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Resumo

Os Condensados de Bose-Einstein, previstos por Bose e Einstein no início do século
XX, constituem sistemas singulares por manifestarem fenômenos quânticos em escala ma-
croscópica. A descrição usual desses sistemas, baseada na equação de Gross-Pitaevskii,
parte da hipótese de isolamento ideal, o que contrasta com a realidade experimental, mar-
cada por interações inevitáveis com o ambiente. Tais interações inserem os condensados
no escopo dos sistemas quânticos abertos, em que efeitos como dissipação, decoerência e
perdas tornam-se relevantes. Nesse cenário, abordagens formais como a equação mestra de
Lindblad revelam-se essenciais para compreender a dinâmica realista desses condensados.
O presente trabalho analisa os condensados sob essa ótica, discutindo como o acoplamento
ao meio modifica suas propriedades quânticas e pode originar novos regimes físicos, com
potenciais aplicações no controle de estados quânticos em escala macroscópica.

Palavras-chave: Condensados Bose-Einstein, Sistemas Quânticos Abertos,
Equação de Gross-Pitaevskii, Equação Mestra de Lindblad.
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Abstract

Bose-Einstein Condensates, predicted by Bose and Einstein in the early 20th century,
are unique systems that exhibit quantum phenomena on a macroscopic scale. The stan-
dard description of these systems, based on the Gross-Pitaevskii equation, relies on the
assumption of ideal isolation, which contrasts with the experimental reality where interac-
tions with the environment are unavoidable. Such interactions place condensates within
the framework of open quantum systems, where effects such as dissipation, decoherence,
and losses become relevant. In this context, formal approaches such as the Lindblad mas-
ter equation are essential to understanding the realistic dynamics of these condensates.
This work analyzes condensates from this perspective, discussing how coupling to the en-
vironment modifies their quantum properties and may give rise to new physical regimes,
with potential applications in the control of macroscopic quantum states.

Keywords: Bose-Einstein Condensates, Open Quantum Systems, Gross-
Pitaevskii Equation, Lindblad Master Equation.
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Capítulo 1

Introdução

Desde sua previsão teórica por Satyendra Nath Bose e Albert Einstein no início
do século XX, os Condensados de Bose-Einstein (CBEs) tornaram-se um dos sistemas
quânticos mais fascinantes da física contemporânea [1–3]. Formados por átomos bosônicos
a temperaturas extremamente baixas, esses condensados exibem fenômenos macroscópicos
regidos pelas leis da mecânica quântica, como coerência de fase, superfluidez e interferência
quântica. A descrição teórica tradicional desses sistemas é frequentemente feita por meio
da Equação de Gross-Pitaevskii (EGP), que assume um sistema idealmente isolado e em
equilíbrio [4, 5].

No entanto, na prática, nenhum sistema físico está completamente isolado. Todo
condensado interage, em maior ou menor grau, com seu ambiente externo, seja por meio
de flutuações térmicas residuais, perdas de partículas, ruído de campo ou imperfeições no
confinamento [6–13]. Tais interações fazem com que o condensado seja, na realidade, um
sistema quântico aberto, ou seja, um sistema cujo comportamento é influenciado por graus
de liberdade externos que não são, geralmente, diretamente acessíveis ou controláveis.

A teoria de sistemas quânticos abertos fornece um arcabouço formal para descre-
ver a evolução de sistemas que interagem com um ambiente, frequentemente levando à
dissipação, decoerência e perda de informação quântica [14]. Dentro desse contexto, abor-
dagens como a equação mestra de Lindblad e as técnicas de traço parcial têm se mostrado
fundamentais para compreender os efeitos da não idealidade no comportamento dos CBEs.

Este trabalho tem como objetivo explorar o tratamento dos CBEs a partir da pers-
pectiva de sistemas abertos, discutindo como a interação com o ambiente pode alterar
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2 CAPÍTULO 1. INTRODUÇÃO

sua dinâmica, modificar sua coerência quântica e induzir novos regimes físicos não pre-
sentes em modelos unitários fechados. Ao investigar essa abordagem, buscamos ampliar a
compreensão teórica e experimental sobre os CBEs em cenários realistas, além de desta-
car implicações para o controle de estados quânticos macroscópicos em futuras aplicações
tecnológicas.

No próximo capítulo, vamos estudar a base da teoria que nos leva à teoria de sis-
temas quânticos abertos, com o objetivo de descrever a evolução temporal de sistemas
quânticos. Para isso, serão revisados alguns tópicos da informação quântica e das bases
da mecânica quântica. No capítulo 3, vamos descrever a evolução de um CBE, conside-
rando os efeitos da medição no sistema físico. Conforme será discutido, o ato de medir
o sistema atrapalha a dinâmica ideal de um CBE, o que revela uma equação estocástica
para descrever a dinâmica do sistema. No capítulo 4, serão apresentados dois modelos
que discutem o ganho e a perda de partículas no sistema devido ao acoplamento do CBE
com um ambiente. No primeiro modelo, será visto que o sistema adquire uma simetria
PT, que também será comentada neste capítulo. Já o outro modelo, nos informará como
se dá a evolução considerando a conservação de partículas no sistema total. Por fim, no
capítulo 5 será feita uma conclusão e comentará sobre alguns desafios no formalismo de
sistemas quânticos abertos em CBEs.

.



Capítulo 2

Evolução Temporal de Sistemas
Quânticos

Assim como qualquer sistema físico da mecânica clássica, a mecânica quântica
também admite evolução temporal. Dizemos que um sistema quântico evolui no tempo
quando os estados quânticos que o definem também evoluem no tempo, sendo esses estados
definidos como estados puros ou estados mistos. Nessa descrição, estamos considerando o
"Representação de Schrödinger", mas também existe uma forma alternativa de descrever
a evolução de um sistema quântico, considerando que os estados quânticos são estáticos
e, na verdade, são os operadores que variam no tempo (Representação de Heisenberg).
Para a descrição feita nesse trabalho, não nos preocuparemos com o Representação de
Heisenberg.

Neste capítulo vamos discutir alguns elementos básicos da teoria quântica que serão
de grande relevância para o desenvolvimento da teoria de sistemas quânticos abertos em
Condensados Bose-Einstein que será discutida no capítulo 3. Para mais detalhes, o leitor
pode consultar a referência [15]

2.1 Estados Quânticos Puros e Mistos

Um estado quântico |ψ⟩ é definido como puro quando Tr(ρ̂2) = 1 e é misto quando
Tr(ρ̂2) < 1, onde ρ̂ é chamada matriz densidade do estado |ψ⟩[15]. Definimos a matriz
densidade como um operador hermitiano, dada pela seguinte equação:

ρ̂ =
∑

n

Pn|ψn⟩⟨ψn|, (2.1)

em que Pn indica as probabilidades de se medir o sistema em um estado |ψn⟩.

3



4 CAPÍTULO 2. EVOLUÇÃO TEMPORAL DE SISTEMAS QUÂNTICOS

Perceba que o conjunto dos estados |ψn⟩ não necessariamente formam uma base
no espaço de Hilbert H, eles apenas são estados associados a uma probabilidade. Porém,
podemos diagonalizar ρ̂. Desse modo, podemos escrever ρ̂ como

ρ̂ =
∑
m

ρm|ρm⟩⟨ρm|, (2.2)

em que ρm representa os auto-valores de ρ̂ com seus respectivos auto-estados |ρm⟩, que
formam uma base ortonormal no espaço de Hilbert. A razão pela qual podemos escrever
ρ̂ dessa maneira é justificada pelo teorema espectral (Apêndice A).

Sendo ρ̂ diagonalizável, teremos Tr(ρ̂) = ∑
n ρn = 1, visto que a soma das probabi-

lidades deve ser igual a um. Assim, podemos calcular Tr(ρ̂2):

Tr(ρ̂2) =
∑

n

ρn⟨ρn|
(∑

m

ρm|ρm⟩⟨ρm|
)

|ρn⟩, (2.3)

como ⟨ρn|ρm⟩ = δnm, temos

Tr(ρ̂2) =
∑

n

ρ2
n. (2.4)

Podemos perceber que a Equação (2.4) sempre será menor ou igual a um, já que
0 < ρn ≤ 1. Se Tr(ρ̂2) = 1, então apenas um valor dos ρn será 1, e o resto será nulo. Desse
modo, a matriz densidade será descrita por um único estado |ψ⟩ e, portanto, dizemos que
esse é um estado puro.

Caso Tr(ρ̂2) < 1, a matriz densidade será descrita por um conjunto de estados |ψn⟩,
com n = 1, 2, 3, . . .m, ou seja, o sistema não possui um estado quântico bem definido e
será descrito por vários possíveis estados quânticos. Neste caso, nosso sistema é descrito
por um estado misto.

É importante não confundir um estado misto com o princípio da superposição. En-
quanto o princípio da superposição nos diz que um estado quântico total |ψ⟩ é composto
por dois ou mais estados possíveis, demonstrando natureza quântica, o estado misto re-
presenta uma situação de incerteza clássica, onde não é possível identificar qual o estado
quântico total (que pode ser um estado de superposição) que o sistema se encontra.



2.2. EVOLUÇÃO TEMPORAL DA MATRIZ DENSIDADE 5

2.2 Evolução Temporal da Matriz Densidade

Sabemos que a evolução de um sistema quântico pode ser descrita através da equa-
ção de Schrödinger, a qual é dada por

iℏ
d

dt
|ψ(t)⟩ = H(t)|ψ(t)⟩, (2.5)

em que H(t) é chamado o Hamiltoniano do sistema.

Caso nosso sistema seja puro, ρ̂ = |ψ⟩⟨ψ|, tomando a derivada temporal de ρ̂ e
utilizando a regra do produto, obtemos:

d

dt
ρ̂(t) =

(
d

dt
|ψ(t)⟩

)
⟨ψ(t)| + |ψ(t)⟩

(
d

dt
⟨ψ(t)|

)
. (2.6)

Substituindo (2.5) em (2.6),

d

dt
ρ̂(t) = 1

iℏ
H(t)|ψ(t)⟩⟨ψ(t)| + 1

−iℏ
|ψ(t)⟩⟨ψ(t)|H(t), (2.7)

ou simplesmente
d

dt
ρ̂(t) = 1

iℏ
[H(t), ρ̂(t)] (2.8)

A equação (2.8) é chamada de equação de Liouville-von Neumann [15]. Ela nos
diz como a matriz densidade evolui no tempo e será uma peça fundamental para a teoria
aqui desenvolvida.

Perceba que chegaríamos na mesma equação caso nosso estado fosse misto, pois
cada estado |ψn(t)⟩ também iria evoluir através da equação (2.5). Portanto, essa equação
é válida tanto para estados puros, quanto para estados mistos.

Em geral, a solução da equação (2.8) é dada por uma evolução unitária, isto é,
ρ̂(t) = U(t; t0)ρ̂(t0)U(t; t0)†, onde U(t; t0) é um operador unitário que descreve a evolução
de ρ̂ partindo de um tempo t0 até um tempo t. Um operador U será unitário quando
UU † = U †U = I.

