Desenvolvimento de Sistema Web para Agendamento de

Espacos Fisicos do HUMAP /UFMS

FACOM

Faculdade de Computacao

Universidade Federal de Mato Grosso do Sul
CJ

Autor: Wellington Evangelista Idino

Orientadora: Profa. Dra. Liana Dessandre Duenha Garanhani

Trabalho de Conclusdo de Curso.

04 de dezembro de 2025

Sumario

[Lista de Figuras| iii
|[Lista de Abreviaturas e Siglas| iv
(1 Introducao| 1
(1.1 Objetivos| 2
(1.1.1 Objetivos Especificos| 2

(L2 Justificatival 3
(1.3 Organizacao do Trabalhof. 3

B Ref 2l Tedricol 4
2.1 Engenharia de software e Metodologias de Desenvolvimento, 4
[2.2 Arquitetura de Sistemas Web| 5
[2.3 Containerizacao e Infraestrutural. 5
[2.4 Seguranca em Sistemas Web|00)
2.5 Testes e Validacao de software| 6

[3 Metodologial 8
B.1 Processo de Desenvolvimentol 8
(3.2 Validacao e Testes| 9
[3.3 Planejamento e Arquitetura da Solucao| 10
[3.4 Descricao Técnica da Arquitetural 10
[3.4.1 Principais Modulos do Frontend| 12

5 Consideracoes Finais|

[b.1 Contribuicoes

(5.2 Limitacoes e Trabalhos Futuros|

[>.3 Consideracoes Finaig

[6 Referéncias Bibliograficas|

A Documentacao do Sistema|

11

16
16
17
17
18

18

28
28
28

29

30

32

Lista de Figuras

[3.1 Arquitetura Geral do Sistema HUBook| 11
13.2 Diagrama Entidade-Relacionamento (DER) Conceitual 14
(4.1 Pagina Inicial do Sistema HUBook{ 20
4.2 Fluxo de Criacao e Aprovacao de Reserval. 21
(4.3 Pagina de Login|. 22
4.4 Pagina de Registro de Usuario| 22
4.5 Pagina de Perfil do Usuario] 23
4.6 Pagina do Calendario de Reservas| 23
4.7 Pagina do Formulario de Criacao de Reserval 24
4.8 Pagina Minhas Solicitacoes|o 25
4.9 Diagrama de Entidades-Relacionamentos Fisicol 26
[4.10 Pagina do Painel Administrativo - Gerenciamento de Reservas| 27

[4.11 Pagina do Painel Administrativo - Gerenciamento de dalas| 27

111

Lista de Abreviaturas e Siglas

API
CPF
CRUD
CSRF
DER
HTTP
HUMAP
MVC
MySQL
Nginx
PHP
PHP-FPM
PWA
REST
SPA
SQL

TI
UFMS
XP

XSS

Application Programming Interface (Interface de Programacao de Aplicagoes)
Cadastro de Pessoa Fisica

Create, Read, Update, Delete (Criar, Ler, Atualizar, Deletar)

Cross-Site Request Forgery (Falsificacao de Solicitagao Entre Sites)

Diagrama Entidade-Relacionamento

Hypertext Transfer Protocol (Protocolo de Transferéncia de Hipertexto)
Hospital Universitario Maria Aparecida Pedrossian

Model-View-Controller (Modelo-Visualiza¢ao-Controlador)

My Structured Query Language (Linguagem de Consulta Estruturada)
Engine X (Servidor web de codigo aberto)

PHP: Hypertext Preprocessor

PHP FastCGI Process Manager (Gerenciador de Processos FastCGI do PHP)
Progressive Web App (Aplicativo Web Progressivo)

Representational State Transfer (Transferéncia de Estado Representacional)
Single Page Application (Aplicacao de Pagina Unica)

Structured Query Language (Linguagem de Consulta Estruturada)
Tecnologia da Informacgao

Universidade Federal de Mato Grosso do Sul

Eztreme Programming (Programagao Extrema)

Cross-Site Scripting (Script Entre Sites)

v

Capitulo 1

Introducao

O Hospital Universitario Maria Aparecida Pedrossian (HUMAP) /Universidade Federal
de Mato Grosso do Sul (UFMS) desempenha papel fundamental na integrac¢ao entre ensino,
pesquisa e assisténcia & saide. Em sua estrutura, diversos espacos fisicos, como salas de
reuniao, auditérios e laboratorios, sao frequentemente utilizados para atividades académi-
cas, administrativas e de extensao. No entanto, o processo de agendamento desses espagos
é realizado de forma descentralizada, através de diferentes canais de comunicacao, incluindo
e-mail, WhatsApp, formulérios online e calendarios compartilhados, gerando sobrecarga ad-
ministrativa, conflitos de horérios e transparéncia de disponibilidade.

A auséncia de um sistema informatizado e centralizado para o gerenciamento de reser-
vas de espagos fisicos do HUMAP /UFMS resulta em limitagoes que impactam diretamente
a eficiéncia operacional do hospital, a satisfacao dos usuarios e a capacidade de gestao es-
tratégica dos recursos fisicos disponiveis. Dentre as limitagoes, pode-se citar as principais:

e Conflitos de agenda: Reservas para o mesmo espago no mesmo horario, identificadas
posteriormente;

e Retrabalho administrativo: Gerenciamento de solicitagbes através de multiplos
canais, aumentando carga de trabalho e possibilidade de erros;

e Falta de transparéncia: Auséncia de visibilidade clara sobre disponibilidade dos
espagos e status das solicitagoes;

e Dificuldade de acompanhamento: Auséncia de histérico centralizado dificulta ané-
lise de utilizagao e planejamento;

¢ Responsabilizagao pelo uso: Auséncia de co-responsabilizacao pelo uso dos espagos,
gerando dificuldades de gestao adequada do patrimoénio publico; e

e Falta de padronizagao: Diferentes setores utilizam processos distintos, dificultando
uniformizacao e acompanhamento.

Diante desse contexto, tornou-se necessario desenvolver uma solucao tecnoloégica para
centralizar, padronizar e democratizar o processo de reserva de espacos fisicos do HU-

MAP/UFMS. A demanda por esse sistema foi apresentada pela equipe de Gestao do HU-
MAP /UFMS, e seu desenvolvimento ocorreu no contexto do Programa de Inicia¢ao Tecno-
logica, fomentado pelos editais N2 08/2022 e N 08/2024 HUMAP /UFMS.

1.1 Objetivos

O objetivo central do projeto é desenvolver um sistema web para o agendamento de es-

pagos fisicos do HUMAP /UFMS, denominado HUBook, que permita a solicitagao, aprovagao
e acompanhamento de reservas de forma padronizada, eficiente e transparente.

1.1.1 Objetivos Especificos

Com base nos requisitos funcionais e nao funcionais, os objetivos especificos deste

trabalho sao:

10.

Implementar sistema cadastro e autenticacao (login por e-mail ou Cadastro de Pessoa
Fisica (CPF), recuperacao de senha);

Desenvolver médulo de gerenciamento de espagos fisicos (setores, tipos de salas e salas);

Implementar sistema de solicitacao de reservas com validacao automatica de capacidade
e verificagao de conflitos de horario;

Desenvolver painel administrativo para analise, aprovacao e rejeicao de solicitacoes;
Implementar interface para visualizacao de calendério publico e privado com filtros;
Desenvolver area de acompanhamento pessoal de reservas (edigao e cancelamento);
Garantir usabilidade através de interface responsiva e intuitiva;

Implementar arquitetura desacoplada e containerizada, facilitando implantacao e ma-
nutencao;

Documentar o sistema através de documentacao técnica, casos de uso e modelagem; e

Realizar testes automatizados e testes exploratérios, complementados por demonstra-
¢oes para coleta de feedback.

A implantacao do sistema nao fez parte dos objetivos, visto que depende da autoriza-

¢ao da gestao do hospital e da disponibilidade da equipe de Tecnologia da Informacao do
HUMAP /UFMS, que devera dar acompanhamento e manutengao no sistema a partir da sua
implantacao e uso.

1.2 Justificativa

A implementacao de um sistema centralizado de reservas traz impactos significativos
para o HUMAP /UFMS em diferentes frentes:

e Operacionais: Reducao da sobrecarga administrativa através da automatizacao de
validagoes e verificagoes; eliminacao de conflitos de horario por meio de verificagao
automaética de disponibilidade; padronizagao do processo de solicitacao e aprovagao
em todos os setores; e reducao do retrabalho causado pela fragmentacao de canais de
comunicacao;

e Ensino: Facilita o planejamento e execucao de atividades académicas, permitindo que
docentes, servidores técnicos, residentes e discentes visualizem a disponibilidade de
espagos de forma transparente e realizem reservas de maneira agil e confiavel;

e Pesquisa: Organiza e otimiza o agendamento de laboratérios e espagos destinados a
atividades de pesquisa, permitindo melhor aproveitamento desses recursos estratégicos;

e Gestao: Proporciona visibilidade completa sobre a utilizagao dos espacos fisicos atra-
vés de historico centralizado, possibilitando anélises sobre padroes de uso, identificacao
de espacos subutilizados ou sobrecarregados, controle e acompanhamento do bom uso
do patrimoénio piblico e embasamento para decisoes estratégicas sobre infraestrutura.

Além disso, o desenvolvimento deste sistema representa uma contribuicao pratica para
a modernizagao dos processos administrativos de reservas de espacos fisicos do hospital e
melhoria dos servicos prestados a comunidade.

