
Medição da Qualidade de Recuperação e Geração em LLMs
com o Framework RAGAS

Gustavo S. Vasconcelos, João Paulo de S. Wakugawa, Bruno M. Nogueira (Orientador)

1Faculdade de Computação – Fundação Universidade Federal de Mato Grosso do Sul (UFMS)
Campo Grande – MS – Brasil

{gustavo vasconcelos, paulo.wakugawa, bruno.nogueira}@ufms.br

Resumo. Este trabalho apresenta uma análise comparativa de Grandes Mode-
los de Linguagem (LLMs) aplicados a um agente conversacional que utiliza a
técnica de Geração Aumentada por Recuperação (RAG). O estudo foi realizado
na plataforma Inithub, utilizando dados reais de estudantes e dados sintéticos
gerados por automação para simular diferentes cenários de uso. Foram avali-
ados três modelos de última geração: OpenAI GPT-5-Chat, Google Gemini 2.5
Pro e Anthropic Claude 3.5 Sonnet. A validação utilizou o framework Ragas,
focando nas métricas de Fidelidade (Faithfulness) e Relevância (Answer Rele-
vancy). Ao final, são discutidos os diferentes comportamentos observados em
cada modelo e como essas caracterı́sticas influenciam a construção de assisten-
tes virtuais para gestão de inovação.

Abstract. This work presents a comparative analysis of Large Language Models
(LLMs) applied to a conversational agent utilizing Retrieval-Augmented Gene-
ration (RAG). The study was conducted on the Inithub platform, using real data
from students and synthetic data generated via automation to simulate different
usage scenarios. Three state-of-the-art models were evaluated: OpenAI GPT-5-
Chat, Google Gemini 2.5 Pro, and Anthropic Claude 3.5 Sonnet. The validation
used the Ragas framework, focusing on Faithfulness and Answer Relevancy me-
trics. Finally, the work discusses the different behaviors observed in each model
and how these characteristics influence the development of virtual assistants for
innovation management.

1. Introdução
A evolução crescente dos Grandes Modelos de Linguagem (Large Language Models
- LLMs) transformou o cenário tecnológico global, impulsionando a adoção acelerada
de Inteligência Artificial em diversos setores [McKinsey & Company 2024]. No en-
tanto, [Zhao et al. 2023], apesar da capacidade de gerar textos coerentes, esses mode-
los ainda possuem limitações intrı́nsecas, principalmente quando aplicados em tarefas
que exigem conhecimentos especı́ficos. Por serem treinados em grandes volumes de
dados públicos, quando colocados em situações em que contextos privados e regras
de negócios são exigidos, acabam gerando respostas imprecisas ou não fundamentadas
[Brown et al. 2020, Ji et al. 2023].

Nesse contexto, surgiu a necessidade de ter mecanismos que permitissem às LLMs
acessar informações externas. Dessa forma, a arquitetura RAG (Retrieval-Augmented Ge-
neration) vem sendo cada vez mais adotada pela indústria. Conforme [Lewis et al. 2020],

nessa abordagem, um mecanismo de recuperação busca documentos relevantes em uma
base externa e os fornece como contexto para a LLM, aumentando a precisão e a
fundamentação das respostas. Entretanto, conforme [Simon et al. 2024], o RAG não é
uma solução única ou monolı́tica, mas um sistema composto por diversas escolhas de
design, como o tipo de modelo gerador e o método de recuperação, o que torna seu de-
senvolvimento altamente experimental. Sendo assim, torna-se essencial medir o impacto
real dessas decisões para garantir que o sistema seja confiável e não dependa apenas de
casos isolados ou situações especı́ficas.

A motivação do presente trabalho surge da necessidade de mensurar, de forma
prática, como a escolha do Modelo de Linguagem influencia a eficácia global de sistemas
RAG, impactando desde a interpretação da intenção do usuário até a geração da resposta
final. Para trazer essa análise para a realidade, utilizamos o Inithub, uma ferramenta de-
senvolvida durante uma competição de inovação tecnológica acadêmica (Pantanal.dev). O
Inithub funciona como um repositório de ’iniciativas’, propostas estratégicas para resolver
problemas ou gerar valor organizacional. A plataforma conta com um agente conversacio-
nal que auxilia no cadastro e utiliza RAG para consultar o banco de dados continuamente.
Assim, quando o sistema identifica um contexto similar, ele apresenta a iniciativa en-
contrada ao usuário, deixando em suas mãos a decisão: seguir com uma nova ideia ou
colaborar com o projeto que já existe. Além disso, três LLMs diferentes foram utilizadas
no experimento, variando de acordo com a sessão do usuário: OpenAI GPT-5-Chat, Go-
ogle Gemini 2.5 Pro e Anthropic Claude 3.5 Sonnet. Dessa forma, podemos ver como as
diferentes capacidades de raciocı́nio e sı́ntese de cada modelo determinam a qualidade da
experiência entregue ao usuário.

A validação do sistema foi feita usando o framework Ragas [Shahul Es 2023] de-
vido a sua capacidade de ser reference-free, isto é, elimina a necessidade de possuir um
conjunto de respostas ideais humanas (ground truth), algo que raramente está disponı́vel
no desenvolvimento ágil de software. A análise foca em duas métricas principais: Faith-
fulness, que garante que a resposta seja estritamente derivada do contexto para prevenir
alucinações; e Answer Relevancy, que penaliza respostas incompletas ou redundantes.

