Láctea para fotografá-la.

simultaneamente). A função de onda total é representada por um determinante (N x N) das funções de ondas individuais:

$$\Phi(r_{1}, r_{2}, \dots, r_{n}) = \frac{1}{\sqrt{N!}} \begin{array}{cccc} \psi_{1}(r_{1}) & \psi_{2}(r_{1}) & \dots & \psi_{N}(r_{1}) \\ \psi_{1}(r_{2}) & \psi_{2}(r_{2}) & \dots & \psi_{N}(r_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}(r_{N}) & \psi_{2}(r_{N}) & \dots & \psi_{N}(r_{N}) \end{array}$$

$$(9)$$

Onde os ψ 's são funções das coordenadas espaciais e spin de um único elétron. $1/\sqrt{N!}$ é uma constante de normalização. Observa-se que trocar as coordenadas de dois elétrons é equivalente a trocar duas linhas da matriz, o que implica uma inversão de sinais, a função de onda HF é antissimétrica para trocas de coordenadas de dois elétrons. Para ilustrar, consideremos um determinante de Slater para apenas dois elétrons:

$$\Phi(r_1, r_2) = \frac{1}{\sqrt{2}} \begin{vmatrix} \psi_1(r_1) & \psi_2(r_1) \\ \psi_1(r_2) & \psi_2(r_2) \end{vmatrix} = \frac{1}{\sqrt{2}} [\psi_1(r_1)\psi_2(r_2) - \psi_1(r_2)\psi_2(r_1)]$$
(10)

e ao trocarmos r_1 e r_2 de lugar temos:

$$\begin{vmatrix} \psi_1(r_1) & \psi_2(r_1) \\ \psi_1(r_2) & \psi_2(r_2) \end{vmatrix} = - \begin{vmatrix} \psi_1(r_2) & \psi_2(r_2) \\ \psi_1(r_1) & \psi_2(r_1) \end{vmatrix}$$
(11)

logo, $\psi(r_2, r_1) = -\psi(r_1, r_2)$. Essa propriedade é fundamental para descrever corretamente a natureza quântica dos sistemas de muitos elétrons.

O método HF é capaz de fornecer uma boa solução para o problema de muitos elétrons e serve de partida para outros métodos: o Campo Autoconsistente é um conceito importantíssimo introduzido pelo método HF. (MORGON et al., 2007) A solução iterativa: o método do Campo Autoconsistente, SCF (sigla para o termo em inglês **Self-Consistent Field**), é a técnica típica para resolver a equação de **Fock**, que não é um problema de autovalor, mas sim um problema de pseudovetor. Em outras palavras: significa que a equação que precisa ser resolvida para encontrar a estrutura eletrônica de um sistema depende da própria solução que estamos procurando. Na equação de **Fock**, não sabemos nada sobre as três quantidades (o operador de **Fock**, os orbitais moleculares e a energia dos orbitais) que constituem a equação.

"Independente de quão estranho possa parecer, lidamos com essa situação bastante facilmente usando uma abordagem iterativa, devido à estrutura do operador de **Fock**. Isso é chamado de método SCF." Neste método:

- Assume-se, na iteração zero, uma determinada forma para os orbitais moleculares (MOs).
- Introduzem-se esses orbitais no operador de Fock, obtendo algo como um esboço dele (o operador de Fock de ordem zero).

- Resolve-se o problema de autovalor usando o operador de Fock acima e obtemos os MOs da primeira iteração.
- Repete-se o processo até que a forma dos orbitais não mude na próxima iteração (até que as equações de Fock sejam resolvidas) (PIELA, 2020).

Figura 14: Ciclo de autoconsistência: solução iterativa da equação de Fock Fonte: do autor, 2024.

A ideia do método HF é combinar a suposição de que a função de onda que descreve o sistema molecular é um determinante de Slater com o teorema variacional que afirma que:

Dada uma função de onda normalizada, ψ , que respeite as condições de contorno apropriados para o sistema em estudo, o valor do operador Hamiltoniano será um limite superior para energia exata do estado fundamental:

$$E_{aprox} = \langle \psi | H | \psi \rangle \ge E_{exata}$$
(12)
se ψ_{exata} for a solução exata para o Hamiltoniano H. então teremos

se ψ_{exata} for a solução exata para o Hamiltoniano H, então teremos $\langle \psi_{\text{exata}} | H | \psi_{\text{exata}} \rangle = E_{\text{exata}}$ (13)

Para sistemas que têm camada aberta, ou seja, que têm elétrons desemparelhados, é necessário resolver duas equações de Hartree-Fock separadas e obter dois determinantes de Slater. O método Irrestrito (UHF, na sigla em inglês para Unrestricted Hartree-Fock), como é conhecido, resolve, então, uma equação para os orbitais alfa (spin up) e outra para os orbitais betas (spin down); são equações acopladas, já que os orbitais alfa e beta são mutuamente influenciados por termos de repulsão elétron-elétron. Consequentemente, o custo computacional do método UHF é maior

quando comparado ao método Restrito (RHF, na sigla em inglês para *Restricted Hartree-Fock*).

O método HF tem bons resultados até para estados excitados, mas possui algumas limitações, como a imprecisão associada à expansão em um conjunto de funções-base finito. Em problemas reais, funções-base completas são impossíveis de serem usadas, pois "completo" indica um número infinito de funções. Na prática, os conjuntos de funções, além de serem finitos, exigem, na maioria das vezes, "estabelecer um compromisso entre precisão e custo computacional". Outra limitação se deve à suposição de que a função de onda que exprime o sistema estudado pode ser representada por um único determinante de Slater (ou dois, no caso de sistemas de camada aberta). Tal abordagem (em que cada elétron fica sujeito a um potencial efetivo, considerando suas interações com outros elétrons através de uma média) faz com que os detalhes das interações sejam perdidos.

A diferença entre a energia exata (sem levar em conta efeitos relativísticos) e a energia de Hartree-Fock é chamada de energia de correlação eletrônica:

 $E_{corr} = E_{exata} - E_{HF}$ mesmo que a E_{corr} seja, com frequência, pequena em relação à energia total do sistema, sua exclusão pode levar a resultados irreais, sendo essencial levá-la em conta na descrição de processos eletrônicos. (MORGON (E.), 2007)

3.5.2 Métodos semi-empíricos de estruturas eletrônicas

Os cálculos semi-empíricos têm uma estrutura geral semelhante à dos métodos de Hartree-Fock (possuem um hamiltoniano e uma função de onda). Neste cenário, certas informações são aproximadas ou completamente suprimidas. Normalmente, elétrons centrais são excluídos do cálculo e apenas um conjunto mínimo de bases é usado. Além disso, algumas integrais de dois elétrons são omitidas e, para corrigir os erros de se ignorar parte do cálculo, dados experimentais ou obtidos por métodos *ab initio* servem de parâmetro para substituir algumas das integrais excluídas (YOUNG, 2001).

A designação de "semi-empírico" em química teórica surgiu em 1931 por Michael Polanyi e Henry Eyring, na tentativa de combinar termodinâmica, mecânica quântica, teoria da ligação de elétrons de valência e cinética química. Já naquela época começou o debate comparando os resultados dos métodos semi-empíricos com os *ab initio*.

Atualmente, há áreas bem definidas de utilização de métodos semi-empíricos:

- 1. Para calcular um grande número de moléculas pequenas.
- 2. Para calcular várias e repetidas vezes o mesmo tipo de sistemas, como em simulações de dinâmica molecular ou Monte Carlo.
- 3. Para o cálculo de uma molécula muito grande.

Com relação ao tempo de cálculo, os métodos semi-empíricos apresentam um certo balanço entre a qualidade dos resultados e o tempo de cálculo associado.

Diz-se que os métodos semi-empíricos são parametrizados, ou seja, há um ajuste numérico advindo de resultados experimentais para tornar factível a resolução das equações eletrônicas. Na maioria dos casos, utiliza-se um conjunto de base mínima de valência formada por funções do tipo Slater (STO, na sigla em inglês para *Slater Type Orbitals*) (Ibid. ps. 29 e 33). Para a vasta maioria das aplicações químicas, o mais comum, em vários métodos (DFT e HF, por exemplo), é a utilização de orbitais gaussianos (GTOs, na sigla em inglês para *Gauss Type Orbitals*). Ainda que as funções de Slater descrevam melhor as características qualitativas dos orbitais moleculares, os GTOs têm a vantagem de que o produto de quaisquer dois GTOs centrados em pontos diferentes resulta em um GTO localizado em um ponto intermediário (o produto de funções gaussianas resulta em um a nova função gaussiana). Por outro lado, os GTOs têm derivadas nulas sobre o núcleo atômico, representando mal o comportamento de elétrons muito próximos do núcleo; adicionalmente, eles decaem muito rapidamente a grandes distâncias do núcleo, fazendo com que a "cauda" da função de onda seja mal descrita (SILVA; SOUSA, 2019).

Pode-se afirmar que a exatidão e o poder preditivo são influenciados por três fatores:

- 1. Os dados que constituem o conjunto de referência.
- 2. A qualidade dos parâmetros.
- 3. O conjunto de aproximações.

A parametrização é uma otimização não-linear de uma função resposta F_{resp}, a função resposta é definida, parametricamente, num espaço de muitas dimensões (centenas) e é calculada a partir dos desvios dos resultados preditos, q^{calc}, com os de referência, q^{exp}, experimentais, via de regra, de acordo com:

$$F_{resp} = \sum_{i} (q_i^{calq} - q_i^{exp})^2 w_i^2$$
(14)

As propriedades que normalmente entram no somatório são: entalpia de formação, potencial de ionização, momento de dipolo, distâncias, ângulos e diedros de ligação. wi é chamado de peso e são coeficientes que balanceiam a contribuição de diferentes termos na função resposta. Pesos especiais podem ser atribuídos a moléculas especiais como água, etanol, ácido etanoico. O sucesso da parametrização depende de um grande conjunto de dados, propriedades obtidas com destreza experimental e uma ampla faixa de moléculas. (MORGON (E.), 2007)

3.5.3 A Teoria do funcional da densidade, DFT

Problemas que eram tratados tradicionalmente por métodos *ab initio* HF e pós-HF são, agora, tratados utilizando-se o método DFT (da sigla em inglês para *Density Functional Theory*), que tem, em muitos casos, melhores acordos com os dados experimentais e com a vantagem de ter um custo computacional que algumas vezes, corresponde a uma fração daquele obtido por teoria de perturbação e *coupled cluster*. A popularização do DFT se deu, em grande medida, pela implementação eficiente em vários

pacotes de cálculos de estrutura eletrônica, especialmente os pacotes gratuitos como GAMESS, Orca, NWCHEM, Quantum Espresso, dentre outros. (MORGON (E.), 2007)

Falamos bastante sobre a equação de Schrödinger, mas não a explicitamos. Para o caso de N partículas, independente do tempo, e onde se pode supor que o movimento nuclear é pequeno em comparação com o movimento dos elétrons, ela é escrita da seguinte forma:

$$\hat{H}\psi(r_1, r_2, \dots, r_N) = E\psi(r_1, r_2, \dots, r_N)$$
(15)

onde o operador hamiltoniano Ĥ contém os termos que representam a energia cinética dos diferentes núcleos, a energia cinética dos elétrons, a energia de repulsão núcleonúcleo, a energia de atração núcleo-elétron, e a energia de repulsão entre os elétrons. A equação (16) coloca essas contribuições listadas na sequência, ficando:

$$\hat{H} = -\sum_{A=1}^{N_{n}} \frac{\hbar^{2}}{2M_{A}} \nabla_{A}^{2} - \sum_{i=1}^{N_{e}} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + \sum_{A=1}^{N_{n}} \sum_{B>A}^{N_{n}} \frac{Z_{A}Z_{B}e^{2}}{|R_{A} - R_{B}|} - \sum_{A=1}^{N_{n}} \sum_{i=1}^{N_{e}} \frac{Z_{A}e^{2}}{|R_{A} - r_{i}|} + \sum_{i=1}^{N_{e}} \sum_{j>i}^{N_{e}} \frac{e^{2}}{|r_{i} - r_{j}|}$$
(16)

Os índices Nn e Ne correspondem ao número de núcleos e elétrons, respectivamente. **i** e **j** representam os elétrons (e o somatório está montado para evitar a contagem repetida deles, indo de **i** + 1 até Ne). A massa do elétron é me, sendo a mesma para todos eles (quando efeitos relativísticos são ignoráveis). Z representa o número de prótons, R as posições dos núcleos (onde RA seria então a posição do núcleo A) e r a posição do elétron. Nabla ao quadrado (∇^2) é o operador laplaciano, um diferencial de segunda ordem. Repare que há termos positivos e negativos devido à natureza das interações, que podem aumentar ou diminuir a energia final calculada. Mais adiante, escreveremos o hamiltoniano em termos dos operadores que correspondem, respectivamente, aos termos não ignorados (na equação 16, são os segundo, o quarto e o quinto termos).

Começamos impondo a condição de que o movimento dos núcleos é pequeno a ponto de ser ignorado quando comparado ao movimento eletrônico: na aproximação de Born-Oppenheimer, o primeiro termo da Equação 16 pode ser tratado separadamente. A energia de repulsão entre núcleos, terceiro termo da Equação 16, é tratada como constante (núcleos fixos têm repulsão fixa, constante). Ainda assim, a equação de Schrödinger não tem escalabilidade para sistemas de vários elétrons, pois depende de três coordenadas espaciais para cada um dos elétrons, e a dificuldade computacional cresce exponencialmente. (LEVINE, 2014), (MORGON (E.), 2007) e (VIANNA; FAZZIO; CANUTO, 2018)

A grande ideia do método DFT está baseada na premissa de que a energia de uma molécula pode ser calculada não pela função de onda, mas, ao invés disso, pela densidade eletrônica. A vantagem é que as integrais para repulsão Coulombiana precisam ser feitas apenas sobre a densidade eletrônica, que depende apenas das três dimensões espaciais, independentemente do número de elétrons. Adicionalmente, alguma correlação eletrônica pode ser incluída no cálculo, o que implica cálculos mais rápidos do que os HF

(que são dimensionados com N⁴ contra N³ do DFT, sendo N o número de elétrons) e também um pouco mais precisos. (YOUNG, 2001)

Em 1964, Walter Kohn e Pierre Hohenberg demonstraram formalmente que, para moléculas com o estado fundamental não degenerado, a energia molecular, a função de onda e todas as outras propriedades eletrônicas moleculares são exclusivamente determinadas pela densidade de probabilidade eletrônica do estado fundamental $\rho_0(x, y, z)$ z), que, como já dito, é dependente de três variáveis. O que, então, quer dizer "funcional"? Um funcional associa um número a uma função inteira, ou seja, é uma função de função. (LEVINE, 2014) Façamos uma analogia: imagine uma população não estratificada, homogênea (estamos impondo aproximações para tornar a analogia factível); nós podemos, razoavelmente, propor que o número de aparelhos celulares depende da densidade populacional, já que são pessoas que os usam (e às vezes mais de um aparelho). Já a densidade populacional depende das coordenadas geográficas. Respeitando os limites da analogia, que não lida com questões socioeconômicas nem de cobertura de sinal, podemos dizer que a quantidade de celulares é funcional da densidade populacional, que por sua vez é função das coordenadas geográficas: temos um número (a quantidade de celulares) associado a uma função, a densidade populacional, que depende das coordenadas geográficas r. Podemos expressar essa analogia como $Q[\rho(r)]$, sendo Q a quantidade de celulares e $\rho(r)$ a densidade populacional nas coordenadas geográficas r. (MORGON (E.), 2007)

Falamos bastante sobre a equação de Schrödinger mas não a explicitamos. Para o caso de N partículas e independente do tempo, onde se pode supor que o movimento nuclear é pequeno em comparação com o movimento dos elétrons, ela é escrita na forma: (15)

$$H\psi(r_1,r_2,\ldots,r_N) = E\psi(r_1,r_2,\ldots,r_N)$$

onde o operador hamiltoniano Ĥ contém os termos que representam a energia cinética dos diferentes núcleos, a energia cinética dos elétrons, a energia de repulsão núcleonúcleo, a energia de atração núcleo-elétron, e a energia de repulsão entre os elétrons, a equação 16 coloca estas contribuições listadas na seguência, ficando:

$$\hat{H} = -\sum_{A=1}^{N_{n}} \frac{\hbar^{2}}{2M_{A}} \nabla_{A}^{2} - \sum_{i=1}^{N_{e}} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + \sum_{A=1}^{N_{n}} \sum_{B>A}^{N_{n}} \frac{Z_{A}Z_{B}e^{2}}{|R_{A} - R_{B}|} - \sum_{A=1}^{N_{n}} \sum_{i=1}^{N_{e}} \frac{Z_{A}e^{2}}{|R_{A} - r_{i}|} + \sum_{i=1}^{N_{e}} \sum_{j>i}^{N_{e}} \frac{e^{2}}{|r_{i} - r_{j}|}$$
(16)

Os índices N_n e N_e correspondem ao número de núcleos e elétrons respectivamente. i e j representam os elétrons (e o somatório está montado para evitar contagem repetida deles, indo de i + 1 até N_e). A massa do elétron é m_e, sendo a mesma para todos eles (quando efeitos relativísticos são ignoráveis). Z representa o número de prótons, R as posições dos núcleos (R_A seria então a posição do núcleo A) e r a posição do elétron. Nabla ao quadrado (∇^2) é o operador laplaciano, um diferencial de segunda ordem. Repare que há termos positivos e negativos devido à natureza das interações, que podem aumentar ou diminuir a energia final calculada. Mais adiante, escreveremos o hamiltoniano em termos dos operadores $\hat{T} + \hat{U} + \hat{V}$ que correspondem respectivamente ao termos não ignorados (na equação 16 são os segundo, o quarto, e o quinto termos).

Começamos impondo a condição de que o movimento dos núcleos é pequeno a ponto de ser ignorado quando comparado ao movimento eletrônico: na aproximação de Born-Oppenheimer, o primeiro termo da equação 16 pode ser tratado separadamente. A energia de repulsão entre núcleos, terceiro termo da equação 16, é tratada como constante (núcleos fixos têm repulsão fixa e constante). Ainda assim, a equação de Schrödinger não tem escalabilidade para sistemas de vários elétrons, pois depende de três coordenadas espaciais para cada um dos elétrons, e a dificuldade computacional cresce exponencialmente (LEVINE, 2014), (MORGON (E.), 2007) e (VIANNA; FAZZIO; CANUTO, 2018).

A grande ideia do método DFT está baseada na premissa de que a energia de uma molécula pode ser calculada não pela função de onda, mas, ao invés disso, pela densidade eletrônica. A vantagem é que as integrais para a repulsão Coulombiana precisam ser feitas apenas sobre a densidade eletrônica, que depende apenas das três dimensões espaciais, independentemente do número de elétrons. Adicionalmente, alguma correlação eletrônica pode ser incluída no cálculo, o que implica cálculos mais rápidos do que os HF (que são dimensionados com N⁴ contra N³ do DFT, sendo N o número de elétrons) e também um pouco mais precisos (YOUNG, 2001).

Em 1964, Walter Kohn e Pierre Hohenberg demonstraram formalmente gue, para moléculas com o estado fundamental não degenerado, a energia molecular, a função de onda e todas as outras propriedades eletrônicas moleculares são exclusivamente determinadas pela densidade de probabilidade eletrônica do estado fundamental $\rho_0(x, y, z)$ z), que, como já dito, é dependente de três variáveis. O que, então, quer dizer "funcional"? Um funcional associa um número a uma função inteira, ou seja, é uma função de função. (LEVINE, 2014) Façamos uma analogia: imagine uma população não estratificada, homogênea (estamos impondo aproximações para tornar a analogia factível); podemos, razoavelmente, propor que o número de aparelhos celulares depende da densidade populacional, já que são pessoas que os usam (e às vezes mais de um aparelho). Já a densidade populacional depende das coordenadas geográficas. Respeitando os limites da analogia, que não lida com questões socioeconômicas nem com a cobertura de sinal, podemos dizer que a quantidade de celulares é funcional da densidade populacional, que, por sua vez, é função das coordenadas geográficas: temos um número (a quantidade de celulares) associado a uma função, a densidade populacional, que depende das coordenadas geográficas r. Podemos expressar essa analogia como Q[p(r)], sendo Q a quantidade de celulares e p(r) a densidade populacional nas coordenadas geográficas r.

3.5.3.1 Teoremas de Hohemberg-Kohn

A DFT tem seus alicerces em dois teoremas propostos por Hohemberg e Kohn, que pode ser demonstrados de uma forma não tão complicada. Tomemos um sistema com N elétrons sendo $r_i = (x_i, y_i, z_i)$ o vetor posição do i-ésimo elétron.

Primeiro teorema:

O primeiro teorema estabelece que o potencial externo v(r) sentido pelos elétrons é um funcional único de densidade eletrônica $\rho(r)$

Prova: Seja ψ o estado fundamental do sistema, cujo hamiltoniano \hat{H} com um potencial externo v(r) o caracteriza. Donde $\hat{H}=\hat{T}+\hat{U}+\hat{V}$ (17) (energia cinética + energia de interação elétron-elétron + energia potencial). Vamos supor a existência de um outro potencial externo v'(r), levando a \hat{H} ' e um estado fundamental ψ '. Vamos considerar, por hipótese, que os dois potenciais levam à mesma densidade eletrônica ρ (r). A prova pode ser feita para estados degenerados, porém trataremos, aqui, de estados não degenerados.

Temos, pelo teorema variacional, descrito na seção 3.5.1, que:

$$E = \langle \psi | \hat{T} + \hat{U} + \hat{V} | \Psi \rangle < \langle \psi' | \hat{T} + \hat{U} + \hat{V} | \psi' \rangle$$
(18)

$$E' = \langle \psi' | \hat{T} + \hat{U} + \hat{V} | \psi' \rangle < \langle \psi | \hat{T} + \hat{U} + \hat{V} | \psi \rangle$$
(19)

ou

$$\langle \psi | \hat{H} | \psi \rangle \langle \psi' | \hat{H} | \psi' \rangle = \langle \psi' | \hat{H} | \psi' \rangle + \langle \psi' | \hat{V} - \hat{V'} | \psi' \rangle$$
(20)

lembramos que:

$$\rho(r) = \langle \psi | \sum_{i=1}^{N} \delta(r - r_{1}) | \psi \rangle \quad \text{(21) e} \quad \hat{V} = \sum_{i=1}^{N} v(r_{i}) \tag{22}$$

temos

$$\langle \psi | \hat{V} | \psi \rangle = \sum_{i=1}^{N} \int d^{3}r_{1} \dots \int d^{3}r_{N} \psi * (r_{1}, \dots, r_{N}) v(r_{i}) \psi(r_{1}, \dots, r_{N})$$
(23)

ou

$$\langle \psi | \hat{V} | \psi \rangle = \sum_{i=1}^{N} \int d^3 r \int d^3 r_1 \dots \int d^3 r_i v(r) \delta(r-r_i) \int d^3 r_{i+1} \dots \int d^3 r_N \psi * \psi$$
(24)

$$=\int \rho(r)v(r)d^{3}r$$
⁽²⁵⁾

utilizando esse resultado na expressão (20), teremos:

$$E < E' + \int [v(r) - v'(r)] \rho(r) d^{3}r$$
 (26)

se repetirmos o procedimento para $\langle \psi' | \hat{H}' | \psi' \rangle$ teremos:

$$E' < E + \int [v'(r) - v(r)] \rho(r) d^3r$$
 (27)

ou seja:

 $E + E' < E' + E \tag{28}$

Então, como assumimos que para v \neq v' a densidade era a mesma, obtemos um absurdo de consequência do fato que $\psi \neq \psi$ '. Para evitar o absurdo, pode-se assumir a unicidade que $\rho(r)$ exige e considerar $\psi = \psi$ '. Conclui-se que o primeiro teorema nos diz que a densidade $\rho(r)$ do estado fundamental deve conter as mesmas informações que a

(30)

função de onda (também do estado fundamental). Em termos práticos, uma variável observável designado pelo operador Ô é determinado como:

$$O = \langle \psi | \hat{O} | \psi \rangle = O[\rho(r)]$$
(29)

Assim, O será um funcional único da densidade (VIANNA; FAZZIO; CANUTO, 2018).

Segundo teorema:

"A energia do estado fundamental $E_0[\rho]$ é mínima para a densidade $\rho(r)$ exata"

 $E[\rho] = \langle \psi | \hat{T} + \hat{U} + \hat{V} | \psi \rangle$

Prova:

 $\rho(r)$, aqui, é a densidade de um estado determinado ψ ; não obrigatoriamente a densidade proveniente do hamiltoniano \hat{H} que é ρ_0 . Logo

 $\rho \neq \rho_0 \Rightarrow \psi \neq \psi_0$, ou seja, $E > E_0$

 $\rho = \rho_0 \Rightarrow \psi = \psi_0$, ou seja, $E = E_0$

Dito de outo modo, o segundo teorema expressa que $E[\rho]$ é um funcional de $\rho(r)$, cujo mínimo valor é conseguido através da densidade eletrônica do estado fundamental.

Levando-se em conta a equação (30) reescrita na forma:

$$E[\rho] = \langle \psi | \hat{T} + \hat{U} | \psi \rangle + \langle \psi | \hat{V} | \psi \rangle$$
(31)

ou

 $E[\rho] = F[\rho] + \langle \psi | \hat{V} | \psi \rangle$ (32)

onde ψ_0 é a função do estado fundamental. Uma vez que ρ_0 determina ψ_0 e ρ determina ψ , assume-se que tanto ρ_0 como todos os ρ são determinados por um potencial externo, são v-representáveis, podendo-se aplicar o teorema variacional de forma que:

$$E[\psi_0] < E[\psi] \tag{33}$$

$$\langle \psi_0 | \hat{T} + \hat{U} | \psi_0 \rangle + \langle \psi_0 | \hat{V} | \psi_0 \rangle < \langle \psi | \hat{T} + \hat{U} | \psi \rangle + \langle \psi | \hat{V} | \psi \rangle$$
(34)

$$F[\rho_0] + \langle \psi_0 | \hat{V} | \psi_0 \rangle < F[\rho] + \langle \psi | \hat{V} | \psi \rangle$$
(35)

ou

$$E[\rho_0] < E[\rho]$$
 (36)
(Ibid. p. 228)

3.5.3.2 Equações de Kohn-Sham

Os dois teoremas de Hohemberg-Kohn alicerçam a DFT, mas são as equações de Kohn-Sham que a torna realmente aplicável.

W. Kohn e L. Shamm, em 1965, reescreveram a equação de energia total do sistema $E_0 = \langle \psi | \hat{T} + \hat{V} | \psi \rangle + \int \rho(r) v(r) d^3 r$ (37) motivados pelo fato de que as interações de Coulomb são de longo alcance e tornando explícita a repulsão dessa natureza, definindo uma nova função geral G[ρ]:

$$E_0[\rho] = \int v(r)\rho(r)d^3r + \frac{1}{2} \int \int \frac{\rho(r)\rho(r')}{|r-r'|} d^3r d^3r' + G[\rho]$$
(38)

em que

$$G[\rho] = T_0[\rho] + E_{xc}[\rho]$$
(39)

onde T_0 é a energia cinética de um sistema de elétrons não interagentes com densidade $\rho(r)$ e $E_{xc}[\rho]$ contém a energia de troca (*exchange* no inglês) *e* correlação de um sistema interagente com tal densidade. Adicionalmente, E_{xc} contém a correção da energia cinética. Contudo, a fórmula funcional exata para E_{xc} não é nem sequer conhecida.

Tomando a variação de $E_0[\rho]$, com o vínculo que a carga eletrônica total seja fixa, de acordo com o teorema variacional, temos:

$$\int \rho(r) d^3 r = N \tag{40}$$

Deseja-se minimizar a energia total do sistema (que como ficou demonstrado é funcional da densidade eletrônica). Há, porém, a restrição de que a integral da densidade eletrônica p(r) sobre todo o espaço deve ser igual ao número de elétrons N. Problemas com restrição⁵ são tratados com multiplicadores de Lagrange, de forma que a equação:

$$\delta[E_0[\rho] - \mu[\int \rho(r) d^3 r - N]] = 0 \tag{41}$$

nos diz que, no ponto mínimo, a variação da energia total com respeito à densidade deve ser igual ao multiplicador de Lagrange, μ , (que não à toa compartilha o mesmo símbolo usado em várias bibliografias para o potencial químico, a energia de Gibbs molar por ser, nesse contexto, o potencial químico dos elétrons) que mede a tendência dos elétrons de escaparem de um sistema em equilíbrio. A restrição imposta (os termos depois de μ) é a densidade total menos o número total de elétrons. Ao combinarmos as equações 38 e 39 com vínculo da equação 41, obtemos:

$$\int \delta \rho(r) \{ \frac{\delta T_0}{\delta \rho} V(r) + \int \frac{\rho(r')}{|r-r'|} d^3 r' + v_{xc}[\rho] - \mu \} d^3 r = 0$$
(42)

v_{xc} é o potencial de troca e correlação dado por:

$$V_{xc}[\rho] = \delta \frac{E_{xc}}{\delta \rho} \tag{43}$$

Escrevendo

$$T_{0}[\rho] = -\frac{1}{2} \sum_{i} \int \psi * \nabla^{2} \psi_{i} d^{3}r$$
(44)

e dada a densidade de carga auxiliar,

$$\rho(r) = \sum_{i=1}^{N} |\psi(r)|^2$$
(45)

a solução da Equação 42 satisfazendo 40 e 45 pode ser obtida resolvendo a equação de Schrödinger de uma partícula

$$\left(-\frac{1}{2}\nabla^{2}+\boldsymbol{v}^{ks}[\boldsymbol{\rho}]\right)\boldsymbol{\psi}(\boldsymbol{r})=\boldsymbol{\epsilon}_{i}\boldsymbol{\psi}_{i}(\boldsymbol{r})$$
(46)

⁵ Um problema clássico que aparece em praticamente todos os livros de Cálculo que tratam de multiplicadores de Lagrange é o de se obter as dimensões x, y e z para o volume máximo de uma caixa de papelão sem tampa usando uma quantidade limitante de material, a restrição, que poderia ser, por exemplo, 500 cm² de papelão.

$$\hat{h}^{ks}\psi_i(r) = \epsilon_i\psi_i(r) \tag{47}$$

59

onde $v^{ks}[\rho]$ é o potencial efetivo de Kohn-Sham dado por:

$$v^{ks} = v(r) + \int \frac{\rho(r')}{|r-r'|} d^3 r' + v_{xc}(\rho)$$
(48)

Como o potencial efetivo, v(r) depende da densidade eletrônica, a solução da equação 47 deve ser obtida através de um cálculo autoconsistente, similarmente ao que vimos para o método Hartree-Fock:

Figura 15: Ciclo de autoconsistência do método DFT Fonte: do autor, 2024. Baseado em VIANNA; FAZZIO; CANUTO, 2018 p. 231.

Para os termos $v^{KS}[\rho]$ é preciso fazer uma escolha *a priori* do funcional de trocacorrelação, $E_{xc}[\rho]$. Algumas aproximações serão discutidas na próxima seção.

As equações de Kohn-Sham, assim como as Hartree-Fock, geram n equações de um elétron que descrevem um sistema com n elétrons. Além disso, são equações, a princípio, exatas, já que incorporam totalmente os efeitos de troca e correlação eletrônica. Suas soluções equivalem, formalmente, à resolução exata do problema variacional da DFT. E uma vez escolhido um funcional de troca-correlação, o problema assemelha-se ao encontrado na teoria de Hartree-Fock: determinar um conjunto de orbitais ortogonais que levem a um mínimo de energia. A restrição de ortogonalidade orbital é tratada pelo

ou

método lagrangeano, novamente em completo paralelo com os métodos HF da mecânica ondulatória.

Conceitos químicos fundamentais – como eletronegatividade, energia livre de Gibbs, reatividade química, dureza e maciez – são definíveis pelo formalismo DFT. Consequentemente, são grandezas que podem ser calculadas com boa precisão. (MORGON (E.), 2007)(VIANNA; FAZZIO; CANUTO, 2018)(JANSEN, 2007)

3.5.3.1 Funcionais de troca-correlação

A despeito da elegância da equação de Kohn-Sham, ela não teria utilidade prática sem aproximações adequadas para o funcional de troca-correlação E_{xc}. Esta é a maior dificuldade na implementação dos métodos DFT. Existe um esforço hercúleo de inúmeros cientistas para o desenvolvimento de funcionais de troca-correlação (XC), evidenciado pela quantidade massiva de resultados ao se buscar termos como "*exchange energy*", "*correlation energy*" ou "*exchange-correlation energy*", além de "*Functional DFT*", em bases de dados como a *Web of Science* e o Google Acadêmico. Entretanto, há um consenso entre os pesquisadores de que dificilmente haverá um funcional XC universal em um futuro próximo: cada funcional é mais adequado para cálculos específicos de certas propriedades. A busca por funcionais melhores geralmente baseia-se em intuição física ou matemática, ou até em tentativa e erro. Há casos de sucesso e fracasso, como a aproximação da expansão do gradiente (GEA, do inglês *Gradient Expansion Approximation*), que não apresentou maior precisão para sistemas reais em comparação aos métodos predecessores.

A energia de troca-correlação é definida como um funcional da densidade eletrônica. A energia de troca é uma consequência direta do princípio de exclusão de Pauli, enquanto a energia de correlação engloba todas as interações não contempladas pelo método HF.

Discutiremos a seguir algumas aproximações historicamente importantes, além de outras implementadas em vários softwares de química computacional modernos. A sequência está organizada por ordem crescente de custo computacional:

• Aproximação de Densidade Loca, LDA (Local Density Approximation):

Os funcionais LDA pressupõem que a densidade local pode ser tratada como um gás de elétrons uniforme, ou seja, que a densidade varia lentamente. A LDA assume que as propriedades eletrônicas de um sistema em um ponto específico são definidas apenas pela densidade eletrônica naquele ponto, sem levar em conta variações adjacentes. Trata-se de um método simples de implementar, computacionalmente eficiente e adequado para estudos de sistemas grandes. A forma geral da energia de troca-correlação E_{xc} nessa aproximação é:

$$E_{xc}[n] = \int n(r) \epsilon_{xc}(n(r)) dr$$
(49)

onde n(r) é a densidade eletrônica no ponto r e $\varepsilon_{xc}(n(r))$ é a energia de trocacorrelação por partícula em um gás de elétrons homogêneo e com densidade n(r). LDA serviu como ponto de partida para a DFT, mas algumas limitações tornaramna pouco atraente atualmente. A LDA tende a subestimar as energias de troca e só descreve bem os sistemas que contêm apenas ligações simples e que não sejam correlacionados (onde o comportamento de cada elétron está intimamente ligado, correlacionado, ao comportamento de todos os outros).

• Aproximação de Densidade de Spin Local, LSDA (Local Spin-Density Approximation):

É uma generalização da LDA, de modo que em sistemas de camada fechada a LSDA se torna a LDA. Ambas aproximam a XC por meio da densidade eletrônica local. Entretanto, a LSDA considera a densidade de spin, o que permite descrever sistemas de camada aberta, sistemas magnéticos por exemplo. O sucesso ao descrever estruturas como complexos metálicos de elementos de transição e para sistemas de matéria condensada foi, em grande parte, responsável por atrair a atenção da comunidade científica, o que levou ao desenvolvimento de novos funcionais XC melhores ao longo das décadas de 1980 е 1990. Consequentemente, tornou a DFT o método mais utilizado nos cálculos de estrutura eletrônica.

 Aproximação do Gradiente Generalizado, GGA (Generalized Gradient Approximation):

Os funcionais GGA incorporam informações acerca de como a densidade eletrônica varia no espaço, por meio de seu gradiente. O gradiente de densidade reduzido adimensional é definido assim:

$$s = \frac{|\nabla \rho(r)|}{(2K_f \rho)} \tag{50}$$

o parâmetro s exprime a não-homogeneidade local da densidade e o funcional de troca apresenta a forma geral:

$$E_x^{GGA}[\rho] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int \rho^{4/3}(r) F(s) d^3r$$
(51)

Se F(s) = 1 a equação 51 toma a mesma forma da aproximação LDA; as diferentes formas de F que definem os diferentes funcionais de troca-correlação do tipo GGA, que tendem a fornecerem melhores resultados que LDA e LSDA, ainda mais no caso de sistemas químicos cuja densidade eletrônica varia abruptamente.

Os principais funcionais GGA são:

- i. PBE (e os PBE's revisados). Eles não têm parâmetros empíricos. A sigla vem do acrônimo do sobrenome dos desenvolvedores, a saber: Perdew, Bunke e Ernzerhof.
- ii. BLYP combina o funcional de troca de Becke com o funcional de correlação de Yang e Parr.
- iii. PW91 enfatiza a descrição correta da energia de associação. Desenvolvida por Perdew e Wang.

A tendência é que funcionais de XC com aproximações mais modernas sejam mais custosos, ocupando mais tempo de cálculo quando comparados a aproximações mais antigas. GGA é, portanto, mais custoso que LSDA e LDA, contudo, menos custoso que ou outros métodos a seguir, que como dito anteriormente, estão em ordem crescente de custo computacional.

- Meta-GGA: incluem informações sobre o Laplaciano da densidade e a energia de cinética de um elétron de Kohn-Sham. TPSS e M06-L são alguns exemplos.
- GGA-híbrido: inclui o funcional mais famigerado de todo o DFT, B3LYP. Desenvolvido para ser o funcional padrão para aplicações em química. "Foi o funcional mais amplamente utilizado para cálculos moleculares por uma margem bastante ampla" que é devido a precisão de seus resultados para grande variedade de compostos, especialmente os orgânicos (YOUNG, 2001). B3LYP (Becke-Lee-Young-Parr) tem o potencial de troca e correlação composto por muitas contribuições empíricas, sendo até chamado de DFT semi-empírico. Tais funcionais misturam componentes de troca exata (do método HF) com um componente de troca e correlação aproximado (como LDA, GGA ou meta-GGA). A inclusão de percentuais de troca muito altos podem levar a um aumento significativo do tempo de cálculo.
- Híbridos separados por intervalos (Range-separated hybrids), ao dividir o espaço em intervalos de curto e longo alcances (tratando-os diferentemente), os funcionais deste tipo adicionam mais um grau de complexidade levando a mais custo computacional. Cam-B3LYP é um exemplo de funcionais desse tipo

(KÜMMEL; KRONIK, 2008) (MORGON (E.), 2007) (JANSEN, 2007) (PIELA, 2020) (LANGRETH; MEHL, 1984) (BECKE, 1988) (PERDEW et al., 1993).

 Duplo híbrido são, provavelmente, a mais acurada forma de obter energias confiáveis no método DFT (ou mesmo MP2, a teoria da perturbação de Møller– Plesset, um método pós-HF) para vários tipos de sistemas (GOERIGK; GRIMME, 2011).

Recentemente a editora Springer dedicou um capítulo de livro ao desenvolvimento de funcionais XC assistido por aprendizado de máquina. A tendência de se usar

inteligência artificial para auxiliar o avançamento das ciências não deixa a química de fora (NAGAI; AKASHI, 2023).

É muito difícil precisar quantos funcionais há atualmente. Miguel Marques, um dos responsáveis por desenvolver uma famosa biblioteca de funcionais de troca-correlação chamada "Libxc⁶", afirmou em uma palestra de 2019 (ver o *print* abaixo) que "o total de funcionais publicados nos últimos 70 anos deve estar por volta de 600".

Figura 16: Palestras realizadas em 23 e 24 de maio de 2019 em Louvain-la-Neuve (Bélgica). Disponível em <u>https://www.youtube.com/watch?v=0Iz59A3c2RY</u> Fonte: canal do YouTube "PQ-DFT 2019" sob licença de atribuição "Creative Commons" (reutilização permitida).

3.5.3.2 Funções de base

Anteriormente, discutimos brevemente as funções de base e os tipos de orbitais utilizados (GTOs e STOs). Agora, faremos um maior detalhamento sobre o assunto. Um conjunto de base é formado por funções que descrevem a forma dos orbitais em um átomo. Elas são criadas a partir de combinações lineares de funções de base e funções angulares. Em cálculos DFT, um conjunto de bases deve ser predefinido. Embora seja possível criar um conjunto de bases do zero, a maioria dos cálculos utiliza bases já existentes. A precisão e a qualidade dos resultados são, em grande parte, determinadas por essa escolha; conjuntos maiores tendem a ser mais precisos. Nos orbitais, que têm a forma funcional dada a seguir:

⁶ Libxc: a library of exchange and correlation functionals for density functional theory. M.A.L. Marques, M.J.T. Oliveira, e T. Burnus, Comput Phy. Commun. 183, 2272-2281 (2012). DOI: <u>https://doi.org/10.1016/j.cpc.2012.05.007</u>

$$\varphi = Y_{lm} \sum_{i} C_{ij} C_{ij} e^{-\zeta_{ij}r^2}$$
(52)

a função Y_{Im} fornece ao orbital a devida simetria (s, p, d, etc). A função e^{-r²} é chamada de função primitiva gaussiana. Os coeficientes de contração Cij e is expoentes ζij são lidos de um banco de dados de funções padrão e não mudam ao longo do cálculo. Esse conjunto predefinido de coeficientes e expoentes é denominado "conjunto de base". Os orbitais na Eq. (52) são do tipo GTO, pois incorporam e^{-ζr²}. Por outro lado, os orbitais do tipo Slater, com a forma e^{-ζr} vêm da solução exata da equação de Schrödinger. Conjuntos de base GTO requerem, para descrever a função de onda, muito mais primitivas do que as necessárias para cálculos com STO. Pode-se calcular analiticamente as integrais sobre primitivas GTO, o que é consideravelmente mais rápido do que para STO, que são usados para trabalhos de alta precisão.

Escolher um conjunto de base GTO padrão implica que a função de onda será descrita por um número finito de funções. Consequentemente, introduz-se uma aproximação, pois, como mencionado na seção 3.5.1, seria necessário um número infinito de funções GTO para obter exatamente a função de onda. Para evitar os problemas dos efeitos dos conjuntos de base, como são chamados os defeitos causados pela qualidade de um conjunto em comparação com outro, alguns trabalhos de alta precisão utilizam conjuntos de base numéricos, que descrevem a distribuição de elétrons sem usar funções com uma forma predefinida.

Os cálculos atuais, na maioria, são realizados escolhendo um conjunto de base GTO segmentado existente. Esses conjuntos são identificados por notações específicas. Um dos conjuntos mais utilizados é o de Pople (o mesmo do já citado prêmio Nobel de Química de 1998). A principal característica dos conjuntos de base de Pople é que são *split-valence*: divide-se em duas ou mais funções de base para os elétrons de valência. Alguns conjuntos incluem funções de polarização (d, f, g), que permitem que a densidade eletrônica se polarize diante de campos elétricos externos. Para a descrição de elétrons em sistemas fracamente ligados (ânions ou estados excitados, por exemplo), há a possibilidade de incluir funções difusas.

As notações seguem o formato A-BCG, onde:

- A é o número de funções gaussianas que descrevem os elétrons do caroço;
- B é o número de funções gaussianas na primeira função de base dos elétrons de valência;
- C é o número de funções gaussianas na segunda função de base dos elétrons de valência;
- G indica que o conjunto de base é contraído.

Letras minúsculas (como em "3-21G(d)") indicam que, para átomos mais pesados que o H, as funções d são adicionadas. Um asterisco (*) indica a inclusão de funções difusas. Por exemplo, "6-311G**" indica que funções difusas são adicionadas a todos os átomos, o que eleva consideravelmente o tempo de cálculo! Curiosamente, "há apenas um pequeno incremento na acurácia obtida pelo uso de conjuntos de bases muito grandes. Isso é

provavelmente devido ao fato de que o funcional de densidade limita mais a precisão do que as limitações do conjunto de base" (YOUNG, 2001).

Existem algumas considerações importantes sobre os conjuntos de base usados para o cálculo de elementos pesados (maiores que o Kr, ou seja, Z>36Z > 36Z>36). Para eles, é desejável reduzir a quantidade de cálculos necessários, o que é feito substituindo os elétrons próximos ao núcleo e suas funções de base na função de onda por um termo potencial no Hamiltoniano, conhecidos como potenciais efetivos de núcleo (ECP, do inglês *Effective Core Potential*) ou RECP ⁷(R vem de "*Relativistic*"). Os ECPs devem ser usados junto com um conjunto de base de valência desenvolvido para acompanhá-los. Além de reduzir o tempo de cálculo, os ECPs podem incluir efeitos de massa relativística e termos de acoplamento de spin, que são significativos perto das regiões dos núcleos de átomos pesados (a partir de Rb).

Alguns aspectos devem ser considerados ao usar ECPs: o potencial de núcleo pode representar todos os elétrons, exceto os mais externos. Ter mais elétrons no caroço acelera os cálculos, mas os resultados são melhores se a camada n-1n-1n-1 estiver fora do potencial do caroço. Em alguns ECPs, os conjuntos são designados como "formato consistente", o que significa que a forma dos orbitais atômicos na região de valência corresponde à dos conjuntos de base de todos os elétrons (*Ibid.*, pág. 84).

Um aspecto importante para o cálculo de metais de transição (TM) diz respeito aos efeitos relativísticos. Para os elementos dos segundo e terceiro períodos dos TM, é bem descrito na literatura a necessidade de considerar tais efeitos para uma melhor obtenção das energias. Há algo especial sobre o átomo de cobre: os elementos do primeiro período dos metais de transição são fracamente influenciados pela relatividade, exceto o cobre. A maneira mais conveniente de incluir os efeitos relativísticos nos cálculos é o uso de ECPs quase-relativísticos ou AIMPs. Embora sejam inferiores ao método escalar-relativístico de todos os elétrons (exceto para cálculos de espectros de RMN), esses métodos são menos custosos (CUNDARI (E.), 2001).

3.5.4 Simulação de espectroscopia UV-Vis com métodos computacionais

Esta seção será baseada no capítulo 5 do livro *Computational Spectroscopy* (GRUNENBERG (E.), 2010) de autoria de Benedetta Mennucci.

Geralmente, as abordagens para cálculos de espectros UV-Vis são divididas nos três grupos discutidos anteriormente: métodos *ab initio* baseados em função de onda, métodos semiempíricos e DFT. O sucesso do DFT para sistemas no estado fundamental levou os pesquisadores a estender a teoria também para estados excitados, o que

⁷ N. do A.: A descrição dos efeitos relativísticos para cálculos em química computacional excede em muito a complexidade pretendida para este texto e a própria competência do seu autor. Recomendamos, caso seja do interesse do leitor, consultar a seção 20.6 do livro **Introduction to Relativistic Quantum Chemistry.** Escrito por Kenneth G. Dyall e Knut Fægri, Jr. Oxford University Press: New York, 2007.

culminou no desenvolvimento do regime de resposta linear dentro de uma abordagem de DFT dependente do tempo (*Time-Dependent DFT*, TDDFT).

