

Serviço Público Federal Ministério da Educação **Fundação Universidade Federal de Mato Grosso do Sul** Instituto de Química Programa de Pós Graduação em Química – Mestrado e Doutorado

IMPREGNAÇÃO DO ANTIMONIATO DE MEGLUMINA EM PARTÍCULAS DE SÍLICA MESOPOROSA VISANDO A LIBERAÇÃO MODIFICADA DO FÁRMACO

Teófilo Fernando Mazon Cardoso

Orientador: Prof. Dr. Marco Antonio Utrera Martines

CAMPO GRANDE-MS 2016

Unidade XI – Instituto de Química – UFMS Cidade Universitária, s/n * Caixa Postal 549 Fone/Fax 067 3345-7009 Fone 067 3345-7010 79070-900 * Campo Grande (MS) * <u>http://www.ufms.br</u> e mail: pgquimica.propp@ufms.br

Serviço Público Federal Ministério da Educação **Fundação Universidade Federal de Mato Grosso do Sul** Instituto de Química Programa de Pós Graduação em Química – Mestrado e Doutorado

IMPREGNAÇÃO DO ANTIMONIATO DE MEGLUMINA EM PARTÍCULAS DE SÍLICA MESOPOROSA VISANDO A LIBERAÇÃO MODIFICADA DO FÁRMACO

Teófilo Fernando Mazon Cardoso

Tese apresentada ao Programa de Pós-Graduação em Química – Nível de Doutorado – da Universidade Federal de Mato Grosso do Sul para obtenção do título de Doutor em Química (área de concentração: Química)

Orientador: Prof. Dr. Marco Antonio Utrera Martines

CAMPO GRANDE-MS 2016

Unidade XI – Instituto de Química – UFMS Cidade Universitária, s/n * Caixa Postal 549 Fone/Fax 067 3345-7009 Fone 067 3345-7010 79070-900 * Campo Grande (MS) * <u>http://www.ufms.br</u> e mail: pgquimica.propp@ufms.br

Serviço Público Federal Ministério da Educação Fundação Universidade Federal de Mato Grosso do Sul

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA – CURSOS DE MESTRADO E DOUTORADO

TERMO DE DEFESA

()-Dissertação (X)-Tese ()-Qualificação

ALUNO

Teófilo Fernando Mazon Cardoso

TÍTULO DO TRABALHO

IMPREGNAÇÃO DO ANTIMONIATO DE MEGLUMINA EM PARTÍCULAS DE SÍLICA MESOPOROSA VISANDO A LIBERAÇÃO MODIFICADA DO FÁRMACO.

Defesa de Tese de Doutorado em Química/UFMS, submetida à Comissão Examinadora designada pelo Colegiado do Programa de Pós-Graduação em Química – Nível de Mestrado e Doutorado, do Instituto de Química da Fundação Universidade Federal de Mato Grosso do Sul (**Resolução nº** 2/2016), como parte dos requisitos necessários para titulação no curso.

COM	ISSÃO EXAMINADORA	
NOME	INSTITUIÇÃO DE ENSINO	ASSINATURA
Marco Antonio Utrera Martines	UFMS	Coffine Lo
Adriana Pereira Duarte	UFMS	Adiene P. Ducote
Alexandre Alves Machado	UCDB	1 AMARCOMST
Carla Cardozo Pinto de Arruda	UFMS	Carlo Cardward ande
Onofre Salgado Siqueira	UFMS	(

Campo Grande, 19 de fevereiro de 2016

Instituto de Química - UFMS

Cidade Universitária, s/n - Caixa Postal 549 - Fone/Fax 067xx 3345-3552 - Fone 067xx 3345-3546 Av. Senador Filinto Müller nº 1555 - CEP: 79074-460 - Campo Grande (MS) <u>http://www.ufms.br</u> - <u>www.quimica.sites.ufms.br</u>

Dedico este trabalho à minha querida família...

AGRADECIMENTOS

A Deus pela oportunidade de crescer espiritualmente.

A minha amada companheira de todos os momentos Andréia......eu te amoe muito mais......as minhas filhas Manuela e Helena, princesas que são fonte constante de inspiração em minha vida.

Aos meus pais Mário e Ivanir que sempre me amaram incondicionalmente em todas as fases da vida.

Aos meus segundos pais Pedro e Edenir que deram suporte fundamental a minha família enquanto distante por diversos momentos. A Tia Maria que auxiliou no cuidado das meninas por inúmeras vezes.

As minhas irmãs e irmãos Denise e Leonardo, Carol e Diego, Anderson que em pensamento torceram por mim.

Ao orientador Prof. Dr. Marco Antonio Utrera Martines que acreditou nesta proposta de pesquisa e auxiliou muito para o seu pleno desenvolvimento.

Ao Prof. Dr. Frédéric Jean George Frezard do ICB/UFMG que me acolheu no seu grupo de pesquisa e Adriel Araújo Fernandes Ferreira que colaborou com o desenvolvimento da pesquisa.

Ao Prof. Dr. Petr Melnikov da FAMED/UFMS e ao Anderson Fernandes da Silva pelo grande auxílio na quantificação do antimônio por ICP-OES.

Prof. Dr. Samuel Leite de Oliveira do Instituto de Física da UFMS e Keurison Figueiredo Magalhães pelo auxílio nas medidas de FT-IR.

Prof. Dr. Lincoln Carlos Silva de Oliveira e a Silvanice Aparecida Lopes dos Santos pelas medidas de análise térmica.

