

Serviço Público Federal Ministério da Educação

Fundação Universidade Federal de Mato Grosso do Sul

2025

Análise Econômica entre Pavimento Flexível e Pavimento Rígido do tipo Whitetopping na GO-070, trecho entre Goiânia e Goianira

Bianca da Silva Lopes^a, Janusa Soares de Araujo^b

^a Aluna de Graduação em Engenharia Civil, Bianca_lopes<u>@ufms.br</u>
 ^b Professora Orientadora doutora, Janusa.soares<u>@ufms.br</u>

Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia. Universidade Federal de Mato Grosso do Sul. Av. Costa e Silva, s/nº | Bairro Universitário | 79070-900 | Campo Grande, MS, Brasil.

RESUMO

Este trabalho apresenta uma análise comparativa entre duas técnicas de restauração de pavimentos – pavimento flexível com reciclagem da base e pavimento rígido do tipo *Whitetopping* – aplicadas ao trecho da rodovia GO-070, entre os municípios de Goiânia e Goianira. O estudo foi desenvolvido com base em dados de tráfego, ensaios geotécnicos, avaliações funcionais e estruturais do pavimento, conforme os manuais e normas técnicas do DNIT. Foram definidos segmentos homogêneos a partir de ensaios deflectométricos e funcionais, permitindo o dimensionamento para cada trecho. Os resultados indicam que a técnica *Whitetopping* é mais vantajosa tecnicamente e economicamente quando considerada a vida útil do pavimento, sendo recomendada como solução preliminar para o trecho em estudo. Conclui-se que a adoção de técnicas que promovam maior durabilidade e menor necessidade de manutenção, ainda que com custo inicial mais elevado, apresenta-se como uma melhor escolha em trechos com tráfego elevado, como o analisado, apontando para a necessidade de uma mudança de perspectiva nos projetos de restauração rodoviária, visto que a maioria é tratada exclusivamente com pavimento flexível.

Palavras-chave: Restauração de pavimentos; GO-070; pavimento rígido; whitetopping; pavimento flexível; análise econômica.

ABSTRACT

This study presents a comparative analysis between two pavement restoration techniques — flexible pavement with base recycling and rigid pavement of the Whitetopping type — applied to a section of the GO-070 highway, between the municipalities of Goiânia and Goianira. The study was developed based on traffic data, geotechnical tests, and functional and structural evaluations of the pavement, following the guidelines and technical standards established by DNIT. Homogeneous segments were defined based on deflectometric and functional tests, allowing specific structural design for each section. The results indicate that the Whitetopping technique is more advantageous both technically and economically when considering the pavement's service life, being recommended as the preliminary solution for the analyzed stretch. It is concluded that the adoption of techniques that offer greater durability and reduced maintenance needs, even with higher initial costs, proves to be the better choice for high-traffic segments such as the one analyzed. This highlights the need for a shift in perspective in road restoration projects, which are still predominantly based on flexible pavement solutions.

Keywords: Pavement restoration; GO-070; rigid pavement; Whitetopping; flexible pavement; economic analisys.

1 INTRODUÇÃO

O crescimento acelerado da frota de veículos e o aumento da carga transportada têm contribuído significativamente para a deterioração precoce dos pavimentos, especialmente em trechos urbanos e periurbanos. Nesse contexto, a restauração adequada da estrutura viária torna-se essencial para garantir segurança, conforto e durabilidade aos usuários, exigindo estudos que avaliem técnicas mais eficientes e economicamente viáveis.

A restauração de pavimentos rodoviários é fundamental para garantir a durabilidade, segurança e funcionalidade da rodovia, especialmente em trechos com alto volume de tráfego. A escolha da técnica mais adequada deve considerar fatores como condições estruturais, tráfego, custos e vida útil da solução.

Este trabalho tem como objetivo comparar duas alternativas de restauração — pavimento flexível com reciclagem da base e pavimento rígido do tipo *Whitetopping* — aplicadas ao trecho da rodovia GO-070, entre Goiânia e Goianira. A análise baseia-se em dados de tráfego, ensaios de solo, avaliações funcionais e custos, buscando apontar a solução mais viável do ponto de vista técnico e econômico.

2 REFERENCIAL TEÓRICO

2.1 Histórico da pavimentação com enfoque no Brasil

A pavimentação viária no Brasil consolidou-se no início do século XX, embora já existissem registros de estradas de terra desde o período colonial, utilizadas para o escoamento de mercadorias e deslocamentos militares. O marco inicial da pavimentação nacional foi a inauguração da Estrada União e Indústria, entre Petrópolis (RJ) e Juiz de Fora (MG), em 1861. Essa via, construída com paralelepípedos assentados sobre base compactada, é considerada a primeira estrada pavimentada do país (BERNUCCI et al., 2008).

Em 1937 Getúlio Vargas criou o Departamento Nacional de Estradas de Rodagem (DNER) e em 1940 observou-se um avanço na pavimentação, efeito da tecnologia desenvolvida durante a 2° guerra mundial.

Nas décadas de 1950 e 1960, durante o governo de Juscelino Kubitschek, o Plano de Metas priorizou a integração nacional por meio da malha ferroviária, com o início da execução de pavimentos em escala industrial e da organização de grandes firmas construtoras. Em 1958 e 1959, foram criados, o Instituto de Pesquisas Rodoviárias (IPR) e a Associação Brasileira de Pavimentação (ABPv). Em 1960, a atual capital do País, Brasília, foi fundada (BERNUCCI et al., 2008).

Com a extinção do DNER, em 2001, o Departamento Nacional de Infraestrutura de Transportes (DNIT) assumiu o papel de órgão gestor, implementando manuais técnicos para padronização das soluções de pavimentação, sendo um deles, o Manual de Pavimentação (DNIT, 2006), tendo a sua

primeira edição lançada em 1960, o Método de Projeto de Pavimentos Flexíveis (DNER, 1981) e o Manual de Pavimentos Rígidos (DNIT, 2005).

2.2 Tipos de Pavimentos

2.2.1 Pavimentos Flexíveis

Os pavimentos flexíveis são compostos por um conjunto de camadas sobrepostas, sendo que todas elas sofrem deformação elástica significativa quando um carregamento é aplicado, essas camadas distribuem os esforços em parcelas aproximadamente equivalentes até o subleito, na figura 2 é representado um esquema de resposta mecânica do pavimento devido à aplicação de uma carga (DNIT, 2006).

Normalmente são compostos por cinco camadas, revestimento asfáltico, base, sub-base, reforço do subleito e subleito (BERNUCCI et al., 2008). A figura 1 apresenta as camadas dos pavimentos flexíveis.

Camadas do Pavimento Flexível:

- Subleito: Segundo o Manual de pavimentação (DNIT,2006) é o terreno de fundação do
 pavimento, sendo formado por solo natural compactado ou material de empréstimo,
 suas características geotécnicas impactam o desemprenho do pavimento diretamente,
 quando o subleito apresenta baixa capacidade de suporte é preciso pensar em outras
 alternativas, como a sua estabilização ou substituição.
- Reforço do subleito: É a camada acima da regularização do subleito, com características inferiores a sub-base e superiores ao subleito, utilizada em circunstâncias técnico-econômicas, visto que, utilizando o reforço do subleito, não há necessidade de grandes espessuras em camadas como base e sub-base (BALBO, 2007).
- Sub-base: É uma camada intermediária, sua principal função é a distribuição de tensões
 e suporte adicional, também ajudando na drenagem do pavimento. Pode ser feita com
 solo melhorado, brita graduada, solo-cimento ou outros materiais estabilizantes
 (BERNUCCI et al., 2008).
- Base: É a camada principal para o suporte estrutural, recebendo diretamente as cargas que são aplicadas no revestimento e distribuindo para as camadas inferiores. É geralmente composta por materiais granulares ou estabilizadas com aditivos (DNIT, 2006).
- Revestimento: O revestimento é a camada superior do pavimento, responsável pelo contato direto com os veículos, tem como função principal proteger as camadas

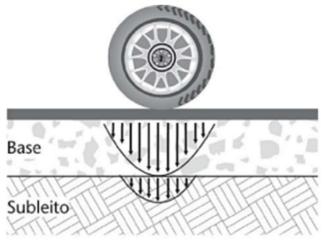

granulares conta danos ao longo do tempo, e também melhorar a superfície visando conforto e segurança ao usuário. Geralmente é feito de concreto betuminoso usinado a quente (CBUQ), mas também podem ser utilizados tratamentos superfíciais e microrrevestimentos (DNIT, 2006).

Figura 1 – Estrutura do Pavimento Flexível

Revest	imento	asfálti	со	
Base				
Sub-ba	se			
Reforg	o do su	bleito		
Sublei		Sieno .		

Fonte: Bernucci et al. (2008)

Figura 2 – Resposta mecânica de pavimento flexível: pressões concentradas

Fonte: Balbo (2007)

2.2.2 Pavimento Rígido

Ao contrário dos pavimentos flexíveis, os pavimentos rígidos são compostos por placas de concreto de cimento portland. A rigidez das placas faz com que elas distribuam as tensões geradas pelo tráfego em uma área maior, reduzindo os esforços diretos sobre as camadas do pavimento. Por conta disso, tem uma maior durabilidade e menor deformação permanente (BERNUCCI et al., 2008).

Existem vários tipos de Pavimento de concreto de cimento Portland:

- Pavimento de Concreto Simples (PCS);
- Pavimento de Concreto Armado com Juntas (PCAJ);
- Pavimento de Concreto Armado Contínuo (PCAC);

- Pavimento de Concreto Rolado (CRCP);
- Pavimento Intertravado com Blocos de Concreto (PIBC);
- Pavimento de Concreto Fibrado;
- Pavimento Whitetopping.

2.2.2.1 Whitetopping

O pavimento tipo Whitetopping, consiste na aplicação de uma nova camada de concreto de cimento Portland sobre um pavimento asfáltico existente. Essa prática amplia a vida útil e restaura a capacidade estrutural utilizando parte da estrutura original do pavimento flexível.

É uma técnica economicamente viável quando o pavimento original apresenta patologias estruturais e tráfego pesado, garantindo melhora na resistência a cargas concentradas, durabilidade e redução da manutenção nessas vias (CASCUDO, 2011).

O pavimento Whitetopping pode ser considerado uma solução híbrida, portanto suas camadas são mistas entre o pavimento novo e o pavimento antigo, essa técnica busca aproveitar a estrutura remanescente, aumentando a capacidade de suporte e a durabilidade do revestimento, conforme descrito no Manual de Pavimentação (DNIT, 2018), podemos especificá-las como:

- Revestimento superior: É a camada estrutural nova, feita de concreto de cimento Portland, aplicada sobre o pavimento asfáltico existente, é a principal responsável pelo comportamento rígido do sistema, com espessura convencional > 20 cm.
- Interface: Interface ou Camada de Ligação garante a aderência entre o concreto e o pavimento asfáltico. A técnica mais comum de preparação superficial é a fresagem do asfalto, jateamento e limpeza, em casos específicos, pode ser aplicado uma camada de ligação adesiva (liga epóxi, argamassa colante ou emulsão betuminosa modificada). É de suma importância garantir a boa aderência para evitar deslizamentos e deslocamentos entre as camadas.
- Camada Intermediária: É o pavimento asfáltico existente, que agora servirá como base para o pavimento novo. Antes da aplicação do Whitetopping é necessário avaliar a sua condição, pois deve possuir capacidade suficiente para atuar como suporte, caso não possua, devem ser realizados reparos localizados, ou até a regularização da camada com aplicação de nova capa asfáltica antes do revestimento de concreto.

- Base e Sub-base originais: As camadas inferiores são mantidas desde que ainda possuam desempenho mecânico, sua integridade influencia diretamente na durabilidade do Whitetopping.
- Subleito: Não é alterado durante o processo, porém necessita atender algumas condições de desempenho para continuar servindo como suporte, por isso é indispensável a realização de ensaios de campo (CBR) antes de adotar a técnica.

2.3 Tráfego

O estudo de tráfego é uma das variáveis mais importantes no dimensionamento de pavimentos, sendo eles rígidos ou flexíveis. É necessário que o projeto considere o tipo de carga presente no trecho, e a frequência que ela passa. A repetição das cargas dos veículos causa tensões e deformações cumulativas nas camadas do pavimento (DNIT, 2006).

São utilizados uma série de fatores de correção para ajustar o número de veículos com os danos estruturais causados ao longo da vida útil do pavimento. Os principais fatores utilizados são o Fator de veículos (FV), Fator de Carga (FC), Fator Eixo (FE) e o Fator Climático Regional (FR) (DNIT, 2006).

- Fator de Veículos (FV): "É um número que multiplicado pelo número de veículos que operam, dá, diretamente, o número de eixos equivalentes ao eixo padrão" (DNIT, 2006). Esse fator é atribuído com base no tipo de veículo, número de eixos, distância entre eixos e configuração das rodas, conforme tabelas fornecidas no manual de estudos de tráfego.
- Fator de Carga (FC): "É um número que, multiplicado pelo número de eixos que operam, dá o número de eixos equivalentes ao eixo padrão" (DNIT, 2006). Os fatores de equivalência da AASHTO apresentados no quadro 1, são baseados da perda de serventia e variam de acordo com o tipo de pavimento, sendo ele flexível ou rígido, índice de serventia terminal e resistência do pavimento. Já os fatores de equivalência da USACE apresentados no quadro 2, são obtidos a partir da avaliação dos efeitos do carregamento na deformação permanente. As expressões para o cálculo dos fatores são apresentadas nos quadros 1 e 2.

Quadro 1 – Fatores de equivalência de carga da AASHTO

Tipos de eixo	Equações (P em tf)
Simples de rodagem simples	FC = (P / 7,77) ^{4,32}
Simples de rodagem dupla	FC = (P / 8,17) ^{4,32}
Tandem duplo (rodagem dupla)	FC = (P / 15,08) ^{4,14}
Tandem triplo (rodagem dupla)	FC = (P /22,95) ^{4,22}

P = Peso bruto total sobre o eixo

Fonte: DNIT (2006).

