
Desenvolvimento de Sistema Web para Agendamento de
Espaços Físicos do HUMAP/UFMS

FACOM
Faculdade de Computação

Universidade Federal de Mato Grosso do Sul

Autor: Wellington Evangelista Idino

Orientadora: Profa. Dra. Liana Dessandre Duenha Garanhani

Trabalho de Conclusão de Curso.

04 de dezembro de 2025

1

Sumário

Lista de Figuras iii

Lista de Abreviaturas e Siglas iv

1 Introdução 1

1.1 Objetivos . 2

1.1.1 Objetivos Específicos . 2

1.2 Justificativa . 3

1.3 Organização do Trabalho . 3

2 Referencial Teórico 4

2.1 Engenharia de software e Metodologias de Desenvolvimento 4

2.2 Arquitetura de Sistemas Web . 5

2.3 Containerização e Infraestrutura . 5

2.4 Segurança em Sistemas Web . 5

2.5 Testes e Validação de software . 6

3 Metodologia 8

3.1 Processo de Desenvolvimento . 8

3.2 Validação e Testes . 9

3.3 Planejamento e Arquitetura da Solução . 10

3.4 Descrição Técnica da Arquitetura . 10

3.4.1 Principais Módulos do Frontend . 12

i

3.4.2 Principais Módulos do Backend . 12

3.4.3 Estrutura do Banco de Dados . 13

3.4.4 Containerização e Infraestrutura . 15

4 Resultados 16

4.1 Visão Geral do Sistema . 16

4.2 Módulo de Autenticação e Gestão de Usuários 17

4.3 Gerenciamento de Reservas e Interface de Calendário 17

4.4 Painel Administrativo . 18

4.5 Entrega Técnica e Prontidão do Sistema . 18

5 Considerações Finais 28

5.1 Contribuições . 28

5.2 Limitações e Trabalhos Futuros . 28

5.3 Considerações Finais . 29

6 Referências Bibliográficas 30

A Documentação do Sistema 32

ii

Lista de Figuras

3.1 Arquitetura Geral do Sistema HUBook . 11

3.2 Diagrama Entidade-Relacionamento (DER) Conceitual 14

4.1 Página Inicial do Sistema HUBook . 20

4.2 Fluxo de Criação e Aprovação de Reserva . 21

4.3 Página de Login . 22

4.4 Página de Registro de Usuário . 22

4.5 Página de Perfil do Usuário . 23

4.6 Página do Calendário de Reservas . 23

4.7 Página do Formulário de Criação de Reserva 24

4.8 Página Minhas Solicitações . 25

4.9 Diagrama de Entidades-Relacionamentos Físico 26

4.10 Página do Painel Administrativo - Gerenciamento de Reservas 27

4.11 Página do Painel Administrativo - Gerenciamento de Salas 27

iii

Lista de Abreviaturas e Siglas

API Application Programming Interface (Interface de Programação de Aplicações)
CPF Cadastro de Pessoa Física
CRUD Create, Read, Update, Delete (Criar, Ler, Atualizar, Deletar)
CSRF Cross-Site Request Forgery (Falsificação de Solicitação Entre Sites)
DER Diagrama Entidade-Relacionamento
HTTP Hypertext Transfer Protocol (Protocolo de Transferência de Hipertexto)
HUMAP Hospital Universitário Maria Aparecida Pedrossian
MVC Model-View-Controller (Modelo-Visualização-Controlador)
MySQL My Structured Query Language (Linguagem de Consulta Estruturada)
Nginx Engine X (Servidor web de código aberto)
PHP PHP: Hypertext Preprocessor
PHP-FPM PHP FastCGI Process Manager (Gerenciador de Processos FastCGI do PHP)
PWA Progressive Web App (Aplicativo Web Progressivo)
REST Representational State Transfer (Transferência de Estado Representacional)
SPA Single Page Application (Aplicação de Página Única)
SQL Structured Query Language (Linguagem de Consulta Estruturada)
TI Tecnologia da Informação
UFMS Universidade Federal de Mato Grosso do Sul
XP Extreme Programming (Programação Extrema)
XSS Cross-Site Scripting (Script Entre Sites)

iv

Capítulo 1

Introdução

O Hospital Universitário Maria Aparecida Pedrossian (HUMAP)/Universidade Federal
de Mato Grosso do Sul (UFMS) desempenha papel fundamental na integração entre ensino,
pesquisa e assistência à saúde. Em sua estrutura, diversos espaços físicos, como salas de
reunião, auditórios e laboratórios, são frequentemente utilizados para atividades acadêmi-
cas, administrativas e de extensão. No entanto, o processo de agendamento desses espaços
é realizado de forma descentralizada, através de diferentes canais de comunicação, incluindo
e-mail, WhatsApp, formulários online e calendários compartilhados, gerando sobrecarga ad-
ministrativa, conflitos de horários e transparência de disponibilidade.

A ausência de um sistema informatizado e centralizado para o gerenciamento de reser-
vas de espaços físicos do HUMAP/UFMS resulta em limitações que impactam diretamente
a eficiência operacional do hospital, a satisfação dos usuários e a capacidade de gestão es-
tratégica dos recursos físicos disponíveis. Dentre as limitações, pode-se citar as principais:

• Conflitos de agenda: Reservas para o mesmo espaço no mesmo horário, identificadas
posteriormente;

• Retrabalho administrativo: Gerenciamento de solicitações através de múltiplos
canais, aumentando carga de trabalho e possibilidade de erros;

• Falta de transparência: Ausência de visibilidade clara sobre disponibilidade dos
espaços e status das solicitações;

• Dificuldade de acompanhamento: Ausência de histórico centralizado dificulta aná-
lise de utilização e planejamento;

• Responsabilização pelo uso: Ausência de co-responsabilização pelo uso dos espaços,
gerando dificuldades de gestão adequada do patrimônio público; e

• Falta de padronização: Diferentes setores utilizam processos distintos, dificultando
uniformização e acompanhamento.

Diante desse contexto, tornou-se necessário desenvolver uma solução tecnológica para
centralizar, padronizar e democratizar o processo de reserva de espaços físicos do HU-

1

MAP/UFMS. A demanda por esse sistema foi apresentada pela equipe de Gestão do HU-
MAP/UFMS, e seu desenvolvimento ocorreu no contexto do Programa de Iniciação Tecno-
lógica, fomentado pelos editais Nº 08/2022 e Nº 08/2024 HUMAP/UFMS.

1.1 Objetivos

O objetivo central do projeto é desenvolver um sistema web para o agendamento de es-
paços físicos do HUMAP/UFMS, denominado HUBook, que permita a solicitação, aprovação
e acompanhamento de reservas de forma padronizada, eficiente e transparente.

1.1.1 Objetivos Específicos

Com base nos requisitos funcionais e não funcionais, os objetivos específicos deste
trabalho são:

1. Implementar sistema cadastro e autenticação (login por e-mail ou Cadastro de Pessoa
Física (CPF), recuperação de senha);

2. Desenvolver módulo de gerenciamento de espaços físicos (setores, tipos de salas e salas);

3. Implementar sistema de solicitação de reservas com validação automática de capacidade
e verificação de conflitos de horário;

4. Desenvolver painel administrativo para análise, aprovação e rejeição de solicitações;

5. Implementar interface para visualização de calendário público e privado com filtros;

6. Desenvolver área de acompanhamento pessoal de reservas (edição e cancelamento);

7. Garantir usabilidade através de interface responsiva e intuitiva;

8. Implementar arquitetura desacoplada e containerizada, facilitando implantação e ma-
nutenção;

9. Documentar o sistema através de documentação técnica, casos de uso e modelagem; e

10. Realizar testes automatizados e testes exploratórios, complementados por demonstra-
ções para coleta de feedback.

A implantação do sistema não fez parte dos objetivos, visto que depende da autoriza-
ção da gestão do hospital e da disponibilidade da equipe de Tecnologia da Informação do
HUMAP/UFMS, que deverá dar acompanhamento e manutenção no sistema a partir da sua
implantação e uso.