A Juliana Camila Fischer Karnopp, Juliana Jorge, Roberto Medeiros Silveira e Silvana Pontes Pereira pelo auxílio no LP6 durante o doutorado.

Aos amigos do LTF que acompanharam esta trajetória.

A UFMS pela concessão do afastamento e compreensão dos colegas do Curso de Farmácia pelo apoio e confiança.

A FUNDECT pelos recursos disponibilizados.

Ao CNPq pela bolsa de Doutorado Sanduíche no País. Aos docentes do Curso de Pós Graduação em Química pelos conhecimentos e experiências repassadas.

A todos que de alguma maneira contribuíram nesta pesquisa.

Nasceste no lar que Precisavas; Vestiste o Corpo Físico que merecias; Moras onde melhor Deus te proporcionou, De acordo com teu adiantamento: Possuímos os recursos financeiros coerentes com as tuas necessidades, Nem mais, nem menos, mas o justo para as tuas lutas terrenas; Teu ambiente de trabalho é o que elegeste espontaneamente para tua realização; Teus parentes e amigos, são as almas que atraíste, com a tua própria afinidade; Portanto, teu destino está constantemente sob teu controle, Tu escolhes, eleges, atrais, buscas, expulsas, modificas, Tudo aquilo que te rodeia a existência; Teus pensamentos e vontades São a chave de teus atos e atitudes, São as fontes de atração e repulsão na tua jornada, vivência; Não reclames nem te faças de vítima; Antes de tudo, analisa e observa; A mudança está em tuas mãos, Reprograma tuas metas, Busca o bem e viverás melhor, Embora ninguém possa voltar atrás e fazer um novo começo Qualquer um pode começar agora e fazer um Novo Fim.

Francisco do Espírito Santo Neto, ditado pelo espírito Hammed. *Um Modo de Entender: Uma Nova Forma de Viver.* São Paulo: Boa Nova, 2004.

RESUMO

O tratamento farmacológico racional consiste em atender plenamente as necessidades do paciente com a menor posologia medicamentosa possível, mantendo concentrações adeguadas do fármaço no organismo suficientes para controlar a infecção do indivíduo. O desenvolvimento de novas formas farmacêuticas modifica a cedência do fármaco, aperfeiçoando o tratamento farmacológico, minimizando oscilações do fármaco na corrente sanguínea, resultando em menores efeitos adversos. O antimoniato de meglumina é o fármaco de escolha para o tratamento da leishmaniose. Seu uso ocasiona inúmeros efeitos colaterais e elevada toxicidade. Uma estratégia interessante para a modulação da liberação de fármacos é a incorporação destes em partículas de sílica mesoporosa. As sílicas mesoporosas apresentam diferentes dimensões que possuem uma rede desordenada de ligações siloxano e grupos silanóis livres que podem reagir com outras espécies químicas. A impregnação de fármacos em matrizes de sílica ocasionam alterações no perfil de liberação por mecanismos diversos. Não existem relatos na literatura da associação da sílica mesoporosa com o antimoniato de meglumina. Nesta pesquisa o objetivo foi sintetizar e caracterizar diferentes partículas de sílica mesoporosa visando o carreamento do antimoniato de melgumina para modificação do perfil de cedência do fármaco no organismo visando o aperfeicoamento do tratamento da leishmaniose. Foram sintetizadas quatro matrizes de sílica mesoporosa, SBA-16, MCM-41, MSU-3 e MSU-4, sendo caracterizadas pelas técnicas: espectroscopia na região do infravermelho, análise termogravimétrica, isotermas de adsorção e dessorção de nitrogênio a 77K, difração de raios X, microscopia eletrônica de varredura e microscopia eletrônica de transmissão. Para a quantificação do antimônio nas amostras foi empregado um Espectrômetro de Emissão Ótica com fonte de Plasma Acoplado Indutivamente com gerador de hidretos. A impregnação do antimoniato de meglumina nas diferentes matrizes de sílica foi investigada guanto ao tempo e concentração de sílica no meio reacional. A liberação do fármaco pelas matrizes de sílica foi avaliada em meio ácido e neutro por até 24 horas. As quatro matrizes de sílica sintetizadas foram caracterizadas e identificadas quanto a morfologia, estrutura organizacional interna, área superficial, diâmetro e volume dos poros, sendo estes parâmetros em conformidade com o descrito na literatura. O método de quantificação do antimônio foi validado apresentando linearidade em intervalo específico, preciso para medidas realizadas em um mesmo dia ou em dias alternados, exato frente ao processamento de amostras, com limites de detecção e quantificação adequados para os experimentos com as matrizes de sílica mesoporosa. As quantidades de antimoniato de meglumina impregnada nas sílicas foram: ~29 % (SBA-16), ~25 % (MCM-41), ~22 % (MSU-3) e ~8 % (MSU-4). A liberação variou de acordo com o tipo de matriz e meio de dissolução empregada (meio ácido: MSU-3 ~48 %, MCM-41 ~45 %, SBA-16 ~37 %, MSU-4 ~30 %; meio neutro: SBA-16 ~26 %, MSU-4 ~24 %, MCM-41 ~21 %, MSU-3 ~21 %), predominando o modelo de zero ordem para a cinética. As matrizes de sílica mesoporosa são carreadores interessantes para o antimoniato de meglumina, sendo os resultados promissores para a realização de experimentos in vitro.

Palavras-chave: perfil de liberação. SBA-16. MCM-41. MSU-3. MSU-4.