Este trabalho está organizado da seguinte maneira: O Capı́tulo 2 apresenta a
fundamentação teórica sobre LLMs, a arquitetura RAG e o framework de avaliação Ra-
gas. O Capı́tulo 3 detalha a metodologia, descrevendo a implementação do agente no
Inithub, a arquitetura agêntica e o desenho do experimento. O Capı́tulo 4 apresenta os
resultados quantitativos e qualitativos obtidos. O Capı́tulo 5 discute esses achados, cor-
relacionando o desempenho observado com as caracterı́sticas de cada modelo. Por fim, o
Capı́tulo 6 apresenta a conclusão, limitações do estudo e sugestões para trabalhos futuros.

2. Fundamentação Teórica
2.1. Grandes Modelos de Linguagem
No campo da inteligência artificial generativa, os Grandes Modelos de Linguagem
(LLMs) representam um avanço significativo. Possuem a função de processar e gerar
texto de maneira coerente, simulando a forma de escrita e raciocı́nio humano. Basea-
dos na arquitetura Transformers, proposta por [Vaswani et al. 2017], esses modelos se
diferenciam de abordagens anteriores por utilizarem um mecanismo de autoatenção (Self-
Attention).

Modelos antigos como RNN ou LSTM processam textos de forma sequencial, o
que tornava o treinamento lento e impunha uma grande limitação no que se refere a man-
ter contextos longos na memória [Bengio et al. 1994, Hochreiter and Schmidhuber 1997].
O mecanismo de atenção, por outro lado, permite que a LLM analise todo o contexto
fornecido de uma única vez, mapeando quais palavras são mais relevantes para respon-
der a uma determinada pergunta, mesmo que a distância entre elas seja grande. Isso é
crucial para aplicações RAG, pois permite que o modelo receba grandes volumes de do-
cumentos como contexto e consiga encontrar a informação correta para gerar a resposta
[Lewis et al. 2020, Gao et al. 2023].

2.2. Natureza Generativa e Limitações

Apesar da alta capacidade de compreensão, os grandes modelos de linguagem são pro-
babilı́sticos, treinados para prever a próxima palavra mais provável em uma sequência
[Brown et al. 2020]. Logo, as LLMs não ”sabem”de fato a informação; elas apenas repro-
duzem padrões linguı́sticos aprendidos. Isso acarreta duas limitações principais citadas
por [Zhao et al. 2023], as quais motivam este trabalho:

1. Conhecimento estático: Os modelos estão limitados ao que aprenderam no mo-
mento do treinamento, não sendo possı́vel solicitar informações posteriores ao
corte de conhecimento (cutoff).

2. Alucinação: Por não ter a informação clara ou acesso a fatos, o modelo tende a
inventar informações para completar o padrão probabilı́stico de forma plausı́vel.

2.3. Geração Aumentada por Recuperação (RAG)

Tendo em vista as limitações supracitadas, [Lewis et al. 2020] introduziram o conceito
de RAG. O RAG une o conhecimento pré-treinado (memória paramétrica) com uma
memória proveniente de um banco de dados externo contendo informações atualizadas
sobre determinado contexto (não paramétrica).

Essa arquitetura hı́brida funciona em duas etapas. O mecanismo de recuperação
(Retriever) localiza as informações mais relevantes em uma base de conhecimento externa
conforme a entrada do usuário. Após isso, o mecanismo gerador (Generator) recebe os
documentos concatenados ao prompt original e os utiliza como contexto para formular
uma resposta fundamentada. Essa abordagem permite utilizar o sistema em contextos es-
pecı́ficos simplesmente adicionando novos arquivos à base, eliminando a necessidade de
retreinar a rede neural, o que é inviável para a maioria das organizações [Gao et al. 2023].

2.4. Recuperação Vetorial e Embeddings

Para recuperar informações baseadas no significado e não apenas em palavras-chave exa-
tas, utilizam-se os Embeddings. Segundo [Reimers and Gurevych 2019], na proposta do
Sentence-BERT, o objetivo é derivar representações vetoriais onde frases semanticamente
similares estejam próximas no espaço vetorial.

No processo de indexação, os documentos textuais são convertidos em vetores
numéricos de tamanho fixo. Quando é feita uma consulta, ela também é vetorizada, tor-
nando possı́vel calcular a similaridade semântica através de operações matemáticas, como
a distância de Cosseno. Essa abordagem diminui o custo computacional em comparação
ao uso de modelos BERT puros, viabilizando a recuperação em tempo real.

2.5. RAG Modular e Agêntico

O RAG original de [Lewis et al. 2020] é descrito como um fluxo linear (Buscar→ Res-
ponder), mas essa arquitetura evoluiu para formas mais complexas de implementação.
Conforme destacam [Gao et al. 2023], as limitações da abordagem padrão (Naive RAG)
impulsionaram a evolução para o que é conhecido hoje como Modular RAG.

Diferente do modelo linear, o RAG modular possui uma arquitetura composta por
módulos funcionais independentes, o que a torna mais flexı́vel. Segundo o levantamento,
isso permite a utilização de estratégias mais avançadas, como o Routing (roteamento) e a
recuperação adaptativa. Nesse cenário, a LLM passa a atuar na orquestração do sistema,
possuindo autonomia para avaliar a necessidade de busca, reescrever consultas para me-
lhor alinhamento ou selecionar diferentes fontes de dados, adequando-se à complexidade
da entrada do usuário.

