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Abstract. A relevant problem in Computational Biology is mapping and com-
paring sequences, often using a high-quality reference sequence. However, such
reference sequences are often biased, representing only a subset of all possibil-
ities. To address this, multiple sequences are represented using more robust
structures, such as sequence graphs, onto which sequences can be mapped.
More formally, given as input a sequence s and a sequence graph G, the goal is
to find a path in G that induces a sequence as similar as possible to s. This def-
inition leads to the Sequence Graph Alignment Problem (SGAP). In this study,
we propose a heuristic for the SGAP, under the Hamming Distance, designed to
solve a variant of the problem where the goal is to find a path in the sequence
graph G. The proposed heuristic demonstrated efficiency and yielded promising
results on an artificial data set.

Resumo. Um problema relevante em Biologia Computacional é o mapeamento
e a comparação de sequências, frequentemente utilizando uma sequência de
referência de alta qualidade. Contudo, tais sequências de referência muitas
vezes são enviesadas, representando apenas um subconjunto das possibilidades
existentes. Para resolver esse problema, múltiplas sequências são representadas
por meio de estruturas mais robustas, como os grafos de sequência, nos quais as
sequências podem ser mapeadas. De forma mais formal, dado uma sequência s
de entrada e um grafo de sequência G, o objetivo é encontrar um caminho em
G que induza uma sequência o mais similar possı́vel a s. Esta definição leva ao
Problema de Alinhamento de Grafos de Sequência (SGAP), sob a Distância de
Hamming. Neste estudo, propomos uma heurı́stica para o SGAP, projetada para
resolver uma variante do problema, onde o objetivo é encontrar um caminho no
grafo de sequência G. A heurı́stica proposta demonstrou eficiência e obteve
resultados promissores em um conjunto de dados artificial.

1. Introduction
In Computer Science Theory, a problem is considered intractable when it cannot be solved
in polynomial time. To handle such problems, heuristics are often used, providing ap-
proximate solutions efficiently. In Computational Biology, where many problems share
these characteristics, heuristics play a crucial role in delivering sufficiently good solutions
within polynomial time, even if they are not always optimal. A common problem in this



field is to map one sequence onto another for comparison. This process typically uses a
reference sequence; however because it represents only a restricted subset of possible se-
quences, it is biased. For example, the Human Genome Project was based on a restricted
pool of human genomes, and comparing your genome with the resulting reference could
lead to unexpected results. One way to address this problem is to align the sequence in
a graph that represents multiple sequences simultaneously; therefore, it is increasingly
important to use graphs to provide a more comprehensive representation nowadays.

A sequence graph is a graph in which each vertex is labeled with one or more char-
acters. Among the types of sequence graph, the De Bruijn graph [De Bruijn 1946] and
the simple sequence graph are particularly noteworthy, with our study focusing primarily
on the latter. In a simple sequence graph, vertices are labeled with a single character,
connected by edges. In contrast, a De Bruijn graph of order k has vertices labeled by a
string of character of length k, with an edge between two vertices if there is an overlap of
k−1 characters between the suffix of the first vertex and the prefix of the second. In these
structures, a walk w spells a sequence s′ corresponding to the label of vertices connected
by arcs in w. Given a sequence graph G and a sequence s, the goal of the Sequence Graph
Alignment Problem (SGAP) is to find a path c in G that induces a sequence s′ as close as
possible to s.

Finding a path c that induces a sequence s′ as close as possible to a target sequence
s in a De Bruijn graph is known to be a NP-hard problem [Limasset et al. 2016], making
exact solutions impractical as the size of the graph increases. In simple sequence graphs,
this problem is also computationally challenging, as we will conjecture later in this study.
Given the NP-hardness of this problem, we developed a heuristic inspired by Marschall’s
work [Rautiainen and Marschall 2017] on sequence-to-graph alignment. In their study,
Rautiainen and Marschall proposed a polynomial time algorithm to a variant of the SGAP
where the objective is to find a walk instead of a path in the sequence graph, under the edit
distance. Their approach maps a sequence onto a simple sequence graph in O(|A| ·m +
|V | ·m · log(|A| ·m)) time. In our work, we propose an implementation of Marschall’s
algorithm, adapting it to address the SGAP under the hamming distance.