2

1.2 Justificativa

A implementação de um sistema centralizado de reservas traz impactos significativos
para o HUMAP/UFMS em diferentes frentes:

• Operacionais: Redução da sobrecarga administrativa através da automatização de
validações e verificações; eliminação de conflitos de horário por meio de verificação
automática de disponibilidade; padronização do processo de solicitação e aprovação
em todos os setores; e redução do retrabalho causado pela fragmentação de canais de
comunicação;

• Ensino: Facilita o planejamento e execução de atividades acadêmicas, permitindo que
docentes, servidores técnicos, residentes e discentes visualizem a disponibilidade de
espaços de forma transparente e realizem reservas de maneira ágil e confiável;

• Pesquisa: Organiza e otimiza o agendamento de laboratórios e espaços destinados a
atividades de pesquisa, permitindo melhor aproveitamento desses recursos estratégicos;

• Gestão: Proporciona visibilidade completa sobre a utilização dos espaços físicos atra-
vés de histórico centralizado, possibilitando análises sobre padrões de uso, identificação
de espaços subutilizados ou sobrecarregados, controle e acompanhamento do bom uso
do patrimônio público e embasamento para decisões estratégicas sobre infraestrutura.

Além disso, o desenvolvimento deste sistema representa uma contribuição prática para
a modernização dos processos administrativos de reservas de espaços físicos do hospital e
melhoria dos serviços prestados à comunidade.

1.3 Organização do Trabalho

Este trabalho está organizado em cinco capítulos principais. O Capítulo 2 apresenta
o referencial teórico sobre engenharia de software, metodologias ágeis e arquitetura de sis-
temas web. O Capítulo 3 descreve a metodologia adotada no desenvolvimento. O Capítulo
4 apresenta os resultados obtidos, detalhando requisitos implementados e funcionalidades
desenvolvidas. O Capítulo 5 apresenta as considerações finais. Complementando o trabalho,
o apêndice A, apresenta a documentação detalhada de requisitos e o resumo de casos de
usos.

3

Capítulo 2

Referencial Teórico

Este capítulo reúne os principais conceitos que fundamentam o desenvolvimento do
sistema de agendamento de espaços físicos, o HUBook. São apresentados tópicos relacionados
à engenharia de software, às metodologias utilizadas no processo de construção da aplicação
e aos elementos arquiteturais característicos de sistemas web, além de aspectos de segurança
e testes necessários para garantir a qualidade de um sistema desse tipo.

2.1 Engenharia de software e Metodologias de Desen-
volvimento

A engenharia de software pode ser entendida como um conjunto de práticas, princípios
e métodos que visam organizar e orientar o desenvolvimento de sistemas, de forma que o
produto final seja confiável e adequado às necessidades dos usuários [15]. Conforme discute
Sommerville [20], esse processo envolve etapas que começam no levantamento das necessi-
dades e se estendem até a manutenção do software após sua implantação, contemplando
análise, projeto, codificação, integração e testes.

No levantamento de requisitos, costuma-se diferenciar dois tipos principais: os funcio-
nais, que descrevem o que o sistema deve realizar, e os não funcionais, associados a qualidades
esperadas do produto, como desempenho, segurança e facilidade de uso [15]. Uma técnica
amplamente adotada para representar comportamentos esperados do sistema são os casos de
uso, que descrevem interações entre os usuários e o software de forma estruturada.

Em relação às metodologias de desenvolvimento, práticas ágeis ganharam espaço por
favorecerem ciclos curtos de entrega, revisão contínua e adaptação rápida a mudanças. O
Extreme Programming (XP), por exemplo, enfatiza a comunicação com o cliente, refatorações
frequentes e validação constante do código [1]. Para Sommerville [20], esse tipo de abordagem
reduz riscos, uma vez que funcionalidades vão sendo incorporadas gradualmente e podem
ser avaliadas a cada iteração. Outro ponto importante é o uso de protótipos, que permite ao
usuário visualizar parte do sistema antes da implementação definitiva e ajustar sua percepção
sobre a solução desejada [15].

4

2.2 Arquitetura de Sistemas Web

Grande parte das aplicações atuais utiliza a arquitetura cliente-servidor, na qual o
navegador (cliente) é responsável pela interface e pela interação com o usuário, enquanto o
servidor concentra a lógica de negócio e o acesso ao banco de dados [15]. Essa separação
facilita a manutenção, torna a aplicação mais escalável e permite que diferentes equipes
trabalhem paralelamente.

Entre os padrões arquiteturais mais conhecidos está o Model–View–Controller (MVC)
[8], presente em diversos frameworks modernos. No MVC, a lógica de negócio fica organizada
no modelo, enquanto a visualização e a interação com o usuário são tratadas por componentes
de interface; o controlador faz a mediação entre esses dois elementos [20]. O framework
Laravel, utilizado no backend do HUBook, segue esse padrão [8].

Outro conceito amplamente difundido são as Application Programming Interfaces
(API) Representational State Transfer (REST), que estabelecem uma forma padronizada
de troca de informações entre sistemas por meio do protocolo Hypertext Transfer Protocol
(HTTP). A adoção desse modelo permite que diferentes tecnologias consumam os mesmos
recursos, como aplicações web, aplicativos móveis ou outros sistemas corporativos. Em pa-
ralelo, é comum o uso de Single Page Applications (SPA), nas quais a maior parte da lógica
de interface acontece no navegador, proporcionando transições mais rápidas e uma experi-
ência mais fluida para o usuário. Tecnologias como React [16] e TypeScript [7] têm sido
amplamente utilizadas nesse contexto.

2.3 Containerização e Infraestrutura

A consolidação de ferramentas como Docker favoreceu um novo modo de organizar
ambientes de desenvolvimento. Em vez de configurar manualmente servidores e dependên-
cias, é possível empacotar aplicações e seus componentes em containers, que funcionam de
forma isolada e previsível [3]. O uso do Docker Compose amplia essa vantagem ao permitir
que múltiplos serviços (como servidor web, banco de dados e aplicações) sejam executados
conjuntamente, mantendo uma estrutura organizada e reprodutível [4].

Esse tipo de abordagem reduz problemas comuns na implantação de sistemas, como
divergências entre ambientes de desenvolvimento e produção. Além disso, facilita a escala-
bilidade, já que serviços podem ser replicados de forma independente conforme a demanda.

2.4 Segurança em Sistemas Web

A segurança tem papel central em sistemas que tratam dados sensíveis, como infor-
mações pessoais ou registros institucionais. No contexto web, dois mecanismos básicos são
frequentemente mencionados: autenticação, que identifica o usuário, e autorização, que de-
fine o que cada pessoa pode fazer dentro do sistema [15]. O Laravel Sanctum, adotado no
HUBook, provê um modelo simples de autenticação baseada em sessões ou tokens, voltado

5

tanto para aplicações monolíticas quanto para SPAs [9].

Aplicações web também estão sujeitas a diferentes tipos de ataques, como Structured
Query Language (SQL) Injection, Cross-Site Scripting (XSS) e Cross-Site Request Forgery
(CSRF). A prevenção desses problemas normalmente envolve validação rigorosa de dados de
entrada, sanitização, uso de prepared statements e mecanismos automáticos oferecidos pelo
framework [20]. Da mesma forma, boas práticas como criptografia de senhas, tratamento
adequado de erros e ocultação de informações sensíveis contribuem para reduzir riscos.