2.6. Métricas de Avaliação e Framework RAGAS

A avaliação de sistemas de geração de texto, como agentes conversacionais, apresenta de-
safios significativos. Métricas baseadas em n-gramas, como BLEU e ROUGE, calculam
a qualidade verificando quantas palavras a resposta da máquina tem em comum com uma
resposta humana ideal. Porém, [Liu et al. 2016] demonstraram que essas métricas basea-
das na contagem de palavras não funcionam bem em sistemas de diálogos. De acordo com
o estudo, isso ocorre porque, em conversas reais, as respostas corretas possuem diversas
variações que não usam necessariamente as mesmas palavras.

Para superar essa limitação, o framework RAGAS (Retrieval Augmented Gene-
ration Assessment) propõe o paradigma de ”LLM como Juiz”(LLM-as-a-Judge). Nessa
abordagem, utiliza-se um modelo de linguagem avançado para avaliar semanticamente a
tripla composta por: Pergunta (q), Contexto Recuperado (c(q)) e Resposta Gerada (as(q)).
Conforme [Shahul Es 2023], isso permite uma avaliação sem a necessidade de respostas
humanas pré-anotadas.

O framework Ragas disponibiliza um conjunto abrangente de métricas para avaliar
diferentes componentes do pipeline RAG, divididas em duas categorias: métricas basea-
das em referência (que exigem um gabarito humano ou ground truth) e métricas livres de
referência (reference-free).

Dada a proposta deste trabalho de avaliar o sistema em um cenário de desenvolvi-
mento ágil, onde a anotação manual de gabaritos é custosa ou inexistente, selecionaram-se
para este estudo apenas as métricas capazes de operar exclusivamente com a tripla (Per-
gunta, Contexto, Resposta). A seguir, detalham-se as definições formais das duas métricas
escolhidas que atendem a este critério.

2.6.1. Faithfulness

Essa métrica avalia a consistência real da resposta gerada em relação ao contexto recu-
perado e serve como principal indicador de alucinações. O processo de cálculo descrito
pelos autores ocorre em duas etapas:

1. Decomposição: Uma LLM é utilizada para extrair um conjunto de declarações

atômicas S(as(q)) a partir da resposta gerada, decompondo sentenças longas em
afirmações curtas e focadas.

2. Verificação: Para cada declaração si, o modelo verifica se ela pode ser inferida
logicamente a partir do contexto c(q).

A pontuação de fidelidade (F) é calculada pela razão entre o número de
declarações suportadas pelo contexto (|V |) e o número total de declarações extraı́das (|S|):

F =
|V |
|S|

(1)

2.6.2. Answer Relevancy

Essa métrica mensura o quão pertinente é a geração em relação à pergunta original e
penaliza respostas incompletas ou redundantes. O cálculo não avalia a veracidade, mas a
diretividade.

O algoritmo utiliza uma abordagem de engenharia reversa: solicita-se à LLM que
gere n perguntas artificiais (qi) baseadas exclusivamente na resposta gerada as(q). Em
seguida, calcula-se a similaridade de cosseno (sim) entre os embeddings dessas perguntas
geradas e o embedding da pergunta original q. A pontuação final (AR) é a média dessas
similaridades:

AR =
1

n

n∑
i=1

sim(q, qi) (2)

Uma pontuação alta indica que a resposta gerada é tão especı́fica que permite
reconstruir a pergunta original com alta precisão.

No presente trabalho, estes conceitos e métricas foram aplicados para validar o
agente conversacional da plataforma Inithub, submetendo modelos de diferentes famı́lias
(GPT, Gemini e Claude) ao mesmo fluxo de avaliação. O processo de implementação
do agente, a arquitetura agêntica baseada em grafos e o desenho do experimento são
detalhados na próxima seção.

3. Metodologia
Neste capı́tulo, é feita a descrição dos procedimentos adotados para o desenvolvimento
do agente conversacional, a estratégia de coleta de dados e o desenho experimental para
avaliar a qualidade das respostas geradas pelas LLMs. A abordagem do experimento se
divide em três etapas principais: (i) implementação da arquitetura agêntica na plataforma
Inithub; (ii) construção do dataset contendo interações reais e sintéticas; e (iii) aplicação
do pipeline de avaliação automática utilizando o framework Ragas.

3.1. Ambiente Experimental: Plataforma Inithub e Arquitetura Agêntica
Para realizar as validações, foi utilizado o Inithub, uma plataforma de iniciativas de
inovação desenvolvida durante a competição acadêmica Pantanal.dev. O sistema fun-
ciona via interface web e se comunica com o servidor através de conexões baseadas em
WebSocket, implementadas via framework FastAPI.

O agente foi construı́do utilizando a biblioteca LangGraph, que permite modelar
o fluxo de conversação como um Grafo de Estados (StateGraph). Essa abordagem fornece
ao sistema a capacidade de orquestração, permitindo que o agente decida dinamicamente
qual ferramenta ou fluxo seguir com base na entrada do usuário.

