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Resumo

Os Condensados de Bose-Einstein, previstos por Bose e Einstein no inicio do século
XX, constituem sistemas singulares por manifestarem fenémenos quanticos em escala ma-
croscopica. A descricdo usual desses sistemas, baseada na equacado de Gross-Pitaevskii,
parte da hipdtese de isolamento ideal, o que contrasta com a realidade experimental, mar-
cada por interagoes inevitaveis com o ambiente. Tais interagoes inserem os condensados
no escopo dos sistemas quanticos abertos, em que efeitos como dissipacao, decoeréncia e
perdas tornam-se relevantes. Nesse cenario, abordagens formais como a equacgao mestra de
Lindblad revelam-se essenciais para compreender a dinamica realista desses condensados.
O presente trabalho analisa os condensados sob essa ética, discutindo como o acoplamento
ao meio modifica suas propriedades quanticas e pode originar novos regimes fisicos, com
potenciais aplicagoes no controle de estados quanticos em escala macroscopica.

Palavras-chave: Condensados Bose-Einstein, Sistemas Quéanticos Abertos,
Equacao de Gross-Pitaevskii, Equacao Mestra de Lindblad.






Abstract

Bose-Einstein Condensates, predicted by Bose and Einstein in the early 20th century,
are unique systems that exhibit quantum phenomena on a macroscopic scale. The stan-
dard description of these systems, based on the Gross-Pitaevskii equation, relies on the
assumption of ideal isolation, which contrasts with the experimental reality where interac-
tions with the environment are unavoidable. Such interactions place condensates within
the framework of open quantum systems, where effects such as dissipation, decoherence,
and losses become relevant. In this context, formal approaches such as the Lindblad mas-
ter equation are essential to understanding the realistic dynamics of these condensates.
This work analyzes condensates from this perspective, discussing how coupling to the en-
vironment modifies their quantum properties and may give rise to new physical regimes,
with potential applications in the control of macroscopic quantum states.

Keywords: Bose-Einstein Condensates, Open Quantum Systems, Gross-
Pitaevskii Equation, Lindblad Master Equation.
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Capitulo 1

Introducao

Desde sua previsao teodrica por Satyendra Nath Bose e Albert Einstein no inicio
do século XX, os Condensados de Bose-Einstein (CBEs) tornaram-se um dos sistemas
quénticos mais fascinantes da fisica contemporanea [IH3]. Formados por &tomos bosénicos
a temperaturas extremamente baixas, esses condensados exibem fenémenos macroscopicos
regidos pelas leis da mecanica quantica, como coeréncia de fase, superfluidez e interferéncia
quantica. A descricao tedrica tradicional desses sistemas é frequentemente feita por meio
da Equacao de Gross-Pitaevskii (EGP), que assume um sistema idealmente isolado e em

equilibrio [4, [5].

No entanto, na pratica, nenhum sistema fisico esta completamente isolado. Todo
condensado interage, em maior ou menor grau, com seu ambiente externo, seja por meio
de flutuacoes térmicas residuais, perdas de particulas, ruido de campo ou imperfei¢des no
confinamento [6HI3]. Tais interagoes fazem com que o condensado seja, na realidade, um
sistema quantico aberto, ou seja, um sistema cujo comportamento é influenciado por graus

de liberdade externos que nao sao, geralmente, diretamente acessiveis ou controlaveis.

A teoria de sistemas quanticos abertos fornece um arcabougo formal para descre-
ver a evolucao de sistemas que interagem com um ambiente, frequentemente levando a
dissipacao, decoeréncia e perda de informagao quantica [14]. Dentro desse contexto, abor-
dagens como a equacao mestra de Lindblad e as técnicas de trago parcial tém se mostrado

fundamentais para compreender os efeitos da nao idealidade no comportamento dos CBEs.

Este trabalho tem como objetivo explorar o tratamento dos CBEs a partir da pers-

pectiva de sistemas abertos, discutindo como a interacdo com o ambiente pode alterar
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sua dinamica, modificar sua coeréncia quantica e induzir novos regimes fisicos nao pre-
sentes em modelos unitarios fechados. Ao investigar essa abordagem, buscamos ampliar a
compreensao teodrica e experimental sobre os CBEs em cendrios realistas, além de desta-
car implicagdes para o controle de estados quanticos macroscépicos em futuras aplicagoes

tecnologicas.

No proximo capitulo, vamos estudar a base da teoria que nos leva a teoria de sis-
temas quanticos abertos, com o objetivo de descrever a evolucao temporal de sistemas
quanticos. Para isso, serao revisados alguns tépicos da informagao quantica e das bases
da mecanica quantica. No capitulo 3, vamos descrever a evolu¢ao de um CBE, conside-
rando os efeitos da medi¢ao no sistema fisico. Conforme sera discutido, o ato de medir
o sistema atrapalha a dinamica ideal de um CBE, o que revela uma equagao estocastica
para descrever a dinamica do sistema. No capitulo 4, serao apresentados dois modelos
que discutem o ganho e a perda de particulas no sistema devido ao acoplamento do CBE
com um ambiente. No primeiro modelo, sera visto que o sistema adquire uma simetria
PT, que também serd comentada neste capitulo. Ja o outro modelo, nos informaré como
se d& a evolugao considerando a conservagao de particulas no sistema total. Por fim, no
capitulo 5 serd feita uma conclusao e comentara sobre alguns desafios no formalismo de

sistemas quanticos abertos em CBEs.



Capitulo 2

Evolucao Temporal de Sistemas
Quanticos

Assim como qualquer sistema fisico da mecanica classica, a mecanica quantica
também admite evolugao temporal. Dizemos que um sistema quantico evolui no tempo
quando os estados quanticos que o definem também evoluem no tempo, sendo esses estados
definidos como estados puros ou estados mistos. Nessa descri¢ao, estamos considerando o
"Representacao de Schrodinger", mas também existe uma forma alternativa de descrever
a evolucao de um sistema quantico, considerando que os estados quanticos sao estaticos
e, na verdade, sdo os operadores que variam no tempo (Representacao de Heisenberg).
Para a descricao feita nesse trabalho, nao nos preocuparemos com o Representacao de

Heisenberg.

Neste capitulo vamos discutir alguns elementos basicos da teoria quantica que serao
de grande relevancia para o desenvolvimento da teoria de sistemas quanticos abertos em
Condensados Bose-Einstein que sera discutida no capitulo 3. Para mais detalhes, o leitor

pode consultar a referéncia [15]

2.1 Estados Quanticos Puros e Mistos

Um estado quantico [1) é definido como puro quando Tr(p?) = 1 e é misto quando
Tr(p*) < 1, onde p é chamada matriz densidade do estado [¢)[I5]. Definimos a matriz

densidade como um operador hermitiano, dada pela seguinte equacao:

p="2_ Pultn)(¥nl, (2.1)

em que P, indica as probabilidades de se medir o sistema em um estado [1,).

3
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Perceba que o conjunto dos estados |1),,) ndo necessariamente formam uma base
no espaco de Hilbert H, eles apenas sao estados associados a uma probabilidade. Porém,

podemos diagonalizar p. Desse modo, podemos escrever p como

p= me‘pmﬂpm’a (2.2)

m

em que p,, representa os auto-valores de p com seus respectivos auto-estados |p,), que
formam uma base ortonormal no espaco de Hilbert. A razao pela qual podemos escrever

p dessa maneira é justificada pelo teorema espectral (Apéndice A).

Sendo p diagonalizavel, teremos Tr(p) = >, p, = 1, visto que a soma das probabi-

lidades deve ser igual a um. Assim, podemos calcular Tr(p?):

TG = 3 pulonl (Z pm|pm><pm|) oa), (23)

como {pn|pm) = dpm, temos

TH(7?) = 3 42 (2.4

Podemos perceber que a Equagao (2.4]) sempre serd menor ou igual a um, ja que
0 < p, < 1. Se Tr(p?) = 1, entao apenas um valor dos p,, serd 1, e o resto sera nulo. Desse
modo, a matriz densidade serd descrita por um tnico estado |¢) e, portanto, dizemos que

esse € um estado puro.

Caso Tr(p?) < 1, a matriz densidade sera descrita por um conjunto de estados |t,,),
comn = 1,2,3,...m, ou seja, o sistema nao possui um estado quantico bem definido e
serd descrito por varios possiveis estados quanticos. Neste caso, nosso sistema é descrito

por um estado misto.

E importante ndo confundir um estado misto com o principio da superposicao. En-
quanto o principio da superposi¢do nos diz que um estado quéntico total [¢)) é composto
por dois ou mais estados possiveis, demonstrando natureza quantica, o estado misto re-
presenta uma situacao de incerteza classica, onde nao é possivel identificar qual o estado

quéntico total (que pode ser um estado de superposi¢ao) que o sistema se encontra.



2.2. EVOLUCAO TEMPORAL DA MATRIZ DENSIDADE 5

2.2 Evolucao Temporal da Matriz Densidade

Sabemos que a evolu¢ao de um sistema quantico pode ser descrita através da equa-

¢ao de Schrodinger, a qual é dada por

. d
th—[¥(8)) = H(t)[¢(1)), (2:5)
em que H(t) é chamado o Hamiltoniano do sistema.

Caso nosso sistema seja puro, p = |1)(¢|, tomando a derivada temporal de p e

utilizando a regra do produto, obtemos:

50 = (Gt el + oy (G won). 26)

Substituindo (2.5 em ([2.6)),

p(0) = L HOWONW)| + o [0} (6(0) H (D), 2.7)
ou simplesmente
@h(t) = = (1) (1) 2.9

A equagao (2.8) é chamada de equagao de Liouville-von Neumann [15]. Ela nos
diz como a matriz densidade evolui no tempo e sera uma pega fundamental para a teoria

aqui desenvolvida.

Perceba que chegariamos na mesma equacao caso nosso estado fosse misto, pois
cada estado |1, (t)) também iria evoluir através da equacao (2.5)). Portanto, essa equagao

é valida tanto para estados puros, quanto para estados mistos.