2.5 Testes e Validação de software

A atividade de teste é um dos pilares fundamentais para assegurar a qualidade de
um sistema. Na literatura clássica [11], destaca que o objetivo principal dos testes não é
demonstrar que o software funciona corretamente, mas revelar comportamentos incorretos
e situações que possam comprometer sua confiabilidade. De modo geral, o processo de
teste verifica se o software atende às expectativas expressas nos requisitos e se apresenta
comportamento consistente em diferentes cenários.

Segundo Sommerville [20], os testes podem ser organizados em diferentes níveis, cada
um com foco específico. Os testes unitários concentram-se na menor parte testável do
sistema, como funções, métodos ou componentes isolados, permitindo identificar falhas lo-
calizadas e facilitando a depuração. Em seguida, os testes de integração avaliam como
módulos ou serviços distintos interagem entre si, garantindo que o comportamento esperado
seja mantido quando componentes passam a trabalhar em conjunto.

Pressman [15] complementa que testes funcionais, também chamados de testes de
caixa-preta , avaliam o software a partir da perspectiva do usuário, verificando se as entradas
fornecidas produzem as saídas esperadas, sem considerar a estrutura interna do código. Nesse
tipo de teste, o foco está na verificação do comportamento externo da aplicação, o que é
particularmente relevante em sistemas baseados em interface gráfica ou serviços acessados
por múltiplos perfis de usuário.

Outro nível frequentemente mencionado é o teste de aceitação, voltado à validação
final do sistema pelo cliente ou pelos usuários reais. Myers. [11] definem esse teste como a
etapa na qual o software é avaliado em relação aos requisitos de negócio, verificando se a
solução desenvolvida atende às necessidades operacionais do ambiente ao qual se destina. Di-
ferentemente dos testes técnicos, o teste de aceitação considera o ponto de vista institucional,
incluindo fluxo de trabalho, aderência ao processo e adequação às rotinas de uso.

Ferramentas de automação, como o PHPUnit [2], têm se mostrado fundamentais para
ampliar a confiabilidade do processo de verificação. A automação permite a repetição sis-
temática de testes e facilita a detecção precoce de regressões durante a evolução do código.
Em arquiteturas que utilizam APIs, os testes de integração assumem papel ainda mais rele-
vante, pois garantem a coerência das regras de negócio e a estabilidade das interfaces entre
componentes [20, 15].

De forma geral, a validação de software representa o conjunto de atividades voltadas

6

a confirmar que o sistema final está alinhado aos requisitos inicialmente especificados, en-
quanto os testes verificam o comportamento técnico de suas partes. A combinação desses
mecanismos contribui para a construção de aplicações mais seguras, estáveis e adequadas ao
contexto de uso.

7

Capítulo 3

Metodologia

Este capítulo descreve a metodologia adotada no desenvolvimento do HUBook, abran-
gendo o planejamento arquitetural, o processo de desenvolvimento e os procedimentos de
teste e validação aplicados ao sistema.

A demanda do software foi apresentada pela equipe de Gestão do HUMAP/UFMS e
foi desenvolvida no contexto do Programa de Iniciação Tecnológica, proposto e fomentado
pelos editais Nº08/2022 e Nº08/2024 HUMAP/UFMS.

O trabalho caracteriza-se como pesquisa aplicada, de natureza tecnológica, orientada
à criação de um artefato de software capaz de solucionar um problema real de gestão de
espaços físicos institucional [15]. A proposta visa não apenas demonstrar a viabilidade
técnica do sistema, mas também oferecer uma solução prática ao fluxo de agendamentos
do HUMAP/UFMS, integrando conceitos fundamentais da Engenharia de Software com
necessidades operacionais da instituição.

3.1 Processo de Desenvolvimento

O desenvolvimento foi conduzido através de uma abordagem iterativa e incremental
baseada nos princípios do Extreme Programming (XP) [1]. Diferente de modelos lineares rí-
gidos, o processo adotado caracterizou-se pela flexibilidade e pela retroalimentação constante:
o avanço entre as fases de concepção, design e codificação não foi unidirecional, permitindo
o retorno a etapas anteriores para refinamentos, correções ou expansão de requisitos sempre
que a validação prática indicava essa necessidade.

O ciclo de vida do projeto evoluiu através da interdependência entre as seguintes ati-
vidades:

Levantamento e Evolução dos Requisitos. A identificação do problema da des-
centralização dos agendamentos marcou o início do projeto, mas a definição dos requisitos
manteve-se dinâmica. Embora as reuniões iniciais com a Unidade de Gestão de graduação,
Ensino Técnico e Extensão e o setor de Tecnologia da Informação (TI) tenham estabelecido
a base funcional, o escopo foi revisitado diversas vezes. À medida que o desenvolvimento

8

avançava e novas nuances operacionais surgiam, a equipe retornava à etapa de análise para
redefinir regras de negócio, garantindo que o software permanecesse alinhado às necessidades
reais.

Validação por Prototipagem. A prototipagem não serviu apenas como etapa de
design, mas como ferramenta de validação de fluxo. A apresentação de modelos de baixa
fidelidade aos setores envolvidos permitiu antecipar gargalos lógicos antes da escrita do
código. Os feedbacks recebidos nesta fase frequentemente exigiram o retorno à definição
dos requisitos para ajustes no fluxo de aprovação, demonstrando como a validação visual
precoce evitou o retrabalho técnico posterior.

Construção Incremental e Adaptação Técnica. A implementação do sistema
(envolvendo frontend em React e backend em Laravel) ocorreu em ciclos de construção e
adaptação. Um exemplo claro dessa não-linearidade foi o tratamento da autenticação: ao
identificar a inviabilidade técnica da integração institucional durante a fase de codificação, foi
necessário retroceder ao planejamento da arquitetura. Esse movimento permitiu incorporar
um novo módulo de gestão de identidade (Laravel Sanctum [9]), ajustando o escopo técnico
sem comprometer a continuidade do projeto.

Integração e Refinamento Recorrente. A unificação entre interface e lógica de
banco de dados não representou o fim do desenvolvimento, mas um novo ciclo de refina-
mento. A visualização do sistema integrado revelou necessidades de usabilidade que não
eram perceptíveis nas etapas isoladas. Isso demandou o retorno à camada de frontend para
a implementação de melhorias, como filtros de pesquisa mais robustos e ajustes visuais no
painel administrativo.

3.2 Validação e Testes

Os testes foram realizados no ambiente local de desenvolvimento e concentraram-se na
verificação interna do sistema, uma vez que o HUMAP/UFMS não disponibilizou ambiente
oficial de homologação para execução de testes por usuários finais. Assim, a validação
envolveu testes automatizados e testes exploratórios conduzidos pelo desenvolvedor.

Testes Unitários. Utilizando PHPUnit [2], foram implementados testes destinados
a verificar partes isoladas do sistema, especialmente trechos de lógica sensível, validações
internas e comportamentos de componentes específicos.

Testes de Integração. Também com PHPUnit, foram elaborados testes de integração
para verificar o funcionamento conjunto entre rotas, controladores, modelos e banco de dados.
Esses testes contemplaram fluxos completos, incluindo autenticação, criação e alteração de
reservas, regras de conflito e permissões de acesso.

Testes de Caixa-Preta (Exploratórios). Complementando os testes automatiza-
dos, foram realizados testes exploratórios na interface do sistema, avaliando o comportamento
do software sem considerar sua estrutura interna. Esses testes permitiram identificar falhas
de navegação, validações incorretas e inconsistências visuais, que foram ajustadas em ciclos
curtos de correção.