O estado da aplicação (State) é compartilhado entre diferentes nós de processa-
mento. A estrutura do estado foi definida via Pydantic e armazena o histórico de mensa-
gens, os dados da mensagem, os dados da iniciativa (tı́tulo, contexto, tema) e as iniciativas
similares recuperadas.

O fluxo de decisão e roteamento do agente é descrito formalmente pelo Algo-
ritmo 1, que abstrai a lógica implementada:

Algoritmo 1 Lógica de Decisão e Roteamento do Agente
Entrada: Mensagem do usuário (M), Histórico da Sessão (H)
Saı́da: Resposta gerada (R)

1: Estado← AtualizarContexto(H,M)
2: Intencao← ClassificarIntencao(Estado) ▷ Usa LLM para classificar fluxo
3: Dados← ExtrairEntidades(Estado) ▷ Identifica tı́tulo, tema, etc.
4: if Intencao == ”Consultar Iniciativa” then
5: Contexto← BuscarV etorial(Dados) ▷ Recuperação RAG
6: R← GerarResposta(Contexto,Dados)
7: else if Intencao == ”Registrar Iniciativa” then
8: Similar ← BuscarV etorial(Dados)
9: R← GuiarCadastro(Dados, Similar)

10: else ▷ Fluxo de Direcionamento/Dúvidas Gerais
11: R← ResponderConversa(Estado)
12: end if
13: return R

Conforme detalhado no algoritmo, o processamento ocorre nas seguintes etapas
lógicas:

1. Classificação de Intenção: A entrada do usuário é submetida a uma LLM confi-
gurada para saı́da estruturada, classificando a intenção em três categorias: direci-
onar, consultar ou registrar.

2. Extração de Entidades: Independentemente da intenção, o sistema tenta extrair
informações relevantes da mensagem (como tema ou entregáveis) para preencher
o objeto de domı́nio Initiative.

3. Roteamento Condicional: Com base na classificação, o grafo direciona o fluxo
para um dos nós especialistas:

• Guide: Para dúvidas gerais e orientação.
• Find Initiative: Executa o pipeline RAG para buscar iniciativas similares

existentes.
• Register Initiative: Auxilia o usuário no preenchimento dos campos obri-

gatórios para cadastro.

Dessa forma, isolamos a lógica de recuperação no nó de consulta, fazendo com
que seja mais fácil substituir e comparar os LLMs sem afetar o restante do sistema.

3.2. Aquisição e Geração de Dados

Visando possibilitar uma avaliação relevante, construiu-se um conjunto de dados combi-
nando interações reais de usuários com dados sintéticos gerados por automação.

3.2.1. Coleta de Interações Reais

Para a coleta de dados reais, a plataforma foi disponibilizada para um grupo variado de
pessoas (versão demo). Para capturar as interações sem interferir na performance da
aplicação, desenvolveu-se um mecanismo de interceptação baseado no padrão de projeto
Decorator.

O decorador é aplicado aos nós de geração de resposta e atua como um mid-
dleware de observabilidade. A cada execução bem-sucedida, o decorador captura assin-
cronamente:

• O prompt do usuário e a resposta gerada pelo agente;
• Os metadados do modelo utilizado (nome e versão);
• O contexto recuperado da base vetorial (RAG);
• O identificador da sessão.

Esses dados foram enviados automaticamente para uma planilha externa (Google
Sheets), persistindo as triplas (pergunta, contexto, resposta) necessárias para a avaliação
reference-free. Nesta etapa, registrou-se a participação de 26 usuários distintos.

3.2.2. Geração de Dados Sintéticos e Automação

Tendo em vista o baixo volume de amostras reais, foi empregada uma estratégia de au-
mento de dados, simulando usuários. Para isso, foi desenvolvido um script de automação
utilizando a biblioteca (Selenium) para interagir diretamente com a interface web do
Inithub.

A automação baseia-se em um agente autônomo, alimentado pelo modelo
gpt-4o-mini, instruı́do a simular o fluxo de cadastro de iniciativas. O prompt do
agente definiu personas com diferentes nı́veis de clareza e objetividade, gerando variações
linguı́sticas e cenários de testes diversificados.

Visando a coerência das simulações, o agente foi alimentado com exemplos de
cenários. A Figura 1 exemplifica a estrutura das iniciativas, utilizada como base para que
o agente formulasse suas mensagens de cadastro.

Figura 1. Exemplo de cenário semente (Seed Scenario) utilizado na automação.
{

"title": "Sistema de Gestão de Biblioteca Digital",
"theme": "Tecnologia e Educação",
"context": "A biblioteca usa sistema manual...",
"description": "Plataforma web para reservas...",
"deliverable": "Sistema web completo...",
"evaluation_criteria": "Redução do tempo em 70%."

}

Fonte: Elaborado pelo autor.

Com isso, acrescentamos 252 mensagens ao dataset, ampliando a base de testes
para a análise de robustez e consistência das métricas.

3.3. Pipeline de Recuperação e Geração
O componente central do experimento é o módulo RAG, acionado no nó de busca de
iniciativa. O processo de recuperação utiliza busca semântica vetorial. As iniciativas
cadastradas no banco de dados foram convertidas em embeddings utilizando o modelo
text-embedding-3-small.

Durante a execução, a consulta do usuário é vetorizada e comparada com o banco
vetorial através da similaridade do cosseno. Os documentos com a maior pontuação de
similaridade são injetados no prompt do sistema como contexto.

