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RESUMO 

 

As inundações urbanas despertam uma grande preocupação, pois ocasionam perdas materiais, 

econômicas, ambientais, e nas piores situações resultam em mortes de seres vivos. Para lidar 

com essas questões, abordagens preventivas devem ser implementadas para minimizar tais 

impactos. Embora existam pesquisas procurando solucionar a questão da inundação em áreas 

urbanas, são escassos os trabalhos relacionados a técnicas de Deep Learning (DL) para 

monitorar recursos hídricos. Devido a esta problemática, este trabalho investiga e propõe 

métodos baseado em DL para monitoramento hídrico. Primeiramente, analisou-se a 

performance do modelo em segmentação semântica SegNet na delimitação de corpos da água 

em imagens RGB, apresentando uma acurácia acima de 97%, mostrando que o modelo é 

adequado para a segmentação de água. Em seguida, introduziu-se uma abordagem automatizada 

em medições do nível da água combinando DL e fotogrametria, apresentando correlações entre 

as medidas de referência e a abordagem proposta de 93%. Também analisou-se diferentes 

configurações para a SegNet avaliando a performance dos modelos para tarefas de 

generalização na segmentação de diferentes superfícies aquáticas, mostrando que técnicas como 

transfer learning e fine-tuning melhoraram os resultados. Além disso, mostrou-se que há uma 

redução na acurácia da segmentação quando se reduz a quantidade de imagens rotuladas 

utilizadas no treinamento da rede. Por fim, analisou-se a performance do modelo Space-Time 

Correspondence Network (STCN) na segmentação da água baseado em estruturas de vídeos, 

no qual os resultados mostram que o modelo é acurado em delimitar os contornos de um corpo 

da água em diferentes situações. A maior contribuição deste estudo é a otimização das 

informações relativas a um corpo de água utilizando técnicas diferentes dos sistemas 

tradicionais de medição. 

 

Palavras-chave: Aprendizado profundo,  Segmentação semântica, Redes neurais 

convolucionais, Recursos hídricos, Inundações. 
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ABSTRACT 

 

Urban flooding is a big concern because it causes material, economic, environmental losses, 

and in the worst situations results in the death of living beings. To deal with these issues, 

preventive approaches must be implemented to minimize such impacts. Although there are 

researches seeking to solve the issue of flooding in urban areas, there are few works related to 

Deep Learning (DL) techniques for monitoring water resources. Due to this problem, this paper 

investigates and proposes DL-based methods for water monitoring. First, the performance of 

the SegNet semantic segmentation model in delineating water bodies in RGB images was 

analyzed, presenting an accuracy above 97%, showing that the model is suitable for water 

segmentation. Next, an automated approach was introduced in water level measurements 

combining DL and photogrammetry, showing correlations between reference measurements 

and the proposed approach of 93%. We also analyzed different configurations for SegNet 

evaluating the performance of the models for generalization tasks in segmenting different water 

surfaces, showing that techniques such as transfer learning and fine-tuning improved the results. 

Furthermore, it was shown that there is a reduction in the segmentation accuracy when the 

number of labeled images used in the network training is reduced. Finally, the performance of 

the Space-Time Correspondence Network (STCN) model in the segmentation of water based 

on video structures was analyzed, which the results show that the model is accurate in delimiting 

the contours of a body of water in different situations. The major contribution of this study is 

the optimization of information concerning a body of water using techniques different from 

traditional measurement systems. 

 

Keywords: Deep learning, Semantic segmentation, Convolutional neural networks, Water 

resources, Flooding. 
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1. GENERAL CONTEXT 

1.1. INTRODUCTION   

Surface runoff is a natural process that is identified as the result of saturated soil being 

unable to absorb precipitation, thus causing flooding. For instance, surface runoff often reaches 

areas prone to flood risk, which are those located on lower and flatter sites. This natural event 

usually occurs due to the dynamism of nature and is the result of the integration of 

meteorological, hydrological, and human phenomena, and when it is not properly supervised, 

it can cause serious consequences.  

Li et al. (2016) report that the frequent occurrence of flood disasters is caused by: (1) 

expansion of cities into areas with high flood risk; (2) the drainage development system is 

slower than the development of cities; (3) the increasing of impermeable areas and (4) the 

increase of population density results in an increase of flood vulnerability in urban areas. 

Urban flooding has aroused great concern due to cities being in constant growth and 

development, besides being where the population is most concentrated. There are numerous 

types of losses that such disasters can cause, such as material, economic, environmental, and 

even human. Yin et al. (2014) mention that catastrophic floods arising from various sources 

(fluvial, pluvial, coastal) caused, in July 2011, 79 deaths, economic loss of approximately 1.86 

billion dollars, and social impacts in urban areas of Chinese cities. 

The urbanization process associated with inappropriate planning has several socio-

environmental impacts, affecting the environment and society's quality of life. Mirza (2003) 

reports that poor urban planning associated with insufficient adaptation measures (structural 

and non-structural) further contribute to urban flooding. Factors such as anthropic intervention, 

inadequate drainage systems, climate change, inappropriate urban land use and occupation, and 

countless other conditions not only lead to an intensification of flooding but also an increase in 

the surface runoff on impervious surfaces, exposure to risks and diseases, occupation of flood-

prone areas, and other threats. 

Flood risks cannot be totally avoided, hence it is essential that monitoring approaches 

and prevention measures need to be developed in order to deal with these events and minimize 

their impacts, such as adequate urban planning, effective engineering projects for water 

catchment, policies for soil occupation, environmental education, among others. One 

hydrological observation that is considered important to monitor flooding is the water level. 

There are different ways to obtain this measurement, such as systems based on pressure gauges 

and floats, or traditional measuring rulers. Although these are alternatives, extreme events such 
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as high precipitation or adverse weather conditions often cause the loss of such instruments. In 

addition, it also makes difficult for people to go on site to take readings and these measurements 

can be expensive due to maintenance requirements (Morgenschweis, 2010). 

In order to find more solutions as alternatives to flooding, many flood forecasting 

models have been developed and implemented. Li et al. (2016) integrated the Urban Flood 

Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) to propose 

a framework for analyzing the risks and benefits of flood control measures in urban areas. Chen, 

Hill, and Urbano (2009) developed and tested the Geographic Information System-based Urban 

Flood Inundation Model (GUF-IM) to simulate urban flooding. 