This work is organized as follows: Section 2 presents preliminary concepts and es-
sential computational definitions for understanding the Sequence Graph Alignment Prob-
lem (SGAP). In Section 3, we carried out a bibliographical review of the problem ad-
dressed in this study. In Section 4, we investigate the possibility of converting De Bruijn
graphs into simple sequence graphs and analyze the structural equivalence between these
two representations. In Section 5, we demonstrate the process of the proposed heuristic,
outlining its functionality and methodology. Section 6 presents the results, accompanied
by tables and graphs, to illustrate the heuristic’s efficiency and accuracy. Finally, Section 7
provides the conclusion of this research, along with future research directions, discussing
potential improvements and the broader applications of SGAP in biological contexts.

2. Preliminary Concepts

For a clearer understanding of this study, some preliminary concepts are introduced in
this section. In Section 2.1, we provide an overview of sequences and related concepts;
in Section 2.2, we introduce the concept of Hamming distance; and in Section 2.3, we
discuss fundamental graph concepts.
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2.1. Sequences

An alphabet Σ is a finite set of characters (or symbols). A sequence or string s of Σ
is any group of 0 or more characters denoted by s = s[1]s[2]..s[n], with s[i] being the
i-th symbol of s, and 1 ≤ i ≤ n. The size of s, represented by |s|, indicates the quantity
of symbols is s. For a k ∈ N, the set Σk represents all sequences of length k that can
be formed using the symbols in Σ. The set Σ∗ =

⋃
k≥0Σ

k thus includes all possible
sequences over Σ of any length.

Given a sequence s = s[1]s[2] . . . s[n], a substring of s is any sequence of con-
secutive characters of s. A substring s[i]s[i+ 1] . . . s[j] with i ≥ 1 and j ≤ |s| is denoted
by s[i, j]. In other words, a substring of s is any part of s that can be obtained by selecting
one or more characters in sequence, without rearranging their order. A substring of length
k of a sequence s is called a k-mer of s. For a given i where 1 ≤ i ≤ |s|, the substring
x = s[1, i] (s[i, |s|]) is called a prefix (suffix) of s.

Given two distinct sequences s and t, where s = uw (with u as a prefix and w
as a suffix of s) and t = wv (with w as a prefix and v as a suffix of t), the substring w
common to both s and t is called an overlap of these sequences. For two sequences s and
t, we denote their concatenation by st, which consists of joining these two sequences into
a single continuous sequence by placing all characters of t, in their original order, at the
end of s.

For example, consider s = ABBCA and t = BCABB, two sequences built over
the alphabet Σ = {A,B,C} and k = 2. Thus, |s| = 5, s[1] = A, s[4] = C, Σk =
{AA, AB, AC, BA, BB, BC, CA, CB, CC}, the substring s[1, 3] = ABB is a prefix of s,
s[3, 5] = BCA is a suffix of s, w = BCA is common to both strings, so it’s an overlap of
s and t of length 3, and st = ABBCABCABB is the concatenation of s and t.

2.2. Distance

The distance between two sequences s and t is a non-negative value intended to measure
how similar the two sequences are. It can represent, for example, the minimum number
of editing operations (deletion, substitution and insertion of a character) described by
the Russian mathematician Vladimir Levenshtein [Levenshtein 1966], required for make
one sequence identical to the other. Among distance measures, the Hamming distance is
particularly relevant to our study.

The Hamming distance, introduced by the American mathematician Richard
Hamming [Hamming 1950], considers only substitutions as the only allowed editing op-
eration to transform s into t. This implies that the calculation is only possible when both
sequences have the same length. Formally, for two sequences s and t with length n, the
Hamming distance dh(s, t) between the two sequences is defined as

dh(s, t) =
n∑

i=1

f(s[i], t[i]), (1)

where f(s[i], t[i]) = 1 if s[i] ̸= t[i] and 0 otherwise. This measure represents the substi-
tution cost for aligning s[i] with t[i], and vice versa. This measure can be computed in
O(n) time. For example, consider the sequences s = ACAGT and t = GTACT . Table
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1 shows the differences between s and t, which serves as the basis for the calculation of
the Hamming distance.

A C A G T
G T A C T
1 1 0 1 0

Table 1. Example of calculating the Hamming distance between the same length sequences s =
ACAGT and t = GTACT . The Hamming distance dh(s, t) = 3 due to differing characters at
positions s[1] ̸= t[1], s[2] ̸= t[2] and s[4] ̸= t[4], while the other characters are identical.