1.3 Organizacao do Trabalho

Este trabalho esta organizado em cinco capitulos principais. O Capitulo [2| apresenta
o referencial tedrico sobre engenharia de software, metodologias ageis e arquitetura de sis-
temas web. O Capitulo [3| descreve a metodologia adotada no desenvolvimento. O Capitulo
apresenta os resultados obtidos, detalhando requisitos implementados e funcionalidades
desenvolvidas. O Capitulo [5| apresenta as consideracoes finais. Complementando o trabalho,
o apéndice [A] apresenta a documentacao detalhada de requisitos e o resumo de casos de
USOS.

Capitulo 2

Referencial Teoérico

Este capitulo retine os principais conceitos que fundamentam o desenvolvimento do
sistema de agendamento de espacos fisicos, o HUBook. Sao apresentados topicos relacionados
a engenharia de software, as metodologias utilizadas no processo de construgao da aplicagao
e aos elementos arquiteturais caracteristicos de sistemas web, além de aspectos de seguranga
e testes necessarios para garantir a qualidade de um sistema desse tipo.

2.1 Engenharia de software e Metodologias de Desen-
volvimento

A engenharia de software pode ser entendida como um conjunto de praticas, principios
e métodos que visam organizar e orientar o desenvolvimento de sistemas, de forma que o
produto final seja confiavel e adequado as necessidades dos usuarios [15]. Conforme discute
Sommerville [20], esse processo envolve etapas que comegam no levantamento das necessi-
dades e se estendem até a manutengao do software apds sua implantacao, contemplando
analise, projeto, codificagao, integracao e testes.

No levantamento de requisitos, costuma-se diferenciar dois tipos principais: os funcio-
nais, que descrevem o que o sistema deve realizar, e os nao funcionais, associados a qualidades
esperadas do produto, como desempenho, seguranga e facilidade de uso [15]. Uma técnica
amplamente adotada para representar comportamentos esperados do sistema sao os casos de
uso, que descrevem interacoes entre os usuarios e o software de forma estruturada.

Em relacao as metodologias de desenvolvimento, praticas dgeis ganharam espago por
favorecerem ciclos curtos de entrega, revisao continua e adaptagao rapida a mudancgas. O
Eztreme Programming (XP), por exemplo, enfatiza a comunicacdo com o cliente, refatoragoes
frequentes e validagao constante do codigo [I]. Para Sommerville [20], esse tipo de abordagem
reduz riscos, uma vez que funcionalidades vao sendo incorporadas gradualmente e podem
ser avaliadas a cada iteracao. Outro ponto importante é o uso de prototipos, que permite ao
usuario visualizar parte do sistema antes da implementacao definitiva e ajustar sua percepc¢ao
sobre a solugao desejada [15].

2.2 Arquitetura de Sistemas Web

Grande parte das aplicacoes atuais utiliza a arquitetura cliente-servidor, na qual o
navegador (cliente) é responsavel pela interface e pela intera¢ao com o usuario, enquanto o
servidor concentra a logica de negocio e o acesso ao banco de dados [15]. Essa separacao
facilita a manutencao, torna a aplicagao mais escalédvel e permite que diferentes equipes
trabalhem paralelamente.

Entre os padroes arquiteturais mais conhecidos esta o Model-View—Controller (MVC)
[8], presente em diversos frameworks modernos. No MVC, a logica de negocio fica organizada
no modelo, enquanto a visualizagao e a interagao com o usuario sao tratadas por componentes
de interface; o controlador faz a mediacdo entre esses dois elementos [20]. O framework
Laravel, utilizado no backend do HUBook, segue esse padrao [§].

Outro conceito amplamente difundido sao as Application Programming Interfaces
(API) Representational State Transfer (REST), que estabelecem uma forma padronizada
de troca de informacoes entre sistemas por meio do protocolo Hypertext Transfer Protocol
(HTTP). A adogao desse modelo permite que diferentes tecnologias consumam os mesmos
recursos, como aplicagoes web, aplicativos moveis ou outros sistemas corporativos. Em pa-
ralelo, é comum o uso de Single Page Applications (SPA), nas quais a maior parte da logica
de interface acontece no navegador, proporcionando transi¢oes mais rapidas e uma experi-
éncia mais fluida para o usuario. Tecnologias como React [16] e TypeScript [7] tém sido
amplamente utilizadas nesse contexto.

2.3 Containerizacao e Infraestrutura

A consolidagao de ferramentas como Docker favoreceu um novo modo de organizar
ambientes de desenvolvimento. Em vez de configurar manualmente servidores e dependén-
cias, é possivel empacotar aplicacoes e seus componentes em containers, que funcionam de
forma isolada e previsivel [3]. O uso do Docker Compose amplia essa vantagem ao permitir
que multiplos servigos (como servidor web, banco de dados e aplicagoes) sejam executados
conjuntamente, mantendo uma estrutura organizada e reprodutivel [4].

Esse tipo de abordagem reduz problemas comuns na implantacao de sistemas, como
divergéncias entre ambientes de desenvolvimento e producao. Além disso, facilita a escala-
bilidade, ja que servigos podem ser replicados de forma independente conforme a demanda.

2.4 Seguranca em Sistemas Web

A seguranca tem papel central em sistemas que tratam dados sensiveis, como infor-
macoes pessoais ou registros institucionais. No contexto web, dois mecanismos béasicos sao
frequentemente mencionados: autenticagao, que identifica o usuario, e autorizagao, que de-
fine o que cada pessoa pode fazer dentro do sistema [I5]. O Laravel Sanctum, adotado no
HUBook, prové um modelo simples de autenticacao baseada em sessoes ou tokens, voltado

tanto para aplicagdes monoliticas quanto para SPAs [9].

Aplicagoes web também estao sujeitas a diferentes tipos de ataques, como Structured
Query Language (SQL) Injection, Cross-Site Scripting (XSS) e Cross-Site Request Forgery
(CSRF). A prevencao desses problemas normalmente envolve validagao rigorosa de dados de
entrada, sanitizacao, uso de prepared statements e mecanismos automaticos oferecidos pelo
framework [20]. Da mesma forma, boas praticas como criptografia de senhas, tratamento
adequado de erros e ocultagao de informagoes sensiveis contribuem para reduzir riscos.

2.5 Testes e Validacao de software

A atividade de teste é um dos pilares fundamentais para assegurar a qualidade de
um sistema. Na literatura cléassica [I1], destaca que o objetivo principal dos testes nao é
demonstrar que o software funciona corretamente, mas revelar comportamentos incorretos
e situacoes que possam comprometer sua confiabilidade. De modo geral, o processo de
teste verifica se o software atende as expectativas expressas nos requisitos e se apresenta
comportamento consistente em diferentes cenarios.

Segundo Sommerville [20], os testes podem ser organizados em diferentes niveis, cada
um com foco especifico. Os testes unitdrios concentram-se na menor parte testéavel do
sistema, como fungoes, métodos ou componentes isolados, permitindo identificar falhas lo-
calizadas e facilitando a depuracao. Em seguida, os testes de integracao avaliam como
modulos ou servigos distintos interagem entre si, garantindo que o comportamento esperado
seja mantido quando componentes passam a trabalhar em conjunto.

Pressman [I5] complementa que testes funcionais, também chamados de testes de
catxa-preta, avaliam o software a partir da perspectiva do usuéario, verificando se as entradas
fornecidas produzem as saidas esperadas, sem considerar a estrutura interna do c6digo. Nesse
tipo de teste, o foco estd na verificagao do comportamento externo da aplicagao, o que é
particularmente relevante em sistemas baseados em interface grafica ou servicos acessados
por miultiplos perfis de usuario.

Outro nivel frequentemente mencionado é o teste de aceitacao, voltado a validacao
final do sistema pelo cliente ou pelos usuérios reais. Myers. [11] definem esse teste como a
etapa na qual o software é avaliado em relacao aos requisitos de negocio, verificando se a
solucao desenvolvida atende as necessidades operacionais do ambiente ao qual se destina. Di-
ferentemente dos testes técnicos, o teste de aceitagao considera o ponto de vista institucional,
incluindo fluxo de trabalho, aderéncia ao processo e adequacao as rotinas de uso.

Ferramentas de automagao, como o PHPUnit [2], tém se mostrado fundamentais para
ampliar a confiabilidade do processo de verificacao. A automacgao permite a repeticao sis-
tematica de testes e facilita a detecgao precoce de regressoes durante a evolugao do codigo.
Em arquiteturas que utilizam APIs, os testes de integracao assumem papel ainda mais rele-
vante, pois garantem a coeréncia das regras de negocio e a estabilidade das interfaces entre
componentes |20, [15].

De forma geral, a validagao de software representa o conjunto de atividades voltadas

a confirmar que o sistema final esta alinhado aos requisitos inicialmente especificados, en-
quanto os testes verificam o comportamento técnico de suas partes. A combinacao desses
mecanismos contribui para a construcao de aplicagoes mais seguras, estéveis e adequadas ao
contexto de uso.

Capitulo 3

Metodologia

Este capitulo descreve a metodologia adotada no desenvolvimento do HUBook, abran-
gendo o planejamento arquitetural, o processo de desenvolvimento e os procedimentos de
teste e validacao aplicados ao sistema.