Although there are many researches seeking to solve the issue of flooding in urban areas, 

there are few works related to using Deep Learning (DL) techniques to monitor water resources 

and their behavior. Moreover, few cities have real-time flood alert systems, a fact considered 

highly relevant because this event is usually caused by high-intensity precipitation in a short 

period, affecting the population suddenly. Therefore, the main aim is to investigate and propose 

DL methods for monitoring water bodies. Thus, it is hoped that the results of DL can optimize 

in time and accuracy the traditional monitoring systems as well as being a supplement to the 

development of a real-time flood warning system. 

1.2. BACKGROUND AND PROBLEM STATEMENT 

According to Lecun, Bengio, and Hinton (2015), DL is a sub-branch of artificial 

intelligence that allows computational models composed of multiple processing layers to learn 

data representations with various levels of abstraction. It is a method that has improved state-

of-the-art in voice recognition, object detection, and its implementation is increasing in other 

branches, as an example, in the medical field for drug recognition (Gawehn, Hiss and Schneider, 

2016), electronic games, internet companies (Google, Baidu, Facebook), among other areas. 

In order to evaluate data using computational resources, one alternative is the 

interaction of DL and remote sensing. The integration of these two areas is a reason to be 

considered, given that remote sensing seeks to obtain information from the Earth's surface 

without direct contact with the object of study, and DL makes it possible to obtain information 

with high accuracy and speed. Zhu et al. (2017) report the interaction of DL and remote sensing, 

and Osco et al. (2021) present a review on the deep learning field applied in Unmanned Aerial 

Vehicle (UAV) remote sensing, showing that DL is a powerful tool to automate the acquisition 

of geoinformation. Figure 1 was generated from word processing returning the most topics 

linked to "deep learning", "remote sensing" and "water", thus generating a word cloud. Google 

Scholar, Web of Science and Scopus were the scientific databases used. Analyzing the words 
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contained within Figure 1, it is possible to note how these areas can relate to each other in order 

to produce new studies, thus encouraging the development of new methodologies related to 

environmental monitoring, in our case focused on water resources. 

 

 
Figure 1. Related themes to deep learning, remote sensing and water. 

In the context of monitoring water resources based on remote sensing techniques, 

whose advantage is that it does not require the installation of equipment directly in the water, 

the development of image and video-based methods has been growing over the last years. Eltner 

et al. (2019) proposed a method to measure the flow velocity and flow rate of rivers in an 

automated way using images obtained by ground sensors and UAV. Ridolfi and Manciola 

(2018) used UAV to determine water levels in rivers, seeking to improve existing hydraulic 

models as well as to aid strategies in case of floods or inundations. Detert et al. (2017) combined 

the reconstruction of an underwater topography based on Structure from Motion (SfM) with 

tracking algorithms to determine the velocity of the flow based on UAV and thus calculate the 

flow rate. All these studies used Remote Sensing techniques, but without the use of DL. 

There are some studies involving artificial intelligence to monitor water resources. For 

instance, Acharya, Subedi, and Lee (2019) used machine learning algorithms to identify water 

surfaces from Landsat 8 images. However, this research did not use DL-based approaches and 

it only sought to locate water in images, not using the results to find information regarding 

water resources. Assem et al. (2017) conducted research applying DL algorithms seeking to 

derive an appropriate long-term methodology to predict flow and water stage parameters. 

Although this study differs from the first one because it applies DL-based techniques, only 
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parameters of some water-related information were obtained. Pan, Xiong, and Gui (2018) used 

CNN techniques to determine the water level in real-time using a surveillance camera system. 

This last approach is very interesting because it is a new alternative for measuring the water 

level. Nonetheless, the DL in this approach is used for the readings of the measuring ruler from 

the surveillance camera system. Therefore, our study differs from this approach precisely 

because it seeks new ways to use DL-based methods to monitor and obtain information about 

water bodies. 

Classification, segmentation, and object detection are some methods of interpretation 

that can be generated by combining DL and remote sensing. To achieve the best results for such 

methods, different approaches must be performed and tested. For instance, Zhang et al. (2017) 

present the relationship between training dataset sizes, input data size, and depth of a network 

to memorize the training dataset parameters fully. Çayir and Navruz (2021) mention that dataset 

size and quality are factors that most affect accuracy in DL research. Complementing this last 

quote, Linjordet and Balog (2019) report that a very large dataset takes much longer to train 

and validate the data. These factors are important because there are numerous challenges for 

building a robust and adequate database, such as obtaining a large amount of data (images, 

videos), high-quality annotated labels, computational resources, the adequate architecture of 

the network models, among other configurations. These justifications lead us to develop and 

apply different methodologies and techniques to target the best approaches for integrating DL 

and remote sensing.  

The use of DL in remote sensing to monitor water resources tend to have several 

advantages, such as: assisting in the improvement of existing hydraulic models as well as 

obtaining similar or even superior performance; arise as an alternative to replace measurements 

made by humans; the use of remote sensors to obtain information from the land surface in 

inaccessible and dangerous locations; evaluate if economically there is a lower cost compared 

to traditional methodologies. Such arguments justify the development of this thesis, thus 

seeking new methods to support a real-time flood warning system and thus helping the cities to 

become more intelligent in decision-making. 

1.3. GOALS 

Based on these reasons, this research aims to fill the existing gaps between DL-related 

studies on remotely sensed data. This section is divided into specific and general goals. First, it 

is assumed that it is possible to segment rivers contained in images obtained from fixed sensors. 

From the segmentation results, it is assumed that it is possible to estimate the water level using 

the river contours. Next, different techniques (number of training images, transfer learning, 
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fine-tuning, different datasets, among others) related to model performance in segmentation 

were performed in order to succeed on generalization tasks in delineating water bodies. In this 

case, it was assumed that it is possible to create a model capable of performing this 

generalization task. Finally, a video-based approach was investigated because it differs from 

others that use images. Thus, it was assumed that it is possible to segment water bodies using 

this structure of videos reducing the need for large labeled datasets.  

1.3.1. General Goal 

• Investigate and propose DL-based methods for water monitoring in support of a real-

time flood and flood warning system. 

1.3.2. Specific Goals 

• Evaluate the performance of DL techniques for segmenting water from images obtained 

by ground cameras;  

• Analyze different approaches on the performance of DL models to generalization tasks; 

• Investigate the integration of DL-based image segmentation with photogrammetric 

techniques on water stage estimation; 

• Investigate the performance of object segmentation DL techniques on video files. 