A resposta linear de qualquer sistema pode ser usada para determinar suas energias de excitação. Quando um potencial oscilante é aplicado e sua frequência é variada, ocorre ressonância sempre que a frequência coincide com a diferença de dois valores próprios de energia do sistema. Em essência, aplica-se a teoria de perturbação dependente do tempo de primeira ordem para descrever a resposta linear dependente do tempo da densidade de uma partícula a um campo oscilante. Assume-se que o sistema molecular está em seu estado fundamental eletrônico antes que o campo elétrico dependente do tempo seja aplicado (ou seja, é descrito pela equação de Kohn-Sham no estado fundamental). Quando o campo elétrico oscilante é aplicado, os orbitais de Kohn-Sham, a densidade eletrônica e o operador de Kohn-Sham mudam. Este último depende dos orbitais. Se o campo for uma perturbação pequena, a nova densidade eletrônica pode, em primeira ordem, ser escrita como:

$$\rho(r,t) = \rho^{0}(r) + \delta \rho(r,t)$$
(53)

Ao inserir a equação (53) na equação de Kohn-Sham dependente do tempo e realizar uma transformação de Fourier para o espaço correspondente de energia, obtémse a equação TD-DFT para as energias de excitação e os vetores de transição. Em notação matricial, essas equações são expressas como:

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$
(54)

As matrizes A e B são chamadas de hessianas da energia eletrônica. Para um funcional XC híbrido, seus elementos se tornam, por exemplo:

$$A_{ia,jb} = \delta_{ab} \delta_{ij} (e_a - e_i) + \langle ja | ib | \rangle - c_{HF} \langle |ji| ab \rangle + (1 - c_{HF}) \langle ja | f_{xc} | ib \rangle$$
(55)

$$B_{ia,ib} = \langle ja|bi| \rangle - c_{HF} \langle jb|ai| \rangle + (1 - c_{HF}) \langle ja|f_{xc}|bi\rangle$$
(56)

O termo principal na diagonal da matriz A é a diferença das energias orbitais i e a, correspondendo aos orbitais de onde e para onde o elétron é excitado, respectivamente (i,ji, ji,j são índices para os orbitais ocupados; a,ba, ba,b, para os virtuais). O segundo termo na matriz AAA e os elementos da matriz BBB contêm as integrais de dois elétrons antissimetrizadas e derivam da resposta linear dos operadores de Coulomb e de trocacorrelação às mudanças de primeira ordem nos orbitais de única partícula.

Nas equações (55) e (56), o parâmetro de mistura híbrida c_{HF} permite a interpolação entre os limites dos funcionais de densidade puros (c_{HF} = 0, sem troca exata) e a teoria de Hartree-Fock (c_{HF} = 1, com troca total e sem correlação). Quando a matriz B é negligenciada, a aproximação é chamada de TDA (*Tamm-Dancoff Approximation*). Muitos softwares usam a TDA como padrão, sendo necessário especificar explicitamente quando se deseja realizar um cálculo completo de TDDFT (*full TDDFT*), sem a referida aproximação.

A principal aplicação dos cálculos TD-DFT tem sido a simulação e atribuição de espectros de absorção eletrônica. Estudos realizados por *benchmarking* (comparação com valores experimentais) indicam que excitações de valência de baixa energia são previstas com erros de cerca de 0,4 eV pelos funcionais LDA e GGA. Funcionais híbridos podem ser mais precisos, mas apresentam erros sem um padrão sistemático. Funcionais puros, sem nenhum percentual de troca Hartree-Fock, têm desempenho inferior, provavelmente devido ao erro de auto-interação associado à transferência de elétrons, que é corrigido em TDHF pela resposta do termo de troca. Por isso, funcionais que incluem troca exata no hamiltoniano frequentemente produzem melhores resultados.

As diferenças de energia entre os orbitais são uma estimativa significativamente melhor para estados de valência excitados em KS-DFT do que na teoria HF. Isso ocorre porque, na KS-DFT, as energias dos orbitais virtuais são avaliadas para o sistema de NNN elétrons, correspondendo melhor à energia de uma partícula única excitada, enquanto na teoria HF, essas energias são calculadas para um sistema de N+1N+1N+1 elétrons.

Embora amplamente utilizada, a TD-DFT possui limitações bem documentadas, como a descrição imprecisa de:

- Estados de valência em moléculas com sistemas π estendidos;
- Estados duplamente excitados;
- Estados excitados de transferência de carga;
- Estados de Rydberg, onde os elétrons estão muito distantes do núcleo e são altamente polarizáveis.

Uma maneira óbvia de melhorar os funcionais XC é incluir troca exata no hamiltoniano e utilizar funções difusas. Nesses casos, o operador de Coulomb do Hamiltoniano é separado em uma parte de curto alcance e outra de longo alcance:

$$\left\{\left(\frac{1}{u} = \frac{1 - erf(\omega u)}{u}\right)\right\}_{SR} + \left\{\frac{erf(\omega u)}{u}\right\}_{LR}$$
(57)

Aqui, o parâmetro ω define a separação entre os alcances, enquanto uuu representa a distância intereletrônica. Em curtas distâncias, o problema é tratado principalmente por um funcional local, enquanto a troca de longo alcance é abordada com troca exata orbital. Um exemplo de funcional amplamente utilizado é o CAM-B3LYP, que contém 20% de troca exata no curto alcance e 65% no longo alcance.

3.5.4.1 Modelagem dos efeitos de solvente

Os efeitos solvatocrômicos, mencionados anteriormente na seção 3.3.2, destacam como solventes podem influenciar fortemente espectros eletrônicos, como UV-Vis e espectroscopia de fluorescência. Mudanças na natureza do solvente podem induzir deslocamentos significativos nesses espectros.

Existem duas abordagens principais para simular os efeitos de solvente:

Explicitamente:

Nesse caso, as moléculas do solvente são explicitamente modeladas e incluídas no sistema. Cada molécula de solvente é tratada como um conjunto de átomos que interagem com o soluto de maneira específica. Embora seja uma abordagem mais realista, pode se tornar impraticável para sistemas grandes, a menos que seja empregada a dinâmica molecular, onde os efeitos quânticos são frequentemente desconsiderados.

Implicitamente:

O solvente é tratado como um meio contínuo e homogêneo que envolve o soluto. Em vez de adicionar moléculas discretas ao cálculo, os efeitos do solvente são representados por propriedades macroscópicas, como a constante dielétrica. Muitos softwares permitem até a customização do solvente, com a entrada direta dessas propriedades, frequentemente encontradas em livros-texto. Essa abordagem é amplamente utilizada em cálculos de química quântica.

Um exemplo clássico de solvatação implícita é o modelo PCM (*Polarizable Continuum Model*). Nesse modelo, as cargas pontuais não estão localizadas nos núcleos das moléculas do solvente, mas em pontos selecionados na superfície da cavidade molecular que contém o soluto. Essas cargas, chamadas de "aparentes", só existem na presença do soluto e são determinadas pelo potencial eletrostático que atua nos pontos escolhidos na superfície. Esse potencial depende das propriedades dielétricas do solvente, da geometria da cavidade e da disposição dos pontos na superfície.

Há uma variação do PCM chamado de CPCM (sigla para o termo em inglês Conductor-like Polarizable Continuum Model). Nesse modelo, o soluto é posicionado dentro de uma cavidade inserida em um contínuo que representa o solvente. A superfície da cavidade é discretizada em pontos ou elementos, e a polarização induzida no solvente pelo soluto é modelada por cargas aparentes distribuídas nessa superfície. Essas cargas são calculadas para satisfazer a condição de que o potencial eletrostático na superfície seia nulo. como seria em um condutor ideal. As interações entre soluto e solvente são predominantemente eletrostáticas. A polarização do solvente, por sua vez, influencia a distribuição eletrônica do soluto, sendo essa interação incluída nos cálculos. O modelo assume a aproximação de Born-Oppenheimer, considerando que os núcleos permanecem fixos e que a polarização do solvente é determinada apenas pelas interações eletrônicas.

A outra variação do PCM que usa o formalismo da equação integral, IEFPCM (MARENICH; CRAMER; TRUHLAR, 2009), (do inglês: *Integral Equation Formalism Polarizable Continuum Model*) é adotado como método SCRF (do inglês: *Self-Conscistent Reaction Field*) padrão no software Gaussian. Nesse modelo, o soluto é colocado dentro de uma cavidade que representa a região onde a densidade eletrônica é significativa. Normalmente, a cavidade é construída a partir de esferas que circundam cada átomo, moldando a molécula tridimensionalmente. Fora da cavidade, o solvente é tratado como um contínuo caracterizado por uma constante dielétrica específica, que representa a polarização do solvente em resposta ao campo elétrico do soluto.

O IEFPCM resolve equações integrais considerando tanto a polarização induzida no solvente pelo campo elétrico do soluto quanto a resposta do soluto à polarização do solvente. O cálculo resulta na energia de solvatação, que ajusta a energia total do sistema. A energia de solvatação, por sua vez, pode ser decomposta em componentes específicas:

- Eletrostática: contribuição da interação entre o campo elétrico do soluto e a polarização do solvente;
- Cavidade: energia necessária para formar a cavidade no solvente;
- **Dispersão**: forças de atração entre o soluto e o solvente;
- Repulsão: interações repulsivas de curto alcance.

4. METODOLOGIA

O Laboratório de Química Computacional e Simulação do Instituto de Química da UFMS dispunha, durante o desenvolvimento desta pesquisa, de um microcomputador Intel® i5 com 6 núcleos. Os testes iniciais para escolha dos funcionais de troca-correlação e das funções de base adequadas foram realizados no computador pessoal do mestrando, equipado com um AMD® FX-8300 de 8 núcleos, posteriormente substituído por um Intel® Xeon E5-2690 v4 de 14 núcleos.

Softwaresdecálculo:Para a seleção de métodos via benchmarking⁸ e a obtenção dos Mapas de PotencialEletrostático (MEP), utilizou-se o software Orca 5 (NEESE, 2022). Os cálculos deotimização de geometria, obtenção de orbitais, espectros UV-Vis e FTIR foram realizadosno software Gaussian 16 (FRISCH et al., 2016).

A modelagem, visualização e aquisição dos dados gerados nos arquivos de saída, foram combinados os programas Gabedit 2.5.1 (ALLOUCHE, 2010) Avogadro2 (HANWELL et al., 2012), GaussSum 3.0 (O'BOYLE; VOS, 2005) e GaussView 6 (DENNINGTON; KEITH; MILLAM, 2016).

Critérios para a escolha do rigor teórico

A seleção do rigor teórico foi guiada pelos seguintes critérios:

- Disponibilidade de recursos computacionais.
- Preferência por funcionais híbridos, reconhecidos pela eficácia na obtenção de espectros UV-Vis.
- Adequação das funções de base às propriedades dos átomos envolvidos.

Iniciou-se com o funcional híbrido B3LYP (BECKE, 1993) (STEPHENS et al. 1994) (KIM; JORDAN, 1994) devido ao seu equilíbrio entre custo computacional e resultados confiáveis, além de ser amplamente usado na literatura das últimas décadas. Caso os espectros UV-Vis não fossem satisfatórios, recorremos aos funcionais da família "M" ou "MN", desenvolvidos pelo grupo de Donald G. Truhlar na Universidade de Minnesota. Esses funcionais, como M05 (2005) e M11 (2011), apresentam abordagens híbridas ou meta-GGA e foram projetados para cálculos de estados excitados e transições eletrônicas.

Os funcionais escolhidos para o trabalho foram:

- 1. **B3LYP** Funcional de referência inicial, por sua robustez e custo computacional acessível.
- 2. MN15 (YU et al., 2016) Funcional híbrido moderno com alta versatilidade.
- 3. **M11** (PEVERATI; TRUHLAR, 2011) Meta-GGA híbrido ideal para espectroscopia e fotofísica, utilizado apenas em situações específicas devido ao alto custo computacional.

⁸ N. do A.: No contexto dos softwares de química computacional, *benchmark* é um teste que mede o desempenho de um método para posterior comparação.

Figura 17: Fluxograma que resume a escolha dos funcionais de troca e correlação Fonte: do autor, 2024.

Funções de base utilizadas:

Os elementos não metálicos foram descritos com a base de Pople 6-311G, uma tripla zeta que utiliza três conjuntos de funções gaussianas para os orbitais de valência. Para o fósforo, presente no ligante trifenilfosfina, foi adicionada uma função de polarização difusa, resultando na base 6-311+G(d), adequada para representar estados de hipervalência.

Os metais de transição (cobre, prata e ouro) foram descritos utilizando as bases def2-TZVP, def2-QZVP e def2-QZVPP, respectivamente. Desenvolvidas por Ahlrichs e colaboradores, essas bases equilibram precisão e custo computacional, incorporando efeitos relativísticos por meio de pseudo-potenciais (*Effective Core Potentials*, ECPs).

A Tabela 5 compara as funções de base empregadas nos nossos cálculos. O termo "zeta" é referente ao número de conjuntos de funções de base usadas para descrever os elétrons de valência de um átomo em uma base de orbital. Mais funções implica em uma abordagem mais detalhada.

Tabela 5: Comparativo entre as funções de base escolhidas

Base	Zeta	Funções difusas	Funções de polarização	Precisão
6-311G	Tripla	Não	Não	Média
6-311+G(d)	Tripla	Sim	Não	Média ou boa (no caso de ânions e moléculas difusas)
def2-TZVP	Tripla	Não	Sim (uma)	Boa
def2-QZVP	Quádrupla	Não	Sim (uma)	Muito Boa
def2-QZVPP	Quádrupla	Não	Sim (duas)	Excelente

Elaborada pelo autor, 2024.

MEPs:

Para a obtenção dos mapas de potencial eletrostático decidiu-se usar o mesmo funcional para todos os complexos, B3LYP, com a instrução de fazer o cálculo como o Gaussian faria (como já dito, o cálculo foi feito no Orca 5). Para isso, escreve-se "B3LYP/G" no arguivo de entrada. Como se trata de um cálculo menos custoso, decidimos usar uma função de base grande (e com polarização) Def2-TZVP(-f) para todos os átomos com exceção do elemento de transição, que usou uma base ainda maior. A base Def2-TZVP inclui orbitais f até mesmo para átomos leves, como C, N, O, e por isso optamos por excluir tais orbitais, escrevendo "(-f) no input. Mesmo assim, orbitais d são incluídos, para melhorar os resultados. O hidrogênio é exceção, usa "apenas" funções de polarização p, que já são suficientes para uma descrição eletrônica muito boa. A qualidade de um mapa de potencial eletrostático é reflexo do intervalo de grade solicitado. Essa grade determina os pontos onde o potencial eletrostático será calculado e visualizado; o número de pontos da grade tridimensional tem total de n_x x n_y x n_z que são o número de intervalos definidos em cada direção. As revistas costumam pedir uma grade de, no mínimo, 100 pontos (100 x 100 x 100). Para todos os complexos usamos 125 pontos. O impacto da quantidade de pontos pode ser análoga a obra de um pintor que usa a técnica de pontilhismo, se o artista usar poucos pontos por área de tela para criar a imagem, pode ser que a pintura não fique tão interessante, ao passo que muitos pontos favorecem uma clara imagem.

Figura 18: "Plage à Heist": obra do pintor neoimpressionista belga Georges Lemmen (1865-1916). A imagem é de domínio público e pode ser encontrada em https://commons.wikimedia.org/wiki/File:Georges_Lemmen_-_Plage_%C3%A0_Heist.jpg

Efeitos de solvente:

Conforme descrito na seção 3.5.4.1 falamos sobre o efeito do solvente. Todos os espectros experimentais foram feitos em solução de diclorometano; que é um solvente que está disponível para simulação no Gaussian 16 e cuja constante dielétrica usada nele é de: ϵ = 8.93.

A rotina de trabalho segue a sequência esquematizada na Figura 19:

O método TD-DFT, que fornece os espectros UV-Vis, foi realizado tanto considerando os efeitos do solvente implícito quanto sem ele (complexos no vácuo). As frequências vibracionais têm grande importância ao indicar se a geometria está em um ponto de mínimo na superfície de energia potencial ou se a estrutura encontrada não é totalmente estável – uma geometria de transição, ou complexo ativado. Apenas os orbitais que participam das transições com as maiores contribuições tiveram suas superfícies desenhadas e utilizadas nos gráficos que esquematizam as principais transições eletrônicas.

As informações estruturais necessárias para este trabalho foram obtidas através de difratometria de raios-X dos complexos investigados. Para os complexos que não se obteve monocristais adequados à difratometria de raios-X, as estruturas foram modeladas a partir dos complexos que têm esse dado, mudando-se os substituinte, por exemplo, de naftil para pireno; ou o ligante, de trifenilfosfina para cloreto.

5. RESULTADOS E DISCUSSÃO

5.1 Otimização de Geometrias

Após o selecionamento dos funcionais de troca-correlação adequados, os primeiros resultados advêm dos cálculos de otimização de geometria, que como discutido na seção 3.5, seguem ciclos que envolvem iterações. Os *softwares* possuem seus critérios padrões de otimização, que podem ser mais apertados ou relaxados de acordo com a conveniência do usuário. Nós, contudo, usamos os critérios padrões do Gaussian 16 para todos os cálculos. Eles são:

- Energia (*maximum force*): a mudança máxima tolerada é 4,5 x 10⁻⁴ Hartrees/Bohr
- Valor quadrático médio da energia (RMS force): 3,0 x 10⁻⁴ Hartree/Bohr
- Deslocamento máximo (maxumum displacement): 1,8 x 10⁻³ Å
- Valor quadrático médio do deslocamento: 1,2 x 10⁻³ Å

Alguns programas de modelagem e visualização de moléculas, como o Gabedit, conseguem acompanhar o andamento dos ciclos. Um exemplo é mostrado na Figura 20, nela há duas janelas, a da esquerda mostra a conformação da molécula para o ciclo selecionado (que aqui vão de 1 a 16). Na da direita podemos ver o gráfico com as variáveis (os critérios de convergência) sendo mostradas no topo direito da janela. O funcional é mostrado no topo, MN15:

Figura 20: Os ciclos de otimização do complexo de ouro-Cl-naftil acompanhados no software Gabedit 2.5.1 Fonte: do autor, 2024.

5.1.2 Distâncias e ângulos de ligação

Para todos os resultados futuros, adotaremos sempre a sequência: o complexo de cobre, os dois complexos de prata e os quatro de ouro da seguinte forma:

- 1. "Complexo 1": de cobre (II) com ligantes 1,2,3-triazois 1,4- dissubstituídos;
- 2. "Complexo 2": de prata (I) com o ligante tiocarbamoilnaftilpirazolina-1,3,5trissubstituído,
- 3. "Complexo 3": de prata (I) com o ligante tiocarbamoilpirenopirazolina-1,3,5trissubstituído;
- 4. "Complexo" 4: de ouro (I) com o ligante tiocarbamoilnaftilpirazolina-1,3,5trissubstituído e trifenilfosfina,
- 5. "complexo 5": de ouro (I) com o ligante tiocarbamoilpirenopirazolina-1,3,5trissubstituído e trifenilfosfina,
- 6. "Complexo 6": de ouro (I) com o ligante tiocarbamoilnaftilpirazolina-1,3,5trissubstituído e cloreto,
- 7. "Complexo 7": de ouro (I) com o ligante tiocarbamoilpirenopirazolina-1,3,5trissubstituído e cloreto.

Para melhor visualização, os hidrogênios foram ocultados em todas as imagens usadas para expor as geometrias de menor energia dos complexos.

Todas as distâncias interatômicas (dos 7 complexos) menores ou iguais a 3 Å, o que incluem todas as ligações presentes nas estruturas, podem ser conferidas no Anexo, uma vez que nessa seção nos concentraremos nas principais ligações.

Complexo 1: Na Tabela 6 quando há o valor experimental, obtido por difratometria de Raios-X, ele está na cor azul e sobre o valor calculado. A discrepância percentual foi calculada com a fórmula: Discrepância Percentual = |(Valor Experimental - Valor Calculado) / Valor Calculado| x 100%

Figura 21: Estrutura molecular otimizada do complexo 1. Fonte: do autor, 2024.

A Tabela 6 contém os principais comprimentos e ângulos de ligação e exprime as discrepâncias entre valores calculados e obtidos pelo experimento de difratometria.

Ligação	Distância experimental, calculada e discrepância percentual entre elas	Ligações	Ângulo experimental, calculado e a discrepância percentual entre elas
Cu-Cl(1)	2,2411 2,331 3,86%	Cl-Cu-Cl	180,0° 165,9° 8,50%
Cu-Cl(2)	2,2411	N-Cu-N	180,0°

Tabela 6: Distâncias em Å e ângulos

Cu-N(1a)	2,329 3,84% 1,9970 2,005 0,40%	N(1a)-Cu-Cl(2)	161,1° 11,73% 88,65° 90,8° 2,37%
Cu-N(1b)	1,9970	N(1a)-Cu-Cl(1)	88,65°
	1,998		91,6°
	0,05%		3,22
N(1a)-N(2a)	1,3221	N(1b)-Cu-Cl(2)	91,35°
	1,330		91,8°
	0,59%		0,49%
C(2a)-N(1a)	1,3658	8 ligações C-O-C	Entre 117,4° e 119,3°
	1,383		
	1,24%		
C(1b)-N(1b)	1,3658	N(1a)-N(2a)-N(3a) 105,8°
	1,384		
	1,31%		

As discrepâncias entre os comprimentos de ligação estão entre 3,86% e 0,05% (respectivamente, Cu-Cl(2), 2,2411 Å e 2,331 Å e Cu-N(1b) 1,997 Å, 1,998 Å). Para os ângulos, as discrepâncias variaram de 10,5% e 0,49% (respectivamente, N-Cu-N 180,0°, 161,1° e N(1b)-Cu-Cl(2) 91,35°, 91,8°). Tal variação mais acentuada nos ângulos de ligação pode ser devido alguns fatores:

- A simulação é feita levando-se em conta uma única molécula no vácuo, enquanto que a difratometria é feita em estado sólido, sendo, portanto, afetado pelas forças intermoleculares e simetria cristalina.
- Vibrações moleculares. Dados experimentais são medidos sobre vibrações térmicas no cristal, a geometria otimizada é feita como se a estrutura estivesse em 0 K, sem vibrações.

Outra hipótese considerada foi a ausência de correção de dispersão, dado que o funcional B3LYP frequentemente subestima ou negligencia completamente as interações de forças de dispersão de van der Waals. Essas interações, fracas e não covalentes, decorrem de correlações eletrônicas dinâmicas entre as nuvens de elétrons de moléculas ou átomos. Assim, os cálculos foram refeitos considerando a correção empírica de dispersão D3 de Grimme, com as modificações de Becke-Johnson, que aprimoram a descrição das interações para a maioria dos sistemas. No entanto, os resultados obtidos não apresentaram diferenças significativas. Observou-se, ainda, que os ângulos das ligações CI-Cu-CI e N-Cu-N se afastaram ligeiramente mais dos 180° característicos de um complexo quadrado planar regular quando comparada ao resultado sem ele.

Os ângulos e as distâncias dos carbonos aromáticos estão todos muito próximos dos valores encontrado na literatura: 120º e 1,40 Å.

Complexo 2: a geometria de partida foi obtida dos dados de difratometria. A estrutura apresentada na Figura 22 é posterior à otimização de geometria (como já mencionado, os H estão ocultados); a Tabela 7 também exprime os dados calculados e experimentais selecionados.

A Tabela 7 compara dados teóricos e obtidos por difratometria e as discrepâncias percentuais entre eles.

Ligação	Distância experimental, calculada e	Ligações	Ângulo experimental, calculado
	discrepância percentual entre elas		e a discrepância percentual
			entre elas
Ag-S(1)	2,4549	Cl(1)-Ag-S(2)	110,68°
	2,546		112,0°
	3,57%		1,18%
Ag-Cl(1)	2,5841	S(1)-Ag-S(2)	110,68°
	2,627		136,0°
	1,63%		18,62%
Ag-S(2)	2,4549	S(1)-Ag-Cl(1)	138,68°
	2,546		112,0°
	3,57%		23,82%
N(1)-C(1)	1,328	N(1)-C1-S(1)	123,03°
	1,325		118,1°
	0,23%		4,17%
N(2)-C(1)	1,346	N(1)-C(1)-N(2)	116,7°
	1,357		
	0,81%		
N(2)-C(2)	1,479	Cl(1)-Ag-S(1)-C(1)	Diedro
	1,479		3,4º
	0,00%		
N(2)-N(3)	1,400		
	1,401		

Tabela 7: Distâncias em Å e ângulos selecionados

0,07%

Elaborada pelo autor, 2024.

As distâncias experimentais e calculadas são muito próximas, chegando a ser iguais para a ligação N(2)-C(2), demonstrando a robustez do funcional M11.

Complexo 3: não há dados de difratometria de raios-X. Na Figura 23, pode-se ver o substituinte pireno ao invés do naftil do complexo 2. Os valores são todos calculados. A Tabela 8 contém os resultados mais relevantes. A estrutura foi inicialmente obtida pela substituição dos grupos naftil pelos grupos pireno para, posteriormente, efetuar-se os cálculos de otimização de geometria.

Figura 23: Estrutura otimizada do complexo 3 Fonte: do autor, 2024.

A Tabela 8 contém apenas valores calculados.

Tabela 8: Distâncias em Å e ângulos da principais ligações do complexo 3. Elaborada pelo autor, 2024

Ligação	Distância calculada	Ligações	Ângulo calculado
Ag-S(1)	2,61	Cl(1)-Ag-S(2)	112,6
Ag-Cl(1)	2,69	S(1)-Ag-S(2)	112,8°
Ag-S(2)	2,6	S(1)-Ag-Cl(1)	112,4°
N(1)-C(1)	1,33	N(1)-C(1)-N(2)	117,4°
N(2)-C(1)	1,35		
N(2)-N(3)	1,4		

Repara-se que o ângulo S(1)-Ag-S(2) é muito mais próximo, nesse caso, do valor experimental encontrado para o complexo com substituinte naftil, que é de 110,68°.

Os dois complexos de Ag¹ demandaram mais tempo computacional para otimização de geometria que os demais.

Complexo 4: a geometria de menor energia envolveu expandir a base de orbitais (de 6-311G para 6-311+g(d)) com o objetivo de melhor descrever o efeito de hiperconjugação do fósforo no ligante trifenilfosfina. A Tabela 9 contém dados experimentais também.

Figura 24: Estrutura otimizada do complexo 4. Fonte: do autor, 2024.

A Tabela 9 contém alguns dados selecionados, incluindo valores experimentais e as discrepâncias entre calculado e experimental.

Ligação	Distância experimental, calculada e discrepância percentual entre elas	Ligações	Ângulo experimental, calculado e a discrepância percentual entre elas
Au-P	2,2684	P-Au-S	172,744°
	2,312		178,4°
	1,90%		3,17%
Au-S	2,3130	Au-S-C(1)	108,46°
	2,356	.,	106,5°
	1,82%		1,84%
S-C(1)	1,8105	S-C(1)-N1	125,06°

Tabela 9: Princip	ais distâncias e	m Å e ângulos
-------------------	------------------	---------------

	1 723		125 1º
	5,08%		0.03%
C(1)-N(1)	1,323	N1-C(1)-N2	116,16°
., .,	1,343		115,8°
	1,49%		0,31%
C(1)-N(2)	1,3394	C(1)-N(2)-N3	119,52°
., .,	1,366		119,8°
	1,90%		0,23%
CI-C	1,7453	N(2)-N(3)-C(2)	107,57°
	1,747		108,5°
	0,09%		0,86
N(2)-N(3)	1.4013	N(3)-N(2)-C(3)	113.10°
	1,339		114,00°
	4,61%		0,79%
N(3)-C(2)	1,2853		
	1,355		
	5,15%		
P-C*	1,8		
	1,8		
	≈0,0%		

Tanto os comprimentos de ligação quanto os ângulos com valores experimentais disponíveis têm pequenas discrepâncias percentuais. As distâncias calculadas entre os carbonos e o fósforo no ligante trifenilfosfina estão muito próximas a 1,8 Å, e, por conseguinte, do valor experimental.

Complexo 5: através dos softwares de modelagem molecular, a estrutura do complexo 4 foi modificada para se obter o complexo 5 (conferir Figura 25), que não dispõe de dados de difratometria de raios-X. O substituinte naftil foi, então, editado e transformado em pireno e a obtenção da geometria de menor energia seguiu-se como solicitada nos cálculos do complexo 4. A Tabela 10 contém apenas dados calculados de geometria.

Figura 25: Estrutura otimizada do complexo 5 Fonte: do autor, 2024.

Tabela 10: Distâncias em Å e ângulos

Ligação	Distância calculada	Ligações	Ângulos calculados
Au-P	2.35	P-Au-S	178.0°
Au-S	2.41	Au-S-C(1)	105.8°
S-C(1)	1,79	S-C-N1	123,6°
C(1)-Ń(1)	1,34	N1-C-N2	118,0°
C(1)-N(2)	1,34	C-N2-N3	118,6°
CÌ-Ć	1,84	Ç	Diedro
		C-P-C	40,2°
N(2)-N(3)	1,42	N(2)-N(3)-C(2)	108.6°
N(3)-C(2)	1,31	N(3)-N(2)-C(3)	112,4°
P-C	1,8	P-Au-S-C(1)	Diedro
			-158,0°

Elaborada pelo autor, 2024.

Os valores calculados para os análogos naftil / pireno têm valores muito próximos, tanto de distâncias quanto dos dois ângulos experimentais.

Complexo 6: A Tabela 11 contém apenas os dados calculados, dada a ausência da difratometria de raios-X. A modelagem foi feita partindo-se do complexo 4, removendo-se o ligante trifenilfosfina e o substituindo por cloreto (conferir Figura 26).

Figura 26: Estrutura otimizada do complexo 6

Fonte: do autor, 2024.

A Tabela 11 traz apenas dados calculados, devido a ausência dos experimentais.

Ligação	Distância calculada	Ligações	Ângulo calculado
Au-Cl(1)	2,33	CI-Au-S	178,4°
Au-S	2,38	Au-S-C	106,5°
S-C(1)	1,79	S-C-N1	125,1°
C(1)-N(1)	1,34	N1-C-N2	115,8°
C(1)-N(2)	1,34	C-N2-N3	119,8°
N(2)-N(3)	1,42	N(2)-N(3)-C(2)	108,5°
N(3)-C(3)	1,31	N(3)-N(2)-C(3)	114,0°
C-Cl(2)	1,83	Cl-Au-S-C(1)	Diedro
			118,0°
N(2)-C(2)	1,5	N(1)-C(1)-N(2)-N(3)	Diedro -6,2º

Tabela 11: Distâncias em Å e ângulos

Elaborada pelo autor, 2024.

As distâncias calculadas e os ângulos são muito próximos aos dos complexos de ouro acima. Demonstrando consistência do funcional MN15 (o mais usados para os complexos de Au^I, 3 dos 4 foram calculados com tal funcional).

Complexo 7: Também envolveu modelagem para trocar o substituinte naftil por pireno e o ligante trifenilfosfina pelo cloreto (conferir a Figura 27). Por não haver dados experimentais, a Tabela 12 contém apenas dados calculados.

Figura 27: Estrutura otimizada do complexo 7 Fonte: do autor, 2024.

A Tabela 12 também só contém dados teóricos.

Tabela 12: Distâncias em Å e ângulos

Ligação	Distância calculada	Ligações	Ângulo calculado
Au-Cl(1)	2,33	Au-P-S	179,7°
Au-S	2,38	Au-S-C	103,7°
S-C(1)	1,79	S-C(1)-N(1)	123,5°
C(1)-N(1)	1,34	N(1)-C(1)-N2	117,4°
C(1)-N(2)	1,35	C(1)-N2-N3	119,3°
N(2)-N(3)	1,42	N(2)-N(3)-C(2)	108,9°
N(3)-C(3)	1,31	N(3)-N(2)-C(3)	112,5°
C-Cl(2)	1,83	CI-Au-S-C(1)	Diedro
N(2)-C(2)	1,49		2,0

As distâncias e ângulos calculados foram próximos aos reais, com alguns desvios principalmente nos ângulos.

Tanto os dados experimentais quanto os calculados concluem que as geometrias dos complexos são:

- quadrática para o complexo de Cu^{II}
- trigonal plana para os complexos de Ag¹
- linear para os complexos de Au¹

Porém, os dados calculados mostram distorções em relação ao arranjo regular da geometria quadrática do complexo 1. Distorções da geometria trigonal plana aparecem tanto nos dados experimentais quanto teóricos.

5.2 Espectroscopia de Absorção Molecular na Região do Ultravioleta e Visível (UV-Vis)

Os espectros experimentais foram fornecidos pela equipe liderada pelo professor Dr. Gleison Antônio Casagrande do Instituto de Química da UFMS. E todos foram feitos, de acordo com a informação dada por eles, em soluções de diclorometano. Os gráficos que comparam valores experimentais e teóricos estão todos normalizados em uma unidade arbitrária de absorbância. Todos os diagramas de orbitais envolvidos nas principais transições estão com valores em escalas, ou seja: as separações das linhas horizontais refletem as diferentes energias proporcionalmente.

Cobre (II) com ligante 1,2,3-Triazois 1,4- Dissubstistuido (complexo 1):

Curiosamente, o complexo de Cu^{II} obteve melhor resultado calculado no vácuo, sem efeito de solvente, o que não era esperado. O máximo de absorção está em 268 nm, região de maior energia no espectro molecular. As figuras 28 e 29 trazem os gráficos experimental com os teóricos.

Figura 28: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 1

Fonte: do autor, 2024.

Figura 29: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 1 Fonte: do autor, 2024.

Com o auxílio do *software* GaussSum, que ao ler os arquivos de saída do Gaussian, compila alguns dados para facilitar a análise dos dados brutos. As tabelas que descrevem os estados com os comprimentos de ondas correspondentes, a força do oscilador, as maiores e as menores contribuições de todos os 40 estados solicitados no arquivo de entrada do cálculo. Transições com contribuições de coeficiente orbital de transição \geq 10% são consideradas majoritárias, enquanto as inferiores a 10% são classificadas como minoritárias. Nós optamos por um corte de \geq 15% para ser possível organizar o diagrama de orbitais-transições de forma inteligível, uma exceção: no complexo 2 optamos por 14%.

Os orbitais de fronteira envolvidos nos estados selecionados estão expressos no diagrama da Figura 31 com a perspectiva mostrada na Figura 30.

Figura 30: Os orbitais calculados da Figura 31 foram obtidos na perspectiva apresentada nesta imagem Fonte: do autor, 2024.

Figura 31: Dos 17 orbitais de fronteira, a maioria das transições importantes envolvem orbitais beta (11) Fonte: do autor, 2024.

A presença de orbitais β na Figura 31 é resultado da presença do elétron desemparelhado.

A Tabela 13 é a compilação dos dados importantes, obtidos nos cálculos TD-DFT. A "Descrição" foi realizada pela equipe do LSCM, nossos colaboradores experimentalistas.

Tabela 1	3: Níveis	de e	energia	calculados,	força	do	oscilador	(f),	contribuições	majoritária	ιS,
contribuie	ções min	oritár	rias.								

Estado	λ (nm)	f	Maiores	Menores	Descrição
S1	340,5	0,03	H–5(β) → L(β) (49%), H–10(β) → L(β) (17%)	H−3(β) → L(β) (10%), H−28(β) → L(β) (8%), H−6(β) → L(β) (7%), H−7(β) → L(β) (2%)	LMCT
S2	320	0,02	H–6(β) → L(β) (54%)	$\begin{array}{l} H = 1 \ (\beta) \rightarrow L(\beta) \ (22\%) \\ H = 10(\beta) \rightarrow L(\beta) \ (12\%), \\ H = 5(\beta) \rightarrow L(\beta) \ (11\%), \\ H = 18(\beta) \rightarrow L(\beta) \ (4\%), \\ H = 41(\beta) \rightarrow L(\beta) \ (3\%), \end{array}$	LMCT

S3	308,1	0,06	H–10(β) → L(β) (52%)	$\begin{array}{c} H-33(\beta) \rightarrow L(\beta) \ (2\%), \\ H-30(\beta) \rightarrow L(\beta) \ (3\%), \\ H-3(\beta) \rightarrow L(\beta) \ (2\%), \\ H-1(\beta) \rightarrow L(\beta) \ (2\%), \\ H-28(\beta) \rightarrow L(\beta) \ (14\%), \\ H-6(\beta) \rightarrow L(\beta) \ (14\%), \\ H-2(\alpha) \rightarrow L(\beta) \ (14\%), \\ H-30(\beta) \rightarrow L(\beta) \ (2\%), \\ H-30(\beta) \rightarrow L(\beta) \ (2\%), \\ H-0(\beta) \rightarrow L(\beta) \ (2\%), \\ H-25(\beta) \rightarrow L(\beta) \$	LMCT
S4	265,7	0,01	H−2(α) → L+1(α) (48%), H(α) → L+1(α) (29%)	$H=9(\beta) \to L(\beta) (2\%), H=3(\beta) \to L(\beta) (2\%) H=2(\alpha) \to L(\alpha) (4\%), H(\alpha) \to L(\alpha) (3\%), H=10(\beta) \to L(\beta) (3\%) H=1(\beta) \to L+1(\beta) (11\%). $	IL + XLCT
S5	255	0,02	$H-2(\beta) \rightarrow L+1(\beta)$ (42%), $H(\beta) \rightarrow L+1(\beta)$ (17%)	$H-3(\alpha) → L(\alpha)$ (5%), $H-6(\beta) → L+1(\beta)$ (5%), $H-7(\alpha) → L(\alpha)$ (3%),	IL + XLCT
S6	249,5	0,02	H−10(α) → L(α) (32%), H−9(β) → L+1(β) (31%)	$\begin{array}{l} H-4(\alpha) \to L(\alpha) \ (2\%) \\ H-2(\alpha) \to L(\alpha) \ (7\%), \\ H(\alpha) \to L(\alpha) \ (6\%), \\ H(\beta) \to L+1(\beta) \ (3\%), \\ H-1(\alpha) \to L(\alpha) \ (2\%), \\ H-9(\beta) \to L+9(\beta) \ (2\%), \\ H-10(\alpha) \to L+1(\alpha) \ (2\%), \\ H-10(\alpha) \to L+8(\alpha) \ (2\%), \\ H-3(\alpha) \to L(\alpha) \ (2\%) \end{array}$	IL + XLCT
S7	245,1	0,04	H–3(β) → L+1(β) (58%)	$\begin{array}{l} H-1(\alpha) \rightarrow L(\alpha) \ (10\%), \\ H-1(\beta) \rightarrow L+1(\beta) \ (6\%), \\ H-2(B) \rightarrow L+1(B) \ (5\%), \\ H-2(\alpha) \rightarrow L+1(\alpha) \ (3\%), \\ H-1(\alpha) \rightarrow L+1(\alpha) \ (3\%), \\ H(\alpha) \rightarrow L+1(\alpha) \ (2\%), \\ H-3(\alpha) \rightarrow L+1(\alpha) \ (2\%), \\ H-5(\beta) \rightarrow L+1(\beta) \ (2\%) \\ H-1(\beta) \ L+2(\beta) \ (11\%) \ H \end{array}$	IL + XLCT
S8	241,6	0,02	H–4(β) → L+1(β) (29%)	$\begin{array}{l} H-1(\beta) \rightarrow L+2(\beta) \ (11\%), \ H-2(\beta) \rightarrow L+2(\beta) \ (9\%), \\ H(\beta) \rightarrow L+2(\beta) \ (9\%), \\ H-3(\alpha) \rightarrow L(\alpha) \ (8\%), \\ H-4(\beta) \rightarrow L+2(\beta) \ (6\%), \\ H-2(\alpha) \rightarrow L(\alpha) \ (4\%), \\ H-1(\alpha) \rightarrow L(\alpha) \ (4\%), \\ H-1(\alpha) \rightarrow L+1(\alpha) \ (4\%), \\ H(\alpha) \rightarrow L(\alpha) \ (3\%), \\ H-2(\beta) \rightarrow L+2(\beta) \ (3\%), \\ H-2(\beta) \rightarrow L+2(\beta) \ (3\%), \end{array}$	IL + XLCT
S9	238,4	0,01	H–4(β) → L+2(β) (32%), H– 1(α) → L+1(α) (24%)	$\begin{array}{l} H-3(\alpha) \to L+1(\alpha) \ (2\%) \\ H(\beta) \to L+2(\beta) \ (13\%), \\ H(\alpha) \to L+1(\alpha) \ (11\%), \\ H-6(\alpha) \to L+1(\alpha) \ (4\%), \\ H-4(\beta) \to L+1(\beta) \ (3\%), \\ H-2(\beta) \to L+2(\beta) \ (3\%) \end{array}$	IL + XLCT

H: HOMO; L: LUMO; LMCT=Transição de carga ligante para metal; IL= Transição intraligante; XLCT= Transição de carga halogênio para ligante.

O trabalho experimental deste complexo contém a explicação:

"... as transições que possuem maiores forças de oscilador são os estados S3 HOMO–10(β) \rightarrow LUMO(β) e S7 HOMO-3(β) \rightarrow LUMO+1(β). O estado S3 pode ser atribuída a uma transferência de carga ligante para metal (LMCT), visto que, a densidade sai de cima dos ligantes, HOMO-10(β), e se concentra em cima do metal, LUMO(β). Já o estado S7 a transferência é atribuída a (IL) + XLCT, ou seja, uma transferência entre ligantes e em cima dos orbitais dos halogênios. Os estados S1 H–5(β) \rightarrow L(β) (49%) e H–10(β) \rightarrow L(β) (17%) e S2 H–6(β) \rightarrow L(β) (54%), junto do estado S3 compõem a primeira banda observada próximo de 300 nm no espectro de comparação entre os dados experimentais e teóricos, Figura 28, onde estes 3 estados são atribuídos a transferências LMCT, ou seja, a densidade sai dos anéis aromáticos dos ligantes, e se concentra no metal. Enquanto os outros estados, de S4 a S9, compõem a segunda banda próxima a 250 nm, onde nesses estados são atribuídos a transferências mistas, intraligantes e XLCT, envolvendo os anéis aromáticos e grupamentos -OCH3 dos ligantes, junto dos orbitais *p* dos halogênios" (NASCIMENTO, 2023).

O complexo 1 foi, do ponto de vista do estudo de TD-DFT, o mais desafiador. A multiplicidade 2, por conta do elétron desemparelhado do Cu¹, impõe uma complicação adicional.

Complexo de Ag¹ com o ligante tiocarbamoilnaftilpirazolina-1,3,5-trissubstituído **(complexo 2)**: As Figuras 32 e 33 exprimem a comparação dos espectros experimental e teóricos. O resultado que inclui o efeito de solvente foi levemente melhor que o calculado no vá

Figura 32: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 2. Fonte: do autor, 2024.

Figura 33: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 2 com a adição do espectro calculado no vácuo. Fonte: do autor, 2024.

A Figura 34 mostra a perspectiva em que as imagens das superfícies dos orbitais calculados e organizados no diagrama da Figura 35.

Figura 34: Os orbitais calculados da Figura 35 foram obtidos na perspectiva apresentada nesta imagem. Fonte: do autor, 2024.

Figura 35: Orbitais de fronteira envolvidos nas principais transições do complexo 2 Fonte: do autor, 2024.

O complexo 2 possui o maior *gap* entre os orbitais HOMO-LUMO: 8,04 eV. Quiçá seja o complexo mais eletricamente isolante, maior *bandgap* (conferir o gráfico de Densidade de Estados no Anexo). Dados experimentais são necessários para confirmar ou não essa hipótese.

A Tabela 14 organiza as principais transições com as respectivas contribuições. A "Descrição" foi feita pela equipe experimental.

Tabela 14: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias, contribuições minoritárias.