Em geral, a solugdo da equagao (2.8) é dada por uma evolugdo unitaria, isto é,
p(t) = Ul(t; to)p(to)U(t; to)T, onde U(t;t) é um operador unitdrio que descreve a evolucio
de p partindo de um tempo t; até um tempo ¢. Um operador U serd unitario quando

UUt=UU = 1.

Suponha que temos um sistema S acoplado a um sistema externo. O Hamiltoniano
total serda H = Hg ® I + Is ® Hg + H;,, onde Hg é o Hamiltoniano do nosso sistema

S, Hg é o Hamiltoniano do sistema externo e H;,; é o termo de interagao entre S e F.
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Nosso objetivo é descobrir como o sistema S evolui, portanto, vamos aplicar a equacao

(2.8) em psp € Hs @ He.

A matriz densidade do sistema S é dada pelo trago parcial de psg no ambiente
(Apéndice A).

ps = Trp(pse), (2.9)
sendo pgg dado por:
Pse = Ps & PE- (2.10)
Utilizando ([2.8)), temos:
dpse 1
= —[Hsg, psk|- 2.11
o z'h[ SE, PSE] (2.11)

A equacao (2.11]) nos permite observar a evolu¢ao temporal do sistema SE, con-
forme vimos anteriormente. Como queremos observar a evolugao do sistema S, utilizamos

a equagao (2.9) em (2.11)). Abaixo esta a expressao que nos dé o resultado:

RUCI N (Z_lh[HSEaﬁSE])>

1 . ) .
=Trp (zh ([Hs ® Ip, pse| + [Is ® Hg, pse] + [Hint,PSE]))

1 1
= —|Hg. p —T Hin, p =
z'h[ s, Ps| + i g ([Hint, PsE))

dps _ 1

i %[Hsyﬁs] + @[psEl, (2.12)

com ®[psp] = %TTE ([Hint, psEl)-

A equacao encontrada nos mostra que se existir um acoplamento entre seu sistema
e um sistema externo (usualmente chamado de ambiente), a equacao de Liouville-von
Neumann deixa de ser valida para o sistema S e passa a somar um termo relacionado
a interacao entre S e F. Esse tipo de sistema é chamado de sistema quantico aberto,
enquanto sistemas em que nao ha interacdo com sistemas externos sao chamados de sis-
temas quanticos fechados. Uma das caracteristicas de um sistema quantico aberto é a de

que ele deixa de ter uma evolucao descrita por um operador unitario devido as correlacoes
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entre os sistemas acoplados; por outro lado, o sistema total pode ser considerado um sis-
tema fechado. Por exemplo, a evolucao do sistema SFE é descrita por operador unitario,

enquanto a evolugao de S nao.

2.3 Processo Quantico Markoviano

Um processo quantico Markoviano é um conceito usado para descrever a evolucao
de um sistema quéntico que depende apenas do seu estado imediatamente anterior. Ou
seja, p(t + dt) deve ser completamente determinado por j(t). Processos Markovianos em
geral sao ideais, pois a troca de informacao de um sistema S com um sistema externo
E sempre acontecera, fazendo com que a informagao que saiu de S e foi para £ demore
um tempo At para retornar de F para S e vice-versa. Assim, no caso de um processo
mais realista, dizer que p(t + dt) é totalmente determinado por p(¢) nao é mais valido.
Portanto, processos quanticos Markovianos podem ser tratados como aproximacoes de um
sistema quantico aberto, que é valido normalmente quando o sistema S possui um fraco

acoplamento com o sistema externo E.

Suponha que temos um sistema quantico aberto Markoviano ideal. Nosso objetivo
é descrever a evolucao desse sistema. Para isso, comegaremos expandindo a matriz den-
sidade em uma série de Taylor e comparando com a decomposicao de Kraus da matriz
densidade (Apéndice A). Dessa forma, temos

p(t +dt) = pt) + flfdt + O(dt?), (2.13)

onde O(dt?) sdao os termos de maiores ordens que serdao desprezados. A decomposicao de

Kraus [16] nos permite escrever

plt+dt) =S Eup(t) By (2.14)

Comparando as equagoes (2.13)) e (2.14), podemos assumir que os operadores de
Kraus Ej, sao do tipo [17]

Ey =1+ Lodt, (2.15)
E, = LyVdt. (2.16)

No momento, os operadores L, nao estao representando nada para nos; isto é, por en-

quanto estamos apenas fazendo artificios matematicos para chegar a uma equacao que dé
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um significado fisico. Como veremos em breve, os operadores L; estarao associados aos

termos de dissipacoes do sistema quantico que esta acoplado a um sistema externo.

Perceba que ao aplicar essas equagoes na equagao (2.14)), podemos recuperar a
equacgao (2.13). Também, a matriz densidade precisa preservar o trago por conta da

propriedade de normalizagdo, de modo que >~ Ekﬁ,i = I Assim, podemos escrever a

matriz identidade utilizando as equagoes ([2.15) e (2.16):

I=EE+> EE, (2.17)
k=1

i+ (zo iy m;) gt + O(di?). (2.18)

k=1
Como os termos O(dt?) sdo despreziveis, a condigao para que a igualdade seja verdadeira

fica:

Lo+ L+ LiL =o0. (2.19)

k=1

Podemos decompor o operador Ly como uma soma de um operador Hermitiano
e um anti-Hermitiano. Fazendo isso, Ly = A — iH. Substituindo na equacao (2.19) e

isolando o operador A, obtemos:

~ 1 A A
A= 2N LI (2.20)
2 k=1

Reescrevendo a equacao (2.14) utilizando as equagoes ([2.15)) e (2.16)), utilizando

novamente a relacdo Lo = A — iH, obtemos a seguinte equacao:

pt +dt) = p(t) —i[H, pt)dt + {A, p(t) Yt + 3 Lip(t) LLdt + O(dt?), (2.21)
k=1

em que {x,y} = zy + yx é chamado de anti-comutador.

Analisando a taxa de variagdo de p, podemos obter uma equagio-mestra que, ao

resolvé-la, pode nos informar como nosso sistema aberto (Markoviano) ira evoluir,

dp A . A s
9P i) + (A D) + X B (222
k=1
Utilizando a equagao ([2.20]), temos:
dp A A AN Loa st
d—f = —i[H,p(t)| + > (Lkp(t)Lch - Q{LkLZ;,P}> : (2.23)

k=1
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Se interpretarmos os operadores H como sendo o Hamiltoniano do nosso sistema e

Ly um operador adimensional, entdo podemos fazer as seguintes transformagoes:

H— —H
h 9

Z-/k — \/%f/kv

em que Y sao valores escalares reais e positivos com dimensao de inverso de tempo.
Também, interpretando H como Hamiltoniano, ao dividir por A, o termo também fica
com dimensao de inverso de tempo. Assim, nossa equacao fica dimensionalmente correta,

resultando em:

P - 2o 0]+ X (B0~ 3 (Ll 01} (2.24)

A equagdo acima encontrada ¢ uma equagao geral para processos Markovianos e
¢ conhecida como equacdo de Gorini—Kossakowski-Sudarshan—Lindblad (GKSL) ou sim-
plesmente equacao de Lindblad. O leitor pode ver com mais detalhes essa demonstragao

através da referéncia [17].

Perceba que o primeiro termo dela é exatamente a equagao de Liouville-von Neu-
mann . Isso nos mostra que a equacao de Lindblad é uma generalizacao da equacao
de Schrédinger. Caso nao exista interagdo com o ambiente, os valores v, devem ser iguais
a zero, de modo a retornar na equacgao derivada da equagao de Schrodinger. A
segunda parte da equacao é interpretada como sendo a contribuicao dos termos
de dissipacoes e perdas de coeréncia. Por exemplo, v, pode representar a taxa de perda
ou ganho de particulas em um sistema, enquanto os operadores Ly, séo responsaveis por
mudar o estado do sistema. Portanto, com essa generalizacao, podemos modelar sistemas
em que ha interacdo com o ambiente, desde que o sistema possa ser aproximado a um

processo markoviano.






Capitulo 3

Condensado Bose-Einstein

O CBE é um fenémeno quantico em que uma grande fracao de particulas idénticas
com spin inteiro (bésons) ocupa o estado de menor energia de um sistema, formando uma
entidade coerente descrita por uma unica funcao de onda em escala quase macroscopica
[18]. Diferente da condensagdo comum (como vapor virando liquido), o CBE néo exige
interacdo entre particulas [[| e decorre da indistinguibilidade dos bésons e da estatistica
quantica que seguem. O conceito surgiu nos anos 1920 com os trabalhos de Satyendra
Nath Bose e Albert Einstein, que desenvolveram a estatistica de Bose-Einstein. Embora
inicialmente desacreditada, a ideia ganhou forca com a proposta de que a superfluidez
do hélio-4 e a supercondutividade poderiam estar relacionadas a condensagao, apesar de

dependerem de interagoes, o que contrasta com o modelo ideal original [19].

A confirmagao experimental da CBE ocorreu somente em 1995 [20] apds avangos
em técnicas de resfriamento e manipulagao de atomos. Trés grupos independentes conse-
guiram formar condensados em gases diluidos de atomos de rubidio-87, litio-7 e s6dio-23,
a temperaturas extremamente baixas, proximas do zero absoluto. Esses feitos renderam o
Prémio Nobel de Fisica em 2001 a Cornell, Wieman e Ketterle. Desde entdao, o CBE tem
se tornado um campo de intensa pesquisa tedrica e experimental, abrangendo areas como
fisica atomica, matéria condensada, éptica quantica e fisica estatistica, e sendo observada

nao sé em atomos, mas também em moléculas, quasiparticulas e até fétons [19, 21].

Neste capitulo, vamos introduzir as principais caracteristicas de um CBE e deduzir

a equagao que o descreve (equagao de Gross-Pitaevskii), além de apresentar o tema deste

!E importante comentar que o o CBE nfo exigir interacdo ndo significa que nio haverd interacio.
No mundo real, ndo conseguimos atingir uma temperatura de 0K, tornando inevitavel a interacdo entre
particulas.

11



12 CAPITULO 3. CONDENSADO BOSE-EINSTEIN

trabalho: um CBE descrito como um sistema quantico aberto.