1.4. MAIN CONTRIBUTIONS 

This research sought to investigate and propose the integration of DL and remote 

sensing-based methods for monitoring water resources. The integration of these areas applied 

to the monitoring of environmental studies has been growing over the years with the 

advancement and development of technology, mainly due to the high performance that 

computer resources are offering. Figure 2 presents the number of papers published by year 

considering Scopus and Web of Science scientific bases. The keywords used to filter these 

results were “deep learning”, “remote sensing” and “water”.  
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Figure 2. Number of papers related to deep learning, remote sensing and water published over 

the years. 

  

Analyzing Figure 2, it is possible to check how the number of research related to these 

areas increased over the years. The development and refinement of the thesis also occurred 

gradually. The first paper, called "Deep learning applied to water segmentation", was published 

in 2020, which consisted of studying the DL techniques and methods that were arising that year 

and applying them to remotely sensed images. The second and third paper, named “Using deep 

learning for automatic water stage measurements” and “Evaluating different deep learning 

models for automatic water segmentation”, were published  in 2021. It is possible to notice that 

this year more papers were published, showing the interest which these areas have been 

generating in several communities. In addition, direct applications to obtain different 

information in the environmental field were also aimed, such as the automated water level 

estimation that we have been able to produce. Figure 3 and Figure 4 show the number of papers 

using the keywords “deep learning”, “remote sensing” and “water level or water stage”, 

indicating the scarcity of studies relating such areas and how they are emerging recently. In 

addition, when the keyword “water level” is changed to “water stage”, the numbers of papers 

decrease, indicating 0 paper in Scopus and 30 papers in Web of Science.  
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Figure 3. Number of papers related to deep learning, remote sensing and water level published 

over the years. 

 
Figure 4. Number of papers related to deep learning, remote sensing and water stage 

published over the years. 

 

Finally, the last manuscript will be submitted so that it can be accepted and 

subsequently published. The name is "Semantic segmentation of water considering video 

structures" and introduces an approach based on Space-Time Correspondence Network 

(STCN), considered a state-of-the-art in object semantic segmentation for videos. The original 

paper introducing this approach was published in 2021 (Cheng, Tai and Tang, 2021), emerging 

as a new alternative for environmental studies relating DL in video structures.  

Considering the justifications represented by the advancement of articles integrating 

the fields of DL and remote sensing, besides the fact that there are few researches related to 
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water monitoring, our research aimed to use the semantic object segmentation methods 

considered the state of the art in mid-2020s (SegNet and FCN for images) and 2021 (STCN for 

videos) aimed applications that include ways to obtain information from a body of water. In 

this way, we were able to achieve the goals of trying to minimize the gap that exists between 

such areas. 

The data acquisition, such as images and videos, was done with RGB sensors. This is 

of great importance because this kind of sensor is more cost-effective than other types, such as 

multispectral and hyperspectral sensors. Therefore, a database was built consisting of images 

and videos containing different types of rivers, lakes, ponds, streams. The differential of this 

dataset is the various ways of acquisition, such as fixed and moving sensors, mobile, UAV, 

surveillance systems, among others. With the distribution and sharing of this dataset, it is hoped 

that the scientific, computational, and other types of interested communities can benefit and 

develop new methodologies for monitoring water resources. 

Regarding DL methodologies, numerous techniques and approaches have been used 

and tested. Semantic object segmentation techniques in images and videos to delineate the 

contours of a body of water, the best settings to obtain the most accurate results, fine-tuning, 

and transfer learning in order to perform generalization tasks. As the research progressed, it 

was possible to get good results for identifying and delineating water in images and videos to 

facilitate other studies that pursue the same goal. 

From the results obtained from the segmentation of water bodies, it was possible to 

integrate them with photogrammetry techniques, thus generating water level automated. This 

method differs from traditional measurement approaches, in which the installation of in site 

equipment is required to perform the readings. This method tends to be a revolution for image-

based approaches, being an innovative source of information for society in a way that the 

advancement of technology assists more and more in different daily tasks. Internet of Things 

(IoT) is an example of the rise of science and technology, emerging as an option for the progress 

of this research. 

The major contribution of this study is the optimization of information compared to 

traditional methodologies to obtain information related to water. It is expected that other types 

of information regarding a body of water can be obtained, and new alternatives can be studied 

in the future in order to integrate and develop new types of systems. This research is not 

intended to replace standard measurement techniques but rather to seek new solutions and 

innovations in order always to support society and the progress of science. 
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1.5. ORGANIZATION OF THE THESIS 

The Thesis is organized into several articles, presented as chapters. Chapter 2 

introduces the first published paper presenting the performance of the DL methods to segment 

water bodies. The results obtained from the segmentation performed for the river were accurate, 

thus looking for new methodologies to apply these results.  In this way, Chapter 3 provides an 

approach that combines DL and photogrammetric techniques for automatic water stage 

measurements. Using the borders obtained from the segmentation of the river from Chapter 2, 

it was possible to develop a different water stage estimation approach compared to traditional 

measurement systems.  As these previous researches were limited to the same river, we tried to 

develop new DL models in order to achieve high performance in generalization tasks in 

segmenting different water bodies. Integrating the segmentation from the previous Chapters 

with different approaches (transfer learning, fine-tuning, size of training dataset) and image sets 

of new water bodies, two papers were developed - Chapter 4 and Chapter 5. The first one 

presents an investigation of different strategies for automatic water segmentation considering 

images from different areas. The latter aims to analyze the influence of the number of images 

used for training on model performance. Finally, in order to seek applications for other types 

of remotely sensed data, a model for object segmentation based on video was investigated. 

Video-based approaches are emerging as a new alternative in interpreting DL tasks. It is hard 

to find studies focusing on the segmentation of water bodies consisting of video data. Chapter 

6 presents a DL-based approach for segmentation of water considering video structures. The 

complete structure of the thesis is shown in Figure 4, presenting a conceptual map of the thesis 

and how the articles were developed and integrated as the research progressed. 

 



 
 

19 
 

 
Figure 4. Conceptual map of the thesis. In yellow, the datasets. In green, how the datasets were 

divided. In red, the DL techniques, methods and approaches. In purple, the photogrammetry 

techniques. In blue, the main contributions of each research. In pink, the related publications 

associated with this thesis.  
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2. DEEP LEARNING APPLIED TO WATER SEGMENTATION 

The first paper called “Deep learning applied to water segmentation” was published in 

the journal “The International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, Volume XLIII-B2-2020 - XXIV ISPRS Congress (2020)”. It is 

referenced as “Akiyama, T. S., Junior, J. M., Gonçalves, W. N., Bressan, P. O., Eltner, A., 

Binder, F., & Singer, T. (2020). Deep learning applied to water segmentation. The International 

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 1189-

1193”.  