Suponha que temos um sistema S acoplado a um sistema externo. O Hamiltoniano
total será H = HS ⊗ IE + IS ⊗ HE + Hint, onde HS é o Hamiltoniano do nosso sistema
S, HE é o Hamiltoniano do sistema externo e Hint é o termo de interação entre S e E.
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Nosso objetivo é descobrir como o sistema S evolui, portanto, vamos aplicar a equação
(2.8) em ρ̂SE ∈ HS ⊗ HE.

A matriz densidade do sistema S é dada pelo traço parcial de ρ̂SE no ambiente
(Apêndice A).

ρ̂S = TrE(ρ̂SE), (2.9)

sendo ρ̂SE dado por:

ρ̂SE = ρ̂S ⊗ ρ̂E. (2.10)

Utilizando (2.8), temos:

dρ̂SE

dt
= 1
iℏ

[HSE, ρ̂SE]. (2.11)

A equação (2.11) nos permite observar a evolução temporal do sistema SE, con-
forme vimos anteriormente. Como queremos observar a evolução do sistema S, utilizamos
a equação (2.9) em (2.11). Abaixo está a expressão que nos dá o resultado:

dρ̂S

dt
= TrE

( 1
iℏ

[HSE, ρ̂SE])
)

= TrE

( 1
iℏ

([HS ⊗ IE, ρ̂SE] + [IS ⊗HE, ρ̂SE] + [Hint, ρ̂SE])
)

= 1
iℏ

[HS, ρ̂S] + 1
iℏ

TrE ([Hint, ρ̂SE]) ⇒

dρ̂S

dt
= 1
iℏ

[HS, ρ̂S] + Φ[ρ̂SE], (2.12)

com Φ[ρ̂SE] = 1
iℏTrE ([Hint, ρ̂SE]).

A equação encontrada nos mostra que se existir um acoplamento entre seu sistema
e um sistema externo (usualmente chamado de ambiente), a equação de Liouville-von
Neumann deixa de ser válida para o sistema S e passa a somar um termo relacionado
à interação entre S e E. Esse tipo de sistema é chamado de sistema quântico aberto,
enquanto sistemas em que não há interação com sistemas externos são chamados de sis-
temas quânticos fechados. Uma das características de um sistema quântico aberto é a de
que ele deixa de ter uma evolução descrita por um operador unitário devido às correlações
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entre os sistemas acoplados; por outro lado, o sistema total pode ser considerado um sis-
tema fechado. Por exemplo, a evolução do sistema SE é descrita por operador unitário,
enquanto a evolução de S não.

2.3 Processo Quântico Markoviano

Um processo quântico Markoviano é um conceito usado para descrever a evolução
de um sistema quântico que depende apenas do seu estado imediatamente anterior. Ou
seja, ρ̂(t+ dt) deve ser completamente determinado por ρ̂(t). Processos Markovianos em
geral são ideais, pois a troca de informação de um sistema S com um sistema externo
E sempre acontecerá, fazendo com que a informação que saiu de S e foi para E demore
um tempo ∆t para retornar de E para S e vice-versa. Assim, no caso de um processo
mais realista, dizer que ρ̂(t + dt) é totalmente determinado por ρ̂(t) não é mais válido.
Portanto, processos quânticos Markovianos podem ser tratados como aproximações de um
sistema quântico aberto, que é válido normalmente quando o sistema S possui um fraco
acoplamento com o sistema externo E.

Suponha que temos um sistema quântico aberto Markoviano ideal. Nosso objetivo
é descrever a evolução desse sistema. Para isso, começaremos expandindo a matriz den-
sidade em uma série de Taylor e comparando com a decomposição de Kraus da matriz
densidade (Apêndice A). Dessa forma, temos

ρ̂(t+ dt) = ρ̂(t) + dρ̂

dt
dt+O(dt2), (2.13)

onde O(dt2) são os termos de maiores ordens que serão desprezados. A decomposição de
Kraus [16] nos permite escrever

ρ̂(t+ dt) =
∑

k

Êkρ̂(t)Êk
†. (2.14)

Comparando as equações (2.13) e (2.14), podemos assumir que os operadores de
Kraus Êk são do tipo [17]

Ê0 = Î + L̂0dt, (2.15)

Êk = L̂k

√
dt. (2.16)

No momento, os operadores L̂k não estão representando nada para nós; isto é, por en-
quanto estamos apenas fazendo artifícios matemáticos para chegar a uma equação que dê
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um significado físico. Como veremos em breve, os operadores L̂k estarão associados aos
termos de dissipações do sistema quântico que está acoplado à um sistema externo.

Perceba que ao aplicar essas equações na equação (2.14), podemos recuperar a
equação (2.13). Também, a matriz densidade precisa preservar o traço por conta da
propriedade de normalização, de modo que ∑k ÊkÊ

†
k = Î. Assim, podemos escrever a

matriz identidade utilizando as equações (2.15) e (2.16):

Î = Ê0Ê
†
0 +

∑
k=1

ÊkÊ
†
k, (2.17)

Î = Î +
(
L̂0 + L̂†

0 +
∑
k=1

L̂kL̂
†
k

)
dt+O(dt2). (2.18)

Como os termos O(dt2) são desprezíveis, a condição para que a igualdade seja verdadeira
fica:

L̂0 + L̂†
0 +

∑
k=1

L̂kL̂
†
k = 0. (2.19)

Podemos decompor o operador L̂0 como uma soma de um operador Hermitiano
e um anti-Hermitiano. Fazendo isso, L̂0 = Â − iĤ. Substituindo na equação (2.19) e
isolando o operador Â, obtemos:

Â = −1
2
∑
k=1

L̂kL̂
†
k. (2.20)

Reescrevendo a equação (2.14) utilizando as equações (2.15) e (2.16), utilizando
novamente a relação L̂0 = Â− iĤ, obtemos a seguinte equação:

ρ̂(t+ dt) = ρ̂(t) − i[Ĥ, ρ̂(t)]dt+ {Â, ρ̂(t)}dt+
∑
k=1

L̂kρ̂(t)L̂†
kdt+O(dt2), (2.21)

em que {x, y} = xy + yx é chamado de anti-comutador.

Analisando a taxa de variação de ρ̂, podemos obter uma equação-mestra que, ao
resolvê-la, pode nos informar como nosso sistema aberto (Markoviano) irá evoluir,

dρ̂

dt
= −i[Ĥ, ρ̂(t)] + {Â, ρ̂(t)} +

∑
k=1

L̂kρ̂(t)L̂†
k. (2.22)

Utilizando a equação (2.20), temos:

dρ̂

dt
= −i[Ĥ, ρ̂(t)] +

∑
k=1

(
L̂kρ̂(t)L̂†

k − 1
2{L̂kL̂

†
k, ρ̂}

)
. (2.23)
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Se interpretarmos os operadores Ĥ como sendo o Hamiltoniano do nosso sistema e
L̂k um operador adimensional, então podemos fazer as seguintes transformações:

Ĥ −→ 1
ℏ
Ĥ,

L̂k −→ √
γkL̂k,

em que γk são valores escalares reais e positivos com dimensão de inverso de tempo.
Também, interpretando Ĥ como Hamiltoniano, ao dividir por ℏ, o termo também fica
com dimensão de inverso de tempo. Assim, nossa equação fica dimensionalmente correta,
resultando em:

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂(t)] +

∑
k=1

γk

(
L̂kρ̂(t)L̂†

k − 1
2{L̂kL̂

†
k, ρ̂(t)}

)
(2.24)

A equação acima encontrada é uma equação geral para processos Markovianos e
é conhecida como equação de Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) ou sim-
plesmente equação de Lindblad. O leitor pode ver com mais detalhes essa demonstração
através da referência [17].

Perceba que o primeiro termo dela é exatamente a equação de Liouville-von Neu-
mann (2.8). Isso nos mostra que a equação de Lindblad é uma generalização da equação
de Schrödinger. Caso não exista interação com o ambiente, os valores γk devem ser iguais
a zero, de modo a retornar na equação (2.8) derivada da equação de Schrödinger. A
segunda parte da equação (2.24) é interpretada como sendo a contribuição dos termos
de dissipações e perdas de coerência. Por exemplo, γk pode representar a taxa de perda
ou ganho de partículas em um sistema, enquanto os operadores L̂k são responsáveis por
mudar o estado do sistema. Portanto, com essa generalização, podemos modelar sistemas
em que há interação com o ambiente, desde que o sistema possa ser aproximado a um
processo markoviano.





Capítulo 3

Condensado Bose-Einstein

O CBE é um fenômeno quântico em que uma grande fração de partículas idênticas
com spin inteiro (bósons) ocupa o estado de menor energia de um sistema, formando uma
entidade coerente descrita por uma única função de onda em escala quase macroscópica
[18]. Diferente da condensação comum (como vapor virando líquido), o CBE não exige
interação entre partículas 1 e decorre da indistinguibilidade dos bósons e da estatística
quântica que seguem. O conceito surgiu nos anos 1920 com os trabalhos de Satyendra
Nath Bose e Albert Einstein, que desenvolveram a estatística de Bose-Einstein. Embora
inicialmente desacreditada, a ideia ganhou força com a proposta de que a superfluidez
do hélio-4 e a supercondutividade poderiam estar relacionadas à condensação, apesar de
dependerem de interações, o que contrasta com o modelo ideal original [19].

A confirmação experimental da CBE ocorreu somente em 1995 [20] após avanços
em técnicas de resfriamento e manipulação de átomos. Três grupos independentes conse-
guiram formar condensados em gases diluídos de átomos de rubídio-87, lítio-7 e sódio-23,
a temperaturas extremamente baixas, próximas do zero absoluto. Esses feitos renderam o
Prêmio Nobel de Física em 2001 a Cornell, Wieman e Ketterle. Desde então, o CBE tem
se tornado um campo de intensa pesquisa teórica e experimental, abrangendo áreas como
física atômica, matéria condensada, óptica quântica e física estatística, e sendo observada
não só em átomos, mas também em moléculas, quasipartículas e até fótons [19, 21].

Neste capítulo, vamos introduzir as principais características de um CBE e deduzir
a equação que o descreve (equação de Gross-Pitaevskii), além de apresentar o tema deste

1É importante comentar que o o CBE não exigir interação não significa que não haverá interação.
No mundo real, não conseguimos atingir uma temperatura de 0K, tornando inevitável a interação entre
partículas.

11
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trabalho: um CBE descrito como um sistema quântico aberto.

3.1 Equação de Gross-Pitaevskii

A EGP surge como uma formulação teórica capaz de descrever, de forma aproxi-
mada, o comportamento coletivo de um condensado de Bose–Einstein em temperaturas
extremamente baixas [22]. Em um CBE, um grande número de bósons ocupa o mesmo
estado quântico fundamental, fazendo com que o sistema possa ser tratado como uma
única função de onda macroscópica Ψ(r, t), que representa a densidade de probabilidade
de encontrar as partículas no espaço e no tempo. A grande intuição por trás da derivação
da EGP é que, embora cada átomo obedeça às leis da mecânica quântica, o condensado
inteiro se comporta como um único “superátomo” coerente, cuja evolução é governada
por uma equação de Schrödinger modificada para incluir interações entre as partículas.