ABSTRACT

Rational drug treatment is to fully meet the patient's needs with the smallest possible drug dosage, while maintaining adequate concentrations of drug in the body sufficient to control the condition of the individual. The development of new pharmaceutical forms modifies the transfer of the drug by improving drug treatment drug while minimizing fluctuations in the bloodstream resulting in fewer adverse effects. The meglumine antimoniate is the drug of choice for the treatment of leishmaniasis. Its use causes numerous side effects and high toxicity. An interesting strategy for modulating the drug release is the incorporation in these mesoporous silica particles. The mesoporous silica feature different dimensions that have a disordered network of siloxane bonds and free silanol groups which can react with other chemical species. The impregnation the sílica matrices drugs cause changes in the release profile for several mechanisms. There are no reports in the literatura of the association of mesoproprous sílicas with meglumine antimoniate. In this research the goal was to synthesize and characterize different particles of mesoporous silica targeting the entrainment of antimoniate melgumina for modification of drug transfer profile in the body aiming to improve the treatment of leishmaniasis. Four arrays of mesoporous silica were synthesized SBA-16, MCM-41, MSU-3 and MSU-4, being characterized by techniques: spectroscopic in the infrared, thermal gravimetric analysis, adsorption and desorption isotherms of nitrogen at 77K, diffraction X-ray, scanning electron microscopy and transmission electron microscopy. For the quantification of antimony in the samples was employed a spectrometer Optical Emission with Inductively Coupled Plasm source with hydrides generator. The impregnation of meglumine antimoniate in different silica matrices was investigated as to the time and concentration of silica in the reaction medium. The release of the drug by silica matrices was evaluated in acid and neutral medium for 24 hours. The four synthesized silica matrices were characterized and identified as the morphology. internal organizational structure, surface area, pore volume and diameter, these being in accordance with the parameters described in the literature. The method of quantification of antimony was validated presenting linearity in specific range, takes to measurements taken on the same day or every other day, just opposite the processing of samples with limits of detection and quantification suitable for experiments with arrays of mesoporous silica. The quantity meglumine antimoniate impregnated in the sílica were: ~29 % (SBA-16), ~25 % (MCM-41), ~22 % (MSU-3) and ~8 % (MSU-4). The release varied according to the type of matrix and dissolution medium employed (acid medium: MSU-3 ~48 %, MCM-41 ~45 %, SBA-16 ~37 %, MSU-4 ~30 %; neutral medium: SBA-16 ~26 %, MSU-4 ~24 %, MCM-41 ~21 %, MSU-3 ~21 %), predominantly the model zero order kinetics. The mesoporous silica matrices are interesting carriers for meglumine antimoniate, with promising results for performing in vitro experiments.

Keywords: release profile. SBA-16. MCM-41. MSU-3. MSU-4.

LISTA DE ILUSTRAÇÕES

CAPÍTULO I – REVISÃO DE LITERATURA

Figura 1.1 - Fórmula estrutural do antimoniato de meglumina. Fórmula molecular: C ₇ H ₁₇ NO ₅ .HSbO ₃ . Massa molecular: 365,98	27
Figura 1.2 - Representação esquemática dos diferentes sistemas de liberação de fármacos após administração oral de um medicamento	30
Figura 1.3 - Esquema do mecanismo de obtenção da sílica mesoporosa: a) cristal líquido moldante e b) cristal líquido moldante cooperativo	35
CAPÍTULO II – SÍNTESE E CARACTERIZAÇÃO DE DIFERENTES MATRIZES SÍLICA MESOPOROSA	DE
Figura 2.1 - Espectro FT-IR do antimoniato de meglumina obtido na faixa de número de ondas entre 4000 e 400 cm ⁻¹ , resolução de 4 cm ⁻¹ e 100 <i>scans</i> utilizando brometo de potássio	58
Figura 2.2 - Curva DSC, TGA/DrTGA do antimoniato de meglumina, obtido com razão de aquecimento de 10 °C min ⁻¹ , em atmosfera de ar sintético (50 mL min ⁻¹) para TGA e nitrogênio (50 mL min ⁻¹) para o DSC	58
Figura 2.3 - Espectros FT-IR do surfactante Pluronic [®] F127 (a), da sílica SBA-16 lavada (b) e da SBA-16 calcinada (c) obtidos na faixa de número de ondas entre 4000 e 400 cm ⁻¹ , resolução de 4 cm ⁻¹ e 100 <i>scans</i> utilizando brometo de potássio	59
Figura 2.4 - Curva TGA das amostras de sílica mesoporosa SBA-16 calcinada, SBA-16 lavada e do Pluronic [®] F127, obtidas com razão de aquecimento de 10 °C min ⁻¹ , em atmosfera de ar sintético (50 mL min ⁻¹)	60
Figura 2.5 - Isotermas de adsorção e dessorção de Nitrogênio a 77K da sílica SBA-16 calcinada com distribuição de tamanho de poros em detalhe	61
Figura 2.6 - Isotermas de adsorção e dessorção de Nitrogênio a 77K da sílica SBA-16 lavada com distribuição de tamanho de poros em detalhe	62
Figura 2.7 - Difratograma de raios X das amostras de sílica SBA-16 calcinada e SBA-16 lavada	64
Figura 2.8 - Micrografias obtidas por MEV das partículas de sílica mesoporosa SBA-16 calcinada (a) 3.000 x (b) 10.000 x e SBA-16 lavada (c) 3.000 x e (d) 15.000 x	66
Figura 2.9 – Histogramas referentes a distribuição do diâmetro das partículas pelo número de unidades contadas, com curva lorentziana das sílicas mesoporosas SBA-16 calcinada e SBA-16 lavada	67
Figura 2.10 - Micrografias obtidas por TEM das partículas de sílica mesoporosa SBA-16 calcinada	68