9

Demonstrações para Coleta de Feedback. Como forma de validar informalmente
os fluxos principais, foram realizadas demonstrações do sistema para os setores envolvidos
no processo de agendamento. Embora essas interações não configurem testes de aceitação
formais, permitiram identificar melhorias e ajustes que contribuíram para o refinamento da
aplicação.

Quanto à documentação formal dos testes, optou-se por uma abordagem prática. As
verificações realizadas tiveram como base direta os Requisitos Funcionais e os Casos de Uso
definidos no projeto.

A combinação desses procedimentos permitiu assegurar o funcionamento interno do
sistema e sua aderência aos requisitos definidos, mesmo diante da ausência de um ambiente
institucional de homologação.

3.3 Planejamento e Arquitetura da Solução

A definição da arquitetura buscou alinhar as decisões técnicas com as diretrizes do
setor de Tecnologia da Informação do HUMAP/UFMS, priorizando tecnologias já utilizadas
ou suportadas pela instituição. No backend, adotou-se o framework Laravel [8], baseado em
PHP: Hypertext Preprocessor [14], por sua aderência ao padrão MVC, robustez e mecanismos
nativos de segurança. Para o frontend, optou-se pela biblioteca React [16], permitindo a
construção de uma interface desacoplada (client-side) e com maior flexibilidade de evolução.

A aplicação foi estruturada em uma arquitetura desacoplada, na qual o frontend e
o backend comunicam-se exclusivamente por meio de Application Programming Interface
(API) Representational State Transfer (REST). Para garantir consistência entre ambientes
de desenvolvimento e futura implantação, utilizou-se Docker [3] e Docker Compose [4] como
padrão de orquestração.

O controle de versão foi realizado com Git [22], utilizando repositório privado no GitHub
[6], o que permitiu registro contínuo das evoluções, organização das etapas e rastreabilidade
das modificações do projeto.

A Figura 3.1 representa a arquitetura geral do sistema HUBook, destacando a separação
entre o frontend desenvolvido em React, o backend baseado na API REST construída com
Laravel e o banco de dados.

3.4 Descrição Técnica da Arquitetura

O sistema HUBook foi desenvolvido seguindo uma arquitetura desacoplada cliente-
servidor, onde o frontend (aplicação React) e o backend (API Laravel) são desenvolvidos e
implantados de forma independente, comunicando-se através de uma API REST.

A arquitetura é composta pelos seguintes componentes principais:

10

Figura 3.1: Arquitetura Geral do Sistema HUBook

• Frontend - Single Page Application (SPA) desenvolvida em React 18 [16] com Ty-
peScript [7], utilizando Vite [23] como build tool. A aplicação roda em Node.js [12]
durante desenvolvimento e é servida através de Nginx [5] em produção.

• Backend - API REST desenvolvida em Laravel 12 [8] (PHP 8.3 [14]), seguindo pa-
drão MVC. O backend processa requisições através de PHP FastCGI Process Manager
(PHP-FPM) e comunica-se com o banco de dados My Structured Query Language
(MySQL) [13].

• Banco de Dados - MySQL 8.0 [13] armazena todos os dados persistentes do sistema,
incluindo usuários, setores, salas, tipos de salas e reservas.

• Servidor Web - Nginx [5] atua como reverse proxy, direcionando requisições para o
frontend ou backend conforme o caminho da URL.

• Containerização - Todo o ambiente é executado em containers Docker [3], orques-
trados através de Docker Compose [4].

11

A comunicação entre frontend e backend é realizada através de requisições Hypertext
Transfer Protocol (HTTP), com autenticação baseada em sessão utilizando Laravel Sanctum
[9]. O frontend obtém um cookie Cross-Site Request Forgery (CSRF) antes de realizar
requisições autenticadas, garantindo proteção contra ataques CSRF.

3.4.1 Principais Módulos do Frontend

O frontend React [16] é organizado em componentes, páginas, hooks e serviços, os quais
são descritos a seguir:

• Autenticação: O AuthContext gerencia estado global de autenticação, fornecendo
funções de login, logout, registro e atualização de perfil. Verifica automaticamente
autenticação ao carregar a aplicação através da rota /api/auth/me.

• Comunicação com API: O serviço apiService centraliza todas as requisições HTTP
para o backend, incluindo obtenção de cookie CSRF, tratamento de erros e formatação
de requisições. Hooks customizados (useSectors, useRooms, useReservations, etc.)
encapsulam lógica de busca e atualização de dados, utilizando TanStack Query [21]
para cache e sincronização.

• Componentes de Interface: Componentes reutilizáveis são organizados por funci-
onalidade: componentes de formulário (reserva, perfil, login, registro); componentes
de exibição (cards de reserva, lista de salas, calendário); componentes administrativos
(aprovação de reservas, gerenciamento de salas); e componentes de UI base (botões,
inputs, dialogs, toasts) utilizando shadcn/ui [19].

• Roteamento: React Router [18] gerencia navegação client-side, com rotas protegidas
que verificam autenticação e permissões de administrador antes de renderizar com-
ponentes. Rotas públicas (login, registro, visualização de salas) são acessíveis sem
autenticação.

• Validação de Formulários: React Hook Form [17] gerencia estado de formulários,
enquanto Zod [10] valida schemas TypeScript [7]. Validação ocorre tanto no frontend
(feedback imediato) quanto no backend (segurança), garantindo consistência e segu-
rança dos dados.

3.4.2 Principais Módulos do Backend

O backend Laravel é organizado seguindo o padrão MVC, com os seguintes módulos
principais.

• Autenticação: O módulo de autenticação utiliza Laravel Sanctum para gerenciamento
de sessões. O AuthController implementa login (com suporte a e-mail ou CPF),
registro, logout, recuperação de senha e atualização de perfil. A autenticação é stateful,
utilizando sessões do Laravel para requisições do frontend SPA.

12

• Gerenciamento de Usuários: O UserController gerencia operações Create, Read,
Update, Delete (CRUD) de usuários, disponível apenas para administradores. Imple-
menta soft delete, permitindo restauração e exclusão permanente. Inclui filtros avan-
çados por tipo, vínculo, busca textual e visualização de usuários deletados.

• Gerenciamento de Espaços Físicos: Três controllers gerenciam os espaços físicos:
SectorController gerencia setores (CRUD para administradores, listagem pública);
RoomTypeController gerencia tipos de salas (CRUD para administradores, listagem
pública); e RoomController gerencia salas (CRUD para administradores, listagem e
visualização públicas).

• Sistema de Reservas: O ReservationController é o núcleo do sistema, imple-
mentando criação, listagem, visualização, edição, cancelamento, aprovação e rejeição
de reservas. Validações complexas são implementadas em ReservationStoreRequest
e ReservationUpdateRequest , incluindo verificação de capacidade e conflitos de ho-
rário.

• Autorização: O sistema utiliza Policies do Laravel para controle de autorização:
ReservationPolicy controla visualização, edição, cancelamento e aprovação/rejeição
de reservas; RoomPolicy controla operações em salas (apenas administradores podem
criar/editar/remover); SectorPolicy controla operações em setores (apenas adminis-
tradores); e UserPolicy controla operações em usuários (apenas administradores).

• Validação: Request Validators customizados validam dados de entrada para cada ope-
ração, incluindo regras específicas de negócio. Validações complexas, como verificação
de conflitos de horário e capacidade, são implementadas no método withValidator()
dos Form Requests.

• Resources: API Resources formatam respostas da API, garantindo que apenas dados
apropriados sejam retornados. PublicReservationResource oculta dados sensíveis
para visualização pública, enquanto ReservationResource retorna informações com-
pletas para usuários autenticados.

3.4.3 Estrutura do Banco de Dados

O banco de dados do sistema é composto pelas seguintes entidades principais e seus
relacionamentos.