2.3. Graphs
A graph G is defined as an ordered pair (V,A), composed of two sets: V , representing
the elements called vertices (of the graph), and A, representing the elements called edges
or arcs (of the graph). Each edge of a graph corresponds to a non-ordered pair of ver-
tices, while each arc corresponds to an ordered pair of vertices of a graph. When the
graphs have arcs, they are called directed graphs or digraphs. However, if it contains
only edges, they are called undirected graphs. For example,
G” = ({v1 v2, v2, v4}, {(v1, v2), (v2, v3), (v4, v1), (v2, v4), (v4, v2)} is a directed graph,
while G = ({v1, v2, v3, v4}, {{v1, v2}, {v2.v3}, {v2, v4}, {v4, v1}}) is an undirected graph.

Graphs are called this because they can be represented graphically, with circles
as vertices and line segments as edges. For digraphs, the line segments representing the
arcs have arrows indicating their direction. Given two vertices u and v in an undirected
graph G, they are called adjacent if there is an edge between them. In a directed graph
D, u and v are adjacent if there is an arc from u to v (u → v). In this case, u is adjacent
to v, while v could not be adjacent to u. For a vertex v in a undirected graph G, the
degree of v (deg(v)) is the number of edges incident to it. In a directed graph D, the in-
degree of v (deg−(v)) is the number of arcs coming to the vertex, and the out-degree of
v (deg+(v)) is the number of arcs coming out from the vertex. A graphical representation
of an undirected graph G and a directed graph D can be seen in Figure 1.

Figure 1. In G, the vertices v1 and v2 are adjacent while in D v1 is adjacent to v2 but not
vice versa. In D the in-degree of v4 is deg−(v4) = 1 and the out-degree is deg+(v4) = 2.
In G the degree of v4 is deg(v4) = 2.

Each edge {u, v} of an undirected graph G (or arc (u, v) of a directed graph D)
can be associated with a real number through a function c : A → R (or c((u, v)) → R).
This number associated to an edge (or arc) of a graph is called the cost (or weight) of
the edge (or arc). A weighted graph is a graph in which each edge (or arc) is assigned a
cost (weight). In a graphical representation, these costs are displayed together with their
corresponding edges (or arcs), as demonstrated in the Figure 2.
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2.3.1. Graph paths

From this point onward, we will refer to digraphs simply as graphs.

Given a graph G = (V,A), a walk in G is a sequence of vertices p = v1, v2, . . . , vk,
such that for each pair of vertices vi, vi+1 in p there is an arc (vi, vi+1) ∈ A. The length
of a walk is defined as the number of arcs in the sequence. A walk is closed if it’s first
vertex coincides with the last one. A cycle is a closed walk without repeating arcs. Graphs
without cycles as called acyclic graphs - DAG (Directed Acyclic Graph). A path in G is
a walk without repeating vertices.

Given a weighted graph G, the cost of the path p = v1, . . . , vn in G is c(p), the
sum of the costs of the arcs of p (c(p) =

∑n−1
j=1 c(vj, vj+1)). For graphs with cost on the

arcs, the shortest path from u to v is the one with the minimum cost. If a path between
u to v doesn’t exist, the cost of the path is infinite. For example, in the graph G from
the Figure 2, the shortest path from v1 to v8 is v1, v2, v3, v5, v8 with length 4 and cost 10,
although there is a path v1, v4, v7, v8, with length 3 but total cost of 13.

Figure 2. : Example of weighted graph , adapted from [Rocha 2024].

The Shortest Path Problem can be defined as:
Problem 1. Given a weighted graph G and two vertices u and v in G, find the shortest
path from u to v.

This problem is well-studied in the literature and can be solved in O(|A|+|V |log|V |)
time using the Dijkstra’s algorithm [Dijkstra 1959] where A is the set of arcs and V is the
set of vertices of the input graph. Dijkstra’s algorithm is used to calculate the shortest
path between vertices in a graph. It begins by selecting a vertex as the source, marking it
with a distance of zero and all others with an infinite distance, as well as marking them as
unvisited. At each iteration, the unvisited vertex with the shortest distance to the source
vertex is selected, and the distances to its neighbors are recalculated. If the new distance
to each neighbor is smaller, it is updated. This process repeats until all vertices have been
visited. It is important to note that the algorithm does not support arcs with negative costs.