Figura 2.11 - Espectros FT-IR do surfactante brometo de cetiltrimetilamônio (a) e da sílica MCM-41 calcinada (b) obtidos na faixa de número de ondas entre $4000 \text{ e } 400 \text{ cm}^{-1}$ resolução de 4 cm ⁻¹ e 100 scans utilizando brometo	
de potássio	69
Figura 2.12 - Curva TGA da amostra de sílica MCM-41 calcinada e do brometo de cetiltrimetilamônio, obtidas com razão de aquecimento de 10 °C min ⁻¹ , em atmosfera de ar sintético (50 mL min ⁻¹)	70
Figura 2.13 - Isotermas de adsorção e dessorção em nitrogênio a 77 K da sílica MCM-41 calcinada com distribuição de tamanho de poros em detalhe	71
Figura 2.14 - Difratograma de raios X da amostra de sílica MCM-41 calcinada	72
Figura 2.15 - Micrografias obtidas por MEV das partículas de sílica mesoporosa MCM-41 calcinada (a) 25.000 x (b) 50.000 x	74
Figura 2.16 – Histograma referente a distribuição do diâmetro das partículas pelo número de unidades contadas, com curva lorentziana da sílica mesoporosa MCM-41 calcinada	74
Figura 2.17 - Micrografias obtidas por TEM das partículas de sílica mesoporosa MCM-41 calcinada (a) Escala em 20 nm, (b) Escala em 100 nm e (c) Escala em 50 nm	75
Figura 2.18 - Espectros FT-IR do surfactante Pluronic® P123 (a) e da sílica MSU-3 lavada (b) e MSU-3 calcinada (c) obtidos na faixa de número de ondas entre 4000 e 400 cm ⁻¹ , resolução de 4 cm ⁻¹ e 100 <i>scans</i> utilizando brometo de potássio	76
Figura 2.19 – Curvas TGA do surfactante Pluronic [®] P123, das sílicas MSU- 3 calcinada e lavada obtidas com razão de aquecimento de 10 °C min ⁻¹ , em atmosfera de ar sintético (50 mL min ⁻¹)	77
Figura 2.20 - Isotermas de adsorção e dessorção de Nitrogênio a 77K da sílica MSU-3 calcinada com distribuição de tamanho de poros em detalhe	79
Figura 2.21 - Isotermas de adsorção e dessorção de Nitrogênio a 77K da sílica MSU-3 lavada com distribuição de tamanho de poros em detalhe	79
Figura 2.22 - Difratograma de raios X das amostras de sílica MSU-3 calcinada e MSU-3 lavada	80
Figura 2.23 - Micrografias obtidas por MEV das partículas de sílica mesoporosa MSU-3 calcinada (a) 15.000 x, (b) 50.000 x. e MSU-3 lavada (c) 15.000 x e (d) 50.000 x	82
Figura 2.24 – Histograma referente a distribuição do diâmetro das partículas pelo número de unidades contadas, com curva lorentziana das sílicas mesoporosas MSU-3 calcinada e MSU-3 lavada	83
Figura 2.25 - Espectros FT-IR do surfactante Tween 20 (a), da sílica MSU-4 calcinada (b) e MSU-4 lavada (c), obtidos na faixa de número de ondas entre 4000 e 400 cm ⁻¹ , resolução de 4 cm ⁻¹ e 100 <i>scans</i> utilizando brometo	<i></i>
de potassio	84

Figura 2.26 – Curvas TGA do surfactante Tween 20, das sílicas MSU-4 calcinada e lavada obtidas com razão de aquecimento de 10 °C min ⁻¹ , em atmosfera de ar sintético (50 mL min ⁻¹)	85
Figura 2.27 - Isotermas de adsorção e dessorção de Nitrogênio a 77K da sílica MSU-4 calcinada com distribuição de tamanho de poros em detalhe	86
Figura 2.28 - Isotermas de adsorção e dessorção de Nitrogênio a 77K da sílica MSU-4 lavada com distribuição de tamanho de poros em detalhe	87
Figura 2.29 - Difratograma de raios X das amostras de sílica MSU-4 calcinada e MSU-4 lavada	88
Figura 2.30 - Micrografias obtidas por MEV das partículas de sílica mesoporosa MSU-4 calcinada (a) 5.000 x, (b) 20.000 x e MSU-4 lavada (c) 5.000 x e (d) 20.000 x	89
Figura 2.31 – Histograma referente a distribuição do diâmetro das partículas pelo número de unidades contadas, com curva lorentziana das sílicas mesoporosas MSU-4 calcinada e MSU-4 lavada	90
Figura 2.32 - Micrografias obtidas por TEM das partículas de sílica mesoporosa MSU-4 calcinada (a) Escala 200 nm e (b) Escala 100 nm	91

CAPÍTULO III - VALIDAÇÃO DO MÉTODO DE QUANTIFICAÇÃO DO ANTIMONIATO DE MEGLUMINA POR ICP-OES E AVALIAÇÃO DO PROCESSO DE IMPREGNAÇÃO DO FÁRMACO NAS MATRIZES DE SÍLICA MESOPOROSA