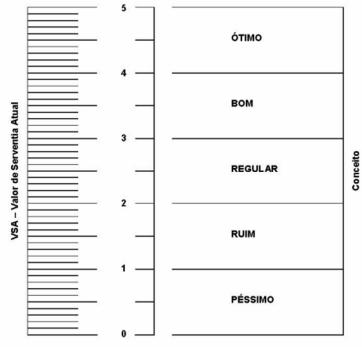
Quadro 2 – Fatores de equivalência de carga do USACE

Tipos de eixo	Faixas de Cargas (t)	Equações (P em tf)
Diantaire simples a tracsire simples	0 – 8	FC = 2,0782 x 10 ⁻⁴ x P ^{4,0175}
Dianteiro simples e traseiro simples	≥ 8	FC = 1,8320 x 10 ⁻⁶ x P ^{6,2542}
Tandem duplo	0 – 11	FC = 1,5920 x 10 ⁻⁴ x P ^{3,472}
randem dupio	≥ 11	FC = 1,5280 x 10 ⁻⁶ x P ^{5,484}
Tandom triplo	0 – 18	FC = 8,0359 x 10 ⁻⁵ x P ^{3,3549}
Tandem triplo	≥ 18	FC = 1,3229 x 10 ⁻⁷ x P ^{5,5789}

P = peso bruto total sobre o eixo

Fonte: DNIT (2006).

- Fator Eixo (FE): "É um número que, multiplicado pelo número de veículos, dá o número de eixos correspondentes" (DNIT, 2006). Cada tipo de veículo, conforme o número de eixos, tipo de suspensão e carga transportada, provoca um nível distinto de deterioração no pavimento. Por essa razão, o FE é aplicado para transformar o tráfego misto em uma unidade de comparação comum o Número de Eixos Equivalentes (NEE). Esse parâmetro é essencial para o dimensionamento estrutural de pavimentos, pois permite estimar, com base em modelos mecânicos e empíricos, a vida útil esperada das estruturas (AASHTO, 1993).
- Fator Climático Regional (FR): "Para levar em conta as variações de umidade dos materiais do pavimento durante as diversas estações do ano" (DNIT, 2006). Valores típicos do FR variam entre 1,0 (clima seco e estável) e 1,5 (clima úmido e instável). A correta aplicação do FR garante que o projeto tenha segurança frente às condições reais de operação da rodovia ao longo dos anos (BERNUCCI et al., 2008).


2.4 Avaliação de Pavimentos

Um dos maiores desafios nos projetos de pavimentação está em realizar uma obra que atenda as demandas estruturais e funcionais. O objetivo principal das avaliações de pavimentos é diagnosticar as condições em que ele se encontra, para escolher a técnica mais adequada para o projeto, sendo ela manutenção, reabilitação ou reconstrução. (BERNUCCI et al., 2008).

2.4.1 Avaliação Funcional

O objetivo da avaliação funcional é voltado principalmente para a superfície da via, ou seja, o conforto do usuário, garantindo a trafegabilidade na via em qualquer época e clima do ano, em condições de conforto principalmente relacionados a defeitos e irregularidades. Essa avaliação pode ser feita de forma subjetiva e objetiva. (BERNUCCI et al., 2008).

• Avaliação Subjetiva: Observação visual e sensorial do pavimento, realizada por colaboradores treinados. É uma prática comum principalmente por ser de baixo custo e fácil aplicação, o valor de serventia atual é realizado em uma escala de 0 a 5, e dado pela média de notas dos avaliadores. A escala detalhando os cinco níveis de serventia será apresentada no quadro 3 abaixo.

Quadro 3 – Ficha de avaliação de serventia

Fonte: DNIT (2003).

Para realizar a avaliação subjetiva corretamente, é de extrema importância que o avaliador reconheça adequadamente os possíveis defeitos encontrados nos pavimentos. O quadro resumo da terminologia normatizada (DNIT 005-2003 – TER) será apresentado nos quadros 4 e 5 a seguir.

Quadro 4 - Quadro resumo dos defeitos - Codificação e Classificação

		FENDAS		CODIFICAÇÃO		ASSE D	
		Fissuras		FI	-	-	-
		Transversais	Curtas	TTC	FC-1	FC-2	FC-3
Trincas no revestimento	Trincas	Transversals	Longas	TTL	FC-1	FC-2	FC-3
geradas por deformação	Isoladas	Longitudinais	Curtas	TLC	FC-1	FC-2	FC-3
permanente		Longitudinais	Longas	TLL	FC-1	FC-2	FC-3
excessiva e/ou decorrentes do fenômeno	Trincas	"Jacaré"	Sem erosão acentuada nas bordas das trincas	J	·	FC-2	•
de fadiga	Interligadas	Jacare	Com erosão acentuada nas bordas das trincas	JE	•	•	FC-3
Trincas no	Trincas Isoladas	The state of the s	ermica ou dissecação da ou do revestimento	TRR	FC-1	FC-2	FC-3
revestimento não atribuídas ao fenômeno	Trincas	"Bloco"	Sem erosão acentuada nas bordas das trincas	ТВ	•	FC-2	•
de fadiga	Interligadas	Бюсо	Com erosão acentuada nas bordas das trincas	TBE	•		FC-3

Fonte: DNIT (2003).

Quadro 5 - Quadro resumo dos defeitos - Codificação e Classificação

	OUTROS DEFEITOS										
	Plástico	Local	Devido à fluência plástica de uma ou mais camadas do pavimento ou do subleito	ALP							
Afundamento	Flastico	da Trilha	Devido à fluência plástica de uma ou mais camadas do pavimento ou do subleito	ATP							
Arundamento	De	Local	Devido à consolidação diferencial ocorrente em camadas do pavimento ou do subleito	ALC							
	Consolidação da Trilha Devido à consolidação diferencial ocorrente en camadas do pavimento ou do subleito										
	rugação - Ondulaç vestimento ou da		usadas por instabilidade da mistura betuminosa	0							
Escorregament	o (do revestimento	betuminoso)		E							
Exsudação do li	gante betuminoso	no revestimento		EX							
Desgaste acentu	uado na superfície	do revestimento		D							
"Panelas" ou bu	racos decorrentes	da desagregação do	o revestimento e às vezes de camadas inferiores	Р							
	Remendos		Remendo Superficial	RS							
	Remendos		Remendo Profundo	RP							

Fonte: DNIT (2003).

 Avaliação Objetiva: Utiliza métodos padronizados e quantitativos para determinar o estado funcional do pavimento. Alguns desses métodos são: Índice de gravidade global (IGG), Irregularidade Longitudinal (IRI) e Afundamento de trilha de roda (ATR).

Índice de gravidade global: É um parâmetro numérico obtido através da observação dos defeitos superficiais do pavimento. Para o cálculo é necessário considerar o tipo, a extensão e

a severidade dos defeitos, conforme tabelas padronizadas elaboradas pelo DNIT, o índice varia entre 0 e 160, sendo que, quando maior o IGG, pior é o pavimento. Estes conceitos estão detalhados no quadro 6.

Quadro 6 - Conceitos de degradação do pavimento em função do IGG

Conceitos	Limites
Ótimo	0 < IGG ≤ 20
Bom	20 < IGG ≤ 40
Regular	40 < IGG ≤ 80
Ruim	80 < IGG ≤ 160
Péssimo	IGG > 160

Fonte: DNIT (2003).

Irregularidade longitudinal: Quantifica o nível de conforto do usuário, esse valor é expresso em metros por quilômetro (m/km) e valores menores indicam pavimentos mais regulares.

Afundamento de trilha de roda: Mede a profundidade dos afundamentos formados na faixa de rolamento interna e externa, devido à ação repetida dos eixos dos veículos, seu valor é expresso em milímetros.

2.4.2 Avaliação Estrutural

Tem como objetivo verificar a capacidade de suporte do pavimento de resistir aos esforços provocados pelo tráfego ao longo do tempo. Pode ser dividida em métodos destrutivos e não destrutivos.

- Avaliação Destrutiva: Envolve intervenções físicas no pavimento, como a retirada de corpos de prova e, por mais que forneça dados precisos, é mais cara e trabalhosa por interferir no tráfego.
- Avaliação Não Destrutiva: Utiliza equipamentos que medem a resposta do pavimento à aplicação de cargas, sem danificá-lo, como Viga Bennkelman e o Falling Weigth Deflectometer (FWD).

Viga Bennkelman: Método tradicional que avalia a deflexão do pavimento ao passar de uma carga padrão (geralmente de um caminhão).

Falling Weigth Deflectometer (FWD): Equipamento moderno que aplica uma carga dinâmica e mede a deflexão em vários pontos.

2.5 Caracterização do Solo

A resistência, a estabilidade e a deformabilidade do solo influenciam diretamente na vida útil e no comportamento estrutural do pavimento. A caracterização do solo é fundamental para um bom dimensionamento, pois ela determina as propriedades físicas, químicas e mecânicas do solo. Para realizar essa análise são feitos ensaios de campo e laboratoriais que identificam parâmetros como granulometria, umidade, limites de consistência, suporte (CBR) e índice de grupo.

Com todos os resultados em mãos podemos classificar o solo de acordo com a classificação Transportation Research Board (TRB) apresentada a seguir no quadro 7.

CLASSIFICAÇÃO GERAL	MATER	RIAIS GR		ES 35% (neira N°	ou meno 200	s) passa	ndo na	MATER	RIAIS SIL	TO - ARG	BILOSOS
CLASSIFICAÇÃO EM	Α .	- 1	A - 3		A	- 2		A - 4	A - 5	A - 6	A - 7 A - 7 - 5
GRUPOS	A - 1 - A	A - 1 - B		A - 2 - 4	A - 2 - 5	A-2-6	A-2-7	A - 4	A - 5	A - 6	A-7-5 A-7-6
Granulometria - % passando na peneira											
№ 10	50 máx.										
№ 40	30 máx.	50 máx.	51 min.								
№ 200	15 máx.	25 máx.	10 máx.	35 máx.	35 máx.	35 máx.	35 máx.	36 min.	36 min.	36 min.	36 min.
Características da fração passando na peneira Nº 40:											
Limite de Liquidez				40 máx.	41 min.	40 máx	41 min.	40 máx.	41 min.	40 máx	41 min.
Índice de Plasticidade	6 máx.	6 máx.	NP	10 máx.	10 máx.	11 min.	11 min.	10 máx.	10 máx.	11 min.	11 min.*
Índice de Grupo	0	0	0	0	0	4 máx.	4 max	8 máx.	12 máx.	16 máx.	20 máx.
Materiais constituintes	_	tos de pe ho fino e		Pedregu argilosos	lho ou are	eias siltos	os ou	Solos silt	losos	Solos arg	gilosos
Comportamento como subleito						Sofrível a mau					

Quadro 7 - Classificação dos dolos (TRB)

Fonte: DNIT (2006).

2.5.1 Granulometria

O ensaio de Granulometria realiza a distribuição do tamanho das partículas de solo, permitindo classificar sua composição quanto ao teor de areia, silte e argila. Ele é realizado por meio de peneiramento (para solos arenosos) e sedimentação (para solos finos), conforme a DNER-ME 051-94. No quadro 2 são detalhadas as aberturas das peneiras utilizadas no ensaio.

Ouadro 8 – Peneiras Utilizadas

Peneira	Abertura (mm)
2"	50,8
1 1/2"	38,1
1"	25,4
3/4"	19,1
3/8"	9,5
4	4,8
10	2,09
40	0,42
100	0,15
200	0,075

Fonte: DNER-ME 051 (1994).

A curva granulométrica é utilizada para verificar o grau de compactação do solo, ela também auxilia na escolha do tipo de estabilização ou substituição.

2.5.2 Teor de Umidade

A umidade natural do solo influencia diretamente na sua capacidade de suporte, visto que solos mais úmidos tendem a perder resistência. O teor de umidade no campo é obtido através do "*Speedy*", e detalhado na norma DNER-ME 052/94. (BRASIL, 1994a)

Além da umidade natural, ou seja, no campo, também é necessário determinar a umidade ótima de compactação, que é o teor em que o solo atinge sua máxima densidade seca. Esse valor é determinado pelo ensaio de compactação (Proctor Normal, Intermediário ou Modificado), e descrito na norma DNER-ME 213/94. (BRASIL, 1994b)

2.5.3 Índice de Suporte Califórnia (ISC)

Também avalia a capacidade de suporte do solo, este ensaio simula a penetração de um pistão no solo compactado e submerso, comparando com a resistência de uma brita padrão. O procedimento deve ser realizado de acordo com a norma DNIT 172/2016 – ME.

2.5.4 Limites de Consistência

Definem os estados físicos de um solo fino em função do teor de umidade, e são essenciais para a classificação e análise do comportamento plásticos dos solos. Os limites de plasticidade são determinados segundo a DNER-ME 082/94, e os limites de liquidez de acordo com a DNER-ME 122/94. Com os resultados, determina-se o Índice de Plasticidade (IP), que representa a faixa de umidade na qual o solo apresenta seu comportamento plástico.

• Limite de Plasticidade (LP): É o menor teor de umidade em que o solo pode ser moldado em fios com 3 mm de diâmetro sem romper, os solos que apresentam LP elevado são

mais sensíveis à variação de umidade, o que influencia negativamente na estabilidade do pavimento.

- Limite de Liquidez (LL): Representa o teor de umidade no qual o solo passa no estado líquido plástico para o estado líquido, é obtido por meio do ensaio do aparelho de Casagrande. Os solos que apresentam LL elevado são mais sensíveis à saturação, o que reduz a sua resistência mecânica.
- Índice de Plasticidade: É calculado através da diferença entre o LL e o LP, e mostra a faixa de umidade em que o solo se comporta plasticamente, ou seja, solos com IP alto (>20%) são considerados altamente plásticos, enquanto os com IP baixo (<10%) são classificados como solos pouco plásticos. Solos com IP muito alto não são recomendados para uso em camadas de pavimento, devido à sua alta taxa de deformabilidade, sendo necessário sua estabilização ou substituição.

$$IP = LL - LP$$

2.5.5 Índice de Grupo (IG)

O Índice de grupo classifica o solo com base em sua granulometria e plasticidade e é utilizado para auxiliar na classificação dos solos. IG elevados indicam solos problemáticos, necessitando sua substituição ou estabilização da camada.

A fórmula do IG considera o percentual de material fino (< 0,075 mm), o LL e o IP):

$$IG = (F - 35)[0.2 + 0.005(LL - 40)] + 0.01(F - 15)(IP - 10)$$

Onde:

F = Porcentagem de material passando na peneira nº 200 (0,075 mm);

LL = Limite de liquidez;

IP = Índice de plasticidade.

2.6 Dimensionamento de Restauração em Diferentes Tipos de Pavimentos

É a etapa que se define a nova estrutura do pavimento, com base no seu estado atual e no tráfego projetado. Quando a estrutura do pavimento apresenta deterioração que comprometa a sua funcionalidade, mas ainda permite um reaproveitamento parcial de suas camadas.

Os métodos de restauração variam conforme o tipo de pavimento existente, sendo amparados por normas técnicas brasileiras e diretrizes internacionais.