3.1 Equacao de Gross-Pitaevskii

A EGP surge como uma formulacao tedrica capaz de descrever, de forma aproxi-
mada, o comportamento coletivo de um condensado de Bose—Einstein em temperaturas
extremamente baixas [22]. Em um CBE, um grande nimero de bésons ocupa o mesmo
estado quantico fundamental, fazendo com que o sistema possa ser tratado como uma
tnica fungao de onda macroscopica W(r,t), que representa a densidade de probabilidade
de encontrar as particulas no espaco e no tempo. A grande intuicao por tras da derivacao
da EGP é que, embora cada atomo obedeca as leis da mecanica quantica, o condensado
inteiro se comporta como um unico “superatomo” coerente, cuja evolucdo é governada

por uma equacao de Schrodinger modificada para incluir intera¢oes entre as particulas.

O ponto de partida é considerar que, para temperaturas proximas do zero absoluto,
as colisdes entre atomos sao dominadas por espalhamento elastico de baixo momento,
podendo ser descritas por um potencial efetivo de curto alcance. Nesse regime, a interacao
entre as particulas pode ser simplificada usando o aproximador de contato g é(r —r’), onde
g ¢ uma constante efetiva que estéd relacionada ao comprimento de espalhamento a, [22].
Ao aplicar o método de Hartree—Fock—Bogoliubov e assumir que todos os bdsons ocupam
o mesmo estado quantico, obtém-se uma equagao nao linear para ¥(r,t), na qual o termo
de interacao ¢g|¥|? leva em conta o efeito médio das colisdes no condensado [23]. Essa nao
linearidade ¢ justamente o que diferencia a EGP da equacao de Schrodinger tradicional,

permitindo modelar fendmenos coletivos como sélitons, vortices e oscilagoes coerentes.

Assim, a EGP pode ser vista como o elo entre a mecénica quantica de particulas
individuais e a hidrodinamica quantica de sistemas macroscépicos. Ela oferece uma des-
cricao simples, mas poderosa, para a evolucao temporal e a distribuicao espacial de um
CBE, capturando de forma intuitiva o papel central das interagoes na dindmica coletiva
desse estado da matéria. Esta equacgao foi desenvolvida independentemente por Eugene
P. Gross e Lev P. Pitaevskii no inicio da década de 1960, inicialmente com o objetivo de
descrever o hélio superfluido, um sistema de bosons fortemente interagentes. Anos mais
tarde, com o avanco das técnicas experimentais e a realizagdo do primeiro CBE em gases

diluidos em 1995, a EGP mostrou-se surpreendentemente eficaz para modelar condensa-



3.1. EQUACAO DE GROSS-PITAEVSKII 13

dos atomicos. Desde entao, tornou-se uma das ferramentas tedricas mais importantes na
fisica de matéria condensada e de sistemas quanticos macroscopicos, sendo amplamente
utilizada para prever e interpretar resultados experimentais. Desde entao, tornou-se uma
das ferramentas tedricas mais importantes na fisica de matéria condensada e de sistemas
quanticos macroscopicos, sendo amplamente utilizada para prever e interpretar resulta-
dos experimentais. Em particular, a EGP tem sido empregada para descrever a dinamica
de colisdo entre condensados unidimensionais e a formacao de padrdes ndo lineares [24],
a emergeéncia e estabilizacao de estruturas vorticais e aglomerados de vortices em ar-
madilhas confinadas [25], bem como a dindmica turbulenta e a evolucao de vortices em
condensados com interagoes dipolares [26]. Além disso, variantes da equagdo, incluindo
versoes estendidas para regimes finitos de temperatura ou com potenciais desordenados,
tém possibilitado a previsao de estruturas de rede de vértices em condensados multicom-
ponentes [27] e a descricdo detalhada da evolugao e reconexao de filamentos de voértice
em superfluidos [28]. Tais aplicagdes evidenciam que a EGP permanece como um dos
principais pilares tedéricos para a interpretacao quantitativa de fendmenos observados em
experimentos modernos com gases quanticos ultrafrios, incluindo sistemas moleculares e

dipolares [29].

Vamos agora deduzir a EGP imaginando um sistema quantico de muitos corpos

com N particulas indistinguiveis, com o seguinte Hamiltoniano:
N 272 N
N h*v 1

em que U(r;) é um potencial externo e V(r; — r;) é o potencial de interacdo entre as
particulas. A equagdo (2.5)) para o caso de muitos corpos fica:

ih;llf(rl,...,r]v,t) :ﬁq]<r17"'7r1\77t>‘ (32)

Podemos descrever esse sistema a partir de um funcional de acao S e, a partir dele,
tomar as equacoes de Euler-Lagrange para determinar a dinamica do nosso sistema. Tal
funcional é dado por:

0 .
S = /dtd3r1 dPry U*(ry,...,ry,t) (z’hat - H> U(ry,...,ry,t). (3.3)

Como os bosons estao todos no mesmo estado fundamental, utilizamos uma aproximagao

de Hartree para a func¢ao de onda macroscépica, de modo que o produto de cada fungao
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de onda de um bdéson isolado 1 nos fornece a funcao de onda geral do nosso sistema W.

U(ry,...,ry,t) = 1:[¢(ri,t). (3.4)

Substituindo as equagdes (3.4)) e (3.1)) na equagao (3.3)), temos para a parte cinética

e do potencial externo:
h2

/dSTl...d3T’N ‘1/*(1'1,...,1']\], ) (Zhaa + —VQ U(I’z)> \If(rl,...,rN,t)

— N/d%p*( t) (mi + fiv? Ulr )> Y(r,t).

Perceba que generalizamos as variaveis ry,...,ry apenas para uma variavel r, ja que

estamos lidando com N particulas idénticas.

Para a parte do potencial de interacao, temos:

/dtd3 (/d3 (e, PV (r—r’)) D(r,b).

Juntando tudo, obtemos nossa agao completa:

S:N/dtd3r1p*( )(m({iﬁ}ﬁv? U(r)

_N2_1 [ o D VE = 1)) vle ). (35)

A fim de obter a equag¢ao de movimento correspondente ao funcional de agao (3.3)),
escrevemos a densidade Lagrangiana (ap6s uma integracao por partes no termo cinético,

desprezando termos de fronteira):

2

h
L) = N(z‘hw*atw — o VU Vo = Ul

- A e 0P [ ar o o) v<r—r>). (36)

Para campos complexos, tratamos 1 e 1)* como variaveis independentes. A equacao

de Euler-Lagrange para 1* é
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Calculando termo a termo (o fator global N cancela):

oL

Ggr = 0w = U = (N =)W (r.0)v, (3.8)
oL N
ove) T TV (8(%*)) Tam (39
em que definimos
W(r,t) = / &' ()2 (x — ). (3.10)

Juntando os resultados, obtemos

0

ih S0+ Qh;v%p —U)y — (N = D)W (r,t) ¢ = 0. (3.11)

Isolando o termo temporal, resulta

() = | =5 VU + (V) [ @ PV - ) vy (1)

O potencial de interacao entre as particulas pode ser descrito seguindo uma apro-
ximagao V(r—r') = gé(r —r’). A partir da teoria de espalhamento, podemos mostrar que

g= %, onde ag é o comprimento de espalhamento [23]. Colocando essas aproximagoes

na equacao (3.12)), obtemos

ihaatw(r,t) = —;;Vz +U(r)+ (N —1)g |w(r,t)\2] p(r,t). (3.13)

Essa ¢ a equagao EGP dependente do tempo. Nosso objetivo aqui sera generalizar

essa equagao para incluir termos dissipativos, levando a uma equagao estocastica.

3.2 Equacao Estocastica de Gross-Pitaevskii (EGP)

O estudo dos CBEs oferece uma oportunidade tinica de investigar efeitos quanticos
em escala macroscopica. Esses sistemas, formados a temperaturas ultrabaixas, s6 podem
ser acessados experimentalmente por meio de feixes de luz, j& que seu reduzido calor
especifico impede contato direto com sondas materiais [30]. Entre as técnicas disponiveis,
a imagem ressonante permite extrair informagoes, mas destréi o condensado ao aquecé-lo.

J& a imagem dispersiva, utilizando luz fora de ressonéncia, possibilita medic¢oes repetidas
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sobre a mesma amostra, permitindo acompanhar sua dinamica sem a necessidade de
recriar o sistema a cada observagao [31]. Esse método tem sido fundamental para estudar
a formacao de condensados, excitacoes coletivas, propriedades superfluidas e a criagao de

vortices [31], 32).

Um aspecto central que emerge desse cenario é compreender como o proprio ato
de medir influencia a evolucao do condensado. Para explorar essa questao, propoe-se um
modelo realista que descreve a interacao dispersiva entre atomos e luz, resultando em uma
equacao mestra do tipo Lindblad. Essa abordagem quantifica processos como a difusao
de fase e a perda gradual de atomos durante a observacao. Além disso, ao traduzir essa
dindmica em termos estocasticos, é possivel analisar tanto regimes de medicao forte —
que levam a compressao das flutuagoes no nimero de atomos — quanto regimes fracos,

nos quais a evolucao se aproxima de uma versao estocastica da EGP.

3.2.1 Equacao do tipo Lindblad para CBEs

Para comegar, consideremos o sistema de medi¢ao, o condensado e a interacao
entre os dois sistemas. O Hamiltoniano do nosso sistema total pode ser escrito como
H = Hg+Hp+H;,;, onde Hg é o Hamiltoniano total do sistema de atomos do condensado,
Hp é o Hamiltoniano do sistema de fétons que realizara as medigoes e H;,; representa a

interacao entre os dois sistemas.

Da mesma forma que fizemos no capitulo 2, podemos operar o trago parcial sobre

o sistema F’, encontrando a matriz densidade para o sistema B. Ao fazer isso, obtemos:

p5(t) = Trr(pprl, (3.14)

sendo ppr governada pela equacao (12.8)).