A implementação desta lógica pode ser observada no Código 2, que ilustra como
o nó de busca orquestra a recuperação dos embeddings e a construção do prompt final
enviado ao modelo.

Figura 2. Implementação do nó de recuperação e geração (RAG).

@decorators.log_node
@decorators.with_prompt()
@decorators.send_test_case()
def find_initiative_v1(state: State, prompt_template=None):

initiative = state.get("initiative")

1. Etapa de Recuperação (Retrieval)
similar_initiatives = (

backend.find_similar_embeddings(initiative) if initiative else []
)

2. Injeção de Contexto (Augmentation)
prompt_content = (prompt_template or "").format(

SIMILAR_INITIATIVES=similar_initiatives
)

3. Geração da Resposta (Generation)
result = {

"messages": default_llm.invoke(
state["messages"]
+ [

{
"role": "system",
"content": prompt_content,

}
],

),
"similar_initiatives": similar_initiatives,

}
return result

Fonte: Elaborado pelo autor.

Para avaliar o impacto do modelo gerador, o sistema foi configurado para alternar
dinamicamente entre três LLMs de última geração, acessadas via API OpenRouter, um
gateway que unifica o acesso a diferentes famı́lias de modelos.

• OpenAI GPT-5-Chat [OpenAI 2025]: Selecionado por representar um ”sistema
unificado”que integra capacidades de resposta rápida com um módulo de reflexão
estendida (thinking). A documentação de lançamento destaca uma redução signi-
ficativa na taxa de alucinações (até 80% menos erros factuais com reflexão ativa) e
um aprimoramento no cumprimento de instruções complexas, fatores crı́ticos para
garantir a fidelidade das respostas no contexto do RAG.

• Google Gemini 2.5 Pro [Gemini Team, Google 2025]: Selecionado por sua nova
capacidade de raciocı́nio estendido (”thinking model”), projetada para lidar com
tarefas complexas antes de gerar uma resposta. Além disso, seu suporte a contex-
tos longos foi um fator determinante, permitindo que o sistema analise um grande
volume de iniciativas recuperadas sem perder informações relevantes.

• Anthropic Claude 3.5 Sonnet [Anthropic 2024]: Escolhido por sua capacidade
aprimorada de compreender nuances e seguir instruções complexas. O modelo
destaca-se na geração de textos com tom natural e ”relacionável”, além de de-
monstrar alta proficiência em orquestrar fluxos de trabalho de múltiplas etapas
(multi-step workflows), o que é crucial para a tomada de decisão dentro da arqui-
tetura agêntica do sistema.

3.4. Avaliação Automatizada com Ragas

Dada a inviabilidade de avaliar manualmente centenas de interações, utilizou-se o fra-
mework Ragas (versão ≥ 0.2.15) para computar as métricas de qualidade de forma au-
tomática e em lote, processando o arquivo CSV consolidado.

Para a execução deste pipeline de avaliação, instanciou-se o modelo GPT-4o como
”LLM-Juiz”, responsável por calcular os scores das métricas selecionadas, conforme de-
talhado na fundamentação teórica:

1. Faithfulness: Aplicada para verificar a aderência estrita da resposta aos
retrieved contexts capturados pelo decorador, penalizando alucinações
extrı́nsecas.

2. Answer Relevancy: Aplicada para mensurar a objetividade da resposta em
relação ao prompt original do usuário.

Os escores resultantes, normalizados no intervalo [0, 1], foram agregados por mo-
delo para compor as tabelas de análise apresentadas no capı́tulo de resultados.

3.5. Reprodutibilidade e Ética

Visando garantir a transparência e a reprodutibilidade deste estudo, os artefatos de soft-
ware e os procedimentos de avaliação foram disponibilizados publicamente.

• Código Fonte do Sistema: A implementação completa do agente e da
plataforma Inithub encontra-se no repositório: https://github.com/
engsoft-pantanal-dev/inithub/tree/main.

https://github.com/engsoft-pantanal-dev/inithub/tree/main
https://github.com/engsoft-pantanal-dev/inithub/tree/main

• Pipeline de Avaliação: O notebook contendo a configuração do Ra-
gas, carregamento dos datasets e o cálculo das métricas está dis-
ponı́vel em: https://colab.research.google.com/drive/
1LD9yEgcGk7VicU0zE2OaYHbPnMVXbCn_?authuser=1#scrollTo=
Ldo8UjEG5N5u.

• Ética e Dados: Em conformidade com as boas práticas de pesquisa, os dados cole-
tados durante a demonstração passaram por um processo de anonimização prévia,
removendo identificadores pessoais dos participantes antes do processamento.

4. Resultados

Neste capı́tulo, serão apresentados os dados e as estatı́sticas obtidas após a execução do
pipeline de avaliação. Os resultados foram organizados em três seções: análise estatı́stica
das métricas nos dados reais e sintéticos, e as observações após a análise qualitativa ma-
nual.

4.1. Considerações Estatı́sticas

Para apresentar os dados, foram computadas estatı́sticas descritivas fundamentais para
caracterizar o comportamento dos LLMs. Os indicadores principais foram:

• Média: Indica o desempenho central do modelo na métrica avaliada.
• Mediana: Utilizada para mitigar o impacto de valores extremos (outliers), comum

em LLMs que podem oscilar entre respostas perfeitas e alucinações totais.
• Desvio Padrão: Medida de dispersão que indica a estabilidade operacional. Va-

lores altos indicam comportamento menos previsı́vel.
• Mı́nimo e Máximo: Definem a amplitude de qualidade observada nas amostras.