2.6.1 Método de Dimensionamento de Restauração em Concreto Asfáltico

Para os pavimentos flexíveis, o dimensionamento da restauração baseia-se em dois procedimentos normativos:

- DNER-PRO 11/79 Avaliação Estrutural dos Pavimentos Flexíveis: Essa norma orienta a avaliação da capacidade estrutural remanescente do pavimento por meio de ensaios de deflexão, como o FWD e a Viga Benkelman. A partir da deflexão medida, calcula-se o número estrutural efetivo, que será comparado com o número estrutural necessário.
- DNER-PRO 269/94 Projeto de Restauração de Pavimentos Flexíveis: Esse procedimento baseia-se na diferença entre o número estrutural requerido e o número estrutural existente. O reforço necessário é dimensionado em função do módulo resiliente dos materiais, do tráfego acumulado e do coeficiente de capacidade de carga dos materiais utilizados.

2.6.2 Método de Dimensionamento de Restauração em Concreto de Cimento Portland – Whitetopping

De acordo com a Portland Cement Association (PCA,1984), o dimensionamento do whitetopping depende dos seguintes fatores:

- Tráfego projetado;
- Condição do pavimento asfáltico existente;
- Tipo de whitetopping;
- Resistência à flexão do concreto;
- Adesão entre concreto e revestimento existente;
- Espessura mínima da placa;
- Condições de apoio.

O PCA utiliza gráficos de fadiga e fórmulas empíricas para estimar a espessura mínima do whitetoping, considerando as tensões de tração na borda inferior da placa e o número admissível de repetições de carga. A escolha do tipo de Whitetopping, é baseada na condição estrutural do pavimento existente, tipo de tráfego e disponibilidade de recursos técnicos.

2.6.3 Custo do Pavimento

Segundo Mattos (2006), a composição de custos consiste na identificação e determinação dos gastos envolvidos na execução de um serviço ou atividade. Esse processo é baseado em parâmetros previamente definidos e permite especificar os custos de cada insumo

necessário à obra. Em geral, os custos são agrupados em três categorias principais: mão de obra, materiais e equipamentos.

Ainda conforme o autor, o ponto central da composição de custos está na análise da participação proporcional de cada categoria dentro do total. Essa avaliação pode ser subdividida em duas naturezas de custo: custos diretos e custos indiretos, conforme aprofundado por Pereira (2019).

- Custos diretos são aqueles diretamente relacionados à execução do serviço em campo.
 Incluem os gastos com mão de obra, materiais e equipamentos utilizados na produção do insumo ou na realização da atividade propriamente dita.
- Custos indiretos, por sua vez, correspondem a despesas que, embora necessárias, não são identificáveis diretamente no local da obra. São exemplos os custos administrativos, apoio logístico, seguros e encargos indiretos, como a alocação proporcional da estrutura administrativa da empresa.

Mattos (2006) também destaca o conceito de custo unitário, que é obtido por meio de tabelas que discriminam os insumos necessários para a execução de uma unidade de serviço. Essas tabelas apresentam os valores individuais e totais dos itens utilizados, organizados normalmente em cinco colunas:

- Insumo: Cada item de material, mão de obra ou equipamento que compõe diretamente o serviço;
- Unidade: A unidade de medida do insumo;
- Índice: Quantidade necessária de cada insumo para executar uma unidade de serviço;
- Custo Unitário: Valor de aquisição ou utilização de uma unidade do insumo;
- Custo total: Valor resultante da multiplicação entre o índice e o custo unitário do insumo.

Para fins deste trabalho, os custos adotados baseiam-se no Referencial de Preços de Serviços do SICRO/Centro-Oeste, sem desoneração, atualizado em abril de 2025, e das tabelas de composição da GOINFRA, sem desoneração, mês de referência abril de 2025. Por se tratar de fonte pública e padronizada de composições de preços aplicáveis ao contexto estadual de obras rodoviárias.

3 METODOLOGIA

3.1 Objeto de Estudo

O trecho em estudo da GO-070 delimita-se no segmento entre o entroncamento com a rodovia GO-060 (B) e o entroncamento com a GO-441, trecho entre os municípios Goiânia e Goianira. Trata-se de um projeto de restauração estrutural desenvolvido pela EGETRA Engenharia Ltda., para a GOINFRA (Agência Goiana de Infraestrutura e Transportes), visando a reabilitação e melhoria das condições de trafegabilidade e segurança da rodovia.

O projeto contempla intervenções destinadas a recuperar a capacidade estrutural do pavimento, corrigir defeitos existentes e prolongar sua vida útil, atendendo aos critérios técnicos de desempenho e às normas vigentes aplicáveis na elaboração de um projeto de pavimentação pelo sistema rodoviário estadual.

3.2 Materiais e Métodos

A seguir, apresenta-se uma síntese dos dados fornecidos pela EGETRA Engenharia, os quais serviram de base para a realização deste estudo. Serão descritos, nesta seção, a metodologia empregada na caracterização do tráfego, os ensaios realizados no solo, bem como a análise funcional e estrutural do pavimento existente.

3.2.1 Caracterização do Tráfego

A contagem de tráfego no trecho em estudo foi realizada nos dias 30 e 31 de outubro e 1° de novembro de 2024, durante 72 horas ininterruptas. Foram instalados dois postos de contagem: o P01, localizado na estaca 43+10,00 (coordenadas UTM: 677311.83 m E/8158886.93 m S), e o P02, na estaca 740+12,00 (coordenadas UTM: 670379.20 m E/8170286.49 m S). A figura 3 apresenta o mapa de localização dos postos de contagem P01 e P02.

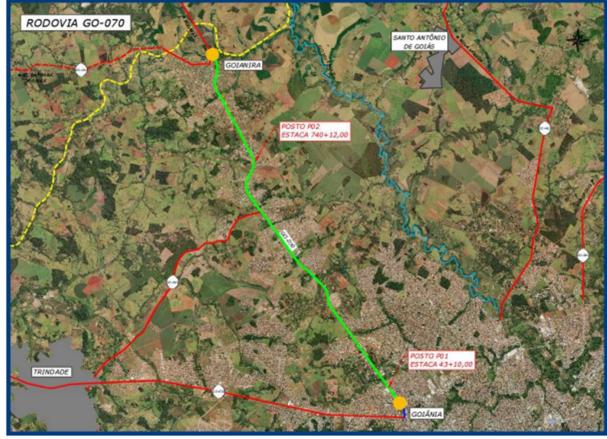


Figura 3 – Mapa de localização dos postos de contagem de tráfego

Fonte: EGETRA Engenharia (2024).

Os volumes diários, para os dois sentidos da contagem, são apresentados nos quadros 9 e 10.

Quadro 9 – Volume diário da contagem no Posto P01.

							Cor	ntagem	de Trá	fego - C	O-070	- Posto	P01 - 3	0 e 31/	10/2024	e 01/1	1/2024							
Data				Ônibus			Ca	aminhõ	es			Sem	i-Rebo	ques					R	eboque	es			
	Automóveis 2CB 3CB 4DB 2B1 2B				2BB	2C	3C	4C/ 4CD	2S1	2S2	2S3	3S2	313	4D3	3S3	3C3	4R3	3D4	3T4	3V5	3T6	3M6	TOTAL	
Sentido A>B: Entr -											3) > Fim	do Per	ímetro	Urbano	de Goi	ania								
30/10/2024	25812	458	35	5	181	0	975	475	103	0	43	51	43	39	0	225	5	45	0	65	0	47	38	28645
31/10/2024	26190	449	42	5	184	0	1074	488	117	1	32	65	45	36	1	214	5	41	0	41	0	35	35	29100
01/11/2024	28555	426	37	7	185	0	1053	422	107	0	22	74	38	34	2	188	4	42	0	56	0	36	35	31323
							Sentido	B>A: F	im do F	erímet	ro Urba	no de G	oiânia	> Entr -	BR-060	(B)								
30/10/2024	19150	423	33	7	178	0	900	425	118	0	25	46	27	26	1	208	5	34	0	54	0	33	30	21723
31/10/2024	19919	425	39	6	174	0	969	424	105	1	36	53	40	28	0	224	5	30	0	58	0	46	48	22630
01/11/2024	21522	403	33	6	174	0	933	419	120	0	26	59	30	19	1	201	2	38	0	48	0	25	29	24088

Fonte: EGETRA Engenharia (2014).

Quadro 10 - Volume diário da contagem no Posto P02.

							Cor	ntagem	de Trá	fego - C	O-070	- Posto	P02 - 3	0 e 31/	10/2024	e 01/1	1/2024							
Data				Ônibus			Ca	aminhõ	es			Sem	i-Rebo	ques					R	eboque	es			
	Automóveis 2C			4DB	2B1	2BB	2C	3C	4C/ 4CD	2S1	2S2	2S3	3S2	313	4D3	3S3	3C3	4R3	3D4	3T4	3V5	3T6	3M6	TOTAL
Sentido A≻B: Entr - BR-060 (B) > Fim do Perímetro Urbano de Goiânia																								
30/10/2024	13524	213	25	5	161	0	776	388	129	1	21	33	15	17	0	259	5	21	0	74	0	64	39	15770
31/10/2024	14172	217	25	5	163	0	788	393	112	1	39	41	23	24	2	265	9	24	0	79	0	86	57	16525
01/11/2024	15344	71	23	5	154	0	789	397	133	0	20	35	10	16	0	244	7	25	0	71	0	64	33	17441
							Sentido	B>A: F	im do F	erímet	o Urba	no de G	oiânia	> Entr -	BR-060	(B)								
30/10/2024	14012	220	23	2	161	0	769	369	98	0	29	42	19	23	1	251	4	37	0	78	0	78	47	16263
31/10/2024	14581	226	25	3	158	0	856	400	96	1	22	48	19	30	1	245	4	36	0	66	0	57	43	16917
01/11/2024	17877	66	20	6	154	0	774	364	107	0	24	42	16	24	3	181	4	28	0	63	0	50	39	19842

Fonte: EGETRA Engenharia (2024).

Os quadros 11 e 12 a seguir, apresentam a projeção de tráfego utilizando uma taxa de crescimento de 3% ao ano, a partir de 2024. Para efeito de cálculo, considerou-se o ano de 2026 como ano 1, correspondente à abertura do tráfego.

Quadro 11 – Projeção do Tráfego Posto P01.

								PROJ	EÇÃC	DO O	TRÁF	EGO	- GO	- 070	Post	o P01									
					Ônibus	;		Ca	aminhõ	es			Sem	i-Rebo	ques					R	eboqu	es			
Aı	no	Automóveis	2CB	3СВ	4DB	2B1	2BB	2C	зс	4C/ 4CD	2S1	2S2	283	3S2	313	4D3	3S3	3C3	4R3	3D4	3T4	3T5	3T6	3M6	TOTAL
2024	-	45600	834	71	11	347	0	1907	858	216	0	59	112	72	58	2	407	9	75	0	103	0	72	70	50883
2025	-	46968	859	73	11	357	0	1964	884	222	0	61	115	74	60	2	419	9	77	0	106	0	74	72	52407
2026	-	48377	885	75	12	368	0	2023	910	229	0	63	119	76	62	2	432	10	80	0	109	0	76	74	53982
2027	1	49828	911	78	12	379	0	2084	938	236	0	64	122	79	63	2	445	10	82	0	113	0	79	76	55601
2028	2	51323	939	80	12	391	0	2146	966	243	0	66	126	81	65	2	458	10	84	0	116	0	81	79	57268
2029	3	52863	967	82	13	402	0	2211	995	250	0	68	130	83	67	2	472	10	87	0	119	0	83	81	58985
2030	4	54449	996	85	13	414	0	2277	1024	258	0	70	134	86	69	2	486	11	90	0	123	0	86	84	60757
2031	5	56082	1026	87	14	427	0	2345	1055	266	0	73	138	89	71	2	501	11	92	0	127	0	89	86	62581
2032	6	57765	1056	90	14	440	0	2416	1087	274	0	75	142	91	73	3	516	11	95	0	130	0	91	89	64458
2033	7	59498	1088	93	14	453	0	2488	1119	282	0	77	146	94	76	3	531	12	98	0	134	0	94	91	66391
2034	8	61283	1121	95	15	466	0	2563	1153	290	0	79	151	97	78	3	547	12	101	0	138	0	97	94	68383
2035	9	63121	1154	98	15	480	0	2640	1188	299	0	82	155	100	80	3	563	12	104	0	143	0	100	97	70434
2036	10	65015	1189	101	16	495	0	2719	1223	308	0	84	160	103	83	3	580	13	107	0	147	0	103	100	72549

Fonte: EGETRA Engenharia (2024)

Quadro 12 – Projeção do Tráfego Posto P02.

							ļ	PROJ	EÇÃO	ODO '	TRÁF	EGO	- GO	-070	Post	o P02									
					Ônibus	5		Cá	aminhõ	es			Sem	i-Rebo	ques					R	eboque	es			
A	no	Automóveis	2CB	3СВ	4DB	2B1	2BB	2C	зс	4C/ 4CD	2S1	282	283	3S2	313	4D3	3S3	3C3	4R3	3D4	3T4	3T5	3T6	3M6	TOTAL
2024	-	28918	327	46	9	307	0	1535	747	218	1	50	78	33	44	3	467	10	55	0	139	0	129	84	33200
2025	-	29786	337	47	9	316	0	1581	769	225	1	52	80	34	45	3	481	10	57	0	143	0	133	87	34196
2026	1	30679	347	49	10	326	0	1628	792	231	1	53	83	35	47	3	495	11	58	0	147	0	137	89	35221
2027	2	31599	357	50	10	335	0	1677	816	238	1	55	85	36	48	3	510	11	60	0	152	0	141	92	36276
2028	3	32547	368	52	10	346	0	1728	841	245	1	56	88	37	50	3	526	11	62	0	156	0	145	95	37367
2029	4	33524	379	53	10	356	0	1779	866	253	1	58	90	38	51	3	541	12	64	0	161	0	150	97	38486
2030	5	34530	390	55	11	367	0	1833	892	260	1	60	93	39	53	4	558	12	66	0	166	0	154	100	39644
2031	6	35565	402	57	11	378	0	1888	919	268	1	61	96	41	54	4	574	12	68	0	171	0	159	103	40832
2032	7	36632	414	58	11	389	0	1944	946	276	1	63	99	42	56	4	592	13	70	0	176	0	163	106	42055
2033	8	37731	427	60	12	401	0	2003	975	284	1	65	102	43	57	4	609	13	72	0	181	0	168	110	43318
2034	9	38863	439	62	12	413	0	2063	1004	293	1	67	105	44	59	4	628	13	74	0	187	0	173	113	44617
2035	10	40029	453	64	12	425	0	2125	1034	302	1	69	108	46	61	4	646	14	76	0	192	0	179	116	45956

Fonte: EGETRA Engenharia (2024).