Podemos representar a dinamica do sistema total utilizando a representacao de
interacao; isto ¢, vamos representar a dindmica do sistema apenas pelo Hamiltoniano

H,,;. Para isso, definimos uma nova matriz densidade:

ﬁ(t) — ei(HBJrHF)t/hp\BF(t)e_i(HB+HF)t/h. (315)
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Calculando a derivada no tempo da equagao (3.15]), temos:

dp d ;,; . —
df == (ezHot/hpBF(t)e Hot/h)
 H . . 4 dp 4 .  H .
_ (Zho) eHOt/ M () e iHot | giHot/h (?) e~tHot/ 4 GiHot/hy o (p) (_@ho> e~ iHot/h

(3.16)

em que Hy= Hg + Hp.

Substituindo os termos de derivada da matriz densidade pgp utilizando a equacao

(2.8]), obtemos:

Z’f = ;Hoﬁ + etHot/h <—;[Ho + Hin, ﬁBF]) e ot/ — ﬁ;Ho
_ ;[Ho, 7 - ;ieiHot/h[Ho + Hyy ﬁBF]e’iHOt/h. (3.17)
Expandindo o comutador no segundo termo, resulta em
(jif - ;[Hoa pl— ;éeiHOt/h(HoﬁBF — pprHo + Hiuppr — pprHin)e 0", (3.18)
Agora, vamos distribuir a transformacio de unitariedade (0% . e=Hot/h) para cada
termo:
ez’Hot/h( Hopur) o—iHot/h _ <€iHot/7L ng_iHOt/h> <6iHot/hﬁBFe—iHot/h) = Hop, (3.19)
eHO/N (o Ho e~ Hot/h — (eiHot/ﬁﬁBFe—iHot/h) (ez’Hot/hHOe—iHot/h) = pH,. (3.20)

A equacao ((3.18)) fica:

A i e
= = 7 [Ho.pl = = (Hop — pHy) — e HoUM Hing, pple™ Hot/"
=-—%6““”hﬂﬂm”ﬁgpkf““”h (3.21)
T
= =3 Hint 7. (3.22)

Ou seja, o resultado é dado por

dp Q-
— = ——[Hjps, p 2
dt h[ mtap]7 (3 3)

em que ﬁint — €i(HB+HF)t/hHint€_i(HB+HF)t/h.
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Escrevendo a equagao em forma integral:

p(0) = p(—o0) — 1 [ dt [Hua(t), 51 (3.24)

Substituindo de volta na equacao diferencial (3.23)):

D L t). =000 — ), [ )50 (329

Tomando o trago parcial sobre o sistema F' na equagao acima e considerando a aproxi-

macao de Born-Markov podemos obter uma equagao para descrever a evolucao do con-

densado.

Em resumo, as aproximagoes de Born-Markov tem as seguintes caracteristicas [33]:

1. A interacao entre o condensado (sistema B) e o reservatério (sistema F) é
suficientemente fraca, de modo que a influéncia de retorno do sistema sobre o
reservatorio, isto é, as alteragoes de coeréncia que o sistema pode causar no

reservatorio, podem ser desconsideradas.

2. O tempo de correlagdo dos observaveis relevantes do reservatorio ¢ muito me-

nor do que a escala de tempo caracteristica da dindmica do sistema.

3. Assume-se que sistema e reservatério permanecem nao correlacionados; em
outras palavras, a matriz densidade total pode ser aproximada como o produto

tensorial das matrizes densidade reduzidas de cada parte.

Perceba que no desenvolvimento da equagdo de Lindblad (Segao utilizamos essas

mesmas aproximacoes.

Com essas aproximagoes, podemos aproximar a matriz de densidade p como um

produto da matriz de densidade do sistema B e o sistema F', isto é

p(t") ~ pp(t') ® pr(t') = Trr[ppr(t')] ® pr(t). (3.26)

Além disso, por se tratar de uma aproximacao markoviana, podemos trocar a
variavel de tempo t’ dentro de p por simplesmente ¢, j& que ¢’ dissipa-se tao rapidamente

que nao tem tempo de influenciar de volta o sistema num tempo posterior ¢t. Também,
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p(—o0) passa a ser apenas p(t). Desse modo, a equacao para a evolugdo do condensado

fica:
dﬁB 1 ~ ~ ~ ]- 7 t / / A A
B8 — Tl Fia(0), (1) © (0] — 5 Trel ia(t), | ¥ [a(t), p(0) @ pie(0)]
(3.27)

Perceba que a equagdo encontrada é semelhante a equagao de Lindblad ([2.24)).
Assim, nosso proximo passo sera calcular os operadores de Lindblad (f/k) No nosso caso,
k = 1,2, pois o segundo termo da equacao (3.27]) nos fornece duas contribui¢des que sao

analogas aos operadores Ly e Lo.

3.2.2 Operadores de Lindblad

Para a descri¢ao dos operadores, serda adotado o método descrito na referéncia [34].

O Hamiltoniano do nosso sistema é dado por
Hyy = %/d% A(x): E2:, (3.28)

em que 7 (x) é o operador de densidade atuando no espago, E é o campo elétrico quantizado
proveniente da interagdo luz-condensado e yq é a susceptibilidade elétrica dos atomos do
condensado, onde (::) é usado para indicar uma ordenagao normal, removendo a energia
do vécuo [35]. Caso escrevéssemos o campo elétrico sem a ordenagao normal, estarfamos

assumindo que o CBE poderia interagir com o vacuo, o que nao é o caso.

O operador n pode ser obtido a partir da transformada de Fourier no espago dos

momentos (q).

n(x) = Zq: el f/(z_; , (3.29)

sendo L um fator de normalizacdao. Seguindo o método, ao substituir a equacao (3.28)) na

equagao (3.27)), é possivel chegar a uma equacao para cada operador Ly e Lo.

Conforme mostra Dalvit [34], o operador L, mostra o processo que altera o nimero
de atomos do CBE a partir da interacao luz-condensado. Esse tipo de processo apenas
acontece quando a luz que incide no condensado possui altas intensidades e frequéncias
apropriadas alinhadas a ressonancia do sistema. Neste estudo, vamos lidar apenas com o
processo de medicao fraca, isto é, processos que utilizam técnicas de imagem dispersiva,

como descrito por Andrews [36].
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A equacao encontrada para L, ¢ dada por [34]:

Lapy = / &ry / dry K (r1 — 19) [n(ry), [n(r2), ps]]. (3.30)

em que K é dado por

2kol 2kA
K(r)= 77);%60 /d% Xp( ikz +ik - r) (3.31)

Em resumo, K é o termo matematico na equacao mestra que quantifica como a
medicao em uma parte do condensado esta espacialmente correlacionada com a medicao
em outra, e sua largura determina a menor distancia que o sistema de imagem consegue
resolver. Aqui, £ representa a espessura ou a escala de comprimento do CBE na diregao
z e kg € o namero de onda da luz que incide no condensado. I é a intensidade da luz

proveniente do laser.

Podemos escrever o operador de uma forma mais compacta em termos de 7, con-

forme fizemos na equacao de Lindblad (2.24)). Assim, a equacao seria dada por

Lipp = m[n(r1), [n(r2), )] (3.32)
sendo v, dado por
2
_ mXoks / o o ~ Xkl
= DL [ e (o0 lo(—of? = AL, (333)
2.2
A XokOI
Lipgp ~y1——— .34
1PB =M Sheol (3.34)

em que « é a area aproximada nas direcoes x-y em que o laser interage com o condensado,
ou seja, a é o fator que quantifica a regiao de intera¢ao dos fotons com o CBE. ¢(k) é a

fungao de onda do CBE no espago dos momentos.

Com o operador L; bem definido, podemos reescrever a equacao mestra que des-

creve nosso sistema na representacao de Schrodinger (2.12)) ao invés da representagao de

interagao (3.27)).
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3.2.3 Obtencao da Equacao de Gross-Pitaevskii

Na representagao de Schrodinger, o Hamiltoniano pode ser escrito com base na

EGP (3.13)), como

h2
H = /d27~ <—2mV¢TV@/} + U(r)pTy + g¢T¢T¢w> ‘ (3.35)
A equac@o mestra nessa representacao pode ser escrita como
dp i, )
d*f = 7.0 - / &2, / d’ry K (ry = 12) [n(r1), [n(r2), ], (3.36)

em que o segundo termo representa os processos de dissipacao da interacao fraca entre a

luz e o CBE em que ha perda de informacao de fase do condensado.

Agora, vamos mostrar que a evolucao da fungdo de onda, dada por

l

d|9) = ——dt H|0)—dt / &2r, / A2ry K (11 —15) An(r1) An(rs) W)+ / & dW (r) An(r) |©),
(3.37)
pode gerar a nossa matriz densidade p e, portanto, condizer com a equagdo (3.36). O
termo dW (r) é um ruido que vem do processo de Wiener [37] e representa a flutuacao
aleatoria associada ao resultado instantaneo de uma medicao fraca da densidade local
n(r), ou seja, dW (r) modela a equagdo para um processo estocastico. O termo An(r) é
dado por
An(r) = n(r) = (n(r)) = n(r) — (Y[ n(r) [¥), (3.38)

em processos estocasticos, é normal a utilizacao do célculo de It6 (Apéndice B). As corre-
lagoes do ruido para o nosso sistema sao E[dW (r)] =0 e dW (r)dW (r') = 2dt K(r —1'),

sendo [E a representacao do calculo da média.
Escrevendo a equagao (3.37)) de forma mais compacta, obtemos
d|0) = Adt|W) + /d% An(r) dW (r) | ) | (3.39)

em que

A= —;H - /dzrl/d2r2 K(ry —re) An(ry)An(rs). (3.40)

Pela definicao da matriz densidade e sendo ¥ a fun¢ao de onda do nosso sistema,

pt) = E[[(#)) (L @)[]- (3.41)
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Pela férmula de It6 para produtos, o incremento do projetor é
d(|W) (¥) = (d[¥)) (U] + |¥) (d (¥]) + (d[W))(d (¥]). (3.42)
Portanto, tirando a média,

dp = E[(d[W)) (V] + [¥) (d (¥[)] + E[(d[¥))(d (¥[)]. (3.43)

Podemos tratar a equacao ([3.39) com uma parte linear e uma parte estocastica. O
termo com dt ¢ a parte linear da equagao, enquanto o termo com dW é a parte estocastica.