O ponto de partida é considerar que, para temperaturas próximas do zero absoluto,
as colisões entre átomos são dominadas por espalhamento elástico de baixo momento,
podendo ser descritas por um potencial efetivo de curto alcance. Nesse regime, a interação
entre as partículas pode ser simplificada usando o aproximador de contato g δ(r−r′), onde
g é uma constante efetiva que está relacionada ao comprimento de espalhamento as [22].
Ao aplicar o método de Hartree–Fock–Bogoliubov e assumir que todos os bósons ocupam
o mesmo estado quântico, obtém-se uma equação não linear para Ψ(r, t), na qual o termo
de interação g|Ψ|2 leva em conta o efeito médio das colisões no condensado [23]. Essa não
linearidade é justamente o que diferencia a EGP da equação de Schrödinger tradicional,
permitindo modelar fenômenos coletivos como sólitons, vórtices e oscilações coerentes.

Assim, a EGP pode ser vista como o elo entre a mecânica quântica de partículas
individuais e a hidrodinâmica quântica de sistemas macroscópicos. Ela oferece uma des-
crição simples, mas poderosa, para a evolução temporal e a distribuição espacial de um
CBE, capturando de forma intuitiva o papel central das interações na dinâmica coletiva
desse estado da matéria. Esta equação foi desenvolvida independentemente por Eugene
P. Gross e Lev P. Pitaevskii no início da década de 1960, inicialmente com o objetivo de
descrever o hélio superfluido, um sistema de bósons fortemente interagentes. Anos mais
tarde, com o avanço das técnicas experimentais e a realização do primeiro CBE em gases
diluídos em 1995, a EGP mostrou-se surpreendentemente eficaz para modelar condensa-
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dos atômicos. Desde então, tornou-se uma das ferramentas teóricas mais importantes na
física de matéria condensada e de sistemas quânticos macroscópicos, sendo amplamente
utilizada para prever e interpretar resultados experimentais. Desde então, tornou-se uma
das ferramentas teóricas mais importantes na física de matéria condensada e de sistemas
quânticos macroscópicos, sendo amplamente utilizada para prever e interpretar resulta-
dos experimentais. Em particular, a EGP tem sido empregada para descrever a dinâmica
de colisão entre condensados unidimensionais e a formação de padrões não lineares [24],
a emergência e estabilização de estruturas vorticais e aglomerados de vórtices em ar-
madilhas confinadas [25], bem como a dinâmica turbulenta e a evolução de vórtices em
condensados com interações dipolares [26]. Além disso, variantes da equação, incluindo
versões estendidas para regimes finitos de temperatura ou com potenciais desordenados,
têm possibilitado a previsão de estruturas de rede de vórtices em condensados multicom-
ponentes [27] e a descrição detalhada da evolução e reconexão de filamentos de vórtice
em superfluidos [28]. Tais aplicações evidenciam que a EGP permanece como um dos
principais pilares teóricos para a interpretação quantitativa de fenômenos observados em
experimentos modernos com gases quânticos ultrafrios, incluindo sistemas moleculares e
dipolares [29].

Vamos agora deduzir a EGP imaginando um sistema quântico de muitos corpos
com N partículas indistinguíveis, com o seguinte Hamiltoniano:

Ĥ =
N∑

i=1

(
−ℏ2∇2

2m + U(ri)
)

+ 1
2

N∑
i ̸=j

V (ri − rj), (3.1)

em que U(ri) é um potencial externo e V (ri − rj) é o potencial de interação entre as
partículas. A equação (2.5) para o caso de muitos corpos fica:

iℏ
∂

∂t
Ψ(r1, . . . , rN , t) = ĤΨ(r1, . . . , rN , t). (3.2)

Podemos descrever esse sistema a partir de um funcional de ação S e, a partir dele,
tomar as equações de Euler-Lagrange para determinar a dinâmica do nosso sistema. Tal
funcional é dado por:

S =
∫
dt d3r1 . . . d

3rN Ψ∗(r1, . . . , rN , t)
(
iℏ
∂

∂t
− Ĥ

)
Ψ(r1, . . . , rN , t). (3.3)

Como os bósons estão todos no mesmo estado fundamental, utilizamos uma aproximação
de Hartree para a função de onda macroscópica, de modo que o produto de cada função
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de onda de um bóson isolado ψ nos fornece a função de onda geral do nosso sistema Ψ.

Ψ(r1, . . . , rn, t) =
N∏

i=1
ψ(ri, t). (3.4)

Substituindo as equações (3.4) e (3.1) na equação (3.3), temos para a parte cinética
e do potencial externo:∫

d3r1 . . . d
3rN Ψ∗(r1, . . . , rN , t)

(
iℏ
∂

∂t
+ ℏ2

2m∇2
i − U(ri)

)
Ψ(r1, . . . , rN , t)

= N
∫
d3r ψ∗(r, t)

(
iℏ
∂

∂t
+ ℏ2

2m∇2 − U(r)
)
ψ(r, t).

Perceba que generalizamos as variáveis r1, . . . , rN apenas para uma variável r, já que
estamos lidando com N partículas idênticas.

Para a parte do potencial de interação, temos:
N(N − 1)

2

∫
dtd3r ψ∗(r, t)

(∫
d3r′ |ψ(r′, t)|2 V (r − r′)

)
ψ(r, t).

Juntando tudo, obtemos nossa ação completa:

S = N
∫
dt d3r ψ∗(r, t)

(
iℏ
∂

∂t
+ ℏ2

2m∇2 − U(r)

−N − 1
2

∫
d3r′ |ψ(r′, t)|2 V (r − r′)

)
ψ(r, t). (3.5)

A fim de obter a equação de movimento correspondente ao funcional de ação (3.3),
escrevemos a densidade Lagrangiana (após uma integração por partes no termo cinético,
desprezando termos de fronteira):

L(ψ, ψ∗) = N

iℏψ∗∂tψ − ℏ2

2m ∇ψ∗ · ∇ψ − U(r)|ψ|2

− N − 1
2 |ψ(r, t)|2

∫
d3r′ |ψ(r′, t)|2V (r − r′)

. (3.6)

Para campos complexos, tratamos ψ e ψ∗ como variáveis independentes. A equação
de Euler–Lagrange para ψ∗ é

∂L
∂ψ∗ − ∂t

(
∂L

∂(∂tψ∗)

)
− ∇ ·

(
∂L

∂(∇ψ∗)

)
= 0. (3.7)
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Calculando termo a termo (o fator global N cancela):

∂L
∂ψ∗ = iℏ ∂tψ − U(r)ψ − (N − 1)W (r, t)ψ, (3.8)

∂L
∂(∇ψ∗) = − ℏ2

2m ∇ψ ⇒ −∇ ·
(

∂L
∂(∇ψ∗)

)
= ℏ2

2m∇2ψ, (3.9)

em que definimos

W (r, t) =
∫
d3r′ |ψ(r′, t)|2V (r − r′). (3.10)

Juntando os resultados, obtemos

iℏ
∂

∂t
ψ + ℏ2

2m∇2ψ − U(r)ψ − (N − 1)W (r, t)ψ = 0. (3.11)

Isolando o termo temporal, resulta

iℏ
∂

∂t
ψ(r, t) =

[
− ℏ2

2m∇2 + U(r) + (N − 1)
∫
d3r′ |ψ(r′, t)|2V (r − r′)

]
ψ(r, t) (3.12)

O potencial de interação entre as partículas pode ser descrito seguindo uma apro-
ximação V (r−r′) ≈ gδ(r−r′). A partir da teoria de espalhamento, podemos mostrar que
g = 4πℏas

m
, onde as é o comprimento de espalhamento [23]. Colocando essas aproximações

na equação (3.12), obtemos

iℏ
∂

∂t
ψ(r, t) =

[
− ℏ2

2m∇2 + U(r) + (N − 1)g |ψ(r, t)|2
]
ψ(r, t). (3.13)

Essa é a equação EGP dependente do tempo. Nosso objetivo aqui será generalizar
essa equação para incluir termos dissipativos, levando a uma equação estocástica.

3.2 Equação Estocástica de Gross-Pitaevskii (EGP)

O estudo dos CBEs oferece uma oportunidade única de investigar efeitos quânticos
em escala macroscópica. Esses sistemas, formados a temperaturas ultrabaixas, só podem
ser acessados experimentalmente por meio de feixes de luz, já que seu reduzido calor
específico impede contato direto com sondas materiais [30]. Entre as técnicas disponíveis,
a imagem ressonante permite extrair informações, mas destrói o condensado ao aquecê-lo.
Já a imagem dispersiva, utilizando luz fora de ressonância, possibilita medições repetidas
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sobre a mesma amostra, permitindo acompanhar sua dinâmica sem a necessidade de
recriar o sistema a cada observação [31]. Esse método tem sido fundamental para estudar
a formação de condensados, excitações coletivas, propriedades superfluidas e a criação de
vórtices [31, 32].

Um aspecto central que emerge desse cenário é compreender como o próprio ato
de medir influencia a evolução do condensado. Para explorar essa questão, propõe-se um
modelo realista que descreve a interação dispersiva entre átomos e luz, resultando em uma
equação mestra do tipo Lindblad. Essa abordagem quantifica processos como a difusão
de fase e a perda gradual de átomos durante a observação. Além disso, ao traduzir essa
dinâmica em termos estocásticos, é possível analisar tanto regimes de medição forte —
que levam à compressão das flutuações no número de átomos — quanto regimes fracos,
nos quais a evolução se aproxima de uma versão estocástica da EGP.

3.2.1 Equação do tipo Lindblad para CBEs

Para começar, consideremos o sistema de medição, o condensado e a interação
entre os dois sistemas. O Hamiltoniano do nosso sistema total pode ser escrito como
H = HB+HF +Hint, ondeHB é o Hamiltoniano total do sistema de átomos do condensado,
HF é o Hamiltoniano do sistema de fótons que realizará as medições e Hint representa a
interação entre os dois sistemas.

Da mesma forma que fizemos no capítulo 2, podemos operar o traço parcial sobre
o sistema F , encontrando a matriz densidade para o sistema B. Ao fazer isso, obtemos:

ρ̂B(t) = TrF [ρ̂BF ], (3.14)

sendo ρ̂BF governada pela equação (2.8).

Podemos representar a dinâmica do sistema total utilizando a representação de
interação; isto é, vamos representar a dinâmica do sistema apenas pelo Hamiltoniano
Hint. Para isso, definimos uma nova matriz densidade:

ρ̃(t) = ei(HB+HF )t/ℏρ̂BF (t)e−i(HB+HF )t/ℏ. (3.15)
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Calculando a derivada no tempo da equação (3.15), temos:

dρ̃

dt
= d

dt

(
eiH0t/ℏρ̂BF (t)e−iH0t/ℏ

)
=
(
iH0

ℏ

)
eiH0t/ℏρ̂BF (t)e−iH0t/ℏ + eiH0t/ℏ

(
dρ̂BF

dt

)
e−iH0t/ℏ + eiH0t/ℏρ̂BF (t)

(
−iH0

ℏ

)
e−iH0t/ℏ,

(3.16)

em que H0 = HB +HF .