Estado	λ (nm)	f	Maiores	Menores	Descrição
S1	285,4	2,73	H-1 → L+1 (39%), HOMO → LUMO (42%)	$\begin{array}{c} \text{H-6} \rightarrow \text{LUMO (11\%),} \\ \text{H-7} \rightarrow \text{L+1 (3\%),} \\ \text{H-5} \rightarrow \text{L+1 (4\%),} \\ \text{H-1} \rightarrow \text{L+4 (6\%),} \\ \text{H-1} \rightarrow \text{L+12 (3\%),} \\ \text{HOMO} \rightarrow \text{L+5 (5\%),} \end{array}$	XLCT+IL
				HOMO → L+13 (2%)	

S2	272,4	0,11	H-4 → L+1 (24%), H-3 → LUMO (19%)	$\begin{array}{l} \text{H-6} \rightarrow \text{LUMO} \ (11\%), \\ \text{H-7} \rightarrow \text{L+1} \ (3\%), \\ \text{H-5} \rightarrow \text{L+1} \ (4\%), \\ \text{H-1} \rightarrow \text{L+4} \ (6\%), \\ \text{H-1} \rightarrow \text{L+12} \ (3\%), \\ \text{HOMO} \rightarrow \text{L+5} \ (5\%), \\ \text{HOMO} \rightarrow \text{L+13} \ (2\%) \\ \text{H-2} \rightarrow \text{LUMO} \ (12\%), \end{array}$	XLCT+IL
S3	243,9	0,13	H-1→L+4 (14%)	$\begin{array}{l} \text{HOMO} \rightarrow \text{L+5} \ (10\%), \\ \text{H-5} \rightarrow \text{L+1} \ (3\%), \\ \text{H-5} \rightarrow \text{L+12} \ (2\%), \\ \text{H-4} \rightarrow \text{L+1} \ (8\%), \\ \text{H-4} \rightarrow \text{L+4} \ (2\%), \\ \text{H-4} \rightarrow \text{L+12} \ (3\%), \\ \text{H-3} \rightarrow \text{L+12} \ (3\%), \\ \text{H-3} \rightarrow \text{L+5} \ (5\%), \\ \text{H-2} \rightarrow \text{L+13} \ (5\%), \\ \text{H-1} \rightarrow \text{L+1} \ (2\%), \\ \text{HOMO} \rightarrow \text{L+2} \ (4\%) \end{array}$	LMCT+IL
S4*	242,9	0,21	H-4 → LUMO (10%), H-2 → L+1 (10%), H-1 → L+5 (13%),	HOMO → L+4 (13%) H-14 → LUMO (2%), H-13 → L+1 (2%), H-5 → LUMO (3%), H-4 → L+5 (3%), H-4 → L+13 (2%), H-3 → L+1 (5%), H-3 → L+4 (5%), H-2 → L+12 (5%), H-1 → L+2 (4%) H-6 → L+5 (10%)	IL
S5	207,7	1,54	H-4 → L+4 (15%),	$\begin{array}{l} H\text{-}0 \rightarrow L\text{+}5 \ (10\%), \\ H\text{-}3 \rightarrow L\text{+}5 \ (12\%), \\ H\text{-}14 \rightarrow L\text{+}1 \ (6\%), \\ H\text{-}13 \rightarrow LUMO \ (6\%), \\ H\text{-}11 \rightarrow LUMO \ (4\%), \\ H\text{-}10 \rightarrow L\text{+}1 \ (3\%), \\ H\text{-}7 \rightarrow L\text{+}4 \ (4\%), \\ H\text{-}5 \rightarrow L\text{+}4 \ (5\%), \\ H\text{-}4 \rightarrow L\text{+}3 \ (4\%) \\ H\text{-}14 \rightarrow L\text{+}5 \ (2\%), \\ H\text{-}13 \rightarrow L\text{+}4 \ (2\%), \end{array}$	LMCT
S6*	202,5	0,61	H-14 → LUMO (11%), H-13 → L+1 (11%)	H-12 → LUMO (2%), H-11 → L+1 (7%), H-10 → LUMO (6%), H-9 → LUMO (2%), H-8 → L+1 (3%), H-6 → L+4 (4%), H-4 → LUMO (2%), H-4 → L+5 (2%), H-1 → L+5 (5%),	
S7*	202,1	0,12	H-5 → L+8 (13%)	$\begin{array}{l} \text{H-1} \rightarrow \text{L+13} \ (3\%), \\ \text{HOMO} \rightarrow \text{L+4} \ (5\%), \\ \text{HOMO} \rightarrow \text{L+12} \ (3\%) \\ \text{H-14} \rightarrow \text{L+1} \ (4\%), \\ \text{H-13} \rightarrow \text{LUMO} \ (4\%), \\ \text{H-11} \rightarrow \text{LUMO} \ (3\%), \\ \text{H-7} \rightarrow \text{L+3} \ (6\%), \\ \text{H-7} \rightarrow \text{L+7} \ (3\%), \end{array}$	

				H-7 → L+8 (9%), H-5 → L+3 (5%).	
				$H-5 \rightarrow L+7$ (3%),	
				H-5 → L+25 (2%),	
				H-1→L+4 (2%)	
S8	200	0,14	H-2 → L+3 (38%)	H-8 → L+7 (2%),	IL
				H-8 → L+10 (2%),	
				H-5 → L+6 (5%),	
				H-5 → L+11 (2%),	
				H-3→L+3 (2%),	
				$H-2 \rightarrow L+4(3\%)$,	
				H-2 → L+8 (5%),	
				$H-2 \rightarrow L+10(3\%),$	
				H-2→L+21 (5%)	
				H-11 → L+9 (3%),	
				H-9→L+1 (3%),	
				$H-9 \rightarrow L+7(6\%)$,	
				H-9 → L+10 (7%),	
				H-8 → LUMO (4%),	
C0+	100	0.47		H-8→L+11 (7%),	
59^	198	0,47	H-8→L+6 (10%)	H-6→L+6 (6%),	
				$H-6 \rightarrow L+11(4\%),$	
				H-5→L+7 (4%),	
				H-5 → L+10 (9%),	
				H-2 → L+6 (4%),	
				H-2 → L+11 (3%)	
	192	0,19		H-6->L+13 (2%),	IL
				H-6->L+15 (2%),	
				H-4 → L+12 (4%),	
				H-3 → L+2 (2%),	
S10			$\Pi - 10 \rightarrow L + 1 (14\%),$	H-3 → L+13 (3%),	
			H-17 → LUMO (14%)	H-3 → L+15 (2%),	
				HOMO → L+2 (2%),	
				HOMO → L+5 (3%),	
				HOMO → L+18 (2%)	

* Os estados marcados não foram colocados no diagrama de transições. Tais estados têm grande força do oscilador (portanto grande probabilidade de acontecer) mas não têm contribuições iguais ou superiores ao valor de corte que adotamos, 14%. Nesse caso, deixamos o valor padrão de corte do GaussSum, 10%.

LMCT=Transição de carga ligante para metal; IL= Transição intraligante; XLCT= Transição de carga halogênio para ligante.

A explicação da equipe experimental:

"Com base na interpretação do diagrama dos orbitais de fronteira pelo cálculo de TD-DFT é possível sugerir a natureza das transições eletrônicas para os estados de energia com maior força de oscilador (f). As transições que ocorrem na região de menor energia 285,4 nm (S1) correspondem às transições do tipo (M+X)LCT (Cl-AgI $\rightarrow \pi^*(S=C-N)$)) com contribuições IL envolvendo majoritariamente os orbitais moleculares H-1 \rightarrow L+1 e HOMO \rightarrow LUMO. As transições eletrônicas (S5) entre os orbitais H-4 \rightarrow L+4 são do tipo LMCT ((N-C=S) $\pi^* \rightarrow$ Ag) em 207,7 nm. As transições (S8 e S10) entre os orbitais H-2 \rightarrow L+3, H-18 \rightarrow L+1 e H-17 \rightarrow LUMO são do tipo IL onde a densidade eletrônica passa do anel pirazolínico para o naftaleno. Com base nas variações de densidades eletrônicas, pode-se inferir que as transições entre os orbitais moleculares $H-1 \rightarrow L+4$ são do tipo LMCT, ((N-C=S) $\pi^* \rightarrow Au$ Cl)." (Natali Lima Faganelo)⁹

Complexo de Ag^I com o ligante tiocarbamoilpirenopirazolina-1,3,5-trissubstituído **(complexo 3)**. A Figura 36 mostra que embora o cálculo represente bem o experimental, a curva calculada está um pouco transladada para menores comprimentos de onda. Os gráficos obtidos por simulação são bastante semelhantes, como pode ser visto na Figura 37. O efeito de solvente implícito, curva vermelha, é ligeiramente melhor que sem no vácuo, curva verde.

Figura 36: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 3

Fonte: do autor, 2024.

⁹ Até o momento da escrita desse texto, a tese da autora (trecho citado *ipsis litteris*) não foi defendida, estamos a citar a versão prévia, gentilmente cedida por ela.

Figura 37: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 3 com a adição do espectro calculado considerando a molécula no vácuo. Fonte: do autor, 2024.

Ambos os gráficos calculados assemelham-se ao experimental. O efeito de solvente, no entanto, mostrou-se mais adequado, como esperado.

A Figura 38 serve como auxílio para compreender o diagrama da Figura 39, de onde podemos verificar que o total de orbitais virtuais presentes nas principais transições são um total de sete: o maior número dentre os compostos estudados.

Figura 38: Os orbitais calculados da Figura 39 foram obtidos na perspectiva apresentada nesta imagem. Fonte: do autor, 2024.

Figura 39: Orbitais de fronteira envolvidos nas principais transições do complexo 3

Fonte: do autor, 2024.

A Tabela 15 também é a compilação dos dados importantes, selecionados do arquivo de saída dos cálculos TD-DFT. Descrição ainda não realizada pela equipe experimental.

Tabela 15: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias, contribuições minoritárias

Estado	λ (nm)	f	Maiores	Menores
S1	341,2	1,35	HOMO → LUMO (82%)	H-1 → LUMO (4%),
				H-1 → L+1 (5%)
S2	334,4	1,18	H-1→L+1 (78%)	H-1 → LUMO (4%),
				HOMO → LUMO (2%),
				HOMO → L+1 (7%)
S3*	265,1	0,66	H-2 → L+1 (11%),	H-11 → L+1 (3%),
			H-1 → L+3 (13%)	H-10 → L+1 (3%),
				H-9 → L+1 (4%),
				H-4 → L+1 (9%),
				H-4 → L+6 (3%),
				H-3→L+1 (5%),

				H-2 → LUMO (4%), H-1 → L+1 (2%), H-1 → L+2 (8%), H-1 → L+4 (3%), H-1 → L+6 (4%), HOMO → L+2 (2%)
S4	261,9	0,48	H-4 → LUMO (17%),	H-2 → LUMO (12%), HOMO → L+3 (10%) H-11 → LUMO (3%), H-10 → LUMO (3%), H-8 → LUMO (7%), H-4 → L+7 (3%), H-2 → L+1 (4%), H-2 → L+7 (2%), H-1 → L+2 (3%), HOMO → L+2 (3%), HOMO → L+4 (3%),
S5	239,5	0,18	H-14→L+1 (27%)	HOMO → L+7 (4%) H-1 → L+3 (10%), H-10 → L+1 (2%), H-9 → L+1 (2%), H-7 → L+1 (5%), H-5 → L+1 (6%), H-1 → L+2 (4%), H 1 → L+2 (4%),
S6	237,6	0,15	H-14 → L+1 (23%), H-1 → L+6 (19%)	$\begin{array}{l} H-1 \rightarrow L+4 \ (7\%) \\ H-22 \rightarrow L+1 \ (2\%), \\ H-6 \rightarrow L+1 \ (7\%), \\ H-5->LUMO \ (3\%), \\ H-5->L+1 \ (3\%), \\ H-4->L+1 \ (2\%), \\ H-1->L+4 \ (2\%), \\ H-1->L+14 \ (2\%), \\ HOMO \rightarrow L+7 \ (3\%), \\ HOMO \rightarrow L+15 \ (2\%) \end{array}$
S7	237,3	0,16	HOMO → L+7 (18%)	HOMO \rightarrow L+15 (3%) HOMO \rightarrow L+15 (12%) H-5 \rightarrow LUMO (10%), H-14 \rightarrow L+1 (3%), H-13 \rightarrow LUMO (7%), H-7 \rightarrow LUMO (3%), H-5 \rightarrow L+1 (2%), H-4 \rightarrow LUMO (2%), H-1 \rightarrow L+6 (2%), HOMO \rightarrow L+3 (3%), HOMO \rightarrow L+4 (4%), HOMO \rightarrow L+6 (2%),
S8*	212,4	1,08	H-6 → L+3 (10%)	$\begin{array}{l} \text{HOMO} \rightarrow \text{L+8} (3\%) \\ \text{H-6} \rightarrow \text{L+2} (3\%), \\ \text{H-6} \rightarrow \text{L+4} (7\%), \\ \text{H-5} \rightarrow \text{L+2} (2\%), \\ \text{H-5} \rightarrow \text{L+3} (7\%), \\ \text{H-5} \rightarrow \text{L+4} (5\%), \\ \text{H-4} \rightarrow \text{L+2} (3\%), \\ \text{H-4} \rightarrow \text{L+2} (3\%), \\ \text{H-4} \rightarrow \text{L+3} (8\%), \\ \text{H-3} \rightarrow \text{L+3} (4\%), \\ \text{H-3} \rightarrow \text{L+4} (3\%), \\ \text{H-2} \rightarrow \text{L+2} (2\%), \\ \text{H-2} \rightarrow \text{L+3} (4\%), \end{array}$

				H-2→L+4 (3%),
				H-1 → L+1 (2%),
				H-1→L+6 (6%)
S9	210,8	1,24	H-5→ L+3 (19%),	H-7 → L+3 (2%),
			H-5→L+4 (16%)	H-7 → L+4 (2%),
				H-5 → L+2 (4%),
				H-4 → L+2 (2%),
				H-4 → L+3 (9%),
				H-4 → L+4 (8%),
				H-2 → L+3 (3%),
				HOMO → LUMO (2%),
				HOMO → L+7 (5%)
S10	206,1	0,17	H-7 → L+9 (17%)	H-20 → LUMO (11%)
				H-19 → LUMO (3%),
				H-7 → L+5 (9%),
				H-7 → L+10 (6%),
				H-7 → L+27 (3%),
				H-6 → L+9 (3%),
				H-5 → L+15 (3%)
S11*	200,7	0,19	H-3→L+5 (11%)	H-3->L+5 (11%)
				H-8 → L+8 (2%),
				H-8 → L+12 (4%),
				H-6 → L+8 (2%),
				H-2 → L+5 (7%),
				H-2 → L+22 (2%)
S12*	199,8	0,19	HOMO → LUMO (82%)	H-9→L+1 (4%),
			· · ·	H-6 → L+10 (2%),
				H-6 → L+12 (3%),
				H-3→L+2 (7%),
				H-3 → L+4 (2%),
				H-1→L+16 (3%)
S13*	199	0,19	H-1→L+1 (78%)	$H-11 \rightarrow L+1$ (2%),
				H-9→L+1 (6%),
				H-9→L+6 (2%),
				H-9→L+8 (2%),
				H-9→L+10 (2%),
				$H-9 \rightarrow L+12(3\%),$
				H-3→L+2 (4%),
				H-3→L+5 (7%)
				× -7

* Os estados marcados não foram colocados no diagrama de transições. Tais estados têm grande força do oscilador mas não têm contribuições iguais ou superiores ao valor de corte que adotamos, 15%. Nesse caso, deixamos o valor padrão de corte do GaussSum, 10%.

Complexo de Au^I com ligantes tiocarbamoilnaftilpirazolina-1,3,5-Trissubstituído e trifenilfosfina **(complexo 4)**: Nas Figuras 40 e 41 podemos verificar uma certa discrepância entre os espectros com efeito de solvente, que tem um perfil de gráfico mais concordante com os picos experimentais quando comparado ao calculado no vácuo (curva verde).

Figura 40: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 4 Fonte: do autor, 2024.

Figura 41: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 4 com a adição do espectro calculado considerando a molécula no vácuo Fonte: do autor, 2024.

A Figura 42 é útil para facilitar a compreensão da Figura 43, o diagrama com as principais transições e os orbitais de fronteira envolvidos, uma vez que foi nesta perspectiva que as imagens dos orbitais calculados foram obtidos.

Figura 42: Os orbitais calculados da Figura 43 foram obtidos na perspectiva apresentada nesta imagem. Fonte: do autor, 2024.

Figura 43: Orbitais de fronteira envolvidos nas principais transições do complexo 4 Fonte: do autor, 2024

O gap HOMO-LUMO é o menor dentre todos os materiais analisados, 3,10 eV. Há possibilidade de se tratar de um material semicondutor (conferir o gráfico de Densidade de Estados, DoS, no Anexo). Uma investigação teórica mais aprofundada pode lançar luz sobre o problema. No entanto, uma análise experimental pode ser mais rápida, além de conclusiva.

A Tabela 16 organiza os dados selecionados do cálculo TD-DFT. A "Descrição" foi realizada pela equipe experimental.

Tabela 16: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias, contribuições minoritárias

Estado	λ (nm)	f	Maiores	Menores	Descrição
S1	399,5	0,31	HOMO → LUMO (89%)	H-1 → LUMO (7%)	IL
S2	357,4	1,13	H-1 → LUMO (90%)	HOMO → LUMO (8%)	IL
S3	295,4	0,24	HOMO → L+1 (70%)	H-12 → LUMO (4%),	IL
				H-4 → LUMO (5%),	
				H-2 → LUMO (4%),	

				HOMO → L+2 (6%)	
S4	267,5	0,06	H-12→LUMO (23%), H-	HOMO → L+4 (3%)	IL
			1 → L+1 (61%)		
S5	259,9	0,07	HOMO → L+4 (25%),	H-12 → LUMO (4%),	LLCT+IL
			HOMO → L+5 (38%)	H-1→L+2 (8%),	
				H-1→L+5 (4%),	
				HOMO → L+2 (7%)	
S6	248,8	0,07	HOMO → L+5 (18%),	H-12 → LUMO (4%),	LLCT+IL
			HOMO → L+6 (44%)	H-1 → L+1 (3%),	
				H-1 → L+2 (6%), HOMO → L+8	
				(2%), HOMO → L+9 (8%)	
S7	248,2	0,07	H-2 → L+1 (23%),	H-1→ L+2 (14%),	LMCT +
			H-2 → L+2 (45%)	H-3 → L+2 (3%),	LLCT
				H-1 → L+4 (3%), HOMO → L+6	
				(2%)	
S8	246,4	0,06	H-1 → L+4 (60%)	H-2->L+4 (14%),	MLCT+IL
				H-2→L+3 (2%),	
				H-1 → L+3 (3%),	
				H-1 → L+5 (7%), HOMO → L+4	
				(3%), HOMO → L+9 (2%)	
S9	242,4	0,05	H-13 → LUMO (34%),	HOMO → L+8 (13%),	LLCT+IL
			H-1→L+5 (18%)	H-3 → L+1 (3%),	
				H-2 → L+2 (4%),	
				H-2→L+4 (4%),	
				H-1→L+1 (4%),	
				H-1→L+6 (4%)	
S10	240,6	0,06	H-3 → L+1 (34%),	H-3→L+3 (2%),	MLCT+IL
			H-2 → L+3 (16%),	H-1 → L+2 (3%),	
			H-1 → L+5 (23%)	H-1→L+3 (2%)	
S11	234,8	0,07	H-18 → LUMO (54%)	H-6 → L+2 (4%),	IL
				H-2 → L+1 (2%),	
				H-2→L+8 (3%),	
				H-1→L+8 (5%)	

A explicação acerca das atribuições da Tabela 16:

"... as transições eletrônicas que apresentam maiores forças de oscilador é S2, envolvendo os orbitais H-1 → LUMO, onde pode-se inferir que a densidade eletrônica é do tipo IL, passando dos anéis benzílico e pirazolínico para o naftaleno, o mesmo tipo de transição também é observada de S1 a S4 e S11. Transições (S5 e S6) HOMO → L+4, HOMO → L+5 e HOMO → L+6 são do tipo LLCT+IL (L(2) → Ph3P). Nas transições (S7) H-2 → L+1 e H-2 → L+2, são do tipo LMCT+LLCT (transições eletrônicas mistas), uma vez que transferências de carga do ligante pirazolínico para o ligante auxiliar trifenilfosfina também ocorrem durante as transições eletrônicas envolvendo o orbital molecular ocupado de maior energia e o orbital molecular não ocupado de menor energia. As transições H-3 → L+1, H-2 → L+3 e H-1 → L+5 são do tipo MLCT+IL (AgI → $\pi^*(S=C-N)+Ph$)." (Natali Lima Faganelo)

Complexo de Au(I) com ligantes tiocarbamoilperenopirazolina-1,3,5-Trissubstituído e trifenilfosfina **(complexo 5)**: as Figuras 44 e 45 mostram uma boa concordância entre os gráficos experimental e os teóricos. É possível, dada a boa concordância nos valores dos

picos, que a pequena saliência que há no gráfico experimental, próximo a 325 nm, seja coincidente com o pico mais aparente nos gráficos calculados.

Figura 44: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 5 Fonte: do autor, 2024.

Figura 45: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 5 com a adição do espectro calculado considerando a molécula no vácuo Fonte: do autor, 2024.

Figura 46 facilita a compreensão da Figura 47, o diagrama de orbitais e transições do complexo 5.

Figura 46: Os orbitais calculados da Figura 47 foram obtidos na perspectiva apresentada nesta imagem Fonte: do autor, 2024.

A

Figura 47: Orbitais de fronteira envolvidos nas principais transições do complexo 5 Fonte: do autor, 2024.

O diagrama da Figura 47 envolve a maior amplitude entre o menor e o maior comprimentos de onda das transições importantes: 168,8 nm.

A Tabela 17 compila os resultados presentes no arquivo de saída do cálculo TD-DFT. Até o momento, a descrição não foi realizada pela equipe experimental.

Tabela 17: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias, contribuições minoritárias

Estado	λ (nm)	f	Maiores	Menores
S1	391,1	0,99	HOMO → LUMO (95%)	
S2	334,7	0,09	H-1→LUMO (72%),	HOMO → L+7 (10%)
				HOMO → L+4 (2%),
				HOMO → L+8 (4%),
				HOMO → L+9 (2%)
S3	286,3	0,1	HOMO → L+2 (21%),	HOMO → L+3 (12%),
			HOMO → L+4 (33%)	H-5 → LUMO (5%),
				H-1 → LUMO (5%),
				H-1→L+7 (2%),

S4	279,2	0,17	H-3 → LUMO (66%)	$HOMO \rightarrow L+1 (4\%),$ $HOMO \rightarrow L+7 (6\%)$ $H-5 \rightarrow LUMO (12\%)$ $H-4 \rightarrow LUMO (3\%),$ $H-2 \rightarrow LUMO (2\%),$
S5	273,6	0,09	H-5 → LUMO (15%), HOMO → L+2 (16%), HOMO → L+7 (18%)	HOMO → L+1 (2%) HOMO → L+8 (11%) H-1 → LUMO (12%) H-1 → L+4 (3%), HOMO → L+3 (2%), HOMO → L+9 (7%), HOMO → L+10
S6	266,3	0,16	H-5 → LUMO (23%), H-2 → LUMO (42%)	HOMO → L+10 H-1 → LUMO (3%), HOMO → L+2 (3%), HOMO → L+4 (3%), HOMO → L+7 (7%), HOMO → L+13 (4%)
S7	260,5	0,13	H-5 → LUMO (20%), H-3 → LUMO (15%), H-2 → LUMO (25%),	HOMO → L+2 (10%) H-1 → LUMO (2%), HOMO → L+3 (9%), HOMO → L+7 (2%), HOMO → L+8 (4%)
S8	241,8	0,08	H-4→L+1 (67%)	H-5→L+1 (3%), H-2→L+1 (3%)
S9	237.4	0.14	H-1→L+2 (15%).	$H^{2} \rightarrow L^{+2} (0\%)$ H-1 $\rightarrow L^{+3} (9\%)$.
			H-1→L+4 (28%)	$H-1 \rightarrow L+7$ (5%), HOMO $\rightarrow L+5$ (5%), HOMO $\rightarrow L+7$ (6%), HOMO $\rightarrow L+8$ (7%)
S10	222,3	0,12	H-1->L+2 (23%)	H-13 → LUMO (9%), H-9 → LUMO (4%), H-9 → L+3 (2%), H-5 → L+2 (2%), H-3 → L+2 (5%), H-3 → L+3 (2%), H-2 → L+3 (2%), H-1 → L+3 (3%), H-1 → L+7 (7%), H-1 → L+13 (3%)
S11*	220	0,17	H-4 → L+3 (14%)	$\begin{array}{c} \text{H-1} \rightarrow \text{L+13} (3\%) \\ \text{H-5} \rightarrow \text{L+4} (3\%), \\ \text{H-5} \rightarrow \text{L+7} (3\%), \\ \text{H-3} \rightarrow \text{L+3} (3\%), \\ \text{H-3} \rightarrow \text{L+4} (6\%), \\ \text{H-3} \rightarrow \text{L+7} (6\%), \\ \text{H-1} \rightarrow \text{L+2} (2\%), \\ \text{H-1} \rightarrow \text{L+2} (2\%), \\ \text{H-1} \rightarrow \text{L+2} (3\%), \\ \text{H-1} \rightarrow \text{L+12} (2\%), \\ \text{H-1} \rightarrow \text{L+12} (2\%), \\ \text{H-1} \rightarrow \text{L+13} (8\%), \\ \text{H-1} \rightarrow \text{L+14} (3\%) \end{array}$
S12*	219,1	0,22	H-14 → LUMO (11%), H-1 → L+7 (12%)	$\begin{array}{c} H-14 \rightarrow L+2 \ (3\%), \\ H-9 \rightarrow L+3 \ (3\%), \\ H-5 \rightarrow L+3 \ (6\%), \\ H-4 \rightarrow LUMO \ (3\%), \\ H-3 \rightarrow L+3 \ (6\%), \\ H-2 \rightarrow L+3 \ (5\%), \\ H-1 \rightarrow L+3 \ (6\%), \\ H-1 \rightarrow L+8 \ (3\%) \end{array}$

S13*	214,9	0,12	H-13 → LUMO (13%)	H-16 → LUMO (3%),
				H-14 → LUMO (4%),
				H-6 → LUMO (5%),
				H-5 → L+2 (5%),
				H-5 → L+3 (4%),
				H-3 → L+2 (6%),
				H-3 → L+3 (4%),
				H-3 → L+7 (2%),
				H-1 → L+2 (2%),
				H-1 → L+3 (3%),
				H-1 → L+13 (2%),
				H-1 → L+14 (4%)

* Os estados marcados não foram colocados no diagrama de transições. Tais estados têm grande força do oscilador mas não têm contribuições iguais ou superiores ao valor de corte que adotamos, 15%. Nesse caso, deixamos o valor padrão de corte do GaussSum, 10%.

Complexo de Au¹ com ligantes tiocarbamoilnaftilpirazolina-1,3,5-Trissubstituído e cloreto **(complexo 6)**: As Figuras 48 e 49 contêm os espectros experimental e calculados. A curva em vermelho (calculada com efeito de solvente) representa melhor o aspecto do espectro obtido em solução (curva em preto).

Figura 48: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 6. Fonte: do autor, 2024

Figura 49: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 6 com a adição do espectro calculado considerando a molécula no vácuo Fonte: do autor, 2024.

A Figura 50 mostra a posição da estrutura em que os orbitais foram obtidos no diagrama da Figura 51; nela também se repara que os orbitais ocupados e virtuais envolvidos nas transições importantes são simetricamente distribuídos: sete ocupados e sete virtuais.

Figura 50: Os orbitais calculados da Figura 51 foram obtidos na perspectiva apresentada nesta imagem Fonte: do autor, 2024.

Figura 51: Orbitais de fronteira envolvidos nas principais transições do complexo 6. Fonte: do autor, 2024.

A Tabela 18 organiza de forma lógica os resultados coletados dos arquivos de saída dos cálculos TD-DFT. Descrição ainda não realizada pela equipe experimental.

Tabela contribu	18: Níveis Jições mino	de enerç pritárias	gia calculados, força	do oscilador (f), contribuições majorit	tárias,
Estado	λ (nm)	f	Maiores	Menores	

Estado	λ (nm)	f	Maiores	Menores
S1	339	0,21	HOMO → LUMO (82%)	HOMO \rightarrow L+2 (4%), HOMO \rightarrow L+3
				(3%)
S2	308,5	0,18	H-2 → LUMO (74%)	H-4 → LUMO (11%)
				H-4 → L+1 (3%),
				H-2 → L+1 (3%)
S3	290,8	0,56	H-4 → LUMO (53%),	H-6 → LUMO (5%),
			H-2 → LUMO (16%)	H-5 → LUMO (8%),
				H-2 → L+1 (5%),
				H-1 → LUMO (3%)
S4	257,5	0,22	H-2 → L+1 (47%)	H-11 → LUMO (7%),
				H-9 → LUMO (2%),
				H-6 → LUMO (4%),
				H-5 → LUMO (5%),
				H-4 \rightarrow LUMO (7%), HOMO \rightarrow L+1
				(3%), HOMO \rightarrow L+2 (6%), HOMO \rightarrow L+3 (2%), HOMO \rightarrow L+6 (4%)
----	-------	------	------------------	---
S5	225,8	0,08	H-9 → LUMO (35%)	$H-17 \rightarrow LUMO (10\%),$
				$H-16 \rightarrow LUMO(12\%),$
				H-11 → LUMO (8%),
				H-8→LUMO (7%),
				H-2→L+1 (5%)
S6	224,2	0,17	H-4 → L+1 (37%)	H-6→L+1 (6%),
	,	,		H-5 → L+1 (5%).
				H-2 → LUMO (3%).
				H-2→L+2 (5%).
				H-2→L+3 (6%).
				H-2 → L+4 (2%).
				H-2→L+5 (5%).
				HOMO → L+1 (6%)
S7	212,5	0,13	H-5 → L+2 (35%),	H-6 → L+2 (2%),
	,	,	H-2→L+2 (25%)	$H-5 \rightarrow L+4$ (4%),
			× ,	$H-4 \rightarrow L+2$ (4%),
				H-3 → L+4 (8%)
S8	204,3	0,26	H-2→L+3 (27%)	H-4 → L+1 (10%)
			× ,	H-13 → LUŇO (4%),
				H-11 → L+1 (4%),
				$H-5 \rightarrow L+1 (5\%),$
				H-4 → L+2 (5%),
				H-4 → L+3 (2%),
				H-2→L+4 (6%),
				H-2 → L+5 (4%),
				H-1 → L+3 (2%),
				H-1 → L+4 (4%)
S9	199,4	0,08	H-2→L+5 (15%)	H-4 → L+3 (12%),
				H-11 → L+1 (3%),
				H-10 → L+6 (3%),
				H-5 → L+3 (5%),
				H-4 → L+1 (3%),
				H-4 → L+2 (2%),
				H-4 → L+4 (2%),
				H-3 → L+6 (3%),
				H-2 → L+2 (3%),
				H-2 → L+3 (9%)

Elaborada pelo autor, 2024.

Complexo de Au(I) com ligantes tiocarbamoilpirenopirazolina-1,3,5-Trissubstituído e cloreto **(complexo 7)**. A Figura 52 mostra que o gráfico calculado não representa bem a forma alargada do espectro da solução entre 350 e 450 nm, aproximadamente. No entanto, os valores máximos dos picos são bem descritos. A Figura 53 mostra a maior semelhança entre os cálculos teóricos com e sem efeito de solvente. As curvas vermelha e verde são praticamente idênticas.

Figura 52: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 7. Fonte: do autor, 2024.

Figura 53: Espectros eletrônicos de absorção molecular experimental e calculado do complexo 7 com a adição do espectro calculado considerando a molécula no vácuo Fonte: do autor, 2024.

A Figura 54 mostra a melhor posição para representar de forma inequívoca a posição dos átomos. Foi nela em que o diagrama da Figura 55 teve os orbitais representados.

Figura 54: Os orbitais calculados da Figura 55 foram obtidos na perspectiva apresentada nesta imagem

Fonte: do autor, 2024.

Figura 55: Orbitais de fronteira envolvidos nas principais transições do complexo 7 Fonte: do autor, 2024.

Em todos os diagramas com as principais transições eletrônicas dos complexos, repara-se, como na Figura 55, que há comprimentos de ondas em que duas ou três transições são importantes.

A Tabela 19 resume os principais estados com os respectivos comprimentos de ondas, força de oscilador, e as contribuições. A "Descrição" ainda não foi realizada pelos colegas experimentalistas.

Tabela 19: Níveis de energia calculados, força do oscilador (f), contribuições majoritárias, contribuições minoritárias

Estado	λ (nm)	f	Maiores	Menores
S1	373,3	1,03	HOMO → LUMO (84%)	H-1→LUMO (10%)
S2	278,5	0,18	H-3→LUMO (15%),	H-1 → L+1 (11%),
			HOMO → L+1 (51%)	H-3 → L+2 (4%),
				H-1 → L+5 (2%), HOMO → LUMO
				(2%), HOMO → L+2 (4%)
<u>S3</u>	269,8	0,08	H-9 → LUMO (24%),	H-7 → LUMO (3%),

			H-8 → LUMO (28%),	H-3→LUMO (7%),
			H-6 → LUMO (16%)	$H-3 \rightarrow L+1$ (2%),
C 4	250.1	0.1		$H-1 \rightarrow L+2$ (3%), HOMO $\rightarrow L+2$ (5%)
54	258,1	0,1	$H = 0 \rightarrow LOMO (19\%),$	$H^{-1} \rightarrow L^{+1} (10\%),$
			HOMO \rightarrow L+2 (22%),	$H-9 \rightarrow LUNU (3\%),$ $H_2 = LUMO (4\%) H_1 = L+5 (5\%)$
			$10000 \rightarrow 1000$	$H_{-1} = 1 + 6 (206) H_{-1} = 1 + 7$
S 5	220.8	0.13	H-3 J +1 (37%)	$H_1 \rightarrow L^+ 0 (270), \Pi^- 1 \rightarrow L^+ 7$ $H_1 \rightarrow L^+ 2 (10\%)$
00	223,0	0,10	110 - 2 - 1 (01 /0),	H = 0.0000000000000000000000000000000000
				$H-2 \rightarrow L+1$ (5%). HOMO $\rightarrow L+3$
				(8%). HOMO \rightarrow L+6 (6%)
S6	219,4	0,14	H-11 → LUMO (27%),	H-3→L+2 (13%)
				H-13 → LUNO (4%),
				H-12 → LUMO (7%),
				H-9→L+1 (2%),
				H-8 → L+1 (3%),
				H-3 → L+1 (7%),
				H-3 → L+5 (3%),
				$H-1 \rightarrow L+1(3\%),$
				H-1→L+3 (6%)
S7	215	0,15	H-3→L+2 (19%),	H-13 → LUMO (11%),
			H-3→L+5 (18%)	H-16 → LUMO (4%),
				H-10 → L+1 (2%),
				H-9→L+1 (8%),
				H-9 → L+2 (4%),
				$H-3 \rightarrow L+6 (2\%),$
				$H-1 \rightarrow L+2 (3\%),$
<u></u>	010.4	0.00		$HOMO \rightarrow L+6 (3\%)$
58	210,4	0,29	H-1→L+6 (23%)	$H-8 \rightarrow L+1 (5\%),$
				$H-b \rightarrow L+1$ (8%),
				$H-5 \rightarrow L+1 (7\%),$
				$H-4 \rightarrow L+7 (2\%),$
				$\Pi^{-} \Im \to L^{+} Z (0\%),$ $\Pi^{-} \Im \to L^{+} Z (2\%) = \Pi^{-} \Im \to L^{+} Z (2\%)$
				(206) HOMO L+7 (206)
				$(290), HOMO \rightarrow L+7 (290),$
50	208.7	0.24	H_{-3} , L_{+2} (16%)	$H_{-6} = 1 + 1 (12\%)$
00	200,7	0,24	$H_{-1} \downarrow +6 (16\%)$	$H_{-16} \downarrow I I MO (5\%)$
				$H-8 \downarrow +1 (4\%)$
				$H-3 \rightarrow 1 + 8 (2\%) HOMO \rightarrow 1 + 1$
				(3%) , HOMO \rightarrow 1+2 (3%).
				$HOMO \rightarrow 1 + 6 (3\%)$

Elaborada pelo autor, 2024.

Com exceção do complexo 1, os espectros simulados com efeito de solvente implícito obtiveram resultados melhores, ao menos um pouco, que no vácuo.

5.3 Espectroscopia Vibracional na Região do Infravermelho com Transformada de Fourie (FTIR).

Alguns programas de modelagem e visualização de moléculas são capazes de mostrar a animação do movimento vibracional para os modos obtidos pela simulação. O que facilita a comparação das atribuições dos espectros experimentais e nossos cálculos. Um exemplo usando o programa GaussView é mostrado na Figura 56. A maior utilidade para os espectros de FTIR simulados é apontar se, de fato, a otimização de geometria foi bem-sucedida, ou seja: as forças sobre todos os átomos são nulas e indicam um ponto estacionário na superfície de energia potencial. Se os espectros calculados apresentarem frequências vibracionais imaginárias, a estrutura não está otimizada. Em alguns casos as frequências imaginárias podem indicar um estado de transição entre dois mínimos de energia e ser, portanto, útil na elucidação de mecanismos da reação química em estudo. Veremos que todos os espectros calculados não apresentam frequências imaginárias e têm certa concordância com os dados experimentais e da literatura. Dada a complexidade visual dos espectros, optamos por não sobrepô-los. Os gráficos simulados estão em uma **escala arbitrária**.

Figura 56: O modo vibracional usado como exemplo corresponde aos estiramentos da ligação C-H dos anéis do ligante naftil. É possível, inclusive, salvar em vídeo a animação do modo vibracional selecionado Fonte: do autor, 2024.

Complexo 1: as Figuras 57 e 58 são dos espectros FTIR experimental e teórico.

Figura 57: Espectro de FTIR experimental do complexo 1 Fonte: (NASCIMENTO, 2023).

Figura 58: Escpectro de FTIR calculado do complexo 1 Fonte: do autor, 2024.

A Tabela 20 compara as atribuições experimentais e calculadas.

Vibrações características	Número de onda (cm ⁻¹)		
	Experimental	Calculado	
v(C-H) _{trz}	3132-3110	3309-3307	
v(C-H)	2941-2831	3087-3006	
v(C=N)	1614	1595	
v(C=C)	1502	1609	
v(C-O-CH3)	1247	1328	
v(N-N)	1319	1244	

Tabela 20: Comparação das atribuições

Elaborada pelo autor, 2024. Adaptado de NASCIMENTO, 2023.

Complexos 2 e 3: as Figuras 59 e 60 correspondem, respectivamente, aos espectros experimental e teórico do complexo 2.

Figura 59: Espectro de FTIR experimental do complexo 2 Fonte: equipe experimental, 2024.

Figura 60: Escpectro de FTIR calculado do complexo 2 Fonte: do autor, 2024.

As Figuras 61 e 62 são do complexo 3 e correspondem aos gráficos experimental e o calculado, respectivamente.

Figura 61: Espectro de FTIR experimental do complexo 3 Fonte: equipe experimental, 2024.

Figura 62: Escpectro de FTIR calculado do complexo 3 Fonte: do autor, 2024.

A Tabela 21 compara os modos vibracionais principais dos complexos 2 e 3. A letra v representam os estiramentos, e os índices *a* e *s* significam estiramento assimétrico e simétrico, respectivamente. δ denota deformação angular no plano, enquanto y a deformações fora do plano.

Tabela 21: FTIR calculado dos comple	lexos 2 e 3 comparados
--------------------------------------	------------------------

Modos vibracionais marcados nos gráficos teóricos	Número de onda (cm ⁻¹)		
	Complexo 2	Complexo 3	
v _a (N-H)	3637	3660	
v _s (N-H)	3379	3468	
v _s (C-H) _{ar}	3183	3180	
δ(N-H)	1689	1682	
v(C=N)	1558	1585	
v(C=C)	1437	1430	
δ(C-H) _{ar}	1143	1137	
γ(N-H)	898	869	

Elaborada pelo autor, 2024.

A Tabela 22 organiza os dados interpretados dos espectros experimentais e os compara com os calculados.

Modos vibracionais	Número de onda (cm ⁻¹)					
	Complexo 2 experimental	Complexo 2 calculado	Complexo 3 experimental	Complexo 3 calculado		
V(IN-IT)	3494-3112	0026-7500	5494-5122	5500-5408		
v(C-H) _{ar}	3062-3038	3195-3146	3030-3013	3250-3158		
v(C-H)	2936-2907	3090-3030	2993-2890	3114-3043		
v(C=N)	1715-1592	1574-1558	1695-1554	1589-1544		
v(C=S)	1341	1375	1341	1393		
v(C=S)	814	839	846	841		
δ(C-H)	949-699	997-956	958-665	1004-812		
v(C-Cl) _{ar}	746	809	751	812		
δ(C-H) _{ar}	1016	1143	1012	1137		
δ(C-Cl) _{ar}	719	765	715	761		

Tabela 22: Comparativo dos resultados experimentais, fornecidos pela equipe experimental, e calculados

Elaborada pelo autor, 2024.

Complexos 4-7: os pares formados pelas Figuras 63-64 e 65-66 são do complexo 4 e 5 respectivamente. Os gráficos experimentais precedem os teóricos.

Figura 63: Espectro de FTIR experimental do complexo 4 Fonte: equipe experimental, 2024.

Figura 64: Escpectro de FTIR calculado do complexo 4 Fonte: do autor, 2024.

Figura 65: Espectro de FTIR experimental do complexo 5 Fonte: equipe experimental, 2024.

Figura 66: Escpectro de FTIR calculado do complexo 5 Fonte: do autor, 2024.

A Tabela 23 compara os resultados teóricos entre os complexos 4 e 5.

Modos vibracionais marcados nos gráficos teóricos	Número de onda (cm ⁻¹)		
	Complexo 4	Complexo 5	
v _a (N-H)	3709	3690	
v _s (N-H)	3553	3547	
v _s (C-H) _{ar}	3212	3198	
v(C=N)	1561	1587	
δ(C-H)	1452	1534	
v(C=C)	1443	1683	
v(N-N)	1152		
v(C-C)		1267	
δ(C-H) _{ar}	1137	1207	
$\delta(N-H_2)$	934		
γ(C-H) _{ar}	760		

Elaborada pelo autor, 2024.

A Tabela 24 compara os resultados teóricos e experimentais. v denotam estiramentos e os índices *a* e *s* significam estiramento assimétrico e simétrico, respectivamente. δ denota deformação angular no plano, enquanto γ para deformações fora do plano.

Tabela 24: Comparativo dos resultados experimentais, fornecidos pela equipe experimental, e calculados

Modos vibracionais	Número de onda (cm ⁻¹)				
	Complexo 4	Complexo 4	Complexo 5	Complexo 5	
	experimental	calculado	experimental	calculado	
v(N-H)	3481-3144	3709-3553	3474-3184	3690-3547	
v(C-H) _{ar}	3050-3144	3217-3171	3060-3043	3262-3188	
v(C-H)	2956-2886	3109-3007	2970-2902	3100-3033	
v(C=N)	1679-1591	1594-1540	1699-1586	1587-1552	
v(C=S)	1385	1381	1388	1380	
v(C=S)	844	861	847	867	
δ(C-H)	958-684	907-824	956-692	919	
v(C-P)	1105	1024	1098	1024	
v(C-Cl)	756	793	753	796	
δ(C-H) _{ar}	1009	1051	1009	1051	
δ(C-Cl) _{ar}	706	743	706	751	

Elaborada pelo autor, 2024.

Os pares formados pelas Figuras 67-68 e 69-70 são os gráficos dos complexos 6 e 7. Primeiro é mostrado o espectro experimental e, em seguida, os teóricos.

Figura 67: Espectro de FTIR experimental do complexo 6 Fonte: equipe experimental, 2024.

Fonte: do autor, 2024

Fonte: equipe experimental, 2024.

Figura 70: Escpectro de FTIR calculado do complexo 7 Fonte: do autor, 2024.

A Tabela 25 compara os resultados teóricos dos complexos 6 e 7. v são estiramentos e os índices *a* e *s* significam estiramento assimétrico e simétrico, respectivamente. δ denota deformação angular no plano, enquanto y para deformações fora do plano.

Modos vibracionais marcados no gráfico	Número de onda (cm ⁻¹)		
-	Complexo 6	Complexo 7	
v _a (N-H)	3723	3723	
v _s (N-H)	3570	3554	
v _s (C-H) _{ar}	3194	3284	
v(C-H)	3063	3061	
v(C=C)	1348		
v(C=N)	1626	1550	
$\delta(N-H_2)$		822	
y(C-H) _{ar}	1025	1020	
	853		

Elaborada pelo autor, 2024.

A Tabela 26, por sua vez, compara as interpretações obtidas dos experimentos de FTIR e os obtidos por DFT.

Modos vibracionais	Número de onda (cm ⁻¹)				
	Complexo 6 experimental	Complexo 6 calculado	Complexo 7 experimental	Complexo 7 calculado	
v(N-H)	3416-3054	3761-3607	3494-3122	3703-3554	
v(C-H) _{ar}	3054	3247-3192	3030-3013	3284-3198	
v(C-H)	2972-2910	3116-3063	2993-2890	3144-3061	
v(C=N)	1719-1582	1666-1547	1695-1554	1699-1515	
v(C=S)	1373	1376	1341	1378	
v(C=S)	816	862	846	822	
δ(C-H)	939-644	906	958-665	934	
		782		672	
v(C-Cl)	747	795	751	804	
δ(C-H) _{ar}	1007	1042	1012	1114	
δ(C-Cl) _{ar}	712	644	715	743	

Tabela 26: Comparativo dos resultados experimentais, fornecidos pela equipe experimental, e calculados

Elaborada pelo autor, 2024.

Alguns espectros experimentais têm bandas próximas à 2400 cm⁻¹, e nenhum espectro calculado mostrou tais bandas. Isso se deve ao fato de se tratarem de bandas de estiramento de ligações CO. O que de acordo com a equipe experimental é próprio do aparelho usado na aquisição dos dados experimentais.

Observa-se que os gráficos teóricos são mais simples do que os experimentais. Isso ocorre devido a vários fatores, como a ausência de modos anarmônicos, que não podem ser adequadamente representados pela aproximação de um oscilador harmônico. Tais modos podem ser calculados por métodos pós-DFT, mas exigem um alto custo computacional. Além disso, os cálculos não consideraram efeitos isotópicos. Se compararmos os modos vibracionais a sistemas massa-mola, uma variação da massa (devido a diferentes isótopos) alteraria as frequências vibracionais.

5.4 Mapa de Potencial Eletrostático (MEP)

Ainda que no contexto imediato dos nossos objetivos os MEPs (do inglês *Molecular Electrostatic Potential*) não tenham muita utilidade, lembramos que os nossos caros colaboradores experimentalista têm por intuito o desenvolvimento de novos fármacos e novos agentes de bioimageamento celular; MEPs podem servir de ponto de partida para modulação de polaridade de ligantes, algo útil no design de novos fármacos e outras aplicações bioquímicas.

Ao combinar os MEPs com outras técnicas *in silico*, como a ancoragem molecular (*Molecular Docking*), esse objetivo pode receber um novo *insight*, mas como? A docagem

molecular é uma ferramenta muitíssimo útil no planejamento e na redesignação de fármacos, determinar a toxicidade de substâncias e elucidar interações moleculares. Os MEPs podem sugerir sítios preferenciais de ligação com base em interações eletrostáticas entre alvo e ligante. Além disso, os MEPs podem aprimorar modelos de docking ajustando as interações entre o campo de força do ligante e o receptor. Adicionalmente, a comparação entre o MEP do complexo e o campo eletrostático da cavidade ativa, ajuda a validar a compatibilidade de interações.

As cargas mais negativas são mostradas em vermelho. E as regiões positivas em azul. Verde mapeia as áreas neutras.

As Figuras 71 a 77 mostram os MEP lado a lado das perspectivas em que estão sendo explicitados.

Complexo 1:

Figura 71: MEP do complexo 1 Fonte: do autor, 2024

Complexo 2:

Figura 72: MEP do complexo 2 Fonte: do autor, 2024.

Figura 73: MEP do complexo 3 Fonte: do autor, 2024.

Complexo 4:

Figura 74: MEP do complexo 4 com a perspectiva selecionada para a imagem Fonte: do autor, 2024.

Complexo 5:

Figura 75: MEP do complexo 5 Fonte: do autor, 2024.

Complexo 6:

Figura 76: MEP do complexo 6 com a perspectiva selecionada para a imagem Fonte: do autor, 2024.