Assim, ao substituir a parte linear de d |¥) na parte linear da equagao ([3.43)), obtemos:

E[(d|¥)) (@] + [0) (d ()] = dt (Ap+ p AT). (341

O termo quadratico (d |¥))(d (¥]) contém produtos dW (1) dW (r') e, portanto, con-

tribui da seguinte maneira:
Bl(d )@ () = E|( [ dr Be)awe) ) ) (@] [ & B ave))]
- / &2r / & B[AW (r)dW ()] E[B(r) |W) (¥| B(+")]
—2dt / &2r / &' K (r — ') E[An(r) p An(r)]. (3.45)

Somando o termo linear com o termo estocastico, obtemos a seguinte equacao:

Zf - _;[H7 o] _/d2r1/d2r2 K(ri —ra) E[A”(Tl)A”(ﬁ) p+ PA”(Tl)A”<T2)]

42 / &2, / &ry K (11 — 1) E[An(r) p An(rs)]. (3.46)

Desenvolvendo os termos dentro da integral contendo An(r) = n(r) — (n(r)), che-
gamos em um resultado de duplo comutador [n(r), [n(r2), p]]. Assim, conseguimos final-
mente voltar na equagao (3.36)). Dessa forma, a equacao (3.37) pode representar nosso

sistema.

Suponha que o ntimero de atomos do sistema é N = 1. Nesse caso, o termo de
interagao do Hamiltoniano (3.35) serd nulo, ja que o atomo estd sozinho. A funcdo de

onda para esse caso pode ser dada por

¢(t,r) = (r[¥(1)), (3.47)
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e a densidade de particula é representada pelo projetor

n(r) = |r) (r|. (3.48)
Aplicando 7(ry) em |):
a(ry) [W) = [r1) o(r1). (3.49)
O valor esperado (7(r)) fica:
(1)) = (T[(r:) [T) = |o(r:) . (3.50)
Logo,
An(ry) [) = [r1) d(ry) — [P) |o(rs)]”. (3.51)

Tomando o produto com (r|, obtemos:

(x| An(ry) [¥) = 0(r —11)d(r1) — d(r)|d(ro)[". (3.52)

Para o termo estocéstico da equagdo (3.37), obtemos
(x| [ &' aw (') An(x) )
= [ aw ) [ =)o) — 6(x) (') ]
_ [dW(r) — [ o) dW(r’)]gb(r). (3.53)

O termo contendo An(r;)An(ry) pode ser expandido, tornando-se
An(r)An(ry) = a(r)a(rs) = (A(r))a(ry) — (A(r1))a(rs) + (A(r))(a(r)).  (3.54)
Usando 7(r) = [r) (r|, temos:
n(ry)a(ry) [¥) = 6(ry — r2) 1) ¢(11). (3.55)
Tomando o produto com (r| novamente:

(x| An(ry)An(rz) [¥) = 6(r — r1)d(ry — r2)(r) — 0(r — r1)(r1)|d(r2) |* — 6(r — 12)d(r2)|d(r1) |
+ (1) |(r1) %o (r2) . (3.56)
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Substituindo esses resultados na integral da equagao (3.37)), cada termo da equagao

(3.50) gera:

I = /d2r1d2r2 K(ry — 1) 8(r — 11)8(r1 — 1) = K(0), (3.57)
L= [ @ridr K(r = v) o = r)lo(r) P = [ dra K(r = m)lo(m)l, (3.58)
I = /d ryd2ry K (11 — 12) 8(r — 1) (1) /d2r1 r—r)e@)?,  (3.59)
Ii= [ dridPrs K(ry = v2) lo(r)Plo(ra) 2 (3.60)

Combinando tudo, o termo total, que vamos definir como um "contratermo"(C.T.), é dado

por:

CT. = —dt[K(O)—2 [ K= o)+ [ [ dridn Kn—rs) o) Plo(e) | o).

(3.61)
Este termo pode ser interpretado como o sistema reage a medida da luz sobre ele, repre-
sentando um "back-action'. A parte que contém o Hamiltoniano H ndo possui o termo
de interacao, portanto fica simplesmente

1 [ h? 2
e 19 = e [0 U)ot (362

Combinando as equagdes ([3.52)), (3.61) e (3.62)), obtemos:

do(r) = —ﬁdt l—;nw +U(r )] ¢(r)

4 [dW(r) — [ o) dW(r’)} é(r) + C.T. (3.63)

No regime de medigao fraca, a “compressao” (squeezing) do estado quéntico, que
é um efeito nao classico induzido pela medicao, é considerado pequena ﬂ Sob esta con-
digao, torna-se valido empregar a aproximacao de campo médio para descrever o estado

estocastico condicional do sistema.

- = [ oo vio)] o). (360

2A “compressdo” quantica é um fenémeno no qual as flutuacdes quanticas associadas a um par de
observaveis conjugados sao redistribuidas de modo que a incerteza em uma delas seja reduzida abaixo do
limite quantico padrao, enquanto a outra aumenta, preservando o principio da incerteza de Heisenberg.
Essa “compressao” do ruido quantico é obtida por meio de interagdes nao lineares, como a conversao
paramétrica em cristais Opticos, e permite medi¢des com precisao superior a dos estados coerentes, sendo
fundamental em areas como metrologia quintica, comunicacido e computacdo baseadas em varidveis con-
tinuas.
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A equacao (3.64) é a expressao matematica formal dessa aproximacao. Ela postula
que o estado total |¥) do sistema de N &tomos pode ser representado como um estado
produto, no qual todos os N bésons do condensado ocupam um tunico estado quantico.
Este estado é descrito pela mesma fungdo de onda de uma particula tnica ¢(r). A
utilizacao desta aproximacao é o passo fundamental que permite a transicdo de uma
descrigao complexa de N corpos (como a equagao (3.37))) para uma EGP estocéstica, que

governa a dindmica desta unica fungao de onda ¢(¢,r).

A evolugao de |¥) dada pela equagao (3.64)) é traduzida em uma dindmica para a
fungao de onda coletiva ¢(r,t). Substituindo essa forma na equacdo estocéstica e apli-
cando a regra de Itd, obtém-se uma equagao diferencial para ¢(r,t) que inclui tanto
o termo deterministico do Hamiltoniano (associado ao potencial U(r) e & interacdo g)
quanto as corregoes flutuantes devidas a medigao continua, representadas pelos incremen-
tos estocasticos dW (r). O resultado final é a EGP estocéstica:

(1) = =t |~ g0 5+ V) + (V= Dl o0

+ {dW(r) ~ [ \(b(r’)\QdW(r')} 6(r) + C.T., (3.65)

que descreve a evolucao estocastica do condensado sob medig¢oes fracas, incorporando

tanto a dindmica unitaria quanto o ruido quantico associado a observagcao.

O resultado mais notével desta derivacao é que os termos estocésticos (o ruido e o
contratermo) na EGP para um condensado de N atomos sao idénticos aos derivados para
o caso de uma tnica particula (3.63). O artigo de Dalvit [34] justifica isso explicando
que, embora a reagdo da medi¢ao no estado total de N corpos seja mais forte, seu efeito é
dividido entre todas as N particulas. Isso resulta no mesmo efeito liquido sobre a funcao
de onda de campo médio ¢(r) de cada atomo, como ocorreria em um sistema com um

unico atomo .

Assim, a Equagao (3.65) fornece um modelo tedrico poderoso que descreve uma
Unica trajetoria quantica, permitindo simular a evolugao da func¢ao de onda do condensado
sob a influéncia tanto de sua dindmica interna quanto do ruido aleatério introduzido por

um processo de medi¢ao continua fraca .






Capitulo 4

Condensado Bose-Einstein 11

No capitulo anterior, discutimos como a medicdo em um CBE pode gerar uma
EGP estocastica considerando a luz nosso "ambiente". Ao fazer isso, desenvolvemos uma
equacao mestra que é originada da funcao de onda descrita pela equacao . Ainda
assim, em um CBE realista, existem varios outros processos que podem alterar sua dina-
mica, como a recombinac¢ao de trés corpos devido a nuvem térmica que interage com o

CBE [38)].

Neste capitulo, vamos mostrar alguns outros métodos que podem nos levar a des-

crever tais perdas, partindo da ideia de sistemas quanticos abertos.

4.1 Equacgao Mestra com Ganho e Perda
Balanceados

Uma possivel abordagem para a descricao de CBEs como sistemas quéanticos abertos
foi proposta por Dast [39]. Nesse trabalho, os autores introduzem uma equagao mestra em
forma de Lindblad que descreve um condensado confinado em um sistema de dois sitios
(ou Bose-Hubbard dimer) sujeito a processos de ganho e perda de particulas balanceados.
Essa formulacao é particularmente relevante, pois permite o surgimento natural de uma
dindmica efetivamente nao-Hermitiana, cuja correspondéncia no limite de campo médio

é a EGP PT-simétrica.

Um sistema é P7T-simétrico quando o Hamiltoniano do sistema comuta com o
operador PT, sendo P o operador de inversao espacial, ou seja, que leva PrP~! = —x

e T 6 o operador de inversdo temporal, levando a TpT~! = —p. Assim, se [H, ]ST] =0,

27
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dizemos que o sistema é PT-simétrico.

4.1.1 Hamiltoniano de Bose-Hubbard

O sistema considerado é descrito pelo Hamiltoniano de Bose-Hubbard, que descreve

o sistema preso em uma rede Optica de dois sitios, que pode ser obtido ao considerar a

EGP que, ao expandir a equagdo em fungdes de Wannier, gera o Hamiltoniano abaixo
[40]:

i i Ui P

H = —(alasy + ajay) + 5 (alalalal + a2a2a2a2) , (4.1)

em que a; e a;r- sao os operadores de aniquilagdo e criacdo bosonicos atuando no sitio

j =1,2, e U representa a intensidade da interacao de duas particulas em um mesmo sitio.

O primeiro termo da equagao (4.1)) descreve o tunelamento coerente de atomos entre os

dois pocos, enquanto o segundo termo corresponde a interacao de contato local.