Substituindo os termos de derivada da matriz densidade ρ̂BF utilizando a equação
(2.8), obtemos:

dρ̃

dt
= i

ℏ
H0ρ̃+ eiH0t/ℏ

(
− i

ℏ
[H0 +Hint, ρ̂BF ]

)
e−iH0t/ℏ − ρ̃

i

ℏ
H0

= i

ℏ
[H0, ρ̃] − i

ℏ
eiH0t/ℏ[H0 +Hint, ρ̂BF ]e−iH0t/ℏ. (3.17)

Expandindo o comutador no segundo termo, resulta em

dρ̃

dt
= i

ℏ
[H0, ρ̃] − i

ℏ
eiH0t/ℏ(H0ρ̂BF − ρ̂BFH0 +Hintρ̂BF − ρ̂BFHint)e−iH0t/ℏ. (3.18)

Agora, vamos distribuir a transformação de unitariedade (eiH0t/ℏ . . . e−iH0t/ℏ) para cada
termo:

eiH0t/ℏ(H0ρ̂BF )e−iH0t/ℏ =
(
eiH0t/ℏH0e

−iH0t/ℏ
) (
eiH0t/ℏρ̂BF e

−iH0t/ℏ
)

= H0ρ̃, (3.19)

eiH0t/ℏ(ρ̂BFH0)e−iH0t/ℏ =
(
eiH0t/ℏρ̂BF e

−iH0t/ℏ
) (
eiH0t/ℏH0e

−iH0t/ℏ
)

= ρ̃H0. (3.20)

A equação (3.18) fica:

dρ̃

dt
= i

ℏ
[H0, ρ̃] − i

ℏ
(H0ρ̃− ρ̃H0) − i

ℏ
eiH0t/ℏ[Hint, ρ̂BF ]e−iH0t/ℏ

= − i

ℏ
eiH0t/ℏ[Hint, ρ̂BF ]e−iH0t/ℏ (3.21)

= − i

ℏ
[H̃int, ρ̃]. (3.22)

Ou seja, o resultado é dado por

dρ̃

dt
= − i

ℏ
[H̃int, ρ̃], (3.23)

em que H̃int = ei(HB+HF )t/ℏHinte
−i(HB+HF )t/ℏ.
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Escrevendo a equação em forma integral:

ρ̃(t) = ρ̃(−∞) − i

ℏ

∫ t

−∞
dt′[H̃int(t′), ρ̃(t′)]. (3.24)

Substituindo de volta na equação diferencial (3.23):

dρ̃

dt
= − i

ℏ
[H̃int(t), ρ̃(−∞)] − 1

ℏ2 [H̃int(t),
∫ t

−∞
dt′[H̃int(t′), ρ̃(t′)]]. (3.25)

Tomando o traço parcial sobre o sistema F na equação acima e considerando a aproxi-
mação de Born-Markov podemos obter uma equação para descrever a evolução do con-
densado.

Em resumo, as aproximações de Born-Markov tem as seguintes características [33]:

1. A interação entre o condensado (sistema B) e o reservatório (sistema F ) é
suficientemente fraca, de modo que a influência de retorno do sistema sobre o
reservatório, isto é, as alterações de coerência que o sistema pode causar no
reservatório, podem ser desconsideradas.

2. O tempo de correlação dos observáveis relevantes do reservatório é muito me-
nor do que a escala de tempo característica da dinâmica do sistema.

3. Assume-se que sistema e reservatório permanecem não correlacionados; em
outras palavras, a matriz densidade total pode ser aproximada como o produto
tensorial das matrizes densidade reduzidas de cada parte.

Perceba que no desenvolvimento da equação de Lindblad (Seção 2.3) utilizamos essas
mesmas aproximações.

Com essas aproximações, podemos aproximar a matriz de densidade ρ̃ como um
produto da matriz de densidade do sistema B e o sistema F , isto é

ρ̃(t′) ≈ ρ̂B(t′) ⊗ ρ̂R(t′) = TrF [ρ̂BF (t′)] ⊗ ρ̂R(t′). (3.26)

Além disso, por se tratar de uma aproximação markoviana, podemos trocar a
variável de tempo t′ dentro de ρ̃ por simplesmente t, já que t′ dissipa-se tão rapidamente
que não tem tempo de influenciar de volta o sistema num tempo posterior t. Também,
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ρ̃(−∞) passa a ser apenas ρ̃(t). Desse modo, a equação para a evolução do condensado
fica:

dρ̂B

dt
= − i

ℏ
TrF [H̃int(t), ρ̂B(t) ⊗ ρ̂F (t)] − 1

ℏ2 TrF [H̃int(t),
∫ t

−∞
dt′[H̃int(t′), ρ̂B(t) ⊗ ρ̂F (t)]].

(3.27)

Perceba que a equação encontrada é semelhante à equação de Lindblad (2.24).
Assim, nosso próximo passo será calcular os operadores de Lindblad (L̂k). No nosso caso,
k = 1, 2, pois o segundo termo da equação (3.27) nos fornece duas contribuições que são
análogas aos operadores L̂1 e L̂2.

3.2.2 Operadores de Lindblad

Para a descrição dos operadores, será adotado o método descrito na referência [34].
O Hamiltoniano do nosso sistema é dado por

Hint = ϵ0χ0

2

∫
d3x n̂(x) : E2 : , (3.28)

em que n̂(x) é o operador de densidade atuando no espaço, E é o campo elétrico quantizado
proveniente da interação luz-condensado e χ0 é a susceptibilidade elétrica dos átomos do
condensado, onde (::) é usado para indicar uma ordenação normal, removendo a energia
do vácuo [35]. Caso escrevêssemos o campo elétrico sem a ordenação normal, estaríamos
assumindo que o CBE poderia interagir com o vácuo, o que não é o caso.

O operador n̂ pode ser obtido a partir da transformada de Fourier no espaço dos
momentos (q).

n(x) =
∑

q
eiq·x ñ(q)√

L3
, (3.29)

sendo L um fator de normalização. Seguindo o método, ao substituir a equação (3.28) na
equação (3.27), é possível chegar a uma equação para cada operador L̂1 e L̂2.

Conforme mostra Dalvit [34], o operador L̂2 mostra o processo que altera o número
de átomos do CBE a partir da interação luz-condensado. Esse tipo de processo apenas
acontece quando a luz que incide no condensado possui altas intensidades e frequências
apropriadas alinhadas à ressonância do sistema. Neste estudo, vamos lidar apenas com o
processo de medição fraca, isto é, processos que utilizam técnicas de imagem dispersiva,
como descrito por Andrews [36].
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A equação encontrada para L̂1 é dada por [34]:

L̂1ρ̂B =
∫
d2r1

∫
d2r2 K(r1 − r2)

[
n(r1), [n(r2), ρ̂B]

]
, (3.30)

em que K é dado por

K(r) = πχ2
0k0I

2ℏc

∫
d2k exp

(
−ξ2k4

4k2
0

+ ik · r
)

. (3.31)

Em resumo, K é o termo matemático na equação mestra que quantifica como a
medição em uma parte do condensado está espacialmente correlacionada com a medição
em outra, e sua largura determina a menor distância que o sistema de imagem consegue
resolver. Aqui, ξ representa a espessura ou a escala de comprimento do CBE na direção
z e k0 é o número de onda da luz que incide no condensado. I é a intensidade da luz
proveniente do laser.

Podemos escrever o operador de uma forma mais compacta em termos de γk, con-
forme fizemos na equação de Lindblad (2.24). Assim, a equação seria dada por

L̂1ρ̂B = γ1
[
n(r1), [n(r2), ρ̂B]

]
, (3.32)

sendo γ1 dado por

γ1 = πχ2
0k

2
0I

2ℏc

∫
d2k e

− ξ2k4

4k2
0 |ϕ(k)|2 |ϕ(−k)|2 ≃ π χ2

0 k0 I

2 ℏ c α2 (3.33)

L̂1ρ̂B ≃ γ1
π2χ2

0k0I

2ℏcα2 , (3.34)

em que α é a área aproximada nas direcões x-y em que o laser interage com o condensado,
ou seja, α é o fator que quantifica a região de interação dos fótons com o CBE. ϕ(k) é a
função de onda do CBE no espaço dos momentos.

Com o operador L̂1 bem definido, podemos reescrever a equação mestra que des-
creve nosso sistema na representação de Schrödinger (2.12) ao invés da representação de
interação (3.27).
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3.2.3 Obtenção da Equação de Gross-Pitaevskii

Na representação de Schrödinger, o Hamiltoniano pode ser escrito com base na
EGP (3.13), como

H =
∫
d2r

(
− ℏ2

2m∇ψ†∇ψ + U(r)ψ†ψ + g

2ψ
†ψ†ψψ

)
. (3.35)

A equação mestra nessa representação pode ser escrita como

dρ̂

dt
= − i

ℏ
[H, ρ̂] −

∫
d2r1

∫
d2r2 K(r1 − r2)

[
n(r1), [n(r2), ρ̂]

]
, (3.36)

em que o segundo termo representa os processos de dissipação da interação fraca entre a
luz e o CBE em que há perda de informação de fase do condensado.

Agora, vamos mostrar que a evolução da função de onda, dada por

d |Ψ⟩ = − i

ℏ
dtH |Ψ⟩−dt

∫
d2r1

∫
d2r2 K(r1−r2) ∆n(r1)∆n(r2) |Ψ⟩+

∫
d2r dW (r) ∆n(r) |Ψ⟩ ,

(3.37)
pode gerar a nossa matriz densidade ρ̂ e, portanto, condizer com a equação (3.36). O
termo dW (r) é um ruído que vem do processo de Wiener [37] e representa a flutuação
aleatória associada ao resultado instantâneo de uma medição fraca da densidade local
n(r), ou seja, dW (r) modela a equação para um processo estocástico. O termo ∆n(r) é
dado por

∆n(r) = n(r) − ⟨n(r)⟩ ≡ n(r) − ⟨Ψ|n(r) |Ψ⟩ , (3.38)

em processos estocásticos, é normal a utilização do cálculo de Itô (Apêndice B). As corre-
lações do ruído para o nosso sistema são E[dW (r)] = 0 e dW (r) dW (r′) = 2 dtK(r − r′),
sendo E a representação do cálculo da média.