Nos quadros 13 e 14 apresentados a seguir são definidos os resultados do cálculo do Número "N":

Quadro 13 - Número "N" Posto P01

														NÚME	RO N - 0	3O-070	- Posto	P01										
And				Ônibus			(Caminhõe	BS			Ser	ni-Reboo	ues					F	Reboque	s			TOTAL	Número I	N - USACE	Número N	- AASHTO
Aric	•	2CB	3CB	4DB	2B1	2BB	2C	3C	4C/ 4CD	2S1	2S2	2S3	3S2	313	4D3	3S3	3C3	4R3	3D4	3T4	3V5	3T6	3M6	IOIAL	Anual	Acumulado	Anual	Acumulado
2027	1	911	78	12	379	0	2084	938	236	0	64	122	79	63	2	445	10	82	0	113	0	79	76	5773	5,96E+06	5,96E+06	2,49E+06	2,49E+06
2028	2	939	80	12	391	0	2146	966	243	0	66	126	81	65	2	458	10	84	0	116	0	81	79	5945	6,13E+06	1,21E+07	2,56E+06	5,05E+06
2029	3	967	82	13	402	0	2211	995	250	0	68	130	83	67	2	472	10	87	0	119	0	83	81	6122	6,31E+06	1,84E+07	2,64E+06	7,68E+06
2030	4	996	85	13	414	0	2277	1024	258	0	70	134	86	69	2	486	11	90	0	123	0	86	84	6308	6,51E+06	2,49E+07	2,72E+06	1,04E+07
2031	5	1026	87	14	427	0	2345	1055	266	0	73	138	89	71	2	501	11	92	0	127	0	89	86	6499	6,71E+06	3,16E+07	2,80E+06	1,32E+07
2032	6	1056	90	14	440	0	2416	1087	274	0	75	142	91	73	3	516	11	95	0	130	0	91	89	6693	6,90E+06	3,85E+07	2,88E+06	1,61E+07
2033	7	1088	93	14	453	0	2488	1119	282	0	77	146	94	76	3	531	12	98	0	134	0	94	91	6893	7,11E+06	4,56E+07	2,97E+06	1,90E+07
2034	8	1121	95	15	466	0	2563	1153	290	0	79	151	97	78	3	547	12	101	0	138	0	97	94	7100	7,33E+06	5,30E+07	3,06E+06	2,21E+07
2035	9	1154	98	15	480	0	2640	1188	299	0	82	155	100	80	3	563	12	104	0	143	0	100	97	7313	7,55E+06	6,05E+07	3,15E+06	2,53E+07
2036	10	1189	101	16	495	0	2719	1223	308	0	84	160	103	83	3	580	13	107	0	147	0	103	100	7534	7,78E+06	6,83E+07	3,25E+06	2,85E+07
																							1	V 5 anos	USACE=	3,16E+07	AASHTO=	1,32E+07
																							N	10 anos	USACE=	6,83E+07	AASHTO=	2,85E+07
														F	V médio	USACE=	5,65	AASHTO=	2,36									

Fonte: EGETRA Engenharia (2024).

Quadro 14 – Número "N" Posto P02

														NÚME	RO N - 0	3O-070	- Posto	P02										
Ano				Ônibus			С	aminhõe	es			Ser	ni-Reboo	ues					F	Reboque	s			TOTAL	Número I	N - USACE	Número N	- AASHTO
Alio	' I	2CB	3CB	4DB	2B1	2BB	2C	3C	4C/ 4CD	2S1	2S2	2S3	3S2	313	4D3	3S3	3C3	4R3	3D4	3T4	3V5	3T6	3M6	IOIAL	Anual	Acumulado	Anual	Acumulado
2026	1	347	49	10	326	0	1628	792	231	1	53	83	35	47	3	495	11	58	0	147	0	137	89	4542	5,48E+06	5,48E+06	2,03E+06	2,03E+06
2027	2	357	50	10	335	0	1677	816	238	1	55	85	36	48	3	510	11	60	0	152	0	141	92	4677	5,64E+06	1,11E+07	2,09E+06	4,12E+06
2028	3	368	52	10	346	0	1728	841	245	1	56	88	37	50	3	526	11	62	0	156	0	145	95	4820	5,81E+06	1,69E+07	2,15E+06	6,27E+06
2029	4	379	53	10	356	0	1779	866	253	1	58	90	38	51	3	541	12	64	0	161	0	150	97	4962	5,99E+06	2,29E+07	2,22E+06	8,49E+06
2030	5	390	55	11	367	0	1833	892	260	1	60	93	39	53	4	558	12	66	0	166	0	154	100	5114	6,17E+06	2,91E+07	2,28E+06	1,08E+07
2031	6	402	57	11	378	0	1888	919	268	1	61	96	41	54	4	574	12	68	0	171	0	159	103	5267	6,35E+06	3,54E+07	2,35E+06	1,31E+07
2032	7	414	58	11	389	0	1944	946	276	1	63	99	42	56	4	592	13	70	0	176	0	163	106	5423	6,54E+06	4,20E+07	2,42E+06	1,55E+07
2033	8	427	60	12	401	0	2003	975	284	1	65	102	43	57	4	609	13	72	0	181	0	168	110	5587	6,74E+06	4,87E+07	2,49E+06	1,80E+07
2034	9	439	62	12	413	0	2063	1004	293	1	67	105	44	59	4	628	13	74	0	187	0	173	113	5754	6,94E+06	5,57E+07	2,57E+06	2,06E+07
2035	10	453	64	12	425	0	2125	1034	302	1	69	108	46	61	4	646	14	76	0	192	0	179	116	5927	7,15E+06	6,28E+07	2,65E+06	2,33E+07
																							1	l 5 anos	USACE=	2,91E+07	AASHTO=	1,08E+07
																							N	10 anos	USACE=	6,28E+07	AASHTO=	2,33E+07
																							F	V médio	USACE=	6,61	AASHTO=	2,45

Fonte: EGETRA Engenharia (2024).

Número N para o período de projeto de 10 anos determinado para a rodovia GO-070:

Tabela 1 – Resumo número N

	Número N	
Metodologia	Posto 01	Posto 02
USACE	6,83 x 10 ⁷	6,28 x 10 ⁷
AAASHTO	2,85 x 10 ⁷	2,33 x 10 ⁷

Fonte: Autor (2025).

Adota-se o maior volume de tráfego projetado no dimensionamento de restauração de pavimentos para garantir que a estrutura suporte adequadamente as solicitações ao longo de sua vida útil, assegurando durabilidade, segurança e conformidade com as normas técnicas vigente. Com isso, para o desenvolvimento do projeto de restauração adotou-se o Número N do Posto P01.

3.2.2 Ensaios de Solo

• Coleta e preparo do solo;

As sondagens do pavimento existente foram realizadas durante os dias 18 a 22 de dezembro de 2024, com o objetivo de caracterizar a estrutura do pavimento por meio da identificação das camadas e de suas espessuras.

Após a realização dos ensaios estruturais não destrutivos (deflexões) e do inventário da condição superficial da rodovia, foram definidos os segmentos homogêneos, permitindo a determinação dos pontos para a execução das janelas de sondagem e a coleta dos materiais constituintes do pavimento existente.

Ressalta-se que os segmentos homogêneos foram definidos separadamente para cada sentido da rodovia, sendo os Furos 01 a 11 correspondentes à pista no sentido crescente e os Furos 12 a 23 à pista no sentido decrescente.

Nos quadros 15 e 16 estão descritos a localização dos furos de sondagem, o lado em que foram feitos e a divisão dos segmentos homogêneos com sua respectiva extensão.

Quadro 15 – Localização das janelas de sondagem – lado crescente.

	_				,	,	e sondagem		
SH		E	staca			Extensão	Lado	Sc	ondagem
N°	In	icial		Final		(km)	Lauo	Furo	Estaca
1	0	+ 0,0	93	+	0,0	1,860	Crescente	1	45+19,67
2	93	+ 0,0	185	+	0,0	1,840	Crescente	2	143+10,14
3	185	+ 0,0	285	+	0,0	2,000	Crescente	3	240+11,66
4	285	+ 0,0	379	+	0,0	1,880	Crescente	4	340+14,49
5	379	+ 0,0	475	+	0,0	1,920	Crescente	5	426+12,77
6	475	+ 0,0	573	+	0,0	1,960	Crescente	6	525+5,14
7	573	+ 0,0	672	+	0,0	1,980	Crescente	7	612+0,42
8	672	+ 0,0	767	+	0,0	1,900	Crescente	8	714+9,84
9	767	+ 1,0	866	+	1,0	1,980	Crescente	9	807+6,23
10	866	+ 2,0	965	+	2,0	1,980	Crescente	10	903+6,45
11	965	+ 0,0	1061	+	0,0	1,920	Crescente	11	990+15,71

Fonte: Autor (2024).

Quadro 16 – Localização das janelas de sondagem – lado decrescente.

SH		Es	staca			Extensão	l - d -	So	ondagem
N°	In	icial	F	inal		(km)	Lado	Furo	Estaca
12	964	+ 0,0	1061	+	0,0	1,940	Decrescente	27	1026+9,55
13	866	+ 0,0	964	+	0,0	1,960	Decrescente	28	934+17,76
14	766	+ 0,0	866	+	0,0	2,000	Decrescente	29	845+6,78
15	667	+ 0,0	766	+	0,0	1,980	Decrescente	30	748+6,02
16	625	+ 0,0	667	+	0,0	0,840	Decrescente	31	654+11,11
17	539	+ 0,0	625	+	0,0	1,720	Decrescente	32	559+10,05
18	448	+ 0,0	539	+	0,0	1,820	Decrescente	33	469+13,39
19	350	+ 0,0	448	+	0,0	1,960	Decrescente	34	375+19,38
20	262	+ 1,0	350	+	1,0	1,760	Decrescente	35	283+6,81
21	182	+ 2,0	262	+	2,0	1,600	Decrescente	36	183+14,89
22	96	+ 3,0	182	+	3,0	1,720	Decrescente	37	88+2,64
23	0	+ 0,0	96	+	0,0	1,920	Decrescente	38	0+14,25

Fonte: Autor (2024).

Em todos os furos foram realizados os seguintes ensaios:

- Granulometria;
- Umidade;
- Limite de Liquidez;
- Limite de Plasticidade;
- CBR (ISC);
- Índice de Grupo.

No quadro 16 é apresentado um resumo dos parâmetros de caracterização geotécnica do pavimento existente.

Quadro 16 – Quadro resumo de sondagem

Quadro Resumo dos Parâmetros de Caracterização Geotécnica do Pavimento Existente

Rodovia: GO-070

Trecho: Entr. BR-060 (B) - Entr. GO-441 (Goianira)

Extensão: 42,44 kmp

SREs: 070EGO0017/ 070EGO0020

Extensão Total (kmp)

42,440

SREs:		00017/ 070EGO00 mento Homog										Dados P	avime	ento <u>E</u>	xiste <u>n</u> 1	:e				
SH		aca	Extensão		So	ndagem	Reves	timento		Ba						Sub-base			Subleito	
N°	Inicial	Final	(km)	Lado	Furo	Estaca	Espes. (cm)	Material	Espes. (cm)	Material	CBR - PI	CBR - PM (%)	IP	TRB	Espes. (cm)	Material	CBR - PI (%)	Tipo	Material	CBR - PI (%)
1	0 + 0,0	93 + 0,0	1,860	Crescente	1	45+19,67	9,00	CBUQ	15,00	Quartzo Amarelo	58,30	85,2	5,9	A-1-b	16,00	Quartzo Amarelo	59,9	П	Argila Vermelha	18,5
2	93 + 0,0	185 + 0,0	1,840	Crescente	2	143+10,14	11,00	CBUQ	15,00	Quartzo Amarelo		91,9	6,5	A-2-4	15,00	Quartzo Amarelo	59,3	П	Argila Vermelha	19,8
3	185 + 0,0	285 + 0,0	2,000	Crescente	3	240+11,66	11,00	CBUQ	16,00	Quartzo Amarelo		89,2	6,6	A-2-4	16,00	Quartzo Amarelo	58,9	II	Argila Vermelha	19,7
4	285 + 0,0	379 + 0,0	1,880	Crescente	4	340+14,49	14,00	CBUQ	19,00	Quartzo Amarelo		80,8	6,3	A-2-4	24,00	Quartzo Amarelo	66,0	Ш	Argila Vermelha	17,5
5	379 + 0,0	475 + 0,0	1,920	Crescente	5	426+12,77	11,00	CBUQ	17,00	Quartzo Amarelo	61,65	89,7	6,4	A-2-4	29,00	Quartzo Amarelo	68,3	ı	Argila Vermelha	17,8
6	475 + 0,0	573 + 0,0	1,960	Crescente	6	525+5,14	8,00	CBUQ	16,00	Quartzo Amarelo		81,3	7,2	A-2-4	29,00	Quartzo Amarelo	66,4	II	Argila Vermelha	19,8
7	573 + 0,0	672 + 0,0	1,980	Crescente	7	612+0,42	8,00	CBUQ	19,00	Quartzo Amarelo		91,7	6,5	A-2-4	19,00	Quartzo Amarelo	63,8	1	Argila Vermelha	17,3
8	672 + 0,0	767 + 0,0	1,900	Crescente	8	714+9,84	8,00	CBUQ	18,00	Quartzo Amarelo		90,0	6,4	A-2-4	17,00	Quartzo Amarelo	57,4	П	Argila Vermelha	15,8
9	767 + 1,0	866 + 1,0	1,980	Crescente	9	807+6,23	8,00	CBUQ	20,00	Quartzo Amarelo	57,60	85,3	6,8	A-2-4	17,00	Quartzo Amarelo	62,1	ı	Argila Vermelha	15,8
10	866 + 2,0	965 + 2,0	1,980	Crescente	10	903+6,45	9,00	CBUQ	16,00	Quartzo Amarelo		87,2	6,4	A-2-4	17,00	Quartzo Amarelo	63,6	- 1	Argila Vermelha	18,4
11	965 + 0,0	1061 + 0,0	1,920	Crescente	11	990+15,71	4,00	CBUQ	19,00	Quartzo Amarelo		90,9	6,6	A-2-4	19,00	Quartzo Amarelo	57,8	Ш	Argila Vermelha	16,9
12	964 + 0,0	1061 + 0,0	1,940	Decrescente	27	1026+9,55	10,00	CBUQ	20,00	Quartzo Amarelo		80,8	5,3	A-1-b	20,00	Laterita Amarela	63,2	ı	Argila Vermelha	16,7
13	866 + 0,0	964 + 0,0	1,960	Decrescente	28	934+17,76	11,00	CBUQ	17,00	Quartzo Amarelo	60,70	90,2	7,6	A-2-4	17,00	Quartzo Amarelo	62,3	П	Argila Vermelha	17,4
14	766 + 0,0	866 + 0,0	2,000	Decrescente	29	845+6,78	13,00	CBUQ	15,00	Quartzo Amarelo		87,8	5,7	A-1-b	15,00	Quartzo Amarelo	56,0	Ш	Argila Vermelha	16,9
15	667 + 0,0	766 + 0,0	1,980	Decrescente	30	748+6,02	12,00	CBUQ	20,00	Laterita Amarela		97,6	6,5	A-2-4	20,00	Seixo	49,0	П	Argila Vermelha	17,6
16	625 + 0,0	667 + 0,0	0,840	Decrescente	31	654+11,11	8,00	CBUQ	17,00	Laterita Amarela		98,8	6,9	A-2-4	16,00	Seixo	46,3	П	Argila Vermelha	19,4
17	539 + 0,0	625 + 0,0	1,720	Decrescente	32	559+10,05	11,00	CBUQ	19,00	Laterita Amarela	69,30	88,3	7,5	A-2-4	19,00	Laterita Amarela	66,7	П	Argila Vermelha	19,5
18	448 + 0,0	539 + 0,0	1,820	Decrescente	33	469+13,39	5,00	CBUQ	19,00	Laterita Amarela		92,5	5,9	A-1-b	19,00	Laterita Amarela	65,4	П	Argila Vermelha	16,8
19	350 + 0,0	448 + 0,0	1,960	Decrescente	34	375+19,38	5,00	CBUQ	15,00	Quartzo Amarelo		88,8	6,6	A-2-4	15,00	Laterita Amarela	66,3	П	Argila Vermelha	17,5
20	262 + 1,0	350 + 1,0	1,760	Decrescente	35	283+6,81	7,00	CBUQ	20,00	Quartzo Amarelo		81,1	5,4	A-1-b	20,00	Laterita Amarela	63,9	П	Argila Vermelha	18,0
21	182 + 2,0	262 + 2,0	1,600	Decrescente	36	183+14,89	10,00	CBUQ	20,00	Quartzo Amarelo	70,10	92,4	7,2	A-2-4	17,00	Laterita Amarela	61,0	ı	Argila Vermelha	18,5
22	96 + 3,0	182 + 3,0	1,720	Decrescente	37	88+2,64	11,00	CBUQ	20,00	Quartzo Amarelo		90,2	6,7	A-2-4	17,00	Laterita Amarela	67,6	II	Argila Vermelha	16,5
23	0 + 0,0	96 + 0,0	1,920	Decrescente	38	0+14,25	9,00	CBUQ	20,00	Quartzo Amarelo		89,4	6,1	A-2-4	18,00	Laterita Amarela	57,0	П	Argila Vermelha	18,4