Vamos deduzir o Hamiltoniano partindo dos principios comentados. O funcional

de energia associado a EGP ([3.13) é:

2

Bl = [ @r [0 (394 Vo) w0+ S| (42

2m

Consideremos que o potencial externo Vi (r) forma uma rede éptica com apenas dois
sitios relevantes. Podemos expandir o campo em termos de fungoes localizadas ( Wannier)

centradas em cada sitio:
W(r,t) = wy(r)ay (t) + we(r)as(t), (4.3)
em que w;(r) sdo fungdes ortonormais, ou seja, [ d*r w}(r)w;(r) = d;;.
Substituindo a expansdo na parte cinética e potencial de E[t)], obtemos:

Ehop = Za;“aj / d>r w} (r)how;(r), (4.4)

,J
2 7’ . . 7 .
em que hg = —f—mVZ + Vext (). Ehop € a energia associada ao tunelamento entre os sitios.

Mantendo apenas os termos locais e os de vizinhanca mais préximos, definimos:

J=— / & w? (r)hows (), (4.5)
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em que J > 0 é o coeficiente de tunelamento (hopping), indicando a chance do bdson

saltar de um sitio para outro. Assim, o termo discreto correspondente é:
Ernop = —J(ajas + aja). (4.6)
A contribuicao da interagdo de contato é dada por:

By = g / &r | (r)[. (4.7)

Substituindo a expansao e desprezando os termos de interagao entre sitios distintos,

obtemos:

Ein =+ (laa]* + laa]*) (4.8)

vo|

U= g/d3r|w(r)|4. (4.9)

Combinando os termos de hopping e interacao, o funcional de energia total no regime

discreto é:

* * U
Elay, as) = —J(ajay + ajay) + §(|a1|4 + |ag]h). (4.10)

T

PR

Ao promover as amplitudes classicas a operadores bosonicos, a; — a; € ai — @

com [d, d}] = §,j, obtemos o Hamiltoniano quantizado:
H = —J(alay + abay) + - (alafasay + abadaoas) . (4.11)

Definindo unidades de energia onde J = 1, chegamos ao Hamiltoniano na forma mais

comum para dois sitios:

banay) | (4.12)

A derivagao mostra que o modelo de Bose-Hubbard emerge naturalmente como a
quantizacao discreta da EGP quando se considera um potencial de rede profunda. No
caso de dois sitios, o Hamiltoniano acima descreve a competicao entre a delocalizacao
quantica (hopping) e a interacdo local entre particulas (repulsdo U), sendo a base para

estudar efeitos como a transicdo de Mott e o regime de Josephson [41], 42].
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4.1.2 Operadores de ganho e perda

Com o Hamiltoniano bem definido, a abertura do sistema é modelada pela inclusao
de dois superoperadores de Lindblad, um responsavel pela perda de particulas no sitio 1 e
outro pelo ganho no sitio 2. A dinamica total do sistema é entdo governada pela equagao

mestra
dp B

= —i[H, p] + Lperdap + Lganhop- (4.13)

Se supormos que o sistema possui saltos, descritos pelo operador L, entao podemos

escrever os termos Lp da seguinte maneira:

~ 1 /asn PN A A
£(lyp=—; (LLp+ pLL — 2LpLY). (4.14)

A justificativa dessa forma de escrever o operador é obtida levando em conta as
probabilidades de ocorrer um salto no sistema ou de ndo ocorrer em um tempo infinitesimal
dt. Ao fazer isso, podemos chegar a uma equagao mestra para cada caso (caso em que ha
salto e que nao ha) que, ao juntar as duas equagoes, nos fornece uma equagao mestra do
tipo A

flj — a1 p+ EpLt — L (L1 L+ pIIE) (4.15)

Assim, podemos escrever os operadores Lperda € Lganho Partindo da equacio (4.15).

; ; — ] — T —
Para 1880, consideramos Lperda = /Vperda A1, Lperda = /Vperda A1, Lganho = 4/7ganho G2 €

L;anho = /Vganho ag, em que Yperda € Yeanho representam as taxas de perdas e ganhos,

respectivamente. Desse modo, obtemos:

Lperdap = _’Yperrda (aJ{alp + paJ{al - 2a1pa];) ’ (416>
‘Cganhop = _@ (a2a£p + paQCL; - 2a£pa2) : (417)

Esses operadores descrevem, respectivamente, a remocao e a inje¢do de atomos do
condensado de forma incoerente, simulando o acoplamento com um ambiente externo. A
escolha das taxas Yperda € Veanho determina o regime dinamico do sistema. No caso parti-
cular em que as taxas sdo ajustadas de modo que Yganho/Vperda = No/(No +2), onde Ny é
o numero médio inicial de particulas, o sistema exibe ganho e perda exatamente balance-

ados, resultando em uma evolucao estacionaria média do niimero total de particulas.
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4.1.3 Equacao de Gross-Pitaevskii PT-simétrica

A andlise do limite de campo médio da equacao (4.13) é obtida pela substituigao do
operador de densidade p pelo estado puro p = [¢) (¢| e pela aproximagao dos operadores
bosdnicos pelos seus valores esperados, a; — v/Ny¢;, com |c1]* + |ca|* = 1. Substituindo

essas relagoes na equagdo mestra (4.15)), obtém-se o sistema de equagoes diferenciais

acopladas
it = —co + gley e — 2%01, (4.18a)
ity = —c1 + gleafPer + i%@, (4.18Db)

em que g = (Ng — 1)U é a intensidade efetiva da interagao e 7y representa a taxa comum
de ganho e perda. As Eqs. (4.18a)—(4.18b)) correspondem a EGP PT-simétrica discreta,

cuja dindmica reflete o balanco entre coeréncia quantica e dissipacao.

4.1.4 Simetria P77 na equagao de Gross—Pitaevskii com ganho
e perda balanceados

As equacoes (4.18a])—(4.18b]) podem ser escritas na forma matricial

d (a1 C1
— = H, 7 4.19
“dt <C2> ! <C2> (4.19)

com o Hamiltoniano efetivo nao Hermitiano dado por

c)? — il -1
Hy = (g‘ =7 L ) (4.20)
-1 glea|® i3

O operador de paridade P, no espacgo de dois modos, troca os sitios do sistema,

P = 01 4.21
_<1 0)’ (421)

enquanto o operador de reversao temporal T' realiza a conjugacao complexa e muda o

sendo representado por

sinal de :

T: i——i, ¢ — cj. (4.22)

Aplicando a operagdo PT sobre o Hamiltoniano efetivo, obtemos

. . col? — i —1
PTHa(PT) " = (9 leof =43 o ) (4.23)
—1 gl i3
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Comparando com H.g, nota-se que a condigao
le1? = |eaf® (4.24)

garante que

[Heg, PT) = 0. (4.25)

Assim, o sistema é PT -simétrico quando as probabilidades de ocupagao em ambos os sitios
sdo iguais, ou seja, quando o ganho e a perda se equilibram. A condic¢ao de balanceamento

¢é obtida a partir da equagao mestra microscopica e é dada por

Vgain _ NO
Noss N o+ 2 7

em que Ny é o nimero total de particulas. No limite Ny — 0o, tem-se Yeain = Vioss = 7,

levando exatamente as equagoes (|4.18al)—(4.18b)).

(4.26)

Dessa forma, o Hamiltoniano efetivo do sistema com ganho e perda balanceados
satisfaz a condi¢do de comutagdo com o operador PT, caracterizando um CBE com

dindmica governada por uma EGP PT-simétrica.

De forma notavel, Dast et al. demonstram que, mesmo para numeros finitos de
particulas, a dindmica quantica obtida da equacao mestra (4.13]) concorda de forma exce-
lente com o limite de campo médio dado pelas Egs. (4.18a)—(4.18b). Essa correspondéncia
evidencia que o formalismo de Lindblad com ganho e perda balanceados é uma descri¢cao
microscopica consistente para CBEs efetivamente abertos, e fornece uma ponte concei-
tual entre a mecanica quantica de muitos corpos e as equagoes nao-Hermitianas de campo

médio que emergem na descricdo macroscopica do sistema.

4.2 Formulacao Microscépica e Equacao Mestra
Conservativa

Uma formulagao fundamental para descrever CBEs como sistemas abertos, porém
com conservagao global do niimero de particulas, foi desenvolvida por Schelle [43]. Nessa
abordagem, os autores derivam uma equac¢ao mestra de Lindblad a partir de primeiros
principios, considerando a separacao entre o condensado e o nao-condensado como sub-
sistemas de um mesmo gas diluido. Essa descri¢ao preserva o nuimero total de atomos
N = Ny + N, tratando o condensado como o sistema principal e o conjunto dos estados

excitados (ndo-condensado) como o reservatério térmico interno.
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O ponto de partida é a decomposicao do campo bosonico total \i/(r) em duas

contribuigoes ortogonais:
U(r) = Uo(r)ap + > Up(r) ay = Uo(r) + T, (r), (4.27)

em que Uy(r) é a fungdo de onda do condensado, obtida como solu¢do da EGP e os
operadores ay e d,TC descrevem os modos de excitacao ortogonais ao condensado. Essa

separacao permite reescrever o Hamiltoniano de muitos corpos na forma
H=Hy+H, +Vp., (4.28)

em que Hj representa o Hamiltoniano do condensado, H, o do nao-condensado, e V| os

termos de interacao entre ambos. Explicitamente,

: o (Y A PR R
Hoz/dr\IIO — o+ Ve \I/0+§/dr\110\110\110\110, (4.29)
k40

enquanto o termo de interacio Vo, contém todos os processos de colisao que transferem
particulas entre o condensado e o nao-condensado. Esses processos podem ser classificados
em trés tipos: (i) eventos de ganho/perda de uma particula, (ii) eventos de criagdo/ani-
quilagdo de pares e (iii) espalhamentos eldsticos que preservam o nimero de particulas

em cada subsistema, conforme é comentado por Schell [43].