Escrevendo a equação (3.37) de forma mais compacta, obtemos

d |Ψ⟩ = Adt |Ψ⟩ +
∫
d2r ∆n(r) dW (r) |Ψ⟩ , (3.39)

em que
A = − i

ℏ
H −

∫
d2r1

∫
d2r2 K(r1 − r2) ∆n(r1)∆n(r2). (3.40)

Pela definição da matriz densidade e sendo Ψ a função de onda do nosso sistema,

ρ̂(t) = E[|Ψ(t)⟩ ⟨Ψ(t)|]. (3.41)
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Pela fórmula de Itô para produtos, o incremento do projetor é

d(|Ψ⟩ ⟨Ψ|) = (d |Ψ⟩) ⟨Ψ| + |Ψ⟩ (d ⟨Ψ|) + (d |Ψ⟩)(d ⟨Ψ|). (3.42)

Portanto, tirando a média,

dρ = E[(d |Ψ⟩) ⟨Ψ| + |Ψ⟩ (d ⟨Ψ|)] + E[(d |Ψ⟩)(d ⟨Ψ|)]. (3.43)

Podemos tratar a equação (3.39) com uma parte linear e uma parte estocástica. O
termo com dt é a parte linear da equação, enquanto o termo com dW é a parte estocástica.
Assim, ao substituir a parte linear de d |Ψ⟩ na parte linear da equação (3.43), obtemos:

E[(d |Ψ⟩) ⟨Ψ| + |Ψ⟩ (d ⟨Ψ|)] = dt
(
Aρ+ ρA†

)
. (3.44)

O termo quadrático (d |Ψ⟩)(d ⟨Ψ|) contém produtos dW (r) dW (r′) e, portanto, con-
tribui da seguinte maneira:

E[(d |Ψ⟩)(d ⟨Ψ|)] = E
[( ∫

d2r B(r) dW (r) |Ψ⟩
)(

⟨Ψ|
∫
d2r′ B(r′) dW (r′)

)]
=
∫
d2r

∫
d2r′ E[dW (r)dW (r′)] E[B(r) |Ψ⟩ ⟨Ψ|B(r′)]

= 2 dt
∫
d2r

∫
d2r′ K(r − r′) E[∆n(r) ρ∆n(r′)]. (3.45)

Somando o termo linear com o termo estocástico, obtemos a seguinte equação:

dρ

dt
= − i

ℏ
[H, ρ] −

∫
d2r1

∫
d2r2 K(r1 − r2) E

[
∆n(r1)∆n(r2) ρ+ ρ∆n(r1)∆n(r2)

]

+ 2
∫
d2r1

∫
d2r2 K(r1 − r2) E[∆n(r1) ρ∆n(r2)]. (3.46)

Desenvolvendo os termos dentro da integral contendo ∆n(r) = n(r) − ⟨n(r)⟩, che-
gamos em um resultado de duplo comutador [n(r1), [n(r2), ρ]]. Assim, conseguimos final-
mente voltar na equação (3.36). Dessa forma, a equação (3.37) pode representar nosso
sistema.

Suponha que o número de átomos do sistema é N = 1. Nesse caso, o termo de
interação do Hamiltoniano (3.35) será nulo, já que o átomo está sozinho. A função de
onda para esse caso pode ser dada por

ϕ(t, r) = ⟨r|Ψ(t)⟩, (3.47)
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e a densidade de partícula é representada pelo projetor

n̂(r) = |r⟩ ⟨r| . (3.48)

Aplicando n̂(r1) em |Ψ⟩:
n̂(r1) |Ψ⟩ = |r1⟩ϕ(r1). (3.49)

O valor esperado ⟨n̂(r)⟩ fica:

⟨n̂(r1)⟩ = ⟨Ψ| n̂(r1) |Ψ⟩ = |ϕ(r1)|2. (3.50)

Logo,
∆n(r1) |Ψ⟩ = |r1⟩ϕ(r1) − |Ψ⟩ |ϕ(r1)|2. (3.51)

Tomando o produto com ⟨r|, obtemos:

⟨r| ∆n(r1) |Ψ⟩ = δ(r − r1)ϕ(r1) − ϕ(r)|ϕ(r1)|2. (3.52)

Para o termo estocástico da equação (3.37), obtemos

⟨r|
∫
d2r′ dW (r′) ∆n(r′) |Ψ⟩

=
∫
d2r′ dW (r′)

[
δ(r − r′)ϕ(r′) − ϕ(r)|ϕ(r′)|2

]
=
[
dW (r) −

∫
d2r′ |ϕ(r′)|2 dW (r′)

]
ϕ(r). (3.53)

O termo contendo ∆n(r1)∆n(r2) pode ser expandido, tornando-se

∆n(r1)∆n(r2) = n̂(r1)n̂(r2) − ⟨n̂(r2)⟩n̂(r1) − ⟨n̂(r1)⟩n̂(r2) + ⟨n̂(r1)⟩⟨n̂(r2)⟩. (3.54)

Usando n̂(r) = |r⟩ ⟨r|, temos:

n̂(r1)n̂(r2) |Ψ⟩ = δ(r1 − r2) |r1⟩ϕ(r1). (3.55)

Tomando o produto com ⟨r| novamente:

⟨r| ∆n(r1)∆n(r2) |Ψ⟩ = δ(r − r1)δ(r1 − r2)ϕ(r) − δ(r − r1)ϕ(r1)|ϕ(r2)|2 − δ(r − r2)ϕ(r2)|ϕ(r1)|2

+ ϕ(r)|ϕ(r1)|2|ϕ(r2)|2. (3.56)
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Substituindo esses resultados na integral da equação (3.37), cada termo da equação
(3.56) gera:

I1 =
∫
d2r1d

2r2 K(r1 − r2) δ(r − r1)δ(r1 − r2) = K(0), (3.57)

I2 =
∫
d2r1d

2r2 K(r1 − r2) δ(r − r1)|ϕ(r2)|2 =
∫
d2r2 K(r − r2)|ϕ(r2)|2, (3.58)

I3 =
∫
d2r1d

2r2 K(r1 − r2) δ(r − r2)|ϕ(r1)|2 =
∫
d2r1 K(r − r1)|ϕ(r1)|2, (3.59)

I4 =
∫
d2r1d

2r2 K(r1 − r2) |ϕ(r1)|2|ϕ(r2)|2. (3.60)

Combinando tudo, o termo total, que vamos definir como um "contratermo"(C.T.), é dado
por:

C.T . = −dt
[
K(0)−2

∫
d2r1 K(r−r1)|ϕ(r1)|2+

∫ ∫
d2r1d

2r2 K(r1−r2)|ϕ(r1)|2|ϕ(r2)|2
]
ϕ(r).

(3.61)
Este termo pode ser interpretado como o sistema reage à medida da luz sobre ele, repre-
sentando um "back-action". A parte que contém o Hamiltoniano H não possui o termo
de interação, portanto fica simplesmente

− i

ℏ
dt ⟨r|H |Ψ⟩ = − i

ℏ
dt

[
− ℏ2

2m∇2 + U(r)
]
ϕ(r). (3.62)

Combinando as equações (3.52), (3.61) e (3.62), obtemos:

dϕ(r) = − i

ℏ
dt

[
− ℏ2

2m∇2 + U(r)
]
ϕ(r)

+
[
dW (r) −

∫
d2r′ |ϕ(r′)|2 dW (r′)

]
ϕ(r) + C.T . (3.63)

No regime de medição fraca, a “compressão” (squeezing) do estado quântico, que
é um efeito não clássico induzido pela medição, é considerado pequena 2. Sob esta con-
dição, torna-se válido empregar a aproximação de campo médio para descrever o estado
estocástico condicional do sistema.

|Ψ⟩ = 1√
N !

[∫
d2r ϕ(t, r) Ψ†(r)

]N

|0⟩ . (3.64)
2A “compressão” quântica é um fenômeno no qual as flutuações quânticas associadas a um par de

observáveis conjugados são redistribuídas de modo que a incerteza em uma delas seja reduzida abaixo do
limite quântico padrão, enquanto a outra aumenta, preservando o princípio da incerteza de Heisenberg.
Essa “compressão” do ruído quântico é obtida por meio de interações não lineares, como a conversão
paramétrica em cristais ópticos, e permite medições com precisão superior à dos estados coerentes, sendo
fundamental em áreas como metrologia quântica, comunicação e computação baseadas em variáveis con-
tínuas.
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A equação (3.64) é a expressão matemática formal dessa aproximação. Ela postula
que o estado total |Ψ⟩ do sistema de N átomos pode ser representado como um estado
produto, no qual todos os N bósons do condensado ocupam um único estado quântico.
Este estado é descrito pela mesma função de onda de uma partícula única ϕ(r). A
utilização desta aproximação é o passo fundamental que permite a transição de uma
descrição complexa de N corpos (como a equação (3.37)) para uma EGP estocástica, que
governa a dinâmica desta única função de onda ϕ(t, r).

A evolução de |Ψ⟩ dada pela equação (3.64) é traduzida em uma dinâmica para a
função de onda coletiva ϕ(r, t). Substituindo essa forma na equação estocástica e apli-
cando a regra de Itô, obtém-se uma equação diferencial para ϕ(r, t) que inclui tanto
o termo determinístico do Hamiltoniano (associado ao potencial U(r) e à interação g)
quanto as correções flutuantes devidas à medição contínua, representadas pelos incremen-
tos estocásticos dW (r). O resultado final é a EGP estocástica:

dϕ(r) = − i

ℏ
dt

[
− ℏ2

2m∇2 + U(r) + (N − 1)g|ϕ(r)|2
]
ϕ(r)

+
[
dW (r) −

∫
d2r′ |ϕ(r′)|2dW (r′)

]
ϕ(r) + C.T., (3.65)

que descreve a evolução estocástica do condensado sob medições fracas, incorporando
tanto a dinâmica unitária quanto o ruído quântico associado à observação.

O resultado mais notável desta derivação é que os termos estocásticos (o ruído e o
contratermo) na EGP para um condensado de N átomos são idênticos aos derivados para
o caso de uma única partícula (3.63). O artigo de Dalvit [34] justifica isso explicando
que, embora a reação da medição no estado total de N corpos seja mais forte, seu efeito é
dividido entre todas as N partículas. Isso resulta no mesmo efeito líquido sobre a função
de onda de campo médio ϕ(r) de cada átomo, como ocorreria em um sistema com um
único átomo .

Assim, a Equação (3.65) fornece um modelo teórico poderoso que descreve uma
única trajetória quântica, permitindo simular a evolução da função de onda do condensado
sob a influência tanto de sua dinâmica interna quanto do ruído aleatório introduzido por
um processo de medição contínua fraca .





Capítulo 4

Condensado Bose-Einstein II

No capítulo anterior, discutimos como a medição em um CBE pode gerar uma
EGP estocástica considerando a luz nosso "ambiente". Ao fazer isso, desenvolvemos uma
equação mestra que é originada da função de onda descrita pela equação (3.37). Ainda
assim, em um CBE realista, existem vários outros processos que podem alterar sua dinâ-
mica, como a recombinação de três corpos devido à nuvem térmica que interage com o
CBE [38].

Neste capítulo, vamos mostrar alguns outros métodos que podem nos levar a des-
crever tais perdas, partindo da ideia de sistemas quânticos abertos.

4.1 Equação Mestra com Ganho e Perda
Balanceados

Uma possível abordagem para a descrição de CBEs como sistemas quânticos abertos
foi proposta por Dast [39]. Nesse trabalho, os autores introduzem uma equação mestra em
forma de Lindblad que descreve um condensado confinado em um sistema de dois sítios
(ou Bose-Hubbard dimer) sujeito a processos de ganho e perda de partículas balanceados.
Essa formulação é particularmente relevante, pois permite o surgimento natural de uma
dinâmica efetivamente não-Hermitiana, cuja correspondência no limite de campo médio
é a EGP PT -simétrica.

Um sistema é PT -simétrico quando o Hamiltoniano do sistema comuta com o
operador PT , sendo P̂ o operador de inversão espacial, ou seja, que leva P̂ xP̂−1 = −x
e T̂ é o operador de inversão temporal, levando a T̂ pT̂−1 = −p. Assim, se [H, P̂ T̂ ] = 0,

27
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dizemos que o sistema é PT -simétrico.