Fonte: EGETRA Engenharia (2024).

3.2.3 Análise Funcional e estrutural do Pavimento

De posse de todos os elementos angariados durante a avaliação do pavimento, procedeu-se a subdivisão do trecho em segmentos cujo comportamento estrutural pode ser considerado homogêneo e que, portanto, terão diagnósticos e tratamento analítico individualizados. Tal detalhamento foi realizado em função da disponibilidade de dados detalhados nesta etapa.

A segmentação homogênea foi realizada considerando-se como parâmetro de referência a condição estrutural do pavimento como um todo, representada pela deflexão sob a ação da carga (Df1).

Nessa etapa, foi utilizado o método das diferenças acumuladas, preconizado pela AASHTO para a divisão da rodovia em segmentos homogêneos, que consiste na seguinte sequência de cálculo:

- Calcula-se o valor médio para toda a rodovia do parâmetro a ser analisado;
- Calcula-se a diferença entre o valor pontual e o valor médio;
- Calculam-se os valores acumulados das diferenças;
- Plota-se um gráfico onde a abscissa é a posição na rodovia e a ordenada apresenta os valores acumulados das diferenças.

A variação do coeficiente angular da curva assim obtida indica uma mudança do comportamento médio de um determinado segmento para outro, caracterizando matematicamente as extremidades dos segmentos homogêneos. Para efeito de cálculo, a partir da rodovia dividida em segmentos homogêneos, a deflexão D passa a ser expressa pelo valor de Dc (deflexão característica), que é calculado pela equação abaixo.

$$D_c = D + \sigma$$

Onde D e σ representam, respectivamente, a média aritmética e o desvio-padrão dos valores de deflexão sob a ação da carga do segmento analisado. Na sequência estes valores, característicos para cada segmento homogêneo, e levantados com FWD foram correlacionados para leituras de Viga Benkelman.

Neste ponto observa-se que na bibliografia existem diversas correlações disponíveis entre estes equipamentos. O "Manual de Restauração de Pavimentos Asfálticos" do DNIT (2006) cita que uma correlação de viga x FWD depende de diversos fatores, principalmente, da resposta elástica da estrutura de pavimento que está sendo avaliada, e por isso não existem modelos de aplicação generalizada. Idealmente devem ser estabelecidas correlações próprias com base em pesquisas locais.

Em atendimento à Nota Técnica nº: 5/2024 - GOINFRA/OR-GEPOR-11001, para obtenção da correlação entre FWD x Viga foi adotado como referência a metodologia da IP-003 DER/SP. Foi estabelecido que o levantamento da Viga Benkelman deverá ser em segmento, de no mínimo, 1 km de extensão.

O levantamento foi realizado no segmento entre as estacas 495+0,000 à estaca 545+0,000, no sentido crescente e entre as estacas 597+0,000 à estaca 647+0,000, no sentido decrescente.

A correlação de VB com dados do FWD, foi obtida da seguinte forma: os dados deflectométricos D1-FWD foram normalizados considerando a carga padrão de 40 kN, a partir desses novos valores de D1-FWD foram calculadas as médias e desvios-padrão para plataforma. Também foram calculadas as médias e desvios-padrão para as deflexões D1-VB para plataforma.

O quadro 17 apresentado o resumo de médias deflectométricas obtidas para cada sentido de avaliação e os resultados para plataforma, considerados para realização da correlação.

Quadro 17 – Correlações deflectométricas.

		Corre	elação FV	VD x VB -	Deflexão	D0 (0,01	mm)	
SH	Média FWD	Desv Pad FWD	Dc FWD	Média VB	Desv Pad VB	Dc VB	Correlação	Correlação adotada
Crescente	78,6	14,4	93,0	84,2	12,5	96,6	1,039	
Decrescente	85,7	20,6	106,3	88,2	17,0	105,3	0,990	1,081
Cresc/Decresc.	82,2	17,9	100,1	86,2	22,1	108,3	1,081	
					DCVB=	1,081	DCFWD	

Fonte: EGETRA Engenharia (2024).

Dito isto, com base em levantamentos de FWD e VB realizados no trecho em projeto foi determinada uma correlação para utilização no presente projeto de restauração, sendo: DcVB = 1,081 x DcFWD, sendo definida a DcVB como o parâmetro deflectométrico para desenvolvimento do projeto.

No Quadro 18 são apresentados os parâmetros estruturais e funcionais de cada segmento para cada sentido e faixa de rolamento. Onde:

- Dados de segmentos homogêneo: número, estaca inicial e final / km inicial e final, extensão (em metros);
- Dados de tráfego: Número N e VDM comercial;
- Dc FWD Deflexão Característica obtida no levantamento em campo, em 0,01 mm;
- Raio Raio de curvatura da bacia de deflexão, em m;
- Dc VB Deflexão Característica Ajustada para Viga Benkelman, em 0,01 mm;
- IRI Irregularidade longitudinal, em cont/km;
- IGG Índice de Gravidade Global;
- Conceito do IGG para cada segmento homogêneo;
- ICPF Índice de Condição de Pavimentos Flexíveis;
- TRI Afundamento de Trilha de Roda Interna, em mm;
- TRE Afundamento de Trilha de Roda Externa, em mm;
- FC2+FC3 Trincamento FC2 + FC3, em %;
- AP Afundamento Plástico, em %.

Quadro 18 – Quadro Resumo de Parâmetros Estruturais e Funcionais.

Quadro Resumos dos Parâmetros Estruturais e Funcionais dos Segmentos Homogêneos

Faixa: 1 e 2

Rodovia: GO-070

Trecho: Entr. BR-060 (B) - Entr. GO-441 (Goianira)

Extensão: 42,44 kmp **Sentido:** Crescente/Decrescente

SREs: 070EGO0017/ 070EGO0020

SRES:		0017/ 070EGO0020																
		Segmento Homog	êneo			Trát	fego		Estrutural					Fu	ncional			
SH	Est	taca	k	m	Extensão	10 ano	s: 2035	Dc FWD	Raio	Dc VB				Levar	ntamento de	Defeitos		
N°	Inicial	Final	Inicial	Final	(km)	Número N	VDM comercial	(x10-2 mm)	Médio (m)	(x10-2 mm)	IRI (m/km)	IGG	Conceito	ICPF	TRI (mm)	TRE (mm)	FC2+FC-3 (%)	AP (%)
1	0 + 0	93 + 0	0,000	1,860	1,860	6,83E+07	7534	69,0	147	74,6	3,55	75	REGULAR	3	1,5	2,9	18,79%	0,13%
2	93 + 0	185 + 0	1,860	3,700	1,840	6,83E+07	7534	94,7	114	102,4	3,48	104	RUIM	2	1,5	2,9	26,74%	0,04%
3	185 + 0	285 + 0	3,700	5,700	2,000	6,83E+07	7534	124,9	98	135,0	4,83	91	RUIM	2	1,5	2,9	13,06%	0,03%
4	285 + 0	379 + 0	5,700	7,580	1,880	6,83E+07	7534	98,0	117	106,0	3,45	122	RUIM	2	1,5	2,9	40,01%	0,08%
5	379 + 0	475 + 0	7,580	9,500	1,920	6,83E+07	7534	91,5	129	98,9	3,33	136	RUIM	2	1,5	2,9	29,08%	0,06%
6	475 + 0	573 + 0	9,500	11,460	1,960	6,83E+07	7534	87,9	123	95,0	3,47	111	RUIM	2	1,6	2,9	26,37%	0,07%
7	573 + 0	672 + 0	11,460	13,440	1,980	6,83E+07	7534	88,0	96	95,2	3,48	131	RUIM	2	1,6	2,9	21,51%	0,14%
8	672 + 0	767 + 0	13,440	15,340	1,900	6,83E+07	7534	82,0	102	88,6	2,74	95	RUIM	2	1,6	2,9	20,96%	0,18%
9	767 + 0	866 + 0	15,340	17,320	1,980	6,83E+07	7534	82,6	99	89,3	3,60	80	RUIM	2	1,6	2,9	11,45%	0,20%
10	866 + 0	965 + 0	17,320	19,300	1,980	6,83E+07	7534	92,3	96	99,8	3,66	72	REGULAR	3	1,5	2,9	22,51%	0,13%
11	965 + 0	1061 + 0	19,300	21,220	1,920	6,83E+07	7534	86,3	89	93,3	4,64	100	RUIM	2	1,5	2,9	16,03%	0,16%
12	964 + 0	1061 + 0	19,280	21,220	1,940	6,83E+07	7534	96,9	123	104,7	4,31	99	RUIM	2	1,5	2,9	12,45%	0,07%
13	866 + 0	964 + 0	17,320	19,280	1,960	6,83E+07	7534	117,8	98	127,3	4,03	107	RUIM	2	1,5	2,9	24,51%	0,11%
14	766 + 0	866 + 0	15,320	17,320	2,000	6,83E+07	7534	96,2	121	104,0	3,60	139	RUIM	2	1,4	2,9	38,17%	0,24%
15	667 + 0	766 + 0	13,340	15,320	1,980	6,83E+07	7534	84,2	132	91,1	3,42	118	RUIM	2	1,5	2,9	32,79%	0,27%
16	625 + 0	667 + 0	12,500	13,340	0,840	6,83E+07	7534	104,5	100	113,0	4,43	157	RUIM	2	1,4	2,9	56,70%	0,57%
17	539 + 0	625 + 0	10,780	12,500	1,720	6,83E+07	7534	94,2	132	101,9	3,96	125	RUIM	2	1,5	2,9	51,18%	0,29%
18	448 + 0	539 + 0	8,960	10,780	1,820	6,83E+07	7534	90,8	101	98,2	4,36	139	RUIM	2	1,6	2,9	46,81%	0,27%
19	350 + 0	448 + 0	7,000	8,960	1,960	6,83E+07	7534	98,4	84	106,4	5,13	111	RUIM	2	1,6	2,9	39,04%	0,18%
20	262 + 0	350 + 0	5,240	7,000	1,760	6,83E+07	7534	96,5	94	104,3	4,55	146	RUIM	2	1,6	2,9	37,30%	0,42%
21	182 + 0	262 + 0	3,640	5,240	1,600	6,83E+07	7534	97,4	106	105,3	4,82	112	RUIM	2	1,5	2,9	27,73%	0,24%
22	96 + 0	182 + 0	1,920	3,640	1,720	6,83E+07	7534	65,6	132	70,9	3,75	132	RUIM	2	1,6	2,9	32,16%	0,37%
23	0 + 0	96 + 0	0,000	1,920	1,920	6,83E+07	7534	72,4	124	78,2	4,40	120	RUIM	2	1,7	2,9	38,85%	0,04%
	Ext	ensão Total (km)			42,440													

Observação: Correlação DcVB = 1,081 DcFWD.

Fonte: EGETRA Engenharia (2024).

A partir dos levantamentos deflectométricos analisados pontualmente verificou-se que cerca de 48,21% do trecho (CF1-CF2), apresenta raio de curvatura inferior a 100 m, sendo que 1,04% apresenta condição crítica de raio inferior a 50m.

Nos trechos do lado decrescente nas faixas DF1-DF2 cerca de 45,34% apresenta raio de curvatura inferior a 100 m, sendo que 2,63% apresenta condição crítica de raio inferior a 50m.