4.2. Desempenho Quantitativo: Dados Reais (Piloto)

O primeiro cenário de avaliação compreende as interações com usuários reais (N=26).

4.2.1. Faithfulness (Fidelidade)

A Tabela 1 apresenta os valores obtidos para a métrica de Faithfulness (Fidelidade).

Tabela 1. Estatı́sticas descritivas da métrica Faithfulness (dados reais).

Modelo Registros Média Mediana Desvio Mı́nimo Máximo

anthropic/claude-3.5-sonnet 1 0.2500 0.2500 — 0.2500 0.2500
openai/gpt-5-chat 5 0.2260 0.1250 0.2280 0.0000 0.5714
google/gemini-2.5-pro 20 0.1781 0.1389 0.2001 0.0000 0.6667

Observa-se que o Gemini 2.5 Pro foi o modelo predominante no roteamento,
apresentando consistência moderada. O GPT-5 Chat, apesar da média superior, demons-
trou maior variabilidade (desvio de 0.2280).

https://colab.research.google.com/drive/1LD9yEgcGk7VicU0zE2OaYHbPnMVXbCn_?authuser=1#scrollTo=Ldo8UjEG5N5u
https://colab.research.google.com/drive/1LD9yEgcGk7VicU0zE2OaYHbPnMVXbCn_?authuser=1#scrollTo=Ldo8UjEG5N5u
https://colab.research.google.com/drive/1LD9yEgcGk7VicU0zE2OaYHbPnMVXbCn_?authuser=1#scrollTo=Ldo8UjEG5N5u

4.2.2. Answer Relevancy (Relevância)

Para a métrica de Relevância da Resposta (Answer Relevancy), os dados são detalhados
na Tabela 2.

Tabela 2. Estatı́sticas descritivas da métrica Answer Relevancy (dados reais).

Modelo Registros Média Mediana Desvio Mı́nimo Máximo

google/gemini-2.5-pro 38 0.3044 0.2978 0.1817 0.0000 0.7690
anthropic/claude-3.5-sonnet 19 0.3271 0.3168 0.1934 0.0000 0.8167
openai/gpt-5-chat 23 0.3218 0.2963 0.1848 0.0714 0.6562

4.3. Desempenho Quantitativo: Dados Sintéticos (Estendido)
O segundo cenário apresenta os resultados do teste de estresse com dados sintéticos
(N=252), ampliando a base estatı́stica.

4.3.1. Faithfulness (Fidelidade)

A Tabela 3 apresenta os resultados de fidelidade neste cenário.

Tabela 3. Métrica Faithfulness com dados artificiais.
Modelo Registros Média Mediana Desvio Mı́nimo Máximo

google/gemini-2.5-pro 49 0.1726 0.1667 0.2017 0.0000 0.6667
anthropic/claude-3.5-sonnet 57 0.1874 0.0833 0.2321 0.0000 0.8421
openai/gpt-5-chat 52 0.1395 0.0000 0.1917 0.0000 0.6000

Os dados revelam três perfis distintos de distribuição de scores:

1. Claude 3.5 Sonnet: Apresentou o maior potencial (máximo de 0.84), mas com
maior instabilidade.

2. Gemini 2.5 Pro: Demonstrou ser o mais robusto, com a maior mediana (0.1667).
3. GPT-5 Chat: Apresentou mediana zero nas interações sintéticas.

4.3.2. Answer Relevancy (Relevância)

Em contrapartida, na métrica de relevância (Tabela 4), observa-se uma alteração na
liderança dos indicadores.

Tabela 4. Métrica Answer Relevance com dados artificiais.
Modelo Registros Média Mediana Desvio Mı́nimo Máximo

google/gemini-2.5-pro 79 0.4147 0.3812 0.1602 0.0000 0.8457
anthropic/claude-3.5-sonnet 93 0.3871 0.4407 0.2601 0.0000 0.8825
openai/gpt-5-chat 80 0.4637 0.4358 0.1718 0.1391 0.8694

4.4. Achados da Análise Qualitativa

A inspeção qualitativa manual, realizada por amostragem das interações, identificou
padrões textuais especı́ficos que permitem correlacionar o desempenho com as carac-
terı́sticas de design dos modelos:

• Padrão de Extrapolação (Claude): A promessa de ”nuance e tom natural”deste
modelo resultou, na prática, em uma tendência a ”ajudar demais”. Observou-se
que o Claude frequentemente detalha pontos que não estavam no contexto original
para tornar a conversa mais fluida, o que enriquece a experiência do usuário mas
penaliza drasticamente o score de Faithfulness (alucinação extrı́nseca).

• Padrão Pragmático (GPT-5): Refletindo sua caracterı́stica de ”sistema unifi-
cado”focado em resolução, as respostas mostraram-se diretas e utilitárias. O mo-
delo priorizou responder à dúvida do usuário (Alta Relevância) mesmo quando
o contexto recuperado era insuficiente, utilizando seu conhecimento interno em
detrimento da restrição documental.