4.1.1 Hamiltoniano de Bose-Hubbard

O sistema considerado é descrito pelo Hamiltoniano de Bose-Hubbard, que descreve
o sistema preso em uma rede óptica de dois sítios, que pode ser obtido ao considerar a
EGP que, ao expandir a equação em funções de Wannier, gera o Hamiltoniano abaixo
[40]:

H = −(a†
1a2 + a†

2a1) + U

2
(
a†

1a
†
1a1a1 + a†

2a
†
2a2a2

)
, (4.1)

em que aj e a†
j são os operadores de aniquilação e criação bosônicos atuando no sítio

j = 1, 2, e U representa a intensidade da interação de duas partículas em um mesmo sítio.
O primeiro termo da equação (4.1) descreve o tunelamento coerente de átomos entre os
dois poços, enquanto o segundo termo corresponde à interação de contato local.

Vamos deduzir o Hamiltoniano partindo dos princípios comentados. O funcional
de energia associado à EGP (3.13) é:

E[ψ] =
∫
d3r

[
ψ∗(r)

(
− ℏ2

2m∇2 + Vext(r)
)
ψ(r) + g

2 |ψ(r)|4
]

. (4.2)

Consideremos que o potencial externo Vext(r) forma uma rede óptica com apenas dois
sítios relevantes. Podemos expandir o campo em termos de funções localizadas (Wannier)
centradas em cada sítio:

ψ(r, t) ≈ w1(r)a1(t) + w2(r)a2(t), (4.3)

em que wi(r) são funções ortonormais, ou seja,
∫
d3r w∗

i (r)wj(r) = δij.

Substituindo a expansão na parte cinética e potencial de E[ψ], obtemos:

Ehop =
∑
i,j

a∗
i aj

∫
d3r w∗

i (r)h0wj(r), (4.4)

em que h0 = − ℏ2

2m
∇2 + Vext(r). Ehop é a energia associada ao tunelamento entre os sítios.

Mantendo apenas os termos locais e os de vizinhança mais próximos, definimos:

J = −
∫
d3r w∗

1(r)h0w2(r), (4.5)
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em que J > 0 é o coeficiente de tunelamento (hopping), indicando a chance do bóson
saltar de um sítio para outro. Assim, o termo discreto correspondente é:

Ehop = −J(a∗
1a2 + a∗

2a1). (4.6)

A contribuição da interação de contato é dada por:

Eint = g

2

∫
d3r |ψ(r)|4. (4.7)

Substituindo a expansão e desprezando os termos de interação entre sítios distintos,
obtemos:

Eint = U

2
(
|a1|4 + |a2|4

)
, (4.8)

com

U = g
∫
d3r |w(r)|4. (4.9)

Combinando os termos de hopping e interação, o funcional de energia total no regime
discreto é:

E[a1, a2] = −J(a∗
1a2 + a∗

2a1) + U

2 (|a1|4 + |a2|4). (4.10)

Ao promover as amplitudes clássicas a operadores bosônicos, ai → âi e a∗
i → â†

i ,
com [âi, â

†
j] = δij, obtemos o Hamiltoniano quantizado:

Ĥ = −J(â†
1â2 + â†

2â1) + U

2
(
â†

1â
†
1â1â1 + â†

2â
†
2â2â2

)
. (4.11)

Definindo unidades de energia onde J = 1, chegamos ao Hamiltoniano na forma mais
comum para dois sítios:

H = −(â†
1â2 + â†

2â1) + U

2 (â†
1â

†
1â1â1 + â†

2â
†
2â2â2) . (4.12)

A derivação mostra que o modelo de Bose–Hubbard emerge naturalmente como a
quantização discreta da EGP quando se considera um potencial de rede profunda. No
caso de dois sítios, o Hamiltoniano acima descreve a competição entre a delocalização
quântica (hopping) e a interação local entre partículas (repulsão U), sendo a base para
estudar efeitos como a transição de Mott e o regime de Josephson [41, 42].
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4.1.2 Operadores de ganho e perda

Com o Hamiltoniano bem definido, a abertura do sistema é modelada pela inclusão
de dois superoperadores de Lindblad, um responsável pela perda de partículas no sítio 1 e
outro pelo ganho no sítio 2. A dinâmica total do sistema é então governada pela equação
mestra

dρ̂

dt
= −i[H, ρ̂] + Lperdaρ̂+ Lganhoρ̂. (4.13)

Se supormos que o sistema possui saltos, descritos pelo operador L̂, então podemos
escrever os termos Lρ̂ da seguinte maneira:

L(L̂)ρ̂ = −1
2
(
L̂†L̂ρ̂+ ρ̂L̂†L̂− 2L̂ρ̂L̂†

)
. (4.14)

A justificativa dessa forma de escrever o operador é obtida levando em conta as
probabilidades de ocorrer um salto no sistema ou de não ocorrer em um tempo infinitesimal
dt. Ao fazer isso, podemos chegar a uma equação mestra para cada caso (caso em que há
salto e que não há) que, ao juntar as duas equações, nos fornece uma equação mestra do
tipo

dρ̂

dt
= −i[Ĥ, ρ̂] + L̂ρ̂L̂† − 1

2
(
L̂†L̂ρ̂+ ρ̂L̂†L̂

)
. (4.15)

Assim, podemos escrever os operadores Lperda e Lganho partindo da equação (4.15).
Para isso, consideramos Lperda = √

γperda a1, L†
perda = √

γperda a
†
1, Lganho = √

γganho a2 e
L†

ganho = √
γganho a

†
2, em que γperda e γganho representam as taxas de perdas e ganhos,

respectivamente. Desse modo, obtemos:

Lperdaρ = −γperrda

2
(
a†

1a1ρ+ ρa†
1a1 − 2a1ρa

†
1

)
, (4.16)

Lganhoρ = −γganho

2
(
a2a

†
2ρ+ ρa2a

†
2 − 2a†

2ρa2
)

. (4.17)

Esses operadores descrevem, respectivamente, a remoção e a injeção de átomos do
condensado de forma incoerente, simulando o acoplamento com um ambiente externo. A
escolha das taxas γperda e γganho determina o regime dinâmico do sistema. No caso parti-
cular em que as taxas são ajustadas de modo que γganho/γperda = N0/(N0 + 2), onde N0 é
o número médio inicial de partículas, o sistema exibe ganho e perda exatamente balance-
ados, resultando em uma evolução estacionária média do número total de partículas.
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4.1.3 Equação de Gross-Pitaevskii PT -simétrica

A análise do limite de campo médio da equação (4.13) é obtida pela substituição do
operador de densidade ρ pelo estado puro ρ = |ψ⟩ ⟨ψ| e pela aproximação dos operadores
bosônicos pelos seus valores esperados, aj →

√
N0 cj, com |c1|2 + |c2|2 = 1. Substituindo

essas relações na equação mestra (4.15), obtém-se o sistema de equações diferenciais
acopladas

iċ1 = −c2 + g|c1|2c1 − i
γ

2 c1, (4.18a)

iċ2 = −c1 + g|c2|2c2 + i
γ

2 c2, (4.18b)

em que g = (N0 − 1)U é a intensidade efetiva da interação e γ representa a taxa comum
de ganho e perda. As Eqs. (4.18a)–(4.18b) correspondem à EGP PT -simétrica discreta,
cuja dinâmica reflete o balanço entre coerência quântica e dissipação.

4.1.4 Simetria PT na equação de Gross–Pitaevskii com ganho
e perda balanceados

As equações (4.18a)–(4.18b) podem ser escritas na forma matricial

i
d

dt

(
c1

c2

)
= Heff

(
c1

c2

)
, (4.19)

com o Hamiltoniano efetivo não Hermitiano dado por

Heff =
(
g|c1|2 − iγ

2 −1
−1 g|c2|2 + iγ

2

)
. (4.20)

O operador de paridade P̂ , no espaço de dois modos, troca os sítios do sistema,
sendo representado por

P̂ =
(0 1

1 0

)
, (4.21)

enquanto o operador de reversão temporal T̂ realiza a conjugação complexa e muda o
sinal de i:

T̂ : i → −i, cj → c∗
j . (4.22)

Aplicando a operação PT sobre o Hamiltoniano efetivo, obtemos

P̂ T̂Heff(P̂ T̂ )−1 =
(
g|c2|2 − iγ

2 −1
−1 g|c1|2 + iγ

2

)
. (4.23)
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Comparando com Heff, nota-se que a condição

|c1|2 = |c2|2 (4.24)

garante que
[Heff, P̂ T̂ ] = 0. (4.25)

Assim, o sistema é PT -simétrico quando as probabilidades de ocupação em ambos os sítios
são iguais, ou seja, quando o ganho e a perda se equilibram. A condição de balanceamento
é obtida a partir da equação mestra microscópica e é dada por

γgain

γloss
= N0

N0 + 2 , (4.26)

em que N0 é o número total de partículas. No limite N0 → ∞, tem-se γgain ≈ γloss ≡ γ,
levando exatamente às equações (4.18a)–(4.18b).

Dessa forma, o Hamiltoniano efetivo do sistema com ganho e perda balanceados
satisfaz a condição de comutação com o operador PT , caracterizando um CBE com
dinâmica governada por uma EGP PT -simétrica.

De forma notável, Dast et al. demonstram que, mesmo para números finitos de
partículas, a dinâmica quântica obtida da equação mestra (4.13) concorda de forma exce-
lente com o limite de campo médio dado pelas Eqs. (4.18a)–(4.18b). Essa correspondência
evidencia que o formalismo de Lindblad com ganho e perda balanceados é uma descrição
microscópica consistente para CBEs efetivamente abertos, e fornece uma ponte concei-
tual entre a mecânica quântica de muitos corpos e as equações não-Hermitianas de campo
médio que emergem na descrição macroscópica do sistema.

4.2 Formulação Microscópica e Equação Mestra
Conservativa

Uma formulação fundamental para descrever CBEs como sistemas abertos, porém
com conservação global do número de partículas, foi desenvolvida por Schelle [43]. Nessa
abordagem, os autores derivam uma equação mestra de Lindblad a partir de primeiros
princípios, considerando a separação entre o condensado e o não-condensado como sub-
sistemas de um mesmo gás diluído. Essa descrição preserva o número total de átomos
N = N0 +N⊥, tratando o condensado como o sistema principal e o conjunto dos estados
excitados (não-condensado) como o reservatório térmico interno.
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O ponto de partida é a decomposição do campo bosônico total Ψ̂(r) em duas
contribuições ortogonais:

Ψ̂(r) = Ψ0(r) â0 +
∑
k ̸=0

Ψk(r) âk ≡ Ψ̂0(r) + Ψ̂⊥(r), (4.27)

em que Ψ0(r) é a função de onda do condensado, obtida como solução da EGP e os
operadores âk e â†

k descrevem os modos de excitação ortogonais ao condensado. Essa
separação permite reescrever o Hamiltoniano de muitos corpos na forma

Ĥ = Ĥ0 + Ĥ⊥ + V̂0⊥, (4.28)

em que Ĥ0 representa o Hamiltoniano do condensado, Ĥ⊥ o do não-condensado, e V̂0⊥ os
termos de interação entre ambos. Explicitamente,

Ĥ0 =
∫
dr Ψ̂†

0

(
−ℏ2∇2

2m + Vext

)
Ψ̂0 + g

2

∫
dr Ψ̂†

0Ψ̂†
0Ψ̂0Ψ̂0, (4.29)

Ĥ⊥ =
∑
k ̸=0

ϵk â
†
kâk, (4.30)

enquanto o termo de interação V̂0⊥ contém todos os processos de colisão que transferem
partículas entre o condensado e o não-condensado. Esses processos podem ser classificados
em três tipos: (i) eventos de ganho/perda de uma partícula, (ii) eventos de criação/ani-
quilação de pares e (iii) espalhamentos elásticos que preservam o número de partículas
em cada subsistema, conforme é comentado por Schell [43].