• Users (Usuários): Armazena informações dos usuários do sistema, incluindo nome,
e-mail, CPF (único), telefone, vínculo (estudante, professor, funcionário-hu, outro),
tipo (usuario, admin) e senha (hash bcrypt). Implementa soft delete, permitindo res-
tauração de usuários deletados.

• Sectors (Setores): Representa setores do hospital aos quais as salas pertencem.
Possui nome e descrição opcional.

• Rooms (Salas): Armazena informações das salas disponíveis para reserva, incluindo
nome, setor (relacionamento com Sectors), tipo (sala, auditório, laboratório, outro),

13

capacidade máxima, status (disponível, reservado, manutenção), descrição e recursos
(array JSON).

• Reservations (Reservas): Entidade central do sistema, armazena solicitações de
reserva com informações sobre sala (relacionamento com Rooms), usuário solicitante
(relacionamento com Users), título, data/hora de início e término, propósito, número
de participantes, status (pendente, aprovado, recusado, cancelado), observações, mo-
tivo de rejeição (se aplicável) e dados de terceiros (quando reserva é para terceiro).

• RoomTypes (Tipos de Salas): Tabela de referência para tipos de salas, permitindo
gerenciamento centralizado de tipos disponíveis.

Os relacionamentos entre entidades são:

- Users → Reservations : Um usuário pode ter múltiplas reservas (1:N).

- Sectors→ Rooms : Um setor pode ter múltiplas salas (1:N).

- Rooms→ Reservations : Uma sala pode ter múltiplas reservas (1:N).

- RoomTypes→ Rooms : Um tipo de espaço pode ser utilizado por múltiplas salas
(1:N).

Figura 3.2: Diagrama Entidade-Relacionamento (DER) Conceitual

Fonte: Elaborada pelo autor (2025).

Conforme demonstra a Figura 3.2, o diagrama documenta as entidades, definindo os
relacionamentos e as cardinalidades mínimas e máximas.

O banco de dados implementa índices para otimização de consultas frequentes: índice
composto em reservations(room_id, start_time, end_time) para verificação eficiente
de conflitos de horário; índice em rooms (sector_id) para consultas por setor; constraints
de unicidade em users (email) e users (cpf); e foreign keys com cascade delete para
garantir integridade referencial.

14

3.4.4 Containerização e Infraestrutura

Todo o ambiente é containerizado utilizando Docker Compose [4], criando uma rede iso-
lada onde todos os serviços comunicam-se através de nomes de serviço. Volumes persistentes
garantem que dados do banco de dados não sejam perdidos ao reiniciar containers.

A configuração do Nginx [5] direciona requisições /api/* para o backend Laravel [8] e
todas as outras requisições para o frontend React [16], permitindo que o frontend gerencie
roteamento client-side enquanto o backend processa apenas requisições de API.

Essa arquitetura containerizada facilita desenvolvimento, testes, implantação (deploy)
e manutenção, garantindo que o sistema seja portável, escalável e fácil de configurar em
diferentes ambientes.

15

Capítulo 4

Resultados

Este capítulo apresenta os resultados obtidos com o desenvolvimento do sistema HU-
Book, destacando as funcionalidades implementadas, a consolidação da arquitetura planejada
e o produto final entregue. Os resultados aqui expostos refletem a materialização do con-
junto de requisitos levantados, das decisões técnicas adotadas e das etapas de refinamento
realizadas durante o desenvolvimento.

4.1 Visão Geral do Sistema

O HUBook foi concluído como uma aplicação web, responsiva e funcional, capaz de cen-
tralizar o processo de agendamento de espaços físicos do HUMAP/UFMS. O sistema abrange
toda a cadeia de uso prevista: visitantes podem visualizar informações gerais, usuários au-
tenticados realizam solicitações e acompanham suas reservas, e administradores gerenciam
setores, salas, usuários e o fluxo completo de aprovação.

A porta de entrada para a utilização do sistema é apresentada na Figura 4.1. A
página inicial foi projetada para oferecer acesso rápido à navegação, estatísticas de uso e
cards informativos com as principais salas disponíveis, facilitando a localização visual dos
recursos.

A arquitetura desacoplada planejada foi implementada integralmente: o frontend, de-
senvolvido em React [16], consome exclusivamente a Application Programming Interface
(API) construída com Laravel [8]. Essa separação permitiu uma interface dinâmica e fluida,
enquanto o backend concentra regras de negócio, segurança e persistência de dados. O resul-
tado é um sistema escalável, organizado e preparado para futuras integrações institucionais.

Para compreender a dinâmica de interação entre os diferentes perfis de usuário e o
sistema, a Figura 4.2 detalha o fluxo completo de criação de reserva, mapeando desde a
solicitação inicial feita pelo usuário até a etapa final de aprovação ou rejeição pelo adminis-
trador.

Ao longo do desenvolvimento, diversas demonstrações foram realizadas aos setores
responsáveis pelo fluxo de reservas, o que permitiu coletar feedback contínuo e ajustar a

16

experiência de uso, navegação e organização visual da aplicação. Esses ciclos contribuíram
para tornar o produto final mais aderente ao contexto hospitalar, que exige clareza, rapidez
e padronização.

4.2 Módulo de Autenticação e Gestão de Usuários

A adaptação necessária no escopo, devido à impossibilidade de integrar com o sistema
de autenticação institucional, resultou no desenvolvimento de um módulo próprio e completo
de gestão de identidades. Esse módulo incorpora mecanismos essenciais para um ambiente
seguro e controlado.

A página de Login (Figura 4.3) permite autenticação por e-mail ou CPF, com valida-
ções automáticas e feedback imediato ao usuário. O fluxo de registro (Figura 4.4) implementa
validações de integridade, como verificação matemática do CPF, formatação automática e
confirmação de senha.

Além do registro e acesso, o sistema garante autonomia ao usuário através da página de
Perfil (Figura 4.5). Nesta interface, é possível realizar a atualização de informações pessoais
e a alteração de senha, mantendo os dados cadastrais sempre correntes.

Para administradores, foi disponibilizado um painel completo de gestão de usuários,
incluindo funcionalidades de criar novos usuários, edição e exclusão lógica (soft delete),
garantindo que o histórico do usuário seja preservado mesmo após sua remoção operacional.
Esse recurso é essencial em ambientes institucionais, onde registros de acesso precisam ser
mantidos para auditoria.

4.3 Gerenciamento de Reservas e Interface de Calendário

O módulo de reservas representa o núcleo do HUBook e concentra as regras de negócio
mais importantes do projeto. A lógica de prevenção de conflitos, implementada no backend,
foi cuidadosamente construída e testada para impedir sobreposições de horários — problema
central identificado no levantamento de requisitos.

A interface de calendário (Figura 4.6) permite visualizar reservas por setor, tipo de sala
e período, facilitando a interpretação da ocupação dos espaços. A visualização em formato
agenda, semanal e mensal contribui para atender diferentes perfis de uso. Todo o fluxo
foi pensado para oferecer clareza, especialmente considerando o ambiente hospitalar, onde
múltiplas equipes compartilham espaços.

O formulário de criação de reservas (Figura 4.7) foi projetado para ser objetivo e intui-
tivo, permitindo que o usuário selecione facilmente o setor, o espaço desejado e o intervalo de
tempo. Além disso, o sistema permite que o usuário crie solicitações em nome de terceiros,
atendendo à necessidade identificada entre setores que realizam reservas para professores,
colaboradores ou visitantes.

17

Após a criação do pedido, o usuário dispõe de uma área dedicada para o acompanha-
mento pessoal, intitulada "Minhas Solicitações"(Figura 4.8). Esta tela organiza os pedidos
em abas por status e oferece funcionalidade de busca, permitindo um controle rápido sobre
o andamento das reservas.