A demanda do software foi apresentada pela equipe de Gestao do HUMAP /UFMS e
foi desenvolvida no contexto do Programa de Iniciacao Tecnoldgica, proposto e fomentado
pelos editais N208/2022 e N908/2024 HUMAP /UFMS.

O trabalho caracteriza-se como pesquisa aplicada, de natureza tecnolégica, orientada
a criacao de um artefato de software capaz de solucionar um problema real de gestao de
espagos fisicos institucional [I5]. A proposta visa nao apenas demonstrar a viabilidade
técnica do sistema, mas também oferecer uma solugao pratica ao fluxo de agendamentos
do HUMAP/UFMS, integrando conceitos fundamentais da Engenharia de Software com
necessidades operacionais da instituicao.

3.1 Processo de Desenvolvimento

O desenvolvimento foi conduzido através de uma abordagem iterativa e incremental
baseada nos principios do Eztreme Programming (XP) [1]. Diferente de modelos lineares ri-
gidos, o processo adotado caracterizou-se pela flexibilidade e pela retroalimentagao constante:
o avanco entre as fases de concepcao, design e codificagao nao foi unidirecional, permitindo
o retorno a etapas anteriores para refinamentos, corre¢oes ou expansao de requisitos sempre
que a validacao pratica indicava essa necessidade.

O ciclo de vida do projeto evoluiu através da interdependéncia entre as seguintes ati-
vidades:

Levantamento e Evolucao dos Requisitos. A identificagdo do problema da des-
centralizagao dos agendamentos marcou o inicio do projeto, mas a definicao dos requisitos
manteve-se dinamica. Embora as reunioes iniciais com a Unidade de Gestao de graduacao,
Ensino Técnico e Extensao e o setor de Tecnologia da Informagao (TI) tenham estabelecido
a base funcional, o escopo foi revisitado diversas vezes. A medida que o desenvolvimento

avangava e novas nuances operacionais surgiam, a equipe retornava a etapa de analise para
redefinir regras de negocio, garantindo que o software permanecesse alinhado as necessidades
reais.

Validacao por Prototipagem. A prototipagem nao serviu apenas como etapa de
design, mas como ferramenta de validacao de fluxo. A apresentagao de modelos de baixa
fidelidade aos setores envolvidos permitiu antecipar gargalos logicos antes da escrita do
codigo. Os feedbacks recebidos nesta fase frequentemente exigiram o retorno a defini¢ao
dos requisitos para ajustes no fluxo de aprovagao, demonstrando como a validagao visual
precoce evitou o retrabalho técnico posterior.

Construgao Incremental e Adaptagao Técnica. A implementacao do sistema
(envolvendo frontend em React e backend em Laravel) ocorreu em ciclos de construgao e
adaptagao. Um exemplo claro dessa nao-linearidade foi o tratamento da autenticagao: ao
identificar a inviabilidade técnica da integracao institucional durante a fase de codificagao, foi
necessario retroceder ao planejamento da arquitetura. Esse movimento permitiu incorporar
um novo modulo de gestao de identidade (Laravel Sanctum [9]), ajustando o escopo técnico
sem comprometer a continuidade do projeto.

Integracao e Refinamento Recorrente. A unificacao entre interface e logica de
banco de dados nao representou o fim do desenvolvimento, mas um novo ciclo de refina-
mento. A visualizagao do sistema integrado revelou necessidades de usabilidade que nao
eram perceptiveis nas etapas isoladas. Isso demandou o retorno a camada de frontend para
a implementacao de melhorias, como filtros de pesquisa mais robustos e ajustes visuais no
painel administrativo.

3.2 Validacao e Testes

Os testes foram realizados no ambiente local de desenvolvimento e concentraram-se na
verificagao interna do sistema, uma vez que o HUMAP /UFMS nao disponibilizou ambiente
oficial de homologacao para execucao de testes por usuarios finais. Assim, a validacao
envolveu testes automatizados e testes exploratorios conduzidos pelo desenvolvedor.

Testes Unitarios. Utilizando PHPUnit [2], foram implementados testes destinados
a verificar partes isoladas do sistema, especialmente trechos de logica sensivel, validacoes
internas e comportamentos de componentes especificos.

Testes de Integracao. Também com PHP Unit, foram elaborados testes de integragao
para verificar o funcionamento conjunto entre rotas, controladores, modelos e banco de dados.
Esses testes contemplaram fluxos completos, incluindo autenticacao, criacao e alteracao de
reservas, regras de conflito e permissoes de acesso.

Testes de Caixa-Preta (Exploratérios). Complementando os testes automatiza-
dos, foram realizados testes exploratorios na interface do sistema, avaliando o comportamento
do software sem considerar sua estrutura interna. Esses testes permitiram identificar falhas
de navegacao, validagoes incorretas e inconsisténcias visuais, que foram ajustadas em ciclos
curtos de corregao.

Demonstracoes para Coleta de Feedback. Como forma de validar informalmente
os fluxos principais, foram realizadas demonstracoes do sistema para os setores envolvidos
no processo de agendamento. Embora essas interagoes nao configurem testes de aceitacao
formais, permitiram identificar melhorias e ajustes que contribuiram para o refinamento da
aplicagao.

Quanto a documentagao formal dos testes, optou-se por uma abordagem prética. As
verificagoes realizadas tiveram como base direta os Requisitos Funcionais e os Casos de Uso
definidos no projeto.

A combinacg@o desses procedimentos permitiu assegurar o funcionamento interno do
sistema e sua aderéncia aos requisitos definidos, mesmo diante da auséncia de um ambiente
institucional de homologacao.

3.3 Planejamento e Arquitetura da Solugao

A definicao da arquitetura buscou alinhar as decisoes técnicas com as diretrizes do
setor de Tecnologia da Informagao do HUMAP /UFMS, priorizando tecnologias ja utilizadas
ou suportadas pela instituigao. No backend, adotou-se o framework Laravel [8], baseado em
PHP: Hypertext Preprocessor [14], por sua aderéncia ao padrao MVC, robustez e mecanismos
nativos de seguranca. Para o frontend, optou-se pela biblioteca React [16], permitindo a
construgao de uma interface desacoplada (client-side) e com maior flexibilidade de evolugao.

A aplicacao foi estruturada em uma arquitetura desacoplada, na qual o frontend e
o backend comunicam-se exclusivamente por meio de Application Programming Interface
(API) Representational State Transfer (REST). Para garantir consisténcia entre ambientes
de desenvolvimento e futura implantagao, utilizou-se Docker [3] e Docker Compose [4] como
padrao de orquestracao.

O controle de versao foi realizado com Git [22], utilizando repositorio privado no GitHub
[6], o que permitiu registro continuo das evolugoes, organizacao das etapas e rastreabilidade
das modificagoes do projeto.

A Figura[3.I]representa a arquitetura geral do sistema HUBook, destacando a separagao
entre o frontend desenvolvido em React, o backend baseado na API REST construida com
Laravel e o banco de dados.

3.4 Descricao Técnica da Arquitetura

O sistema HUBook foi desenvolvido seguindo uma arquitetura desacoplada cliente-
servidor, onde o frontend (aplicacdo React) e o backend (API Laravel) sdo desenvolvidos e
implantados de forma independente, comunicando-se através de uma API REST.

A arquitetura é composta pelos seguintes componentes principais:

10

Figura 3.1: Arquitetura Geral do Sistema HUBook

Browser / Cliente Web

Requisigoes
HTTP/HTTPS

Ambiente Docker Compose

Servidor Web
Nginx (reverse Proxy)
Porta 80/443

Requisi¢des de Pagina

‘ Requisi¢des de Dados

(Rota /*) (Rota /api/*)
Rede Isolada Docker
Fontend Container Backend Container
React 18 + Node.js laravel 12 + PHP 8.3
(Single Page Application) (API REST)
‘ Persisténcia de dados
(sQL)

Database Container
MySQL 8.0

e Frontend - Single Page Application (SPA) desenvolvida em React 18 [16] com Ty-
peScript [7], utilizando Vite [23] como build tool. A aplicagao roda em Node.js [12]
durante desenvolvimento e é servida através de Nginz [5] em produgao.

e Backend - API REST desenvolvida em Laravel 12 8| (PHP 8.3 [14]), seguindo pa-
drao MVC. O backend processa requisi¢oes através de PHP FastCGI Process Manager
(PHP-FPM) e comunica-se com o banco de dados My Structured Query Language

(MySQL) [13].

e Banco de Dados - MySQL 8.0 [13| armazena todos os dados persistentes do sistema,
incluindo usuarios, setores, salas, tipos de salas e reservas.

e Servidor Web - Nginz [5] atua como reverse proxy, direcionando requisi¢bes para o
frontend ou backend conforme o caminho da URL.

e Containerizagao - Todo o ambiente é executado em containers Docker [3|, orques-
trados através de Docker Compose [4].

11

A comunicacao entre frontend e backend é realizada através de requisicoes Hypertext
Transfer Protocol (HTTP), com autentica¢ao baseada em sessao utilizando Laravel Sanctum
[9]. O frontend obtém um cookie Cross-Site Request Forgery (CSRF) antes de realizar
requisicoes autenticadas, garantindo protecao contra ataques CSREF.