Para descrever a dinâmica temporal, considera-se o estado total σ̂(N)(t) definido
no espaço de Fock F = F0 ⊗ F⊥, que descreve a superposição de estados com diferentes
números de partículas, cuja evolução obedece à equação de von Neumann:

dσ̂(N)(t)
dt

= − i

ℏ
[Ĥ, σ̂(N)(t)]. (4.31)

Tomando a média sobre os graus de liberdade do não-condensado, obtém-se a matriz
densidade reduzida do condensado,

ρ̂
(N)
0 (t) = Tr⊥{σ̂(N)(t)}. (4.32)

Sob as hipóteses de (i) rápida termalização do não-condensado e (ii) separação de
escalas temporais entre a dinâmica de condensação e as colisões térmicas (τcol ≪ τ0),
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é possível aplicar a aproximação de Born-Markov. O resultado é uma equação mestra
markoviana para a matriz densidade reduzida do condensado:

dρ̂
(N)
0 (t)
dt

=
N∑

N0=0

[
ξ+

N(N0, T ) D[Ŝ+(N0)]ρ̂(N)
0 (t) + ξ−

N(N0, T ) D[Ŝ−(N0)]ρ̂(N)
0 (t)

]
, (4.33)

em que o dissipador de Lindblad é definido por

D[Â]ρ̂ = Âρ̂Â† − 1
2{Â†Â, ρ̂}, (4.34)

e os operadores de salto Ŝ±(N0) representam, respectivamente, a adição ou remoção de
um átomo do condensado:

Ŝ+(N0) = |N0 + 1⟩⟨N0| , Ŝ−(N0) = |N0 − 1⟩⟨N0| . (4.35)

Ao projetar a Eq. (4.33) nos estados de número |N0⟩, obtêm-se uma equação de
taxas para a distribuição de partículas no condensado pN(N0, t) = ⟨N0| ρ̂(N)

0 (t) |N0⟩:

∂pN(N0, t)
∂t

= −
[
ξ+

N(N0, T ) + ξ−
N(N0, T )

]
pN(N0, t)+ξ+

N(N0−1, T )pN(N0−1, t)+ξ−
N(N0+1, T )pN(N0+1, t),

(4.36)
a qual descreve a transferência de partículas entre o condensado e o não-condensado.
As taxas ξ±

N dependem das correlações do reservatório térmico e incorporam o equilíbrio
dinâmico entre processos de alimentação e depletamento do condensado.

O resultado notável dessa formulação é que, sob condições de diluição e de in-
terações fracas, o estado estacionário da Eq. (4.36) converge para uma distribuição de
Gibbs-Boltzmann de um gás ideal de bósons indistinguíveis. Assim, o formalismo de
Schelle et al. estabelece uma ponte entre a teoria cinética da condensação e o formalismo
de equações mestras quânticas, preservando o caráter conservativo e o número total de
partículas do sistema. Essa abordagem fornece, portanto, uma base microscópica sólida
para o estudo de sistemas abertos conservativos, a partir da qual podem ser introduzidas
extensões dissipativas.

4.3 Discussão e Conexão com o Modelo
Desenvolvido

As formulações apresentadas nas Seções anteriores descrevem duas perspectivas
complementares sobre a dinâmica de CBEs tratados como sistemas quânticos abertos.
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De um lado, a abordagem de Schelle [43] fornece uma descrição microscópica e número-
conservativa da evolução do condensado, na qual o reservatório térmico é constituído
pelas próprias excitações do gás. De outro, o modelo de Dast et al. (2014) [39] introduz
um mecanismo efetivo de troca de partículas com o ambiente, representando um caso
genuinamente dissipativo, mas ainda assim capaz de preservar coerência quântica sob
certas condições de simetria.

A estrutura geral das equações mestras em ambos os casos pode ser escrita de
forma unificada pela equação (2.24) onde os operadores de Lindblad L̂j descrevem os
canais de dissipação ou de acoplamento com o ambiente. No formalismo conservativo de
Schelle, esses operadores correspondem a processos internos de troca de partículas entre
o condensado e o não-condensado,

L̂+ =
√
ξ+

N(T ) â†
0, L̂− =

√
ξ−

N(T ) â0, (4.37)

de modo que o número total de partículas N = N0 + N⊥ é preservado. Já no modelo de
Dast, os operadores de Lindblad assumem a forma

L̂ganho = √
γganho a

†
2, L̂perda = √

γperda a1, (4.38)

introduzindo explicitamente um fluxo de partículas entre o sistema e o meio externo. O
equilíbrio dinâmico obtido quando γganho = γperrda é análogo ao regime estacionário en-
contrado no caso conservativo, embora a conservação global de partículas seja substituída
por um balanço entre ganho e perda.

Essa correspondência estrutural permite interpretar a equação mestra com ganho
e perda balanceados como uma extensão dissipativa do formalismo número-conservativo.
Em ambos os casos, o sistema evolui segundo um operador de Lindblad cuja forma garante
positividade e traço unitário da matriz densidade, mas com significados físicos distintos:
no modelo conservativo, os operadores de salto descrevem trocas internas reversíveis,
enquanto no modelo dissipativo eles representam injeção e extração irreversíveis de par-
tículas.

Do ponto de vista físico, essa comparação revela que a introdução de termos não-
Hermitianos na EGP não é arbitrária, mas sim uma consequência natural do acoplamento
do condensado com um reservatório, seja ele interno ou externo. A simetria PT observada
no modelo de Dast pode, portanto, ser interpretada como a manifestação macroscópica
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de um balanço microscópico entre os processos de alimentação e de depleção descritos por
Schelle.

Conclui-se, assim, que os dois modelos representam limites complementares de um
mesmo formalismo de sistemas quânticos abertos. O modelo conservativo de Schelle for-
nece a base microscópica e estatística da equação mestra, enquanto o modelo dissipativo
de Dast introduz uma generalização fenomenológica capaz de capturar regimes efetivos de
ganho e perda. Essa conexão conceitual estabelece um quadro unificado que sustenta o de-
senvolvimento de equações mestras mais gerais, que podem resultar em EGPs estocásticas
como visto no capítulo 3.



Capítulo 5

Conclusão

Neste trabalho, foi analizado o CBE sob a ótica dos sistemas quânticos abertos,
enfatizando como o acoplamento com o ambiente altera a dinâmica do sistema. A partir
da EGP tradicional, estendeu-se o tratamento para incluir efeitos dissipativos e estocás-
ticos, permitindo uma descrição mais realista da evolução de condensados em condições
experimentais.

A formulação de uma equação mestra do tipo Lindblad mostrou-se fundamental
para compreender a influência de perdas, ganhos e decoerência. Ao introduzir operadores
de Lindblad associados a processos de dissipação e alimentação, foi possível obter expres-
sões que conectam a dinâmica microscópica com as equações efetivas de campo médio.
Essa análise levou naturalmente à EGP estocástica, na qual o ruído quântico e as flu-
tuações induzidas pela medição contínua desempenham papel essencial na evolução do
condensado.

No segundo bloco do trabalho, discutiram-se duas abordagens complementares. O
modelo de Dast, descrito na sessão 4.1, introduz uma formulação com ganho e perda
balanceados, na qual o sistema pode manter coerência quântica apesar da dissipação,
manifestando simetria PT. Por outro lado, o modelo de Schelle, descrito na sessão 4.2
fornece uma base microscópica conservativa, em que o condensado e o não-condensado
trocam partículas sem violar a conservação global do número de átomos. A comparação
entre esses modelos propõe que ambos podem ser vistos como limites de um mesmo
formalismo de sistemas abertos: o primeiro, fenomenológico e dissipativo; o segundo,
conservativo e derivado de primeiros princípios. Essa equivalência estrutural sustenta a
ideia de um quadro unificado para descrever CBEs abertos, no qual diferentes regimes
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emergem a partir de condições específicas de acoplamento com o ambiente.

Como resultado, este estudo propõe que os termos não-Hermitianos introduzidos
em EGPs efetivas não são construções artificiais, mas expressões macroscópicas de pro-
cessos microscópicos de troca e depleção. A simetria PT, nesse contexto, surge como a
manifestação do equilíbrio entre tais processos, conectando a teoria de sistemas abertos à
dinâmica coerente observada experimentalmente em condensados dissipativos.

Em perspectiva futura, o formalismo aqui apresentado pode ser estendido à aná-
lise de CBEs em redes ópticas, condensados com interações de longo alcance e regimes
fortemente correlacionados, em que a dissipação não apenas degrada a coerência, mas
também pode ser utilizada como mecanismo de controle quântico. Esses desdobramentos
reforçam o papel dos sistemas quânticos abertos como ferramenta teórica essencial para
compreender e manipular estados quânticos macroscópicos.

No contexto experimental recente, o trabalho de Moreno-Armijos [44] observou es-
tágios distintos na relaxação de um CBE turbulento aprisionado, revelando uma sequência
de cascatas diretas e inversas de partículas e evidências de escalas universais de relaxação.
Tais resultados indicam que mesmo sistemas fechados exibem comportamentos análogos
aos descritos por equações mestras dissipativas, com regiões de quase-estacionariedade,
pretermalização e dinâmicas auto-similares regidas por expoentes universais, conforme
descritas em alguns trabalhos [45–47]. Além disso, as cascatas inversas de energia obser-
vadas no trabalho podem ser análogas ao efeito Mpemba Quântico [48], mostrando que o
sistema pode voltar ao equilíbrio (fase condensado) mais rápido com maiores excitações
do que com menores excitações. Isso tudo sugere que uma formulação quântica aberta
adequada pode capturar, de maneira unificada, tanto o comportamento de sistemas aber-
tos quanto o de sistemas isolados que exibem relaxação interna via acoplamento entre
modos.

A partir dessa perspectiva, o desenvolvimento de uma equação mestra efetiva capaz
de prever os estágios observados experimentalmente torna-se um objetivo central. Tal
equação deve incorporar termos não-lineares e dependentes do tempo que representem
os fluxos de partículas entre modos de baixa e alta energia, recuperando naturalmente
as escalas universais de relaxação associadas às cascatas de energia e de partículas. A
formalização desses processos dentro do formalismo de Lindblad — possivelmente com
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operadores locais que dependam do momento ou da densidade — pode permitir a descrição
de fenômenos como a transição entre regimes de turbulência quântica e condensação
inversa, conforme observado no trabalho experimental.

Portanto, este trabalho reforça que o caminho para compreender completamente a
dinâmica de CBEs fora do equilíbrio passa pela busca de uma equação mestra generali-
zada, que unifique o formalismo estocástico da EGP com a teoria de turbulência de ondas
(WTT) [49] e o conceito de pontos fixos não-térmicos (NTFPs) [50].