• Padrão Formal (Gemini): Alinhado à sua arquitetura de ”thinking model”com
foco em contextos longos, o Gemini manteve um comportamento conservador.
Suas respostas frequentemente copiavam a estrutura dos documentos recuperados,
resultando na maior estabilidade de fidelidade observada.

5. Discussão

Nesta seção, interpretam-se os resultados apresentados anteriormente, comparando os
cenários de teste e analisando o comportamento prático de cada modelo.

5.1. Convergência entre Cenários Real e Sintético

A análise conjunta dos dois testes (com usuários reais e com o robô simulado) mostra
que o uso de dados sintéticos foi eficaz. Eles serviram para confirmar tendências que
apareceram no teste piloto, mas que precisavam de mais dados para serem validadas:

• Assimetria do Claude: A instabilidade observada na única amostra real do
Claude 3.5 se confirmou e se intensificou com o aumento do volume de dados, va-
lidando a hipótese de que seus picos de qualidade vêm acompanhados de variações
bruscas (alto desvio padrão).

• Previsibilidade do Gemini: O comportamento ”médio e estável”do Gemini 2.5
Pro se manteve consistente em ambas as bases, validando-o como a opção conser-
vadora.

• Evolução do GPT-5: O modelo mostrou que, embora tenha baixa fidelidade do-
cumental (ignora o contexto com frequência), sua capacidade de entregar respos-
tas relevantes melhora substancialmente quando analisada em volume, sugerindo
uma ”inteligência geral”superior à sua capacidade de recuperação estrita.

Essa convergência aumenta a confiança na interpretação global dos resultados e
valida o uso da automação via gpt-4o-mini como um proxy eficaz para avaliação de
sistemas conversacionais.

5.2. Correlação entre Capacidades Declaradas e Desempenho

Ao confrontar os resultados obtidos com as justificativas de seleção descritas na metodo-
logia, é possı́vel traçar uma correlação direta entre as capacidades arquiteturais de cada
modelo e seu comportamento no pipeline RAG:

1. OpenAI GPT-5-Chat:A documentação promete redução de alucinações, mas no
contexto do RAG, o modelo tendeu a confiar mais no seu próprio conhecimento
do que nos documentos fornecidos. Por outro lado, a promessa de ”inteligência
unificada”se confirmou na métrica de Relevância: ele foi o melhor em entender a
intenção do usuário e entregar uma solução prática.

2. Google Gemini 2.5 Pro: A escolha deste modelo por sua capacidade de raciocı́nio
(”thinking model”) provou-se correta. O processamento extra parece ajudar o
modelo a se ater mais aos documentos enviados, resultando na maior estabilidade
de fidelidade entre os testados.

3. Anthropic Claude 3.5 Sonnet: A caracterı́stica de ”tom natural e hu-
mano”funcionou de forma contraditória. Para tornar a conversa mais fluida, o
modelo frequentemente adicionou detalhes que não existiam na iniciativa origi-
nal. Ou seja, a tentativa de ser mais ”humano”acabou gerando alucinações.

5.3. Sı́ntese dos Perfis

Os resultados apontam para uma escolha clara entre criatividade e precisão. A Tabela 5
resume os pontos fortes e fracos identificados.

Tabela 5. Sı́ntese do perfil dos modelos avaliados.

Modelo Ponto Forte Ponto Fraco

Claude 3.5 Sonnet Qualidade de escrita (Máximos) Instabilidade / Alucinação
GPT-5 Chat Relevância e utilidade Baixa fidelidade ao contexto
Gemini 2.5 Pro Estabilidade e segurança Menor brilho criativo

Esses perfis indicam aplicações distintas. Para sistemas crı́ticos que não podem
conter erros factuais (como na área jurı́dica), o Gemini é a escolha mais segura. Para
assistentes focados em gerar ideias, o GPT-5 oferece maior utilidade. Já o Claude exige
camadas extras de verificação devido à sua instabilidade.

5.4. Limitações e Ameaças à Validade

É importante destacar as limitações deste trabalho. A quantidade de usuários reais foi
reduzida (N=26), o que aumentou a dependência dos dados simulados para a análise.

Além disso, a ferramenta utilizada para avaliar as respostas (o ”Juiz”) é baseada no
GPT-4o. Existe a possibilidade de um viés de avaliação, onde o juiz favorece as respostas
do GPT-5 por terem um estilo de escrita semelhante, o que poderia inflar levemente suas
notas de relevância.

Por fim, todos os dados coletados foram anonimizados, garantindo a privacidade
dos participantes e a ética da pesquisa.

6. Conclusão e Trabalhos Futuros

Este trabalho teve como objetivo principal analisar como a escolha do Modelo de Lingua-
gem (LLM) influencia a qualidade de um assistente virtual que usa a técnica RAG. Para
isso, o sistema foi implementado na plataforma Inithub e testado tanto com estudantes
reais quanto com dados simulados por computador.

Os resultados mostraram que não existe um modelo que seja o melhor em tudo.
Percebeu-se que existe uma troca: ou o modelo é muito fiel ao documento, ou ele é mais
criativo e útil. O Google Gemini 2.5 Pro se mostrou a opção mais estável e se-
gura, ideal para quando o sistema não pode errar a informação do contexto. Já o OpenAI
GPT-5-Chat foi o que melhor entendeu o que o usuário queria e deu as respostas mais
diretas, mesmo que às vezes ele tenha ignorado um pouco os documentos para usar seu
próprio conhecimento. O Claude 3.5 Sonnet escreve muito bem, mas seus resul-
tados variaram muito, ora sendo excelentes, ora inventando informações, o que exige
cuidado no seu uso.