Complexo 7:

Figura 77: MEP do complexo 7 Fonte: do autor, 2024.

6. CONCLUSÕES

A metodologia desenvolvida para a seleção de funcionais de troca-correlação revelou-se adequada aos sistemas estudados. Apenas três funcionais selecionados foram suficientes para analisar os sete complexos e alcançar os objetivos propostos nas simulações. Os resultados de otimização de geometria mostraram-se satisfatórios, apresentando consistência tanto entre si quanto em comparação com dados experimentais e da literatura. As discrepâncias observadas encontram-se, em geral, dentro dos limites esperados, conforme descrito por autores consultados. Para os complexos de camada fechada, os resultados foram, de modo geral, mais precisos do que para o complexo de cobre(II), cuja multiplicidade 2 impõe desafios adicionais para a representação fiel das variáveis físicas observáveis.

Os espectros de UV-Vis calculados por TD-DFT, embora não apresentem perfeita sobreposição com os experimentais, reproduzem adequadamente os comprimentos de onda associados às absorções e os picos principais. Considerar o efeito do solvente nos cálculos tendeu a melhorar a concordância com os dados experimentais, com exceção do complexo de cobre(II), cujo espectro calculado no vácuo forneceu resultados mais satisfatórios. Os estados excitados e os orbitais de fronteira obtidos nos cálculos foram fundamentais para auxiliar a equipe experimental na interpretação dos fenômenos de transferência de carga, observados nos complexos 1, 2 e 4; espera-se que análises similares sejam realizadas em breve para os outros quatro complexos. Além disso, os espectros vibracionais corroboram que as geometrias otimizadas estão em boa concordância com os resultados experimentais.

Os potenciais eletrostáticos moleculares (MEPs) permitiram visualizar, em detalhes, a distribuição de carga nos sistemas. Foi possível distinguir o átomo de cloro dos íons cloreto quando presentes, verificando suas cargas parciais negativas (representadas em vermelho). Esses resultados podem, futuramente, servir como ponto de partida para trabalhos envolvendo métodos computacionais complementares, como estudos de ancoragem molecular.

Por fim, anseia-se que os diagramas, espectros e tabelas obtidos por meio dos métodos DFT e TD-DFT contribuam significativamente para os manuscritos a serem submetidos às revistas especializadas, fomentando, mesmo que de forma singela, o avanço do estudo de materiais com potencial para beneficiar a sociedade em diversas aplicações.

7. REFERÊNCIAS

AKASH, M. S. H.; REHMAN, K. Ultraviolet-Visible (UV-Vis) Spectroscopy. In: Essentials of Pharmaceutical Analysis. Springer, Singapore. 2020. https://doi.org/10.1007/978-981-15-1547-7_3.

ALLOUCHE, A-R. Gabedit—A graphical user interface for computational chemistry softwares. J. Comput. Chem., 32: 174-182. https://doi.org/10.1002/jcc.21600

AMRI, N. A; ALAGHAZ, A-N M. A.; NOHA, S. B.;EL-BINDARY, A. A. Synthesis, structural characterization, in vitro biological activity, and DFT calculations of Cu(II) complex. Apllied Organometallic Chemistry. volume 38, Issue 7, 2024.

ASKWITH, C.; EIDE, D.; VAN HO, A.; BERNARD, P. S.; LI, L.; DAVIS-KAPLAN, S.; SIPE, D. M.; KAPLAN, J. Cell 1994, 76, 403–410.

ASVANY, O.; SCHLEMMER, S. Rotational Action Spectroscopy of Trapped Molecular Ions. Phys. Chem., 2021, 23, 26602-26622. DOI: 10.1039/D1CP03975J.

ATKINS, P.; PAULA, J.; KEELER, J. Physical Chemistry. 11th Edition. New York, 2018.

BARONE, V.; ALESSANDRINI, S.; BICZYSKO, M. et al. **Computational Molecular Spectroscopy**. Nat Rev Methods Primers 1, 38 (2021). <u>https://doi.org/10.1038/s43586-021-00034-1</u>.

BECKE, A. D. J. Density-functional thermochemistry. III. The role of exact exchange

BECKE, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098, 1988 BELL, J. S. Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, 2011. <u>https://doi.org/10.1017/CB09780511815676</u>

BENEDEK, T. G. **The History of Gold Therapy for Tuberculosis**. J Hist Med Allied Sci. 2004 Jan;59(1):50-89. doi: 10.1093/jhmas/jrg042. PMID: 15011812.

BOYD, R. J. **The Nobel History of Computational Chemistry. A Personal Perspective**. Comput. Chem. 2024, 45(22), 1921. <u>https://doi.org/10.1002/jcc.27383</u>.

BRITANNICA, T. Editors of Encyclopaedia. **Copper**. Encyclopedia Britannica. 2023, November 30. <u>https://www.britannica.com/science/copper</u>. Accessed 15 December 2023.

BRITANNICA, T. Editors of Encyclopaedia. **Gold**. Encyclopedia Britannica, 2023, December 7. <u>https://www.britannica.com/science/gold-chemical-element</u>. Accessed 15 December 2023.

BRITANNICA, T. Editors of Encyclopaedia. **Silver**. Encyclopedia Britannica. 2023, November 25. <u>https://www.britannica.com/science/silver</u>. Accessed 15 December 2023.

BUTLER, I. S.; SEDMAN, J.; ISMAIL, A. A. **FT-IR Spectra of Coordination Compounds. In: Theophanides**, T. (eds) Fourier Transform Infrared Spectroscopy. Springer, Dordrecht. <u>https://doi.org/10.1007/978-94-009-6418-1_6</u>.

Chem. Phys. 98, 5648–5652 (1993).

CHERMETTE, H. Density functional theory: A powerful tool for theoretical studies in coordination chemistry. Coordination Chemistry Reviews volumes 178-180, part 1 December 1998, Pages 699-721

CULOTTA, V. C.; LIN, S. J.; SCHMIDT, P.; KLOMP, L. W.; CASARENO, R. L.; GITLIN, J. Adv. Exper. Med. Bio. 1999, 448, 247-254.

CUNDARI, T. R. Computational Organometallic Chemistry. Marcel Dekker, Inc.: New York, 2001.

DÁVILA, M. E.; XIAN, L.; CAHANGIROV, S.; RUBIO, A; LE LAY. **Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene**. *New J. Phys.* 16 095002 (2014)

DENNINGTON, ROY; KEITH, TODD A.; MILLAM, JOHN M. **GaussView**, Version 6.1, Semichem Inc. Shawnee Mission, KS, 2016.

FARRELL, N. **Biomedical uses and applications of Inorganic Chemistry. An overview.** Coordination Chemistry Reviews, v. 232, p. 1-4, 2002.

FOX, P. L. Biometals 2003, 16, 9–40.

FREITAS, L. C. G.; OLIVEIRA, G. S. Aplicações da Química Teórica no Estudo de Materiais: Método In Silico para Nanomateriais. São Carlos: EdUFSCar, 2018.

FRISCH, M.J.; TRUCK, G.W.; SCHLEGEL, H.B; SCUSERIA, G.E.; ROBB, M.A., CHEESEMAN, J.R.; SCALMANI, G.; BARONE, V.; PETERSSON, G.A.; NAKATSUJI, H.; LI, X.; CARICATO, M.; MARENICH, A.V.; BLOINO, J., JANESKO, B.G.; GOMPERTS, R.; MENNUCCI, B.; HRATCHIAN, H.P.; ORTIZ, J.V., IZMAYLOV, A.F.; SONNENBERG, J.L.; WILLIAMS-YOUNG, D.; DING, F.; LIPPARINI, F.; EGIDI, F.; GOINGS, J.; PENG, B.; PETRONE, A.; HENDERSON, T.; RANASINGHE, D.; ZAKRZEWSKI, V.G.; GAO, J.; REGA, N.; ZHENG, G.; LIANG, W.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y., KITAO; O., NAKAI, H.; VREVEN, T.; THROSSELL, K.; MONTGOMERY JR.; J.A., PERALTA, J.E.; OGLIARO, F.; BEARPARK, M.J.; HEYD, J.J.; BROTHERS, E.N.; KUDIN, K.N.; STAROVEROV, V.N.; KEITH, T.A.; KOBAYASHI, R.; NORMAND, J.; RAGHAVACHARI, K.; RENDELL, A.P.; BURANT, J.C.; IYENGAR, S.S.; TOMASI, J.; COSSI, M.; MILLAM, J.M.; KLENE, M.; ADAMO, C.; CAMMI, R.; OCHTERSKI, J.W.; MARTIN, R.L.; MOROKUMA, K.; FARKAS, O.; FORESMAN, J.B.; FOX, D.J. GAUSSIAN, INC., Revision B.01,

GE-QI MAO et al. DFT-1/2 and shell DFT-1/2 methods: electronic structure calculation for semiconductors at LDA complexity. J. Phys.: Condens. Matter 34 403001 (2022)

GOERIGK, L.; GRIMME, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. *Phys. Chem. Chem. Phys.*, 2011,13, 6670-6688

GORMAN, D. S.; LEVINE, R. P. Plant Physiol. 1966, 41, 1637–1642.

HALL, M.D. e HAMBLEY, T.W. **Platinum(IV) antitumor compounds. Their Bioinorganic Chemistry**. Coordination Chemistry Reviews, v. 232, n. 1, p. 49-67, 2002.

HANWELL, M. C.; CURTIS, D. E.; LONIE, D. C., VANDERMEERSCH, T.; ZUREK, E.; HUTCHISON, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics volume 4, Article number: 17 (2012).

HAUNSCHILD, R., BARTH, A. & MARX, W. Evolution of DFT studies in view of a scientometric perspective. *J Cheminform* 8, 52 (2016)

HELMENSTINE, A. N. Spectroscopy Definition. 2021. Retrieved from <u>https://www.thoughtco.com/definition-of-spectroscopy-605676</u>.

HILLISCH, A; HEINRICH, N.; WILD, H. Computational Chemistry in the Pharmaceutical Industry: From Childhood to Adolescence. ChemMedChem, 10(12), 1958-1962 (2015).

HOUSSA, M.; POURTOIS, G.; AFANAS'EV, V. V.; STESMANS, A. Electronic Properties of Two-Dimensional Hexagonal Germanium. Appl. Phys. Lett. 96, 082111 (2010).

HUTCHINSON, D.; CAMERON, S.; HANTON, L.; MORATTI, S. Inorg. Chem., 2012, 51, 5070.

IAKOVIDIS, I.; DELIMARIS, I.; PIPERAKIS, S. M. Copper and Its Complexes in Medicine: A Biochemical Approach. Molecular Biology International, vol. 2011, Article ID 594529, 13 pages, 2011. <u>https://doi.org/10.4061/2011/594529</u>.

JANSEN, F. Introduction to computational chemistry. Second Edition. West Sussex: John Wiley & sons, 2007.

KIM, K.; JORDAN, K. D., Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer. Phys.Chem. 98 (1994) 10089-10094, 1994

KÜMMEL, S.; KRONIK, L. **Orbital-dependent density functionals: Theory and applications.** Reviews of Modern Physics, 80(1), 3-60. 2008

LANGRETH, D. C.; MEHL, M. J. **Beyond the local-density approximation in calculations of ground-state electronic properties**. Phys. Rev. B **28**, 1809, LESZCZYNSKI, J. Handbook of Computational Chemistry. 1st edition. Springer Dordrecht, 2012.

LEVINE, I. N. Quantum Chemistry. Seventh Edition. Boston: Pearson, 2014.

MANLY, C. J.; LOUISE-MAY, S.; HAMMER, J. D. The impact of informatics and computational chemistry on synthesis and screening. Drug Discovery Today, Volume 6, Issue 21, 2001, Pages 1101-1110.

MARENICH, A. V. ; CRAMER, C. J. ; TRUHLAR, D. G. "Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions" J. Phys. Chem. B, 113 (2009) 6378-96.

MASSEY, A. G.; THOMPSON, N. R.; JOHNSON, B. F. G.; DAVIS, R. The Chemistry of Copper, Silver and Gold. Oxford, 1973.

MCHALE, J. L. **Molecular Spectroscopy**. Second Edition. CRC Press, Boca Raton, USA 2017.

MEDICI, S.; PEANA, M.; NURCHI, V. M.; ZORODDU, M. A. **Medical Uses of Silver: History, Myths, and Scientific Evidence**. J. Med. Chem. 2019, 62, 13, 5923–5943. https://doi.org/10.1021/acs.jmedchem.8b01439.

MONTINA, A., **Exponential complexity and ontological theories of quantum mechanics.** Phys. Rev. A 77, 022104, 2008.

MORGON, N. H., et al., **Métodos de química teórica e modelagem molecular**. São Paulo: Editora Livraria da Física. 2007

NAGAI, R.; AKASHI, R. **Development of Exchange-Correlation Functionals Assisted by Machine Learning.** In: Qu, C., Liu, H. (eds) Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics, vol 36. Springer, 2023

NASCIMENTO, J. P. C., **Novos Complexos de Cu^{II} Baseados em Ligantes 1,2,3-Triazois 1,4-Dissubstistuidos com Promissora Atividade Antileischmaniose.** Dissertação (mestrado em química) – Intituto de Química, UFMS. Campo Grande, p. 54. 2023

NATHAN, L. C. J. **The Characterization of a Coordination Complex Using Infrared Spectroscopy: An Inorganic or Instrumental Experiment**. Chem. Educ. 1974, 51, 4, 285. Publication Date: April 1, 1974. <u>https://doi.org/10.1021/ed051p285</u>.

NEESE, F., **Software update: the ORCA program system -- Version 5.0** Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022, 12, 1, e1606.

NONGPIUR, C. G. L.; VERMA, A. K.; SINGH, R. K.; GHATEC, M. M.; POLURI, KRISHNA MOHAN; KAMINSKY, W.; KOLIPARA, M. R. Half-Sandwich Ruthenium(II), Rhodium(III) and Iridium(III) Fluorescent Metal Complexes Containing Pyrazoline Based Ligands: DNA Binding, Cytotoxicity and Antibacterial Activities. Journal of Inorganic Biochemistry 2023, 238, 112059

O'BOYLE; VOS, 2005: , **GaussSum 3.0** Dublin City University: Dublin, Ireland. Disponível em: <u>https://gausssum.sourceforge.net/</u>

PAVIA, D. L.; LAMPMAN, G. M.; KRIZ, G. S.; VYVYAN, J. R. Introduction to **Spectroscopy**. 5th edition. Connecticut. Cengage Learning, 2015.

PERDEW, J. P.; CHEVARY, J. A.; VOSKO, S. H.; JACKSON, KOBLAR A. PEDERSON, M. R.. SINGH, D. J.; FIOLHAIS, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978, 1993

PEVERATI, R.; TRUHLAR, D. G. Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. J. Phys. Chem. Lett. 2 (2011) 2810-2817. 2011

'**Photochemistry**' in IUPAC Compendium of Chemical Terminology, 3rd ed. International Union of Pure and Applied Chemistry; 2006. Online version 3.0.1, 2019. <u>https://doi.org/10.1351/goldbook.P04588</u>.1984

PIELA, L. Ideas of Quantum Chemistry. Volume 1: From Quantum Physics to Chemistry. 3th Edition. Elsevier: Amsterdam, 2020.

QADER, S. M.; MOHAMMED, A. H.; MUHAMMED, A. M.; OMER, R. A.; ABDULKAREE, E. I.; RASHID, R. F. **Potential of organometallic complexes in medicinal chemistry.** *Reviews in Inorganic Chemistry*, 2024. <u>https://doi.org/10.1515/revic-2024-0066</u>

RATIA, C.; SOENGAS, R. G.; SOTO, S. M. **Gold-Derived Molecules as New Antimicrobial Agents**. Front. Microbiol., 2022, March 23. Sec. Infectious Agents and Disease Volume 13 - 2022. <u>https://doi.org/10.3389/fmicb.2022.846959</u>.

RATIA, C.; SUEIRO, S.; SOENGAS, R. G.; IGLESIAS, M. J.; LÓPEZ-ORTIZ, F.; SOTO, S.
M. Gold(III) Complexes Activity Against Multidrug-Resistant Bacteria of Veterinary Significance. Antibiotics (Basel). 2022 Dec 1;11(12):1728. doi: 10.3390/antibiotics11121728. PMID: 36551386; PMCID: PMC9774617.

RODRIGUES, S. P. J.; CARIDADE, P. **História da Química Computacional e do Uso dos Computadores em Química**. História da Ciência e Ensino V. 25, 2022.

ROYAL SOCIETY OF CHEMISTRY. Periodic Table. 2011. https://www.rsc.org/periodic-table/

SHEVELKO, P. S. **Atoms and Their Spectroscopic Properties**. Springer Berlin, Heidelberg 1997. DOI: <u>https://doi.org/10.1007/978-3-662-03434-7</u>.

SHRIVER, D. F.; ATKINS, P. W. Química Inorgânica. 3ª ed. Bookman, p. 338, 339.

SILVA, F. I.; SOUSA, J.A., **Explorando a Química Computacional.** ed. Porto Alegre: PLUS / Simplíssimo: Teresina, 2019.

SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Identificação Espectrométrica de Compostos Orgânicos. 7ª ed. Rio de Janeiro. LTC 2012.

SIMONI, R. D.; HILL, R. L.; VAUGHAN, M.; TABOR, H. A **Classic Instrument: The Beckman DU Spectrophotometer and Its Inventor, Arnold O. Beckman**. Journal of Biological Chemistry, Volume 278, Issue 49, 79 – 81. DOI: <u>https://doi.org/10.1016/S0021-9258(20)75750-9</u>.

SKOOG, D. A.; WEST, D. M.; HOLLER, F. J. **Analytical Chemistry**. Saunders College Publishing, 1988.

SOBELMAN, I. I. Atomic Spectra and Radiative Transitions. Springer Science & Business Media, 2012.

SRIDHARAN, K. **Spectral Methods in Transition Metal Complexes**. Capítulo 2: Electronic Spectroscopy. Elsevier 2016. <u>https://doi.org/10.1016/B978-0-12-809591-1.00002-5</u>.

STEPHENS, P.J; DEVLIN, F. J.; CHABALOWSKI, C. F.; FRISCH, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J.Phys.Chem. 98 (1994) 11623-11627, 1994

TAKEDA, K.; SHIRAISHI, K. **Theoretical Possibility of Stage Corrugation in Si and Ge Analogs of Graphit**. Phys. Rev. B 50, 14916, 1994.

TSUCHIDA, R. Absorption Spectra of Co-ordination Compounds. I, Bulletin of the Chemical Society of Japan 1938. Volume 13, págs. 436-450.

VIANNA, J. D. M.; FAZZIO, A.; CANUTO, S., **Teoria Quântica de Moléculas e Sólidos – Simulação Computacional.** São Paulo: Editora Livraria da Física, 2018.

WONG, E.; GIANDOMENICO, C.M. Current status on platinum-based antitumor drugs. Chemical Reviews, v. 99, p. 2451-2466, 1999.

YEO, C. I.; OOI, K. K.; TIEKINK, E. R. T. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy? Molecules 2018, 23, 1410. https://doi.org/10.3390/molecules23061410.

YOUNG, D. C., **Computational Chemistry – A Pratical Guide for Applying Techniques to Real-World Problems.** JOHN WILEY & SONS, INC.: New York, 2001.

YU, H. S.; HE, X.; LI, S. L.; TRUHLAR, D. G. **MN15: A Kohn–Sham global-hybrid** exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. *Chemical Science* 2016, 7, 5032-5051.2016

ZENG, G.; SAKAKI, S.; FUJITA, K.; SANO, H.; YAMAGUCHI, R. Efficient Catalyst for Acceptorless Alcohol Dehydrogenation: Interplay of Theoretical and Experimental Studies. *ACS Catal.* 2014, 4, 3, 1010–1020

ZIELINSK, T. J.; HARVEY, E.; SWEENEY, R.; HANSON, D. M. **Quantum States of Atoms and Molecules**. Journal of Chemical Education 2005, 82 (12), 1880. DOI: 10.1021/ed082p1880.2.

ŻYRO, D.; SIKORA, J.; JÓŹWIK, M. I. S. **Silver, Its Salts and Application in Medicine and Pharmacy**. Int. J. Mol. Sci. 2023, 24(21), 15723; <u>https://doi.org/10.3390/ijms242115723</u>.

8. ANEXOS

Densidade de estados (DOS)

Complexo 1:

Complexo 2:

Complexo 3:

Complexo 4: As duas imagens são do mesmo espectro, a segunda, mostra um maior intervalo, de -20 eV a 5 eV.

Complexo 5:

Complexo 7:

Detalhes

sobre a

simulação da Figura 11: foi usado o método TD-DFT no software Orca 5, com o funcional híbrido PBE0 e bases def2-SVP para todos os átomos com exceção do titânio, nesse caso a base foi expandida para def2-TZVP.

Distâncias interatômicas: um pequeno *script* em python foi usado para apontar todos os átomos com distâncias menores ou iguais a 3 Å, o que inclui **todas as ligações** dos complexos (mesmo os átomos não ligados, mas que estão a menos de 3 Å entre si estão registrados abaixo). Os números são os rótulos dos átomos.

Complexo 1:

Distâncias interatômicas do complexo $1 \leq 3.00$ Å):

Cu-1 Cl-3 · 2 331 Å	C-25 C-28 · 2 /1/ Å	O-50 H-84 · 2 / 32 Å	O-50 H-80 · 2 11/ Å	H-83 H-8/ · 1 793 Å
C_{II-1} $N_{-7} \cdot 1.008$ Å	$C_{-25} = C_{-30} \cdot 1.401 \text{ Å}$	$O_{-51} = C_{-56} \cdot 2.405 \text{ Å}$	$H_{-60} = H_{-66} \cdot 2.750 \text{ Å}$	C-85 H-86 : 1.085 Å
$C_{11} \rightarrow N_{11} \rightarrow 1.550 \text{ A}$	$C_{23} \leftrightarrow C_{30} : 1.401 \text{ A}$	$0.51 \leftrightarrow 0.50.2.403 \text{ A}$	$H = 0 \qquad \bigcirc 75 \cdot 2.135 \text{ Å}$	$C = 05 \Leftrightarrow T = 00 : 1.005 \text{ A}$
$Cu = 1 \leftrightarrow N=0 : 2.900 \text{ A}$	$C_{25} \leftrightarrow H_{31} \cdot 2.140 \text{ A}$	$0.51 \leftrightarrow 0.63 \cdot 1.380 \text{ A}$	$H=00 \Leftrightarrow C=75.2.137 \text{ A}$	$C \xrightarrow{0}{0} \xrightarrow{0} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{0} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} 1$
$Cu-1 \leftrightarrow H-29 \cdot 2.959 \text{ A}$	C-25 ↔ C-40.2.456 A	$0.51 \leftrightarrow C.07.2.440 \text{ A}$	$H=00 \leftrightarrow H=70.2.464 \text{ A}$	C-05 ↔ H-00.1.092 A
CU-1 ↔ CI-48 : 2.329 A	C-25 ↔ H-42 : 2.802 A	0-51 ↔ C-81:1.469 A	$C-b1 \leftrightarrow C-b3: 2.786 \text{ A}$	$H-86 \leftrightarrow H-87 : 1.780 \text{ A}$
Cu-1 ↔ N-52 : 2.005 A	C-25 ↔ H-43 : 2.755 A	0-51 ↔ H-82 : 2.039 A	C-61 ↔ C-65 : 2.533 A	H-86 ↔ H-88 : 1.780 A
Cu-1 ↔ N-53 : 2.815 A	$C-26 \leftrightarrow H-27$: 1.079 Å	O-51 ↔ H-83 : 2.111 A	C-61 ↔ H-66 : 2.866 A	H-87 ↔ H-88:1.787 A
$Cu-1 \leftrightarrow H-74:2.936$ A	$C-26 \leftrightarrow C-28 : 1.396 \text{ Å}$	$O-51 \leftrightarrow H-84 : 2.112 \text{ Å}$	$C-61 \leftrightarrow C-67: 2.401 \text{ Å}$	$H-89 \leftrightarrow H-90:1.790 \text{ Å}$
O-2 ↔ C-25 : 1.394 Å	C-26 ↔ H-29 : 2.144 Å	N-52 ↔ N-53 : 1.330 Å	C-61 ↔ C-68 : 1.394 Å	H-89 ↔ H-91 : 1.779 A
O-2 ↔ C-26 : 2.467 Å	C-26 ↔ C-30 : 2.426 Å	N-52 ↔ N-54 : 2.153 Å	C-61 ↔ H-69 : 2.138 Å	H-90 ↔ H-91 : 1.779 Å
O-2 ↔ H-27 : 2.751 Å	C-26 ↔ C-40 : 2.894 Å	N-52 ↔ C-55 : 2.522 Å	C-62 ↔ C-65 : 1.385 Å	
O-2 ↔ C-30 : 2.365 Å	C-26 ↔ H-42 : 2.883 Å	N-52 ↔ C-62 : 1.383 Å	C-62 ↔ H-66 : 2.239 Å	
O-2 ↔ H-31 : 2.539 Å	C-26 ↔ H-43 : 2.897 Å	N-52 ↔ C-65 : 2.213 Å	C-62 ↔ C-73 : 2.497 Å	
O-2 ↔ C-40 : 1.458 Å	H-27 ↔ C-28 : 2.139 Å	N-52 ↔ H-74 : 2.838 Å	C-62 ↔ H-74 : 2.717 Å	
O-2 ↔ H-41 : 2.031 Å	H-27 ↔ H-29 : 2.450 Å	N-53 ↔ N-54 : 1.368 Å	C-63 ↔ C-67 : 1.407 Å	
O-2 ↔ H-42 : 2.115 Å	H-27 ↔ C-40 : 2.596 Å	N-53 ↔ C-61 : 2.420 Å	C-63 ↔ C-68 : 2.439 Å	
O-2 ↔ H-43 : 2.109 Å	H-27 ↔ H-42 : 2.355 Å	N-53 ↔ C-62 : 2.239 Å	C-63 ↔ C-81 : 2.441 Å	
O-2 ↔ H-80 2.613 Å	H-27 ↔ H-43 2.457 Å	N-53 ↔ C-65 2.251 Å	C-63 ↔ H-83 2.723 Å	
$Cl-3 \rightarrow H-74 \cdot 2.725 \text{ Å}$	$C-28 \rightarrow H-29 \cdot 1.082 \text{ Å}$	$N-53 \rightarrow C-68 \cdot 2.862 \text{ Å}$	$C-63 \rightarrow H-84 \cdot 2.768 \text{ Å}$	
$0.4 = 0.6 \cdot 2.678 \text{ Å}$	$C_{-28} = C_{-30} + 2.792 \text{ Å}$	N-53 H-69 2 570 Å	C-64 H-89 · 1 093 Å	
$0.4 - 0.11 \cdot 1.384$ Å	$H_{29} \subseteq CI_{48} \cdot 2.850 \text{ Å}$	N-54 \bigcirc C-57 $\cdot 2.440^{\circ}$	$C-64 \rightarrow H-00 \cdot 1.003 \text{ Å}$	
O_{-1} $C_{-12} \cdot 2.455$ Å	$C_{30} = H_{31} \cdot 1 080 \text{Å}$	$N_{-54} = 0.07 \cdot 2.440 \text{ A}$	$C_{-64} = H_{-01} \cdot 1.092 \text{ Å}$	
$\bigcirc \downarrow \downarrow \leftrightarrow \bigcirc \downarrow \downarrow 2 \cdot 2 \cdot 2 \cdot 4 \circ 5 \land A$	$C_{30} \leftrightarrow \Pi_{32} \cdot 1 000 \text{A}$	$N_{-54} \leftrightarrow \Gamma_{-50} \cdot 2.059 \text{ A}$	$C_{-65} \qquad \qquad$	
$\bigcirc -4 \leftrightarrow \square -10 \cdot 2.262 \ $	$\begin{array}{cccc} \hline & & & & \\ \hline \\ \hline$	$N = 54 \leftrightarrow C = 01 \cdot 1.430 \text{ A}$	$\begin{array}{cccc} & & & & & \\ \hline & & & & \\ \hline \\ \hline$	
$\begin{array}{cccc} 0-4 &\leftrightarrow & 0-18 & 2.303 \text{ A} \\ 0.4 && 0.10 & 1.452 \end{array}$	$C_{-32} \leftrightarrow \Pi_{-34} : 1.091 \text{ A}$	$N = 4 \qquad \bigcirc C = 5 \neq 4 \Rightarrow 0 = 7 \Rightarrow 8$	$C = 07 \leftrightarrow C = 08 \pm 1.398 \text{ A}$	
$0^{-4} \leftrightarrow 0^{-19} : 1.453 \text{ A}$	$C-32 \leftrightarrow H-35$: 1.091 A	$N-54 \leftrightarrow C-05: 1.3/UA$	$C \circ i \leftrightarrow H \circ b : 2.1/1 A$	
0-4 ↔ H-44 : 2.112 A	H-33 ↔ H-34 : 1.780 A	N-54 ↔ H-66 : 2.147 A	$C-67 \leftrightarrow C-77:2.457 A$	
O-4 ↔ H-45 : 2.110 Å	$H-33 \leftrightarrow H-35: 1.781 \text{ A}$	$N-54 \leftrightarrow C-68: 2.427 A$	$C-67 \leftrightarrow H-79:2.766 A$	
O-4 ↔ H-46 : 2.023 A	H-34 \leftrightarrow H-35 : 1.787 Å	N-54 ↔ H-69 : 2.622 A	C-67 ↔ H-80 : 2.796 Å	
O-5 ↔ O-6 : 2.741 Å	C-36 ↔ H-37 : 1.085 Å	C-55 ↔ C-59 : 1.409 Å	C-67 ↔ H-84 : 2.969 Å	
O-5 ↔ C-18 : 2.363 Å	C-36 ↔ H-38 : 1.091 Å	C-55 ↔ H-60 : 2.162 Å	C-68 ↔ H-69 : 1.077 Å	
O-5 ↔ C-22 : 1.386 Å	C-36 ↔ H-39 : 1.088 Å	C-55 ↔ C-62 : 1.464 Å	C-68 ↔ C-77 : 2.877 Å	
O-5 ↔ C-23 : 2.452 Å	H-37 ↔ H-38 : 1.781 Å	C-55 ↔ C-65 : 2.574 Å	C-68 ↔ H-79 : 2.837 Å	
O-5 ↔ H-24 : 2.745 Å	H-37 ↔ H-39 : 1.785 Å	C-55 ↔ C-70 : 2.807 Å	C-68 ↔ H-80 : 2.918 Å	
O-5 ↔ C-32 : 1.458 Å	H-38 ↔ H-39 : 1.793 Å	C-55 ↔ C-71 : 2.433 Å	H-69 ↔ C-77 : 2.583 Å	
O-5 ↔ H-33 : 2.027 Å	C-40 ↔ H-41 : 1.084 Å	C-55 ↔ C-73 : 1.402 Å	H-69 ↔ H-79 : 2.340 Å	
O-5 ↔ H-34 : 2.113 Å	C-40 ↔ H-42 : 1.091 Å	C-55 ↔ H-74 : 2.156 Å	H-69 ↔ H-80 : 2.454 Å	
O-5 ↔ H-35 : 2.110 Å	C-40 ↔ H-43 : 1.091 Å	C-55 ↔ C-75 : 2.432 Å	C-70 ↔ C-71 : 1.398 Å	
O-5 ↔ H-39 : 2.415 Å	H-41 ↔ H-42 : 1.777 Å	C-56 ↔ C-57 : 1.400 Å	C-70 ↔ H-72 : 2.165 Å	
O-6 ↔ C-11 : 2.404 Å	H-41 ↔ H-43 : 1.782 Å	C-56 ↔ H-58 : 2.164 Å	C-70 ↔ C-73 : 2.417 Å	
O-6 ↔ C-18 1.386 Å	H-42 ↔ H-43 1.788 Å	C-56 ↔ C-61 2.405 Å	C-70 ↔ C-75 1.401 Å	
$O-6 \rightarrow C-22 \cdot 2.441 \text{ Å}$	H-42 ↔ H-80 2.865 Å	$C-56 \leftrightarrow C-63 \cdot 1.406 \text{ Å}$	$C-70 \leftrightarrow H-76^{\circ} 2.139 \text{ Å}$	
$O_{-6} \rightarrow C_{-36} + 1469 \text{ Å}$	H-44 H-45 · 1 790 Å	$C-56 \rightarrow C-64 \cdot 2446 \text{ Å}$	$C-70 \rightarrow C-85 \cdot 2.451 \text{ Å}$	
$O_{-6} \rightarrow H_{-37} 2038 \text{ Å}$	$H-44 \rightarrow H-46 \cdot 1.779 \text{ Å}$	$C-56 \rightarrow C-67 \cdot 2.426 \text{ Å}$	$C-70 \rightarrow H-87 \cdot 2.768 \text{ Å}$	
O_{-6} $H_{-38} \cdot 2111$ Å	H-45 , H-46 1 779 Å	C-56 = C-68 + 2.809 Å	C-70 H-88 · 2 780 Å	
O_{-6} H_{-39} 2112 Å	O-47 C-70 · 1 390 Å	C-56 H-89 · 2 781 Å	C-71 H-72 · 1 079 Å	
N-7 N-8 · 1 327 Å	$O_{-47} = C_{-71} + 2.467$ Å	C-56 H-90 : 2.766 Å	$C_{-71} = C_{-73} \cdot 1.306 \text{ Å}$	
$N_{-7} \leftrightarrow N_{-0} \cdot 2.1/8 \text{ Å}$	$O_{-47} \leftrightarrow C_{-71} \cdot 2.407 \text{ A}$ $O_{-47} = H_{-72} \cdot 2.754 \text{ A}$	C-57 H-58 · 1 078 Å	$C_{-71} \leftrightarrow C_{-73} \cdot 1.350 \text{ A}$	
$N_7 \leftrightarrow N_9 \cdot 2.140 \text{ A}$	$0.47 \leftrightarrow 11.72.2.734 \text{ A}$	$C = 57 \Leftrightarrow \Pi = 50 : 1 : 070 \text{ A}$	$C^{-71} \leftrightarrow \Pi^{-74} \cdot 2.144 \text{ A}$	
$N-7 \leftrightarrow C-10.2.500 \text{ A}$	$0.47 \leftrightarrow 0.75.2.300 \text{ A}$	$C = 7 \qquad C = 2 + 2 + 2 = 8$	$C_{11} \leftrightarrow C_{15} \cdot 2.420 \text{ A}$	
$ \mathbf{N}^{-1} \leftrightarrow \mathbf{C}^{-11} \cdot 1.304 \mathbf{A} $	$\bigcirc 47 \qquad \bigcirc 95 \cdot 1 \ 450^{\$}$	$C = 7 \qquad C = 03 \cdot 2.438 \text{ A}$	$\bigcirc 71 \qquad \square \ \bigcirc 71 \qquad \square \ \bigcirc 72 \qquad \bigcirc 8$	
$ \mathbf{N}^{-1} \leftrightarrow \mathbf{U}^{-2}\mathbf{U}^{\perp} \mathbf{Z}^{-2}\mathbf{Z}^{-2}\mathbf{A} $	$\bigcirc 47 \qquad $	$C = 27 \leftrightarrow C = 04 2.87 \cup A$	$\bigcirc 71 \qquad $	
$ \mathbf{N} - \mathbf{i} \leftrightarrow \mathbf{H} - 29 : \mathbf{2.873A} $	\cup -4/ \leftrightarrow H-80:2.02/A	C = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	$\bigcup_{i=1}^{n-1} \bigcup_{i=1}^{n-1} $	
$ N-\delta \leftrightarrow N-9 1.369 \text{ A}$	$\bigcirc 47 \qquad \qquad H \cdot 87 : 2.110 A$	$C-57 \leftrightarrow C-67 : 2.805 \text{ A}$	$\Pi - 12 \leftrightarrow C - 13 : 2.139 \text{ A}$	
$ N-8 \leftrightarrow C-16: 2.42/A$	\cup -4/ \leftrightarrow H-88: 2.111 A	$C-57 \leftrightarrow C-68:2.441 \text{ A}$	H-72 ↔ H-74:2.448 A	
$ N-8 \leftrightarrow C-17 : 2.239 \text{ A}$	U-49 ↔ U-51 : 2.680 A	C-57 ↔ H-89 : 2.866 A	H-72 ↔ C-85 : 2.594 A	
N-8 ↔ C-20 : 2.255 Å	$0.49 \leftrightarrow C-56 : 1.384 \text{ A}$	C-5/ ↔ H-90 : 2.872 Å	H-72 ↔ H-87 : 2.407 Å	
N-8 ↔ C-23 : 2.871 Å	U-49 ↔ C-57 : 2.455 Å	H-58 ↔ C-61 : 2.150 Å	H-72 ↔ H-88 : 2.394 Å	
N-8 ↔ H-24 : 2.574 A	O-49 ↔ H-58 : 2.734 Å	H-58 ↔ C-64 : 2.561 Å	C-73 ↔ H-74 : 1.081 Å	
N-9 ↔ C-12 : 2.439 Å	O-49 ↔ C-63 : 2.363 Å	H-58 ↔ C-65 : 2.841 Å	C-73 ↔ C-75 : 2.794 Å	
N-9 ↔ H-13 : 2.659 Å	O-49 ↔ C-64 : 1.453 Å	H-58 ↔ H-66 : 2.526 Å	C-75 ↔ H-76 : 1.080 Å	
N-9 ↔ C-16 : 1.430 Å	O-49 ↔ H-89 : 2.112 Å	H-58 ↔ H-89 : 2.367 Å	C-77 ↔ H-78 : 1.084 Å	
N-9 ↔ C-17 : 2.199 Å	O-49 ↔ H-90 : 2.111 Å	H-58 ↔ H-90 : 2.378 Å	C-77 ↔ H-79 : 1.091 Å	
N-9 ↔ C-20 : 1.371 Å	O-49 ↔ H-91 : 2.023 Å	C-59 ↔ H-60 : 1.082 Å	C-77 ↔ H-80 : 1.090 Å	
N-9 ↔ H-21 : 2.149 Å	O-50 ↔ O-51 : 2.737 Å	C-59 ↔ C-62 : 2.490 Å	H-78 ↔ H-79 : 1.780 Å	
N-9 ↔ C-23 : 2.427 Å	O-50 ↔ C-63 : 2.362 Å	C-59 ↔ C-70 : 2.413 Å	H-78 ↔ H-80 : 1.777 Å	
N-9 ↔ H-24 : 2.622 Å	O-50 ↔ C-67 : 1.385 Å	C-59 ↔ C-71 : 2.793 Å	H-79 ↔ H-80 : 1.793 Å	
C-10 ↔ C-14 : 1.408 Å	O-50 ↔ C-68 : 2.454 Å	C-59 ↔ C-73 : 2.418 Å	C-81 ↔ H-82 : 1.085 Å	
C-10 ↔ H-15 : 2.160 Å	O-50 ↔ H-69 : 2.748 Å	C-59 ↔ C-75 : 1.387 Å	C-81 ↔ H-83 : 1.091 Å	
C-10 ↔ C-17 : 1.467 Å	O-50 ↔ C-77 : 1.462 Å	C-59 ↔ H-76 : 2.159 Å	C-81 ↔ H-84 : 1.088 Å	
C-10 ↔ C-20 : 2.589 Å	O-50 ↔ H-78 : 2.028 Å	H-60 ↔ C-62 : 2.703 Å	H-82 ↔ H-83 : 1.781 Å	
C-10 ↔ C-25 : 2.805	O-50 ↔ H-79 : 2.114	H-60 ↔ C-65 : 2.918 Å	H-82 ↔ H-84 : 1.785 Å	
L				