Para descrever a dindmica temporal, considera-se o estado total 6(V)(¢) definido
no espaco de Fock F = Fy ® F |, que descreve a superposicao de estados com diferentes
numeros de particulas, cuja evolucao obedece a equagao de von Neumann:

deM(t)

— [H, 6™ ()] (4.31)

St =

Tomando a média sobre os graus de liberdade do nao-condensado, obtém-se a matriz

densidade reduzida do condensado,

0 (1) = Tr {e ™ (1)} (4.32)

Sob as hipdteses de (i) rapida termalizacdo do nao-condensado e (ii) separagao de

escalas temporais entre a dindmica de condensagdo e as colisdes térmicas (7., < 7o),



34 CAPITULO 4. CONDENSADO BOSE-EINSTEIN II

é possivel aplicar a aproximacao de Born-Markov. O resultado é uma equacao mestra

markoviana para a matriz densidade reduzida do condensado:

A(N) N
dpodt(t) = 2;[éfv(No,T>D[5’+(No)]ﬁém(t)+€;V(N0,T)D[S*_(No)mgm(t) . (4.33)

em que o dissipador de Lindblad é definido por

|
>
»
:55
|

DIAp {ATA, p}, (4.34)

e os operadores de salto Sy ([Vy) representam, respectivamente, a adi¢do ou remogao de

um atomo do condensado:

S¢(No) = |No+ 1)(Nol,  S_(No) =[Ny — 1){No|. (4.35)

Ao projetar a Eq. (4.33) nos estados de ntimero |Ny), obtém-se uma equagao de
taxas para a distribui¢do de particulas no condensado py(No,t) = (No| o5 () | No):

Opn(No, t)

ot = = {5\7(1\]0, T) + 5]?/(]\[07 T)} pN(N0> t>+£JJ\rf(N0_17 T)pN<N0_17 t)—l-f]?/(No-H, T)pN(NO—Hv t)>

(4.36)
a qual descreve a transferéncia de particulas entre o condensado e o nao-condensado.
As taxas &5 dependem das correlacbes do reservatério térmico e incorporam o equilibrio

dinamico entre processos de alimentagao e depletamento do condensado.

O resultado notavel dessa formulacao é que, sob condicoes de diluicao e de in-
teracoes fracas, o estado estacionario da Eq. converge para uma distribuicao de
Gibbs-Boltzmann de um gés ideal de bdsons indistinguiveis. Assim, o formalismo de
Schelle et al. estabelece uma ponte entre a teoria cinética da condensacao e o formalismo
de equacoes mestras quanticas, preservando o carater conservativo e o nimero total de
particulas do sistema. Essa abordagem fornece, portanto, uma base microscépica solida
para o estudo de sistemas abertos conservativos, a partir da qual podem ser introduzidas

extensoes dissipativas.

4.3 Discussao e Conexao com o Modelo
Desenvolvido

As formulagoes apresentadas nas Segdes anteriores descrevem duas perspectivas

complementares sobre a dinamica de CBEs tratados como sistemas quénticos abertos.
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De um lado, a abordagem de Schelle [43] fornece uma descrigdo microscopica e niimero-
conservativa da evolu¢ao do condensado, na qual o reservatorio térmico ¢ constituido
pelas préprias excitagoes do gas. De outro, o modelo de Dast et al. (2014) [39] introduz
um mecanismo efetivo de troca de particulas com o ambiente, representando um caso
genuinamente dissipativo, mas ainda assim capaz de preservar coeréncia quantica sob

certas condigoes de simetria.

A estrutura geral das equagdes mestras em ambos os casos pode ser escrita de
forma unificada pela equacao (2.24) onde os operadores de Lindblad L; descrevem os
canais de dissipagdao ou de acoplamento com o ambiente. No formalismo conservativo de
Schelle, esses operadores correspondem a processos internos de troca de particulas entre

o condensado e o nao-condensado,
Ly =\&(M)ah, L= \J&x(T) o, (4.37)

de modo que o nimero total de particulas N = Ny 4+ N, ¢é preservado. J4 no modelo de

Dast, os operadores de Lindblad assumem a forma

f/ganho = 4/7ganho (l;, f/perda = +/Vperda 1, (438)

introduzindo explicitamente um fluxo de particulas entre o sistema e o meio externo. O
equilibrio dinamico obtido quando Yganho = Yperrda € andlogo ao regime estacionario en-
contrado no caso conservativo, embora a conservagao global de particulas seja substituida

por um balancgo entre ganho e perda.

Essa correspondéncia estrutural permite interpretar a equacao mestra com ganho
e perda balanceados como uma extensao dissipativa do formalismo nimero-conservativo.
Em ambos os casos, o sistema evolui segundo um operador de Lindblad cuja forma garante
positividade e trago unitario da matriz densidade, mas com significados fisicos distintos:
no modelo conservativo, os operadores de salto descrevem trocas internas reversiveis,
enquanto no modelo dissipativo eles representam injecao e extracao irreversiveis de par-

ticulas.

Do ponto de vista fisico, essa comparacao revela que a introdugao de termos nao-
Hermitianos na EGP nao é arbitraria, mas sim uma consequéncia natural do acoplamento
do condensado com um reservatorio, seja ele interno ou externo. A simetria P7 observada

no modelo de Dast pode, portanto, ser interpretada como a manifestacdo macroscopica
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de um balango microscépico entre os processos de alimentacao e de deplecao descritos por

Schelle.

Conclui-se, assim, que os dois modelos representam limites complementares de um
mesmo formalismo de sistemas quanticos abertos. O modelo conservativo de Schelle for-
nece a base microscépica e estatistica da equagao mestra, enquanto o modelo dissipativo
de Dast introduz uma generalizagdo fenomenologica capaz de capturar regimes efetivos de
ganho e perda. Essa conexao conceitual estabelece um quadro unificado que sustenta o de-
senvolvimento de equagdes mestras mais gerais, que podem resultar em EGPs estocasticas

como visto no capitulo 3.



Capitulo 5

Conclusao

Neste trabalho, foi analizado o CBE sob a 6tica dos sistemas quéanticos abertos,
enfatizando como o acoplamento com o ambiente altera a dindmica do sistema. A partir
da EGP tradicional, estendeu-se o tratamento para incluir efeitos dissipativos e estocas-
ticos, permitindo uma descrigao mais realista da evolucao de condensados em condigoes

experimentais.

A formulacao de uma equacdo mestra do tipo Lindblad mostrou-se fundamental
para compreender a influéncia de perdas, ganhos e decoeréncia. Ao introduzir operadores
de Lindblad associados a processos de dissipacao e alimentacao, foi possivel obter expres-
soes que conectam a dinamica microscopica com as equacoes efetivas de campo médio.
Essa analise levou naturalmente a EGP estocastica, na qual o ruido quantico e as flu-
tuagoes induzidas pela medicdo continua desempenham papel essencial na evolucdo do

condensado.

No segundo bloco do trabalho, discutiram-se duas abordagens complementares. O
modelo de Dast, descrito na sessdao 4.1, introduz uma formulagdo com ganho e perda
balanceados, na qual o sistema pode manter coeréncia quantica apesar da dissipacao,
manifestando simetria PT. Por outro lado, o modelo de Schelle, descrito na sessao 4.2
fornece uma base microscépica conservativa, em que o condensado e o nao-condensado
trocam particulas sem violar a conservacao global do niimero de atomos. A comparacao
entre esses modelos propoe que ambos podem ser vistos como limites de um mesmo
formalismo de sistemas abertos: o primeiro, fenomenologico e dissipativo; o segundo,
conservativo e derivado de primeiros principios. Essa equivaléncia estrutural sustenta a

ideia de um quadro unificado para descrever CBEs abertos, no qual diferentes regimes
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emergem a partir de condig¢oes especificas de acoplamento com o ambiente.

Como resultado, este estudo propde que os termos nao-Hermitianos introduzidos
em EGPs efetivas nao sao construgoes artificiais, mas expressoes macroscopicas de pro-
cessos microscopicos de troca e deplegao. A simetria PT, nesse contexto, surge como a
manifestacao do equilibrio entre tais processos, conectando a teoria de sistemas abertos a

dinamica coerente observada experimentalmente em condensados dissipativos.

Em perspectiva futura, o formalismo aqui apresentado pode ser estendido a ané-
lise de CBEs em redes 6pticas, condensados com interacoes de longo alcance e regimes
fortemente correlacionados, em que a dissipagdo nao apenas degrada a coeréncia, mas
também pode ser utilizada como mecanismo de controle quantico. Esses desdobramentos
reforcam o papel dos sistemas quanticos abertos como ferramenta tedrica essencial para

compreender e manipular estados quanticos macroscépicos.

No contexto experimental recente, o trabalho de Moreno-Armijos [44] observou es-
tagios distintos na relaxacao de um CBE turbulento aprisionado, revelando uma sequéncia
de cascatas diretas e inversas de particulas e evidéncias de escalas universais de relaxacao.
Tais resultados indicam que mesmo sistemas fechados exibem comportamentos analogos
aos descritos por equagoes mestras dissipativas, com regioes de quase-estacionariedade,
pretermalizacdo e dindmicas auto-similares regidas por expoentes universais, conforme
descritas em alguns trabalhos [45H47]. Além disso, as cascatas inversas de energia obser-
vadas no trabalho podem ser andlogas ao efeito Mpemba Quantico [48], mostrando que o
sistema pode voltar ao equilibrio (fase condensado) mais rapido com maiores excitagoes
do que com menores excitacoes. Isso tudo sugere que uma formulagdo quéntica aberta
adequada pode capturar, de maneira unificada, tanto o comportamento de sistemas aber-
tos quanto o de sistemas isolados que exibem relaxagao interna via acoplamento entre

modos.

A partir dessa perspectiva, o desenvolvimento de uma equacao mestra efetiva capaz
de prever os estagios observados experimentalmente torna-se um objetivo central. Tal
equacao deve incorporar termos nao-lineares e dependentes do tempo que representem
os fluxos de particulas entre modos de baixa e alta energia, recuperando naturalmente
as escalas universais de relaxacao associadas as cascatas de energia e de particulas. A

formalizacao desses processos dentro do formalismo de Lindblad — possivelmente com
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operadores locais que dependam do momento ou da densidade — pode permitir a descricao
de fenémenos como a transicdo entre regimes de turbuléncia quantica e condensagao

inversa, conforme observado no trabalho experimental.