2.3.2. Sequence Graph

A sequence graph is a graph G = (V,A), where each vertex has an associated se-
quence of characters constructed over an alphabet Σ [Braga 2000]. A sequence of sym-
bols associated with a vertex in a sequence graph is called the vertex label. A simple
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sequence graph (SSG) is a graph in which each vertex is labeled with only one charac-
ter [Amir et al. 1997, Rautiainen and Marschall 2017, Jain et al. 2020]. An example of a
(simple) sequence graph is presented in Figure 3.

Given a walk p = v1, v2, . . . , vn in a sequence graph G, the sequence induced
by p is determined by concatenating each sequence associated with each vertex in p =
v1, v2, . . . , vn in the order that the vertices appear in the walk. For example, in the graph G
in Figure 3, the sequence induced by p = v3, v5, v6, v7, v4, v1, of length 5, is GTCGTA.

Given a set of sequences S = {r1, . . . , rm} constructed over an alphabet Σ and
an integer k ≥ 2, a De Bruijn graph (DBG) [De Bruijn 1946] of order k is defined as a
graph Gk = (V,A) such that:

• V = {d ∈ Σk|d is a sequence of length k(k-mer) of r ∈ S};
• A = {(d, d′)| the suffix of length k − 1 of d is a prefix of d′}.

Note that in a De Bruijn graph, the arcs are induced by the set of vertices; there-
fore, we can define a De Bruijn graph Gk solely by its set of vertices. For example,
consider the set S = {TTCTG, TGATA, TCATA} and k = 3. An example of a De Bruijn
graph G3 along with its induced arcs for the set S is presented in Figure 3.

Given a walk p = v1, v2, . . . , vn in a De Bruijn graph, the sequence induced by
p is v1v2[k] . . . vn[k], given by concatenating the k-mer v1 with the last character of each
k-mer v2, . . . , vn. For example, in the graph G3 in Figure 3, the sequence induced by
p = v1, v5, v8, v9 is TTCATA.

Figure 3. G represents a simple sequence graph and G3 a De Bruijn graph with k = 3.

3. SGAP - Sequence Graph Alignment Problem

The Sequence Graph Alignment Problem (SGAP) models the challenge of mapping se-
quences onto graphs. Informally, the problem consists of finding a path in a sequence
graph G that induces a sequence s′ as similar as possible of another sequence s given a
measure distance.

3.1. Problem Formulation and Example

Formally, SGAP is defined as follows. Given:

• A sequence graph G = (V,A);
• An input sequence s ∈ Σ∗, of length m.
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• A cost function F : Σ× Σ→ N, which measures the ”distance” between charac-
ters.

The goal is to find a path p in G such that the induced sequence s′ minimizes the total cost
dh(s, s

′) =
∑m

i=1 f(s[i], s
′[i]).

Example 1: Given the DBG of Figure 4 and s = GTTCTACG, an output for
the SGAP would be the path p1 = v1, v2, v3, v4, v6, v7 that induces the sequence s1 =
GTTCGGAC, whose distance to s is dh(s, s1) = 4 .

Figure 4. : Example of a De Bruijn Graph Gk , adapted from [Rocha 2024].

Example 2: Given the SSG of Figure 5 and s = ATGCTAG, an output for the
SGAP would be the path p1 = v1, v4, v2, v3, v5, v8, v7 that induces the sequence s1 =
ATCGTAG, whose distance to s is dh(s, s1) = 2 .

Figure 5. : Example of a Simple Sequence Graph G , adapted from [Rocha 2024].

The Sequence Graph Alignment problem was proven to be NP-complete for De
Bruijn graphs by Limasset et al. [Limasset et al. 2016] under the Hamming Distance. In
the next section, we propose that this computational complexity persists even for simple
sequence graphs, further emphasizing the problem’s general difficulty.

4. Difficulty of the Problem in Simple Sequence Graphs
The equivalence between DBG and SSG forms the basis for analyzing the complexity
of the SGAP in the context of simple sequence graphs. The representation of a DBG,
particularly as an SSG, is often treated abstractly in theoretical studies, as highlighted
by Gibney [Gibney et al. 2022]. In their work, the authors use the DBG by assigning a
character to each vertex, with k-mers generated through walks of length k. Building on
this premise, we describe a naive algorithm for converting a DBG Gk into an SSG G,
showing that both graphs induce the same set of sequences.