		1		
	L 14 C 10 · 2 170 Å		C 52 C 60 · 1 205 Å	
Ay-1 ↔ CI-2.2.027 A	11-14 ↔ C-10.2.170 A	11-52 ↔ 11-55.2.4/1A	C-32 ↔ C-00.1.333 A	11-03 ↔ C-00.2.143 A
Aq-1 ↔ S-4 : 2.546 A	H-14 ↔ C-23 : 2.973 A	H-32 ↔ C-38 : 2.169 A	C-52 ↔ H-61 : 2.155 A	H-65 ↔ C-83 : 2.699 A
Δα1 U 7 · 2 002 Å	LI14 LI 24 · 2 202 Å		C E2 C E2 · 1 202 Å	
Ay-1 ↔ H-7.2.002 A	Π-14 ↔ Π-24 . 2.303 Å	Π-32 ↔ Π-39.2.400 Å	C-52 ↔ C-02.1.393 Å	П-05 ↔ П-04. 2.405 Å
Aq-1 ↔ S-45 : 2.546 Å	H-14 ↔ C-25 : 2.942 Å	C-33 ↔ C-34 : 1.421 Å	C-52 ↔ H-63 : 2.151 Å	C-66 ↔ C-74 : 2.819 Å
	0.15 0.00 1 401 8		0 50 0 67 1 0 764 8	0.00 0.77 0 400 8
Ay-1 ↔ H-48.2.882 A	C-15 ↔ C-23.1.421 A	C-33 ↔ H-35.2.104 A	C-52 ↔ C-67.2.764 A	C-00 ↔ C-77.2.420 A
CI-2 ↔ H-7 · 2.210 Å	C-15 ↔ H-24 2.161 Å	C-33 ↔ C-36 1.426 Å	C-52 ↔ C-68 2.418 Å	C-66 ↔ C-81 1.426 Å
			0.50 0.70 0.440 8	
CI-2 ↔ H-48 : 2.210 A	C-15 ↔ C-25 : 2.434 A	C-33 ↔ H-37 : 2.168 A	C-52 ↔ C-70:2.418 A	C-66 ↔ H-82 : 2.164 A
CI-3 → C-26 · 1 810 Å	C-15 ↔ C-31 · 2 808 Å	C-33 ↔ C-38 · 2 811 Å	C-53 👝 H-54 1 096 Å	C-67 ↔ C-68 1 384 Å
CI-3 ↔ C-27 2.760 A	C-15 ↔ C-33 1.419 A	C-33 ↔ C-40 2.429 A	C-53 ↔ H-55 I.093 A	C-07 ↔ H-09 2.145 A
CI-3 ↔ H-28 : 2.880 Å	C-15 ↔ C-34 : 2.447 Å	C-33 ↔ C-42 : 2.450 Å	C-53 ↔ C-57 : 1.554 Å	C-67 ↔ C-70 : 1.386 Å
	C 1E C 26 2 440 Å			
CI-3 ↔ C-29.2.701 Å	C-15 ↔ C-30.2.449 Å	C-34 ↔ H-35.1.007 Å	C-55 ↔ H-56.2.210 Å	C-01 ↔ H-11.2.140 Å
CI-3 ↔ H-30 : 2.880 Å	C-15 ↔ C-38 : 2.426 Å	C-34 ↔ C-36 : 2.491 Å	C-53 ↔ C-59 : 1.516 Å	C-68 ↔ H-69 : 1.084 Å
C / NE · 2 720 Å	C 1E C 40 · 2 91E Å			C 60 C 70 · 2 422 Å
3-4 ↔ N-5.2.730 A	C-15 ↔ C-40.2.015 A	C-34 ↔ H-37.2.712 A	C-55 ↔ H-05.2.055 Å	C-00 ↔ C-70.2.423 A
S-4 ↔ H-7 : 2.930 Å	C-15 ↔ C-42 : 1.422 Å	C-34 ↔ C-38 : 2.419 Å	C-53 ↔ C-66 : 2.640 Å	C-70 ↔ H-71 : 1.084 Å
S 4 N 0 · 2 672 Å		C 24 C 42 · 2 001 Å		
3-4 ↔ N-0.2.073 A	C-13 ↔ H-43.2.107 A	C-34 ↔ C-42.2.001 Å	H-34 ↔ H-33.1.110 Å	C-12 ↔ H-13.1.000 Å
S-4 ↔ C-10 : 1.751 A	C-16 ↔ H-17 : 1.092 A	H-35 ↔ C-36 : 2.712 A	H-54 ↔ C-57 : 2.216 A	C-72 ↔ C-74 : 2.425 A
S-1 H-17 · 2 882 Å	C_{-16} $C_{-18} \cdot 2.308$ Å	$H_{25} = H_{27} \cdot 2.470 \text{ Å}$	$H_{-}51$ $H_{-}58 \cdot 2.307$ Å	$C_{-72} = C_{-75} \cdot 1.371 \text{ Å}$
J-4 ↔ 11-17.2.003 A	C-10 ↔ C-10.2.330 A	11-33 ↔ 11-37.2.473 A	11-54 ↔ 11-50.2.537 A	C-12 ↔ C-13.1.3/1A
N-5 ↔ H-6 : 1.011 A	C-16 ↔ C-19 : 2.525 A	C-36 ↔ H-37 : 1.087 A	H-54 ↔ C-59 : 2.154 A	C-72 ↔ H-76 : 2.140 A
$N_{-5} = H_{-7} \cdot 1.021 \text{ Å}$	$C_{-16} = H_{-20} \cdot 2.726 \text{ Å}$	C_{-36} $C_{-40} \cdot 1.364$ Å	H_{-51} $H_{-65} \cdot 2.601$ Å	$C_{-72} = C_{-70} \cdot 1.418$ Å
N-3 ↔ N-7.1.021 A	C-10 ↔ 11-20.2.720 A	C-30 ↔ C-40.1.304 A	11-54 ↔ 11-05.2.001 A	C-12 ↔ C-13.1.410 A
N-5 ↔ N-8 : 2.282 A	C-16 ↔ C-21 : 2.523 A	C-36 ↔ H-41 : 2.139 A	H-54 ↔ C-66 : 2.997 A	C-72 ↔ H-80 : 2.170 A
N-5 - N-9 · 2 659 Å	C-16 - H-22 · 2 723 Å	$H-37 \rightarrow C-40 \cdot 2121$ Å	H-55 👝 C-57 · 2 100 Å	C-72 - C-83 · 2 /18 Å
N-5 ↔ C-10 : 1.325 Å	H-1/ ↔ C-21 : 2.637 Å	H-37 ↔ H-41 : 2.477 Å	H-55 ↔ H-58 : 2.904 A	H-73 ↔ C-75 : 2.134 A
H-6 ↔ H-7 · 1 750 Å	H-17 A H-22 · 2 /03 Å	C-38 - H-39 · 1 086 Å	H-55 👝 C-59 · 2 178 Å	H-73 H-76 · 2 /71 Å
H-6 ↔ N-8:2.449 A	C-18 ↔ C-23 : 2.465 Å	C-38 ↔ C-42 : 1.370 Å	H-55 ↔ C-64 : 2.973 A	H-/3 ↔ C-/9:2.169 A
H-6 N-9 · 2 244 Å	C-18 H-24 · 2 602 Å	C-38 H-12 · 2 120 Å	H-55 , H-65 · 2 282 Å	H-73 , H-80 · 2 /88 Å
	0 10 ↔ 11-24 2.092 A	C 00 ↔ 11-40.2.108 A	11 00 ↔ 11 00 2.303 A	0 74 0 75 0 100 2.400 A
H-6 ↔ C-10 : 2.021 Å	C-18 ↔ C-25 : 1.464 Å	H-39 ↔ C-42 : 2.133 Å	H-55 ↔ C-66 : 2.942 A	C-/4 ↔ C-75 : 1.421 A
$H_{-7} = C_{-10} \cdot 2.056 \text{ Å}$	$C_{-18} = C_{-40} \cdot 2501 \text{ Å}$	H_{-30} $H_{-13} \cdot 2.170$ Å	$C_{-56} = C_{-64} \cdot 1.421 \text{ Å}$	$C_{-74} = H_{-76} \cdot 2.164$ Å
11-7 ↔ C-10.2.030 A	C-10 ↔ C-40.2.301 A	11-33 ↔ 11-43.2.470 A	C-30 ↔ C-04 1.421 A	C-74 ↔ 11-70.2.104 A
N-8 ↔ N-9:1.401 A	C-18 ↔ H-41 : 2.690 A	C-40 ↔ H-41 : 1.085 A	C-56 ↔ H-65 : 2.161 A	$ C-/4 \leftrightarrow C-//: 1.426 A$
N-8 C-10 · 1 357 Å	C-19 H-20 · 1 088 Å	C-12 H-13 · 1 087 Å	C_{-56} $C_{-66} \cdot 2.434$ Å	C-74 H-78 · 2 168 Å
			C 50 ↔ C 00 . 2.454 A	
N-8 ↔ C-11 : 2.4/4 A	C-19 ↔ C-21 : 2.410 A	$ C -44 \leftrightarrow C-67 : 1.810 A$	C-56 ↔ C-72 : 2.808 A	$ C-/4 \leftrightarrow C-/9$: 2.811 A
N-8 C-12 · 2 341 Å	C-19 C-26 · 2 389 Å	CI-44 C-68 · 2 760 Å	$C-56 \sim C-74 \cdot 1.419$ Å	C-74 C-81 · 2 429 Å
N-8 ↔ C-16:1.479 A	C-19 ↔ C-27:2.790 A	CI-44 ↔ H-69 : 2.880 A	$ C-56 \leftrightarrow C-75:2.447 A$	C-74 ↔ C-83 : 2.450 A
N-8 ↔ H-17 · 2 108 Å	C-19 → C-29 · 1 391 Å	CI-44 👝 C-70 · 2 761 Å	C-56 ↔ C-77 · 2 449 Å	C-75 ↔ H-76 · 1 087 Å
N-8 ↔ C-18 : 2.191 A	C-19 ↔ H-30 : 2.161 A	CI-44 ↔ H-71 : 2.880 A	C-56 ↔ C-79 2.426 A	$C-75 \leftrightarrow C-77$: 2.491 A
N-8 C-19 · 2 880 Å	H-20 C-29 · 2 148 Å	S-45 N-46 · 2 738 Å	C-56 C-81 · 2 815 Å	C-75 . H-78 · 2 712 Å
				0.75 0.70 0.410 8
N-8 ↔ H-20 : 2.568 A	H-20 ↔ H-30 : 2.489 A	S-45 ↔ H-48 : 2.930 A	C-56 ↔ C-83 : 1.422 A	$C-75 \leftrightarrow C-79$: 2.419 A
N-9 C-10 · 2 392 Å	C-21 H-22 · 1 087 Å	S-45 N-49 · 2 673 Å	C-56 H-84 · 2 167 Å	C-75 C-83 · 2 801 Å
N-9 ↔ C-12 : 2.345 A	C-21 ↔ C-26 : 2.388 A	S-45 ↔ C-51 : 1.751 A	C-57 ↔ H-58 : 1.092 A	H-76 ↔ C-77:2.712A
N-9 ↔ C-16 2.396 Å	C-21 ↔ C-27 1.392 Å	S-45 ↔ H-58 2.883 Å	C-57 ↔ C-59 2.398 Å	H-76 ↔ H-78 2.479 Å
N-9 ↔ C-18 : 1.291 A	C-21 ↔ H-28:2.162 A	N-46 ↔ H-47 : 1.011 A	C-57 ↔ C-60 : 2.525 A	C-// ↔ H-/8:1.08/A
N-9 ↔ H-20 : 2.770 Å	C-21 ↔ C-29 : 2.788 Å	N-46 ↔ H-48 : 1.021 Å	C-57 ↔ H-61 : 2.726 Å	C-77 ↔ C-81 : 1.364 Å
NO C 2E · 2 412 Å	1122 $C 27 \cdot 2140$ Å	N 46 N 40 · 2 202 Å	C E7 C 62 · 2 E22 Å	
N-9 ↔ C-25.2.413 A	H-22 ↔ C-27.2.149 A	N-40 ↔ N-49.2.282 A	C-57 ↔ C-02.2.523 Å	C-11 ↔ H-82.2.139 Å
N-9 ↔ C-40 : 2.865 A	H-22 ↔ H-28 : 2.491 A	N-46 ↔ N-50 : 2.659 A	C-57 ↔ H-63 : 2.723 A	H-78 ↔ C-81 : 2.131 A
	C 22 U 24 · 1 000 Å	N /6 C 51 · 1 225 Å		
N-3 ↔ 11-41.2.327 A	C-23 ↔ 11-24 . 1.000 A	N-40 ↔ C-51.1.525 A	11-30 ↔ C-02.2.037 A	11-10 + 11-02.2.4/1 A
C-10 ↔ C-16 : 2.538 A	C-23 ↔ C-25 : 1.375 A	H-47 ↔ H-48 : 1.750 A		
C-10 H-17 · 2 811 Å			H-38 ↔ H-03 . 2.403 A	C-79 ↔ H-80 : 1.086 Å
	$(C_{22}) = (C_{22}) = 2 / 1 / \Delta$	H-17 N-19 · 2 /19 Å	H-38 ↔ H-03.2.403 A C-59 ↔ C-64 · 2.465 Å	C-79 ↔ H-80 : 1.086 Å
	C-23 ↔ C-33 : 2.447 A	H-47 ↔ N-49 : 2.449 Å	$\begin{array}{rcl} H-58 & \leftrightarrow & H-63 & 2.403 \text{ A} \\ C-59 & \leftrightarrow & C-64 & 2.465 \text{ A} \\ \end{array}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å
C-11 ↔ C-12 : 2.551 Å	C-23 ↔ C-33 : 2.447 A C-23 ↔ C-36 : 2.796 Å	H-47 ↔ N-49 : 2.449 Å H-47 ↔ N-50 : 2.244 Å	$\begin{array}{rcrcrcr} H-58 &\leftrightarrow & H-63 & 2.403 \text{ A} \\ C-59 &\leftrightarrow & C-64 & 2.465 \text{ Å} \\ C-59 &\leftrightarrow & H-65 & 2.692 \text{ Å} \end{array}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å
C-11 ↔ C-12 : 2.551 Å C-11 ↔ H-14 : 2.567 Å	$C-23 \leftrightarrow C-33 : 2.447 \text{ A}$ $C-23 \leftrightarrow C-36 : 2.796 \text{ Å}$ $C-23 \leftrightarrow C-40 : 2.423 \text{ Å}$	H-47 ↔ N-49 : 2.449 Å H-47 ↔ N-50 : 2.244 Å H-47 ↔ C-51 : 2.021 Å	$H-58 \leftrightarrow H-63 : 2.403 \text{ A}$ $C-59 \leftrightarrow C-64 : 2.465 \text{ Å}$ $C-59 \leftrightarrow H-65 : 2.692 \text{ Å}$ $C-59 \leftrightarrow C-66 : 1.464 \text{ Å}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2 133 Å
C-11 ↔ C-12 : 2.551 Å C-11 ↔ H-14 : 2.567 Å	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H-47 ↔ N-49 : 2.449 Å H-47 ↔ N-50 : 2.244 Å H-47 ↔ C-51 : 2.021 Å	$\begin{array}{rcrcrcr} \text{H-58} &\leftrightarrow & \text{H-63} & 2.403 \text{ A} \\ \text{C-59} &\leftrightarrow & \text{C-64} & 2.465 \text{ Å} \\ \text{C-59} &\leftrightarrow & \text{H-65} & 2.692 \text{ Å} \\ \text{C-59} &\leftrightarrow & \text{C-66} & 1.464 \text{ Å} \\ \text{C-50} &\leftrightarrow & \text{C-66} & 1.464 \text{ Å} \end{array}$	$\begin{array}{rcrcr} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \mbox{\mathring{A}} \\ C-79 & \leftrightarrow & C-83 & : \ 1.370 \ \mbox{\mathring{A}} \\ C-79 & \leftrightarrow & H-84 & : \ 2.139 \ \mbox{\mathring{A}} \\ H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \mbox{\mathring{A}} \\ H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \mbox{\mathring{A}} \end{array}$
C-11 ↔ C-12 : 2.551 Å C-11 ↔ H-14 : 2.567 Å C-11 ↔ C-16 : 1.517 Å	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} \text{H-58} &\leftrightarrow & \text{H-63} & 2.403 \text{ A} \\ \text{C-59} &\leftrightarrow & \text{C-64} & 2.465 \text{ Å} \\ \text{C-59} &\leftrightarrow & \text{H-65} & 2.692 \text{ Å} \\ \text{C-59} &\leftrightarrow & \text{C-66} & 1.464 \text{ Å} \\ \text{C-59} &\leftrightarrow & \text{C-81} & 2.501 \text{ Å} \end{array}$	$\begin{array}{rcrcr} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \mbox{\AA} \\ C-79 & \leftrightarrow & C-83 & : \ 1.370 \ \mbox{\AA} \\ C-79 & \leftrightarrow & H-84 & : \ 2.139 \ \mbox{\AA} \\ H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \mbox{\AA} \\ H-80 & \leftrightarrow & H-84 & : \ 2.470 \ \mbox{\AA} \end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcr} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \mbox{\AA} \\ C-79 & \leftrightarrow & C-83 & : \ 1.370 \ \mbox{\AA} \\ C-79 & \leftrightarrow & H-84 & : \ 2.139 \ \mbox{\AA} \\ H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \mbox{\AA} \\ H-80 & \leftrightarrow & H-84 & : \ 2.470 \ \mbox{\AA} \\ C-81 & \leftrightarrow & H-82 & : \ 1.085 \ \mbox{\AA} \end{array}$
$\begin{array}{rcrcr} C-11 & \leftrightarrow & C-12: 2.551 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14: 2.567 \mbox{ Å} \\ C-11 & \leftrightarrow & C-16: 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & H-17: 2.151 \mbox{ Å} \\ C-11 & \leftarrow & H-17: 2.151 \mbox{ Å} \end{array}$	$\begin{array}{rcrcrcr} C-23 & \leftrightarrow & C-33 & : 2.447 \text{ A} \\ C-23 & \leftrightarrow & C-36 & : 2.796 \text{ Å} \\ C-23 & \leftrightarrow & C-40 & : 2.423 \text{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.485 \text{ Å} \\ C-23 & \leftrightarrow & H-43 & : 2.708 \text{ Å} \\ H-24 & C-25 & : 2.145 \text{ Å} \end{array}$	H-47 ↔ $N-49 : 2.449$ Å H-47 ↔ $N-50 : 2.244$ Å H-47 ↔ $C-51 : 2.021$ Å H-48 ↔ $C-51 : 2.056$ Å N-49 ↔ $N-50 : 1.401$ Å N-49 ↔ $N-50 : 1.401$ Å	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} C-79 & \leftrightarrow & H-80 & : \ 1.086 & Å \\ C-79 & \leftrightarrow & C-83 & : \ 1.370 & Å \\ C-79 & \leftrightarrow & H-84 & : \ 2.139 & Å \\ H-80 & \leftrightarrow & C-83 & : \ 2.133 & Å \\ H-80 & \leftrightarrow & H-84 & : \ 2.470 & Å \\ C-81 & \leftrightarrow & H-82 & : \ 1.085 & Å \\ C-83 & \leftrightarrow & H-82 & : \ 1.085 & Å \\ \end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & H-43 & : 2.708 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrcr} C-11 & \leftrightarrow & C-12:2.551 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14:2.567 \mbox{ Å} \\ C-11 & \leftrightarrow & C-16:1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & H-17:2.151 \mbox{ Å} \\ C-11 & \leftrightarrow & H-20:2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-20:2.155 \mbox{ Å} \\ C-11 & \leftarrow & C-21:1.393 \mbox{ Å} \end{array}$	$\begin{array}{rcrcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & H-43 & : 2.708 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ \& \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{array}{rcrcrcr} C-11 & \leftrightarrow & C-12: 2.551 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14: 2.567 \mbox{ Å} \\ C-11 & \leftrightarrow & C-16: 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & H-17: 2.151 \mbox{ Å} \\ C-11 & \leftrightarrow & C-19: 1.395 \mbox{ Å} \\ C-11 & \leftrightarrow & H-20: 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-20: 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & U-20: 2.457 \mbox{ Å} \\ \end{array}$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & H-43 & : 2.708 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & = 2.245 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ H-24 & \leftrightarrow & H-44 & : 1.465 \$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \begin{tabular}{lll} \label{eq:c-79} & \leftrightarrow & C-83 & : \ 1.370 \ \begin{tabular}{lll} \label{eq:c-79} \hline \end{tabular} & \leftrightarrow & C-83 & : \ 2.133 \ \begin{tabular}{lll} \end{tabular} \\ \end{tabular} & H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \begin{tabular}{lll} \end{tabular} \\ \end{tabular} & H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \begin{tabular}{lll} \end{tabular} \\ \end{tabular} & H-80 & \leftrightarrow & H-84 & : \ 2.470 \ \begin{tabular}{lll} \end{tabular} \\ \end{tabular} & C-81 & \leftrightarrow & H-82 & : \ 1.085 \ \bedin{tabular}{lll} \end{tabular} \\ \end{tabular} & C-83 & \leftrightarrow & H-84 & : \ 1.087 \ \bedin{tabular}{lll} \end{tabular} \end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & H-43 & : 2.708 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & H-43 & : 2.708 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-84 : 1.087 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \text{\AA} \\ C-79 & \leftrightarrow & C-83 & : \ 1.370 \ \text{\AA} \\ C-79 & \leftrightarrow & H-84 & : \ 2.139 \ \text{\AA} \\ H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \text{\AA} \\ H-80 & \leftrightarrow & H-84 & : \ 2.470 \ \text{\AA} \\ C-81 & \leftrightarrow & H-82 & : \ 1.085 \ \text{\AA} \\ C-83 & \leftrightarrow & H-84 & : \ 1.087 \ \text{\AA} \end{array}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & H-43 & : 2.708 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & H-41 & : 2.164 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{array}{rcrcrcr} C-11 & \leftrightarrow & C-12: 2.551 \ \text{\AA} \\ C-11 & \leftrightarrow & H-14: 2.567 \ \text{\AA} \\ C-11 & \leftrightarrow & C-16: 1.517 \ \text{\AA} \\ C-11 & \leftrightarrow & H-17: 2.151 \ \text{\AA} \\ C-11 & \leftrightarrow & C-19: 1.395 \ \text{\AA} \\ C-11 & \leftrightarrow & H-20: 2.155 \ \text{\AA} \\ C-11 & \leftrightarrow & H-20: 2.155 \ \text{\AA} \\ C-11 & \leftrightarrow & C-21: 1.393 \ \text{\AA} \\ C-11 & \leftrightarrow & C-21: 2.151 \ \text{\AA} \\ C-11 & \leftrightarrow & C-26: 2.764 \ \text{\AA} \\ C-11 & \leftrightarrow & C-27: 2.418 \ \text{\AA} \\ C-11 & \leftrightarrow & C-29: 2.418 \ \text{\AA} \\ C-12 & H-12: 1.006 \ \text{\AA} \end{array}$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & 2.699 \ Å \\ H-24 & \leftrightarrow & C-25 & 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & 1.426 \ Å \\ C-26 & \leftarrow & C-40 & 1.426 \ Å \\ C-26 & \leftarrow & C-40 & 1.426 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & C-27 & : 1.384 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{array}{rcrcrcr} C-11 & \leftrightarrow & C-12: 2.551 \ \text{\AA} \\ C-11 & \leftrightarrow & H-14: 2.567 \ \text{\AA} \\ C-11 & \leftrightarrow & C-16: 1.517 \ \text{\AA} \\ C-11 & \leftrightarrow & C-16: 1.517 \ \text{\AA} \\ C-11 & \leftrightarrow & H-17: 2.151 \ \text{\AA} \\ C-11 & \leftrightarrow & C-19: 1.395 \ \text{\AA} \\ C-11 & \leftrightarrow & H-20: 2.155 \ \text{\AA} \\ C-11 & \leftrightarrow & C-21: 1.393 \ \text{\AA} \\ C-11 & \leftrightarrow & C-21: 1.393 \ \text{\AA} \\ C-11 & \leftrightarrow & C-26: 2.764 \ \text{\AA} \\ C-11 & \leftrightarrow & C-27: 2.418 \ \text{\AA} \\ C-11 & \leftrightarrow & C-29: 2.418 \ \text{\AA} \\ C-12 & \leftrightarrow & H-13: 1.096 \ \text{\AA} \\ C-12 & \leftrightarrow & H-14: 1.093 \ \text{\AA} \\ C-12 & \leftrightarrow & C-16: 1.554 \ \text{\AA} \end{array}$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & H-41 & : 2.164 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftarrow & C-29 & : 1 & 386 \ Å \\ \end{array}$	$\begin{array}{rcrcrcr} H-47 & \leftrightarrow & N-49 : 2.449 \mbox{ Å} \\ H-47 & \leftrightarrow & N-50 : 2.244 \mbox{ Å} \\ H-47 & \leftrightarrow & C-51 : 2.021 \mbox{ Å} \\ H-48 & \leftrightarrow & C-51 : 2.056 \mbox{ Å} \\ N-49 & \leftrightarrow & N-50 : 1.401 \mbox{ Å} \\ N-49 & \leftrightarrow & C-52 : 2.474 \mbox{ Å} \\ N-49 & \leftrightarrow & C-53 : 2.341 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 1.479 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.191 \mbox{ Å} \\ N-49 & \leftrightarrow & C-60 : 2.880 \mbox{ Å} \\ N-49 & \leftrightarrow & H-61 : 2.568 \mbox{ Å} \\ N-50 & \leftrightarrow & C-51 : 2.392 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ Å} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ K} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ K} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ K} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ K} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ K} \\ N-50 & \leftarrow & C-51 : 2.50 \mbox{ K}$	$\begin{array}{rcrcrcr} \text{H-63} & \leftrightarrow & \text{H-63} & 2.403 \text{ A} \\ \text{C-59} & \leftrightarrow & \text{C-64} & 2.465 \text{ Å} \\ \text{C-59} & \leftrightarrow & \text{H-65} & 2.692 \text{ Å} \\ \text{C-59} & \leftrightarrow & \text{C-66} & 1.464 \text{ Å} \\ \text{C-59} & \leftrightarrow & \text{C-81} & 2.501 \text{ Å} \\ \text{C-50} & \leftrightarrow & \text{H-82} & 2.690 \text{ Å} \\ \text{C-60} & \leftrightarrow & \text{H-61} & 1.088 \text{ Å} \\ \text{C-60} & \leftrightarrow & \text{C-62} & 2.410 \text{ Å} \\ \text{C-60} & \leftrightarrow & \text{C-62} & 2.410 \text{ Å} \\ \text{C-60} & \leftrightarrow & \text{C-67} & 2.389 \text{ Å} \\ \text{C-60} & \leftrightarrow & \text{C-70} & 1.391 \text{ Å} \\ \text{C-60} & \leftrightarrow & \text{C-70} & 1.391 \text{ Å} \\ \text{C-60} & \leftrightarrow & \text{H-71} & 2.161 \text{ Å} \\ \text{H-61} & \leftrightarrow & \text{C-70} & 2.148 \text{ Å} \\ \text{H-61} & \leftrightarrow & \text{H-71} & 2.489 \text{ Å} \\ \text{C-62} & \leftarrow & \text{H-63} & 1.087 \text{ Å} \\ \text{C-62} & \leftarrow & \text{C-67} & 2.388 \text{ Å} \end{array}$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 : 1.086 \mbox{ Å} \\ C-79 & \leftrightarrow & C-83 : 1.370 \mbox{ Å} \\ C-79 & \leftrightarrow & H-84 : 2.139 \mbox{ Å} \\ H-80 & \leftrightarrow & C-83 : 2.133 \mbox{ Å} \\ H-80 & \leftrightarrow & H-84 : 2.470 \mbox{ Å} \\ C-81 & \leftrightarrow & H-82 : 1.085 \mbox{ Å} \\ C-83 & \leftrightarrow & H-84 : 1.087 \mbox{ Å} \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} H\text{-58} & \leftrightarrow & H\text{-63} & 2.403 \ A \\ C\text{-59} & \leftrightarrow & C\text{-64} & 2.465 \ \AA \\ C\text{-59} & \leftrightarrow & H\text{-65} & 2.692 \ \AA \\ C\text{-59} & \leftrightarrow & C\text{-66} & 1.464 \ \AA \\ C\text{-59} & \leftrightarrow & C\text{-81} & 2.501 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-81} & 2.690 \ \AA \\ C\text{-60} & \leftrightarrow & H\text{-61} & 1.088 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.410 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.410 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.410 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.389 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-67} & 2.389 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-70} & 1.391 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-70} & 1.391 \ \AA \\ C\text{-60} & \leftrightarrow & H\text{-71} & 2.161 \ \AA \\ H\text{-61} & \leftrightarrow & H\text{-71} & 2.489 \ \AA \\ C\text{-62} & \leftrightarrow & H\text{-63} & 1.087 \ \AA \\ C\text{-62} & \leftrightarrow & C\text{-67} & 2.3888 \ \AA \\ C\text{-62} & \leftrightarrow & C\text{-67} & 2.488 \ \AA \\ \end{array}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & H-30 & : 2.146 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-84 : 2.470 Å C-83 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & H-43 & : 2.708 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & H-30 & : 2.146 \ Å \\ C-26 & \leftrightarrow & H-30 & : 2.146 \ Å \\ C-27 & \leftrightarrow & H-28 & 1 & 084 \ \& \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} H\text{-58} & \leftrightarrow & H\text{-63} & 2.403 \ A \\ C\text{-59} & \leftrightarrow & C\text{-64} & 2.465 \ A \\ C\text{-59} & \leftrightarrow & H\text{-65} & 2.692 \ A \\ C\text{-59} & \leftrightarrow & C\text{-66} & 1.464 \ A \\ C\text{-59} & \leftrightarrow & C\text{-81} & 2.501 \ A \\ C\text{-59} & \leftrightarrow & H\text{-82} & 2.690 \ A \\ C\text{-60} & \leftrightarrow & H\text{-61} & 1.088 \ A \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.410 \ A \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.410 \ A \\ C\text{-60} & \leftrightarrow & C\text{-67} & 2.389 \ A \\ C\text{-60} & \leftrightarrow & C\text{-67} & 2.389 \ A \\ C\text{-60} & \leftrightarrow & C\text{-70} & 1.391 \ A \\ C\text{-60} & \leftrightarrow & H\text{-71} & 2.161 \ A \\ H\text{-61} & \leftrightarrow & C\text{-70} & 2.148 \ A \\ H\text{-61} & \leftrightarrow & H\text{-71} & 2.489 \ A \\ C\text{-62} & \leftrightarrow & H\text{-63} & 1.087 \ A \\ C\text{-62} & \leftrightarrow & C\text{-67} & 2.388 \ A \\ C\text{-62} & \leftrightarrow & C\text{-68} & 1.392 \ A \\ C\text{-62} & \leftrightarrow & H\text{-68} & 2.192 \ A \\ C\text{-62} & \leftrightarrow & H\text{-69} & 2.162 \ A \end{array}$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 : 1.086 \mbox{ Å} \\ C-79 & \leftrightarrow & C-83 : 1.370 \mbox{ Å} \\ C-79 & \leftrightarrow & H-84 : 2.139 \mbox{ Å} \\ H-80 & \leftrightarrow & C-83 : 2.133 \mbox{ Å} \\ H-80 & \leftrightarrow & H-84 : 2.470 \mbox{ Å} \\ C-81 & \leftrightarrow & H-82 : 1.085 \mbox{ Å} \\ C-83 & \leftrightarrow & H-84 : 1.087 \mbox{ Å} \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & H-30 & : 2.146 \ Å \\ C-27 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-27 & \leftrightarrow & H-28 & : 2.420 \ \& \end{array}$	$\begin{array}{rcrcrcr} H-47 & \leftrightarrow & N-49 : 2.449 \mbox{ Å} \\ H-47 & \leftrightarrow & N-50 : 2.244 \mbox{ Å} \\ H-47 & \leftrightarrow & C-51 : 2.021 \mbox{ Å} \\ H-48 & \leftrightarrow & C-51 : 2.056 \mbox{ Å} \\ N-49 & \leftrightarrow & N-50 : 1.401 \mbox{ Å} \\ N-49 & \leftrightarrow & C-51 : 1.357 \mbox{ Å} \\ N-49 & \leftrightarrow & C-52 : 2.474 \mbox{ Å} \\ N-49 & \leftrightarrow & C-53 : 2.341 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 1.479 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.191 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.191 \mbox{ Å} \\ N-49 & \leftrightarrow & C-51 : 2.392 \mbox{ Å} \\ N-50 & \leftrightarrow & C-53 : 2.345 \mbox{ Å} \\ N-50 & \leftrightarrow & C-57 : 2.396 \mbox{ Å} \\ N-50 & \leftrightarrow & C-59 : 1.291 \mbox{ Å} \\ N-50 & \leftrightarrow & C-59 :$	$\begin{array}{rcrcrcr} H\text{-58} & \leftrightarrow & H\text{-63} & 2.403 \ A \\ C\text{-59} & \leftrightarrow & C\text{-64} & 2.465 \ \AA \\ C\text{-59} & \leftrightarrow & H\text{-65} & 2.692 \ \AA \\ C\text{-59} & \leftrightarrow & C\text{-66} & 1.464 \ \AA \\ C\text{-59} & \leftrightarrow & C\text{-66} & 1.464 \ \AA \\ C\text{-59} & \leftrightarrow & C\text{-61} & 1.088 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.410 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.410 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-62} & 2.410 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-67} & 2.389 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-70} & 1.391 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-70} & 1.391 \ \AA \\ C\text{-60} & \leftrightarrow & C\text{-70} & 2.148 \ \AA \\ H\text{-61} & \leftrightarrow & C\text{-70} & 2.148 \ \AA \\ H\text{-61} & \leftrightarrow & H\text{-71} & 2.489 \ \AA \\ C\text{-62} & \leftrightarrow & H\text{-63} & 1.087 \ \AA \\ C\text{-62} & \leftrightarrow & C\text{-68} & 1.392 \ \AA \\ C\text{-62} & \leftrightarrow & C\text{-68} & 1.392 \ \AA \\ C\text{-62} & \leftrightarrow & H\text{-69} & 2.162 \ \AA \\ C\text{-62} & \leftrightarrow & H\text{-69} & 2.162 \ \AA \end{array}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \mbox{ A} \\ C-23 & \leftrightarrow & C-36 & : 2.796 \mbox{ Å} \\ C-23 & \leftrightarrow & C-40 & : 2.423 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.485 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.485 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ H-24 & \leftrightarrow & C-25 & : 2.145 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ C-25 & \leftrightarrow & C-33 & : 2.819 \mbox{ Å} \\ C-25 & \leftrightarrow & C-36 & : 2.420 \mbox{ Å} \\ C-25 & \leftrightarrow & C-36 & : 2.420 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-26 & \leftrightarrow & C-27 & : 1.384 \mbox{ Å} \\ C-26 & \leftrightarrow & C-27 & : 1.384 \mbox{ Å} \\ C-26 & \leftrightarrow & C-29 & : 1.386 \mbox{ Å} \\ C-27 & \leftrightarrow & H-28 & : 1.084 \mbox{ Å} \\ C-27 & \leftrightarrow & C-29 & : 2.423 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & H-30 & : 2.146 \ Å \\ C-27 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-27 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-29 & \leftrightarrow & H-30 & : 1.084 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrcrc} R-58 & \leftrightarrow & H-63: 2.403 \ A \\ C-59 & \leftrightarrow & C-64: 2.465 \ A \\ C-59 & \leftrightarrow & H-65: 2.692 \ A \\ C-59 & \leftrightarrow & C-66: 1.464 \ A \\ C-59 & \leftrightarrow & C-81: 2.501 \ A \\ C-59 & \leftrightarrow & C-81: 2.501 \ A \\ C-60 & \leftrightarrow & H-61: 1.088 \ A \\ C-60 & \leftrightarrow & C-62: 2.410 \ A \\ C-60 & \leftrightarrow & C-67: 2.389 \ A \\ C-60 & \leftrightarrow & C-67: 2.389 \ A \\ C-60 & \leftrightarrow & C-68: 2.790 \ A \\ C-60 & \leftrightarrow & C-68: 2.790 \ A \\ C-60 & \leftrightarrow & C-70: 1.391 \ A \\ C-60 & \leftrightarrow & C-70: 2.148 \ A \\ H-61 & \leftrightarrow & C-70: 2.148 \ A \\ H-61 & \leftrightarrow & H-71: 2.489 \ A \\ C-62 & \leftrightarrow & H-63: 1.087 \ A \\ C-62 & \leftrightarrow & C-67: 2.388 \ A \\ C-62 & \leftrightarrow & C-68: 1.392 \ A \\ C-62 & \leftrightarrow & C-69: 2.162 \ A \\ C-62 & \leftrightarrow & C-68: 2.149 \ A \\ \\ H-63 & \leftrightarrow & C-68: 2.149 \ A \end{array}$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \text{\AA} \\ C-79 & \leftrightarrow & C-83 & : \ 1.370 \ \text{\AA} \\ C-79 & \leftrightarrow & H-84 & : \ 2.139 \ \text{\AA} \\ H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \text{\AA} \\ H-80 & \leftrightarrow & H-84 & : \ 2.470 \ \text{\AA} \\ C-81 & \leftrightarrow & H-82 & : \ 1.085 \ \text{\AA} \\ C-83 & \leftrightarrow & H-84 & : \ 1.087 \ \text{\AA} \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & H-30 & : 2.146 \ Å \\ C-27 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-27 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-27 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-21 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-21 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-21 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-21 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-31 & H-32 & : 1.084 \ Å \\ C-31 & H-32 & : 1.084 \ Å \\ \end{array}$	$\begin{array}{rcrcrcr} H-47 & \leftrightarrow & N-49 : 2.449 \mbox{ Å} \\ H-47 & \leftrightarrow & N-50 : 2.244 \mbox{ Å} \\ H-47 & \leftrightarrow & C-51 : 2.021 \mbox{ Å} \\ H-48 & \leftrightarrow & C-51 : 2.056 \mbox{ Å} \\ N-49 & \leftrightarrow & N-50 : 1.401 \mbox{ Å} \\ N-49 & \leftrightarrow & C-51 : 1.357 \mbox{ Å} \\ N-49 & \leftrightarrow & C-52 : 2.474 \mbox{ Å} \\ N-49 & \leftrightarrow & C-53 : 2.341 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 1.479 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.191 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.191 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.191 \mbox{ Å} \\ N-49 & \leftrightarrow & C-53 : 2.345 \mbox{ Å} \\ N-50 & \leftrightarrow & C-51 : 2.392 \mbox{ Å} \\ N-50 & \leftrightarrow & C-57 : 1.270 \mbox{ Å} \\ N-50 & \leftrightarrow & C-59 : 1.291 \mbox{ Å} \\ N-50 & \leftrightarrow & C-59 : 1.291 \mbox{ Å} \\ N-50 & \leftrightarrow & C-66 : 2.413 \mbox{ Å} \\ N-50 & \leftarrow & C-61 : 2.770 \mbox{ Å} \\ N-50 & \leftarrow & C-61 : 2.770 \mbox{ Å} \\ N-50 & \leftarrow & C-61 : 2.770 \mbox{ Å} \\ N-50 & \leftarrow & C-61 : 2.413 \mbox{ Å} \\ N-50 & \leftarrow & C-61 :$	$\begin{array}{rcrcrcrcr} H\mbox{-}63 & \leftrightarrow & H\mbox{-}63 & 2.403 \mbox{ A}\\ C\mbox{-}59 & \leftrightarrow & C\mbox{-}64 & 2.465 \mbox{ Å}\\ C\mbox{-}59 & \leftrightarrow & C\mbox{-}66 & : 1.464 \mbox{ Å}\\ C\mbox{-}59 & \leftrightarrow & C\mbox{-}66 & : 1.464 \mbox{ Å}\\ C\mbox{-}59 & \leftrightarrow & C\mbox{-}61 & : 1.088 \mbox{ Å}\\ C\mbox{-}60 & \leftrightarrow & C\mbox{-}62 & : 2.410 \mbox{ Å}\\ C\mbox{-}60 & \leftrightarrow & C\mbox{-}62 & : 2.410 \mbox{ Å}\\ C\mbox{-}60 & \leftrightarrow & C\mbox{-}62 & : 2.410 \mbox{ Å}\\ C\mbox{-}60 & \leftrightarrow & C\mbox{-}67 & : 2.389 \mbox{ Å}\\ C\mbox{-}60 & \leftrightarrow & C\mbox{-}70 & : 2.1391 \mbox{ Å}\\ C\mbox{-}60 & \leftrightarrow & C\mbox{-}70 & : 2.148 \mbox{ Å}\\ H\mbox{-}61 & \leftrightarrow & H\mbox{-}71 & : 2.161 \mbox{ Å}\\ H\mbox{-}62 & \leftrightarrow & H\mbox{-}63 & : 1.087 \mbox{ Å}\\ C\mbox{-}62 & \leftrightarrow & C\mbox{-}67 & : 2.388 \mbox{ Å}\\ C\mbox{-}62 & \leftrightarrow & C\mbox{-}63 & : 1.392 \mbox{ Å}\\ C\mbox{-}62 & \leftrightarrow & C\mbox{-}70 & : 2.162 \mbox{ Å}\\ C\mbox{-}62 & \leftrightarrow & C\mbox{-}70 & : 2.162 \mbox{ Å}\\ C\mbox{-}62 & \leftrightarrow & C\mbox{-}70 & : 2.162 \mbox{ Å}\\ C\mbox{-}63 & \leftrightarrow & C\mbox{-}70 & : 2.491 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & C\mbox{-}68 & : 2.149 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{ Å}\\ H\mbox{-}63 & \leftrightarrow & L\mbox{-}69 & : 2.401 \mbox{-}68 \mb$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-27 & \leftrightarrow & C-29 & : 2.423 \ Å \\ C-29 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-31 & \leftrightarrow & H-32 & : 1.086 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} H\text{-}58 & \leftrightarrow & H\text{-}63 & 2.403 \ A \\ C\text{-}59 & \leftrightarrow & C\text{-}64 & 2.465 \ \AA \\ C\text{-}59 & \leftrightarrow & C\text{-}66 & 1.464 \ \AA \\ C\text{-}59 & \leftrightarrow & C\text{-}68 & 1.2601 \ \AA \\ C\text{-}59 & \leftrightarrow & C\text{-}81 & 2.501 \ \AA \\ C\text{-}59 & \leftrightarrow & C\text{-}81 & 2.501 \ \AA \\ C\text{-}60 & \leftrightarrow & C\text{-}62 & 2.410 \ \AA \\ C\text{-}60 & \leftrightarrow & C\text{-}62 & 2.410 \ \AA \\ C\text{-}60 & \leftrightarrow & C\text{-}62 & 2.410 \ \AA \\ C\text{-}60 & \leftrightarrow & C\text{-}62 & 2.410 \ \AA \\ C\text{-}60 & \leftrightarrow & C\text{-}63 & 2.790 \ \AA \\ C\text{-}60 & \leftrightarrow & C\text{-}70 & 1.391 \ \AA \\ C\text{-}60 & \leftrightarrow & C\text{-}70 & 2.148 \ \AA \\ H\text{-}61 & \leftrightarrow & C\text{-}70 & 2.148 \ \AA \\ H\text{-}61 & \leftrightarrow & H\text{-}71 & 2.489 \ \AA \\ C\text{-}62 & \leftrightarrow & C\text{-}68 & 1.392 \ \AA \\ C\text{-}62 & \leftrightarrow & C\text{-}68 & 1.392 \ \AA \\ C\text{-}62 & \leftrightarrow & C\text{-}68 & 1.392 \ \AA \\ C\text{-}62 & \leftrightarrow & C\text{-}70 & 2.788 \ \AA \\ H\text{-}63 & \leftrightarrow & C\text{-}68 & 2.149 \ \AA \\ \\ H\text{-}63 & \leftrightarrow & H\text{-}69 & 2.491 \ \AA \end{array}$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 : 1.086 \mbox{ Å} \\ C-79 & \leftrightarrow & C-83 : 1.370 \mbox{ Å} \\ C-79 & \leftrightarrow & H-84 : 2.139 \mbox{ Å} \\ H-80 & \leftrightarrow & C-83 : 2.133 \mbox{ Å} \\ H-80 & \leftrightarrow & H-84 : 2.470 \mbox{ Å} \\ C-81 & \leftrightarrow & H-82 : 1.085 \mbox{ Å} \\ C-83 & \leftrightarrow & H-84 : 1.087 \mbox{ Å} \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.146 \ Å \\ C-27 & \leftrightarrow & H-28 & : 1.086 \ Å \\ C-27 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-21 & \leftrightarrow & H-32 & : 1.086 \ Å \\ C-31 & \leftrightarrow & C-33 & : 2.425 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrcrc} R - S & \leftrightarrow & H - G & S & L + G & G & A \\ C - S & \leftrightarrow & H - G & S & L + G & S & A \\ C - S & \leftrightarrow & H - G & S & L + G & A \\ C - S & \leftrightarrow & C - G & S & L + G & A \\ C - S & \leftrightarrow & C - G & S & L + G & A \\ C - S & \leftrightarrow & C - G & S & L + G & A \\ C - G & \leftrightarrow & C - G & S & L + G & A \\ C - G & \leftrightarrow & C - G & L & L + G & A \\ C - G & \leftrightarrow & C - G & L & L + G & A \\ C - G & \leftrightarrow & C - G & L & L - G & A \\ C - G & \leftrightarrow & C - G & L & L - G & A \\ C - G & \leftrightarrow & C - G & L & L - G & A \\ C - G & \leftrightarrow & C - G & L & L + G \\ H - G & \leftrightarrow & H - G & L & L + G \\ H - G & \leftrightarrow & H - G & L & L + G \\ G & \leftrightarrow & C - G & L & L + G \\ G & \leftrightarrow & C - G & L & L + G \\ G & \leftrightarrow & C - G & L & L + G \\ G & \leftrightarrow & C - G & L & L + G \\ H - G & \leftrightarrow & C - G & L & L + G \\ H - G & \leftrightarrow & C - G & L & L + G \\ H - G & \leftrightarrow & H - G & L & L + G \\ H - G & \leftrightarrow & H - G & L & L + G \\ H - G & \leftrightarrow & H - G & L & L + G \\ G & \leftrightarrow & H - G & L & L + G \\ G & H & H - G & L & L + G \\ G & H & H - G & L & L + G \\ G & H & H - G & L & L + G \\ G & H & H - G & L & L + G \\ G & H & H - G & L & L \\ G & H & H - G & L & L \\ G & H & H \\ G & H & H - G & L & L \\ G & H & H \\ G & H & H = G & L & H \\ G & H & G \\ G & H & H = G & G & H \\ G & H & G & H \\ G & H & H = G & G & H \\ G & H & H \\ G & H & H & G & H & H \\ G & H & H \\ G & H & G$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & H-30 & : 2.146 \ Å \\ C-27 & \leftrightarrow & H-30 & : 2.146 \ Å \\ C-27 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-27 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-31 & \leftrightarrow & H-32 & : 1.086 \ Å \\ C-31 & \leftarrow & C-33 & : 2.425 \ Å \\ C-31 & \leftarrow & C-33 & : 2.425 \ Å \\ \end{array}$	$\begin{array}{rcrcrcrc} H-47 & \leftrightarrow & N-49 : 2.449 \ \text{\AA} \\ H-47 & \leftrightarrow & N-50 : 2.244 \ \text{\AA} \\ H-47 & \leftrightarrow & C-51 : 2.021 \ \text{\AA} \\ H-48 & \leftrightarrow & C-51 : 2.056 \ \text{\AA} \\ N-49 & \leftrightarrow & N-50 : 1.401 \ \text{\AA} \\ N-49 & \leftrightarrow & C-52 : 2.474 \ \text{\AA} \\ N-49 & \leftrightarrow & C-52 : 2.474 \ \text{\AA} \\ N-49 & \leftrightarrow & C-53 : 2.341 \ \text{\AA} \\ N-49 & \leftrightarrow & C-57 : 1.479 \ \text{\AA} \\ N-49 & \leftrightarrow & C-57 : 1.479 \ \text{\AA} \\ N-49 & \leftrightarrow & C-59 : 2.191 \ \text{\AA} \\ N-49 & \leftrightarrow & C-59 : 2.191 \ \text{\AA} \\ N-49 & \leftrightarrow & C-51 : 2.380 \ \text{\AA} \\ N-49 & \leftrightarrow & C-51 : 2.392 \ \text{\AA} \\ N-50 & \leftrightarrow & C-57 : 2.396 \ \text{\AA} \\ N-50 & \leftrightarrow & C-59 : 1.291 \ \text{\AA} \\ N-50 & \leftrightarrow & C-66 : 2.413 \ \text{\AA} \\ N-50 & \leftrightarrow & C-61 : 2.865 \ \text{\AA} \\ N-50 & \leftrightarrow & C-81 : 2.865 \ \text{\AA} \\ N-50 & \leftrightarrow & H-82 : 2.527 \ \text{\AA} \\ N-50 & \leftrightarrow & C-57 : 2.588 \ \text{\AA} \\ \end{array}$	$\begin{array}{rcrcrcrcrc} R & C & F & R & -63 & Z & 403 \ A \\ C & 59 & \leftrightarrow & C & -64 & Z & 465 \ Å \\ C & 59 & \leftrightarrow & C & -66 & I & 1464 \ \AA \\ C & 59 & \leftrightarrow & C & -66 & I & 1464 \ \AA \\ C & 59 & \leftrightarrow & C & -61 & I & 2501 \ \AA \\ C & -59 & \leftrightarrow & C & -61 & I & 2501 \ \AA \\ C & -60 & \leftrightarrow & C & -62 & I & 2700 \ \AA \\ C & -60 & \leftrightarrow & C & -67 & I & 2389 \ \AA \\ C & -60 & \leftrightarrow & C & -67 & I & 2389 \ \AA \\ C & -60 & \leftrightarrow & C & -67 & I & 2391 \ \AA \\ C & -60 & \leftrightarrow & C & -70 & I & 1391 \ \AA \\ C & -60 & \leftrightarrow & C & -70 & I & 1391 \ \AA \\ C & -60 & \leftrightarrow & H & -71 & I & 2.489 \ \AA \\ C & -62 & \leftrightarrow & H & -63 & I & 1087 \ \AA \\ C & -62 & \leftrightarrow & C & -67 & I & 2388 \ \AA \\ C & -62 & \leftrightarrow & C & -68 & I & 1392 \ \AA \\ C & -62 & \leftrightarrow & C & -68 & I & 1392 \ \AA \\ C & -62 & \leftrightarrow & C & -68 & I & 2.149 \ \AA \\ H & -63 & \leftrightarrow & C & -68 & I & 2.149 \ \AA \\ H & -63 & \leftrightarrow & H & -65 & I & 1088 \ \AA \\ C & -64 & \leftrightarrow & H & -65 & I & 1088 \ \AA \\ C & -64 & \leftarrow & H & -65 & I & 1088 \ \AA \\ C & -64 & \leftarrow & C & -66 & I & 1375 \ \AA \end{array} \end{cases}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & H-43 & : 2.708 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-33 & : 2.819 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-27 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-27 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-31 & \leftrightarrow & C-33 & : 2.425 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-24 & \leftrightarrow & H-32 & : 0.86 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-24 & \leftrightarrow & H-32 & : 0.86 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 1.371 \ Å \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \leftrightarrow & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : 0.371 \ \& \\ C-31 & \odot & C-34 & : $	$\begin{array}{rcrcrcrcrc} H-47 & \leftrightarrow & N-49 : 2.449 \mbox{ Å} \\ H-47 & \leftrightarrow & N-50 : 2.244 \mbox{ Å} \\ H-47 & \leftrightarrow & C-51 : 2.021 \mbox{ Å} \\ H-48 & \leftrightarrow & C-51 : 2.021 \mbox{ Å} \\ H-48 & \leftrightarrow & C-51 : 1.2.056 \mbox{ Å} \\ N-49 & \leftrightarrow & N-50 : 1.401 \mbox{ Å} \\ N-49 & \leftrightarrow & C-52 : 2.474 \mbox{ Å} \\ N-49 & \leftrightarrow & C-53 : 2.341 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 1.479 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 2.108 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.108 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.108 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.191 \mbox{ Å} \\ N-49 & \leftrightarrow & C-60 : 2.880 \mbox{ Å} \\ N-49 & \leftrightarrow & C-51 : 2.392 \mbox{ Å} \\ N-50 & \leftrightarrow & C-57 : 2.396 \mbox{ Å} \\ N-50 & \leftrightarrow & C-57 : 2.396 \mbox{ Å} \\ N-50 & \leftrightarrow & C-66 : 2.413 \mbox{ Å} \\ N-50 & \leftrightarrow & C-66 : 2.413 \mbox{ Å} \\ N-50 & \leftrightarrow & C-81 : 2.865 \mbox{ Å} \\ N-50 & \leftrightarrow & H-82 : 2.527 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftarrow & C$	$\begin{array}{rcrcrcrcrc} R - S & \leftarrow H - G & S & L + G & S & L + G & S & A \\ C - S & \leftrightarrow & C - G & C + C & S & A \\ C - S & \leftrightarrow & C - G & C + G & S & A \\ C - S & \leftrightarrow & C - G & C + A & A \\ C - S & \leftrightarrow & C - G & C & I & L & S & A \\ C - G & \leftrightarrow & C - G & I & L & S & A \\ C - G & \leftrightarrow & C - G & I & L & S & A \\ C - G & \leftrightarrow & C - G & I & L & S & A \\ C - G & \leftrightarrow & C - G & I & L & S & A \\ C - G & \leftrightarrow & C - G & I & L & S & A \\ C - G & \leftrightarrow & C - G & I & L & S & A \\ C - G & \leftrightarrow & C - G & I & L & S & A \\ C - G & \leftrightarrow & C - T & I & L & S & A \\ G - G & \leftrightarrow & C - T & I & L & S & A \\ G - G & \leftrightarrow & H - T & I & L & S & A \\ G - G & \leftrightarrow & H - G & I & L & S & A \\ G - G & \leftrightarrow & H - G & I & L & S & A \\ G - G & \leftrightarrow & C - G & I & L & S & A \\ G - G & \leftrightarrow & C - G & I & L & S & A \\ G - G & \leftrightarrow & C - G & I & L & L & S & A \\ H - G & \leftrightarrow & C - G & I & L & L & S & A \\ H - G & \leftrightarrow & H - G & I & L & L & S & A \\ H - G & \leftrightarrow & H - G & I & L & L & S & A \\ G - G & \leftrightarrow & H - G & I & L & S & A \\ G - G & \leftrightarrow & H - G & I & L & S & A \\ G - G & \leftrightarrow & G & G & I & L & S & A \\ G - G & G & I & G & G & G & G & I & G & G \\ G & G & G & G & G & G & G & G & G \\ G & G & G & G & G & G & G & G \\ G & G & G & G & G & G & G \\ G & G & G & G & G & G \\ G & G & G & G & G & G \\ G & G & G & G & G & G & G \\ G & G & G & G & G \\ G$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 & : 1.086 \mbox{ Å} \\ C-79 & \leftrightarrow & C-83 & : 1.370 \mbox{ Å} \\ H-80 & \leftrightarrow & C-83 & : 2.133 \mbox{ Å} \\ H-80 & \leftrightarrow & H-84 & : 2.470 \mbox{ Å} \\ C-81 & \leftrightarrow & H-84 & : 1.085 \mbox{ Å} \\ C-83 & \leftrightarrow & H-84 & : 1.087 \mbox{ Å} \\ \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \ A \\ C-23 & \leftrightarrow & C-36 & : 2.796 \ Å \\ C-23 & \leftrightarrow & C-40 & : 2.423 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ C-23 & \leftrightarrow & C-42 & : 2.485 \ Å \\ H-24 & \leftrightarrow & C-25 & : 2.145 \ Å \\ H-24 & \leftrightarrow & C-42 & : 2.699 \ Å \\ H-24 & \leftrightarrow & H-43 & : 2.465 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-36 & : 2.420 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-25 & \leftrightarrow & C-40 & : 1.426 \ Å \\ C-26 & \leftrightarrow & C-27 & : 1.384 \ Å \\ C-26 & \leftrightarrow & C-29 & : 1.386 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.145 \ Å \\ C-26 & \leftrightarrow & H-28 & : 2.146 \ Å \\ C-27 & \leftrightarrow & H-28 & : 1.084 \ Å \\ C-27 & \leftrightarrow & H-30 & : 1.084 \ Å \\ C-31 & \leftrightarrow & H-32 & : 1.086 \ Å \\ C-31 & \leftrightarrow & H-35 & : 2.140 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} R-SS & \leftrightarrow H-GS & 2.403 \ A \\ C-S9 & \leftrightarrow C-G4 & 2.465 \ Å \\ C-S9 & \leftrightarrow H-G5 & 2.692 \ Å \\ C-S9 & \leftrightarrow C-G6 & 1.464 \ Å \\ C-S9 & \leftrightarrow C-G8 & 1.2501 \ Å \\ C-G9 & \leftrightarrow C-G1 & 2.501 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.501 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.389 \ Å \\ C-G0 & \leftrightarrow C-G2 & 2.410 \ Å \\ C-G0 & \leftrightarrow C-G2 & 2.410 \ Å \\ C-G0 & \leftrightarrow C-G7 & 2.389 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.391 \ Å \\ C-G0 & \leftrightarrow C-C7 & 1.391 \ Å \\ C-G0 & \leftrightarrow C-70 & 2.148 \ Å \\ H-G1 & \leftrightarrow C-70 & 2.148 \ Å \\ H-G1 & \leftrightarrow C-G1 & 2.388 \ Å \\ C-G2 & \leftrightarrow C-G7 & 2.388 \ Å \\ C-G2 & \leftrightarrow C-G1 & 1.392 \ Å \\ C-G2 & \leftrightarrow C-G1 & 2.149 \ Å \\ H-G3 & \leftarrow C-G8 & 2.149 \ Å \\ H-G3 & \leftarrow C-G8 & 2.149 \ Å \\ H-G3 & \leftarrow H-G5 & 2.149 \ Å \\ H-G3 & \leftarrow H-G5 & 1.388 \ Å \\ C-G4 & \leftrightarrow C-G6 & 1.375 \ Å \\ C-G4 & \leftrightarrow C-GG & 1.375 \ Å \\ C-G4 & \leftrightarrow C-G4 & 2.447 \ \AA \end{array} \right$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \mbox{ A} \\ C-23 & \leftrightarrow & C-36 & : 2.796 \mbox{ Å} \\ C-23 & \leftrightarrow & C-40 & : 2.423 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.485 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.485 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ H-24 & \leftrightarrow & C-25 & : 2.145 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ C-25 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ C-25 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ C-25 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ C-25 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ C-25 & \leftrightarrow & C-42 & : 2.420 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-26 & \leftrightarrow & C-27 & : 1.384 \mbox{ Å} \\ C-26 & \leftrightarrow & C-29 & : 1.386 \mbox{ Å} \\ C-26 & \leftrightarrow & C-29 & : 1.386 \mbox{ Å} \\ C-27 & \leftrightarrow & H-30 & : 1.084 \mbox{ Å} \\ C-27 & \leftrightarrow & H-30 & : 1.084 \mbox{ Å} \\ C-31 & \leftrightarrow & C-34 & : 1.371 \mbox{ Å} \\ C-31 & \leftrightarrow & C-34 & : 1.371 \mbox{ Å} \\ C-31 & \leftrightarrow & C-34 & : 1.371 \mbox{ Å} \\ C-31 & \leftrightarrow & C-34 & : 1.371 \mbox{ Å} \\ C-31 & \leftrightarrow & C-34 & : 1.371 \mbox{ Å} \\ C-31 & \leftrightarrow & C-34 & : 1.371 \mbox{ Å} \\ C-31 & \leftrightarrow & C-34 & : 1.418 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} R - S & \leftrightarrow & H - G S & 2.403 \ A \\ C - S 9 & \leftrightarrow & C - G 4 & 2.465 \ A \\ C - S 9 & \leftrightarrow & C - G 4 & 2.465 \ A \\ C - S 9 & \leftrightarrow & C - G 6 & 1.464 \ A \\ C - S 9 & \leftrightarrow & C - G 6 & 1.464 \ A \\ C - S 9 & \leftrightarrow & C - G 1 & 2.501 \ A \\ C - G 0 & \leftrightarrow & C - G 1 & 2.501 \ A \\ C - G 0 & \leftrightarrow & C - G 1 & 2.501 \ A \\ C - G 0 & \leftrightarrow & C - G 2 & 2.410 \ A \\ C - G 0 & \leftrightarrow & C - G 2 & 2.410 \ A \\ C - G 0 & \leftrightarrow & C - G 2 & 2.389 \ A \\ C - G 0 & \leftrightarrow & C - G 2 & 2.389 \ A \\ C - G 0 & \leftrightarrow & C - G 1 & 2.1391 \ A \\ C - G 0 & \leftrightarrow & C - T 0 & 2.148 \ A \\ H - G 1 & \leftrightarrow & C - T 0 & 2.148 \ A \\ H - G 1 & \leftrightarrow & C - T 0 & 2.148 \ A \\ H - G 1 & \leftrightarrow & C - G 1 & 2.1087 \ A \\ C - G 2 & \leftrightarrow & C - G 1 & 1.392 \ A \\ C - G 2 & \leftrightarrow & C - G 1 & 2.1388 \ A \\ C - G 2 & \leftrightarrow & C - G 1 & 2.149 \ A \\ H - G 3 & \leftrightarrow & C - G 8 & 2.149 \ A \\ H - G 3 & \leftrightarrow & C - G 8 & 2.149 \ A \\ H - G 3 & \leftrightarrow & H - G 9 & 2.491 \ A \\ C - G 4 & \leftrightarrow & C - G 6 & 1.375 \ A \\ C - G 4 & \leftarrow & C - 7 7 & 2.447 \ A \\ C - G 4 & \leftarrow & C - 7 7 & 2.94 \ A \end{array}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \mbox{ A} \\ C-23 & \leftrightarrow & C-36 & : 2.796 \mbox{ Å} \\ C-23 & \leftrightarrow & C-40 & : 2.423 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.485 \mbox{ Å} \\ C-23 & \leftrightarrow & H-43 & : 2.708 \mbox{ Å} \\ H-24 & \leftrightarrow & C-25 & : 2.145 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ C-25 & \leftrightarrow & C-33 & : 2.819 \mbox{ Å} \\ C-25 & \leftrightarrow & C-33 & : 2.819 \mbox{ Å} \\ C-25 & \leftrightarrow & C-36 & : 2.420 \mbox{ Å} \\ C-25 & \leftrightarrow & C-36 & : 2.420 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-26 & \leftrightarrow & C-27 & : 1.384 \mbox{ Å} \\ C-26 & \leftrightarrow & C-29 & : 2.145 \mbox{ Å} \\ C-26 & \leftrightarrow & H-30 & : 2.146 \mbox{ Å} \\ C-27 & \leftrightarrow & H-30 & : 2.146 \mbox{ Å} \\ C-27 & \leftrightarrow & H-30 & : 1.084 \mbox{ Å} \\ C-31 & \leftrightarrow & C-33 & : 2.425 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.371 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.418 \mbox{ Å} \\ C-21 & H-25 & : 2.420 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.418 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.418 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.418 \mbox{ Å} \\ C-21 & H-25 & : 2.427 \mbox{ Å} \\ C-21 & H-25 & : 2.427 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.418 \mbox{ Å} \\ C-21 & H-25 & : 2.427 \mbox{ Å} \\ C-21 & H-25 & : 2.427 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.418 \mbox{ Å} \\ C-31 & H-35 & : 2.140 \mbox{ Å} \\ C-31 & H-35 & : 2.427 $	$\begin{array}{rcrcrcr} H-47 & \leftrightarrow & N-49 : 2.449 \mbox{ Å} \\ H-47 & \leftrightarrow & N-50 : 2.244 \mbox{ Å} \\ H-47 & \leftrightarrow & C-51 : 2.021 \mbox{ Å} \\ H-48 & \leftrightarrow & C-51 : 2.056 \mbox{ Å} \\ N-49 & \leftrightarrow & N-50 : 1.401 \mbox{ Å} \\ N-49 & \leftrightarrow & C-51 : 1.357 \mbox{ Å} \\ N-49 & \leftrightarrow & C-52 : 2.474 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 1.479 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 1.479 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 2.108 \mbox{ Å} \\ N-49 & \leftrightarrow & C-57 : 2.108 \mbox{ Å} \\ N-49 & \leftrightarrow & C-59 : 2.191 \mbox{ Å} \\ N-49 & \leftrightarrow & C-50 : 2.880 \mbox{ Å} \\ N-49 & \leftrightarrow & C-51 : 2.392 \mbox{ Å} \\ N-49 & \leftrightarrow & C-51 : 2.392 \mbox{ Å} \\ N-50 & \leftrightarrow & C-51 : 2.392 \mbox{ Å} \\ N-50 & \leftrightarrow & C-57 : 2.396 \mbox{ Å} \\ N-50 & \leftrightarrow & C-59 : 1.291 \mbox{ Å} \\ N-50 & \leftrightarrow & C-59 : 1.291 \mbox{ Å} \\ N-50 & \leftrightarrow & C-66 : 2.413 \mbox{ Å} \\ N-50 & \leftrightarrow & C-66 : 2.413 \mbox{ Å} \\ N-50 & \leftrightarrow & C-57 : 2.538 \mbox{ Å} \\ C-51 & \leftrightarrow & C-57 : 2.511 \mbox{ Å} \\ C-52 & \leftarrow & C-53 : 2.351 \mbox{ Å} \\ C-52 & \leftarrow & C-53 : 2.551 \mbox{ Å} \\ C-52 & \leftarrow & C-53 : 2.551 \mbox{ Å} \\ C-52 & \leftarrow & C-53 : 2.551 \mbox{ Å} \\ \end{array}$	$\begin{array}{rcrcrcrcrcrc} R-53 & \leftrightarrow & H-63 & 2.403 \ A \\ C-59 & \leftrightarrow & C-64 & 2.465 \ \AA \\ C-59 & \leftrightarrow & C-66 & 1.464 \ \AA \\ C-59 & \leftrightarrow & C-66 & 1.464 \ \AA \\ C-59 & \leftrightarrow & C-81 & 2.501 \ \AA \\ C-60 & \leftrightarrow & C-61 & 1.088 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.410 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.410 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.410 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.410 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.410 \ \AA \\ C-60 & \leftrightarrow & C-70 & 1.391 \ \AA \\ C-60 & \leftrightarrow & C-70 & 1.391 \ \AA \\ C-60 & \leftrightarrow & C-70 & 1.391 \ \AA \\ C-60 & \leftrightarrow & C-70 & 1.391 \ \AA \\ C-60 & \leftrightarrow & C-70 & 1.391 \ \AA \\ C-62 & \leftrightarrow & C-70 & 2.148 \ \AA \\ H-61 & \leftrightarrow & H-71 & 2.489 \ \AA \\ C-62 & \leftrightarrow & C-67 & 2.388 \ \AA \\ C-62 & \leftrightarrow & C-68 & 1.1392 \ \AA \\ C-62 & \leftrightarrow & C-68 & 1.392 \ \AA \\ C-62 & \leftrightarrow & C-70 & 2.788 \ \AA \\ H-63 & \leftrightarrow & C-68 & 2.149 \ \AA \\ H-63 & \leftrightarrow & H-69 & 2.491 \ \AA \\ C-64 & \leftrightarrow & C-74 & 2.447 \ \AA \\ C-64 & \leftrightarrow & C-74 & 2.447 \ \AA \\ C-64 & \leftrightarrow & C-77 & 2.796 \ \AA \\ \end{array}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrc} C-23 & \leftrightarrow & C-33 & : 2.447 \mbox{ A} \\ C-23 & \leftrightarrow & C-36 & : 2.796 \mbox{ Å} \\ C-23 & \leftrightarrow & C-40 & : 2.423 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.485 \mbox{ Å} \\ C-23 & \leftrightarrow & C-42 & : 2.485 \mbox{ Å} \\ H-24 & \leftrightarrow & C-25 & : 2.145 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ H-24 & \leftrightarrow & C-42 & : 2.699 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-25 & \leftrightarrow & C-36 & : 2.420 \mbox{ Å} \\ C-25 & \leftrightarrow & C-36 & : 2.420 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-25 & \leftrightarrow & C-40 & : 1.426 \mbox{ Å} \\ C-26 & \leftrightarrow & C-27 & : 1.384 \mbox{ Å} \\ C-26 & \leftrightarrow & C-29 & : 1.386 \mbox{ Å} \\ C-26 & \leftrightarrow & C-29 & : 1.386 \mbox{ Å} \\ C-26 & \leftrightarrow & H-30 & : 2.146 \mbox{ Å} \\ C-27 & \leftrightarrow & H-30 & : 1.084 \mbox{ Å} \\ C-31 & \leftrightarrow & C-33 & : 2.425 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.418 \mbox{ Å} \\ C-31 & \leftrightarrow & C-38 & : 1.418 \mbox{ Å} \\ C-31 & \leftrightarrow & H-39 & : 2.170 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} R-SS & \leftrightarrow H-GS & 2.403 \ A \\ C-S9 & \leftrightarrow C-G4 & 2.465 \ Å \\ C-S9 & \leftrightarrow C-G6 & : 1.464 \ Å \\ C-S9 & \leftrightarrow C-G6 & : 1.464 \ Å \\ C-S9 & \leftrightarrow C-G1 & 2.501 \ Å \\ C-G9 & \leftrightarrow C-G1 & 2.501 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.501 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.389 \ Å \\ C-G0 & \leftrightarrow C-G2 & 2.410 \ Å \\ C-G0 & \leftrightarrow C-G2 & 2.410 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.389 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.389 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.389 \ Å \\ C-G0 & \leftrightarrow C-G1 & 2.161 \ Å \\ H-G1 & \leftrightarrow C-T0 & 2.148 \ Å \\ H-G1 & \leftrightarrow C-T0 & 2.148 \ Å \\ H-G1 & \leftrightarrow C-G1 & 1.392 \ Å \\ C-G2 & \leftrightarrow C-G7 & 2.388 \ Å \\ C-G2 & \leftrightarrow C-G1 & 1.392 \ Å \\ C-G2 & \leftrightarrow C-G1 & 2.149 \ Å \\ H-G3 & \leftrightarrow C-G8 & 2.149 \ Å \\ H-G3 & \leftrightarrow H-G9 & 2.491 \ \AA \\ C-G4 & \leftrightarrow C-G6 & 1.375 \ \AA \\ C-G4 & \leftrightarrow C-G4 & 2.447 \ \AA \\ C-G4 & \leftrightarrow C-T7 & 2.796 \ \AA \\ \\ C-G4 & \leftrightarrow C-R1 & 2.423 \ \AA \end{array} \end{array}$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} R-58 & \leftrightarrow & H-63: 2.403 \ A \\ C-59 & \leftrightarrow & C-64: 2.465 \ A \\ C-59 & \leftrightarrow & C-66: 1.464 \ A \\ C-59 & \leftrightarrow & C-81: 2.501 \ A \\ C-59 & \leftrightarrow & C-81: 2.501 \ A \\ C-60 & \leftrightarrow & H-61: 1.088 \ A \\ C-60 & \leftrightarrow & C-62: 2.410 \ A \\ C-60 & \leftrightarrow & C-62: 2.410 \ A \\ C-60 & \leftrightarrow & C-63: 2.790 \ A \\ C-60 & \leftrightarrow & C-63: 2.790 \ A \\ C-60 & \leftrightarrow & C-68: 2.790 \ A \\ C-60 & \leftrightarrow & C-68: 2.790 \ A \\ C-60 & \leftrightarrow & C-70: 1.391 \ A \\ C-60 & \leftrightarrow & C-70: 2.148 \ A \\ H-61 & \leftrightarrow & C-70: 2.148 \ A \\ H-61 & \leftrightarrow & C-70: 2.148 \ A \\ H-61 & \leftrightarrow & H-71: 2.489 \ A \\ C-62 & \leftrightarrow & C-63: 1.087 \ A \\ C-62 & \leftrightarrow & C-66: 1.392 \ A \\ C-62 & \leftrightarrow & C-68: 2.149 \ A \\ H-63 & \leftrightarrow & C-68: 2.149 \ A \\ H-63 & \leftrightarrow & H-69: 2.491 \ A \\ C-64 & \leftrightarrow & C-77: 2.786 \ A \\ C-64 & \leftrightarrow & C-77: 2.796 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-77: 2.485 \ A \\ C-64 & \leftrightarrow & C-83: 2.485 \ A \\ C-64 & \leftrightarrow & C-83: 2.485 \ A \\ C-64 & \to C-77: 2.485 \ A \\ C-64 & \to C-83: 2.485 \ A \\ C-6$	C-79 ↔ H-80 : 1.086 Å C-79 ↔ C-83 : 1.370 Å C-79 ↔ H-84 : 2.139 Å H-80 ↔ C-83 : 2.133 Å H-80 ↔ H-84 : 2.470 Å C-81 ↔ H-82 : 1.085 Å C-83 ↔ H-84 : 1.087 Å
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcr} R-58 & \leftrightarrow & H-63 & 2.403 \ A \\ C-59 & \leftrightarrow & C-64 & 2.465 \ \AA \\ C-59 & \leftrightarrow & C-66 & 1.464 \ \AA \\ C-59 & \leftrightarrow & C-81 & 2.501 \ \AA \\ C-59 & \leftrightarrow & C-81 & 2.501 \ \AA \\ C-60 & \leftrightarrow & C-61 & 1.088 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.410 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.410 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.410 \ \AA \\ C-60 & \leftrightarrow & C-62 & 2.389 \ \AA \\ C-60 & \leftrightarrow & C-63 & 2.790 \ \AA \\ C-60 & \leftrightarrow & C-70 & 1.391 \ \AA \\ C-60 & \leftrightarrow & C-70 & 1.391 \ \AA \\ C-60 & \leftrightarrow & C-70 & 2.148 \ \AA \\ H-61 & \leftrightarrow & C-70 & 2.148 \ \AA \\ H-61 & \leftrightarrow & C-70 & 2.148 \ \AA \\ H-61 & \leftrightarrow & H-71 & 2.489 \ \AA \\ C-62 & \leftrightarrow & H-63 & 1.087 \ \AA \\ C-62 & \leftrightarrow & C-68 & 1.392 \ \AA \\ C-62 & \leftrightarrow & C-68 & 1.392 \ \AA \\ C-62 & \leftrightarrow & C-70 & 2.788 \ \AA \\ H-63 & \leftarrow & C-68 & 2.149 \ \AA \\ H-63 & \leftrightarrow & H-69 & 2.491 \ \AA \\ C-64 & \leftrightarrow & C-74 & 2.447 \ \AA \\ C-64 & \leftrightarrow & C-77 & 2.796 \ \AA \\ C-64 & \leftrightarrow & C-81 & 2.423 \ \AA \\ C-64 & \leftrightarrow & C-81 & 2.423 \ \AA \\ C-64 & \leftrightarrow & C-81 & 2.423 \ \AA \\ C-64 & \leftrightarrow & C-83 & 2.423 \ \AA \\ C$	$\begin{array}{rcrcrcrc} C-79 & \leftrightarrow & H-80 & : \ 1.086 \ \text{\AA} \\ C-79 & \leftrightarrow & C-83 & : \ 1.370 \ \text{\AA} \\ C-79 & \leftrightarrow & H-84 & : \ 2.139 \ \text{\AA} \\ H-80 & \leftrightarrow & C-83 & : \ 2.133 \ \text{\AA} \\ H-80 & \leftrightarrow & H-84 & : \ 2.470 \ \text{\AA} \\ C-81 & \leftrightarrow & H-82 & : \ 1.085 \ \text{\AA} \\ C-83 & \leftrightarrow & H-84 & : \ 1.087 \ \text{\AA} \end{array}$