Portanto, este trabalho reforca que o caminho para compreender completamente a
dinamica de CBEs fora do equilibrio passa pela busca de uma equacdo mestra generali-
zada, que unifique o formalismo estocastico da EGP com a teoria de turbuléncia de ondas

(WTT) [49] e o conceito de pontos fixos nao-térmicos (NTFPs) [50].

Em conclusao, o presente trabalho apresentou a relacao entre o formalismo de
sistemas quanticos abertos e a dindmica de condensados. Também abriu caminho para
uma futura formulagdo mestra de carater unificador para descrever a dindmica universal
de CBEs fora do equilibrio. Tal formulacao representaria um avanco significativo na
compreensao dos mecanismos de relaxacao e termalizagao em sistemas quanticos de muitos
corpos, contribuindo para o desenvolvimento de uma teoria completa da dindmica fora do

equilibrio em CBEs.






Apéndice A

Decomposicao Espectral

Seja A um operador normal em um espaco vetorial V. Queremos mostrar que A é

diagonalizavel em alguma base ortonormal.

Fazemos a prova por indugao na dimensao n = dim(V'). Para n = 1, o resultado é

imediato.

Suponha que o teorema valha para dimensoes menores que n. Seja A um autovalor
de A, e denote por II, o projetor sobre o autoespaco correspondente, e por I, = I — II,

o projetor sobre o complementar ortogonal.

Podemos escrever:

A= (II\+1,)A(L, + II,) = I, AIT, + [T, AIT, + IT, AIT, 4 11, AT, . (A1)

Como A preserva o subespaco associado a A, temos II | AIT, = 0. Além disso, como

A é normal, também vale IT\AIl, = 0. Assim,

A = ILAIL, + 1, AIL . (A.2)

Note que o operador reduzido IT; ATl atua apenas no subespago ortogonal IT, (V')

e continua sendo normal, pois

(I AT, )(TTL AT, ) = T, AATTL, =11, ATAIT, = (1T, ATTL, ) (1T AITL). (A.3)

Logo, por hipodtese de inducao, esse operador é diagonalizavel em alguma base

ortonormal de I, (V).
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Como II,AIl, = MII, ja é diagonal no subespaco II,(V'), concluimos que A é

diagonalizavel em uma base ortonormal do espago total V.

Podemos escrever o operador como

A=Y AL (A4)

em que \; sao os autovalores e 1I; os projetores sobre os autoespacos ortogonais corres-

pondentes. Esses projetores satisfazem:

Traco Parcial

Em sistemas quanticos compostos, frequentemente é de interesse descrever apenas
uma parte do sistema total, ignorando os graus de liberdade de um subsistema que nao
é diretamente acessivel. Essa operacao é formalmente expressa através do trago parcial,

uma ferramenta fundamental na teoria de sistemas quanticos abertos.

Considere um sistema quantico composto S + F, onde S representa o sistema de
interesse (“sistema”) e E o ambiente. O espago de Hilbert total é dado pelo produto
tensorial

Htotal - HS Y %E (A6)

Se o estado total do sistema for descrito pela matriz densidade pgg, o estado
reduzido do sistema S é obtido aplicando o traco parcial sobre os graus de liberdade do

ambiente:

ﬁg = TYE (ﬁSE) . (A?)

Analogamente, o estado reduzido do ambiente é dado por

pr = Trs (Psk) - (A.8)

O trago parcial corresponde a descartar a informagdo sobre o subsistema nao ob-

servado. Por exemplo, se um observavel Ag atua apenas sobre o sistema S, a expectativa
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desse observavel é obtida como
(As) = Trsp [(As ®1IEg) ﬁSE} = Trg Vls TFE(ﬁSE)} = Trg (Asﬁs> : (A.9)

mostrando que o estado reduzido pg contém toda a informacao necessaria para prever as

médias dos observaveis que atuam apenas sobre S.

Se {|e;)} ¢ uma base ortonormal de Hg, o trago parcial sobre o ambiente é dado

explicitamente por

Tre(pse) = Y {eil pse les) - (A.10)

i
De modo andlogo, o trago parcial sobre o sistema S é

Trs(pse) = D (84l pse |s5) (A.11)

J

em que {|s;)} ¢ uma base ortonormal de Hg.

Exemplificando, considere um estado puro bipartido

Wgp =D cij |si) @le;), (A.12)
6,J
com matriz densidade total
pse = W) (Wlsy = D cijciy Isi) (sl @ les) (el - (A.13)
ik

O trago parcial sobre o ambiente fornece o estado reduzido do sistema:

ps = Trp(pse) = Y (em| pse lem)

m

= Z;; (Z Cij02j> |5i) skl (A.14)

Assim, mesmo que o estado total psg seja puro, o estado reduzido pg pode ser
misto, refletindo o emaranhamento entre S e E. Essa propriedade é a base conceitual da

perda de coeréncia e da emergéncia da irreversibilidade em sistemas quanticos abertos.

O operador de traco parcial satisfaz propriedades uteis, dentre as quais destacam-

se:
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1. Linearidade:
Trg(aA + bB) = a Trp(A) + b Trp(B). (A.15)

2. Compatibilidade com o traco total:

Trsp(A) = Trg (Trg(A)) = Trg (Trs(A)) . (A.16)

3. Invaridncia ciclica parcial: para operadores Ag e Bsg,

Trp [(As ® 1g) Bsp| = As Trp(Bsg). (A.17)

O traco parcial é o elo entre a descrigdo microscépica e a dinamica efetiva do sistema
de interesse. Ele permite derivar equac¢oes mestras e modelos de dissipacao ao eliminar
explicitamente as variaveis do ambiente, produzindo uma dindmica nao unitaria para o
sistema S. Assim, a operacao de traco parcial é o passo fundamental na passagem de
uma descricao unitaria global para uma descrigao efetiva aberta, caracteristica essencial

de sistemas quanticos em contato com um reservatorio.

Decomposicao de Kraus

A decomposicao de Kraus é uma forma conveniente de representar qualquer mapa
linear completamente positivo (CP) atuando em operadores densidade. Seja £ um canal

quantico, isto é, um mapa linear completamente positivo e preservador de trago:

E:p—=E(p). (A.18)

Queremos mostrar que ele pode ser escrito como
E(p) =Y KipK], (A.19)
i
em que K; sdo operadores que satisfazem ), K;r K, =1.

Comecamos considerando a representacio de Stinespring: qualquer mapa comple-
tamente positivo pode ser visto como uma evolugdo unitaria em um espaco ampliado,
seguida de um trago parcial. Isto é, existe um operador unitario U agindo sobre o sistema

e um ambiente auxiliar £, e um estado inicial |0) z do ambiente, tais que

E(p) = Teg U (p@ [0){0]2) UT|. (A.20)
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Escolhendo uma base ortonormal {|i)g} para o espago do ambiente, podemos es-

crever o trago parcial explicitamente:

E(p) = S (ilp U (0@ [0)(0]2) UT |i) .

i
Definimos entao os operadores de Kraus como

K; = (ilgU|0)g.

Substituindo, obtemos diretamente:
que ¢ a forma desejada.

Para que £ preserve o traco, precisamos ter:

Tr[€(p)] = Tx[p].

Usando a forma de Kraus:

Trlz KipKiT] = Tr[pZKJKz} .

Logo, a condicao é satisfeita se, e somente se,

SN KIK =1,

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

Em resumo, qualquer canal quantico completamente positivo e preservador de traco

pode ser expresso como uma soma de operadores de Kraus:

E(p) =Y KipK{, com S KIK;,=1I,

Essa decomposicao nao é tnica, diferentes conjuntos de operadores K; podem representar

o mesmo mapa £. Em geral, os operadores de Kraus podem depender do tempo, afinal

se p depender do tempo, entdao os operadores K; vao ter que mudar ao longo do tempo

também.






Apéndice B

Calculo de 1Ito

O calculo de Itd é uma extensao do calculo diferencial tradicional, desenvolvida
para lidar com processos estocésticos, isto é, variaveis que evoluem de forma aleatéria no
tempo. Em particular, ele fornece as regras para manipular diferenciais de processos que

dependem de um ruido branco, como o movimento Browniano W;.

Considere um processo estocastico X; que satisfaz uma equacao diferencial esto-

castica (EDE) da forma
dXt = a(t,Xt) dt+ b(t,Xt> th, (Bl)

em que a(t, X;) representa o drift (ou termo deterministico), e b(t, X;) representa a intensi-
dade do ruido multiplicando o incremento estocastico dW;. O processo W; é o movimento

Browniano (ou processo de Wiener), que satisfaz as seguintes propriedades fundamentais:

(dW,) =0, (dW,)?* = dt, dW, dt =0, (dt)* = 0. (B.2)

Essas relagoes indicam que os incrementos de Wiener tém variancia proporcional

a dt e ndo sao diferencidveis no sentido usual.

Formula de It6 para Produtos

Sejam X; e Y; dois processos estocasticos que obedecem as EDEs

dXt = ax dt -+ bX dVVt,
dY;g = ay dt + by th

—
o
w

~—

Desejamos determinar o incremento de seu produto Z; = X,Y;.
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No célculo deterministico, a regra do produto é simplesmente

d(X,Y;) = X, dY, + Y, dX,. (B.5)

Entretanto, no calculo de It6 devemos considerar também os termos de segunda

ordem que surgem ao expandir o produto dos incrementos:

A(XyY:) = XiAY, + VAX + (AX,)(AY). (B.6)

Como AW; ~ v/ At, o termo quadratico (AW;)? é da ordem de At, e portanto nao

pode ser desprezado. Aplicando as regras de Itd, obtemos

(AX,)(AY;) = byby AL. (B.7)

Tomando o limite At — 0, a regra de [to6 para produtos é entao dada por

d(X:Y;) = Xy dY; + Yid X, + (dXy)(dYr). (B.8)

O termo adicional (dX;)(dY;) é a principal diferenca em relagdo ao calculo deter-
ministico, e surge devido a natureza nao diferenciavel do movimento Browniano. Em

particular, ele captura as correlagoes entre os ruidos que atuam em X; e Y;.
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