The conversion involves two steps:
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1. for each vertex (k-mer) u in Gk, the first step consists of dividing it into k other
vertices vu1 , . . . , vuk

, where the label vui
corresponds to the i-th symbol of the

k-mer of u. These new vertices form the vertex set of G.
2. the second step involves inserting arcs into G to connect its vertices. In general,

for each vertex u of Gk that was divided, we insert the arcs
(vu1 , vu2),(vu2 , vu3),. . . ,(vuk−1

, vuk
). Furthermore, for each pair of adjacent vertices

u and u′ in Gk, we add an arc connecting the vertex vuk
from the division of u to

the vertex vu′
k

from the division of u′ in G.

An example of the conversion is illustrated in Figure 6. In this process, each
vertex u in DBG Gk, with k = 3, is subdivided into k vertices in SSG G. Arcs are added
to connect consecutive vertices: the first to the second, the second to the third, and so on,
until the (k − 1)-th vertex connects to the k-th vertex.

For example, the arcs (vu11 , vu12) and (vu12 , vu13) in G represent the subdivision
of the k-mer ACA from the vertex u1 in Gk. If a vertex u in Gk has adjacent vertices
u′, an arc is added between the k-th vertex of u’s subdivision and the vertex representing
the k-th character of each adjacency u′. For example, the arc (vu13 , vu23) in G reflects the
adjacency between the k-mers ACA and CAC in Gk.

This rule also applies to loops in Gk. In such cases, the arc from the k-th vertex
of u’s subdivision to the vertex representing the k-th character of the adjacency u′. In
this case, the arc connects back to the k-th vertex of u’s subdivision, as illustrated by the
vertex vu43 in G for the k-mer AAA in Gk.

Figure 6. Example of the conversion of a DBG Gk, with k = 3, into an equivalent SSG
G. Each vertex in Gk is subdivided into k vertices, with arcs added to represent both internal
connections and adjacencies between k-mers.

Theorem 4.1. All sequences induced in the De Bruijn graph Gk are also induced in the
simple sequence graph G.

Proof. Given a De Bruijn graph Gk and its equivalent simple sequence graph G, G
contains all the k-mers of Gk, divided and correctly connected by arcs. For any walk
p = u1, . . . , un in Gk, there exists a walk qp′ = vu11 , . . . , vu1(k−1)

, vu1k
, vu2k

, . . . , vunk

in G, where q = vu11 , . . . , vu1k
and p′ = vu2k

, . . . , vunk
. Since p = u1, . . . , un =

vu11 , . . . , vu1k
, vu2k

, . . . , vunk
= qp′, it can be observed that q = vu11 , . . . , vu1k

induces
the same sequence as the vertex u1, and each character is equivalently induced in vu2k

=
u2[k], . . . , vunk

= un[k]. Therefore, p and qp′ induce the same sequences.
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While a formal proof that all sequences induced in the SSG are also induced in the
DBG are missing, we conjecture that this holds for sequences of length n ≥ k in SSG that
can be constructed as paths in the DBG. This conjecture is based on the structural equiv-
alence observed in the conversion process, where each k-mer in the DBG corresponds to
a valid walk in the SSG, preserving the original sequence characteristics.

This equivalence highlights that the complexity of aligning sequences in SSGs
is inherited from DBGs. Since the SGAP in DBGs is known to be NP-complete, and
we have demonstrated the equivalence of sequence induction between DBGs and SSGs,
it follows that the analogous sequence alignment problem in SSGs is also NP-complete.
This conclusion underscores the inherent computational challenges of sequence alignment
in graphs and motivates the development of efficient algorithms to address this problem
in the context of SSGs.

5. Our Heuristic for the Problem

5.1. Alignment graph

For the SGAP, dynamic programming is an effective approach for directed acyclic graphs
(DAGs), as it leverages topological ordering to efficiently compute optimal alignments.
However, this method becomes challenging to apply when the graph contains cycles,
as the lack of a clear hierarchical structure complicates the alignment process. To ad-
dress this, the problem can be reformulated as a shortest-path search in a specific type
of graph, called here alignment graph. This approach is particularly useful because it
enables shortest-path algorithms, such as Dijkstra’s, to find optimal alignments even in
graphs with cycles. The alignment graph, described below, is constructed using the query
sequence, the sequence graph, and scoring parameters.