 

ABSTRACT 

The use of deep learning (DL) with convolutional neural networks (CNN) to monitor 

surface water can be a valuable supplement to costly and labor-intense standard gauging 

stations. This paper presents the application of a recent CNN semantic segmentation method 

(SegNet) to segment river water in imagery acquired by RGB sensors automatically. This 

approach can be used as a new supporting tool because only a few studies are using DL 

techniques to monitor water resources. The study area is a medium-scale river (Wesenitz) 

located in the East of Germany. The captured images reflect different periods of the day over 

approximately 50 days, allowing for the analysis of the river in different environmental 

conditions and situations. In the experiments, we evaluated the input image resolutions of 256 

x 256 and 512 x 512 pixels to assess their influence on the performance of river segmentation. 

The performance of the CNN was measured with the pixel accuracy and IoU metrics revealing 

an accuracy of 98% and 97%, respectively, for both resolutions, indicating that our approach is 

efficient to segment water in RGB imagery. 

2.1. INTRODUCTION 

It is crucial that measures must be adopted to maintain the safety of the population in 

growing and developing cities. The process of urbanization associated with inappropriate 

planning can have consequences affecting the environment and society's quality of life. For 

instance, urban floods are a concern because they can cause severe effects, such as the death of 

humans, socio-economic impacts, and material loss. Yin et al. (2015) estimated that 

catastrophic floods coming from various sources (river, rain, coastal) caused 79 deaths, an 

economic loss of approximately US$ 1.86 billion and social impacts in urban areas of Chinese 

cities in July 2011. To cope with these issues, it is essential that preventive approaches, such as 

improved and densified monitoring systems, should be developed to minimize their impact. 
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The use of computer systems combined with data information from cities, rivers, weather, and 

others can contribute to monitoring and controlling urban flood events. 

Due to the increased capacity to evaluate data using computational resources, Zhu et 

al. (2017) report the application of deep learning (DL) in remote sensing, leading to a growth 

in the number of papers relating to the use of DL in remote sensing. Several review articles 

were published in the last years regarding the application of DL to remote sensing image 

analysis. Ma et al. (2019) conducted a comprehensive review of all major sub-areas of the 

remote sensing field connected to DL; Li et al. (2020) showed the progress of the recent DL 

based object detection method in both the computer vision and earth observation communities. 

Aldebert et al. (2017) mentioned that convolutional neural network (CNN) as one DL 

method is the most applied in image analysis, and it is able to learn powerful and expressive 

descriptors from images for a large range of tasks: classification, segmentation, detection, etc. 

For instance, Santos et al. (2019) applied object detection DL methods to detect tree species in 

RGB imagery obtained by unmanned aerial vehicle (UAV).  

A recent semantic segmentation method and a state-of-the-art CNN structure is 

SegNet. Yu et al. (2017) state that semantic segmentation makes it easier to understand images 

because it segments images into semantically significant objects and assigns each part one of 

the predefined labels. Thereby, different objects from remotely captured images can be 

extracted simultaneously. Segnet method has been applied in several remote sensing 

applications. (Du et al., 2018) exploited SegNet technique to classify and extract cropland in 

high-resolution remote sensing images, showing that the proposed approach efficiently 

obtained accurate results (98%) for the segmentation task. 

The integration of DL and remote sensing in the field of hydrometry is promising, 

given that remote sensing seeks to obtain information from the Earth's surface without direct 

contact from the object of study, thus avoiding endangering people and equipment during flood 

events, and that DL makes automatic measurements possible with high speed and accuracy.  

For instance, Pan et al. (2018) demonstrated promising results from computer vision systems 

combined with CNN for river level estimation. 

To the knowledge of the authors, there are only a few studies related to the use of DL 

techniques to densify the monitoring possibilities of (urban) flood events yet. Nogueira et al. 

(2018) focused on identifying flooding areas from high-resolution imagery using DL 

approaches. Feng and Sester (2018) described a framework to collect, process, and analyze 

pluvial flood-relevant information from social media platforms applying DL approaches on 

user-generated texts and photos. 
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Such a monitoring tool could also be applied to support real-time flood warning 

capabilities. The hardware could potentially be simple cameras and thus cost-effective to 

densify low-cost gauging stations. The use of DL with CNN in remote sensing to monitor 

surface water can be a valuable supplement to costly and labor-intense standard gauging 

stations. 

The main aim of this paper is to automatically segment river water in RGB imagery 

using the SegNet semantic segmentation method. We conducted experiments in a river in the 

East of Germany using RGB imagery collected by a low-cost camera. For the segmentation 

task, we evaluated different input image resolutions to assess their influence on the river 

segmentation performance of the SegNet method. 

The rest of the paper is organized as follows. Section 2 presents the methodology 

adopted in this study. Section 3 presents and discusses the results obtained in the experimental 

analysis. Finally, Section 4 summarizes the main conclusions. 

The images were randomly divided into training, validation, and test sets to evaluate the 

methods and applications. The training set is used to train the methods, while the other sets are 

used to evaluate the parameters and applications. This procedure guarantees that images used 

in training are not used in the evaluation and thus ensures correct evaluation of the methods. 

Pixel Accuracy and Intersection over Union (IoU) were used as validation metrics as they are 

the most widely used in the literature. 

2.2. METHODOLOGY 

2.2.1 Image Dataset 

 

The observed river is the Wesenitz featuring a medium scale-catchment located in the 

East of Germany. A low-cost Raspberry Pi camera sensor was installed 4 m above the ground 

at a lantern to monitor the river from an oblique perspective (Figure 1). 

 

 
Figure 1. Position of the camera used at the Wesenitz river. 
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The dataset was acquired with the 5-megapixel sensor Raspberry Pi Camera Module 

v2.1 connected to the corresponding single-board computer Raspberry Pi Zero. The image 

resolution is 2592 x 1444 pixels, and the pixel pitch amounts 1.4 μm. The camera is equipped 

with a fixed lens with a focal length of 2.9 mm, resulting in a wide field of view at the 

investigated river section. The Pi camera was calibrated prior to the installation using a scaled 

temporary calibration field. Image sequences of 5 images are captured every half hour during 

daylight (Eltner et al., 2018). The captured images reflect different periods of the day over a 

period of about 50 days allowing for the analysis of the river in different conditions and ambient 

situations. A total of 3,407 images have been annotated from 2017-03-30 to 2017-05-16 using 

the LabelMe Software. Figure 2 shows examples of original and labeled images. 