Em conclusão, o presente trabalho apresentou a relação entre o formalismo de
sistemas quânticos abertos e a dinâmica de condensados. Também abriu caminho para
uma futura formulação mestra de caráter unificador para descrever a dinâmica universal
de CBEs fora do equilíbrio. Tal formulação representaria um avanço significativo na
compreensão dos mecanismos de relaxação e termalização em sistemas quânticos de muitos
corpos, contribuindo para o desenvolvimento de uma teoria completa da dinâmica fora do
equilíbrio em CBEs.





Apêndice A

Decomposição Espectral

Seja A um operador normal em um espaço vetorial V . Queremos mostrar que A é
diagonalizável em alguma base ortonormal.

Fazemos a prova por indução na dimensão n = dim(V ). Para n = 1, o resultado é
imediato.

Suponha que o teorema valha para dimensões menores que n. Seja λ um autovalor
de A, e denote por Πλ o projetor sobre o autoespaço correspondente, e por Π⊥ = I − Πλ

o projetor sobre o complementar ortogonal.

Podemos escrever:

A = (Πλ + Π⊥)A(Πλ + Π⊥) = ΠλAΠλ + ΠλAΠ⊥ + Π⊥AΠλ + Π⊥AΠ⊥. (A.1)

Como A preserva o subespaço associado a λ, temos Π⊥AΠλ = 0. Além disso, como
A é normal, também vale ΠλAΠ⊥ = 0. Assim,

A = ΠλAΠλ + Π⊥AΠ⊥. (A.2)

Note que o operador reduzido Π⊥AΠ⊥ atua apenas no subespaço ortogonal Π⊥(V )
e continua sendo normal, pois

(Π⊥AΠ⊥)(Π⊥A
†Π⊥) = Π⊥AA

†Π⊥ = Π⊥A
†AΠ⊥ = (Π⊥A

†Π⊥)(Π⊥AΠ⊥). (A.3)

Logo, por hipótese de indução, esse operador é diagonalizável em alguma base
ortonormal de Π⊥(V ).
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Como ΠλAΠλ = λΠλ já é diagonal no subespaço Πλ(V ), concluímos que A é
diagonalizável em uma base ortonormal do espaço total V .

Podemos escrever o operador como

A =
∑

i

λiΠi, (A.4)

em que λi são os autovalores e Πi os projetores sobre os autoespaços ortogonais corres-
pondentes. Esses projetores satisfazem:

ΠiΠj = δijΠi, e
∑

i

Πi = I. (A.5)

Traço Parcial

Em sistemas quânticos compostos, frequentemente é de interesse descrever apenas
uma parte do sistema total, ignorando os graus de liberdade de um subsistema que não
é diretamente acessível. Essa operação é formalmente expressa através do traço parcial,
uma ferramenta fundamental na teoria de sistemas quânticos abertos.

Considere um sistema quântico composto S + E, onde S representa o sistema de
interesse (“sistema”) e E o ambiente. O espaço de Hilbert total é dado pelo produto
tensorial

Htotal = HS ⊗ HE. (A.6)

Se o estado total do sistema for descrito pela matriz densidade ρ̂SE, o estado
reduzido do sistema S é obtido aplicando o traço parcial sobre os graus de liberdade do
ambiente:

ρ̂S = TrE (ρ̂SE) . (A.7)

Analogamente, o estado reduzido do ambiente é dado por

ρ̂E = TrS (ρ̂SE) . (A.8)

O traço parcial corresponde a descartar a informação sobre o subsistema não ob-
servado. Por exemplo, se um observável ÂS atua apenas sobre o sistema S, a expectativa
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desse observável é obtida como

⟨ÂS⟩ = TrSE

[
(ÂS ⊗ IE) ρ̂SE

]
= TrS

[
ÂS TrE(ρ̂SE)

]
= TrS

(
ÂS ρ̂S

)
, (A.9)

mostrando que o estado reduzido ρ̂S contém toda a informação necessária para prever as
médias dos observáveis que atuam apenas sobre S.

Se {|ei⟩} é uma base ortonormal de HE, o traço parcial sobre o ambiente é dado
explicitamente por

TrE(ρ̂SE) =
∑

i

⟨ei| ρ̂SE |ei⟩ . (A.10)

De modo análogo, o traço parcial sobre o sistema S é

TrS(ρ̂SE) =
∑

j

⟨sj| ρ̂SE |sj⟩ , (A.11)

em que {|sj⟩} é uma base ortonormal de HS.

Exemplificando, considere um estado puro bipartido

|Ψ⟩SE =
∑
i,j

cij |si⟩ ⊗ |ej⟩ , (A.12)

com matriz densidade total

ρ̂SE = |Ψ⟩SE ⟨Ψ|SE =
∑

i,j,k,l

cijc
∗
kl |si⟩ ⟨sk| ⊗ |ej⟩ ⟨el| . (A.13)

O traço parcial sobre o ambiente fornece o estado reduzido do sistema:

ρ̂S = TrE(ρ̂SE) =
∑
m

⟨em| ρ̂SE |em⟩

=
∑
i,k

∑
j

cijc
∗
kj

 |si⟩ ⟨sk| . (A.14)

Assim, mesmo que o estado total ρ̂SE seja puro, o estado reduzido ρ̂S pode ser
misto, refletindo o emaranhamento entre S e E. Essa propriedade é a base conceitual da
perda de coerência e da emergência da irreversibilidade em sistemas quânticos abertos.

O operador de traço parcial satisfaz propriedades úteis, dentre as quais destacam-
se:
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1. Linearidade:
TrE(aÂ+ bB̂) = aTrE(Â) + bTrE(B̂). (A.15)

2. Compatibilidade com o traço total:

TrSE(Â) = TrS

(
TrE(Â)

)
= TrE

(
TrS(Â)

)
. (A.16)

3. Invariância cíclica parcial: para operadores ÂS e B̂SE,

TrE

[
(ÂS ⊗ IE)B̂SE

]
= ÂS TrE(B̂SE). (A.17)

O traço parcial é o elo entre a descrição microscópica e a dinâmica efetiva do sistema
de interesse. Ele permite derivar equações mestras e modelos de dissipação ao eliminar
explicitamente as variáveis do ambiente, produzindo uma dinâmica não unitária para o
sistema S. Assim, a operação de traço parcial é o passo fundamental na passagem de
uma descrição unitária global para uma descrição efetiva aberta, característica essencial
de sistemas quânticos em contato com um reservatório.

Decomposição de Kraus

A decomposição de Kraus é uma forma conveniente de representar qualquer mapa
linear completamente positivo (CP) atuando em operadores densidade. Seja E um canal
quântico, isto é, um mapa linear completamente positivo e preservador de traço:

E : ρ 7→ E(ρ). (A.18)

Queremos mostrar que ele pode ser escrito como

E(ρ) =
∑

i

KiρK
†
i , (A.19)

em que Ki são operadores que satisfazem ∑
i K

†
iKi = I.

Começamos considerando a representação de Stinespring: qualquer mapa comple-
tamente positivo pode ser visto como uma evolução unitária em um espaço ampliado,
seguida de um traço parcial. Isto é, existe um operador unitário U agindo sobre o sistema
e um ambiente auxiliar E, e um estado inicial |0⟩E do ambiente, tais que

E(ρ) = TrE

[
U (ρ⊗ |0⟩⟨0|E)U †

]
. (A.20)
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Escolhendo uma base ortonormal {|i⟩E} para o espaço do ambiente, podemos es-
crever o traço parcial explicitamente:

E(ρ) =
∑

i

⟨i|E U (ρ⊗ |0⟩⟨0|E)U † |i⟩E. (A.21)

Definimos então os operadores de Kraus como

Ki = ⟨i|E U |0⟩E. (A.22)

Substituindo, obtemos diretamente:

E(ρ) =
∑

i

KiρK
†
i , (A.23)

que é a forma desejada.

Para que E preserve o traço, precisamos ter:

Tr[E(ρ)] = Tr[ρ]. (A.24)

Usando a forma de Kraus:

Tr
[∑

i

KiρK
†
i

]
= Tr

[
ρ
∑

i

K†
iKi

]
. (A.25)

Logo, a condição é satisfeita se, e somente se,

∑
i

K†
iKi = I, (A.26)

Em resumo, qualquer canal quântico completamente positivo e preservador de traço
pode ser expresso como uma soma de operadores de Kraus:

E(ρ) =
∑

i

KiρK
†
i , com

∑
i

K†
iKi = I,

Essa decomposição não é única, diferentes conjuntos de operadores Ki podem representar
o mesmo mapa E . Em geral, os operadores de Kraus podem depender do tempo, afinal
se ρ depender do tempo, então os operadores Ki vão ter que mudar ao longo do tempo
também.





Apêndice B

Cálculo de Itô

O cálculo de Itô é uma extensão do cálculo diferencial tradicional, desenvolvida
para lidar com processos estocásticos, isto é, variáveis que evoluem de forma aleatória no
tempo. Em particular, ele fornece as regras para manipular diferenciais de processos que
dependem de um ruído branco, como o movimento Browniano Wt.

Considere um processo estocástico Xt que satisfaz uma equação diferencial esto-
cástica (EDE) da forma

dXt = a(t,Xt) dt+ b(t,Xt) dWt, (B.1)

em que a(t,Xt) representa o drift (ou termo determinístico), e b(t,Xt) representa a intensi-
dade do ruído multiplicando o incremento estocástico dWt. O processo Wt é o movimento
Browniano (ou processo de Wiener), que satisfaz as seguintes propriedades fundamentais:

⟨dWt⟩ = 0, (dWt)2 = dt, dWt dt = 0, (dt)2 = 0. (B.2)

Essas relações indicam que os incrementos de Wiener têm variância proporcional
a dt e não são diferenciáveis no sentido usual.

Fórmula de Itô para Produtos

Sejam Xt e Yt dois processos estocásticos que obedecem às EDEs

dXt = aX dt+ bX dWt, (B.3)

dYt = aY dt+ bY dWt. (B.4)

Desejamos determinar o incremento de seu produto Zt = XtYt.
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No cálculo determinístico, a regra do produto é simplesmente

d(XtYt) = Xt dYt + Yt dXt. (B.5)

Entretanto, no cálculo de Itô devemos considerar também os termos de segunda
ordem que surgem ao expandir o produto dos incrementos:

∆(XtYt) = Xt∆Yt + Yt∆Xt + (∆Xt)(∆Yt). (B.6)

Como ∆Wt ∼
√

∆t, o termo quadrático (∆Wt)2 é da ordem de ∆t, e portanto não
pode ser desprezado. Aplicando as regras de Itô, obtemos

(∆Xt)(∆Yt) = bXbY ∆t. (B.7)

Tomando o limite ∆t → 0, a regra de Itô para produtos é então dada por

d(XtYt) = Xt dYt + Yt dXt + (dXt)(dYt). (B.8)

O termo adicional (dXt)(dYt) é a principal diferença em relação ao cálculo deter-
minístico, e surge devido à natureza não diferenciável do movimento Browniano. Em
particular, ele captura as correlações entre os ruídos que atuam em Xt e Yt.
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