Figura 3.1 – Curvas de calibração do antimônio na concentração de 0,02 a 0,2 μ g.mL ⁻¹ , obtidas em diferentes solventes empregando ICP-OES, sendo A – ácido nítrico 5 % (v/v) e B – ácido clorídrico 5 % (v/v) no comprimento de onda de 206,833 nm	106
Figura 3.2 – Resposta no teor de antimônio frente a variação da concentração do borohidreto de sódio e do solvente	108
Figura 3.3 – Curva de calibração do antimônio nas concentrações de 0,02 a 0,2 µg.mL ⁻¹ , obtidas em meio ácido clorídrico 5 % (v/v) e comprimento de onda de 206,833 nm	109
Figura 3.4 – Resíduos plotados da regressão linear simples da curva de calibração do antimoniato de meglumina	111
Figura 3.5 - Fórmula estrutural do antiomoniato de meglumina com as distâncias entre os principais átomos em detalhe obtido pelo software UCSF Chimera 1.9	113
Figura 3.6 – Porcentagem de antimônio adsorvido nas matrizes de sílica mesoporosa em decorrência do tempo	113
Figura 3.7 - Porcentagem de antimônio adsorvido em quantidades diferentes das matrizes de sílica mesoporosa	114

CAPÍTULO IV - AVALIAÇÃO DO PERFIL DE DISSOLUÇÃO DO ANTIMONIATO DE MEGLUMINA IMPREGNADO EM DIFERENTES MATRIZES DE SÍLICA MESOPOROSA

Figura 4.1 – Perfis de dissolução das matrizes de sílica mesoporosa contendo o antimoniato de meglumina em meio ácido clorídrico 0,1 M (a) e meio RPMI 1640 (b)	128
Figura 4.2 – Perfis de dissolução das matrizes de sílica mesoporosa contendo o antimoniato de meglumina em meio RPMI 1640 com tempo de ensaio até 120 horas	129
Figura 4.3 – Eficiência de dissolução (ED) das matrizes de sílica mesoporosa contendo antimoniato de meglumina	133
Figura 4.4 – Representação gráfica da linearização dos dados de liberação do antimoniato de meglumina das matrizes de sílica mesoporosa pelo modelo de Weibull em meio ácido e neutro	136

LISTA DE TABELAS

CAPÍTULO I – REVISÃO DE LITERATURA

Tabela 1.1 – Tipos de sílica mesoporosa investigadas nesta pesquisa	36
Tabela 1.2 – Interpretação dos mecanismos de liberação a partir de formas farmacêuticas com películas poliméricas	42

CAPÍTULO II – SÍNTESE E CARACTERIZAÇÃO DE DIFERENTES MATRIZES DE SÍLICA MESOPOROSA

Tabela 2.1 – Parâmetros obtidos nas curvas de adsorção em nitrogênio a 77 K das amostras de SBA-16 calcinada e SBA-16 lavada	62
Tabela 2.2 - Razões dos picos obtidos na técnica de Difração de raios Xdas amostras de sílica SBA-16 calcinada e SBA-16 lavada	65
Tabela 2.3 – Parâmetros obtidos nas curvas de adsorção em nitrogênio a 77 K da amostra de MCM-41 calcinada	71
Tabela 2.4 - Razões dos picos obtidos na técnica de Difração de raios X da amostra de sílica MCM-41 calcinada	72
Tabela 2.5 – Parâmetros obtidos nas curvas de adsorção em nitrogênio a 77 K das amostras de MSU-3 calcinada e MSU-3 lavada	78
Tabela 2.6 - Parâmetros de simetria dos poros e grupo espacial obtidos pela técnica de Difração de raios X das amostras de sílica MSU-3 calcinada e MSU-3 lavada	81
Tabela 2.7 – Parâmetros obtidos nas curvas de adsorção em nitrogênio a 77 K das amostras de MSU-4 calcinada e MSU-4 lavada	88
Tabela 2.8 – Resumo dos resultados obtidos de caracterização das matrizes de sílica mesoporosa obtidas na pesquisa	92
CAPÍTULO III - VALIDAÇÃO DO MÉTODO DE QUANTIFICAÇÃO ANTIMONIATO DE MEGLUMINA POR ICP-OES E AVALIAÇÃO DO PROO DE IMPREGNAÇÃO DO FÁRMACO NAS MATRIZES DE SÍLICA MESOPORO	D DO CESSO DSA
Tabela 3.1 – Condições operacionais do ICP-OES utilizado na quantificação do antimônio em amostras de sílica mesoporosa	101
Tabela 3.2 – Planejamento das soluções de antimônio empregadas na análise da recuperação do método analítico	103
Tabela 3.3 – Resultados das curvas de calibração do antimônio (intensidade <i>versus</i> concentração) em diferentes solventes empregando	107
Tabela 3.4 – Valores encontrados na avaliação das linhas analíticas para o antimônio empregando ICP-OES	109