O Diagrama Entidade–Relacionamento Físico (Figura 4.9) confirma que a estrutura do
banco foi implementada conforme planejado, suportando adequadamente relações complexas
entre setores, salas, tipos de espaço, usuários e reservas. Essa modelagem foi essencial para
garantir consistência e evitar registros duplicados ou inconsistentes.

4.4 Painel Administrativo

O painel destinado ao administrador consolida todas as funcionalidades necessárias
para a gestão integral do sistema. A Figura 4.10 apresenta a interface de gerenciamento
de reservas, onde é possível visualizar solicitações pendentes, aprovar ou rejeitar pedidos,
registrar justificativas, cancelar reservas e consultar o histórico completo.

Além do controle sobre os agendamentos, o administrador possui ferramentas para a
gestão da infraestrutura física cadastrada. A Figura 4.11 demonstra o painel administrativo
para gerenciamento de salas, que permite a criação, edição e remoção de espaços físicos
conforme a necessidade da instituição.

Esse módulo foi projetado para reduzir o esforço manual do setor responsável pelo
agendamento, permitindo que cada ação administrativa seja executada de forma rápida
e transparente. Como resultado, o fluxo antigo, descentralizado e suscetível a falhas, foi
substituído por uma interface unificada e padronizada.

4.5 Entrega Técnica e Prontidão do Sistema

O sistema completo foi concluído em uma estrutura totalmente containerizada, utili-
zando Docker [3] e Docker Compose [4], permitindo que o ambiente seja reproduzido fiel-
mente pela equipe de Tecnologia da Informação (TI) do HUMAP. Essa abordagem elimina
inconsistências entre o ambiente de desenvolvimento e o ambiente de produção, facilitando
significativamente a futura implantação institucional.

Quanto aos testes realizados, os resultados confirmam a estabilidade da solução:

• Testes unitários asseguraram o comportamento correto de partes críticas do código.

• Testes de integração validaram regras de negócio como prevenção de conflitos, con-
trole de permissões e fluxo de autenticação.

• Testes exploratórios permitiram identificar falhas de navegação e inconsistências
visuais, posteriormente corrigidas.

18

Embora não tenham sido conduzidos testes formais de aceitação devido à indisponi-
bilidade de ambiente institucional de homologação, as demonstrações realizadas aos setores
envolvidos contribuíram para aprimorar fluxos e detalhes de funcionalidade durante o desen-
volvimento.

Assim, o artefato final não consiste apenas no código-fonte, mas em um sistema com-
pleto, funcional e preparado para futura implantação no HUMAP/UFMS, atendendo aos
requisitos mapeados e oferecendo uma base sólida para evoluções futuras.

19

Figura 4.1: Página Inicial do Sistema HUBook

Fonte: Elaborada pelo autor (2025).

20

F
ig

ur
a

4.
2:

F
lu

xo
de

C
ri

aç
ão

e
A

pr
ov

aç
ão

de
R

es
er

va

Fo
nt

e:
E

la
bo

ra
da

pe
lo

au
to

r
(2

02
5)

.

21

Figura 4.3: Página de Login

Fonte: Elaborada pelo autor (2025).

Figura 4.4: Página de Registro de Usuário

Fonte: Elaborada pelo autor (2025).

22

Figura 4.5: Página de Perfil do Usuário

Fonte: Elaborada pelo autor (2025).

Figura 4.6: Página do Calendário de Reservas

Fonte: Elaborada pelo autor (2025).

23

Figura 4.7: Página do Formulário de Criação de Reserva

Fonte: Elaborada pelo autor (2025).

24

Figura 4.8: Página Minhas Solicitações

Fonte: Elaborada pelo autor (2025).

25

Figura 4.9: Diagrama de Entidades-Relacionamentos Físico

Fonte: Elaborada pelo autor (2025).

26

Figura 4.10: Página do Painel Administrativo - Gerenciamento de Reservas

Fonte: Elaborada pelo autor (2025).

Figura 4.11: Página do Painel Administrativo - Gerenciamento de Salas

Fonte: Elaborada pelo autor (2025).

27

Capítulo 5

Considerações Finais

Este capítulo apresenta uma síntese dos objetivos alcançados, das contribuições do sis-
tema HUBook, das limitações encontradas no desenvolvimento e das perspectivas de evolução
futura da solução.

5.1 Contribuições

O desenvolvimento do HUBook permitiu alcançar o objetivo geral proposto: construir
um sistema web capaz de centralizar e padronizar o processo de agendamento de espaços
físicos no HUMAP/UFMS. O sistema resultante oferece uma aplicação funcional, alinhada
às necessidades mapeadas.

Os objetivos específicos foram amplamente atendidos, incluindo a implementação do
módulo de autenticação, gerenciamento de usuários e espaços, criação de reservas com valida-
ções automáticas, interface de calendário, painel administrativo, área pessoal para usuários,
além de uma arquitetura desacoplada e containerizada. Os requisitos funcionais e não fun-
cionais levantados foram implementados conforme escopo definido e encontram-se descritos
no Apêndice A.

O HUBook contribui diretamente para a modernização dos processos administrativos
do HUMAP/UFMS. A centralização das solicitações reduz a fragmentação anteriormente
existente e a automação das verificações de conflito de horário elimina falhas recorrentes
do modelo anterior. A interface responsiva e organizada favorece a experiência de uso,
enquanto as tecnologias adotadas fornecem uma base sólida para evoluções futuras, incluindo
integrações institucionais e funcionalidades adicionais como relatórios e notificações.

5.2 Limitações e Trabalhos Futuros

Algumas limitações foram identificadas ao longo do projeto. Não foi possível inte-
grar o sistema com o mecanismo institucional de autenticação, resultando na necessidade

28

de desenvolver um módulo próprio. A ausência de um ambiente oficial de homologação
impossibilitou a realização de testes formais com usuários finais, restringindo a validação
a testes automatizados e testes exploratórios conduzidos em ambiente local. Além disso,
algumas funcionalidades inicialmente planejadas, como notificações automáticas, relatórios
gerenciais, integração com calendários externos e documentação destinada aos usuários —
permaneceram fora do escopo desta versão.

Com base nessas limitações, diversos aprimoramentos podem ser realizados em traba-
lhos futuros, como:

• Integração com o sistema institucional de autenticação do HUMAP/UFMS;

• implementação de notificações por e-mail; desenvolvimento de relatórios gerenciais e
dashboards ;

• integração com serviços externos de calendário; criação de sistema de avaliação de salas;
auditoria detalhada de ações; suporte a reservas recorrentes; bloqueio administrativo
de períodos; e evolução para um aplicativo mobile ou Progressive Web App (PWA).

• Também se destacam oportunidades de melhorias contínuas de acessibilidade e usabi-
lidade.

5.3 Considerações Finais

O desenvolvimento do HUBook possibilitou a aplicação prática de conceitos de enge-
nharia de software, desenvolvimento web e metodologias ágeis na solução de um problema
institucional concreto. O sistema demonstra a viabilidade de empregar tecnologias contem-
porâneas, arquitetura desacoplada e práticas de desenvolvimento incremental para construir
aplicações alinhadas às demandas de ambientes acadêmicos e hospitalares.

O artefato entregue atende ao conjunto de requisitos definidos e apresenta um sistema
funcional, organizado e preparado para implantação futura. A arquitetura implementada
favorece manutenção, escalabilidade e expansão, garantindo a longevidade da solução. A
apresentação do projeto na 3ª Jornada Científica do HUMAP-UFMS, onde recebeu destaque
como 2º melhor trabalho de iniciação tecnológica, reforça seu potencial de aplicação e o
interesse institucional na continuidade da proposta.