The alignment graph is a weighted directed graph that represents all possible align-
ments of a query sequence to a sequence graph. It is structured as a multilayer graph with
m ”copies” of the sequence graph, where m is the length of the query sequence. Each
layer represents a character in the query sequence, and each layer contains all vertices of
the sequence graph. Arcs between vertices in different layers are defined based on the
alignment possibilities:

- Horizontal arcs/Insertion arcs: connect vertices v and u with a single layer to
account for insertions in the query sequence; these arcs have weight 1;

- Vertical arcs/Deletions arcs: connect vertices v and u within the same layer to
account for skipping characters in the query sequence; these arcs also have weight 1;

- Substitution arcs: connect vertices v and u between adjacent layers if v and u are
connected in the sequence graph, and the character c at v can align with the corresponding
character c′ in the query sequence; these arcs have weight corresponding to the function
f(c, c′).

With this structure, the alignment graph is a weighted directed graph in which a
valid alignment corresponds to a path through the graph. At the boundaries of the graph,
we define a source vertex s, which connects to all vertices in the first layer with arcs of
zero weight, and a sink vertex t, connected to all vertices in the last layer with arcs of zero
weight. This ensures that every possible alignment has a well-defined starting and ending
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point. The alignment cost is equal to the weight of the corresponding path, as described
in Figure 7.

In our problem, however, we simplify the alignment graph by excluding horizon-
tal and vertical arcs. This is because we use the Hamming distance instead of the edit
distance to score alignments, which only considers substitutions and ignores insertions
or deletions. As a result, our alignment graph contains only the arcs that correspond to
direct matches or mismatches between characters of the query sequence and vertices in
the sequence graph. This formulation both simplifies the graph structure and focuses on
the alignment properties relevant to our specific problem.

The path found in the alignment graph represents a walk in the SSG as it can be
seen in Figure 7, where the path ACGT in the alignment graph correspond to the walk
ACGT in the input graph. More generally, each layer in the alignment graph corresponds
to a step in the walk, ensuring the sequence induced by the walk aligns as closely as
possible to the query sequence under the Hamming distance metric.

Figure 7. An example, adapted from [Jain et al. 2020], to illustrate the construction of an
alignment graph (right) from a given sequence graph and a query sequence (left). Multiple colors
are used to show weighted arcs of different categories in the alignment graph. The red, blue,
and green arcs are weighted as insertion, deletion, and substitution costs, respectively. Optimal
alignment between the query and the sequence graph is computed by finding the shortest path
from source to sink vertex in the alignment graph.

5.2. Heuristic Development

Given a sequence s and a SSG G, our heuristic for solving the SGAP operates in four
main steps. First, we build the alignment graph G′ upon the sequence s and the SSG
G; in the second step, we apply the Dijkstra’s algorithm to identify a shortest path in
G′. If the walk in G corresponding to the path in G′ contains cycles, they are detected
and removed, transforming the walk into a path. During this process, segments of the
sequence s′ corresponding to cycles are replaced with an arbitrary character (e.g., ‘-‘).
Finally, the Hamming Distance between s and s′ is computed, excluding the arbitrary
characters. A pseudocode of our heuristic is presented in Algorithm 1.
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Data: sequence s and SSG G
Result: hamming distance c
G′ ← AlignmentGraph(s,G);
p← optimal path given by Dijkstra(G′);
p′ ← corresponding walk in G given p;
while p′ has cycles do

p′ ← removeCycles(p′);
end
p← p′;
s′ ← sequence induced by the path p;
c← hammingDistance(s, s′);
write(c);

Algorithm 1: Heuristic’s Psudocode

6. Results
To evaluate the accuracy of our heuristic, it was implemented in C++ language
(https://github.com/RaphaLella/TCC) and tested on 1200 artificially generated test cases.
All tests were conducted using a set of sequence graphs with 2000 vertices and 3999 arcs.
The graphs were randomly generated, with arcs being created to ensure the connectivity
of the graph. Finally, the vertices were labeled by randomly assigning characters from a
predefined alphabet.