Tabela 3.5 – Dados estatísticos da análise de regressão linear simples (y = a + bx) da curva de calibração do antimoniato de meglumina obtida em solução de ácido clorídrico 5 % (v/v)	110
Tabela 3.6 – Resultado da análise de variância das curvas de calibração do antimoniato de meglumina obtida em solução de ácido clorídrico 5 % (v/v)	110
Tabela 3.7 – Resultados obtidos na determinação da precisão (repetibilidade) do método analítico do antimoniato de meglumina empregando ICP-OES	111
Tabela 3.8 – Condições experimentais otimizadas para a impregnação do antimoniato de meglumina em matrizes de sílica mesoporosa	115
Tabela 3.9 – Análise de variância aplicada as porcentagens de antimoniato de meglumina impregnadas nas matrizes de sílica mesoporosa	115
Tabela 3.10 – Pós-teste de Tukey na comparação das porcentagens impregnadas de antimoniato de meglumina nas matrizes de sílica mesoporosa	116
CAPÍTULO IV - AVALIAÇÃO DO PERFIL DE DISSOLUÇÃO DO ANTIMONI MEGLUMINA IMPREGNADO EM DIFERENTES MATRIZES DE MESOPOROSA	ATO DE SÍLICA
Tabela 4.1 – Quantidade de antimônio impregnado nas amostras de sílica mesoporosa (massa equivalente a 1 mg)	123
Tabela 4.2 – Condições experimentais empregadas na determinação do perfis de dissolução das amostras de sílica mesoporosa contendo AM	124
Tabela 4.3 – Modelos matemáticos aplicados para descrever os perfis de dissolução do antimônio	126
Tabela 4.4 – Análise de variância aplicada aos teores de antimônio liberados das matrizes de sílica mesoporosa	130
Tabela 4.5 – Fatores de diferença (<i>f</i> 1) e similaridade (<i>f</i> 2) na avaliação das matrizes de sílica mesoporosa contendo antimoniato de meglumina	131
Tabela 4.6 – Pós-teste de Tukey na comparação dos perfis de dissolução das matrizes de sílica mesoporosa contendo antimoniato de meglumina	132
Tabela 4.7 – Análise de variância aplicada aos valores de eficiência de dissolução obtidos a partir do ensaio de liberação do antimônio das matrizes de sílica mesoporosa	133
Tabela 4.8 – Pós-teste de Tukey na comparação dos valores de eficiência de dissolução (%) das matrizes de sílica mesoporosa contendo antimoniato de meglumina	134
Tabela 4.9 – Parâmetros obtidos segundo o modelo de Weibull para o antimoniato de meglumina liberado nas duas etapas da curva de dissolução das matrizes de sílica mesoporosa em meio ácido	137

Tabela 4.10 – Parâmetros obtidos segundo o modelo de Weibull para o antimoniato de meglumina liberado nas duas etapas da curva de dissolução das matrizes de sílica mesoporosa em meio RPMI 1640	138
Tabela 4.11 – Parâmetros obtidos na aplicação dos modelos cinéticos para a primeira etapa (0 a 60 minutos) dos perfis de dissolução do antimoniato de meglumina nas matrizes de sílica mesoporosa em meio ácido	139
Tabela 4.12 – Parâmetros obtidos na aplicação dos modelos cinéticos para a primeira etapa (0 a 60 minutos) dos perfis de dissolução do antimoniato de meglumina nas matrizes de sílica mesoporosa em meio RPMI 1640	141
Tabela 4.13 – Parâmetros obtidos na aplicação dos modelos cinéticos para a segunda etapa (1 a 24 horas) dos perfis de dissolução do antimoniato de meglumina nas matrizes de sílica mesoporosa em meio ácido	142
Tabela 4.14 – Parâmetros obtidos na aplicação dos modelos cinéticos para a segunda etapa (1 a 24 horas) dos perfis de dissolução do antimoniato de meglumina nas matrizes de sílica mesoporosa em meio RPMI 1640	143

LISTA DE ABREVIATURAS E SIGLAS

ACS	American Chemical Society
AM	Antimoniato de meglumina
СТАВ	Brometo de cetiltrimetilamônio
DSC	Calorimetria Exploratória Diferencial
ED (%)	Eficiência de dissolução
FT-IR	Espectrofotômetro no infravermelho com transformada de Fourier
ICP-OES	Espectrômetro de Emissão Ótica com Fonte de Plasma Acoplado Indutivamente
<i>f</i> 1	Fator diferença
f2	Fator similaridade
FDA	Food and Drug Administration
LTA	Leishmaniose Tegumentar Americana
LV	Leishmaniose Visceral
TEM	Microscopia Eletrônica de Transmissão
MEV	Microscopia Eletrônica de Varredura
OMS	Organização Mundial de Saúde
TEOS	Tetraetilortossilicato
TGA	Termogravimetria
Δm	Variação de perda de massa

SUMÁRIO

INTRODUÇÃO GERAL E OBJETIVOS	19
CAPÍTULO I – REVISÃO DE LITERATURA	24
1.1 Leishmaniose 1.1.1 Antimoniato de meglumina 1.1.1 Propriedades físico-químicas 1.1.1.2 Farmacocinética 1.1.2 Farmacocinética 1.1.3 Farmacodinâmica 1.1.4 Novas estratégias para o carreamento do antimoniato de meglumina. 1.1.5 Técnicas de quantificação do antimônio 1.2 Sílica mesoporosa 1.2.1 Síntese de sílicas mesoporosas 1.2.2 Aplicabilidade da sílica mesoporosa na área farmacêutica 1.2.3 Modelos de avaliação da liberação de fármacos 1.2.3.1 Cinética de ordem zero 1.2.3.2 Cinética de primeira ordem 1.2.3.4 Modelo de Higuchi 1.2.3.5 Modelo de Weibull 1.2.3.6 Modelo de Korsmeyer-Peppas 1.2.3.7 Modelo de Baker-Lonsdale Referências	25 26 27 27 28 29 30 32 35 36 38 36 38 38 38 38 38 38 38 38 38 38 38 38 38
CAPÍTULO II – SÍNTESE E CARACTERIZAÇÃO DE DIFERENTES MATRIZES DE SÍLICA MESOPOROSA	50
 2.1 Introdução	57 52 52 52 52 52 52 52 52 52 54
Fourier (FT-IR)	54 55 55 55 55 55 55