Esses valores indicam que ambas as pistas apresentam ocorrência de raios críticos, em quase 50% de sua extensão, o que indica que há um severo arqueamento da bacia de deformação medida com o FWD e uma má distribuição de cargas. Este é um sinal de possível problemas provenientes das camadas inferiores da subestrutura (base e sub-base e, nos casos críticos, do subleito).

Ademais, analisando essa característica nos segmentos homogêneos, verificou-se que em 100,00% dos SH's as deflexões características VB são maiores que a deflexão admissível de projeto, porém em cerca de 37% dos SH's o Raio de Curvatura é menor que 100 metros.

Analisando-se a condição de conforto ao rolamento do trecho por segmento homogêneo é possível verificar que cerca de 32% dos SH's estão no limite entre 2,7 e 3,5 m/km e aproximadamente 68% dos SH's apresentam valores acima de 3,5 m/km.

Quanto a condição de superfície é possível verificar que cerca de 91,00% dos segmentos apresentam IGG médio superior a 80 e inferior a 160, indicando uma condição de superfície ruim, e cerca de 9,0% dos segmentos apresentam IGG médio superior a 40 e inferior a 80, indicando uma condição de superfície regular.

No trecho há alta ocorrência de trincamento tipo FC-2/FC-3 e áreas excessivamente remendadas, principalmente na faixa 02, a de tráfego mais pesado.

Na análise das soluções pelo método PRO-11 verifica-se que a solução é homogênea, sendo que em 70,0% da extensão do trecho a qualidade estrutural é regular, sendo necessário somente reforço como medida corretiva, entretanto, destaca-se que as espessuras são variáveis, sendo a mínima de 9,0 cm e a máxima de 17,0 cm. já em 30,0% do trecho a qualidade estrutural é má, sendo necessário reconstrução como medida corretiva.

O quadro 19 apresenta o resumo das avaliações estruturais utilizando-se os Métodos PRO-11 e PRO-269.

Quadro 19 – Resumo Dimensionamento do reforço.

			Resumo	Dimensi	onament	o de Refo	rço - PR	0-11/79	e PRO-269)		
Rodov Trecho Extens SREs:	o :	42,44 km	-060 (B) - Ent np 0017/ 070EG	,	Goianira)				Faixa: Sentido:	01, 02 e Crescen		escente
		Dado	s do Segme	nto		PRO-01	l 1/7 9		PRO-2	269/94		
SH	Inicial	Final	D _C (0,01 mm)	R	N	D _{adm} (0,01 mm)	h _{cb} (cm)	D _{adm} (0,01 mm)	Subleito (resiliência)	h exist (cm)	hef (cm)	HR (cm)
1	0	93	74,6	147	6,83E+07	42,8	10,0	47,3	П	9,0	6,1	9,0
2	93	185	102,4	114	6,83E+07	42,8	16,0	47,3	П	11,0	3,1	13,0
3	185	285	135,0	98	6,83E+07	42,8	REC	47,3	П	11,0	1,2	15,0
4	285	379	106,0	117	6,83E+07	42,8	16,0	47,3	II	14,0	2,9	13,0
5	379	475	98,9	129	6,83E+07	42,8	15,0	47,3	I	11,0	2,4	13,0
6	475	573	95,0	123	6,83E+07	42,8	14,0	47,3	II	8,0	3,7	12,0
7	573	672	95,2	96	6,83E+07	42,8	REC	47,3	I	8,0	2,8	12,0
8	672	767	88,6	102	6,83E+07	42,8	13,0	47,3	П	11,0	4,4	11,0
9	767	866	89,3	99	6,83E+07	42,8	REC	47,3	I	8,0	3,3	12,0
10	866	965	99,8	96	6,83E+07	42,8	REC	47,3	I	8,0	2,4	13,0
11	965	1061	93,3	89	6,83E+07	42,8	REC	47,3	П	11,0	3,9	12,0
12	964	1061	104,7	123	6,83E+07	42,8	16,0	47,3	ļ	8,0	2,0	13,0
13	866	964	127,3	98	6,83E+07	42,8	REC	47,3	II	8,0	1,6	15,0
14	766	866	104,0	121	6,83E+07	42,8	16,0	47,3	II	11,0	3,0	13,0
15	667	766	91,1	132	6,83E+07	42,8	14,0	47,3	II	8,0	4,1	12,0
16	625	667	113,0	100	6,83E+07	42,8	17,0	47,3	ll l	8,0	2,4	14,0
17	539	625	101,9	132	6,83E+07	42,8	16,0	47,3	II	11,0	3,2	13,0
18	448	539	98,2	101	6,83E+07	42,8	15,0	47,3	<u>II</u>	8,0	3,5	12,0
19	350	448	106,4	84	6,83E+07	42,8	REC	47,3	<u> </u>	8,0	2,8	13,0
20	262	350	104,3	94	6,83E+07	42,8	REC	47,3	<u>II</u>	11,0	3,0	13,0
21	182	262	105,3	106	6,83E+07	42,8	16,0	47,3	<u> </u>	5,0	2,9	13,0
22	96	182	70,9	132	6,83E+07	42,8	9,0	47,3	<u> </u>	5,0	5,0	10,0
23	0	96	78,2	124	6,83E+07	42,8	11,0	47,3	П	9,0	5,6	10,0

Fonte: EGETRA Engenharia (2024).

3.3 Metodologia

Com base nos dados disponibilizados, deu-se início à aplicação da metodologia proposta para a análise de viabilidade das alternativas 1 e 2 de restauração do pavimento. Inicialmente, os parâmetros técnicos e as condições estruturais foram avaliados, possibilitando o dimensionamento adequado de cada solução. A partir desse dimensionamento, foi possível elaborar os respectivos orçamentos, permitindo a realização de uma análise comparativa dos custos envolvidos em cada alternativa, de forma a embasar a escolha econômica mais viável.

4 RESULTADOS E DISCUSSÕES

4.1 Alternativas de Restauração

4.1.1 Pavimento Flexível

Como não há possibilidade da manutenção da atual camada de base, é requerida a sua substituição, reciclagem ou execução de nova base, para que as soluções de revestimento possam ser protegidas e que tenham a vida útil garantida.

Com isso foi realizado estudo para restauração da rodovia utilizando pavimento flexível. A solução prevê a execução de nova camada de base através de reciclagem com incorporação do revestimento asfáltico e adição de brita e cimento, com espessura de 20,0 cm.

Como há grande variação nas espessuras do revestimento existente, foi proposta a fresagem contínua com espessuras variáveis para cada segmento homogêneo, com a finalidade de se manter no máximo 10,0 cm de revestimento existente, para que não ultrapasse o máximo de 50% de incorporação de material em relação à massa da camada reciclada.

Como há segmentos com espessura inferior a esse limite máximo foi previsto o reaproveitamento do material fresado de outros segmentos, que deverá ser lançado antes do início da reciclagem juntamente com a brita e cimento. A taxa de brita será de 30% em relação à massa e o teor de cimento de 2%, em massa.

Especificamente para os segmentos nº 10 ao 13 (segmento urbano de Goianira) a solução prevista será somente de "restauração funcional", com execução de reparos superficiais e profundos e logo após o reforço em CBUQpol com espessura de 4,0 cm.

Já para os segmentos 01 e 23 (segmento urbano de Goiânia) a solução não poderá incorporar o revestimento asfáltico existente e a brita, já que se trata de trechos de segmentos de perímetro urbano onde já existem meio-fio e calçadas, o que impede a realização da reciclagem de base com a incorporação do revestimento asfáltico, já que essa técnica resulta em um aumento no volume das camadas existentes e há uma limitação geométrica e de cota devido às calçadas e sistemas de drenagem existentes. Diante disso, optou-se por realizar fresagem contínua de 100% do revestimento e estabilização de base com adição de 3% de cimento, com maior teor de cimento para garantir que as deflexões admissíveis do revestimento após a restauração sejam compatíveis com o restante do trecho.

O revestimento deverá ser composto de Tratamento Superficial Duplo com polímero, que terá função de Camada Anti Reflexão de Trincas e logo após o Concreto Betuminoso Usinado a Quente – CBUQ com asfalto polímero, com espessura total de 12,5 cm.

4.1.2 Pavimento Rígido Tipo Whitetopping

A aplicação do Whitetopping torna-se vantajosa já que a utilização de concreto com as funções de revestimento e base as camadas inferiores passam a ter menor solicitação de esforços comparadas com uma estrutura de pavimento flexível, o que garante uma maior vida útil e possibilidade de se manter essas camadas existentes.

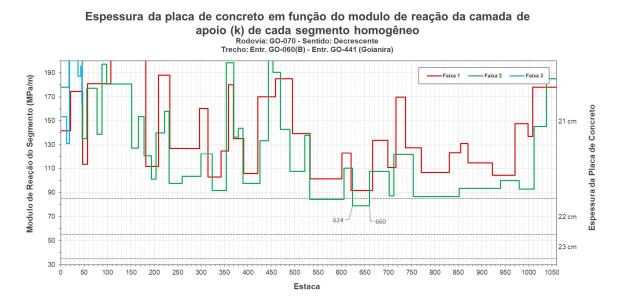

O dimensionamento do Whitetopping foi realizado de acordo com o Método Portland Cement Association – PCA, de 1984. Dentre os critérios utilizados estão: análise do tráfego, características do pavimento existente, análise de fadiga, análise de erosão, tais parâmetros resultaram em uma placa mínima com espessura de 22,0 cm apresentados nos gráficos 1 e 2 para o trecho em projeto da GO-070, com exceção dos segmentos: est. 161 a 221 – Faixa 2 – crescente e. est. 624 a 660 – Faixa 2 – decrescente, que as deflexões D1 são maiores que 105x0,01 mm e portanto deverão corrigidas pontualmente através de reparos localizados, para garantir o atendimento da espessura de 22,0 cm. Deverá ser executada previamente a fresagem contínua de 3,0 cm em toda área a ser restaurada. Também estão sendo previstos quantitativos de reparos localizados caso haja locais com ocorrência grave de defeitos.

Gráfico 01 – Espessura placa de concreto – Lado crescente.

Espessura da placa de concreto em função do modulo de reação da camada de

Fonte: ABCP.

Gráfico 02 – Espessura placa de concreto – Lado decrescente.

Fonte: ABCP.

O quadro 19 apresenta um resumo prévio do dimensionamento feito pela ABCP.

Quadro 20 - Dimensionamento do Whitetopping.

PAVIMENTO DE CONCRETO DE CIMENTO PORTLAND

Memória de Cálculo do Estudo de Dimensionamento de Pavimentos de Concreto de Cimento Portland

Responsável Té	cnico:			Data:	Versão:
EGETRA			Campos editáveis	13/03/25	1.0
		INFORMAÇ	ÕES GERAIS DA OBRA		
Rodovia:	GO-070				
Trecho:	Entr. GO-060(B) - Entr. GO-44	11 (Goianira) - Sentido Crescen	te e Decrescente		
Extensão:	42,56 km (Extensão total)				
		DIMENSION	AMENTO PELA PCA 84		
	(•	lologia da PCA Portland Cement Ass o Método da PCA/1984 da Associação Br		
		PARÂME	ETROS DE PROJETO		
20	Período do Projeto (anos)		VMDAc em 2027 - Prim	eiro ano do perído de projeto	5.773
22,0	Espessura da placa de conci	·eto (cm)		Distribuição direcional	50%
1,20	Fator de segurança de carga	es (FSC)	Fluxo direcional dos veículo	os pesados na faixa de projeto	100%
4,5	Resistência à tração na flex	ão do concreto (MPa)	Acostamen	to de concreto / Apoio lateral	Sim
75,0	Modulo de Reação - k _{SISTEM}	A DE APOIO (MPa/m)	Juntas transversa	ais com barra de transferência	Sim

ANÁLISE DE FÁDIGA E EROSÃO

Cargas por	Carga por	Nº de	ANÁLISE [DE FADIGA	ANÁLISE D	E EROSÃO
eixo (tf)	eixo (x) FSC (tf)	repetições previstas	Nº de repetições admissíveis	Consumo de Fadiga (%)	Nº de repetições admissíveis	Dano por Erosão (%)
EIVO CINA	DI EC		1,163	Tensão Equivale	ente	
EIXO SIMI	PLES		0,258	Fator de Fadiga	2,245	Fator de Erosão
10,50	12,60	4.141.679	Ilimitado	0,00	49.698.214	8,33
10,00	12,00	10.354.197	Ilimitado	0,00	Ilimitado	0,00
6,30	7,56	5.760.074	Ilimitado	0,00	Ilimitado	0,00
6,00	7,20	14.400.185	Ilimitado	0,00	Ilimitado	0,00
5,00	6,00	6.212.518	Ilimitado	0,00	Ilimitado	0,00
3,00	3,60	8.640.111	Ilimitado	0,00	Ilimitado	0,00
FIVO TAN	DEM DUPLO		0,985	Tensão Equivale	ente	
EIXU IAN	DEIVI DUPLO	,	0,219	Fator de Fadiga	2,323	Fator de Erosão
17,85	21,42	2.546.838	Ilimitado	0,00	Ilimitado	0,00
17,00	20,40	6.367.095	Ilimitado	0,00	Ilimitado	0,00
14,18	17,01	78.515	Ilimitado	0,00	Ilimitado	0,00
13,50	16,20	196.288	Ilimitado	0,00	Ilimitado	0,00
6,00	7,20	3.820.257	Ilimitado	0,00	Ilimitado	0,00
5,50	6,60	117.773	Ilimitado	0,00	Ilimitado	0,00
51VO 744	DEA TOID!	_	0,770	Tensão Equivale	ente	
EIXU IAN	DEM TRIPLO	J	0,171	Fator de Fadiga	2,385	Fator de Erosão
26,78	32,13	939.238	Ilimitado	0,00	51.715.545	1,82
25,50	30,60	2.348.096	Ilimitado	0,00	Ilimitado	0,00
9,00	10,80	1.408.858	Ilimitado	0,00	Ilimitado	0,00
			TOTAIS	0,00		10,15

Conclusão: Espessura de 22 cm da placa de concreto, SUFICIENTE pela análise de fadiga e erosão

Fonte: ABCP (2025).

4.2 Análise de Custos

A seguir será apresentado detalhadamente o dimensionamento das alternativas, com a solução de pavimento flexível (alternativa 1) e pavimento rígido (alternativa 2), elaborado com base nos parâmetros funcionais e estruturais obtidos.