 

 
(a) 2017-03-30 

 
(b) 2017-04-23 

 
(c) 2017-05-16 

 
(d) 2017-03-30 

 
(e) 2017-04-23 

 
(f) 2017-05-16 

Figure 2. Examples of original and labeled images from the dataset. 

2.2.2 Semantic Segmentation Method 

The CNN SegNet by Badrinarayanan et al. (2017) was used to segment the pixels into 

water area and background in imagery acquired by the Raspberry Pi RGB sensors. SegNet 

consists of a symmetrical encoder-decoder followed by a pixel-wise classifier, as shown in 

Figure 3. The encoder network is similar to the convolutional layers in VGG16 (Simonyan and 

Zisserman, 2014). These convolutional layers are designed for image classification, and the 

SegNet encoder network is significantly smaller and easier to train than many other 

architectures because the fully connected layers of VGG16 are removed. The higher resolution 

feature maps at the deepest encoder output are acquired when the fully connected layers are 

discarded. Therefore, the number of parameters in the SegNet encoder network reduces 

significantly. In the encoder network, convolutions are performed, and a set of feature maps are 

produced. In other words, this step consists of one or more convolutional layers, which then are 

batch normalized, and an element-wise rectified-linear non-linearity (ReLu) is applied. Then, 
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max-pooling is used to achieve translation invariance over small spatial shifts in the input 

image. 

The decoder network is composed of convolutional and a set of upsampling layers, and 

the memorized max-pooling indices from the encoder feature map(s) are used for upsampling 

the low-resolution feature map(s). Since the upsampled maps are sparse, convolution layers are 

applied, producing dense feature maps. In each of these maps, batch normalization is used. The 

detail preservation can be valuable for delineating the water area and background with good 

accuracy. In the end, the decoder output has the same resolution as the input image, and a 

multiclass softmax classifier is applied (Garcia-Garcia et al., 2017). The multi-class softmax 

classifier activation function produces a probabilistic value for each pixel-wise classification, 

where the predicted segmentation matches the most likely class at each pixel. 

 

 
Figure 3. SegNet architecture is composed of an encoder and decoder. The encoder 

extracts a low-resolution feature map, and the decoder upsamples it to obtain a pixel-wise 

classification. Source: adapted from Badrinarayanan et al. (2017). 

2.2.3 Experimental Setup 

During the experiments, we evaluated the input image resolutions of 256 x 256 and 512 

x 512 pixels to assess their influence on the river segmentation performance. Garcia-Garcia et 

al. (2017) mentioned that the integration of information from various spatial scales are required 

to deal with semantic segmentation. Finding the most suitable image resolution is necessary to 

balance local and global information. When these steps are done properly, it is possible to 

achieve good pixel-level accuracy and to deal with local ambiguities 

The image dataset was randomly divided into training (60%), validation (20%), and test 

datasets (20%). The training dataset is used to train the SegNet. The validation dataset was used 

to determine the learning rate, defining how the weights are adjusted in the CNN and estimating 

the best suitable number of epochs during training to reduce the risk of overfitting. Finally, the 

test dataset is used to report the success of the trained network. ImageNet (Deng et al., 2009) 

was used to determine the pre-trained weights of the SegNet encoder. This procedure is known 

as transfer learning. The stochastic gradient descent optimizer was used for training with a 
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learning rate of 0.001. The number of epochs at which the loss function stabilized in training 

and validation datasets was 30. 

The performance of the river segmentation was measured with the pixel accuracy and 

Intersection over Union (IoU) metrics. The pixel accuracy shows in percentage the pixels that 

were correctly classified, while the IoU calculates the ratio between the number of intersecting 

pixels of ground truth and predicted mask and the number of unified pixels of both masks. 

Data processing was performed with a desktop computer on the Ubuntu 18.04 operating 

system (Intel(R) Xeon(R) Central Processing Unit (CPU) E3-1270@3.8Ghz, Random Access 

Memory (RAM) 64 GB, NVIDIA Titan V Graphic Processing Unit (GPU) 5120 Compute 

Unified Device Architecture (CUDA) cores, 12 GB main memory). The algorithms were coded 

with Keras-Tensorflow, an open-source neural network library written in Python. 

2.3. RESULTS AND DISCUSSION 

The loss function of SegNet showed indications of overfitting for the resolution of 256 

x 256 pixels (Figure 4.a). However, using a resolution of 512 x 512 pixels (Figure 8.b) indicated 

that overfitting was mitigated because the loss values in training and validation were similar. 

Generally, the loss function stabilized with the chosen number of 30 epochs, and increasing the  

resolution from 256 x 256 to 512 x 512 further improved the segmentation. These results show 

that low-resolution input images make the learning of CNN more difficult. Furthermore, it has 

to be noted that the higher the resolution of the image is, up to a certain limit to consider memory 

constraints, the more important details can be learned. 

 

 
(a) 256 x 256 pixels 

 
(b) 512 x 512 pixels 

Figure 4. Loss function for SegNet using resolutions of 256 x 256 and 512 x 512 pixels. 

 

Assessing the performance of the DL classification with pixel accuracy reveals an 

accuracy of 99% considering 256 x 256 pixels resolved images (Table 1). The accuracy 

improves even further when the resolution is increased to 512 x 512 pixels. 
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Table 1. Results using pixel accuracy in the subset of images. 

Resolution 
(pixel) 

Pixel Accuracy 

Background River 

256 x 256 0.9880 (±0.006) 0.9890 (±0.004) 

512 x 512 0.9920 (±0.005) 0.9916 (±0.004) 

 

The IoU reveals for both resolutions an accuracy of about 98%. However, the results 

are slightly better for the higher resolution images (Table 2). Both accuracy estimates, pixel 

accuracy and IoU, indicate that the method used is efficient to segment water in low-cost camera 

images. 

 

Table 2. Results using IoU in the subset of images. 

Resolution 
(pixel) 

IoU 

Background River 

256 x 256 0.9750 (±0.005) 0.9795 (±0.005) 

512 x 512 0.9821 (±0.005) 0.9852 (±0.005) 

 

Due to numerous adversities (changes of weather, lighting conditions, and camera 

position), it is required to assess the learning generalization. Figures 5 and 6 show the 

segmentation of test images in different circumstances, displaying that river pixels were 

classified accurately. 