3.4.1 Principais Mdédulos do Frontend

O frontend React [10] é organizado em componentes, paginas, hooks e servigos, os quais
sao descritos a seguir:

e Autenticagao: O AuthContext gerencia estado global de autenticagao, fornecendo
fungoes de login, logout, registro e atualizacao de perfil. Verifica automaticamente
autenticacao ao carregar a aplicagao através da rota /api/auth/me.

e Comunicagao com API: O servico apiService centraliza todas as requisigoes HTTP
para o backend, incluindo obtencao de cookie CSRF, tratamento de erros e formatacao
de requisi¢oes. Hooks customizados (useSectors, useRooms, useReservations, etc.)
encapsulam logica de busca e atualizacao de dados, utilizando TanStack Query [21]
para cache e sincronizacao.

e Componentes de Interface: Componentes reutilizaveis sao organizados por funci-
onalidade: componentes de formulério (reserva, perfil, login, registro); componentes
de exibigao (cards de reserva, lista de salas, calendario); componentes administrativos
(aprovacao de reservas, gerenciamento de salas); e componentes de Ul base (botdes,
inputs, dialogs, toasts) utilizando shaden/ui [19].

e Roteamento: React Router [I8] gerencia navegacao client-side, com rotas protegidas
que verificam autenticagao e permissoes de administrador antes de renderizar com-
ponentes. Rotas publicas (login, registro, visualizacio de salas) sdo acessiveis sem
autenticagao.

e Validagao de Formularios: React Hook Form [17] gerencia estado de formularios,
enquanto Zod [10] valida schemas TypeScript [7]. Valida¢ao ocorre tanto no frontend
(feedback imediato) quanto no backend (seguranca), garantindo consisténcia e segu-
ranga dos dados.

3.4.2 Principais M6dulos do Backend

O backend Laravel é organizado seguindo o padrao MVC, com os seguintes modulos
principais.

e Autenticagao: O médulo de autenticagao utiliza Laravel Sanctum para gerenciamento
de sessdes. O AuthController implementa login (com suporte a e-mail ou CPF),
registro, logout, recuperacao de senha e atualizacao de perfil. A autenticacao é stateful,
utilizando sessoes do Laravel para requisi¢oes do frontend SPA.

12

e Gerenciamento de Usuéarios: O UserController gerencia operacoes Create, Read,
Update, Delete (CRUD) de usuarios, disponivel apenas para administradores. Imple-
menta soft delete, permitindo restauracao e exclusao permanente. Inclui filtros avan-
cados por tipo, vinculo, busca textual e visualizagao de usuarios deletados.

e Gerenciamento de Espacgos Fisicos: Trés controllers gerenciam os espagos fisicos:
SectorController gerencia setores (CRUD para administradores, listagem publica);
RoomTypeController gerencia tipos de salas (CRUD para administradores, listagem
publica); e RoomController gerencia salas (CRUD para administradores, listagem e
visualizagao publicas).

e Sistema de Reservas: O ReservationController é o nucleo do sistema, imple-
mentando criacao, listagem, visualizagao, edi¢cao, cancelamento, aprovacao e rejeicao
de reservas. Validagoes complexas sao implementadas em ReservationStoreRequest
e ReservationlUpdateRequest, incluindo verificagao de capacidade e conflitos de ho-
rario.

e Autorizagao: O sistema utiliza Policies do Laravel para controle de autorizagao:
ReservationPolicy controla visualizagao, edi¢do, cancelamento e aprovagao/rejei¢ao
de reservas; RoomPolicy controla operagoes em salas (apenas administradores podem
criar/editar/remover); SectorPolicy controla operagoes em setores (apenas adminis-
tradores); e UserPolicy controla operagdes em usuérios (apenas administradores).

e Validagao: Request Validators customizados validam dados de entrada para cada ope-
racao, incluindo regras especificas de negocio. Validagoes complexas, como verificagao
de conflitos de horério e capacidade, sao implementadas no método withValidator()
dos Form Requests.

e Resources: API Resources formatam respostas da API, garantindo que apenas dados
apropriados sejam retornados. PublicReservationResource oculta dados sensiveis
para visualizacao publica, enquanto ReservationResource retorna informagoes com-
pletas para usuérios autenticados.

3.4.3 Estrutura do Banco de Dados

O banco de dados do sistema é composto pelas seguintes entidades principais e seus
relacionamentos.

e Users (Usuarios): Armazena informagoes dos usuérios do sistema, incluindo nome,
e-mail, CPF (tnico), telefone, vinculo (estudante, professor, funcionéario-hu, outro),
tipo (usuario, admin) e senha (hash berypt). Implementa soft delete, permitindo res-
tauracao de usuarios deletados.

e Sectors (Setores): Representa setores do hospital aos quais as salas pertencem.
Possui nome e descrigao opcional.

e Rooms (Salas): Armazena informagoes das salas disponiveis para reserva, incluindo
nome, setor (relacionamento com Sectors), tipo (sala, auditorio, laboratorio, outro),

13

capacidade méxima, status (disponivel, reservado, manutengao), descri¢ao e recursos

(array JSON).

e Reservations (Reservas): Entidade central do sistema, armazena solicita¢oes de
reserva com informagoes sobre sala (relacionamento com Rooms), usuério solicitante
(relacionamento com Users), titulo, data/hora de inicio e término, proposito, ntimero
de participantes, status (pendente, aprovado, recusado, cancelado), observagoes, mo-
tivo de rejeigao (se aplicavel) e dados de terceiros (quando reserva é para terceiro).

e RoomTypes (Tipos de Salas): Tabela de referéncia para tipos de salas, permitindo
gerenciamento centralizado de tipos disponiveis.

Os relacionamentos entre entidades sao:

- Users — Reservations: Um usuario pode ter multiplas reservas (1:N).

- Sectors— Rooms: Um setor pode ter multiplas salas (1:N).

- Rooms— Reservations: Uma sala pode ter multiplas reservas (1:N).

- RoomTypes— Rooms: Um tipo de espago pode ser utilizado por multiplas salas

(1:N).

Figura 3.2: Diagrama Entidade-Relacionamento (DER) Conceitual

[(h)) (O,N)
users —————————— realiza Reservation

(O,N)

@ an

Fonte: Elaborada pelo autor (2025).

Conforme demonstra a Figura [3.2] o diagrama documenta as entidades, definindo os
relacionamentos e as cardinalidades minimas e maximas.

O banco de dados implementa indices para otimizacao de consultas frequentes: indice
composto em reservations(room_id, start_time, end_time) para verificacao eficiente
de conflitos de horério; indice em rooms (sector_id) para consultas por setor; constraints
de unicidade em users (email) e users (cpf); e foreign keys com cascade delete para
garantir integridade referencial.

14

3.4.4 Containerizagao e Infraestrutura

Todo o ambiente ¢ containerizado utilizando Docker Compose [4], criando uma rede iso-
lada onde todos os servigos comunicam-se através de nomes de servico. Volumes persistentes
garantem que dados do banco de dados nao sejam perdidos ao reiniciar containers.

A configuragao do Nginz [5] direciona requisi¢oes /api/* para o backend Laravel [§] e
todas as outras requisi¢bes para o frontend React [16], permitindo que o frontend gerencie
roteamento client-side enquanto o backend processa apenas requisi¢coes de API.

Essa arquitetura containerizada facilita desenvolvimento, testes, implantagao (deploy)
e manutenc¢ao, garantindo que o sistema seja portavel, escalavel e facil de configurar em
diferentes ambientes.

15

Capitulo 4

Resultados

Este capitulo apresenta os resultados obtidos com o desenvolvimento do sistema HU-
Book, destacando as funcionalidades implementadas, a consolidacao da arquitetura planejada
e o produto final entregue. Os resultados aqui expostos refletem a materializacao do con-
junto de requisitos levantados, das decisoes técnicas adotadas e das etapas de refinamento
realizadas durante o desenvolvimento.

4.1 Visao Geral do Sistema

O HUBook foi concluido como uma aplicacao web, responsiva e funcional, capaz de cen-
tralizar o processo de agendamento de espagos fisicos do HUMAP /UFMS. O sistema abrange
toda a cadeia de uso prevista: visitantes podem visualizar informagoes gerais, usuarios au-
tenticados realizam solicitagoes e acompanham suas reservas, e administradores gerenciam
setores, salas, usuarios e o fluxo completo de aprovacao.

A porta de entrada para a utilizagdo do sistema é apresentada na Figura .1 A
pagina inicial foi projetada para oferecer acesso rapido a navegacao, estatisticas de uso e
cards informativos com as principais salas disponiveis, facilitando a localizacao visual dos
recursos.

A arquitetura desacoplada planejada foi implementada integralmente: o frontend, de-
senvolvido em React [16], consome exclusivamente a Application Programming Interface
(API) construida com Laravel [§]. Essa separagao permitiu uma interface dindmica e fluida,
enquanto o backend concentra regras de negocio, seguranca e persisténcia de dados. O resul-
tado é um sistema escalavel, organizado e preparado para futuras integracoes institucionais.

Para compreender a dinamica de interacao entre os diferentes perfis de usuario e o
sistema, a Figura detalha o fluxo completo de criacao de reserva, mapeando desde a
solicitagao inicial feita pelo usuario até a etapa final de aprovacao ou rejeicao pelo adminis-
trador.

Ao longo do desenvolvimento, diversas demonstracoes foram realizadas aos setores
responsaveis pelo fluxo de reservas, o que permitiu coletar feedback continuo e ajustar a

16

experiéncia de uso, navegacao e organizacao visual da aplicacao. Esses ciclos contribuiram
para tornar o produto final mais aderente ao contexto hospitalar, que exige clareza, rapidez
e padronizagcao.