Além disso, ficou comprovado que usar dados sintéticos (gerados por automação)
é uma estratégia válida. Os testes feitos pelo robô mostraram resultados muito parecidos
com os testes feitos por pessoas reais, o que ajuda muito a testar o sistema mais rápido
antes de lançar para o público.

Como sugestão para trabalhos futuros, a principal ideia é deixar a plataforma dis-
ponı́vel por mais tempo. Com mais pessoas usando e cadastrando iniciativas de verdade,
teremos um banco de dados maior para confirmar se esses resultados se mantêm a longo
prazo.

Outro passo importante seria criar um conjunto de ”respostas ideais”(gabarito)
escritas por humanos. Hoje, nós avaliamos o sistema sem esse gabarito, mas se tivermos
as respostas certas para comparar, poderemos usar outras métricas do Ragas que dão uma
visão mais detalhada sobre a qualidade.

Por fim, recomenda-se testar novos modelos que estão surgindo no mercado, in-
clusive modelos de código aberto que podem ser mais baratos, e também testar novas
formas de escrever os prompts (instruções) para tentar corrigir a instabilidade que encon-
tramos no modelo Claude.

Referências

[Anthropic 2024] Anthropic (2024). Claude 3.5 sonnet. https://www.anthropic.
com/news/claude-3-5-sonnet.

[Bengio et al. 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term de-
pendencies with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157–166.

[Brown et al. 2020] Brown, T. et al. (2020). Language models are few-shot learners. Ad-
vances in Neural Information Processing Systems.

[Gao et al. 2023] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J.,
and Wang, H. (2023). Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997.

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

[Gemini Team, Google 2025] Gemini Team, Google (2025). Gemini 2.5: Pushing the fron-
tier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities. Technical Report arXiv:2507.06261v5, Google.

[Hochreiter and Schmidhuber 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.

[Ji et al. 2023] Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Ma-
dotto, A., and Fung, P. (2023). Survey of hallucination in natural language generation.
ACM Computing Surveys, 55(12):1–38.

[Lewis et al. 2020] Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-augmented gene-
ration for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems.

[Liu et al. 2016] Liu, C.-W., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., and Pineau,
J. (2016). How not to evaluate your dialogue system: An empirical study of unsuper-
vised evaluation metrics for dialogue response generation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 2122–2132.

[McKinsey & Company 2024] McKinsey & Company (2024). The state of ai in early 2024:
Gen ai adoption spikes and starts to generate value. Technical report, McKinsey &
Company. Acesso em: [Data de hoje].

[OpenAI 2025] OpenAI (2025). Introducing gpt-5: Our smartest, fastest, and most helpful
model yet. https://openai.com/pt-BR/index/introducing-gpt-5/.
Acessado em: 28 nov. 2025.

[Reimers and Gurevych 2019] Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. In EMNLP-IJCNLP 2019, pages
3982–3992, Hong Kong, China.

[Shahul Es 2023] Shahul Es, Jithin James, L. E.-A. S. S. (2023). Ragas: Automated evalu-
ation of retrieval augmented generation. arXiv preprint arXiv:2309.15217.

[Simon et al. 2024] Simon, S., Mailach, A., Dorn, J., and Siegmund, N. (2024). A methodo-
logy for evaluating rag systems: A case study on configuration dependency validation.
arXiv preprint arXiv:2410.08801.

[Vaswani et al. 2017] Vaswani, A. et al. (2017). Attention is all you need. Advances in
Neural Information Processing Systems.

[Zhao et al. 2023] Zhao, W. X. et al. (2023). A survey of large language models. arXiv
preprint arXiv:2303.18223.

https://openai.com/pt-BR/index/introducing-gpt-5/

	Introdução
	Fundamentação Teórica
	Grandes Modelos de Linguagem
	Natureza Generativa e Limitações
	Geração Aumentada por Recuperação (RAG)
	Recuperação Vetorial e Embeddings
	RAG Modular e Agêntico
	Métricas de Avaliação e Framework RAGAS
	Faithfulness
	Answer Relevancy

	Metodologia
	Ambiente Experimental: Plataforma Inithub e Arquitetura Agêntica
	Aquisição e Geração de Dados
	Coleta de Interações Reais
	Geração de Dados Sintéticos e Automação

	Pipeline de Recuperação e Geração
	Avaliação Automatizada com Ragas
	Reprodutibilidade e Ética

	Resultados
	Considerações Estatísticas
	Desempenho Quantitativo: Dados Reais (Piloto)
	Faithfulness (Fidelidade)
	Answer Relevancy (Relevância)

	Desempenho Quantitativo: Dados Sintéticos (Estendido)
	Faithfulness (Fidelidade)
	Answer Relevancy (Relevância)

	Achados da Análise Qualitativa

	Discussão
	Convergência entre Cenários Real e Sintético
	Correlação entre Capacidades Declaradas e Desempenho
	Síntese dos Perfis
	Limitações e Ameaças à Validade

	Conclusão e Trabalhos Futuros