 

 
 

 
(a) RGB 

 
 

 
 

 
(b) SegNet 

 
 

Figure 5. Examples of different illumination conditions in (a) original images; (b) 

SegNet segmented images. 
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(a) RGB 

 
 

 
 

 
(b) SegNet 

 
 

Figure 6. Examples of different point of views in (a) original images; (b) SegNet 

segmented images. 

2.4. CONCLUSIONS 

In this study, we present the application of a semantic segmentation method (SegNet) 

to automatically segment river water in imagery acquired by RGB sensors. The results for pixel 

accuracy and IoU indicated that the SegNet method is useful to segment the water in imagery, 

also considering different image resolutions. In addition, although there was a high number of 

adversities, the segmentation of test images in different circumstances was performed 

accurately with errors below 2.5%. In future works, it should be evaluated how well it is 

possible to replicate this segmentation at different rivers. In addition, water segmentation could 

be applied to obtain various information from a body of water, such as level, speed, and 

discharge. For instance, there are already works related to image-based approaches applied 

successfully to camera gauges, and thus being possible to extract water level information 

automatically. Consequently, it could improve traditional methodologies and become a new 

source of information. 
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3. USING DEEP LEARNING FOR AUTOMATIC WATER STAGE 

MEASUREMENTS 

The second paper, named “Using deep learning for automatic water stage 

measurements” was published in the journal “Water Resources Research”. Thales Shoiti 

Akiyama contributed to the writing, review and development of the deep learning codes. It is 

referenced as “Eltner, A., Bressan, P. O., Akiyama, T., Gonçalves, W. N., & Marcato Junior, J. 

(2021). Using deep learning for automatic water stage measurements. Water Resources 

Research, 57(3), e2020WR027608”.  

 

ABSTRACT 

Image-based gauging stations can allow for significant densification of monitoring 

networks of river water stages. However, thus far, most camera gauges do not provide the 

robustness of accurate measurements due to the varying appearance of water in the stream 

throughout the year. We introduce an approach that allows for automatic and reliable water 

stage measurement combining deep learning and photogrammetric techniques. First, a 

convolutional neural network (CNN), a class of deep learning, is applied to the segmentation 

(i.e., pixel classification) of water in images. The CNNs SegNet and fully convolutional 

network (FCN) are associated with a transfer learning strategy to segment water on images 

acquired by a Raspberry Pi camera. Errors of water segmentation with the two CNNs are lower 

than 3%. Second, the image information is transformed into metric water stage values by 

intersecting the extracted water contour, generated using the segmentation results, with a 3D 

model reconstructed with structure-from-motion (SfM) photogrammetry. The highest 

correlations between a reference gauge and the image-based approaches reached 0.93, and 

average deviations were lower than 4 cm. Our approach allows for the densification of river 

monitoring networks based on camera gauges, providing accurate water stage measurements. 

3.1. INTRODUCTION 

Spatiotemporally dense hydrological observation networks are required to provide a 

suitable database for modeling and planning of water resources. One important hydrological 

observation is the water stage, which can be retrieved using several methods. Floating and 

pressure gauges are very common (Morgenschweis, 2010); however, they require the 

installation in the water and therefore entail the risk of losing them during severe flooding. 

Thus, remote observation techniques, such as those based on radar or ultrasonic devices 

(Herschy, 2008), might be preferred in such situations because they have the advantage that 

they can be installed remotely. 
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Another remote option is the application of image-based methods. In general, they can 

be low-cost in terms of the device compared to conventional water stage retrieval approaches 

if, for instance, basic camera circuit boards are used in combination with single board computers 

or microcontrollers. These setups also have the advantage that data processing can be performed 

on the spot, and only small data amounts have to be transmitted if needed, for example, via IoT 

infrastructures (Da Xu et al., 2014). Furthermore, camera gauges provide the benefit of 

potentially measuring flow velocities simultaneously by capturing short videos and tracking 

particles at the water surface (e.g., Eltner et al., 2020), which allows quantifying discharge with 

the same device eventually and thereby avoiding the installation of additional equipment. The 

application of camera gauges is suitable at rivers with periodic heavy debris loads or low angle 

riverbanks with large river width fluctuations leading to failure of other gauging techniques. 

Observing the river reach with an optical device enables capturing qualitative and 

quantitative information beyond the water stage or flow velocities. For instance, ephemeral 

rivers and extended flooded areas become observable, and snow coverage and ice growth can 

be assessed. Furthermore, the vegetation evolution might be monitored, or the river cross-

section changes determined to ensure a continuous and reliable water stage discharge curve. 

Thus, camera observations can practically support hydrological monitoring. Of course, quality 

constraints have to be considered when using camera-based approaches (e.g., Elias et al., 2020). 

If the right setup is chosen, the images can be processed to extract the water stage 

information, ideally automatically. Several image-based approaches have already successfully 

been applied to camera gauges. However, most of them are designed for specific scenarios 

making it difficult to transfer them to other situations. The studies by Leduc et al. (2018) and 

Young et al. (2015) require vertical stage boards or rock sides for reliable measurements with 

errors of about 3 cm in the former study. Ran et al. (2016) apply image processing algorithms 

for automatic edge detection and image classification, and Stumpf et al. (2016) exploit the 

temporal texture to identify water regions. However, both studies are based on traditional image 

processing methods and do not perform an error assessment with independent reference 

measurements. Eltner et al. (2018) also consider the temporal texture of the changing water 

surface and estimate water stages with errors of 1.5 cm, but their approach solely focused on 

small regions of interest in the images to decrease the noise in their measurements. Pan et al. 

(2018) compared three different image-based algorithms and verified that the one based on 

convolutional neural network (CNN) revealed the best results with an average error of 9 mm 

when checked to reference water stage measurements. However, the authors also solely focused 

on a small region in the image, making it less suitable, for instance, for large flood scenarios. 

Although considering another environmental application, Kopp et  al.  (2019) illustrated the 



 
 

32 
 

superiority of a CNN-based approach to another conventional image processing approach to 

measuring snow depth with errors below 5 cm and with high flexibility using a measuring rod. 

All of these image-based approaches, except for the usage of CNN, inherit the challenge 

that they are sensitive to changing environmental conditions, for example, considering: calm 

and clear water during low flow versus turbulent and opaque water during flood events; or 

overexposed images with strong shadow and low contrast imagery during foggy conditions. 

Thus, a robust approach is needed to cope with different lighting conditions, such as strong 

shadows and changes in the surrounding, and that is transferable to different locations. 