4.2 Mobdulo de Autenticacao e Gestao de Usuarios

A adaptagao necesséria no escopo, devido a impossibilidade de integrar com o sistema
de autenticacao institucional, resultou no desenvolvimento de um modulo proprio e completo
de gestao de identidades. Esse moédulo incorpora mecanismos essenciais para um ambiente
seguro e controlado.

A pagina de Login (Figura permite autenticacao por e-mail ou CPF, com valida-
¢oes automaticas e feedback imediato ao usuério. O fluxo de registro (Figura[d.4) implementa
validagoes de integridade, como verificagao matematica do CPF, formatagao automatica e
confirmacao de senha.

Além do registro e acesso, o sistema garante autonomia ao usuério através da pagina de
Perfil (Figura|4.5)). Nesta interface, é possivel realizar a atualiza¢ao de informagoes pessoais
e a alteracao de senha, mantendo os dados cadastrais sempre correntes.

Para administradores, foi disponibilizado um painel completo de gestao de usuarios,
incluindo funcionalidades de criar novos usudrios, edigdo e exclusao logica (soft delete),
garantindo que o historico do usuario seja preservado mesmo ap6s sua remogao operacional.
Esse recurso é essencial em ambientes institucionais, onde registros de acesso precisam ser
mantidos para auditoria.

4.3 Gerenciamento de Reservas e Interface de Calendéario

O moédulo de reservas representa o niicleo do HUBook e concentra as regras de negocio
mais importantes do projeto. A légica de prevencao de conflitos, implementada no backend,
foi cuidadosamente construida e testada para impedir sobreposi¢oes de horarios — problema
central identificado no levantamento de requisitos.

A interface de calendério (Figura permite visualizar reservas por setor, tipo de sala
e periodo, facilitando a interpretacao da ocupacao dos espagos. A visualizagao em formato
agenda, semanal e mensal contribui para atender diferentes perfis de uso. Todo o fluxo
foi pensado para oferecer clareza, especialmente considerando o ambiente hospitalar, onde
multiplas equipes compartilham espacos.

O formulario de criagao de reservas (Figura foi projetado para ser objetivo e intui-
tivo, permitindo que o usuario selecione facilmente o setor, o espaco desejado e o intervalo de
tempo. Além disso, o sistema permite que o usuério crie solicitagbes em nome de terceiros,
atendendo & necessidade identificada entre setores que realizam reservas para professores,
colaboradores ou visitantes.

17

Apos a criacao do pedido, o usuario dispoe de uma area dedicada para o acompanha-
mento pessoal, intitulada "Minhas Solicitagoes" (Figura [1.8). Esta tela organiza os pedidos
em abas por status e oferece funcionalidade de busca, permitindo um controle rapido sobre
o andamento das reservas.

O Diagrama Entidade—Relacionamento Fisico (Figura confirma que a estrutura do
banco foi implementada conforme planejado, suportando adequadamente relagoes complexas
entre setores, salas, tipos de espaco, usuarios e reservas. Essa modelagem foi essencial para
garantir consisténcia e evitar registros duplicados ou inconsistentes.

4.4 Painel Administrativo

O painel destinado ao administrador consolida todas as funcionalidades necessarias
para a gestao integral do sistema. A Figura apresenta a interface de gerenciamento
de reservas, onde é possivel visualizar solicitagoes pendentes, aprovar ou rejeitar pedidos,
registrar justificativas, cancelar reservas e consultar o historico completo.

Além do controle sobre os agendamentos, o administrador possui ferramentas para a
gestao da infraestrutura fisica cadastrada. A Figura demonstra o painel administrativo
para gerenciamento de salas, que permite a criacao, edi¢ao e remocgao de espacos fisicos
conforme a necessidade da instituicao.

Esse modulo foi projetado para reduzir o esforco manual do setor responsavel pelo
agendamento, permitindo que cada acao administrativa seja executada de forma rapida
e transparente. Como resultado, o fluxo antigo, descentralizado e suscetivel a falhas, foi
substituido por uma interface unificada e padronizada.

4.5 Entrega Técnica e Prontidao do Sistema

O sistema completo foi concluido em uma estrutura totalmente containerizada, utili-
zando Docker [3] e Docker Compose [4], permitindo que o ambiente seja reproduzido fiel-
mente pela equipe de Tecnologia da Informagao (TI) do HUMAP. Essa abordagem elimina
inconsisténcias entre o ambiente de desenvolvimento e o ambiente de producao, facilitando
significativamente a futura implantacao institucional.

Quanto aos testes realizados, os resultados confirmam a estabilidade da solugao:

e Testes unitarios asseguraram o comportamento correto de partes criticas do codigo.

e Testes de integracao validaram regras de negocio como prevencao de conflitos, con-
trole de permissoes e fluxo de autenticacao.

e Testes exploratorios permitiram identificar falhas de navegacao e inconsisténcias
visuais, posteriormente corrigidas.

18

Embora nao tenham sido conduzidos testes formais de aceitagao devido & indisponi-
bilidade de ambiente institucional de homologagao, as demonstracoes realizadas aos setores
envolvidos contribuiram para aprimorar fluxos e detalhes de funcionalidade durante o desen-
volvimento.

Assim, o artefato final nao consiste apenas no codigo-fonte, mas em um sistema com-
pleto, funcional e preparado para futura implantacdio no HUMAP /UFMS, atendendo aos
requisitos mapeados e oferecendo uma base solida para evolugoes futuras.

19

Figura 4.1: Pégina Inicial do Sistema HUBook

fJHUbook

Sistema de Reservas de Espacos

Gerencie e solicite reservas de salas, auditorios e laboratérios do
Hospital Universitario Maria Aparecida Pedrossian.

o9 2o s

Estatisticas do Sistema

B

12 Espacos

Bem-vindo de volta! R
Acesse o calenddrio para ver espagos disponiveis ou

gerencie suas solicitagdes. 3 Setores

Ativos

N
[Ver Calendario J

Sistema

Como funciona

Nosso sistema simplifica todo o processo de reserva de espacos, desde a
visualizagao da disponibilidade até o acompanhamento das aprovagoes.

B B

Visualize a Disponibilidade Solicite Reservas Acompanhe Aprovacoes
Consulte o calendario para verificar Faga solicitages de reserva informando Monitore o status das suas solicitagées e
quais espagos estao disponiveis nas o motivo, participantes e outras receba notificagdes sobre aprovagdes

datas desejadas. informagdes relevantes. ou recusas.

[Ver calendario > L Fazer solicitagao > (Ver minhas solicitagoes >

Espacos SSsxssasas
Vertodos >
Conhega alguns dos nossos espagos para reunides, eventos e

atividades.
sala Disponivel Laboratério Disponivel Auditério Disponivel
Sala de Reunides 101 Laboratério de Inovagao Auditério Principal
Setor: Administrativo Setor: Engenharia Setor: Eventos
2, Capacidade: 12 &2, Capacidade: 20 2\ Capacidade: 150
Projetor | Quadro branco | | Videoconferéncia Computadores | | Impressora 3D | Lousa digital Sistemadesom Palco lluminagao profissional

+1

@ Detalhes B3 Veragenda @ Detalhes B3 Ver agenda
® Detalhes B Ver agenda

Hospital Universitario Maria Aparecida Pedrossian
Universidade Federal de Mato Grosso do Sul

ki

EBSERH

© 2025 HUbook - Sistema de Reservas de Espagos. Todos os direitos reservados.

Fonte: Elaborada pelo autor (2025).

20

"(6g0g) 10Ime ojpd epeIOqR[Y 9O

opesnaay :wjy

O

OANOW JuBSU|

JERE]

bty .
a

apencidy s 3

El

z

ieniasay seacidy i

ws a

£l

wig
oljuca
ap no seibay

apou3 __nim "

@

8

OEN 3

z

g

(swepusd) x x seaiseq E
BAJBSEY JeAjeS oeN seiBay 1epieps 5
) aQ

=]

@ \ @
LONUOD s i
seabiay
o
= Q| c
2
enlesay

ogdeyo|os =8

coneaua) ered 3 B sauelaq E

g

|anesuodsay
op sopeq
Jayausald —

ity

wig

Jayouaald
Aty

E|ES 9D BAJDSAY AP 0553201d

RATIOSOY op orderordy o ordRLI)) op OXN[J g’ RINSL]

21

Figura 4.3: Pagina de Login

@ Inicio {3 Calendario () Minhas Solicitagoes & Meu Perfil Entrar

QJHUbook

Acesso ao Sistema

Entre com suas credenciais para acessar o sistema

E-mail ou CPF.

seu@email.com ou 123.456.789-00

Senha

Sua senha ®

Nao possui conta? Cadastre-se aqui

Esqueci minha senha

‘ EBSERH Hospital Unit itario Maria

Universidade Federal de Mato Grosso do Sul

© 2025 HUbook - Sistema de Reservas de Espacos. Todos os direitos reservados.

Fonte: Elaborada pelo autor (2025).