Complexo 3 (em duas perspectivas):

Ag-1 ↔ Cl-2: 2.690 Å				
$Ag-1 \leftrightarrow CI-2 \cdot 2.090 A$			C 47 C 40 · 2 421 Å	
1 C 1 . 0 C 0 0 Å	Π -14 ↔ C-15. 2.212 A	11-33 ↔ C-39.2.399 A	C-47 ↔ C-49.2.431 A	C-01 ↔ H-71.2.155 A
	H-14 H-16 · 2 848 Å	N-33 C-41 · 1 297 Å	C-49 H-50 · 1 083 Å	C-61 H-72 · 1 084 Å
//g ± ⇔ 0 + . 2.000 /				
Aα-1 ↔ H-7 : 2.891 A	H-14 ↔ C-17 : 2.191 A	N-33 ↔ H-43 : 2.790 A	C-51 ↔ C-52 : 1.385 A	C-61 ↔ H-73 : 2.156 A
			0 51 0 52 0 410 8	0.00 0.00.1.400.8
Ag-1 ↔ S-28 2.605 A	H-14 ↔ C-87 : 2.952 A	N-33 ↔ C-50 2.447 A	C-51 ↔ C-53 2.418 A	C-62 ↔ C-63 1.402 A
Δα-1 H-21 · 2 801 Å	$H_{-14} = H_{-00} \cdot 2.445$ Å	N-33 C-57 · 2 016 Å	$C_{-51} = C_{-54} \cdot 2.704 \text{ Å}$	$C_{-62} = C_{-64} \cdot 2.440$ Å
Ag-1 ↔ II-S1.2.031A	11-14 ↔ 11-33.2.443 A	14-33 ↔ C-31.2.310 Å	C-J1 ↔ C-J4.2.194 A	C-02 ↔ C-04.2.440 A
CI-2 → H-7 · 2 319 Å	C-15 ↔ H-16 · 1 091 Å	N-33 🛶 H-69 2 194 Å	C-51 → C-55 2 439 Å	C-62 🛶 C-65 2483 Å
CI-2 ↔ H-31 : 2.315 A	C-15 ↔ C-17 : 2.393 A	C-34 ↔ C-39 : 2.531 A	C-51 ↔ C-56 : 1.406 A	C-62 ↔ H-72 : 2.150 A
	0.15 0.10 0.507 8	0.04 11.40 . 0.000 8		
CI-3 ↔ C-22 1.813 A	C-15 ↔ C-18 : 2.537 A	C-34 ↔ H-40 2.822 A	C-51 ↔ H-67 1.083 A	C-62 ↔ H-73 1.086 A
$C_{12} = C_{22} \cdot 2.764$ Å	$C_{15} = 10.2751$ Å	$C_{2} = C_{2} = C_{2$		$C 62 \qquad \Box 74 \cdot 2702 $
CI-3 ↔ C-23.2.704 A	C-13 ↔ H-19.2.751 Å	C-35 ↔ C-30.2.349 A	C-31 ↔ H-00.2.143 A	C-02 ↔ H-14.2.102 A
Cl-3 → H-24 · 2 887 Å	C-15 ↔ C-20 · 2 517 Å	C-35 ↔ H-38 2 550 Å	C-52 ↔ C-53 1 400 Å	C-63 ↔ C-64 · 1 425 Å
CI-3 ↔ C-25 : 2.764 A	C-15 ↔ H-21 : 2.711 A	C-35 ↔ C-39 : 1.516 A	C-52 ↔ C-54 : 2.434 A	C-63 ↔ C-65 : 1.442 A
CI-3 ↔ H-20 2.888 A	H-10 ↔ C-20 2.000 A	C-35 ↔ H-40 2.153 A	C-52 ↔ C-55 2.834 A	C-03 ↔ C-00 2.435 A
C/ NE·2727Å		$C_{25} = C_{12} \cdot 1_{200} $	$C = 52$ $C = 6 \cdot 2.441$ Å	C 62 U 72 · 2 1/0 Å
3-4 ↔ N-3.2.131 A	Π-10 ↔ Π-21 . 2.450 A	C-35 ↔ C-42.1.390 A	C-52 ↔ C-50.2.441 A	C-03 ↔ H-73.2.149 A
S-4 H-7 · 2 908 Å	C-17 C-86 · 2 446 Å	C-35 H-43 · 2 159 Å	C-52 C-66 · 2 478 Å	C-63 H-74 · 2 176 Å
S-4 ↔ N-8 : 2.681 A	C-17 ↔ C-87 : 1.472 A	C-35 ↔ C-44 : 1.396 A	C-52 ↔ H-67 : 2.126 A	C-64 ↔ C-65 : 2.469 A
0.4 0.40 4.700 8	0.17 0.00 0.554 8	0.05 11.45 0.454.8		0.04 0.00 0.000 8
S-4 ↔ C-10:1.762 A	U-17 ↔ U-88 2.554 A	C-35 ↔ H-45 2.154 A	C-52 ↔ H-68 1.085 A	C-64 ↔ C-66 2.830 A
S-1 H-16 · 2 885 Å	$C_{-17} = H_{-08} \cdot 2508 \text{ Å}$	$C_{-35} = C_{-46} \cdot 2.765 \text{ Å}$	$C_{-52} = H_{-75} \cdot 2.600 \text{ Å}$	C-65 C-66 · 1 356 Å
3-4 ↔ 11-10.2.003 A	C-11 ↔ 11-30.2.330 A	C-33 ↔ C-40.2.703 A	C-32 ↔ 11-73.2.030 A	C-03 ↔ C-00.1.330 Å
N-5 ↔ H-6 · 1 010 Å	C-17 → H-99 · 2 740 Å	C-35 ↔ C-47 · 2 423 Å	C-53 ↔ C-54 1 425 Å	C-65 ↔ H-73 2 700 Å
N-5 ↔ H-7:1.015 A	C-18 ↔ H-19 : 1.086 A	C-35 ↔ C-49 : 2.424 A	C-53 ↔ C-55 : 2.482 A	C-65 ↔ H-74 : 1.086 A
	C 10 C 20 · 2 415 Å	C 26 11 27 1 004 Å		
א 2.282 A-N ↔ N-N ב-או	U-10 ↔ U-20 . 2.415 A	ບ-ວບ ↔	_ບ-ວວ ↔ ບ-ວວ. 2.840 A	C-03 ↔ H-13 Z.128 A
N-5 ↔ N-9 · 2 656 Å	C-18 - C-22 · 2 202 Å	C-36 - H-38 · 1 002 Å	C-53 - C-63 · 2 8/1 Å	C-66 🗛 H-68 · 2 700 Å
				0 00 ↔ 11 00 . 2.100 A
N-5 ↔ C-10 : 1.327 Å	C-18 ↔ C-23 : 2.797 Å	C-36 ↔ C-39 : 1.551 Å	C-53 ↔ C-64 : 2.462 Å	C-66 ↔ H-74 : 2.127 Å
		0.06 11.40 . 0.000 *		
ן ח-ט ↔ H-/:1./44 A	C-18 ↔ C-25 : 1.395 A	∣ບ-30 ↔ H-40∶2.208A	C-53 ↔ C-65 : 2.43/ A	רטן ↔ H-75:1.085 A
H-6 NO.24628	C-18 U 26 · 2 160 8	C-36 C /1 · 1 E 21 Å	C-53 C 66 · 1 //1 8	H-67 L 60 · 2 4 4 2 8
11-0 ↔ IN-0.2.402 A	O-TO ↔ U-70 · 7.TON Y	0-30 ↔ 0-41.1.321 A	0-55 ↔ 0-00.1.441 A	טסט-ט <i>ו</i> ↔ ה-טס. 2.443 A
H-6 👝 N-9 · 2 252 Å	$ H-19 \rightarrow C-25 \cdot 2 1/7 ^{\text{A}}$	C-36 - C-51 · 2 058 Å	C-53 👝 H-68 · 2 152 Å	H-68 A H-75 · 2 /56 Å
				11 00 ÷ 11 10 . 2.400 A
H-6 ↔ C-10 : 2.025 Å	H-19 ↔ H-26 : 2.481 Å	C-36 ↔ C-56 : 2.626 Å	C-53 ↔ H-75 : 2.173 Å	H-69 ↔ H-70 : 2.439 Å
H-7 ↔ C-10 : 2.049 A	C-20 ↔ H-21 : 1.085 A	C-36 ↔ H-67 : 2.548 A	C-54 ↔ C-55 1.430 A	H-/0 ↔ H-/1:2.4/4 A
NO NO 1 102 Å	C 20 C 22 · 2 200 Å			
IN-0 ↔ IN-9.1.403 A	C-20 ↔ C-22.2.390 A	□-31 ↔ □-30.1.109 A	C-54 ↔ C-50. 2.454 A	Π-11 ↔ Π-12.2.402 A
N-8 C-10 · 1 3/6 Å	C_{-20} $C_{-23} \cdot 1.304$ Å	H-37 C-30 · 2 213 Å	$C_{-54} = C_{-57} \cdot 2.460 \text{ Å}$	H-72 H-73 · 2 /80 Å
11-0 ↔ C-10.1.340 Å	C-20 ↔ C-23.1.334 Å	11-37 ↔ C-33.2.213 Å	C-34 ↔ C-37.2.400 Å	11-12 ↔ 11-13.2.400 Å
N-8 ↔ C-11 : 2.470 Å	C-20 ↔ H-24 : 2.161 Å	H-37 ↔ H-40 : 2.385 Å	C-54 ↔ C-58 : 2.824 Å	H-73 ↔ H-74 : 2.462 Å
N-8 ↔ C-12 : 2.324 A	C-20 ↔ C-25 : 2.794 A	H-37 ↔ C-41 : 2.156 A	C-54 ↔ C-59 : 2.4/6 A	H-/4 ↔ H-/5:2.469 A
			CEA C 62 · 2 490 Å	$C 76 C 77 \cdot 1 202 $
N-8 ↔ H-13.2.885 A	$H-21 \leftrightarrow C-23.2.147 A$	H-3/ ↔ C-50.2.905 A	C-54 ↔ C-03 . 2.480 A	C-70 ↔ C-77.1.393 A
N-8 C-15 · 1 /7/ Å	H_{-21} $H_{-21} \cdot 2.485$ Å	H-37 H-67 · 2 7/3 Å	C_{-54} $C_{-64} \cdot 1.434$ Å	C-76 C-78 · 2 / 28 Å
11-0 ↔ C-13.1.4/4 Å	11-21 + 11-24 . 2.403 A	11-31 + 11-01.2.143 A	C-34 ↔ C-04.1.434 Å	C-10 ↔ C-10.2.420 Å
N-8 ↔ H-16 2.111 Å	C-22 ↔ C-23 1.387 Å	H-38 ↔ C-39 2.185 Å	C-54 ↔ C-65 2.848 Å	C-76 ↔ C-79 2.814 Å
				0 70 0 00 0 404 8
N-8 ↔ C-17 : 2.199 A	C-22 ↔ H-24 : 2.150 A	H-38 ↔ H-40 : 2.892 A	C-54 ↔ C-66 2.4//A	C-76 ↔ C-80 : 2.431 A
NO C10.2047 Å	C 22 C 25 · 1 207 Å		C FF C F6 · 1 422 Å	C 76 C 91 · 1 202 Å
IN-0 ↔ C-10.2.04/ A	C-22 ↔ C-25.1.307 A	H-30 ↔ C-41.2.10/ A	C-55 ↔ C-50. 1.425 A	C-70 ↔ C-01 . 1.393 A
N-8 H-19 · 2 511 Å	C-22 H-26 · 2 150 Å	H-38 C-51 · 2 804 Å	$C-55 \sim C-57 \cdot 1.445$ Å	C-76 H-92 · 1 084 Å
	0 22 0 11 20 . 2.100 /			
N-9 ↔ C-10 : 2.381 A	C-23 ↔ H-24 : 1.083 A	H-38 ↔ C-56 : 2.936 A	C-55 ↔ C-58 : 2.447 A	C-76 ↔ H-93 : 2.156 A
			0.55 0.50 0.070 8	
N-9 ↔ C-12 : 2.340 A	C-23 ↔ C-25 : 2.430 A	H-38 ↔ H-6/:2.0/1A	C-55 ↔ C-59 2.8/3 A	C-76 ↔ H-94 : 2.155 A
				$C 77 C 70 \cdot 1 402 $
N-9 ↔ H-13.2.940 A	C-25 ↔ H-20. 1.005 A	C-39 ↔ H-40.1.092 A	C-55 ↔ C-04 . 2.405 A	C-11 ↔ C-10.1.402 A
N-9 C-15 · 2 386 Å	CI-27 C-46 · 1 814 Å	C-39 C-41 · 2 409 Å	C-55 H-69 · 2 178 Å	C_{-77} , $C_{-79} \cdot 2.441$ Å
N-9 ↔ C-17 : 1.299 Å	CI-27 ↔ C-47 : 2.764 Å	C-39 ↔ C-42 : 2.525 Å	C-56 ↔ C-57 : 2.528 Å	C-77 ↔ C-80 : 2.815 Å
N-9 ↔ H-19 : 2.683 A	CI-27 ↔ H-48 : 2.888 A	C-39 ↔ H-43 : 2.729 A	C-50 ↔ H-6/:2.15/A	$ C-11 \leftrightarrow C-81: 2.417 A$
N-9 C-86 · 2 785 Å	$C_{-27} = C_{-40} \cdot 2.764$ Å	$C_{-30} = C_{-11} \cdot 2525 \text{ Å}$	$C_{-56} = H_{-60} \cdot 2.750 \text{ Å}$	C_{-77} $C_{-01} \cdot 2.486$ Å
11-9 ↔ C-00.2.705 Å	CI-21 ↔ C-49.2.104 Å	C-39 ↔ C-44 . 2.525 Å	C-30 ↔ H-09.2.739A	$\Box \Box = I I \leftrightarrow \Box = \exists I \cdot Z \cdot 4 \cup A$
N-9 → C-87 2 394 Å	CI-27 → H-50 · 2 887 Å	C-39 → H-45 · 2 726 Å		
			C-57 ↔ C-58 1.358 Å	C-77 ↔ H-92 2.150 Å
IN-9 ↔ H-98 : 2.426 A			C-57 ↔ C-58 : 1.358 Å	C-77 ↔ H-92 : 2.150 Å
	S-28 ↔ N-29 : 2.735 A	H-40 ↔ C-44 : 2.643 Å	C-57 ↔ C-58 : 1.358 Å C-57 ↔ C-59 : 2.443 Å	C-77 ↔ H-92 : 2.150 Å C-77 ↔ H-93 : 1.086 Å
C 10 C 1E · 2 E 21 Å	S-28 ↔ N-29:2.735 A	$H-40 \leftrightarrow C-44 : 2.643 Å$	C-57 \leftrightarrow C-58 : 1.358 Å C-57 \leftrightarrow C-59 : 2.443 Å	C-77 ↔ H-92 : 2.150 Å C-77 ↔ H-93 : 1.086 Å
C-10 ↔ C-15 : 2.531 Å	S-28 ↔ N-29 : 2.735 A S-28 ↔ H-31 : 2.903 Å	H-40 ↔ C-44 : 2.643 Å H-40 ↔ H-45 : 2.413 Å	C-57 ↔ C-58 : 1.358 Å C-57 ↔ C-59 : 2.443 Å C-57 ↔ C-64 : 2.827 Å	C-77 ↔ H-92 : 2.150 Å C-77 ↔ H-93 : 1.086 Å C-77 ↔ H-100 : 2.707 Å
C-10 ↔ C-15 : 2.531 Å C-10 ↔ H-16 : 2.809 Å	S-28 \leftrightarrow N-29 : 2.735 A S-28 \leftrightarrow H-31 : 2.903 Å S-28 \leftrightarrow N-32 : 2.682 Å	$H-40 \leftrightarrow C-44 : 2.643 Å$ $H-40 \leftrightarrow H-45 : 2.413 Å$ $C-41 \leftrightarrow C-51 : 2.444 Å$	C-57 \leftrightarrow C-58 : 1.358 Å C-57 \leftrightarrow C-59 : 2.443 Å C-57 \leftrightarrow C-64 : 2.827 Å C-57 \leftrightarrow H-69 : 1.079 Å	C-77 ↔ H-92 : 2.150 Å C-77 ↔ H-93 : 1.086 Å C-77 ↔ H-100 : 2.707 Å C-78 ↔ C-79 : 1.422 Å
$\begin{array}{rcl} C\text{-}10 & \leftrightarrow & C\text{-}15 : 2.531 \ \text{\AA} \\ C\text{-}10 & \leftrightarrow & \text{H}\text{-}16 : 2.809 \ \text{\AA} \\ \end{array}$	S-28 ↔ N-29 : 2.735 Å S-28 ↔ H-31 : 2.903 Å S-28 ↔ N-32 : 2.682 Å	H-40 ↔ C-44 : 2.643 Å H-40 ↔ H-45 : 2.413 Å C-41 ↔ C-51 : 2.444 Å	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcr} C-77 &\leftrightarrow & H-92: 2.150 \mbox{ Å} \\ C-77 &\leftrightarrow & H-93: 1.086 \mbox{ Å} \\ C-77 &\leftrightarrow & H-100: 2.707 \mbox{ Å} \\ C-78 &\leftrightarrow & C-79: 1.422 \mbox{ Å} \\ \end{array}$
C-10 ↔ C-15 : 2.531 Å C-10 ↔ H-16 : 2.809 Å C-11 ↔ C-12 : 2.557 Å	S-28 ↔ N-29 : 2.735 A S-28 ↔ H-31 : 2.903 Å S-28 ↔ N-32 : 2.682 Å S-28 ↔ C-34 : 1.762 Å	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \end{array}$	C-77 ↔ H-92 : 2.150 Å C-77 ↔ H-93 : 1.086 Å C-77 ↔ H-100 : 2.707 Å C-78 ↔ C-79 : 1.422 Å C-78 ↔ C-80 : 2.458 Å
C-10 ↔ C-15 : 2.531 Å C-10 ↔ H-16 : 2.809 Å C-11 ↔ C-12 : 2.557 Å C-11 \mapsto C-12 : 2.557 Å	S-28 ↔ N-29 : 2.735 A S-28 ↔ H-31 : 2.903 Å S-28 ↔ N-32 : 2.682 Å S-28 ↔ C-34 : 1.762 Å S-28 ↔ L-30 : 2.010 Å	H-40 ↔ $C-44 : 2.643 ÅH-40$ ↔ $H-45 : 2.413 ÅC-41$ ↔ $C-51 : 2.444 ÅC-41$ ↔ $C-55 : 2.555 Å$	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	S-28 ↔ N-29 : 2.735 A S-28 ↔ H-31 : 2.903 Å S-28 ↔ N-32 : 2.682 Å S-28 ↔ C-34 : 1.762 Å S-28 ↔ H-40 : 2.919 Å	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \text{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \text{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \text{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \text{ Å} \\ C-11 & \leftrightarrow & C-15 : 1.517 \text{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 &\leftrightarrow & C-58 & : 1.358 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & C-59 & : 2.443 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & C-64 & : 2.827 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & H-69 & : 1.079 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & H-70 & : 2.122 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & C-59 & : 1.437 \ \mbox{\mathring{A}} \\ C-58 &\leftarrow & C-60 & : 2.486 \ \mbox{\mathring{A}} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcl} C-10 & \leftrightarrow & C-15: 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16: 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12: 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14: 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & C-15: 1.517 \mbox{ Å} \\ \end{array}$	$\begin{array}{rcrcrcrcrcrc} S-28 & \leftrightarrow & N-29 & : 2.735 \mbox{ A} \\ S-28 & \leftrightarrow & H-31 & : 2.903 \mbox{ Å} \\ S-28 & \leftrightarrow & N-32 & : 2.682 \mbox{ Å} \\ S-28 & \leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 & \leftrightarrow & H-40 & : 2.919 \mbox{ Å} \\ N-29 & \leftrightarrow & H-30 & : 1.009 \mbox{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcr} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & C-15 : 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \end{array}$	$\begin{array}{rcrcrcrcrcrc} S-28 &\leftrightarrow & N-29 & : 2.735 \mbox{ A} \\ S-28 &\leftrightarrow & H-31 & : 2.903 \mbox{ Å} \\ S-28 &\leftrightarrow & N-32 & : 2.682 \mbox{ Å} \\ S-28 &\leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 &\leftrightarrow & H-40 & : 2.919 \mbox{ Å} \\ N-29 &\leftrightarrow & H-30 & : 1.009 \mbox{ Å} \\ N-29 &\leftrightarrow & H-31 & : 1.014 \mbox{ Å} \\ N-20 &\leftrightarrow & N-32 & : 2.924 \mbox{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 &\leftrightarrow & C-58 & : 1.358 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & C-59 & : 2.443 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & C-64 & : 2.827 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & H-69 & : 1.079 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & H-70 & : 2.122 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & C-59 & : 1.437 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & C-60 & : 2.486 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & C-64 & : 2.454 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & C-64 & : 2.454 \ \mbox{\mathring{A}} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 &\leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 &\leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 &\leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 &\leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 &\leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 &\leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 &\leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 &\leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 &\leftrightarrow & H-69 & : 2.114 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.1537 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.160 \mbox{ Å} \\ \end{array}$	$\begin{array}{rcrcrcrcrc} S-28 &\leftrightarrow & N-29 & : 2.735 \ A \\ S-28 &\leftrightarrow & H-31 & : 2.903 \ Å \\ S-28 &\leftrightarrow & N-32 & : 2.682 \ Å \\ S-28 &\leftrightarrow & C-34 & : 1.762 \ Å \\ S-28 &\leftrightarrow & H-40 & : 2.919 \ Å \\ N-29 &\leftrightarrow & H-30 & : 1.009 \ Å \\ N-29 &\leftrightarrow & H-31 & : 1.014 \ Å \\ N-29 &\leftrightarrow & N-32 & : 2.284 \ Å \\ N-29 &\leftrightarrow & N-32 & : 2.284 \ Å \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \mbox{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \mbox{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \mbox{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \mbox{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 &\leftrightarrow & C-58 & : 1.358 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & C-59 & : 2.443 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & C-64 & : 2.827 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & H-69 & : 1.079 \ \mbox{\mathring{A}} \\ C-57 &\leftrightarrow & H-70 & : 2.122 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & C-59 & : 1.437 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & C-60 & : 2.486 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & C-64 & : 2.454 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & H-69 & : 2.114 \ \mbox{\mathring{A}} \\ C-58 &\leftrightarrow & H-70 & : 1.086 \ \mbox{\mathring{A}} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \mbox{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \mbox{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \mbox{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2 & 708 \ \mbox{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-20 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & L-20 : 1.397 \mbox{ Å} \\ C-11 & \leftarrow & L-20 : 1.397 \mbox{ Å} \\ C-11 & \leftarrow & L-20 : 1.397 \mbox{ Å} \\ C-11 & \leftarrow & L-20 : 1.397 \mbox{ Å} \\ C-11 & \leftarrow & L-20 : 1.397 \mbox{ Å} \\ C-11 & \leftarrow & L-20 : 1.397 \mbox{ Å} \\ C-11 & \leftarrow & L-20 : 1.397 \mbox{ Å} \\ C-11 & \leftarrow & L-20 : 1$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 &\leftrightarrow & C-58 & : 1.358 \ \mbox{\AA} \\ C-57 &\leftrightarrow & C-59 & : 2.443 \ \mbox{\AA} \\ C-57 &\leftrightarrow & C-64 & : 2.827 \ \mbox{\AA} \\ C-57 &\leftrightarrow & H-69 & : 1.079 \ \mbox{\AA} \\ C-57 &\leftrightarrow & H-70 & : 2.122 \ \mbox{\AA} \\ C-58 &\leftrightarrow & C-59 & : 1.437 \ \mbox{\AA} \\ C-58 &\leftrightarrow & C-60 & : 2.486 \ \mbox{\AA} \\ C-58 &\leftrightarrow & C-64 & : 2.454 \ \mbox{\AA} \\ C-58 &\leftrightarrow & H-69 & : 2.114 \ \mbox{\AA} \\ C-58 &\leftrightarrow & H-70 & : 1.086 \ \mbox{\AA} \\ C-58 &\leftrightarrow & H-70 & : 1.086 \ \mbox{\AA} \\ C-58 &\leftrightarrow & H-70 & : 1.086 \ \mbox{\AA} \\ C-58 &\leftrightarrow & H-71 & : 2.708 \ \mbox{$\mathring{$\Lambda$}} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.757 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \mbox{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \mbox{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \mbox{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \mbox{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \mbox{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \mbox{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \mbox{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \mbox{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \mbox{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \mbox{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \mbox{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \mbox{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \mbox{\AA} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-20 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftarrow & C-22 : 2.265 \mbox{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftarrow & C-61 & : 2.428 \ \text{\AA} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.810 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2 & 242 \mbox{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.810 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.486 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.810 \ \text{\AA} \\ C-59 & \leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ C-59 & \leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 : 1.358 \mbox{ Å} \\ C-57 & \leftrightarrow & C-59 : 2.443 \mbox{ Å} \\ C-57 & \leftrightarrow & C-64 : 2.827 \mbox{ Å} \\ C-57 & \leftrightarrow & H-69 : 1.079 \mbox{ Å} \\ C-58 & \leftrightarrow & C-59 : 1.437 \mbox{ Å} \\ C-58 & \leftrightarrow & C-60 : 2.486 \mbox{ Å} \\ C-58 & \leftrightarrow & C-64 : 2.454 \mbox{ Å} \\ C-58 & \leftrightarrow & H-69 : 2.114 \mbox{ Å} \\ C-58 & \leftrightarrow & H-70 : 1.086 \mbox{ Å} \\ C-58 & \leftrightarrow & H-71 : 2.708 \mbox{ Å} \\ C-59 & \leftrightarrow & C-60 : 1.403 \mbox{ Å} \\ C-59 & \leftrightarrow & C-60 : 1.403 \mbox{ Å} \\ C-59 & \leftrightarrow & C-62 : 2.810 \mbox{ Å} \\ C-59 & \leftrightarrow & C-63 : 2.458 \mbox{ Å} \\ C-59 & \leftrightarrow & C-64 : 1.422 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.810 \ \text{\AA} \\ C-59 & \leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcr} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & C-15 : 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & C-15 : 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 &\leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 &\leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 &\leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 &\leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 &\leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 &\leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 &\leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 &\leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 &\leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 &\leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 &\leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 &\leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 &\leftrightarrow & C-62 & : 2.810 \ \text{\AA} \\ C-59 &\leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ C-59 &\leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 &\leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 &\leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 &\leftrightarrow & H-70 & : 2.172 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & C-15 : 1.550 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & C-15 : 1.550 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 &\leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 &\leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 &\leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 &\leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 &\leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 &\leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 &\leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 &\leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 &\leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 &\leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 &\leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 &\leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 &\leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 &\leftrightarrow & C-62 & : 2.810 \ \text{\AA} \\ C-59 &\leftrightarrow & C-64 & : 2.458 \ \text{\AA} \\ C-59 &\leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 &\leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 &\leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 &\leftarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 &\leftarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 &\leftarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 &\leftarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 &\leftarrow & H-70 & : 2.172 \ \text{\AA} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & C-15 : 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & C-15 : 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-10 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & C-15 : 1.550 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.810 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & C-15 : 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & C-17 : 1.521 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.4810 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.4810 \ \text{\AA} \\ C-59 & \leftrightarrow & C-64 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-62 & : 2.417 \ \text{\AA} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & C-15 : 1.517 \mbox{ Å} \\ C-11 & \leftrightarrow & C-18 : 1.398 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & C-20 : 1.397 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & C-77 : 1.521 \mbox{ Å} \\ C-12 & \leftarrow & C-77 : 2.502 \mbox{ Å} \\ \end{array}$	$\begin{array}{rcrcrcrc} S-28 & \leftrightarrow & N-29 & : 2.735 \mbox{ A} \\ S-28 & \leftrightarrow & H-31 & : 2.903 \mbox{ Å} \\ S-28 & \leftrightarrow & N-32 & : 2.682 \mbox{ Å} \\ S-28 & \leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 & \leftrightarrow & H-40 & : 2.919 \mbox{ Å} \\ N-29 & \leftrightarrow & H-30 & : 1.009 \mbox{ Å} \\ N-29 & \leftrightarrow & H-31 & : 1.014 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-33 & : 2.652 \mbox{ Å} \\ N-29 & \leftrightarrow & N-33 & : 2.652 \mbox{ Å} \\ N-29 & \leftrightarrow & N-33 & : 2.652 \mbox{ Å} \\ N-29 & \leftrightarrow & N-33 & : 2.652 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.467 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-33 & : 2.264 \mbox{ Å} \\ H-31 & \leftrightarrow & C-34 & : 2.049 \mbox{ Å} \\ N-32 & \leftrightarrow & N-33 & : 1.401 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 1.346 \mbox{ Å} \\ N-32 & \leftrightarrow & C-35 & : 2.268 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 0.268 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 0.268 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 0.268 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 0.268 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 0.268 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 0.268 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-62 & : 2.810 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftarrow & C-62 & : 2.417 \ \text{\AA} \\ C-60 & \leftarrow & C-62 & : 2.914 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-50 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-62 & : 2.417 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcrcrc} \text{C-10} & \leftrightarrow & \text{C-15}: 2.531 \text{ Å} \\ \text{C-10} & \leftrightarrow & \text{H-16}: 2.809 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-12}: 2.557 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-14}: 2.632 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-14}: 2.632 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-16}: 2.153 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-16}: 2.153 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-19}: 2.160 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-19}: 2.160 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-20}: 1.397 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-20}: 1.397 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-22}: 2.767 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-23}: 2.425 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-25}: 2.424 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-13}: 1.094 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-14}: 1.091 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-15}: 1.550 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-16}: 2.201 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-77}: 1.521 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-77}: 2.696 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-99}: 2.412 \text{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-61 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.402 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftarrow & C-63 & : 2.414 \ \text{\AA} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & C-17 : 1.521 \mbox{ Å} \\ C-12 & \leftrightarrow & C-87 : 2.696 \mbox{ Å} \\ C-12 & \leftrightarrow & H-99 : 2.412 \mbox{ Å} \\ C-12 & \leftrightarrow & H-99 : 2.412 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcrcrc} \text{C-10} & \leftrightarrow & \text{C-15}: 2.531 \text{ Å} \\ \text{C-10} & \leftrightarrow & \text{H-16}: 2.809 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-12}: 2.557 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-14}: 2.632 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-14}: 2.632 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-16}: 2.153 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-16}: 2.153 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-19}: 2.160 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-19}: 2.160 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-20}: 1.397 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-20}: 1.397 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-22}: 2.767 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-23}: 2.425 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-25}: 2.424 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-13}: 1.094 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-14}: 1.091 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-15}: 1.550 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-16}: 2.201 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-77}: 1.521 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-99}: 2.412 \text{ Å} \\ \\ \text{H-13} & \leftrightarrow & \text{H-14}: 1.777 \text{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-61 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.221 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.221 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.221 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.221 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.221 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.221 \mbox{ Å} \\ C-12 & \leftrightarrow & H-199 : 2.412 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : 1.777 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : 1.277 \mbox{ Å} \\ H-14 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-14 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-15 & \leftrightarrow & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-14 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-16 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-16 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-16 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-16 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-16 : 1.277 \mbox{ Å} \\ H-16 & \approx & H-16 : 1.2777 \mbox{ Å} \\ H-16 & \approx & H-16 : 1.2777 \mbox{ Å} \\ H-16 & \approx & H-16 : 1.2777 \mbox{ Å} \\ H-16 & = & H-16 : 1.2777 \mbox{ Å} \\ H-16 & = & H-$	$\begin{array}{rcrcrcrc} S-28 & \leftrightarrow & N-29 & : 2.735 \mbox{ A} \\ S-28 & \leftrightarrow & N-32 & : 2.682 \mbox{ Å} \\ S-28 & \leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 & \leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 & \leftrightarrow & H-40 & : 2.919 \mbox{ Å} \\ N-29 & \leftrightarrow & H-30 & : 1.009 \mbox{ Å} \\ N-29 & \leftrightarrow & H-31 & : 1.014 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.652 \mbox{ Å} \\ N-29 & \leftrightarrow & N-33 & : 2.652 \mbox{ Å} \\ N-29 & \leftrightarrow & N-33 & : 2.652 \mbox{ Å} \\ N-30 & \leftrightarrow & H-31 & : 1.743 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.467 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.467 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & C-34 & : 2.049 \mbox{ Å} \\ H-30 & \leftrightarrow & H-69 & : 2.581 \mbox{ Å} \\ H-31 & \leftrightarrow & C-34 & : 2.049 \mbox{ Å} \\ N-32 & \leftrightarrow & N-33 & : 1.401 \mbox{ Å} \\ N-32 & \leftrightarrow & C-36 & : 2.338 \mbox{ Å} \\ N-32 & \leftrightarrow & C-39 & : 1.477 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.100 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.100 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcrcrc} \text{C-10} & \leftrightarrow & \text{C-15}: 2.531 \text{ Å} \\ \text{C-10} & \leftrightarrow & \text{H-16}: 2.809 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-12}: 2.557 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-14}: 2.632 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-14}: 2.632 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-16}: 2.153 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-16}: 2.153 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-19}: 2.160 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-19}: 2.160 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-21}: 2.155 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-22}: 2.767 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-23}: 2.425 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-25}: 2.424 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-13}: 1.094 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-14}: 1.091 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-15}: 1.550 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-77}: 1.521 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-77}: 1.521 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-99}: 2.412 \text{ Å} \\ \\ \text{H-13} & \leftrightarrow & \text{H-14}: 1.777 \text{ Å} \\ \\ \text{H-13} & \leftrightarrow & \text{C-15}: 2.176 \text{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-61 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-61 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.108 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ C-59 & \leftrightarrow & C-63 & : 2.458 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.414 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & C-15 : 1.550 \mbox{ Å} \\ C-12 & \leftrightarrow & C-17 : 1.521 \mbox{ Å} \\ C-12 & \leftrightarrow & H-99 : 2.412 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : 1.777 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : H-16 : 2.242 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : H-16 : 2.242 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : H-16 : 2.242 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : H-16 : 2.242 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : H-16 : 2.242 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : H-16 : 2.24 \mbox{ Å} \\ H-13 & \to & H-14 : H-16 : 2.24 \mbox{ Å} \\ H-13 & \to & H-14 : H-16 : 2.24 \mbox{ Å} \\ H$	$\begin{array}{rcrcrcrc} S-28 & \leftrightarrow & N-29 & : 2.735 \mbox{ A} \\ S-28 & \leftrightarrow & N-32 & : 2.682 \mbox{ Å} \\ S-28 & \leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 & \leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 & \leftrightarrow & H-40 & : 2.919 \mbox{ Å} \\ N-29 & \leftrightarrow & H-30 & : 1.009 \mbox{ Å} \\ N-29 & \leftrightarrow & H-31 & : 1.014 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-33 & : 2.652 \mbox{ Å} \\ H-30 & \leftrightarrow & H-31 & : 1.743 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.467 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & C-34 & : 2.047 \mbox{ Å} \\ H-30 & \leftrightarrow & C-34 & : 2.049 \mbox{ Å} \\ N-32 & \leftrightarrow & N-33 & : 1.401 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 1.346 \mbox{ Å} \\ N-32 & \leftrightarrow & C-36 & : 2.338 \mbox{ Å} \\ N-32 & \leftrightarrow & C-39 & : 1.477 \mbox{ Å} \\ N-32 & \leftrightarrow & C-41 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & C-41 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & C-41 & : 2.199 \mbox{ Å} \\ N-32 & \leftrightarrow & C-41 & : 2.192 \mbox{ Å} \\ N-32 & \leftrightarrow & C-41 & $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-72 & : 2.164 \ \text{\AA} \\ C-60 & \leftrightarrow & H-72 & : 2.164 \ \text{\AA} \\ C-60 & \leftrightarrow & H-72 & : 2.240 \ \text{\AA} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcrcrc} \text{C-10} & \leftrightarrow & \text{C-15}: 2.531 \text{ Å} \\ \text{C-10} & \leftrightarrow & \text{H-16}: 2.809 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-12}: 2.557 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-14}: 2.632 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-14}: 2.632 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-16}: 2.153 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-16}: 2.153 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-19}: 2.160 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-19}: 2.160 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{H-2}: 2.155 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-22}: 2.767 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-23}: 2.425 \text{ Å} \\ \text{C-11} & \leftrightarrow & \text{C-25}: 2.424 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-13}: 1.094 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-14}: 1.091 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-15}: 1.550 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-17}: 1.521 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{C-77}: 1.521 \text{ Å} \\ \text{C-12} & \leftrightarrow & \text{H-16}: 2.201 \text{ Å} \\ \text{C-13} & \leftrightarrow & \text{H-14}: 1.777 \text{ Å} \\ \\ \text{H-13} & \leftrightarrow & \text{H-14}: 1.777 \text{ Å} \\ \\ \text{H-13} & \leftrightarrow & \text{C-15}: 2.176 \text{ Å} \\ \\ \text{H-13} & \leftrightarrow & \text{H-16}: 2.343 \text{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-61 & : 2.426 \ \text{\AA} \\ C-58 & \leftrightarrow & C-61 & : 2.426 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.108 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.402 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.402 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 2.4217 \ \text{\AA} \\ C-60 & \leftrightarrow & C-62 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-72 & : 2.149 \ \text{\AA} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & C-15 : 1.550 \mbox{ Å} \\ C-12 & \leftrightarrow & C-17 : 1.521 \mbox{ Å} \\ C-12 & \leftrightarrow & H-99 : 2.412 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : 1.777 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : 2.343 \mbox{ Å} \\ H-13 & \leftrightarrow & C-15 : 2.176 \mbox{ Å} \\ H-13 & \leftrightarrow & C-17 : 2.163 \mbox{ Å} \end{array}$	$\begin{array}{rcrcrcrc} S-28 & \leftrightarrow & N-29 & : 2.735 \mbox{ A} \\ S-28 & \leftrightarrow & N-32 & : 2.682 \mbox{ Å} \\ S-28 & \leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 & \leftrightarrow & C-34 & : 1.762 \mbox{ Å} \\ S-28 & \leftrightarrow & H-40 & : 2.919 \mbox{ Å} \\ N-29 & \leftrightarrow & H-30 & : 1.009 \mbox{ Å} \\ N-29 & \leftrightarrow & H-31 & : 1.014 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-32 & : 2.284 \mbox{ Å} \\ N-29 & \leftrightarrow & N-33 & : 2.652 \mbox{ Å} \\ H-30 & \leftrightarrow & H-31 & : 1.743 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.467 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & N-32 & : 2.254 \mbox{ Å} \\ H-30 & \leftrightarrow & C-34 & : 2.047 \mbox{ Å} \\ H-30 & \leftrightarrow & C-34 & : 2.047 \mbox{ Å} \\ H-31 & \leftrightarrow & C-34 & : 2.047 \mbox{ Å} \\ H-32 & \leftrightarrow & C-34 & : 2.049 \mbox{ Å} \\ N-32 & \leftrightarrow & C-34 & : 1.346 \mbox{ Å} \\ N-32 & \leftrightarrow & C-36 & : 2.338 \mbox{ Å} \\ N-32 & \leftrightarrow & C-39 & : 1.477 \mbox{ Å} \\ N-32 & \leftrightarrow & C-41 & : 2.109 \mbox{ Å} \\ N-32 & \leftrightarrow & C-41 & : 2.109 \mbox{ Å} \\ N-32 & \leftrightarrow & C-42 & : 2.872 \mbox{ Å} \\ N-32 & \leftrightarrow & H-40 & : 2.110 \mbox{ Å} \\ N-32 & \leftrightarrow & C-42 & : 2.872 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-43 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-44 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-44 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-44 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-44 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-44 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-44 & : 2.566 \mbox{ Å} \\ N-32 & \leftrightarrow & H-44 & $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-72 & : 2.149 \ \text{\AA} \\ C-61 & = & C-62 & : 1.394 \ \text{\AA} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-19 : 2.160 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-99 : 2.412 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : 1.777 \mbox{ Å} \\ H-13 & \leftrightarrow & H-16 : 2.343 \mbox{ Å} \\ H-13 & \leftrightarrow & H-16 : 2.343 \mbox{ Å} \\ H-13 & \leftrightarrow & C-17 : 1.2163 \mbox{ Å} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-61 & : 2.426 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-70 & : 1.086 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.402 \ \text{\AA} \\ C-59 & \leftrightarrow & H-70 & : 2.172 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-72 & : 2.149 \ \text{\AA} \\ C-61 & \leftrightarrow & C-62 & : 1.394 \ \text{\AA} \\ C-61 & \leftrightarrow & C-62 & : 1.394 \ \text{\AA} \\ C-61 & \leftrightarrow & C-62 & : 1.394 \ \text{\AA} \\ C-61 & \leftrightarrow & C-62 & : 1.394 \ \text{\AA} \\ C-61 & \leftrightarrow & C-62 & : 1.394 \ \text{\AA} \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{rcrcrc} C-10 & \leftrightarrow & C-15 : 2.531 \mbox{ Å} \\ C-10 & \leftrightarrow & H-16 : 2.809 \mbox{ Å} \\ C-11 & \leftrightarrow & C-12 : 2.557 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-14 : 2.632 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.153 \mbox{ Å} \\ C-11 & \leftrightarrow & H-16 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & H-21 : 2.155 \mbox{ Å} \\ C-11 & \leftrightarrow & C-22 : 2.767 \mbox{ Å} \\ C-11 & \leftrightarrow & C-23 : 2.425 \mbox{ Å} \\ C-11 & \leftrightarrow & C-25 : 2.424 \mbox{ Å} \\ C-12 & \leftrightarrow & H-13 : 1.094 \mbox{ Å} \\ C-12 & \leftrightarrow & H-14 : 1.091 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-16 : 2.201 \mbox{ Å} \\ C-12 & \leftrightarrow & H-199 : 2.412 \mbox{ Å} \\ H-13 & \leftrightarrow & H-14 : 1.777 \mbox{ Å} \\ H-13 & \leftrightarrow & H-16 : 2.343 \mbox{ Å} \\ H-13 & \leftrightarrow & C-17 : 2.163 \mbox{ Å} \\ H-13 & \leftrightarrow & C-77 : 2.163 \mbox{ Å} \\ H-13 & \leftrightarrow & C-90 : 2.912 \mbox{ Å} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftrightarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-59 & \leftrightarrow & C-60 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.422 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-64 & : 2.441 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-72 & : 2.1394 \ \text{\AA} \\ C-61 & \leftrightarrow & C-63 & : 2.431 \ \text{\AA} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcrcrc} C-57 & \leftrightarrow & C-58 & : 1.358 \ \text{\AA} \\ C-57 & \leftrightarrow & C-59 & : 2.443 \ \text{\AA} \\ C-57 & \leftrightarrow & C-64 & : 2.827 \ \text{\AA} \\ C-57 & \leftrightarrow & H-69 & : 1.079 \ \text{\AA} \\ C-57 & \leftrightarrow & H-70 & : 2.122 \ \text{\AA} \\ C-58 & \leftarrow & C-59 & : 1.437 \ \text{\AA} \\ C-58 & \leftrightarrow & C-60 & : 2.486 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & C-64 & : 2.454 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-69 & : 2.114 \ \text{\AA} \\ C-58 & \leftrightarrow & H-71 & : 2.708 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.403 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 2.428 \ \text{\AA} \\ C-59 & \leftrightarrow & C-61 & : 1.402 \ \text{\AA} \\ C-59 & \leftrightarrow & H-71 & : 2.151 \ \text{\AA} \\ C-60 & \leftrightarrow & C-61 & : 1.392 \ \text{\AA} \\ C-60 & \leftrightarrow & C-63 & : 2.814 \ \text{\AA} \\ C-60 & \leftrightarrow & H-70 & : 2.707 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-60 & \leftrightarrow & H-71 & : 1.086 \ \text{\AA} \\ C-61 & \leftarrow & C-62 & : 2.431 \ \text{\AA} \\ C-61 & \leftarrow & C-62 & : 2.431 \ \text{\AA} \\ C-61 & \leftarrow & C-63 & : 2.431 \ \text{\AA} \\ C-61 & \leftarrow & C-63 & : 2.431 \ \text{\AA} \\ C-61 & \leftarrow & C-63 & : 2.431 \ \text{\AA} \\ C-61 & \leftarrow & C-63 & : 2.431 \ \text{\AA} \\ C-61 & \leftarrow & C-63 & : 2.431 \ \text{\AA} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