CNN is a class of deep learning, and in general, is applied to image analysis. CNNs 

were applied successfully in computer vision to identify objects with high reliability and 

robustness, and their popularity in the field of remote sensing is continuously growing due to 

the increased simplification of their application (Heipke & Rottensteiner, 2020). Previous 

works showed the potential of CNNs to classify water pixels in satellite imageries (Chen et al., 

2018; Fang et al., 2019; Feng et al., 2018; Isikdogan et al., 2017; Jiang et al., 2018). However, 

in these studies, multispectral information was used, which significantly contributes to delineate 

water bodies because, in the infrared region, the water presents a strong absorption, contributing 

to its distinct differentiation regarding other targets. In this study, we adapt two state-of-the-art 

CNN structures to be applicable for robust water segmentation, that is, classification of each 

pixel, using RGB imagery. RGB sensors are cheaper when compared to multispectral sensors, 

making our work more reproducible. 

The novel contribution is the proposal of an approach, which combines deep learning 

and photogrammetric methods for water stage estimation. CNNs are used to automatically and 

robustly segment water surfaces in images, which are used to generate waterlines via contour 

extraction of the segmented area. Afterward, photogrammetric approaches are applied to 

intersect the identified waterlines with the 3D terrain model to retrieve the water stage. Another 

novel contribution of our study is providing a labeled data set that allows for the assessment of 

ongoing approaches in this particular application of water stage measurement, which is so far 

not available. Thus, the data set is aimed to allow for the future development of a transferable 

CNN to be valid for water segmentation at different locations. The method proposed in this 

study is not to replace existing water stage measurement approaches but to complement them 

by densifying observations at lower costs. 

3.2. METHODS 

In this study, two CNNs, fully convolutional network (FCN; Long et al., 2015) and 

SegNet (Badrinarayanan et al., 2017), are tested to evaluate their suitability to segment, and 
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thus classify, water surfaces in imagery automatically. The boundary of the segmented water 

area (i.e., waterline) is intersected with a digital elevation model (DEM) of the observed river 

reach to acquire water stage measurements. The workflow for preparing the study area, camera 

setup, CNN approach, and water stage estimation is displayed in Figure 1a. A list of the 

terminology, originating from computer vision and photogrammetry, used in this manuscript to 

describe the methods is provided in supplement A to facilitate the understanding of the 

introduced approaches. 

 

 
Figure 1. (a) Workflow to automatically extract the water stage from images. (b) 

Orthophoto and (c) DEM of the area of interest, including an indication of the camera position 

and ground control points (GCPs) locations. 

3.2.1. Study Area 

The study area is located at the medium scale river Wesenitz, which flows through 

eastern Germany. The area of interest is situated at the standardized gauge station Elbersdorf to 

ensure reliable reference measurements to our image-based approach. The river width is about 

10 m. Average water stages and discharge at the reference gauge are 45 cm and 2.14 m³s−1, 

respectively. At the gauge, water stages are measured automatically with a pressure gauge and 

averaged for 15 min. 

Recent advancements in UAV (unmanned aerial vehicle) and 3D reconstruction from 

images enable easy, flexible, and affordable calculation of high-resolution topography data, 

which has led to a significant increase in their combined application in environmental sciences 

(e.g., Eltner et al., 2016). A DEM and orthophoto of the area of interest have been reconstructed 

(Figures 1b and 1c) using the computer vision techniques structure-from-motion (SfM; Ullman, 

1979) and multiview stereo (MVS; Seitz et al., 2006), summarized here as SfM 



 
 

34 
 

photogrammetry, from a field campaign in March 2017 (Eltner et al., 2018). Thereby, 20 

overlapping images were captured with the UAV Asctec Falcon 8 equipped with a Sony Nex 

5N (with a 6-mm fixed lens) at a flight altitude of about 25 m. Afterward, the DEM, comprised 

of a 3D point cloud, was generated with Agisoft PhotoScan software with a 3D error below 14 

mm compared to independent terrestrial light detection and ranging (LiDAR) data. If no UAV 

is available, terrestrially captured images can also be used to calculate the DEM of the area of 

interest due to the platform independence of SfM photogrammetry. In total, 17 GCPs were 

surveyed with a total station and located around the area of interest with mm-accuracy to scale 

the image measurements. The resulting dense 3D point cloud was processed to correct the 

underwater areas for the refraction effect, considering the multimedia photogrammetry tool 

developed by Dietrich (2017). However, if this approach is used to calculate the 3D model 

beneath the water surface, it has to be considered that the water needs to be calm and that the 

river bed has to be visible in the images. The resulting precision of the underwater area was 2.7 

cm compared to total station point measurements (Eltner et al., 2018). 

 

 
Figure 2. Fully convolutional networks can efficiently learn to make dense predictions 

for per-pixel tasks like semantic segmentation. (a) fully convolutional network (FCN) 

architecture; the figure is adapted from Long et al. (2015). (b) SegNet architecture is composed 

of two parts: encoder and decoder. The encoder extracts a low-resolution activation map while 

the decoder upsamples it to obtain a pixel-wise classification. The figure is adapted from 

Badrinarayanan et al. (2017). 

 

GCPs, represented by white circles on black background, were distributed at the left and 

right shore at the river region observed by the camera (Figure 2). They were measured with a 

total station with mm accuracy in the same local coordinate system of the 3D model. Due to 
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strong vegetation growth in the later observation period, additional natural GCPs were extracted 

at stone corners, and corresponding 3D coordinates were retrieved from the referenced UAV 

data (Eltner et al., 2018). 

3.2.2. Image Acqusition 

A Raspberry Pi RGB camera module was used to capture image sequences from March 

30, 2017 to April 30, 2018. The corresponding single-board computer controls the camera. This 

low-cost setup is chosen to test the suitability of such tools as these cameras might be very 

suitable to densify hydrological observation networks due to their low resource consumption 

(Kröhnert & Eltner, 2018). The camera was mounted onto a lantern pole about 4 m above the 

ground. If daylight was sufficient, automatically measured with a light sensor controlled by the 

Raspberry Pi, 15 images were taken every 30 min. The camera module has a 2,592 × 1,944 

pixel resolution and a fixed nominal focal length of 2.9 mm 

Due to various system failures at this observation spot, cameras had to be changed three 

times during the observation period. A new calibration of the interior geometry of the camera 

was necessary for each change to project the image measurements into object space correctly, 

allowing the metric water stage retrieval (Section 3.2.5). The camera calibration was performed 

with an in-house built calibration board. Images were captured from different perspectives to 

estimate the interior orientation parameters (IOPs), minimizing correlations (Luhmann et al., 

2014). In the end, the focal length, principal point, and radial distortion parameters were 

calculated within a bundle adjustment in the software Aicon 3D Studio. The radial distortion 

parameters are especially important for the potential erroneous projection of image 

measurements in the image corners. 