Figura 4.4: Pagina de Registro de Usuario

@ Inicio {3 Calendario (9 Minhas Solicitagoes & Meu Perfil Entrar

QJHUbook

Criar Conta

Crie sua conta para acessar o sistema

Nome Completo

Seu nome completo

E-mail

seu@email.com

CcPF

123.456.789-00

Telefone

(11) 98765-4321

Vinculo com o Hospital

Estudante v
Senha
Sua senha o

Criar Conta

Ja possul conta? Entre aqui

ﬁ EBSERH Hospital Universitario Maria Aparecid:

Universidade Federal de Mato Grosso do Sul

© 2025 HUbook - Sistema de Reservas de Espagos. Todos os direitos reservados.

Fonte: Elaborada pelo autor (2025).

22

HUbook

Navegacdo
@ Inicio

£ Calendario

Minhas Solcitacées.
& Meuperfil

8o Administragao

Configuragoes
§ Tipos de Salas
B Setores.

2 Ususrios

[Hubook

Navegacao
@ Inicio

B Calendario

© Minhas Solicitagoes
2 Meu Perfil

2o Administragao

Figura 4.5: Pagina de Perfil do Usuéario

Meu Perfil

Visualize e atualize suas informagdes pessoais

Informacdes Pessoais

Atualize seus dados cadastrais no sistema
Nome Completo
2, Administrador
Email
[admin@hospital.com.br
Telefone

< (1 99999-9999

Alterar Senha

Atualize sua senha de acesso ao sistema
Senha Atual

& Digite sua senha atual

Nova Senha

& Digite 2 nova serha ®

Alterar Senha

47 EBSERH

P

o}

Vineulo

& Funcionario HU

Confirmar Nova Senha

& Confirme a nova senfa

Hospital Universitario Maria Aparecida Pedrossian

© 2025 HUbook - Sistema de Reservas de Espagos. Todos os difeitos reservados

Fonte: Elaborada pelo autor (2025).

Universidade Federal de Mato Grosso do Sul

Figura 4.6: Pagina do Calendario de Reservas

Calendario de Reservas

Visualize e gerencie reservas dos espagos

novembro 2025

30

7 EBSERH

Qui

Y Filtros

IR -

29

sexta-feira, 28 de novembro

Nenhuma reserva para esta data

Hospital Universitario Maria Aparecida Pedrossian

Universidade Federal de Mato Grosso do Sul

© 2025 HUbook - Sistema de Reservas de Espagos. Todos os direitos reservados.

Fonte: Elaborada pelo autor (2025).

23

Figura 4.7: Pégina do Formulério de Criagao de Reserva

Solicitar Reserva
Para: Sala de Reunides 101 [Administrati

« Voltar para sele¢io de espago

Informagoes do Espago

Nome: Sala de Reunides 101 Setor: Administrativo
Tipo: Sala Capac . 12 pessoas
Descrics

Sala principal para reunies execufivas
Titulo da Reserva

Ex: Reunido de Departamento
Um titulo breve para identificar sua reserva
Data

Hora de Inicio Hora de Término

1de d bro de 2025 ®
le dezembro de 202! 12:00 @ 13:00

Objetivo da Reserva

Dascrev etivo da reserva

Nimero de Participantes
12

Capacidade maxima: 12 pes:

Observacgoes (opcional)

Alguma informagao adicicnal relevante?

Reserva para terceiros
Ativar se estiver fazendo uma reserva am nol

tar Reserva

Fonte: Elaborada pelo autor (2025).

24

Figura 4.8: Pagina Minhas Solicitagoes

HUbook . o e =
() Minhas Solicitagoes
NEvegEeae Gerencie e acompanhe suas solicitages de reserva

@ Inicio
B9 Calendério Q Buscar reservas.

Minhas Solicitagdes

Todas 1 Pendentes 1 Aprovadas 0 Recusadas 0 Inativas 3
& Meu Perfil

2 Administragao

Quinta-feira, 04 de dezembro @ Pendente
Configuragoes

Apresentacao de TCC
& Tipos de Salas
£5 08:00 - 09:00

@ Setores Laboratdrio de Inovagéo

Setor: Engenharia

oz @

& Usuarios

Maria

Universidade Federal de Mato Grosso do Sul

J“LL ” EBSERH Hospital L

A Administrador
admin@hospital.com.br

& sair 2025 HUbook - Sistema de Reservas de Espacos. Todos os direitos reservados.

Fonte: Elaborada pelo autor (2025).

25

Figura 4.9: Diagrama de Entidades-Relacionamentos Fisico

SECTORS
uuid id PK
string name
string description Nullable

datetime | created_at

datetime | updated_at

ROOM_TYPES
int id PK
string name UK
string description Nullable

boolean is_active

datetime | created_at

datetime | updated_at

possui define_tipo
USERS.
uuid id PK
ROOMS
string nome
uuid id PK
string email UK
string name
string cpf UK
uuid sectorid | FK
string telefone
string type Enum sala auditorio etc
string vinculo Enum estudante professor etc
int capacity
string tipo Enum usuario admin
string status Enum disponivel reservado
string password
string description Nullable
datetime | email_verified_at Nullable
string features JSON array
string remember_token Nullable
datetime | created_at
datetime | created_at
datetime | updated_at
datetime | updated_at
datetime | deleted_at Soft Delete
realiza recebe

RESERVATIONS
uuid id PK
uuid room_id K
uuid user_id FK
string title
string requester_name
string requester_email
string purpose
int attendees
datetime start_time Indexado
datetime | end_time Indexado
string status Enum pendente aprovado etc
string notes Nullable
string rejection_reason Nullable
string third_party_name Nullable
string third_party_contact Nullable
string third_party_email Nullable
string third_party_vinculo Nullable
datetime | created_at
datetime | updated_at

Fonte: Elaborada pelo autor (2025).

26

Figura 4.10: Pagina do Painel Administrativo

HUbook
oo

@ nicio

B Calendério

[Minhas Solicitagdes
& Meu Perfil

% Administragao

Configuragbes
% Tipos de Salas
© Setores

& Ususrios

A Administrador
admin@hospital com.br

© sair

Administracao

Gerencie reservas, espacos e configuracdes do sistema

© Reservas [Espacos

Q Buscar reservas.

Todas 1 Pendentes 1 Aprovadas 0

Apresentacao de TCC
3 04/12/2025 + 08:00 - 09:00
& Administrador

Finalidade: Apresentacao de TCC

47 EBSER

Todos os espagos

Recusadas 0 Inativas 14

Laboratério de Inovago « Engenharia

2, 20 participantes

© 2025 HUbook - Sistema de Reservas de Espagos. Todos 0s direitos reservados.

- Gerenciamento de

Reservas

Pendente

o0 u@

Hospital Universitério Maria Aparecida Pedrossian

Universidade Federal de Mato Grosso do Sul

Fonte: Elaborada pelo autor (2025).

Figura 4.11: Pagina do Painel Administrativo - Gerenciamento de Salas

[Hubook

Navegagdo
@ Inicio

B Calendério

Minhas Solicitagdes
& Meu Perfil

S0 Administragao

Configuragdes

@ Tipos de Salas

Administragao

Gerencie reservas, espacos e configuragoes do

Reservas

[Espacos

Q Buscar espacos.

sala Disponivel
Sala de Reunides 101

Setor: Administrativo

Capacidade: 12 pessoas

Sala principal para reunioes executivas

Projetor Quadro branco Videoconferéncia
(3 CELT
saa bispontel

Sala Criativa

Setor: Marketing

Capacidade: 8 pessoas

Espago para brainstorming e reunies criativas
Lousa de vidro

Mobiliario flexivel TV Smart

£ Editar

47 EBSERH

sistema

Laboratdrio Disponivel

Laboratério de Inovagao
Setor: Engenharia
Capacidade: 20 pessoas

Espago dedicado a projetos de inovagéo e
prototipagem

Computadores Impressora3D Lousa digital

sala Manutencao
Salade Tl
Setor: TI

Capacidade: 15 pessoas

Sala para equipes de desenvolvimento e
infraestrutura

Servidores Quadro branco

Ar-condicionado dedicado

£ Editar

+ Novo Espago

Auditério Disponivel
Auditério Principal

Setor: Eventos

Capacidade: 150 pessoas

Auditorio para eventos corporativos e

apresentagdes
Sistemadesom Palco lluminagao profissional
Camarim
CA
Auditério

Disponivel
Auditério Secundario

Setor: Eventos

Capacidade: 80 pessoas

Auditorio para treinamentos e workshops

Projetor Sistema de som Poltronas reclinavels
Hospital Universitario Maria Aparecida Pedrossian

Universidade Federal de Mato Grosso do Sul

© 2025 HUbook - Sistema de Reservas de Espagos. Todos os direitos reservados.

Fonte: Elaborada pelo autor (2025).

27

Capitulo 5

Consideracoes Finais

Este capitulo apresenta uma sintese dos objetivos alcangados, das contribuigoes do sis-
tema HUBook, das limitagoes encontradas no desenvolvimento e das perspectivas de evolucao
futura da solugao.

5.1 Contribuicoes

O desenvolvimento do HUBook permitiu alcangar o objetivo geral proposto: construir
um sistema web capaz de centralizar e padronizar o processo de agendamento de espagcos
fisicos no HUMAP /UFMS. O sistema resultante oferece uma aplicac¢ao funcional, alinhada
as necessidades mapeadas.

Os objetivos especificos foram amplamente atendidos, incluindo a implementagao do
modulo de autenticagao, gerenciamento de usuérios e espacos, criacao de reservas com valida-
¢oes automaticas, interface de calendério, painel administrativo, drea pessoal para usuérios,
além de uma arquitetura desacoplada e containerizada. Os requisitos funcionais e nao fun-
cionais levantados foram implementados conforme escopo definido e encontram-se descritos
no Apéndice A.