2.3.3 Sílica MCM-41 2.3.4 Sílica MSU-3 2.3.5 Sílica MSU-4 2.4 Conclusões Referências	68 76 84 93 94
CAPÍTULO III - VALIDAÇÃO DO MÉTODO DE QUANTIFICAÇÃO DO ANTIMONIATO DE MEGLUMINA POR ICP-OES E AVALIAÇÃO DO PROCESSO DE IMPREGNAÇÃO DO FÁRMACO NAS MATRIZES DE SÍLICA MESOPOROSA	98
 3.1 Introdução	99 100 100 101 101 102 102 103 103 103 104 104 104 104 104 106 117 118
CAPÍTULO IV - AVALIAÇÃO DO PERFIL DE DISSOLUÇÃO DO ANTIMONIATO DE MEGLUMINA IMPREGNADO EM DIFERENTES MATRIZES DE SÍLICA MESOPOROSA	121
 4.1 Introdução 4.2 Materiais e Métodos	122 123 124 127 127 130 135 145 146
CONSIDERAÇÕES FINAIS	149

Referências

ANDRADE, G. F.; SOARES, D. C. F.; SANTOS, R. G.; SOUSA, E. M. B. Mesoporous sílica SBA-16 nanoparticles: Synthesis, physicochemical characterization, release profile, and *in vitro* cytocompatibility studies. *Microporous and Mesoporous Materials*, v. 168, p. 102-110, 2013.

ALLEN, L. V.; POPOVICH, N. G.; ANSEL, H. C. *Formas farmacêuticas e sistemas de liberação de fármacos*. 8 ed. Porto Alegre: Artmed, 2007, 775 p.

BAI, S.; MUA, H.; NARENB, G.; OKAUE, Y.; YOKOYAMA, T. Kinetic study of sílica dissolutionin aqueous solutions of aromatic organic electrolytes. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, v. 461, p. 220-224, 2014.

BANAKAR, U. V. *Pharmaceutical Dissolution Testing*. New York: Marcel Dekker, 1992. 437 p.

BOSQUIROLI, L. S. S.; DEMARQUE, D. P.; RIZK, Y. A.; CUNHA, M. C.; MARQUES, M. C. S.; MATOS, M. F. C.; KADRI, M. C. T.; CAROLLO, C. A.; ARRUDA, C. C. P. In vitro anti-Leishmania infantum activity of essential oil from *Piper angustifolium*. *Brazilian Journal of Pharmacognosy*, v. 25, p. 124-128, 2015.

COLLETT, J.; MORETON, C. Formas farmacêuticas perorais de liberação modificada. In: AULTON, M. E. *Delineamento de Formas Farmacêuticas*, 2 ed. Porto Alegre: Artmed, 2005. 677 p.

COSTA, P.; LOBO, J. M. S. Modeling and comparison of dissolution profiles. *European Journal of Pharmaceutical Sciences*, v. 13, p. 123-133, 2001.

FARMACOPÉIA BRASILEIRA. v. 1, 5. ed. Brasília: Agência Nacional de Vigilância Sanitária, p. 66-73, 2010.

FDA. Food and Drug Administration. Center for Drug Evaluation and Research-CDER. *Waiver of in vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System*. Maryland: FDA, 2015. 17 p.

FELICZAK-GUZIK, A.; JADACH, B.; PIOTROWSKA, H.; MURIAS, M.; LULEK, J.; NOWAK, I. Synthesis and characterization of SBA-16 type mesoporous materials containing amine groups. *Microporous and Mesoporous Materials*, v. 220, p. 231-238, 2016.

FOTOOHI, B.; MERCIER, L. Some considerations regarding the mesopore structure and order in MSU-3 and MSU-F (organo) sílicas. *Microporous and Mesoporous Materials*, v. 211, p. 38–48, 2015.

IZQUIERDO-BARBA, I.; SOUSA, E.; DOADRIO, J. C.; DOADRIO, A. L.; PARIENTE, J. P.; MARTÍNEZ, A.; BABONNEAU, F.; VALLET-REGÍ, M. Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. *Journal of Sol-Gel Science and Technology*, v. 50, p.421-429, 2009.

JIA, L.; SHENA, J.; LI, Z.; ZHANGA, D.; ZHANG, Q.; LIUA, G.; ZHENGA, D.; TIANA, X. In vitro and in vivo evaluation of paclitaxel-loaded mesoporous sílica nanoparticles with three pore sizes. *International Journal of Pharmaceutics*, v. 445, p. 12-19, 2013.

MAMAEVA, V.; SAHLGREN, C.; LINDÉN, M. Mesoporous silica in nanoparticles and medicines – Recent advances. *Advanced Drugs Delivery Reviews*, v. 65, p.689-702, 2013.

MANADAS, R.; PINA, M. E.; VEIGA, F. A dissolução *in vitro* na previsão da absorção oral de fármacos em formas farmacêuticas de liberação modificada. *Brazilian Journal of Pharmaceutical Sciences*, v. 38, n. 4, p. 375–399, out./dez. 2002.