4.2.1 Pavimento Flexível

Alternativa 01:

- FR contínua (espessura variável) + reciclagem com adição de brita (30% em peso) e cimento (2% em peso) + TSDp + CBUQpol H12,5 cm, nos SH 02 ao 09 e 14 ao 22.
- FR contínua (100% espessura) + Estabilização da base com adição de 4% de cimento (em peso) + TSDp + CBUQpol H12,5 cm, nos SH 01 e 23.
- Reparos Localizados (Superficiais e Profundos) + reforço CBUQpol H 4,0 cm;
- Tratamento das camadas inferiores (TCI) nos SH 01 ao 16, 18 ao 21 e 23.

Custo: R\$ 128.186.291,06

- o FR contínua (espessura variável) + reciclagem com adição de brita (30% em peso) e cimento (2% em peso) + TSDp + CBUQpol H12,5 cm, nos SH 02 ao 09 e 14 ao 22.
 - Execução de fresagem contínua do revestimento com espessura variável de acordo com indicado para cada segmento homogêneo;
 - Execução de reciclagem da base com adição de brita (30% em peso) e cimento (2% em peso) com 20 cm de espessura;
 - Pintura de Cura;
 - Execução de Tratamento Superficial Duplo com polímero (TSDp) com espessura executada variável entre 2 cm e 2,5 cm;
 - Pintura de ligação;
 - Execução de 1^a camada de Binder, com CBUQ na espessura de 5 cm;
 - Pintura de ligação;
 - Execução de 2ª camada de Rolamento, com CBUQ na espessura de 4 cm;
 - Pintura de ligação;
 - Execução de 3ª camada de Rolamento, com CBUQ na espessura de 3,5 cm.

- FR contínua (100% da espessura) + Estabilização da base com adição de 4% de cimento
 (em peso) + TSDp + CBUQpol H12,5 cm, nos SH 01 e 23.
 - Execução de fresagem contínua de 100% do revestimento;
 - Execução de estabilização da base com adição de cimento (4% em peso) com espessura de acordo com o indicado para cada segmento homogêneo;
 - Pintura de Cura;
 - Execução de Tratamento Superficial Duplo com polímero (TSDp) com espessura executada variável entre 2 cm e 2,5 cm;
 - Pintura de ligação;
 - Execução de 1ª camada de Binder, com CBUQ na espessura de 5 cm;
 - Pintura de ligação;
 - Execução de 2^a camada de Rolamento, com CBUQ na espessura de 4 cm;
 - Pintura de ligação;
 - Execução de 3ª camada de Rolamento, com CBUQ na espessura de 3,5 cm.
- o Reparos Localizados (Superficiais/Profundos) + CBUQpol H4,0 cm, nos SH 10 ao 13.
 - Reparo Superficial: Execução de fresagem descontínua com espessura de 3,0 cm + recomposição com CBUQpol na espessura de 3,0 cm;
 - Reparo Profundo: Execução de demolição de revestimento e base para descarte de material removido, execução de nova base com brita graduada com espessura de 3,0 cm + recomposição com CBUQpol na espessura de 3,0 cm;
 - Execução de estabilização da base com adição de cimento (4% em peso) com espessura de acordo com o indicado para cada segmento homogêneo;
 - Pintura de Cura;
 - Execução de Tratamento Superficial Duplo com polímero (TSDp) com espessura executada variável entre 2 cm e 2,5 cm;
 - Pintura de ligação;
 - Execução de 1^a camada de Binder, com CBUQ na espessura de 5 cm;
 - Pintura de ligação;
 - Execução de 2ª camada de Rolamento, com CBUQ na espessura de 4 cm;

- Pintura de ligação;
- Execução de 3ª camada de Rolamento, com CBUQ na espessura de 3,5 cm.
- o TCI Tratamento das Camadas Inferiores (sub-base e subleito) em locais pontuais:
 - Esse serviço deverá ser realizado antes das intervenções contínuas (pavimento rígido);
 - Demolição do revestimento e base existentes, o material demolido deverá ser armazenado em depósito tipo bota-espera, de forma a evitar contaminação e perda de material;
 - Demolição da sub-base existente, o material demolido deverá ser armazenado em depósito tipo bota-espera, de forma a evitar contaminação e perda de material;
 - Remoção de camada de 20,0 cm do subleito, o material demolido deverá ser transportado para bota-fora, não será reaproveitado;
 - Execução de camada de rachão, com espessura de 20,0 cm;
 - Execução de camada de 15,0 cm de solo estabilizado c/ reaproveitamento de material (sub-base removida);
 - Lançamento de material removido (revestimento e base) para execução da nova base;

No quadro 21, apresenta-se o demonstrativo de custos referente à Alternativa 1, acompanhado em anexo das respectivas memórias de cálculo.

Quadro 21 – Demonstrativo de custos da alternativa 1.

	ORÇAMENTO SEM DESONERAÇÂO: PROJETO DE RESTAURAÇÃO DO PAVIMENTO - ALT	ERNATIV	A 1		
Rodovia:	GO-070				
Trecho:	Entr. BR-060 (B) – Entr. GO-441 (Goianira)		Tabela	Referência:	abril-25
Sub-trecho:	- Descrição	Unid.	Quant.	tensão (km): P. Unit	42,422 C. Parcial
Código Rodovia: GO-	*	Unia.	Quant.	P. Unit	C. Parcial
	PAVIMENTAÇÃO				
	REPARO PROFUNDO PARA TRATAMENTO DE CAMADAS INFERIORES (SU				
40470	FRESAGEM CONTÍNUA Á FRIO	m3	3.173,154	139,56	442.845,3
40140	ESTABILIZAÇÃO DE SOLO COMBAIXA CAPACIDADE DE SUPORTE COM RACHÃO	m3	7.084,800	117,14	829.913,4
40445	TRANSPORTE LOCAL DE AGREGADOS	m3km	73.359,715	2,28	167.260,1
40455	TRANSPORTE COMERCIAL DE AGREGADOS	m3km	326.255,040	1,53	499.170,2
40335	ESTABILIZAÇÃO GRANULOMÉTRICA SEM MISTURA - REF.PROCTOR: 26 GOLPES (100% P.I.)	m3	5.313,600	22,96	122.000,2
40425	REMOÇÃO E CARGA DE PAV. ASFÁLTICA (EXCETO TRANSPORTE)	m3	18.066,240	11,63	210.110,3
915407EG	CARGA, MANOBRA E DESCARGA DE MATERIAL REAPROVEITADO	t	14.452,992	3,57	51.597,1
40430	(REVESTIMENTO+BASE) EM CAMINHÃO BASCULANTE DE 10 Mº - CARGA TRANSPORTE DE PAVIMENTO REMOVIDO	m3km	68.446,713	3,58	245.039,2
	RESTAURAÇÃO DO PAVIMENTO			-,	
40470	FRESAGEM CONTÍNUA Á FRIO	m3	6.993,917	139,56	976.071,0
40645EG0	RECICLAGEM DE BASE COM 30% DE BRITA E 2% DE CIMENTO EM PESO	m³	71.805,504	175,77	12.621.253,4
42406	(BC) REMENDO PROFUNDO (EXCETO FORN. E TRANSP. MAT.)	m3	842,400	348,18	293.306,8
40465	FRESAGEM DESCONTÍNUA À FRIO	m3	622,564	220,36	137.188,2
40375	ESTABILIZAÇÃO SOLO-CIMENTO 3% PESO - PISTA	m3	8.868,768	78,32	694.601,9
40380	IMPRIMAÇÃO	m2	393.592,403	0,55	216.475,8
40609	TRATAMENTO SUPERFICIAL DUPLO - TSD (BC)	m2	393.592,403	9,04	3.558.075,3
40385	PINTURA DE LIGAÇÃO	m2	1.302.829,199	0,47	612.329,7
40602	CONCRETO BETUMINOSO USINADO À QUENTE - CBUQ - FAIXA C	m3	54.053,426	483,53	26.136.453,0
40430	TRANSPORTE DE PAVIMENTO REMOVIDO	m3km	69.105,104	3,58	247.396,2
40449	TRANSPORTE LOCAL DE CIMENTO / CAL / FILLER	tkm	19.624,591	1,69	33.165,5
40450	TRANSPORTE COMERCIAL DE CIMENTO / CAL / FILLER	TKM	789.892,885	0,86	679.307,8
40445	TRANSPORTE LOCAL DE AGREGADOS	m3km	63.624,057	2,28	145.062,8
40455	TRANSPORTE COMERCIAL DE AGREGADOS	m3km	2.573.209,622	1,53	3.937.010,7
40440	TRANSPORTE LOCAL DE MASSA ASFÁLTICA	TKM	805.393,062	1,71	1.377.222,1
	AQUISIÇÃO DE MATERIAIS BETUMINOSOS				
40485	FORNECIMENTO DE EMULSÃO ASFÁLTICA PARA IMPRIMAÇÃO - EAI	t	511,680	3.482,44	1.781.894,8
40510	FORNECIMENTO DE EMULSÃO RR-1C	t	651,420	4.341,02	2.827.827,2
40495	FORNECIMENTO DE EMULSÃO RR-2C COM POLÍMERO	t	1.102,060	4.614,63	5.085.599,1
40515	FORNECIMENTO DE CAP-60/85 COM POLÍMERO	Т	7.407,740	8.552,88	63.357.511,2
	TRANSPORTE DE MATERIAIS BETUMINOSOS				
40435	TRANSPORTE LOCAL DE MATERIAL BETUMINOSO	TKM	12.736,580	3,46	44.068,5
40530	TRANSPORTE COMERCIAL DE MATERIAL BETUMINOSO	tkm	372.405,649	2,30	856.532,9
				Sub-total:	128.186.291,0
			тота	L GO-070 R\$:	128.186.291,
			CUS	STO R\$/KMP:	3.021.693,

Fonte: Autor (2025).

4.2.2 Pavimento Rígido

Alternativa 02:

- Whitetopping e = 22.0 cm, nos SH 01 ao 09 e 14 ao 23.
- Reparos Localizados (Superficiais/profundos) nos SH 10 ao 13.
- Tratamento das camadas inferiores (TCI) nos SH 01 ao 16, 18 ao 21 e 23.

Custo: R\$ 98.047.377,62

- Whitetopping e = 22.0 cm, nos SH 01 ao 09 e 14 ao 23.
 - Execução de fresagem contínua do revestimento com 3 cm de espessura;
 - Execução de pavimento rígido com fôrma deslizante/ equipamento manual com 22 cm de espessura.
- o Reparos Localizados Superficiais/ profundos, nos SH 01, 10 ao 13 e 23.
 - Execução de fresagem contínua de 100% do revestimento existente;
 - Execução de demolição da camada granular com espessuras variáveis;
 - Estabilização da camada granular com adição de 4% de brita, espessura de 18,0
 cm
 - Execução de pavimento rígido com fôrma deslizante/ equipamento manual com 22 cm de espessura.
- o TCI Tratamento das Camadas Inferiores (sub-base e subleito) em locais pontuais:
 - Esse serviço deverá ser realizado antes das intervenções contínuas (pavimento rígido);
 - Demolição do revestimento e base existentes, o material demolido deverá ser armazenado em depósito tipo bota-espera, de forma a evitar contaminação e perda de material;

- Demolição da sub-base existente, o material demolido deverá ser armazenado em depósito tipo bota-espera, de forma a evitar contaminação e perda de material;
- Remoção de camada de 20,0 cm do subleito, o material demolido deverá ser transportado para bota-fora, não será reaproveitado;
- Execução de camada de rachão, com espessura de 20,0 cm;
- Execução de camada de 15,0 cm de solo estabilizado c/ reaproveitamento de material (sub-base removida);
- Lançamento de material removido (revestimento e base) para execução da nova base;
- Execução de estabilização do material removido (revestimento e base) com adição de cimento (2% em peso) com 20,0 cm de espessura.
- Execução de pavimento rígido com fôrma deslizante/ equipamento manual com 22 cm de espessura.

No quadro 22, apresenta-se o demonstrativo de custos referente à Alternativa 2, acompanhado, em anexo, das respectivas memórias de cálculo.

Quadro 22 – Demonstrativo de custos da alternativa 2.