$C-81$ $C-82 \cdot 2.484$ Å		
C-01 ↔ H-92.2.149 A		
C-81 ↔ H-94 : 1.086 A		
C-81 ↔ H-95 : 2.703 Å		
C-82 ↔ C-83 : 1.356 Å		
$C_{-82} = C_{-84} \cdot 2.437$ Å		
$C 02 \leftrightarrow C 04 \cdot 2.437 \text{ A}$		
C-82 ↔ C-89 2.846 Å		
C-82 ↔ H-94 : 2.701 A		
C-82 ↔ H-95 : 1.086 Å		
C-82 H-96 · 2 128 Å		
$C_{-83} = C_{-84} \cdot 1.441$ Å		
C-03 ↔ C-04.1.441 A		
C-83 ↔ C-85 : 2.480 Å		
C-83 ↔ C-89 : 2.475 A		
C-83 ↔ H-95 : 2.128 Å		
C-83 ↔ H-96 · 1 085 Å		
$C_{-83} = H_{-07} \cdot 2.701 \text{ Å}$		
$C = 0.5 \Leftrightarrow \Pi = 97 : 2.701 \text{ A}$		
C-84 ↔ C-85 : 1.402 Å		
C-84 ↔ C-86 : 2.419 A		
C-84 ↔ C-87 : 2.836 Å		
C-84 ↔ C-88 : 2.479 Å		
C-84 C-89 · 1 /2/ Å		
$C 04 \Rightarrow C 05 \cdot 1.424 A$		
C-04 ↔ H-90.2.1/3 A		
$ C-84 \leftrightarrow H-97: 2.153 A$		
C-85 ↔ C-86 : 1.383 Å		
C-85 ↔ C-87 : 2.438 Å		
C-85 C-88 · 2 831 Å		
C = C = C = C = 2.001 / 1		
C-05 ↔ C-09.2.455 A		
C-85 ↔ H-96 : 2.693 A		
C-85 ↔ H-97 : 1.085 A		
C-85 ↔ H-98 : 2.142 Å		
C-86 ↔ C-87 : 1.407 Å		
C-86 C-88 · 2 438 Å		
$C \ 96 \ C \ 90 \ 2.706 \ \%$		
$C = 00 \Leftrightarrow C = 03 \cdot 2.130 \text{ A}$		
C-86 ↔ H-97 : 2.144 A		
$C-86 \leftrightarrow H-98 : 1.084 \text{ A}$		
C-87 ↔ C-88 : 1.417 Å		
C-87 ↔ C-89 : 2.450 Å		
C-87 🖨 C-90 · 2 524 Å		
$C_{-87} = H_{-08} \cdot 21/3$ Å		
C-07 ↔ 11-90.2.143 A		
C-87 ↔ H-99.2.770 A		
$C-88 \leftrightarrow C-89: 1.431 \text{ A}$		
C-88 ↔ C-90 : 1.445 Å		
C-88 ↔ C-91 : 2.450 Å		
C-88 H-99 · 2 190 Å		
C_{-89} $C_{-90} \cdot 2.459$ Å		
C-09 ↔ C-90.2.439 A		
C-89 ↔ C-91 : 2.826 A		
$C-90 \leftrightarrow C-91: 1.357 \text{ A}$		
C-90 ↔ H-99 : 1.080 Å		
C-90 ↔ H-100 : 2.121 Å		
C-91 ↔ H-93 · 2 708 Å		
C_{-01} $H_{-00} \cdot 2.000$ Å		
C-91 ↔ 11-99.2.099 A		
C-aT ↔ H-T00 : T'080 V		
H-92 ↔ H-93 : 2.482 A		
H-92 ↔ H-94 : 2.479 Å		
H-93 ↔ H-100 : 2.475 Å		
H-94 H-95 . 2 161 Å		
H-90 ↔ H-9/:2.45/A		
H-97 ↔ H-98 : 2.470 Å		
H-99 ↔ H-100 : 2.417 Å		

			0.50 11.50 0.404.8	11 71 0 70 0 700 8
Au-1 ↔ S-2 : 2.355 A	H-10 ↔ H-58 : 2.359 A	C-28 ↔ C-32 : 2.425 A	C-50 ↔ H-53 2.164 A	H-/1 ↔ C-/3:2./23A
Δ1 0.2.2.212 Å	$C 11 = 112 \cdot 1000 $ Å		CE0 CE4 · 2 424 Å	
Au-1 ↔ F-3.2.312 A	C-11 ↔ H-12.1.090 A	H-29 ↔ C-30.2.103 A	C-30 ↔ C-34.2.424 A	Π-11 ↔ Π-14.2.493 A
Δμ_1 Η_76 · 2 766 Å	C_{-11} $C_{-50} \cdot 2.497$ Å	$H_{20} = H_{21} \cdot 2 / 0 / \lambda$	$\mu_{-51} = C_{-52} \cdot 2163 \text{ Å}$	C_{-72} $C_{-72} \cdot 1.428$ Å
AUT + 1110.2.100 A		1123 + 1131.2.434 A	111 JI ↔ C JZ . Z.103 Å	C 12 ↔ C 13.1.430 Å
S-2 ↔ C-5 1 723 Å	C-11 ↔ C-60 · 1 438 Å	C-30 ↔ H-31 1 093 Å	H-51 ↔ H-53 2 494 Å	C-72 ↔ H-74 · 2 181 Å
S-2 ↔ N-6:2.725 A	C-11 ↔ C-61 : 2.458 A	C-30 ↔ C-32 : 1.399 Å	C-52 ↔ H-53 : 1.093 A	C-73 ↔ H-74 : 1.093 A
	0 11 0 02 0 0 40 8			
S-2 ↔ N-7:2.009 A	C-11 ↔ C-63 2.840 A	C-30 ↔ H-33 : 2.157 A	C-52 ↔ C-54 : 1.398 A	H-/5 ↔ H-/0:1./03A
C 2 11 10 . 2 020 Å	0 11 0 72 0 452 8	11.21 0.22.2.150 Å		
S-2 ↔ H-10.2.838 A	U-11 ↔ U-72.2.453 A	H-31 ↔ C-32.2.158 A	U-52 ↔ H-55.2.150 A	
C2 U76.2001 Å	C_{11} $C_{72} \cdot 1_{270}$ Å	L 21 L 22 · 2 /76 Å		
J-2 ↔ 11-70.2.034 A	C-11 ↔ C-13.1.310 A	11-51 + 11-55.2.410 A	11-33 ↔ C-34.2.130 A	
P-3 C-23 · 1 822 Å	C-11 H-74 · 2 137 Å	C-32 H-33 · 1 091 Å	H-53 H-55 · 2 476 Å	
P-3 ↔ C-24 2.784 Å	H-12 ↔ C-59 2.704 Å	H-33 ↔ C-45 2.669 Å	C-54 ↔ H-55 1.091 Å	
P-3 ↔ H-25 : 2.900 A	H-12 ↔ C-60 : 2.180 A	H-33 ↔ C-54 : 2.913 A	C-56 ↔ H-57 : 1.099 A	
		0.04 0.05 1 404 8		
P-3 ↔ C-32 2.831 A	H-12 ↔ C-73 : 2.139 A	C-34 ↔ C-35 I.404 A	C-50 ↔ H-58 1.104 A	
P-3 ↔ H-33.2.985 A	H-12 ↔ H-74.2.400 A	C-34 ↔ H-30.2.1/1A	C-50 ↔ C-59.1.510 A	
D2 C24 · 1 021 Å	$C_{12} C_{14} \cdot 1_{402} $	C 24 C 27 · 2 / 20 Å	$C = 60 \cdot 2617 \text{ Å}$	
F-3 ↔ C-34.1.021 A	0-13 ↔ 0-14.1.402 A	C-34 ↔ C-37.2.420 A	C-J0 ↔ C-00.2.017 A	
P-3 → C-35 2 830 Å	C-13 → H-15 2 166 Å	C-34 → C-39 2 806 Å	C-56 → H-62 2 717 Å	
P-3 ↔ H-36 : 2.986 A	C-13 ↔ C-16 : 2.435 A	$ C-34 \leftrightarrow C-41: 2.431 A$	H-5/ ↔ H-58:1.//6A	
	C 10 C 10 C 700 Å	C 24 C 42 1 407 8		
P-3 ↔ C-43.2.782 A	C-13 ↔ C-18.2.799 A	C-34 ↔ C-43.1.407 A	H-5/ ↔ C-59.2.194 A	
	$C_{12} = C_{10} \cdot 2_{124} $	$C_{24} = 1 44 \cdot 2172 $	$\Box = 57$ C 60 · 2 0 27 Å	
F-3 ↔ H-44.2.090 A	C-13 ↔ C-19.2.434 A	0-34 ↔ N-44.2.112 A	H-31 ↔ C-00.2.921 A	
P-3 C-45 · 1 823 Å	C-13 C-21 · 1 404 Å	C-34 C-45 · 2 916 Å	H-57 C-61 · 2 977 Å	
1 0 0 40.1.020 /				
P-3 ↔ C-46 2,790 Å	C-13 ↔ H-22 · 2.171 Å	C-34 ↔ H-55 2.691 Å	H-57 ↔ H-62 2.389 Å	
P-3 ↔ H-47 : 2.911 A	C-13 ↔ C-56 : 2.576 Å	C-35 ↔ H-36 : 1.091 Å	H-58 ↔ C-59 : 2.168 Å	
		C 2E C 27 1 200 8		
ຕ-3 ↔ ປ-54 : 2.826 A	C-13 ↔ H-5/ : 2.633 A	C-32 ↔ C-37 : I.399 A	ר-סס ↔ H-02∶2./b4 A	
P-3 H-55 · 2 077 Å	C-14 H-15 · 1 002 Å	C-35 H-38 · 2 150 Å	C_{-50} $C_{-60} \cdot 1.417$ Å	
1 0 ↔ 11-00.2.011 A	0 T-1 ↔ 11-T0 T T 020 Å	0 00 ↔ 11-00.2.109 A	0 00 ↔ 0-00 · 1.41/ A	
Cl-4 ↔ C-16 · 2 723 Å	C-14 ↔ C-16 · 1 397 Å	C-35 ↔ C-39 2 425 Å	C-59 ↔ C-61 · 2 488 Å	
		0 00 0 0 00 LITEOR		
CI-4 ↔ H-17 : 2.868 Å	C-14 ↔ H-17 : 2.166 Å	C-35 ↔ C-41 : 2.801 Å	C-59 ↔ H-62 : 2.725 Å	
	0.14 0.10 0.100 8			
UI-4 ↔ C-18 : 1./4/ A	C-14 ↔ C-18 : 2.409 A	C-35 ↔ C-43 : 2.428 A	C-60 ↔ C-61 : 1.438 A	
	C 14 C 10 · 2 706 8			
U-4 ↔ U-19 2.723 A	U-14 ↔ U-19 2./90 A	U-35 ↔ H-55 2.962 A	UC-00 ↔ H-02 C.193 A	
CI-4 H-20 · 2 867 Å	C-14 C-21 · 2 /16 Å	H-36 C-37 · 2 157 Å	C-60 C-63 · 2 / 78 Å	
CI-4 ↔ 11-20.2.001 A	C-14 ↔ C-21.2.410 A	11-30 + C-37.2.137 A	C-00 ↔ C-03.2.470 A	
C-5 ↔ N-6 1.343 Å	H-15 ↔ C-16 2.151 Å	H-36 ↔ H-38 2.476 Å	C-60 ↔ C-72 2.871 Å	
C-5 ↔ N-7:1.367A	H-15 ↔ H-17 : 2.483 A	C-37 ↔ H-38 : 1.093 A	$ C-60 \leftrightarrow C-73$: 2.447 A	
		C 07 C 00 1 000 Å		
C-5 ↔ N-8:2.341 A	C-16 ↔ H-17 : 1.091 A	C-37 ↔ C-39 : 1.398 A	C-61 ↔ H-62 : 1.092 A	
	$C_{16} C_{10} \cdot 1_{207} $	$C 27 = \Box 40.2162 \text{ Å}$	$C = 61 + C = 62 \cdot 1 = 207 \text{ Å}$	
C-5 ↔ C-9.2.552 A	C-10 ↔ C-10.1.397 A	C-37 ↔ H-40.2.103 A	C-01 ↔ C-03.1.397 A	
C-5 H-10 · 2 789 Å	C-16 C-19 · 2 431 Å	C-37 C-41 · 2 422 Å	$C_{-61} \sim C_{-64} \cdot 2.481 \text{ Å}$	
IC-5 ↔ H-75 : 2.034 A	C-16 ↔ C-21 : 2.798 A	IC-37 ↔ C-43 : 2.797 A	C-61 ↔ H-65 : 2.716 A	
C-5 ↔ H-76:2.049 A	H-17 ↔ C-18 : 2.163 A	H-38 ↔ C-39 : 2.164 A	C-61 ↔ C-72:2.457 A	
	C 10 C 10 · 1 200 Å		C 61 C 72 · 2 012 Å	
IN-0 ↔ IN-7.2.290 A	C-18 ↔ C-19.1.398 A	H-38 ↔ H-40.2.494 A	U-01 ↔ U-73.2.813 A	
N-6 N-8 · 2 618 Å	$C_{-18} = H_{-20} \cdot 2.163 \text{ Å}$	$C_{-30} = H_{-40} \cdot 1.003 \text{ Å}$	$H_{-62} = C_{-63} \cdot 2146$ Å	
11-0 ↔ 11-0.2.010 A	C-10 + 11-20.2.103 A	C-33 ↔ 11-40.1.033 A	11-02	
N-6 → H-75 1 016 Å	C-18 → C-21 · 2 411 Å	C-39 ↔ C-41 · 1 400 Å	H-62 C-64 2 698 Å	
IN-6 ↔ H-76 : 1.012 A	C-19 ↔ H-20 : 1.091 A	C-39 ↔ H-42 : 2.166 A	H-62 ↔ H-65 : 2.471 A	
N 7 N 0 1 000 8	0.10 0.01 1.000 8	0.00 0.40 0.400 8	0.00 0.01 1.100 8	
N-7 ↔ N-8:1.339 A	C-19 ↔ C-21 : 1.396 A	C-39 ↔ C-43 : 2.422 A	C-63 ↔ C-64 : 1.438 A	
N7 C0.1404 Å	C 10 U 22 · 2 1/0 Å	U 40 C 41 · 2 164 Å		
N-7 ↔ C-9.1.494 A	C-19 ↔ N-22.2.140 A	□-40 ↔ C-41.2.104 A	C-03 ↔ H-05.2.105 A	
N-7 Η-10 · 2 117 Å	H-20 C-21 · 2 165 Å	H_{-10} $H_{-12} \cdot 2.106$ Å	C_{-63} $C_{-66} \cdot 2.457$ Å	
		1140 + 1142.2.430 A	C 00 ↔ C 00.2.431 Å	
N-7 ↔ C-13 2.497 Å	H-20 ↔ H-22 · 2.477 Å	C-41 ↔ H-42 1.092 Å	C-63 ↔ C-68 2.837 Å	
N-7 ↔ C-21 : 2.956 A	C-21 ↔ H-22 : 1.093 A	C-41 ↔ C-43 : 1.396 A	C-63 ↔ C-70 : 2.458 A	
	C 22 C 24 · 1 407 Å		C 62 C 72 · 1 / / F Å	
N-1 ↔ N-22.2.001 A	C-23 ↔ C-24.1.407 A	C-41 ↔ Π-44.2.157 A	C-03 ↔ C-72.1.445 A	
N-7 👝 C-56 · 2 336 Å	C-23 → H-25 · 2 172 Å	H-42 _ C-43 · 2 158 Å	C-63 - C-73 · 2 /72 Å	
N-7 ↔ H-58 : 2.948 Å	C-23 ↔ C-26 : 2.431 Å	H-42 ↔ H-44 : 2.479 Å	C-64 ↔ H-65 : 1.093 Å	
N 7 0 50 0 100 Å				
IN-/ ↔ C-59:2.180 A	C-23 ↔ C-28 : 2.806 A	C-43 ↔ H-44 : 1.093 A	U-04 ↔ U-00 I.385 A	1
N-7 H-75 · 2 / / 7 Å	C-22 C-20 · 2 /20 8	C-45 C-46 · 1 407 8	$C_{-64} = H_{-67} \cdot 2140^{8}$	
N=1 ↔ Π=13.2.441 A	0-23 ↔ 0-30.2.429 A	C-40 ↔ C-40 ± 1.407 Å	U-04 ↔ H-01.2.149 A	
IN-8 ↔ C-9 2.376 Å	C-23 ↔ C-32 · 1.404 Å	C-45 ↔ H-47 2.171 Å	C-64 ↔ C-68 2.424 Å	
N-8 ↔ C-11 : 2.8/8 A	C-23 ↔ H-33 : 2.1/1 A	C-45 ↔ C-48 : 2.431 A	C-64 ↔ C-70 : 2.812 A	
	C 22 C 24 · 2 021 8	C 4E C EQ 2 007 8	C 64 C 72 · 2 474 8	
110-0 ↔ 17-12.2.541 A	U-23 ↔ U-34.2.921 A	U-45 ↔ U-50.2.807 A	U-04 ↔ U-12.2.414 A	
N-8 . H-22 · 2 708 Å	C-23 H-36 · 2 672 Å	C-45 C-52 · 2 /20 Å	H-65 C-66 · 2 15/ Å	
11 0 ↔ 11-22.2.130 A	0 20 ↔ 11-30.2.072 A	0 73 ↔ 0-32 . 2.429 A	1103 ↔ C=00.2.134 A	
IN-8 ↔ C-56 : 2.368 Å	C-23 ↔ C-45 : 2.922 Å	C-45 ↔ C-54 : 1.405 Å	H-65 ↔ H-67 : 2.481 Å	
IN-8 ↔ C-59 : 1.355 A	C-24 ↔ H-25 : 1.093 Å	C-45 ↔ H-55 : 2.171 Å	C-66 ↔ H-67:1.092 Å	
N 9 C 60 2 400 8	C 24 C 26 1 200 Å	C 46 H 47 1 000 Å	C 66 C 60 1 410 8	
IN-0 ↔ U-0U. 2.422 A	U-24 ↔ U-20. 1.390 A	U-40 ↔ H-41. I.093 A	U-00 ↔ U-08.1.410 A	
N-8 . H-75 · 2 205 Å	C-24 . H-27 · 2 158 Å	C-46 C-48 · 1 206 Å	C-66 . H-60 · 2 172 Å	
1.0 ↔ 11-13.2.203 A	0 27 ↔ 11-21 . 2.100 A	0 TO ↔ 0-40. 1.390 Å	0 00 ↔ 11-03.2.1/3 A	
C-9 ↔ H-10 · 1 ∩97 Å	C-24 ↔ C-28 · 2 422 Å	C-46 ↔ H-49 2158 Å	C-66 ↔ C-70 · 2 437 Å	
C-9 ↔ C-13 : 1.520 Å	C-24 ↔ C-30 : 2.797 Å	C-46 ↔ C-50 : 2.422 A	C-66 ↔ C-72 : 2.836 Å	
CO C14.0 FOF 8	C 24 C 22 · 2 420 8	C 46 C E2 · 2 707 8		
ר-ש ↔ C-14 : 2.525 A	U-24 ↔ U-32 : 2.428 A	10-40 ↔ 0-52:2.191 A	Π-0/ ↔ U-08:2.1/1 A	
C-9 H-15 · 2 722 Å	H-25 C-26 · 2 159 Å	$C-46$ $C-54 \cdot 2.427$ Å	H-67 . H-60 · 2 501 Å	
0 3 ↔ 11-13.2.123 A	1123 + C-20.2.130 A	$ \bigcirc + \bigcirc \leftrightarrow \bigcirc - \bigcirc + \bigcirc +$	11 01 ↔ 11-09.2.001 A	
C-9 ↔ C-21 · 2 552 Å	H-25 ↔ H-27 · 2 479 Å	H-47 ↔ C-48 · 2 157 Å	C-68 ↔ H-69 · 1 092 Å	
C-9 ↔ H-22 : 2.775 Å	C-26 ↔ H-27 : 1.092 Å	H-4/ ↔ H-49 : 2.478 Å	C-68 ↔ C-70 : 1.403 Å	
CO CEC. 1 E 47 8	C 26 C 20 1 400 8	C 40 11 40 1 000 8	0.60 1171 .0.105 8	
し-y ↔ し-50:1.54/A	C-20 ↔ C-28 : 1.400 A	C-48 ↔ H-49 : 1.093 A	U-08 ↔ H-/1:2.165 A	
C-9 H-57 · 2 202 Å	C-26 H-20 · 2 16/ Å	C-48 C-50 · 1 200 Å	C-68 C-72 · 2 1/15 Å	
0 3 ↔ 11-31 . 2.203 A	0 20 ↔ 11-29.2.104 A	C +0 ↔ C-30 . 1.333 Å	0 00 ↔ 0-12.2.440 A	
C-9 ↔ H-58 · 2 197 Å	C-26 ↔ C-30 · 2 422 Å	C-48 ↔ H-51 2 164 Å	H-69 ↔ C-70 · 2 165 Å	
C-9 ↔ C-59 : 2.384 A	C-26 ↔ C-32 : 2.801 Å	C-48 ↔ C-52 : 2.422 A	H-69 ↔ H-/1:2.490 Å	
H 10 C 12 · 2 150 Å	H 27 C 20 - 2 16C 8	C 49 C E 4 · 2 000 Å		
Π-10 ↔ C-13 : 2.150 A	ר-∠ <i>ו</i> ↔ ט-עט: 2.100 A	C-48 ↔ C-54 : 2.800 A	C-10 ↔ H-11 : 1.093 A	
H-10 → C-14 · 2 617 Å	H-27 → H-29 · 2 496 Å	H-49 ↔ C-50 · 2 166 Å	$C-70 \rightarrow C-72 \cdot 1 \ 404 \ \text{\AA}$	
11 10 0 14 . 2.017 A	1121 ↔ 1123.2.430 A	11 +3 + C 50 . 2.100 A	0 10 ↔ 0 12 . 1.404 A	
H-10 ↔ H-15 : 2.374 Å	C-28 ↔ H-29 : 1.093 Å	H-49 ↔ H-51 : 2.496 Å	C-70 ↔ C-73 : 2.492 Å	
H-10 ↔ C-56 : 2.204 Å	C-28 ↔ C-30 : 1.398 Å	C-50 ↔ H-51 : 1.093 A	C-70 ↔ H-74 : 2.723 Å	
	0.00 11.01.0.104.8	CE0 CE2 1 200 8		
A /00.2. / C-⊓ ↔ 01-3/	0-20 ↔ Π-31 . 2.104 A	C-00 ↔ C-02 . 1.398 A	A 96171 ↔ C-12.2.138 A	1

Complexo 5 (em duas perspectivas):