Este trabalho estabelece uma base para futura implantação institucional, continuidade
em pesquisas futuras e possível registro de propriedade intelectual, contribuindo para a
modernização dos processos internos do HUMAP/UFMS e para a formação acadêmica e
profissional envolvida em seu desenvolvimento.

29

Capítulo 6

Referências Bibliográficas

[1] BECK, Kent; ANDRES, Cynthia. Programação Extrema (XP) Explicada: Acolha as
mudanças. 2. ed. [s.n.], Porto Alegre, RS, Brasil, 2004.

[2] BERGMANN, Sebastian. PHPUnit: The PHP Testing Framework. Disponível em:
<https://phpunit.de/index.html>. Acesso em: 5 dez. 2025.

[3] DOCKER, INC. Docker: Accelerated Container Application Development. Disponível
em: <https://www.docker.com/>. Acesso em: 5 dez. 2025.

[4] DOCKER, INC. Docker Compose. Disponível em:
<https://docs.docker.com/compose/>. Acesso em: 5 dez. 2025.

[5] F5 NGINX Products. Disponível em: <https://www.f5.com/products/nginx>. Acesso
em: 5 dez. 2025.

[6] GitHub · A mudança é constante. O GitHub mantém você à frente. Disponível em:
<https://github.com/?locale=pt-BR>. Acesso em: 5 dez. 2025.

[7] JavaScript With Syntax For Types. Disponível em:
<https://www.typescriptlang.org/>. Acesso em: 5 dez. 2025.

[8] Laravel - The PHP Framework For Web Artisans. Disponível em:
<https://laravel.com>. Acesso em: 5 dez. 2025.

[9] Laravel Sanctum - Laravel 12.x - The PHP Framework For Web Artisans. Disponível
em: <https://laravel.com/docs/12.x/sanctum>. Acesso em: 5 dez. 2025.

[10] MCDONNELL, Colin. Zod - typescript-first schema validation. Disponível em:
<https://zod.dev/>. Acesso em: 5 dez. 2025.

[11] MYERS, Glenford J.; SANDLER, Corey; BADGETT, Tom. The Art of Software Tes-
ting. 3. ed. Wiley, [s.l.], 2011. Obra sem tradução oficial para o português.

[12] Node.js — Run JavaScript Everywhere. Disponível em: <https://nodejs.org/pt>.
Acesso em: 5 dez. 2025.

[13] ORACLE CORPORATION. The world’s most popular open source database. Dispo-
nível em: <https://www.mysql.com/>. Acesso em: 5 dez. 2025.

30

[14] PHP. Disponível em: <https://www.php.net/index.php>. Acesso em: 5 dez. 2025.

[15] PRESSMAN, Roger S.; MAXIM, Bruce R. Engenharia de Software: uma abordagem
profissional. 9. ed. Amgh, Porto Alegre, RS, 2021.

[16] React - a javascript library for building user interfaces. Disponível em:
<https://react.dev/>. Acesso em: 5 dez. 2025.

[17] React Hook Form - performant, flexible and extensible form library. Disponível em:
<https://react-hook-form.com/>. Acesso em: 5 dez. 2025.

[18] React Router Official Documentation. Disponível em: <https://reactrouter.com/>.
Acesso em: 5 dez. 2025.

[19] SHADCN. The Foundation for your Design System - shadcn/ui. Disponível em:
<https://ui.shadcn.com/>. Acesso em: 5 dez. 2025.

[20] SOMMERVILLE, Ian. Engenharia de Software. 10. ed. [s.n.], Brasil, 2019.

[21] TanStack Query. Disponível em: <https://tanstack.com/query/latest>. Acesso em: 5
dez. 2025.

[22] TORVALDS, Linus. Git - distributed version control system. Disponível em:
<https://git-scm.com/>. Acesso em: 5 dez. 2025.

[23] YOU, Evan. Vite - next generation frontend tooling. Disponível em:
<https://vite.dev>. Acesso em: 5 dez. 2025.

31

Apêndice A

Documentação do Sistema

Este apêndice apresenta a documentação do sistema HUBook, incluindo requisitos
funcionais, requisitos não funcionais e tabela resumo dos casos de uso.

Requisitos Funcionais

Os requisitos funcionais descrevem o que o sistema deve fazer para atender as neces-
sidades dos usuários. A seguir, são apresentados os requisitos funcionais implementados no
sistema HUBook, organizados por categoria.

Autenticação e Gerenciamento de Usuários. O sistema implementa um conjunto
completo de funcionalidades relacionadas à autenticação e gestão de usuários:

RF-01 O sistema deve permitir login utilizando e-mail ou CPF como identificador, junta-
mente com senha.

RF-02 O sistema deve permitir cadastro de novos usuários, coletando nome, e-mail, CPF,
telefone, vínculo com o HUMAP/UFMS e senha.

RF-03 O sistema deve validar CPF durante o cadastro.

RF-04 O sistema deve aplicar máscaras automáticas para CPF e telefone durante o preen-
chimento de formulários.

RF-05 O sistema deve permitir recuperação de senha através de link enviado por e-mail.

RF-06 O sistema deve permitir atualização de perfil pessoal (nome, e-mail, telefone, vín-
culo).

RF-07 O sistema deve permitir alteração de senha, exigindo validação da senha atual.

RF-08 O sistema deve permitir que administradores gerenciem usuários (criar, editar, re-
mover, restaurar).

32

RF-09 O sistema deve implementar soft delete para usuários, permitindo restauração pos-
terior.

RF-10 O sistema deve impedir que administradores deletem permanentemente a si mesmos.

Gerenciamento de Espaços Físicos. O sistema oferece funcionalidades completas
para administração de espaços físicos:

RF-11 O sistema deve permitir cadastro e edição de setores, com nome e descrição.

RF-12 O sistema deve permitir cadastro e edição de tipos de salas (sala, auditório, labora-
tório, outro).

RF-13 O sistema deve permitir cadastro e edição de salas, incluindo nome, setor, tipo,
capacidade, status, descrição e recursos.

RF-14 O sistema deve impedir exclusão de setores que possuem salas associadas.

RF-15 O sistema deve impedir exclusão de tipos de salas que possuem salas utilizando-os.

RF-16 O sistema deve permitir visualização pública de salas disponíveis, com filtros por
setor, tipo e status.

Sistema de Reservas. O núcleo do sistema consiste no módulo de reservas, que
implementa validações automáticas e gestão completa:

RF-17 O sistema deve permitir criação de solicitações de reserva por usuários autenticados.

RF-18 O sistema deve validar automaticamente que a data/hora de início é futura.

RF-19 O sistema deve validar automaticamente que a data/hora de término é posterior ao
início.

RF-20 O sistema deve validar automaticamente que o número de participantes não excede
a capacidade da sala.

RF-21 O sistema deve verificar automaticamente conflitos de horário com outras reservas
aprovadas ou pendentes.

RF-22 O sistema deve exibir mensagens detalhadas quando há conflitos de horário, inclu-
indo horários conflitantes formatados.

RF-23 O sistema deve permitir criação de reservas em nome de terceiros, coletando infor-
mações do responsável.

RF-24 O sistema deve tornar todos os campos de terceiro obrigatórios quando a opção de
reserva para terceiro é selecionada.

RF-25 O sistema deve criar reservas com status inicial "pendente".

33

RF-26 O sistema deve permitir que o usuário proprietário edite suas reservas (pendentes
ou aprovadas), desde que a data e hora de início ainda não tenham sido ultrapassadas.

RF-27 O sistema deve permitir edição de qualquer reserva futura por administradores.

RF-28 O sistema deve bloquear a edição de reservas que já foram iniciadas, que estejam
marcadas como inativas ou que possuam status "cancelado".