O HUBook contribui diretamente para a modernizacao dos processos administrativos
do HUMAP/UFMS. A centralizacao das solicita¢oes reduz a fragmentagdo anteriormente
existente e a automacao das verificagoes de conflito de horario elimina falhas recorrentes
do modelo anterior. A interface responsiva e organizada favorece a experiéncia de uso,
enquanto as tecnologias adotadas fornecem uma base sélida para evolugoes futuras, incluindo
integracoes institucionais e funcionalidades adicionais como relatérios e notificagoes.

5.2 Limitacoes e Trabalhos Futuros

Algumas limitagoes foram identificadas ao longo do projeto. Nao foi possivel inte-
grar o sistema com o mecanismo institucional de autenticacao, resultando na necessidade

28

de desenvolver um moédulo proprio. A auséncia de um ambiente oficial de homologacao
impossibilitou a realizacao de testes formais com usuérios finais, restringindo a validacao
a testes automatizados e testes exploratorios conduzidos em ambiente local. Além disso,
algumas funcionalidades inicialmente planejadas, como notificacoes automaticas, relatorios
gerenciais, integracao com calendarios externos e documentacao destinada aos usuérios —
permaneceram fora do escopo desta versao.

Com base nessas limitagoes, diversos aprimoramentos podem ser realizados em traba-
lhos futuros, como:

e Integragao com o sistema institucional de autenticacdo do HUMAP /UFMS;

e implementacao de notificagoes por e-mail; desenvolvimento de relatérios gerenciais e

dashboards;

e integragao com servigos externos de calendéario; criacao de sistema de avaliagao de salas;
auditoria detalhada de acoes; suporte a reservas recorrentes; bloqueio administrativo
de periodos; e evolugao para um aplicativo mobile ou Progressive Web App (PWA).

e Também se destacam oportunidades de melhorias continuas de acessibilidade e usabi-
lidade.

5.3 Consideragoes Finais

O desenvolvimento do HUBook possibilitou a aplicacao pratica de conceitos de enge-
nharia de software, desenvolvimento web e metodologias ageis na solugao de um problema
institucional concreto. O sistema demonstra a viabilidade de empregar tecnologias contem-
poraneas, arquitetura desacoplada e préticas de desenvolvimento incremental para construir
aplicagoes alinhadas as demandas de ambientes académicos e hospitalares.

O artefato entregue atende ao conjunto de requisitos definidos e apresenta um sistema
funcional, organizado e preparado para implantagao futura. A arquitetura implementada
favorece manutencao, escalabilidade e expansao, garantindo a longevidade da solugao. A
apresentacao do projeto na 3% Jornada Cientifica do HUMAP-UFMS, onde recebeu destaque
como 2° melhor trabalho de iniciacao tecnolégica, reforca seu potencial de aplicacdo e o
interesse institucional na continuidade da proposta.

Este trabalho estabelece uma base para futura implantacao institucional, continuidade
em pesquisas futuras e possivel registro de propriedade intelectual, contribuindo para a
modernizac¢ao dos processos internos do HUMAP/UFMS e para a formagao académica e
profissional envolvida em seu desenvolvimento.

29

Capitulo 6

Referéncias Bibliograficas

1]

2]

13

4]

5]

(6]

7]

18]

19]

[10]

[11]

[12]

[13]

BECK, Kent; ANDRES, Cynthia. Programacao Extrema (XP) Explicada: Acolha as
mudangas. 2. ed. [s.n.], Porto Alegre, RS, Brasil, 2004.

BERGMANN, Sebastian. PHPUnit: The PHP Testing Framework. Disponivel em:
<https://phpunit.de/index.html>. Acesso em: 5 dez. 2025.

DOCKER, INC. Docker: Accelerated Container Application Development. Disponivel
em: <https://www.docker.com/>. Acesso em: 5 dez. 2025.

DOCKER, INC. Docker Compose. Disponivel em:
<https://docs.docker.com/compose/>. Acesso em: 5 dez. 2025.

F5 NGINX Products. Disponivel em: <https://www.f5.com/products/nginx>. Acesso
em: 5 dez. 2025.

GitHub - A mudanca é constante. O GitHub mantém vocé a frente. Disponivel em:
<https://github.com/?locale=pt-BR>. Acesso em: 5 dez. 2025.

JavaScript With Syntax For Types. Disponivel em:
<https://www.typescriptlang.org/>. Acesso em: 5 dez. 2025.
Laravel - The PHP Framework For Web Artisans. Disponivel em:

<https://laravel.com>. Acesso em: 5 dez. 2025.

Laravel Sanctum - Laravel 12.x - The PHP Framework For Web Artisans. Disponivel
em: <https://laravel.com/docs/12.x/sanctum>. Acesso em: 5 dez. 2025.

MCDONNELL, Colin. Zod - typescript-first schema validation. Disponivel em:
<https://zod.dev/>. Acesso em: 5 dez. 2025.

MYERS, Glenford J.; SANDLER, Corey; BADGETT, Tom. The Art of Software Tes-
ting. 3. ed. Wiley, [s.1.], 2011. Obra sem tradugao oficial para o portugueés.

Node.js — Run JavaScript Everywhere. Disponivel em: <https://nodejs.org/pt=>.
Acesso em: 5 dez. 2025.

ORACLE CORPORATION. The world’s most popular open source database. Dispo-
nivel em: <https://www.mysql.com/>. Acesso em: 5 dez. 2025.

30

[14] PHP. Disponivel em: <https://www.php.net/index.php>. Acesso em: 5 dez. 2025.

[15] PRESSMAN, Roger S.; MAXIM, Bruce R. Engenharia de Software: uma abordagem
profissional. 9. ed. Amgh, Porto Alegre, RS, 2021.

[16] React - a javascript library for building user interfaces. Disponivel em:
<https://react.dev/>. Acesso em: 5 dez. 2025.

[17] React Hook Form - performant, flexible and extensible form library. Disponivel em:
<https:/ /react-hook-form.com/>. Acesso em: 5 dez. 2025.

[18] React Router Official Documentation. Disponivel em: <https://reactrouter.com/>.
Acesso em: 5 dez. 2025.

[19] SHADCN. The Foundation for your Design System - shadcen/ui. Disponivel em:
<https://ui.shaden.com/>. Acesso em: 5 dez. 2025.

[20] SOMMERVILLE, Ian. Engenharia de Software. 10. ed. [s.n.], Brasil, 2019.

[21] TanStack Query. Disponivel em: <https://tanstack.com/query/latest>. Acesso em: 5
dez. 2025.

[22] TORVALDS, Linus. Git - distributed version control system. Disponivel em:
<https://git-scm.com/>. Acesso em: 5 dez. 2025.

[23] YOU, Evan. Vite - next generation frontend tooling. Disponivel em:
<https://vite.dev>. Acesso em: 5 dez. 2025.

31

Apéndice A
Documentacao do Sistema

Este apéndice apresenta a documentagao do sistema HUBook, incluindo requisitos
funcionais, requisitos nao funcionais e tabela resumo dos casos de uso.

Requisitos Funcionais

Os requisitos funcionais descrevem o que o sistema deve fazer para atender as neces-
sidades dos usuarios. A seguir, sao apresentados os requisitos funcionais implementados no
sistema HUBook, organizados por categoria.

Autenticagao e Gerenciamento de Usuarios. O sistema implementa um conjunto
completo de funcionalidades relacionadas & autenticagao e gestao de usuarios:

RF-01 O sistema deve permitir login utilizando e-mail ou CPF como identificador, junta-
mente com senha.

RF-02 O sistema deve permitir cadastro de novos usuarios, coletando nome, e-mail, CPF,
telefone, vinculo com o HUMAP /UFMS e senha.

RF-03 O sistema deve validar CPF durante o cadastro.

RF-04 O sistema deve aplicar méscaras automaticas para CPF e telefone durante o preen-
chimento de formularios.

RF-05 O sistema deve permitir recuperacao de senha através de link enviado por e-mail.

RF-06 O sistema deve permitir atualizagdo de perfil pessoal (nome, e-mail, telefone, vin-
culo).

RF-07 O sistema deve permitir alteracao de senha, exigindo validagao da senha atual.

RF-08 O sistema deve permitir que administradores gerenciem usuérios (criar, editar, re-
mover, restaurar).

32

RF-09 O sistema deve implementar soft delete para usuarios, permitindo restauragao pos-
terior.

RF-10 O sistema deve impedir que administradores deletem permanentemente a si mesmos.

Gerenciamento de Espacgos Fisicos. O sistema oferece funcionalidades completas
para administracao de espacos fisicos:

RF-11 O sistema deve permitir cadastro e edi¢ao de setores, com nome e descrigao.

RF-12 O sistema deve permitir cadastro e edigao de tipos de salas (sala, auditorio, labora-
torio, outro).

RF-13 O sistema deve permitir cadastro e edigao de salas, incluindo nome, setor, tipo,
capacidade, status, descricao e recursos.

RF-14 O sistema deve impedir exclusao de setores que possuem salas associadas.
RF-15 O sistema deve impedir exclusao de tipos de salas que possuem salas utilizando-os.

RF-16 O sistema deve permitir visualizagao publica de salas disponiveis, com filtros por
setor, tipo e status.