For each graph, we generated 10 different input sequences, each of length 100,
using the given alphabet. The first sequence was generated by following a valid path,
ensuring a cost of 0 for this sequence. Subsequent sequences were created by introducing
random modifications to the original sequence. More specifically, two characters in the
sequence were modified randomly in each iteration, until a maximum of 18 changes had
been made to the original sequence.

This setup allowed us to systematically evaluate the heuristic’s performance across
varying levels of sequence error while maintaining control over the graph’s structure and
connectivity.

The accuracy of the heuristic was assessed using the following metric:

dh(s, s
′) =

n∑
i=1

f(s[i], s′[i]),

where f(s[i], s′[i]) = 1 if s[i] ̸= s′[i] and s′[i] ̸= ‘-‘ , and f(s[i], s′[i]) = 0
otherwise.

6.1. Test Results
The results of the execution of our heuristic on the proposed data set are shown in Tables
2, 3, 4, and 5. For each table, the first column represents the total number of tests con-
ducted, the second column shows the number of errors introduced into the initial path, the
third column provides the average Hamming distance between the input sequence and the
sequence corresponding to the path identified by the heuristic, and the last column reports
the average execution time (in seconds).
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Table 2. First 300 tests: conducted with an alphabet of size 4.
Qty Errors Avg. Ham. Dist. Avg. Time Exec. (s)
30 0 0.0 217.798
30 2 2.0 217.027
30 4 4.0 219.759
30 6 5.5 217.673
30 8 7.0 218.857
30 10 9.0 220.318
30 12 9.0 218.608
30 14 10.5 218.849
30 16 10.0 217.065
30 18 12.0 218.887

Table 3. Next 300 tests: conducted with an alphabet of size 6.
Qty Errors Avg. Ham. Dist. Avg. Time Exec. (s)
30 0 0.0 218.770
30 2 2.0 216.507
30 4 4.0 216.642
30 6 6.0 215.358
30 8 8.0 216.656
30 10 10.0 218.149
30 12 12.0 218.227
30 14 13.5 219.849
30 16 15.0 217.890
30 18 16.0 218.164

Table 4. Next 300 tests: conducted with an alphabet of size 8.
Qty Errors Avg. Ham. Dist. Avg. Time Exec. (s)
30 0 0.0 217.905
30 2 2.0 218.977
30 4 4.0 217.677
30 6 6.0 218.613
30 8 8.0 217.865
30 10 10.0 216.928
30 12 11.0 217.521
30 14 12.0 216.571
30 16 14.0 218.482
30 18 15.5 219.232

As shown in Tables 2, 3, 4, and 5, the paths identified by the heuristic are not
significantly distant from the number of errors introduced. In many cases, the Hamming
distance between the input sequence and the sequence corresponding to the path found
by the heuristic aligns with the expected error count. However, interestingly, there are
instances where the Hamming distance is lower than anticipated. This discrepancy can be
attributed to the heuristic’s ability to find alternative paths that minimize the mismatch.
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Table 5. Final 300 tests: conducted with an alphabet of size 10
Qty Errors Avg. Ham. Dist. Avg. Time Exec. (s)
30 0 0.0 218.770
30 2 2.0 216.507
30 4 4.0 216.642
30 6 6.0 215.358
30 8 8.0 216.656
30 10 10.0 218.149
30 12 12.0 218.227
30 14 13.5 219.849
30 16 15.0 217.890
30 18 16.0 218.164

Figure 8. The axis x represents the number of error introduced in s and the axis y represents
the hamming distance.

For example, consider an initial input sequence AGTGT, which has zero errors and cor-
responds to a valid path in the graph, and a modified input sequence AGATT, with two
errors. For the second sequence, the heuristic might identify a path that aligns with the
original path AGTGT, resulting in a Hamming distance of 2, matching the number of er-
rors introduced in the input sequence. However, the heuristic could also find a different
path, such as AGACT, which has a lower Hamming distance of 1 to AGATT, resulting
in fewer mismatches compared to the errors introduced. This behavior demonstrates the
adaptability of the heuristic in identifying paths close to the input sequence, even when
the sequence altered by the introduction of errors has no direct path in the graph.