MARCHETTI, J. M.; SARAIVA, J. Sistemas de Liberação: Estratégias para Medicamentos Eficazes. In: STORPIRTIS, S.; GONÇALVES, J. E.; CHIANN, C.; GAI, M. N. *Biofarmacotécnica*. Rio de Janeiro: Guanabara Koogan, 2009. 321 p.

MATHEW, A.; PARAMBADATH, S.; PARK, S. S.; HA, C. S. H. Hydrophobically modified spherical MCM-41 as nanovalve system for controlled drug delivery. *Microporous and Mesoporous Materials*, v. 200, p. 124-131, 2014.

MORITZ, M.; LANIECKI, M. Application of SBA-15 mesoporous material as the carrier for drug formulation systems. Papaverine hydrochloride adsorption and release study. *Powder Technology*, v. 230, p.106-111, 2012.

PIANETTI, G. A.; CÉSAR, I. C.; NOGUEIRA, F. H. A. Equivalência Farmacêutica. In: STORPIRTIS, S.; GONÇALVES, J. E.; CHIANN, C.; GAI, M. N. *Biofarmacotécnica*. Rio de Janeiro: Guanabara Koogan, 2009. 321 p.

POPOVA, M.; SZEGEDI, A.; YONCHEVA, K.; KONSTANTINOV, S.; PETROVA, G.P.; ALEKSANDROV, H. A.; VAYSSILOV, G. N.; SHESTAKOVA, P. New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles. *Microporous and Mesoporous Materials*, v. 198, p.247-255, 2014.

RODRIGUES, P. O.; SILVA, M. A. S. Avaliação in vitro de medicamentos de liberação prolongada: aplicação de métodos estatísticos, modelos dependentes e independentes de análise. *Revista Colombiana de Ciências Químico Farmacêuticas*, v. 34, n. 1, p. 13-23, 2005.

STORPIRTIS, S.; GONÇALVES, J. E.; CHIANN, C.; GAI, M. N. *Ciências Farmacêuticas – Biofarmacotécnica*, Rio de Janeiro: Guanabara Koogan, 2009. 321 p. STORPIRTIS, S.; GAI, M. N.; CAMPOS, D. R.; GONÇALVES, J. E. *Farmacocinética Básica e Aplicada*. Rio de Janeiro: Guanabara Koogan, 2011. 222 p.

THOMAS, M. J. K.; SLIPPER, I.; WALUNJ, A.; FAVRETTO, M. E.; KALLINTERI, P.; DOUROUMIS, D. Inclusion of poorly soluble drugs in highly ordered mesoporous sílica nanoparticles. *International Journal of Pharmaceutics*, v. 387, p. 272-277, 2010.

TZANKOV, B.; YONCHEVA, K.; POPOVA, M.; SZEGEDI, A.; MOMEKOV, G.; MIHÁLY, J.; LAMBOV, N. Indometacin loading and in vitro release properties from novel carbopol coated spherical mesoporous sílica nanoparticles. *Microporous and Mesoporous*, v. 171, p. 131-138, 2013.

WANG, X.; LIU, P.; TIAN, Y. Ordered mesoporous carbons for ibuprofen drug loading and release bahaviour. *Microporous and Mesoporous Materials*, v. 142, p. 334-340, 2011.

WANG, Y.; ZHAO, Q.; HAN, N.; BAI, L.; LI, J.; LIU, J.; CHE, E.; HU, L.; ZHANG, Q.; JIANG, T.; WANG, S. Mesoporous sílica nanoparticles in drug delivery and biomedical applications. *Nanomedicine: Nanotechnology, Biology and Medicine*, v. 11, p. 313-327, 2015.

YU, H.; ZHAI, Q. Mesoporous SBA-15 molecular sieve as a carrier for controlled release of nimodipine. *Microporous and Mesoporous Materials*, v. 123, p. 298-305, 2009.

ZHAI, Q. Inclusion of cefalexin in SBA-15 mesoporous material and release property. *Materials Science and Engineering C*, v. 32, p. 2411-2417, 2012.

CONSIDERAÇÕES FINAIS

Nesta pesquisa foram sintetizadas quatro sílicas mesoporosas, SBA-16, MCM-41, MSU-3 e MSU-4, com morfologias e estruturas internas distintas, sendo caracterizadas por técnicas específicas que atestaram a qualidade e equivalência dos materiais em relação a literatura.

Para algumas sílicas avaliou-se a influência do processo de extração do surfactante empregado na síntese da sílica, por dois procedimentos, calcinação e remoção por lavagem em Soxhlet. Apenas uma sílica (MSU-3) mostrou-se mais sensível ao processo de lavagem interferindo na sua estrutura organizacional.

Um método de quantificação do antimônio presente nas amostras por ICP-OES foi validado quanto aos parâmetros, linearidade e intervalo, precisão por repetibilidade e intermediária, exatidão e limites de detecção e quantificação. O método mostrou-se robusto e sensível para as amostras contendo sílica mesoporosa não se detectando interferência nas medidas pela técnica proposta.

O processo de impregnação do fármaco nas matrizes de sílica mesoporosa foi otimizado quanto ao tempo de reação, quantidade de antimoniato de meglumina e quantidade de sílica. Tal otimização permitiu redução no consumo de reagentes e tempo de utilização dos equipamentos, assim como, uniformidade no processo de impregnação em momentos distintos.

A avaliação do perfil de dissolução do antimoniato de meglumina impregnado nas diferentes sílicas demonstrou ser promissor o carreamento do fármaco nas matrizes mesoporosas, iniciando uma nova rota de pesquisa ao grupo com possibilidades interessantes para o futuro.