ORÇAMENTO SEM DESONERAÇÃO: PROJETO DE RESTAURAÇÃO DO PAVIMENTO - ALTERNATIVA 2					
	G0-070				-1-41.05
Trecho: Sub-trecho:	Entr. BR-060 (B) – Entr. GO-441 (Goianira) -			Referência: tensão (km):	abril-25 42,422
Código	Descrição	Unid.	Quant.	P. Unit	C. Parcial
lodovia: GO	PAVIMENTAÇÃO	Γ			
	REPARO PROFUNDO PARA TRATAMENTO DE CAMADAS INFERIORES (SUB-BASE E SUBLEITO)				
40470	FRESAGEM CONTÍNUA Á FRIO	m3	5.020,560	139,56	700.669,3
40140	ESTABILIZAÇÃO DE SOLO COMBAIXA CAPACIDADE DE SUPORTE COM RACHÃO	m3	11.156,800	117,14	1.306.907,5
40445	TRANSPORTE LOCAL DE AGREGADOS	m3km	51.480,698	2,28	117.375,9
40455	TRANSPORTE COMERCIAL DE AGREGADOS	m3km	342.513,760	1,53	524.046,0
40335	ESTABILIZAÇÃO GRANULOMÉTRICA SEM MISTURA - REF.PROCTOR: 26 GOLPES (100% P.I.)	m3	8.367,600	22,96	192.120,0
40350	ESTABILIZAÇÃO SOLO-CIMENTO 2% PESO - PISTA	m3	11.156,800	59,35	662.156,0
40380	MPRIMAÇÃO	m2	55.784,000	0,55	30.681,2
40385	PINTURA DE LIGAÇÃO	m2	55.784,000	0,47	26.218,4
40602	CONCRETO BETUMINOSO USINADO À QUENTE - CBUQ - FAIXA C	m3	3.347,040	546,54	1.829.291,2
40440	TRANSPORTE LOCAL DE MASSA ASFÁLTICA	TKM	37.066,105	1,71	63.383,0
40449	TRANSPORTE LOCAL DE CIMENTO / CAL / FILLER	tkm	2.223,958	1,69	3.758,4
40450	TRANSPORTE COMERCIAL DE CIMENTO / CAL / FILLER	ТКМ	69.166,644	0,86	59.483,3
40445	TRANSPORTE LOCAL DE AGREGADOS	m3km	51.480,698	2,28	117.375,9
40425	REMOÇÃO E CARGA DE PAV. ASFÁLTICA (EXCETO TRANSPORTE)	m3	28.449,840	11,63	330.871,6
915407EG	CARGA, MANOBRA E DESCARGA DE MATERIAL REAPROVEITADO (REVESTIMENTO+BASE) EM CAMINHÃO	t	22.759,872	3,57	81.252,7
40430	BASCULANTE DE 10 M° - CARGA COM CARREGADEIRA E DESCARGA LIVRE TRANSPORTE DE PAVIMENTO REMOVIDO	m3km	82.578.841	3,58	295.632.2
40510	FORNECIMENTO DE EMULSÃO RR-1C	t	27,900	4.341,02	121.114,4
40485	FORNECIMENTO DE EMULSÃO ASFÁLTICA PARA IMPRIMAÇÃO - EAI	,	72.520	3.482,44	252.546,5
40515	FORNECIMENTO DE CAP-60/85 COM POLÍMERO	T	481,980	8.552,88	4.122.317,1
40313		-			
	TRANSPORTE LOCAL DE MATERIAL BETUMINOSO	TKM	463,320	3,46	1.603,0
40530	TRANSPORTE COMERCIAL DE MATERIAL BETUMINOSO	tkm	22.422,092	2,30	51.570,8
	RESTAURAÇÃO DO PAVIMENTO				
40470	FRESAGEM CONTÍNUA Á FRIO	m3	11.807,772	139,56	1.647.892,6
40625EG0	RECICLAGEM DE BASE COM 2% DE CIMENTO EM PESO MEMBRANA PLÁSTICA ISOLANTE E IMPERMEABILIZANTE COM ESPESSURA DE 0,2 mm - FORNECIMENTO E	m³	5.680,000	118,45	672.796,0
4011536	INSTALAÇÃO	m²	393.592,403	2,29	902.227,9
42406EG0	REMENDO PROFUNDO, INCLUSO FORNECIMENTO DE BGS (EXCETO TRANSP. MAT.)	m³	842,400	209,03	176.086,8
40465	FRESAGEM DESCONTÍNUA À FRIO	m3	690,604	220,36	152.181,4
40430	TRANSPORTE DE PAVIMENTO REMOVIDO	m3km	72.828,496	3,58	260.726,0
4011533EG0	PAVIMENTO DE CONCRETO COM FÔRMAS DESLIZANTES - AREIA E BRITA COMERCIAIS	m³	53.345,600	738,98	39.421.331,4
4011520EG0	PAVIMENTO DE CONCRETO COM EQUIPAMENTO DE PEQUENO PORTE - AREIA E BRITA COMERCIAIS	m³	33.244,730	762,98	25.365.064,0
40385	PINTURA DE LIGAÇÃO	m2	124.319,990	0,47	58.430,3
40380	MPRIMAÇÃO	m2	28.400,000	0,55	15.620,0
40602	CONCRETO BETUMINOSO USINADO À QUENTE - CBUQ - FAIXA C	m3	4.922,417	546,54	2.690.297,7
40440	TRANSPORTE LOCAL DE MASSA ASFÁLTICA	ТКМ	171.076,262	1,71	292.540,4
40449	TRANSPORTE LOCAL DE CIMENTO / CAL / FILLER	tkm	1.410,167	1,69	2.383,1
40450	TRANSPORTE COMERCIAL DE CIMENTO / CAL / FILLER	TKM	2.634.102,577	0,86	2.265.328,2
40445	TRANSPORTE LOCAL DE AGREGADOS	m3km	16.109,215	2,28	36.729,0
40455	TRANSPORTE COMERCIAL DE AGREGADOS	m3km	3.571.196,473	1,53	5.463.930,6
40436	TRANSPORTE LOCAL DE CONCRETO	m3km	465.165,690	2,53	1.176.869,1
47050	TRANSPORTE LOCAL DE MATERIAL BÁSICO	tkm	6.343,508	1,69	10.720,5
40451	TRANSPORTE COMERCIAL DE MATERIAL BÁSICO	tkm	15.929,815	0,86	13.699,6
.5-51	AQUISIÇÃO DE MATERIAIS BETUMNOSOS	1 3411	. 5.023,010	0,00	.0.000,0
40510	FORNECIMENTO DE EMULSÃO RR-1C	t	62,160	4.341,02	269.837,8
	FORNECIMENTO DE EMULSÃO ARFÁLTICA PARA IMPRIMAÇÃO - EAI	t			
40485		-	36,920	3.482,44	128.571,6
40515	FORNECIMENTO DE CAP-60/85 COM POLÍMERO	Т	708,830	8.552,88	6.062.537,9
	TRANSPORTE DE MATERIAIS BETUMINOSOS	1			
40435	TRANSPORTE LOCAL DE MATERIAL BETUMINOSO	TKM	666,428	3,46	2.305,8
40530	TRANSPORTE COMERCIAL DE MATERIAL BETUMINOSO	tkm	29.953,693	2,30	68.893,4
				Sub-total:	98.047.377,6
			TOTAL	GO-070 R\$:	98.047.377,0

Fonte: Autor (2025).

4.3 Análise comparativa

Alternativa 1:

Os três serviços de maior custo na alternativa 1 são: o fornecimento de CAP-60/85 com polímero, com custo parcial de R\$ 63.357.511,29; seguido pelo concreto betuminoso usinado a quente (CBUQ), com R\$ 26.136.452,07; e, por fim, a reciclagem de base com incorporação de 30% de brita (em peso) e 2% de cimento (em peso), totalizando R\$ 12.621.253,43.

Alternativa 2:

Na alternativa 2, os serviços mais onerosos são: o pavimento de concreto executado com fôrmas deslizantes, com custo parcial de R\$ 39.421.331,48; em seguida, o pavimento de concreto executado com equipamento de pequeno porte, com R\$ 25.365.064,09; e, por último, o fornecimento de CAP-60/85 com polímero, totalizando R\$ 98.047.377,62.

Como a área destinada ao pavimento flexível na alternativa 2 é significativamente menor, serviços com alto custo na alternativa 1 acabam tendo impacto reduzido. Um exemplo é o serviço de fresagem a frio:

- Na alternativa 1, este serviço tem custo parcial de R\$ 976.071,05;
- Já na alternativa 2, o custo cai para R\$ 700.669,35, devido à menor extensão em pavimento flexível.

Essa diferença de área impacta diretamente a maioria dos serviços comuns entre as alternativas, com exceção daqueles exclusivos do pavimento rígido.

De acordo com os resultados obtidos na etapa orçamentária, a alternativa 1 apresenta um custo total estimado de R\$ 128.186.291,06, ao passo que a alternativa 2 totaliza R\$ 98.047.377,62, resultando em uma diferença de R\$ 30.138.913,44 entre ambas. Essa variação evidencia o impacto financeiro das soluções adotadas em cada proposta, especialmente no que diz respeito à escolha dos materiais e métodos executivos.

Além disso, quando se avalia o custo por quilômetro de cada alternativa, observa-se que a diferença persiste de forma proporcional, reforçando a influência da extensão e do tipo de intervenção adotada. Nos Gráficos 3 e 4, estão apresentados esses valores unitários, permitindo uma visualização comparativa clara entre as soluções estudadas. Tais informações são fundamentais para a tomada de decisão técnica e econômica, contribuindo para a escolha da alternativa mais viável sob a perspectiva do custo-benefício

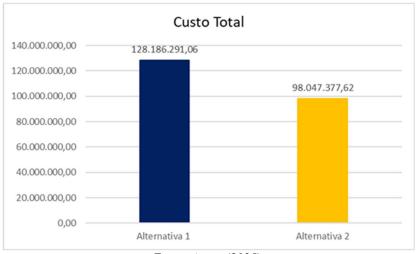


Gráfico 03 – Comparativo dos custos totais.

Fonte: Autor (2025).

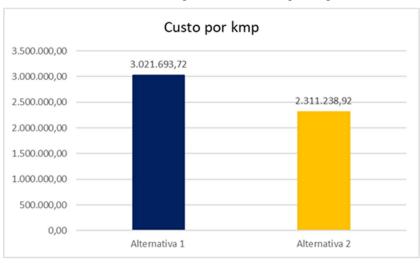


Gráfico 04 – Comparativo dos custos por kmp.

Fonte: Autor (2025).

5 CONCLUSÃO

Com base nas alternativas previamente apresentadas, torna-se necessária uma análise crítica acerca dos riscos e beneficios associados a cada solução. Importa destacar, desde já, que todas as alternativas analisadas atendem, em princípio, aos critérios técnicos estabelecidos pelas normas vigentes.

No que se refere às Alternativas 1 (pavimento flexível) e 2 (pavimento rígido), compreende-se que ambas são tecnicamente viáveis para a execução das obras. No entanto, cabe observar que a

implementação do pavimento rígido tende a causar maior impacto aos usuários da rodovia durante a fase de execução, uma vez que demanda períodos de interdição mais prolongados em comparação ao pavimento flexível.

Por outro lado, em rodovias com volume de tráfego elevado, como é o caso da GO-070, a adoção de uma solução mais durável e inovadora – como o pavimento rígido – mostra-se vantajosa a longo prazo. Isso porque as necessidades de manutenção em pavimentos rígidos são significativamente menores quando comparadas às de pavimentos flexíveis, gerando impactos positivos relevantes sob o ponto de vista da economia ao longo da vida útil do projeto.

Outro fator que reforça a superioridade técnica do pavimento rígido é a segurança viária: esse tipo de pavimento proporciona maior aderência entre os pneus e a superfície, reduzindo os riscos de aquaplanagem. Além disso, apresenta maior resistência química, o que também contribui para o aumento de sua durabilidade.

Fazendo uma análise comparativa dos custos de cada alternativa, a alternativa 2 é cerca de 23,51% mais barata que a alternativa 1 em relação aos custos totais. Consequentemente seus custos por quilômetro também são mais atrativos, reforçando sua viabilidade econômica.

Conclui-se que a Alternativa 2 apresenta a melhor relação técnica e econômica em comparação alternativa 1, sendo, portanto, a solução preliminarmente recomendada. Ressalta-se, contudo, que as intervenções de melhoria previstas deverão ser realizadas previamente à aplicação da técnica de restauração *Whitetopping*.

REFERÊNCIAS BIBLIOGRÁFICAS

AASHTO – AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS. *Guide for design of pavement structures*. Washington, D.C.: AASHTO, 1993. 2 v.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. *NBR 6457:2016 – Amostras de solo – Preparação para ensaios de compactação e ensaios de caracterização*. Rio de Janeiro: ABNT, 2016.BALBO, J. T. (Org.). *Pavimentação asfáltica: materiais, projeto e restauração*. São Paulo: PET – Engenharia Civil, Escola Politécnica da USP, 2007. 447 p.

BERNUCCI, L. L. B. et al. *Pavimentação asfáltica: formação básica para engenheiros*. Rio de Janeiro: Petrobras/Abeda, 2008. 312 p.

DNER – DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (Brasil). *Avaliação* estrutural dos pavimentos flexíveis – DNER-PRO 11/79. Rio de Janeiro, 1979.

DNER – DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (Brasil). *Capacidade de suporte de solos – Método CBR com imersão – ME 213/94*. Rio de Janeiro, 1994.

DNER – DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (Brasil). *Classificação dos solos para fins de pavimentação – ME 046/94*. Rio de Janeiro, 1994.

DNER – DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (Brasil). *Projeto de restauração de pavimentos flexíveis – DNER-PRO 269/94*. Rio de Janeiro, 1994.

DNER – DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (Brasil). Solos – Análise granulométrica – ME 051/94. Rio de Janeiro, 1994.

DNER – DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (Brasil). *Solos – Limites de consistência – ME 052/94*. Rio de Janeiro, 1994.

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). *Manual de estudos de tráfego*. Rio de Janeiro: IPR-DNIT, 2006. 222 p. (Publicação IPR, n. 712).

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). *Manual de pavimentação*. 2. ed. Rio de Janeiro: IPR-DNIT, 2006. 274 p. (Publicação IPR, n. 750).

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). *Manual de pavimentos rígidos.* Rio de Janeiro: IPR-DNIT, 2010. 346 p. (Publicação IPR, n. 794).

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). *Método de projeto de pavimentos flexíveis*. Rio de Janeiro: IPR-DNIT, 2006. 173 p. (Publicação IPR, n. 709).

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). Pavimento flexível – Projeto estrutural – ME-PAV-ES 05/2021. Brasília, 2021.

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). Serviço de pavimentação – Restauração com adição de material betuminoso – Execução – DNIT 440/2023 – PRO. Brasília, 2023. DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). Serviço de pavimentação – Revestimento em concreto betuminoso usinado a quente – Execução – DNIT 009 – PRO. Brasília, 2006.

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). Serviço de pavimentação – Revestimento em tratamento superficial – Execução – DNIT 006/2003 – PRO. Brasília, 2003.

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). Solos – Determinação do índice de suporte Califórnia (CBR) – DNIT 181/2018. Brasília, 2018.

DNIT – DEPARTAMENTO NACIONAL DE INFRAESTRUTURA DE TRANSPORTES (Brasil). DNIT 172/2016-ME – Pavimentos rígidos – Dimensionamento estrutural do tipo whitetopping delgado – Método experimental. Rio de Janeiro: DNIT, 2016. 33 p.

DNER – DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (Brasil). *DNER-ME* 082/94 – Determinação do índice de suporte Califórnia – ISC (California Bearing Ratio – CBR). Rio de Janeiro, 1994. 13 p.

DNER – DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM (Brasil). *DNER-ME* 122/94 – Determinação da granulometria dos solos. Rio de Janeiro, 1994. 7 p.

GOIÁS. GOINFRA – Agência Goiana de Infraestrutura e Transportes. *Despacho SEI nº* 64069436/2024 (*Despacho 1923*), referente ao Processo nº 202400036008273. [S.l.]: GOINFRA, 2024. Disponível em:

https://www.goinfra.go.gov.br/arquivos/arquivos/Normas/PROJETOS/SEI_64069436_Despacho_19 23.pdf. Acesso em: 16 jul. 2025.

EGETRA ENGENHARIA. *Relatório técnico: alternativas de restauração*. Goiânia: EGETRA, 2025. Documento entregue à GOINFRA em 27 jun. 2025. Não publicado.

CASCUDO, T. B. C. *Pavimentos de concreto: projeto, dimensionamento e detalhamento*. São Paulo: Oficina de Textos, 2013. 272 p.

MATTOS, A. D. Como preparar orçamentos de obras: dicas para orçamentistas, estudos de caso, exemplos. São Paulo: Editora Pini, 2006.

PEREIRA, C. *Custos diretos e indiretos: o que são e como determiná-los*. Escola Engenharia, 9 abr. 2019. Disponível em: https://www.escolaengenharia.com.br/custos-diretos-e-indiretos/. Acesso em: 01 jun. 2025.