Finding All Maximal Contiguous Subsequences of a Sequence of Numbers in O(1) Communication Rounds

Carlos Eduardo Rodrigues Alves, Edson Norberto Cáceres, and Siang Wun Song

Abstract—Given a sequence $A\psi$ freal numbers, we wish to find a list of all nonoverlapping contiguous subsequences of $A\psi$ hat are *maximal*. A *maximal* subsequence $M\psi$ of $A\psi$ has the property that no proper subsequence of $M\psi$ has a greater sum of values. Furthermore, $M\psi$ may not be contained properly within any subsequence of $A\psi$ with this property. This problem has several applications in Computational Biology and can be solved sequentially in linear time. We present a BSP/CGM algorithm that solves this problem using $p\psi$ processors in O(|A|/p) time and O(|A|/p) space per processor. The algorithm uses a constant number of communication rounds of size at most O(|A|/p). Thus, the algorithm achieves linear speedup and is highly scalable. To our knowledge, there are no previous known parallel BSP/CGM algorithms to solve this problem.

Index Terms—All maximal subsequences problem, maximum subsequence problem, parallel algorithm, coarse-grained multicomputer, communication rounds