	1	1		1
Au-1 → S-2 · 2 355 Å	C-10 ↔ C-50 · 1 395 Å	C-21 ↔ C-22 · 1 406 Å	C-33 ↔ C-35 1 395 Å	C-46 ↔ H-66 · 2 154 Å
Au-1 ↔ P-3 : 2.264 A	C-10 ↔ H-57 : 2.987 A	C-21 ↔ C-24 : 2.425 A	$C-33 \leftrightarrow C-37$: 2.419 A	$C-47 \leftrightarrow C-49 : 1.359 \text{ A}$
Au-1 ↔ H-82 2.679 Å	C-10 ↔ H-62 1.083 Å	C-21 ↔ C-26 2.795 Å	C-33 ↔ C-39 2.800 Å	C-47 ↔ C-51 2.435 Å
5-2 ↔ C-5.1.700 A	C-10 ↔ H-03.2.148 A	C-21 ↔ C-28.2.420 A	C-33 ↔ C-41 . 2.429 A	C-4/ ↔ H-/5.2.128 A
S-2 ↔ N-6 : 2.753 Å	C-11 ↔ C-12 : 1.396 Å	C-21 ↔ C-30 : 1.400 Å	C-33 ↔ H-54 : 2.148 Å	C-47 ↔ H-76 : 1.083 Å
C2 N7.2669 Å	C_{11} $C_{14} \cdot 2_{424} $	C 21 C 22 · 2 002 Å		
3-2 ↔ N-7.2.000 A	C-11 ↔ C-14.2.424 A	C-21 ↔ C-32.2.002 A	C-33 ↔ H-35.1.063 Å	C-41 ↔ H-11.2.090 Å
S-2 ↔ H-82 : 2.911 A	C-11 ↔ C-15 : 2.568 A	C-21 ↔ C-43 : 2.894 A	C-33 ↔ H-62 : 2.835 A	C-48 ↔ C-50 : 1.396 A
S-2 H-84 · 2 878 Å	C_{-11} $C_{-16} \cdot 2.772$ Å	$C_{-21} = H_{-55} \cdot 2.654$ Å	C_{-34} $C_{-36} \cdot 1.434$ Å	$C_{-48} = H_{-63} \cdot 2.152 \text{ Å}$
02 ↔ 1104.2.010 A		C 21 ↔ 11 55 . 2.054 A		C 40 ↔ 11 03 . 2.132 A
P-3 ↔ C-10 : 2.800 A	C-11 ↔ C-17 : 2.424 A	C-21 ↔ H-57 : 2.157 A	C-34 ↔ C-38 : 2.483 A	C-48 ↔ H-64 : 1.081 A
P-3 → C-21 · 1 807 Å	C-11 👝 C-19 · 1 400 Å	C-21 ↔ H-61 · 2 161 Å	C-34 ↔ H-79 · 2 705 Å	C-48 ↔ H-65 2 153 Å
P-3 ↔ C-22:2.760 A	C-11 ↔ H-68 : 2.150 A	C-22 ↔ C-24 : 1.393 A	C-34 ↔ H-80 : 1.083 A	C-49 ↔ C-51 : 1.437 A
P-3 ↔ C-30 : 2.816 Å	C-11 ↔ H-69 : 2.160 Å	C-22 ↔ C-26 : 2.417 Å	C-34 ↔ H-81 : 2.098 Å	C-49 ↔ H-74 : 2.694 Å
D 2 C 22 · 1 001 Å		C_{22} $C_{20} \cdot 2.704$ Å	C 2F C 27 · 1 206 Å	
P-3 ↔ C-32.1.001 A	C-11 ↔ H-71.2.045 Å	C-22 ↔ C-20.2.194 A	C-35 ↔ C-37. 1.390 Å	C-49 ↔ H-75.1.003 Å
P-3 ↔ C-33 : 2.801 Å	C-11 ↔ H-84 : 2.144 Å	C-22 ↔ C-30 : 2.428 Å	C-35 ↔ C-39 : 2.422 Å	C-49 ↔ H-76 : 2.127 Å
$P_{-3} = C_{-11} \cdot 2.764$ Å	C_{-12} $C_{-14} \cdot 1.305$ Å	$C_{-22} = H_{-60} \cdot 2.148 \text{ Å}$	$C_{-35} = C_{-41} \cdot 2.796 \text{ Å}$	$C_{-50} = H_{-62} \cdot 2.152 \text{ Å}$
F-3 ↔ C-41.2.704 A	C-12 ↔ C-14 . 1.353 A	C-22 ↔ 11-00 . 2.140 A	C-33 ↔ C-41.2.750 A	C-30 ↔ 11-02 . 2.132 A
P-3 ↔ C-43 : 1.801 A	C-12 ↔ C-16 : 2.394 A	C-22 ↔ H-61 : 1.086 A	C-35 ↔ H-53 : 2.150 A	C-50 ↔ H-63 : 1.081 A
P-3 → C-44 · 2 765 Å	C-12 C-17 · 2 794 Å	$C-23 \rightarrow C-25 \cdot 2439$ Å	C-35 ↔ H-54 1 081 Å	C-50 ↔ H-64 2 150 Å
	0 10 0 10 0 117 8	0.00		
P-3 ↔ H-55 2.948 A	C-12 ↔ C-19:2.417 A	C-23 ↔ C-27 : 1.463 A	C-35 ↔ H-55 2.153 A	C-51 ↔ H-74 : 2.151 A
P-3 ↔ H-56 : 2.879 Å	C-12 ↔ H-67 : 2.161 Å	C-23 ↔ C-29 : 2.553 Å	C-36 ↔ C-38 : 1.403 Å	C-51 ↔ H-75 : 2.168 Å
			C 26 C 40 2 420 Å	
P-3 ↔ H-57.2.970 Å	C-12 ↔ H-00.1.003 Å	C-23 ↔ H-09.2.192 Å	C-30 ↔ C-40.2.429 Å	Π-52 ↔ Π-55.2.470 Å
P-3 ↔ H-61 : 2.863 Å	C-12 ↔ H-84 : 2.594 Å	C-23 ↔ H-71 : 2.181 Å	C-36 ↔ C-42 : 2.807 Å	H-52 ↔ H-56 : 2.477 Å
P-3 , H-62 · 2 0/7 Å	C-13 C-18 · 2 /20 Å	C-23 . H-72 · 2 155 Å	C-36 C-15 · 2 156 Å	H-53 , H-51 · 2 177 Å
D 0 → 1102.2.347 A		0 20 0 11 72 2 133 A		11 55 ↔ 11 54 . 2.4/1 A
P-3 ↔ H-66 2.880 A	C-13 ↔ C-25 : 1.380 A	U-23 ↔ H-73 : 2.589 A	U-30 ↔ H-79:2.149 A	H-54 ↔ H-55 2.4/5 A
CI-4 ↔ C-14 2.751 Å	C-13 ↔ C-27 2.439 Å	C-23 ↔ H-81 2.762 Å	C-36 ↔ H-80 2.167 Å	H-57 ↔ H-58 2.475 Å
	C 12 C 20 C 200C *	C 24 C 26 1 200 8		
U-4 ↔ U-10 : 1./94 A	C-13 ↔ C-29 2.830 A	C-24 ↔ C-20:1.399 A	$[-37] \leftrightarrow (-39] 1.397 \text{ Å}$	п-эх ↔ п-59:2.4/6 A
CI-4 ↔ C-17 : 2.751 Å	C-13 ↔ C-49 : 2.477 Å	C-24 ↔ C-28 : 2.421 Å	C-37 ↔ C-41 : 2.416 Å	H-59 ↔ H-60 : 2.480 Å
	C 12 C 51 · 1 405 Å	C_{24} $C_{20} \cdot 2_{001}$ Å		
CI-4 ↔ Π-07.2.074 A	C-13 ↔ C-51.1.405 A	C-24 ↔ C-30.2.001 A	C-37 ↔ H-52.2.153 A	H-00 ↔ H-01.2.400 A
CI-4 ↔ H-70 : 2.871 A	C-13 ↔ H-73 : 2.137 A	C-24 ↔ H-59 : 2.153 A	C-37 ↔ H-53 : 1.081 A	H-62 ↔ H-63 : 2.474 A
C-5 ↔ N-6 1 338 Å	C-13 ↔ H-74 · 1 082 Å	C-24 ↔ H-60 · 1 081 Å	C-37 H-54 2 152 Å	$H-63 \rightarrow H-64 \cdot 2477 \text{ Å}$
C-5 ↔ N-7 1.335 A	C-13 ↔ H-75 2.087 A	C-24 ↔ H-61 2.154 A	C-38 ↔ C-40 1.393 A	H-04 ↔ H-05 2.479 A
C-5 ↔ N-8 : 2.367 Å	C-14 ↔ C-16 : 1.388 Å	C-25 ↔ C-27 : 1.411 Å	C-38 ↔ C-42 : 2.415 Å	H-65 ↔ H-66 : 2.478 Å
$C = C 0 \cdot 2 = 27 $ Å	C_{14} $C_{17} \cdot 2_{420}$ Å	C 25 C 20 · 2 445 Å	$C_{20} = C_{45} \cdot 2_{014} $	
C-3 ↔ C-3.2.337 A	C-14 ↔ C-17 . 2.423 A	C-23 ↔ C-23.2.443 A	C-30 ↔ C-43.2.014 A	11-07 ↔ 11-00.2.430 A
C-5 ↔ H-82 : 2.045 A	C-14 ↔ C-19 : 2.797 A	C-25 ↔ C-51 : 2.419 A	C-38 ↔ H-78 : 2.147 A	H-68 ↔ H-84 : 2.333 A
C-5 ↔ H-83 · 2 026 Å	C-14 ↔ H-67 · 1 080 Å	C-25 ↔ H-73 · 1 081 Å	C-38 ↔ H-79 · 1 083 Å	H-69 ↔ H-70 · 2 483 Å
C-5 ↔ H-84 2.808 A	C-14 ↔ H-68 2.149 A	C-25 ↔ H-74 2.141 A	C-38 ↔ H-80 2.702 A	H-/1 ↔ H-/2:1./68 A
N-6 ↔ N-7 : 2.285 Å	C-15 ↔ C-23 : 1.518 Å	C-26 ↔ C-28 : 1.395 Å	C-39 ↔ C-41 : 1.394 Å	H-71 ↔ H-81 : 2.451 Å
N.6 N.9:2640 Å	$C_{15} = C_{27} \cdot 2690 \text{ Å}$	$C_{26} = C_{20} \cdot 2_{421} \lambda$		$\Box 71 \qquad \Box 01 \cdot 2017 $ Å
N-0 ↔ N-0.2.040 A	C-15 ↔ C-27.2.060 Å	C-20 ↔ C-30.2.421 A	C-39 ↔ H-52.1.001 Å	Π-11 ↔ Π-04.2.041 A
N-6 ↔ H-82 : 1.009 A	C-15 ↔ H-71 : 1.089 A	C-26 ↔ H-58 : 2.151 A	C-39 ↔ H-53 : 2.151 A	H-72 ↔ H-81 : 1.965 A
N-6 H-83 · 1 013 Å	C-15 H-72 · 1 091 Å	C-26 H-59 · 1 081 Å	C-39 H-56 · 2 153 Å	H-72 H-84 · 2 335 Å
N-7 ↔ N-8:1.410 A	C-15 ↔ H-81 : 2.437 A	C-26 ↔ H-60 : 2.155 A	C-40 ↔ C-42 : 1.393 A	H-/3 ↔ H-/4 : 2.468 A
N-7 ↔ C-9 : 1.484 Å	C-15 ↔ H-84 : 2.194 Å	C-27 ↔ C-29 : 1.421 Å	C-40 ↔ C-45 : 2.433 Å	H-74 ↔ H-75 : 2.449 Å
N 7 C 11 · 2 476 Å	C 16 C 17 · 1 200 Å	C 27 C 21 · 2 E 20 Å		
N-7 ↔ C-11.2.470 Å	C-10 ↔ C-17 . 1.390 Å	C-21 ↔ C-31.2.520 Å	C-40 ↔ H-11.2.152 Å	Π-13 ↔ Π-10.2.400 Å
N-7 ↔ C-15 : 2.319 A	C-16 ↔ C-19 : 2.396 A	C-27 ↔ C-51 : 2.838 A	C-40 ↔ H-78 : 1.081 A	H-76 ↔ H-77 : 2.460 A
N-7 C-19 · 2 992 Å	C_{-16} $H_{-67} \cdot 2 1/1/$ Å	C-27 H-71 · 2 010 Å	C-40 H-79 · 2 153 Å	H-77 H-78 · 2 /77 Å
			C 40 ↔ 11 75 . 2.155 A	1177 ↔ 1170.2.477 A
N-7 ↔ C-23 : 2.206 A	C-16 ↔ H-70 : 2.146 A	C-27 ↔ H-73 : 2.144 A	C-41 ↔ H-52 : 2.148 A	H-78 ↔ H-79:2.479A
N-7 ↔ H-69 : 2.796 Å	C-17 ↔ C-19 : 1.393 Å	C-27 ↔ H-81 : 2.781 Å	C-41 ↔ H-56 : 1.084 Å	H-79 ↔ H-80 : 2.471 Å
		C 20 C 20 1 200 Å	C 42 C 4E 1 402 Å	
IN-1 ↔ Π-12.2.000 A	C-11 ↔ Π-09. 2.144 A	C-20 ↔ C-30 . 1.398 A	C-42 ↔ C-45.1.403 A	Π-00 ↔ Π-01.2.415 A
N-7 ↔ H-83 : 2.454 Å	C-17 ↔ H-70 : 1.080 Å	C-28 ↔ H-57 : 2.154 Å	C-42 ↔ C-47 : 2.481 Å	H-82 ↔ H-83 : 1.758 Å
N-7 H-84 · 2 109 Å	$C_{-18} = C_{-20} \cdot 1.431 \text{ Å}$	C-28 H-58 · 1 081 Å	C-12 H-76 · 2 698 Å	
	$\bigcirc 10 \leftrightarrow \bigcirc 20 1.401 \text{ A}$			
IN-8 ↔ C-9:2.404 A	C-18 ↔ C-25 : 2.799 A	U-28 ↔ H-59÷2.149 A	\bigcirc -42 \leftrightarrow H-11:1.083 A	
N-8 ↔ C-15 : 2.342 Å	C-18 ↔ C-27 : 2.453 Å	C-29 ↔ C-31 : 1.441 Å	C-42 ↔ H-78 : 2.147 Å	
N-8 C-23 · 1 208 Å	C-18 C-20 1 /22 Å	C-29 C-24 · 2 440 Å	C-13 C-11 · 1 104 8	
1 0 ↔ C-23.1.300 A	0 10 ↔ 0-23 1.432 A	$\bigcirc 23 \leftrightarrow \bigcirc 34 \cdot 2.443 \text{ A}$	0 40 ↔ 0-44 . 1.404 A	
N-8 ↔ C-25 : 2.783 Å	C-18 ↔ C-31 : 2.455 A	C-29 ↔ C-36 : 2.875 A	C-43 ↔ C-46 : 2.423 A	
N-8 ↔ C-27 : 2.401 Å	C-18 ↔ C-34 : 2.822 Å	C-29 ↔ C-51 : 2.482 Å	C-43 ↔ C-48 : 2.793 Å	
			C 42 C E0 + 2 420 8	
IN-0 ↔ IT-09.2.154 A	C-10 ↔ C-30. 2.4/5 A	C-23 ↔ H-01 . 2.105 A	C-43 ↔ C-50.2.420 Å	
N-8 ↔ H-72 : 2.949 Å	C-18 ↔ C-45 : 2.478 Å	C-30 ↔ H-57 : 1.083 Å	C-43 ↔ H-57 : 2.612 Å	
N-8 H-73 · 2 /12 Å	$C_{-18} = C_{-47} \cdot 2.844$ Å	C-30 H-58 · 2 1/9 Å	C-13 H-62 · 2 160 Å	
וא-8 ↔ H-83 : 2.219 A	U-18 ↔ C-49 : 2.4/4 A	$ \cup 31 \leftrightarrow \cup 34 : 1.360 \text{ A}$	U-43 ↔ H-66 : 2.158 A	
C-9 ↔ C-11 : 1.512 Å	C-18 ↔ C-51 : 1.425 Å	C-31 ↔ C-36 : 2.440 Å	C-44 ↔ C-46 : 1.394 Å	
C_{-0} $C_{-12} \cdot 2520$ Å	C-10 H-60 · 1 00/ Å	C-31 H-71 · 2 07/ Å	C_{-11} $C_{-10} \cdot 2 \cdot 116^{8}$	
	0 13 ↔ Π-03 . 1.004 A	0.01 ↔ Π-11.2.914 A	\bigcirc \rightarrow \bigcirc \bigcirc \rightarrow \bigcirc	
C-9 ↔ C-15 : 1.544 A	C-19 ↔ H-70 : 2.159 Å	C-31 ↔ H-72 : 2.916 A	C-44 ↔ C-50 : 2.795 A	
C-9 ↔ C-19 2.527 Å	C-20 ↔ C-29 2.485 Å	C-31 ↔ H-80 2.122 Å	C-44 ↔ H-65 2.148 Å	
	C_{-20} $C_{-21} + 2.021$ Å		C-44 H 66 · 1 004 8	
C-3 ↔ C-23.2.402 A	C-20 ↔ C-31.2.821 A	C-31 ↔ Π-81.1.0//A	C-44 ↔ Π-00.1.084 A	
C-9 ↔ H-68 : 2.717 Å	C-20 ↔ C-34 : 2.450 Å	C-32 ↔ C-33 : 1.403 Å	C-45 ↔ C-47 : 1.438 Å	
C-9 ↔ H-69 2 734 Å	C-20 ↔ C-36 · 1 422 Å	C-32 ↔ C-35 · 2 421 Å	C-45 ↔ C-49 · 2 434 Å	
	C-20 ↔ C-3δ. 2.443 A	C-32 ↔ C-31.2.193 A	C-45 ↔ C-51. 2.841 A	
C-9 ↔ H-72 : 2.172 Å	C-20 ↔ C-40 : 2.817 Å	C-32 ↔ C-39 : 2.423 Å	C-45 ↔ H-76 : 2.171 Å	
C-9 - H-84 · 1 000 Å	$C-20 \rightarrow C-42 \cdot 2.441$ Å	$C-32 \rightarrow C-41 \cdot 1.403$ Å	C-45 \leftrightarrow H-77 · 2 1/7 Å	
IC-10 ↔ C-43 1.402 A	IC-20 ↔ C-45 1.425 A	C-32 ↔ C-43 : 2.900 A	$ C-46 \leftrightarrow C-48 : 1.397 \text{ A} $	
			0	
C-10 ↔ C-44 : 2.429 Å	C-20 ↔ C-47 : 2.466 Å	C-32 ↔ H-55 : 2.160 Å	C-46 ↔ C-50 : 2.422 Å	
$C-10 \leftrightarrow C-44 : 2.429 \text{ Å}$ $C-10 \rightarrow C 46 : 2.800 \text{ Å}$	C-20 ↔ C-47 : 2.466 Å	C-32 ↔ H-55 : 2.160 Å	$C-46 \leftrightarrow C-50: 2.422 Å$	
C-10 ↔ C-44 : 2.429 Å C-10 ↔ C-46 : 2.800 Å	C-20 ↔ C-47 : 2.466 Å C-20 ↔ C-49 : 2.828 Å	C-32 ↔ H-55 : 2.160 Å C-32 ↔ H-56 : 2.158 Å	C-46 \leftrightarrow C-50 : 2.422 Å C-46 \leftrightarrow H-64 : 2.151 Å	

				1
	C 12 C 17 · 2 766 Å			
Au-1 ↔ 5-2.2.315 A	C-12 ↔ C-17.2.700 Å	C-30 ↔ H-40.2.094 Å	C-0 ↔ H-24.2.202 A	C-20 ↔ C-30.2.021 A
Au-1 ↔ H-9:2.470 Å	C-12 ↔ C-18 : 2.422 Å	H-31 ↔ C-34 : 2.142 Å	C-8 ↔ C-25 : 2.398 Å	C-26 ↔ C-39 : 2.426 Å
Au-1 ↔ CI-21.2.288 A	C-12 ↔ H-19.2.155 Å	H-31 ↔ H-35.2.480 Å	H-9 ↔ C-12.2.144 A	C-20 ↔ H-40.2.148 A
S-2 ↔ C-4 : 1.758 Å	C-12 ↔ C-20 : 1.398 Å	H-31 ↔ C-36 : 1.083 Å	H-9 ↔ C-13 : 2.618 Å	C-27 ↔ C-29 : 1.419 Å
				0.07 0.00 0.404 8
S-2 ↔ N-5 2.053 A	C-12 ↔ C-22 2.555 A	H-31 ↔ C-38 2.160 A	H-9 ↔ H-19 2.381 A	C-27 ↔ C-30 2.484 A
S-2 → N-6 · 2 773 Å	C-12 → H-23 · 2 569 Å	H-31 👝 C-39 2 712 Å	H-9 C-22 · 2 193 Å	C-27 ↔ H-33 2 705 Å
S-2 ↔ H-43:2.727 A	C-13 ↔ H-14 : 2.159 A	H-31 ↔ H-42:2.4/1 A	H-9 ↔ H-23 : 2.888 A	C-27 ↔ C-38 : 2.451 A
CI-3 H-14 · 2 880 Å	C_{-13} $C_{-15} \cdot 1.395$ Å	C-32 H-33 · 2 1/1 Å	H-9 H-21 · 2 351 Å	C_{-27} $C_{-30} \cdot 2.801$ Å
	C 13 ↔ C 15 . 1.555 A		11 5 ¢ 11 24 . 2.554 A	
CI-3 ↔ C-15 : 2.756 A	C-13 ↔ C-17 : 2.395 A	C-32 ↔ C-34 : 1.418 A	C-10 ↔ C-25 : 2.504 A	C-27 ↔ H-40 : 1.084 A
$C_{-3} = C_{-17} \cdot 1.801 \text{ Å}$	C_{-13} $C_{-18} \cdot 2.700$ Å	C_{-32} $C_{-36} \cdot 2.425$ Å	C_{-10} $C_{-26} \cdot 1.427$ Å	H-28 H-35 · 2 /7/ Å
	C 13 ↔ C 10.2.755 A			11 20 ↔ 11 33 . 2.474 A
CI-3 ↔ C-18 : 2.753 A	C-13 ↔ H-19 : 1.084 A	C-32 ↔ C-38 : 2.817 A	C-10 ↔ C-27 : 2.428 A	H-28 ↔ C-39 : 2.137 A
CI-3 H-37 · 2 872 Å	C_{-13} $C_{-20} \cdot 2/120$ Å	C_{-32} $H_{-42} \cdot 2.165$ Å	C-10 H-28 1 081 Å	C_{-29} $C_{-30} \cdot 1.422$ Å
	C 13 ↔ C 20 . 2.420 A	C 52 ↔ 11 42 . 2.105 A		
C-4 ↔ N-5 : 1.342 A	H-14 ↔ C-15 : 1.080 A	H-33 ↔ H-40 : 2.461 A	C-10 ↔ C-29 : 2.822 A	C-29 ↔ C-32 : 2.429 A
CA N6.12448		C 24 C 26 · 1 276 Å		
C-4 ↔ N-0.1.344 Å	H-14 ↔ C-17.2.140 Å	C-34 ↔ C-30.1.370 Å	C-10 ↔ H-35.2.132 Å	C-29 ↔ H-33.2.103 Å
C-4 ↔ N-7 : 2.359 A	H-14 ↔ H-19 : 2.489 A	C-34 ↔ C-38 : 2.429 A	C-10 ↔ C-38 : 2.434 A	C-29 ↔ C-34 : 2.812 A
C 4 C 9 · 2 E 6 2 Å	C 1E C 17 · 1 200 Å		C 10 C 20 · 1 260 Å	C 20 C 26 · 2 452 Å
C-4 ↔ C-0.2.502 Å	C-15 ↔ C-17. 1.300 Å	C-34 ↔ H-42.1.002 Å	C-10 ↔ C-39.1.309 Å	C-29 ↔ C-30.2.452 Å
C-4 ↔ H-9 : 2.890 Å	C-15 ↔ C-18 : 2.431 Å	H-35 ↔ C-36 : 2.710 Å	H-11 ↔ C-30 : 2.134 Å	C-29 ↔ C-38 : 1.427 Å
				C 20 C 20 C 2 455 Å
C-4 ↔ H-41.2.038 A	C-12 ↔ H-19.2.151 Å	H-35 ↔ C-38.2.103 A	H-11 ↔ C-32.1.081 A	C-29 ↔ C-39.2.455 A
C-4 ↔ H-43 : 2.033 Å	C-15 ↔ C-20 : 2.796 Å	H-35 ↔ C-39 : 1.083 Å	H-11 ↔ H-33 : 2.472 Å	C-29 ↔ H-40 : 2.155 Å
	11.16 $C.10.2.140.8$	C 26 C 20 · 1 410 Å	11 11 0 24 2 166 8	C 20 C 22 1 275 Å
11-3 ↔ IN-0: 2.284 A	Π-10 ↔ C-18 2.149 A	C-30 ↔ C-38 1.419 A	□-11 ↔ U-34 : 2.100 Å	$ C^{-3U} \leftrightarrow C^{-3Z} \colon 1.375 \text{ A}$
N-5 ↔ N-7 : 2.602 Å	H-16 ↔ C-20 : 1.085 Å	C-36 ↔ C-39 : 2.491 Å	H-11 ↔ H-42 : 2.483 Å	C-30 ↔ H-33 : 1.083 Å
NE 1141-10108			C 12 C 12 1 200 8	C 20 C 24 C 400 *
111-5 ↔ H-41 : 1.010 A	Π-10 ↔ H-3/ 2.491 A	U-30 ↔ H-42 2.135 A	C-12 ↔ C-13 : 1.398 Å	U-30 ↔ U-34 2.422 A
N-5 ↔ H-43 : 1.006 Å	C-17 ↔ C-18 : 1.389 Å	C-38 ↔ C-39 : 1.426 Å	C-12 ↔ C-15 : 2.421 Å	C-30 ↔ C-36 : 2.807 Å
	C 17 C 20 + 2 200 Å			
אי ט-ט א N- <i>i</i> : 1.411 A	U-17 ↔ U-20 : 2.393 A	п-4⊥ ↔ H-43 1./5/	U-12 ↔ H-10 : 2.155 A	C-30 ↔ C-38 : 2.457 A
N-6 ↔ C-8 · 1 486 Å	C-17 ↔ H-37 · 2 146 Å	ÅAu-1 ↔ S-2 · 2 315 Å	C-12 ↔ C-17 · 2 766 Å	C-30 ↔ H-40 · 2 694 Å
IN-6 ↔ H-9:2.115 A	C-18 ↔ C-20 : 1.394 Å	Au-1 ↔ H-9:2.470A	C-12 ↔ C-18 : 2.422 A	H-31 ↔ C-34 : 2.142 A
N-6 C-12 · 2 /70 Å	C-18 H-37 · 1 080 Å	Au-1 CI-21 · 2 288 Å	C-12 H-10 · 2 155 Å	H-31 H-35 · 2 /80 Å
N-6 ↔ H-16 : 2.598 A	C-20 ↔ H-37 : 2.161 A	S-2 ↔ C-4:1./58 A	C-12 ↔ C-20 : 1.398 A	H-31 ↔ C-36 : 1.083 A
N-6 C-20 · 2 807 Å	$C_{-22} = H_{-22} \cdot 1.000 \text{ Å}$	S-2 N-5 · 2 653 Å	C_{-12} $C_{-22} \cdot 2555$ Å	$H_{-31} = C_{-38} \cdot 2160 \text{ Å}$
N=0 ↔ C=20.2.031 A	C-22 ↔ 11-23.1.030 A	3-2 ↔ N-3.2.033 A	C-12 ↔ C-22.2.333 A	11-51 ↔ C-50.2.100 A
N-6 ↔ C-22 : 2.346 A	C-22 ↔ H-24 : 1.092 A	S-2 ↔ N-6 : 2.773 A	C-12 ↔ H-23 : 2.569 A	H-31 ↔ C-39 : 2.712 A
N.G. C. 2E · 2.202 Å	C 22 C 25 · 1 E09 Å			
N-0 ↔ C-25.2.203 A	C-22 ↔ C-25.1.506 Å	3-2 ↔ Π-43.2.121 A	C-13 ↔ H-14.2.159 Å	Π -31 \leftrightarrow Π -42.2.4/1 A
N-6 ↔ H-41 : 2.460 Å	C-22 ↔ C-26 : 2.626 Å	CI-3 ↔ H-14 : 2.880 Å	C-13 ↔ C-15 : 1.395 Å	C-32 ↔ H-33 : 2.141 Å
N-7 ↔ C-8:2.404 A	C-22 ↔ H-40 2.037 A	CI-3 ↔ C-15 2.750 A	$C-13 \leftrightarrow C-17$ 2.395 A	$C-32 \leftrightarrow C-34$: 1.418 A
N-7 ↔ C-10 · 2.876 Å	H-23 ↔ H-24 1.766 Å	CI-3 ↔ C-17 · 1.801 Å	C-13 ↔ C-18 2.799 Å	C-32 ↔ C-36 2.425 Å
N-7 ↔ H-16 : 2.848 A	H-23 ↔ C-25 2.167 A	CI-3 ↔ C-18 : 2.753 A	C-13 ↔ H-19 : 1.084 A	$ C-32 \leftrightarrow C-38: 2.817 \text{ A} $
N-7 C-22 · 2 3/5 Å	H_{-23} $C_{-26} \cdot 2.930$ Å	CI-3 H-37 · 2 872 Å	C_{-13} $C_{-20} \cdot 2/120$ Å	C_{-32} $H_{-42} \cdot 2.165$ Å
	11 20 ↔ C 20 . 2.550 A			C 52 ↔ 11 42 . 2.105 A
N-7 ↔ C-25 : 1.299 A	H-23 ↔ C-27 : 2.962 A	C-4 ↔ N-5 : 1.342 A	H-14 ↔ C-15 : 1.080 A	H-33 ↔ H-40 : 2.461 A
$N_{-7} = C_{-26} \cdot 2.416$ Å	$H_{-22} = H_{-40} \cdot 2.377 \text{ Å}$	C_{-1} N ₋₆ · 1 344 Å	H_{-14} $C_{-17} \cdot 2146$ Å	C_{-34} $C_{-36} \cdot 1.376$ Å
	1123 ↔ 1140.2.311 A			
N-7 ↔ H-28 : 2.545 A	H-24 ↔ C-25 : 2.149 A	C-4 ↔ N-7 : 2.359 A	H-14 ↔ H-19 : 2.489 A	C-34 ↔ C-38 : 2.429 A
	L 24 C 26 · 2 001 Å	C1 C9.2562 Å	C 15 C 17 · 1 200 Å	$C_{24} = 1.02 \text{ Å}$
N-7 ↔ N-41.2.105 A	H-24 ↔ C-20.2.901 Å	C-4 ↔ C-0.2.302 Å	C-15 ↔ C-17 . 1.300 Å	C-34 ↔ H-42.1.002 A
C-8 ↔ H-9 : 1.092 A	H-24 ↔ H-40 : 2.567 A	C-4 ↔ H-9 : 2.890 A	C-15 ↔ C-18 : 2.431 A	H-35 ↔ C-36 : 2.710 A
C_{0} $C_{12} \cdot 1_{511}$ Å	C 25 C 26 · 1 450 Å			
C-0 ↔ C-12.1.511 Å	C-25 ↔ C-20. 1.459 Å	C-4 ↔ H-41.2.030 Å	C-12 ↔ H-19.2.131 Å	H-35 ↔ C-36.2.103 Å
C-8 ↔ C-13 : 2.517 Å	C-25 ↔ C-27 : 2.463 Å	C-4 ↔ H-43 : 2.033 Å	C-15 ↔ C-20 : 2.796 Å	H-35 ↔ C-39 : 1.083 Å
				C 26 C 20 · 1 / 10 Å
C-0 ↔ H-10.2.121 Å	C-23 ↔ H-20.2.099 Å	11-3 ↔ 11-0.2.204 A	H-10 ↔ C-10.2.149 Å	C-30 ↔ C-30.1.419 Å
C-8 ↔ H-19 : 2.717 A	C-25 ↔ H-40 : 2.687 A	N-5 ↔ N-7 : 2.602 A	H-16 ↔ C-20 : 1.085 A	C-36 ↔ C-39 : 2.491 A
C 0 C 20 · 2 E 24 Å	C 26 C 27 1 202 Å	NE 1141-1010 8		
C-0 ↔ C-20.2.524 A	C-20 ↔ C-27. 1.302 A	N-5 ↔ H-41.1.010 A	Π-10 ↔ Π-3/.2.491 A	C-30 ↔ H-42.2.135 A
C-8 ↔ C-22 : 1.547 Å	C-26 ↔ H-28 : 2.164 Å	N-5 ↔ H-43 : 1.006 Å	C-17 ↔ C-18 : 1.389 Å	C-38 ↔ C-39 : 1.426 Å
	C 26 C 20 · 2 441 8	N.6 N.7 1 411 Å	C 17 C 20 · 2 202 Å	
U-0 ↔ I-23.2.18/A	U-20 ↔ U-29. 2.441 A	IN-0 ↔ IN-1.1.411 A	C-11 ↔ C-20.2.393 A	□-41 ↔ □-43 1./5/ A
C-8 ↔ H-24 : 2.202 Å	C-26 ↔ C-38 : 2.827 Å	N-6 ↔ C-8 : 1.486 Å	C-17 ↔ H-37 : 2.146 Å	
C 9 C 2E 2 200 Å	C 26 C 20 2 426 Å		C 10 C 20 · 1 204 Å	
C-0 ↔ C-23.2.398 A	C-20 ↔ C-39 2.420 A		0-10 ↔ 0-20.1.394 A	
H-9 ↔ C-12 : 2.144 Å	C-26 ↔ H-40 : 2.148 Å	N-6 ↔ C-12 : 2.479 Å	C-18 ↔ H-37 : 1.080 Å	
H-0 C-12 · 2 610 Å	$C_{-27} = C_{-20} \cdot 1.410$ Å	N-6 H-16 · 2 500 Å	C-20 H-27 · 2 161 Å	
11-3 + C-13.2.010 A	0-21 ↔ 0-29.1.419 A	IN-0 ↔ II-10. 2.390 A	0-20 ↔ 11-31.2.101 A	
H-9 ↔ H-19 : 2.381 Å	C-27 ↔ C-30 : 2.484 Å	N-6 ↔ C-20 : 2.897 Å	C-22 ↔ H-23 : 1.090 Å	
H_{-9} , $C_{-22} \cdot 2102$ Å	C-27 H-33 · 2 705 Å	N-6 C-22 · 2 3/6 Å	C-22 H-24 · 1 002 Å	
11-3 + C-22.2.193 A	0-21 ↔ Π-33.2.103 A	11-0 ↔ C-22.2.340 A	0-22 ↔ 11-24 . 1.092 A	
H-9 ↔ H-23 : 2.888 Å	C-27 ↔ C-38 : 2.451 Å	N-6 ↔ C-25 : 2.203 Å	C-22 ↔ C-25 : 1.508 Å	
			C 22 C 26 · 2 626 Å	
ריין ↔ ח-24 2.304 A	C-21 ↔ C-39 2.801 A	11-41.2.40UA	0-22 ↔ 0-20.2.020 A	
C-10 ↔ C-25 : 2.504 Å	C-27 ↔ H-40 : 1.084 Å	N-7 ↔ C-8 : 2.404 Å	C-22 ↔ H-40 : 2.637 Å	
C 10 C 26 1 427 8		N 7 C 10 2 076 ⁸		
U-10 ↔ U-20: 1.42/ A	Π-20 ↔ H-35 2.4/4 A	IN-1 ↔ C-10:2.8/6 A	Π-23 ↔ H-24 : 1./00 A	
C-10 ↔ C-27 : 2.428 Å	H-28 ↔ C-39 : 2.137 Å	N-7 ↔ H-16 : 2.848 Å	H-23 ↔ C-25 : 2.167 Å	
	C 20 C 20 1 422 Å			
C-T0 ↔ H-59 T08T Å	U-29 ↔ U-30 . 1.422 A	IN-1 ↔ U-22.2.345 A	1-23 ↔ C-20.2.930 A	
C-10 ↔ C-29 : 2.822 Å	C-29 ↔ C-32 : 2.429 Å	N-7 ↔ C-25 : 1.299 Å	H-23 ↔ C-27 : 2.962 Å	
		N 7 C 26 2 416 ⁸		
U-10 ↔ H-35. 2.132 A	U-23 ↔ H-33.2.103 A	IN-1 ↔ C-20.2.410 A	17-23 ↔ 17-40.2.3//A	
C-10 ↔ C-38 : 2.434 Å	C-29 ↔ C-34 : 2.812 Å	N-7 ↔ H-28 : 2.545 Å	H-24 ↔ C-25 : 2.149 Å	
C 10 C 20 · 1 260 Å	0.00 0.00 0.450 8			
C-10 ↔ C-39. 1.309 Å			Π-24 ↔ C-20.2.981 A	
H-11 ↔ C-30 2.134 Å	C-29 ↔ C-36 2.452 A			
	C-29 ↔ C-36 : 2.452 Å C-29 ↔ C-38 : 1.427 Å	C-8 ↔ H-9 : 1.092 Å	H-24 ↔ H-40 : 2.567 A	
$H_{-11} = C_{-22} \cdot 1.001 \text{ Å}$	C-29 \leftrightarrow C-36 : 2.452 Å C-29 \leftrightarrow C-38 : 1.427 Å C-29 \leftarrow C-20 : 2.455 Å	$C-8 \leftrightarrow H-9: 1.092 \text{ Å}$ $C-8 \leftarrow C-12: 1.511 \text{ Å}$	$H-24 \leftrightarrow H-40: 2.567 \text{ A}$	
H-11 ↔ C-32 : 1.081 Å	$C-29 \Rightarrow C-36 : 2.452 \text{ Å}$ $C-29 \Rightarrow C-38 : 1.427 \text{ Å}$ $C-29 \Rightarrow C-39 : 2.455 \text{ Å}$	$C-8 \leftrightarrow H-9 : 1.092 Å$ $C-8 \leftrightarrow C-12 : 1.511 Å$	H-24 ↔ H-40 : 2.567 A C-25 ↔ C-26 : 1.459 Å	
H-11 ↔ C-32 : 1.081 Å H-11 ↔ H-33 : 2.472 Å	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C-8 \leftrightarrow H-9 : 1.092 Å$ $C-8 \leftrightarrow C-12 : 1.511 Å$ $C-8 \leftrightarrow C-13 : 2.517 Å$	H-24 ↔ H-40 : 2.567 A C-25 ↔ C-26 : 1.459 Å C-25 ↔ C-27 : 2.463 Å	
$H-11 \rightarrow C-32$: 1.081 Å $H-11 \rightarrow H-33$: 2.472 Å $H-11 \rightarrow C-24$: 2.166 Å	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcr} C-8 & \leftrightarrow & H-9: 1.092 \ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$H-24 \rightarrow H-40 : 2.567 \text{ A}$ $C-25 \rightarrow C-26 : 1.459 \text{ Å}$ $C-25 \rightarrow C-27 : 2.463 \text{ Å}$ $C-25 = H_228 : 2.600 \text{ Å}$	
H-11 ↔ C-32 : 1.081 Å H-11 ↔ H-33 : 2.472 Å H-11 ↔ C-34 : 2.166 Å	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
H-11 ↔ C-32 : 1.081 Å H-11 ↔ H-33 : 2.472 Å H-11 ↔ C-34 : 2.166 Å H-11 ↔ H-42 : 2.483 Å	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rcl} C-8 & \leftrightarrow & H-9: \ 1.092 \ \text{\AA} \\ C-8 & \leftrightarrow & C-12: \ 1.511 \ \text{\AA} \\ C-8 & \leftrightarrow & C-13: \ 2.517 \ \text{\AA} \\ C-8 & \leftrightarrow & H-16: \ 2.727 \ \text{\AA} \\ C-8 & \leftrightarrow & H-19: \ 2.717 \ \text{\AA} \\ \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-8 ↔ H-9: 1.092 Å C-8 ↔ C-12: 1.511 Å C-8 ↔ C-13: 2.517 Å C-8 ↔ H-16: 2.727 Å C-8 ↔ H-19: 2.717 Å C-8 ↔ C-20: 2.524 Å	H-24 → $H-40: 2.567 AC-25 ↔ C-26: 1.459 ÅC-25 ↔ C-27: 2.463 ÅC-25 ↔ H-28: 2.699 ÅC-25 ↔ H-40: 2.687 ÅC-26 ↔ C-27: 1.292 Å$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcrcr} C-8 &\leftrightarrow & H-9: 1.092 \ \begin{tabular}{ll} \hline C-8 &\leftrightarrow & C-12: 1.511 \ \begin{tabular}{ll} A \\ C-8 &\leftrightarrow & C-13: 2.517 \ \ \begin{tabular}{ll} A \\ C-8 &\leftrightarrow & H-16: 2.727 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-8 → H-9: 1.092 Å C-8 → C-12: 1.511 Å C-8 → C-13: 2.517 Å C-8 → H-16: 2.727 Å C-8 → H-19: 2.717 Å C-8 → C-20: 2.524 Å C-8 → C-22: 1.547 Å	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$\begin{array}{rcrcr} H-11 & \leftrightarrow & C-32 & : \ 1.081 \ \mbox{\mathring{A}} \\ H-11 & \leftrightarrow & H-33 & : \ 2.472 \ \mbox{\mathring{A}} \\ H-11 & \leftrightarrow & C-34 & : \ 2.166 \ \ \mbox{\mathring{A}} \\ H-11 & \leftrightarrow & H-42 & : \ 2.483 \ \ \mbox{\mathring{A}} \\ C-12 & \leftrightarrow & C-13 & : \ 1.398 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C-8 \leftrightarrow H-9: 1.092 Å C-8 \leftrightarrow C-12: 1.511 Å C-8 \leftrightarrow C-13: 2.517 Å C-8 \leftrightarrow H-16: 2.727 Å C-8 \leftrightarrow H-19: 2.717 Å C-8 \leftrightarrow C-20: 2.524 Å C-8 \leftrightarrow C-22: 1.547 Å C-8 \leftrightarrow C-22: 1.547 Å	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	

Au-1 ↔ S-2 : 2.322 Å	N-6 ↔ H-41 : 1.013 Å	C-11 ↔ C-16 : 2.771 Å	C-16 ↔ C-19 : 2.395 Å
Au-1 ↔ Cl-24 : 2.275 A	N-6 ↔ H-43 : 1.011 A	C-11 ↔ C-17 : 2.423 A	C-16 \leftrightarrow H-46 : 2.145 Å
Au-1 ↔ H-41 : 2.581 Å	N-7 ↔ N-8 : 1.404 Å	C-11 ↔ C-19 : 1.399 Å	C-16 ↔ H-48 : 2.145 Å
S-2 ↔ C-5 : 1.752 Å	N-7 ↔ C-9 : 1.475 Å	C-11 ↔ H-21 : 2.635 Å	C-17 ↔ C-19 : 1.394 Å
S-2 ↔ N-6 : 2.733 Å	N-7 ↔ H-10 : 2.585 Å	C-11 ↔ H-44 : 2.145 Å	C-17 ↔ H-46 : 1.080 Å
S-2 ↔ N-7 : 2.669 Å	N-7 ↔ C-11 : 2.473 Å	C-11 ↔ H-51 : 2.151 Å	C-18 ↔ C-20 : 1.432 Å
S-2 ↔ H-41 : 2.863 Å	N-7 ↔ C-15 : 2.316 Å	C-12 ↔ C-14 : 1.394 Å	C-18 ↔ C-25 : 2.797 Å
S-2 ↔ H-44 : 2.868 Å	N-7 ↔ C-19 : 2.889 Å	C-12 ↔ C-16 : 2.393 Å	C-18 ↔ C-27 : 2.454 Å
C-3 ↔ C-13 : 1.403 Å	N-7 ↔ H-22 : 2.875 Å	C-12 ↔ C-17 : 2.793 Å	C-18 ↔ C-29 : 1.432 Å
C-3 ↔ C-18 : 1.424 Å	N-7 ↔ C-23 : 2.201 Å	C-12 ↔ C-19 : 2.416 Å	C-18 ↔ C-31 : 2.455 Å
C-3 ↔ C-20 : 2.460 Å	N-7 ↔ H-43 : 2.475 Å	C-12 ↔ H-44 : 2.625 Å	C-18 ↔ C-34 : 2.823 Å
C-3 ↔ C-25 : 2.419 Å	N-7 ↔ H-44 : 2.106 Å	C-12 ↔ H-48 : 2.161 Å	C-18 ↔ C-36 : 2.476 Å
C-3 ↔ C-27 : 2.839 Å	N-8 ↔ C-9 : 2.390 Å	C-12 ↔ H-51 : 1.083 Å	C-18 ↔ C-45 : 2.479 Å
C-3 ↔ H-28 : 2.150 Å	N-8 ↔ H-10 : 2.669 Å	C-13 ↔ C-18 : 2.436 Å	C-18 ↔ C-47 : 2.845 Å
C-3 ↔ C-29 : 2.481 Å	N-8 ↔ C-15 : 2.338 Å	C-13 ↔ C-25 : 1.382 Å	C-18 ↔ C-49 : 2.474 Å
C-3 ↔ H-30 : 2.168 Å	N-8 ↔ H-22 : 2.939 Å	C-13 ↔ H-26 : 2.139 Å	C-19 ↔ H-46 : 2.160 Å
C-3 ↔ C-45 : 2.842 Å	N-8 ↔ C-23 : 1.305 Å	C-13 ↔ C-27 : 2.439 Å	C-20 ↔ C-29 : 2.486 Å
C-3 ↔ C-47 : 2.436 Å	N-8 ↔ C-25 : 2.784 Å	C-13 ↔ H-28 : 1.083 Å	C-20 ↔ C-31 : 2.821 Å
C-3 ↔ C-49 : 1.438 Å	N-8 ↔ H-26 : 2.413 Å	C-13 ↔ C-29 : 2.833 Å	C-20 ↔ C-34 : 2.451 Å
Cl-4 ↔ C-14 : 2.753 Å	N-8 ↔ C-27 : 2.401 Å	C-13 ↔ H-30 : 2.688 Å	C-20 ↔ C-36 : 1.422 Å
Cl-4 ↔ C-16 : 1.798 Å	N-8 ↔ H-43 : 2.268 Å	C-13 ↔ C-49 : 2.478 Å	C-20 ↔ C-38 : 2.443 Å
Cl-4 ↔ C-17 : 2.754 Å	C-9 ↔ H-10 : 2.740 Å	C-14 ↔ C-16 : 1.388 Å	C-20 ↔ C-40 : 2.817 Å
Cl-4 ↔ H-46 : 2.874 Å	C-9 ↔ C-11 : 1.513 Å	C-14 ↔ C-17 : 2.428 Å	C-20 ↔ C-42 : 2.441 Å
Cl-4 ↔ H-48 : 2.875 Å	C-9 ↔ C-12 : 2.517 Å	C-14 ↔ C-19 : 2.796 Å	C-20 ↔ C-45 : 1.425 Å
C-5 ↔ N-6 : 1.334 Å	C-9 ↔ C-15 : 1.546 Å	C-14 ↔ H-48 : 1.080 Å	C-20 ↔ C-47 : 2.467 Å
C-5 ↔ N-7 : 1.347 Å	C-9 ↔ C-19 : 2.532 Å	C-14 ↔ H-51 : 2.147 Å	C-20 ↔ C-49 : 2.827 Å
C-5 ↔ N-8 : 2.382 Å	C-9 ↔ H-21 : 2.204 Å	C-15 ↔ H-21 : 1.089 Å	H-21 ↔ H-22 : 1.771 Å
C-5 ↔ C-9 : 2.531 Å	C-9 ↔ H-22 : 2.173 Å	C-15 ↔ H-22 : 1.092 Å	H-21 ↔ C-23 : 2.186 Å
C-5 ↔ H-41 : 2.027 Å	C-9 ↔ C-23 : 2.396 Å	C-15 ↔ C-23 : 1.519 Å	H-21 ↔ C-27 : 2.941 Å
C-5 ↔ H-43 : 2.033 Å	C-9 ↔ H-44 : 1.089 Å	C-15 ↔ C-27 : 2.691 Å	H-21 ↔ C-31 : 2.980 Å
C-5 ↔ H-44 : 2.802 Å	C-9 ↔ H-51 : 2.711 Å	C-15 ↔ H-44 : 2.196 Å	H-21 ↔ H-44 : 2.840 Å
N-6 ↔ N-7 : 2.292 Å	H-10 ↔ C-11 : 2.156 Å	C-15 ↔ H-50 : 2.423 Å	H-21 ↔ H-50 : 2.424 Å
N-6 ↔ N-8 : 2.665 Å	H-10 ↔ C-17 : 2.146 Å	C-16 ↔ C-17 : 1.389 Å	H-22 ↔ C-23 : 2.156 Å

H-10 ↔ C-19 : 1.083 Å	C-11 ↔ C-12 : 1.397 Å	H-22 ↔ C-31 : 2.929 Å	C-23 ↔ C-25 : 2.442 Å
H-10 ↔ C-23 : 2.989 Å	C-11 ↔ C-14 : 2.424 Å	H-22 ↔ H-44 : 2.341 Å	C-23 ↔ H-26 : 2.590 Å
H-10 ↔ H-46 : 2.486 Å	C-11 ↔ C-15 : 2.560 Å	H-22 ↔ H-50 : 1.971 Å	C-23 ↔ C-27 : 1.469 Å