Sistema de Reservas. O ntcleo do sistema consiste no modulo de reservas, que
implementa validagoes automaticas e gestao completa:

RF-17 O sistema deve permitir criagao de solicitacoes de reserva por usuérios autenticados.
RF-18 O sistema deve validar automaticamente que a data/hora de inicio é futura.

RF-19 O sistema deve validar automaticamente que a data/hora de término é posterior ao
inicio.

RF-20 O sistema deve validar automaticamente que o nimero de participantes nao excede
a capacidade da sala.

RF-21 O sistema deve verificar automaticamente conflitos de horario com outras reservas
aprovadas ou pendentes.

RF-22 O sistema deve exibir mensagens detalhadas quando ha conflitos de horario, inclu-
indo horarios conflitantes formatados.

RF-23 O sistema deve permitir criagao de reservas em nome de terceiros, coletando infor-
magoes do responsavel.

RF-24 O sistema deve tornar todos os campos de terceiro obrigatorios quando a opcao de
reserva para terceiro ¢é selecionada.

RF-25 O sistema deve criar reservas com status inicial "pendente".

33

RF-26 O sistema deve permitir que o usuario proprietario edite suas reservas (pendentes
ou aprovadas), desde que a data e hora de inicio ainda ndo tenham sido ultrapassadas.

RF-27 O sistema deve permitir edigao de qualquer reserva futura por administradores.

RF-28 O sistema deve bloquear a edicao de reservas que ja foram iniciadas, que estejam
marcadas como inativas ou que possuam status "cancelado".

RF-29 O sistema deve alterar automaticamente o status para "pendente"apos qualquer
modificacao na reserva, exigindo nova aprovacao.

RF-30 O sistema deve permitir cancelamento de reservas pendentes ou aprovadas que ainda
nao passaram.

RF-31 O sistema deve realizar cancelamento através de soft delete, alterando status para
"cancelado".

RF-32 O sistema deve permitir que administradores aprovem reservas pendentes.

RF-33 O sistema deve permitir que administradores rejeitem reservas pendentes, exigindo
motivo obrigatorio.

RF-34 O sistema deve salvar motivo de rejeicao junto com a reserva recusada.
RF-35 O sistema deve permitir visualizagao de calendério ptiblico com reservas aprovadas.

RF-36 O sistema deve ocultar dados sensiveis (e-mail, telefone, dados de terceiros) na
visualizacao publica.

RF-37 O sistema deve permitir visualizagao de calendario privado para usuarios autentica-
dos, com todas as reservas.

RF-38 O sistema deve oferecer filtros no calendario por setor, tipo de sala e sala especifica.

RF-39 O sistema deve permitir acompanhamento pessoal de reservas na péagina "Minhas
Solicitacoes".

RF-40 O sistema deve separar reservas em ativas (futuras) e inativas (passadas) na pagina
de solicitacoes.

RF-41 O sistema deve permitir filtragem de reservas por status (pendentes, aprovadas,
recusadas, canceladas, inativas).

RF-42 O sistema deve permitir busca de reservas por titulo, nome da sala ou propoésito.

RF-43 O sistema deve ordenar reservas por data (ativas: mais proximas primeiro, inativas:
mais recentes primeiro).

34

Requisitos Nao Funcionais

Os requisitos nao funcionais especificam como o sistema deve se comportar em relagao
a aspectos qualitativos, organizados nas seguintes categorias:

Usabilidade. O sistema prioriza experiéncia do usuario através de interface intuitiva
e responsiva:

RINF-01 O sistema deve apresentar interface intuitiva e de facil navegacao.

RNF-02 O sistema deve ser responsivo, adaptando-se adequadamente a diferentes tama-
nhos de tela (desktop, tablet, smartphone).

RNF-03 O sistema deve fornecer feedback claro para todas as ag¢oes do usudrio (sucesso,
erro, carregamento).

RNF-04 O sistema deve exibir mensagens de erro descritivas e orientativas, ajudando o
usuario a corrigir problemas.

Desempenho. O sistema foi projetado para oferecer respostas rapidas e suportar
miultiplos usuéarios:

RNF-05 O sistema deve responder a operagoes comuns (login, listagem, criagao de reserva)
em tempo adequado (menos de 2 segundos).

RNF-06 O sistema deve suportar miltiplos usuarios simultaneos sem degradacgao significa-
tiva de desempenho.

RNF-07 O sistema deve implementar paginagao em listagens que podem retornar muitos
resultados.

Seguranca. A seguranca é garantida através de miltiplas camadas de protecao:

RNF-08 O sistema deve utilizar autenticagao baseada em tokens seguros para validar a
identidade do usuario.

RINF-09 O sistema deve armazenar senhas com criptografia aplicada, nunca em texto plano.

RNF-10 O sistema deve implementar autorizagao baseada em roles (usuério comum e ad-
ministrador).

RNF-11 O sistema deve validar e sanitizar dados de entrada tanto no frontend quanto no
backend para prevenir XSS.

RNF-12 O sistema deve implementar medidas de seguranga contra inje¢ao de c6digo ma-
licioso e falsificacao de solicitagoes.

RNF-13 O sistema deve ocultar informacoes sensiveis em respostas publicas da API.

35

RNF-14 O sistema deve sempre retornar mensagem genérica em recuperacao de senha, nao
expondo se e-mail existe.

Manutenibilidade. O coédigo segue padroes estabelecidos para facilitar manutengao
futura:

RNF-15 O sistema deve seguir padroes estabelecidos pelos frameworks frontend e backend.
RNF-16 O sistema deve separar claramente responsabilidades entre camadas.

RNF-17 O sistema deve documentar cédigo complexo e regras de negdcio importantes.

Disponibilidade e Implantagao. O sistema foi projetado para facilitar implantacao
e garantir disponibilidade:

RNF-18 O sistema deve ser acessivel via navegador web, sem necessidade de instalacao de
software adicional.

RNF-19 O sistema deve ser containerizado utilizando Docker, garantindo consisténcia de
execugao entre ambientes Linux, Windows e macOS.

RNF-20 O sistema deve garantir persisténcia de dados através de volumes Docker persis-
tentes.

Quadro Resumo dos Casos de Uso

O Quadro apresenta um resumo dos casos de uso implementados no sistema HU-
Book.

36

Quadro A.1: Resumo dos Casos de Uso do Sistema HUBook

ID Nome Ator Objetivo
CU-01 Realizar Login Usuario, Admin, | Autenticar-se no sistema utili-
Visitante zando e-mail ou CPF e senha
CU-02 Registrar Nova Conta | Visitante Criar nova conta de usuario no
sistema
CU-03 Solicitar Reserva de | Usuario, Admin | Criar solicitagao de reserva de es-
Sala paco fisico
CU-04 Visualizar Minhas Re- | Usuario, Admin | Acompanhar reservas pessoais
servas com filtros e busca
CU-05 | Editar Reserva Usuario (Pro- | Modificar dados de reserva futu-
prias Reservas), | ras, revertendo status para pen-
Admin (Qual- | dente
quer Reserva)
CU-06 | Cancelar Reserva Usuario (Pro- | Cancelar reserva futura, libe-
prias Reservas), | rando horario da sala
Admin (Qual-
quer Reserva)
Ccu-07 Recuperar Senha Usuério, Visi- | Redefinir senha através de link
tante enviado por e-mail
CU-08 Atualizar Perfil Usuéario, Admin | Modificar informagcoes pessoais e
alterar senha
CU-09 Aprovar Reserva Admin Aprovar solicitacao de reserva
pendente
CU-10 Rejeitar Reserva Admin Rejeitar solicitacao de reserva
com motivo obrigatorio
CU-11 Gerenciar Salas Admin Criar, editar e remover salas do
sistema
CU-12 Gerenciar Setores Admin Criar, editar e remover setores do
sistema
CU-13 Gerenciar Usuarios Admin Criar, editar, remover e restaurar
usuarios
CU-14 Visualizar solicitagbes | Admin Visualizar todas as solicitagoes de
de Reservas reservas.
CU-15 Visualizar Salas Dis- | Visitante, Usua- | Consultar informacgoes sobre salas
poniveis rio, Admin disponiveis
CU-16 Visualizar ~ Reservas | Visitante, Usua- | Visualizar reservas publicas com
Publicas rio, Admin dados limitados

37

	Lista de Figuras
	Lista de Abreviaturas e Siglas
	Introdução
	Objetivos
	Objetivos Específicos

	Justificativa
	Organização do Trabalho

	Referencial Teórico
	Engenharia de software e Metodologias de Desenvolvimento
	Arquitetura de Sistemas Web
	Containerização e Infraestrutura
	Segurança em Sistemas Web
	Testes e Validação de software

	Metodologia
	Processo de Desenvolvimento
	Validação e Testes
	Planejamento e Arquitetura da Solução
	Descrição Técnica da Arquitetura
	Principais Módulos do Frontend
	Principais Módulos do Backend
	Estrutura do Banco de Dados
	Containerização e Infraestrutura

	Resultados
	Visão Geral do Sistema
	Módulo de Autenticação e Gestão de Usuários
	Gerenciamento de Reservas e Interface de Calendário
	Painel Administrativo
	Entrega Técnica e Prontidão do Sistema

	Considerações Finais
	Contribuições
	Limitações e Trabalhos Futuros
	Considerações Finais

	Referências Bibliográficas
	Documentação do Sistema