RF-29 O sistema deve alterar automaticamente o status para "pendente"após qualquer
modificação na reserva, exigindo nova aprovação.

RF-30 O sistema deve permitir cancelamento de reservas pendentes ou aprovadas que ainda
não passaram.

RF-31 O sistema deve realizar cancelamento através de soft delete, alterando status para
"cancelado".

RF-32 O sistema deve permitir que administradores aprovem reservas pendentes.

RF-33 O sistema deve permitir que administradores rejeitem reservas pendentes, exigindo
motivo obrigatório.

RF-34 O sistema deve salvar motivo de rejeição junto com a reserva recusada.

RF-35 O sistema deve permitir visualização de calendário público com reservas aprovadas.

RF-36 O sistema deve ocultar dados sensíveis (e-mail, telefone, dados de terceiros) na
visualização pública.

RF-37 O sistema deve permitir visualização de calendário privado para usuários autentica-
dos, com todas as reservas.

RF-38 O sistema deve oferecer filtros no calendário por setor, tipo de sala e sala específica.

RF-39 O sistema deve permitir acompanhamento pessoal de reservas na página "Minhas
Solicitações".

RF-40 O sistema deve separar reservas em ativas (futuras) e inativas (passadas) na página
de solicitações.

RF-41 O sistema deve permitir filtragem de reservas por status (pendentes, aprovadas,
recusadas, canceladas, inativas).

RF-42 O sistema deve permitir busca de reservas por título, nome da sala ou propósito.

RF-43 O sistema deve ordenar reservas por data (ativas: mais próximas primeiro, inativas:
mais recentes primeiro).

34

Requisitos Não Funcionais

Os requisitos não funcionais especificam como o sistema deve se comportar em relação
a aspectos qualitativos, organizados nas seguintes categorias:

Usabilidade. O sistema prioriza experiência do usuário através de interface intuitiva
e responsiva:

RNF-01 O sistema deve apresentar interface intuitiva e de fácil navegação.

RNF-02 O sistema deve ser responsivo, adaptando-se adequadamente a diferentes tama-
nhos de tela (desktop, tablet, smartphone).

RNF-03 O sistema deve fornecer feedback claro para todas as ações do usuário (sucesso,
erro, carregamento).

RNF-04 O sistema deve exibir mensagens de erro descritivas e orientativas, ajudando o
usuário a corrigir problemas.

Desempenho. O sistema foi projetado para oferecer respostas rápidas e suportar
múltiplos usuários:

RNF-05 O sistema deve responder a operações comuns (login, listagem, criação de reserva)
em tempo adequado (menos de 2 segundos).

RNF-06 O sistema deve suportar múltiplos usuários simultâneos sem degradação significa-
tiva de desempenho.

RNF-07 O sistema deve implementar paginação em listagens que podem retornar muitos
resultados.

Segurança. A segurança é garantida através de múltiplas camadas de proteção:

RNF-08 O sistema deve utilizar autenticação baseada em tokens seguros para validar a
identidade do usuário.

RNF-09 O sistema deve armazenar senhas com criptografia aplicada, nunca em texto plano.

RNF-10 O sistema deve implementar autorização baseada em roles (usuário comum e ad-
ministrador).

RNF-11 O sistema deve validar e sanitizar dados de entrada tanto no frontend quanto no
backend para prevenir XSS.

RNF-12 O sistema deve implementar medidas de segurança contra injeção de código ma-
licioso e falsificação de solicitações.

RNF-13 O sistema deve ocultar informações sensíveis em respostas públicas da API.

35

RNF-14 O sistema deve sempre retornar mensagem genérica em recuperação de senha, não
expondo se e-mail existe.

Manutenibilidade. O código segue padrões estabelecidos para facilitar manutenção
futura:

RNF-15 O sistema deve seguir padrões estabelecidos pelos frameworks frontend e backend.

RNF-16 O sistema deve separar claramente responsabilidades entre camadas.

RNF-17 O sistema deve documentar código complexo e regras de negócio importantes.

Disponibilidade e Implantação. O sistema foi projetado para facilitar implantação
e garantir disponibilidade:

RNF-18 O sistema deve ser acessível via navegador web, sem necessidade de instalação de
software adicional.

RNF-19 O sistema deve ser containerizado utilizando Docker, garantindo consistência de
execução entre ambientes Linux, Windows e macOS.

RNF-20 O sistema deve garantir persistência de dados através de volumes Docker persis-
tentes.

Quadro Resumo dos Casos de Uso

O Quadro A.1 apresenta um resumo dos casos de uso implementados no sistema HU-
Book.

36

Quadro A.1: Resumo dos Casos de Uso do Sistema HUBook

ID Nome Ator Objetivo
CU-01 Realizar Login Usuário, Admin,

Visitante
Autenticar-se no sistema utili-
zando e-mail ou CPF e senha

CU-02 Registrar Nova Conta Visitante Criar nova conta de usuário no
sistema

CU-03 Solicitar Reserva de
Sala

Usuário, Admin Criar solicitação de reserva de es-
paço físico

CU-04 Visualizar Minhas Re-
servas

Usuário, Admin Acompanhar reservas pessoais
com filtros e busca

CU-05 Editar Reserva Usuário (Pró-
prias Reservas),
Admin (Qual-
quer Reserva)

Modificar dados de reserva futu-
ras, revertendo status para pen-
dente

CU-06 Cancelar Reserva Usuário (Pró-
prias Reservas),
Admin (Qual-
quer Reserva)

Cancelar reserva futura, libe-
rando horário da sala

CU-07 Recuperar Senha Usuário, Visi-
tante

Redefinir senha através de link
enviado por e-mail

CU-08 Atualizar Perfil Usuário, Admin Modificar informações pessoais e
alterar senha

CU-09 Aprovar Reserva Admin Aprovar solicitação de reserva
pendente

CU-10 Rejeitar Reserva Admin Rejeitar solicitação de reserva
com motivo obrigatório

CU-11 Gerenciar Salas Admin Criar, editar e remover salas do
sistema

CU-12 Gerenciar Setores Admin Criar, editar e remover setores do
sistema

CU-13 Gerenciar Usuários Admin Criar, editar, remover e restaurar
usuários

CU-14 Visualizar solicitações
de Reservas

Admin Visualizar todas as solicitações de
reservas.

CU-15 Visualizar Salas Dis-
poníveis

Visitante, Usuá-
rio, Admin

Consultar informações sobre salas
disponíveis

CU-16 Visualizar Reservas
Públicas

Visitante, Usuá-
rio, Admin

Visualizar reservas públicas com
dados limitados

37

	Lista de Figuras
	Lista de Abreviaturas e Siglas
	Introdução
	Objetivos
	Objetivos Específicos

	Justificativa
	Organização do Trabalho

	Referencial Teórico
	Engenharia de software e Metodologias de Desenvolvimento
	Arquitetura de Sistemas Web
	Containerização e Infraestrutura
	Segurança em Sistemas Web
	Testes e Validação de software

	Metodologia
	Processo de Desenvolvimento
	Validação e Testes
	Planejamento e Arquitetura da Solução
	Descrição Técnica da Arquitetura
	Principais Módulos do Frontend
	Principais Módulos do Backend
	Estrutura do Banco de Dados
	Containerização e Infraestrutura

	Resultados
	Visão Geral do Sistema
	Módulo de Autenticação e Gestão de Usuários
	Gerenciamento de Reservas e Interface de Calendário
	Painel Administrativo
	Entrega Técnica e Prontidão do Sistema

	Considerações Finais
	Contribuições
	Limitações e Trabalhos Futuros
	Considerações Finais

	Referências Bibliográficas
	Documentação do Sistema