Figures 8 further highlight the relationship between alphabet size and the average
Hamming distance. As the alphabet size increases, the average Hamming distance also
tends to grow. This trend is rooted in the reduced frequency of repeated patterns within the
graph for larger alphabets. When the alphabet is small, such as with a size of 4, repeated
patterns are more common, increasing the likelihood of identifying paths that closely align
with the input sequence. In these cases, higher alignment accuracy is achieved and the
resulting Hamming distances are lower. In contrast, as the alphabet expands to sizes 6, 8,
or 10, the diversity of vertex labels within the graph increases. This added diversity re-
duces the probability of encountering vertices with matching labels along potential paths,
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making it more difficult to align closely with the input sequence. Consequently, accuracy
declines, and Hamming distances grow larger for larger alphabets, illustrating the impact
of graph structure and input complexity on alignment performance.

In terms of computational efficiency, the heuristic demonstrates robust and rela-
tively fast performance under varying input conditions. The average run-time for all tests
conducted was approximately 218 seconds, showing remarkable consistency irrespective
of the number of errors introduced or the alphabet size. This stability underscores a key
strength of the algorithm: its ability to maintain computational efficiency while processing
diverse and complex input scenarios. The graph traversal mechanisms, combined with ef-
ficient cycle detection and path selection processes, contribute to this consistent and rapid
performance, even as the size and complexity of the graph and input sequences grow. Such
responsiveness makes the heuristic well-suited for practical applications where quick re-
sults are essential.

However, the heuristic faces a significant limitation in terms of memory usage.
While precise memory consumption measurements were not taken, practical testing with
larger sequences and more extensive graphs revealed a critical bottleneck. The program’s
memory requirements led to swapping operations, which severely impacted its efficiency
in such scenarios. This issue arises due to the inherent design of the heuristic, which
involves replicating the graph for each character in the input sequence. This replication
process causes memory consumption to scale quadratically with respect to the sequence
length and the number of vertices in the graph. Such quadratic growth becomes increas-
ingly problematic when dealing with larger datasets, underscoring the need for further
optimization. Addressing this limitation will be essential for enhancing the scalability
of the heuristic and ensuring its applicability to even larger and more complex graphs in
practical scenarios.

7. Conclusion
This study addressed the SGAP is shwon as NP-complete when alignment is restricted to
paths in the sequence graph. To tackle this problem, we developed a heuristic using SSGs,
leveraging Dijkstra’s algorithm to identify the shortest walks and transforming these into
paths by detecting and removing cycles.

The heuristic was implemented in C++ language and evaluated on 1200 test cases
using a graph with 2000 vertices and 4999 edges. Input sequences were systematically
varied, introducing errors incrementally from 0 to 18. Results showed that the heuristic
is adaptable to different alphabet sizes (4, 6, 8, and 10) and error levels. Notably, as
the alphabet size decreased, the accuracy improved. This is because smaller alphabets
increase the probability of encountering repeated patterns in the graph, making it easier
to find paths that align more closely with the input sequence. However, accuracy tends
to decrease as the number of errors increases or as the alphabet size grows, which aligns
with the expected trend.

The heuristic exhibited consistent runtime performance, averaging 218 seconds
across all tests, regardless of the error rate or alphabet size. This consistency under-
scores the algorithm’s efficiency and its ability to handle diverse input conditions without
substantial performance degradation. However, a notable limitation lies in the memory
consumption of the heuristic. Although formal memory usage measurements were not
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conducted, practical tests with larger sequences and graphs revealed that swapping oc-
curred, significantly impacting performance. This challenge arises from the heuristic’s
graph replication process for each character in the sequence, leading to quadratic memory
consumption relative to the sequence length and the number of vertices in the graph.

Future work will explore algorithmic optimizations, such as those proposed by
Jain et al. in ”On the Complexity of Sequence-to-Graph Alignment” [Jain et al. 2020]
which could reduce the runtime complexity to O(|V | + m|A|). Additionally, adapting
the algorithm to consume linear memory, inspired by Hirschberg’s method in ”A Linear
Space Algorithm for Computing Maximal Common Subsequences” [Hirschberg 1975],
would address the current memory limitations. Testing the heuristic on larger datasets and
applying it to real-world biological problems will be crucial for validating its robustness
and practical utility. Finally, integrating machine learning techniques to improve path
prediction and enhance generalization to diverse input scenarios represents an exciting
avenue for future development.
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