3.2.3. Water Area Segmentation 

The water area is segmented with two CNNs: FCN (Long et al., 2015) and SegNet 

(Badrinarayanan et al., 2017). In general, CNN is designed to learn the spatial composition of 

relevant characteristics from the raw input data. Learning is performed by multiple layers, the 

main one being the convolution layer that learns a set of filters automatically. In the first step, 

the acquired RGB data is labeled. Afterward, the network is trained with training and validation 

datasets. Finally, the trained CNN is applied to the test data to evaluate the performance of the 

estimated CNN, predicting the water area in so far unseen images. 

3.2.3.1. Application of CNN to Water Segmentation 

Deep learning allows automatic methods to learn patterns from raw data through 

multiple layers of processing (LeCun et al., 2015) in artificial neural networks (ANN). Each 
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layer transforms the input representation into a higher-level representation. In this way, the 

deeper layers learn aspects of the raw data that are most important to the task while discarding 

irrelevant variations (higher-level representation). 

Deep learning has offered great advances in many fields. CNN is a type of ANN, which 

is mainly used in image analysis. CNN is composed of convolution, pooling, and fully 

connected layers. A convolution layer receives an input volume (e.g., an image), which 

convolves with a set of learnable filters to produce an output volume, also called a feature map. 

Filters are trained to highlight relevant features on the activation map during learning. After the 

convolution layer, it is common to apply an activation function such as ReLU (Rectified linear 

unit) that utilizes a nonlinear function f(x0) = max(x, 0). Pooling layers (e.g., max or average) 

are applied to reduce the computational cost by reducing the resolution while maintaining the 

relevant features. The max-pooling layer reduces the resolution maintaining only the maximum 

value in a given region (usually 2 × 2). Similarly, the average-pooling layer maintains only the 

average value for a region. Fully connected layers are applied after several convolution and 

pooling layers to classify the input volume in predefined categories. The last layer of CNN uses 

a softmax activation function to produce classification probabilities. The learning of layer filters 

is performed via stochastic gradient descent (SGD; LeCun et al., 2015). The main idea of SGD 

is to change the filters to minimize the loss function, which measures the discrepancy between 

the predicted category and the ground-truth (LeCun et al., 2015). The learning rate controls the 

magnitude of updating the filters. 

Typical utilization of CNN is image segmentation, which refers to dividing pixels into 

regions with similar properties. In this work, the objective is to classify the image into binary 

classes: river and background. To automatically identify the river pixels in the images, we 

compared two state-of-the-art semantic segmentation methods: FCN and SegNet 

FCN converts CNNs used for classification tasks (composed of convolutional and fully 

connected layers) into fully convolutional networks that produce coarse activation maps. In this 

way, FCN can produce a class for each pixel instead of a class for the entire image. In the FCN 

method, the CNN structure of the model VGG16 (Simonyan et al., 2017) is remodeled by 

discarding the last layer (final classifier) and by converting all fully connected layers into 

convolutions. Thus, the original decision-making layer is replaced by (learnable) filters 

allowing for the input of different sized images. In FCN, convolutional layers with filters of 

size 1 × 1 are appended to the last layer to predict scores for all classes (yellow layers in Figure 

2a), that is, in this study, water and nonwater, at each coarse output locations (scales). Finally, 

an upsampling layer is used to bilinearly upsample the coarse outputs. This layer increases the 

resolution by replicating the values of the neighbors. To refine the spatial precision, FCN fuses 
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the prediction layer with shallower layers of the network by summing predictions and applying 

a softmax function at the end (as shown in Figure 2a) (Long et al., 2015; Torres et al., 2020). 

SegNet architecture consists of a sequence of layers (encoder) and a corresponding set 

of  layers (decoder) followed by a pixel-wise classifier (Figure 2b). Given the input image, the 

encoder part provides a low resolution activation map, which describes the most important 

features. Then, the decoder reconstructs the segmented image from the coarse activation map 

obtained from the encoder, as can be seen in Figure 2b. In SegNet, the encoder part is composed 

of the convolutional and max-pooling layers of the VGG16 (fully connected layers are not 

used). The decoder is composed of upsampling and convolutional layers that use the max-

pooling indices from the encoder to upsample the low-resolution activation map 

(Badrinarayanan et al., 2017; Noh et al., 2015). Each decoder layer upsamples an input (doubles 

its resolution) by placing the input values in the locations indicated by the max-pooling indices 

and zero in the other positions. Since the upsampled maps are sparse (i.e., composed of a large 

number of zeros), convolution layers are applied to produce dense activation maps. After the 

convolution layer, the positions with zero will be filled with values learned by the filters. Using 

max-pooling indices provides important detail conservation and a significant reduction in the 

number of training parameters (Badrinarayanan et al., 2017). The detail preservation can be 

especially important to map the delineation between water and shore with good accuracy. 

Finally, the softmax activation function is applied to obtain a pixel-wise classification with 

probabilistic values. 

 
Figure 3. Examples of original (first row) and labeled images (second row) using the 

annotation software LabelMe. 

 

FCN and SegNet are segmentation methods already used in several applications, e.g., 

for scene understanding (Badrinarayanan et al., 2017) and tree segmentation (Torres et al., 
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2020). In this work, both methods use the same initial set of convolutional layers to extract a 

lower activation map. This set of layers is known as the backbone. In FCN, the upsampling of 

the lower activation map to the original image size is performed during only three steps (8X, 

16X, 32X). In contrast, SegNet upsamples using several blocks that use corresponding pooling 

indices (Figure 2b). The segmentation methods were coded using Keras-Tensorflow (Chollet, 

2015) on the Ubuntu 18.04 operating system. 

3.2.4. Image Dataset 

We manually annotated 20,309 images from March 30, 2017 to April 30, 2018 using 

the software LabelMe (Wada, 2018; see examples in Figure 3). The processed images reflect 

different periods of the day in different seasons for about 1 year allowing the analysis of the 

river in different situations. The high number of images during different environmental scene 

representations is important to reduce the overfitting probability of the model. This data set is 

referred to as a full data set (FD) in the experiments. To assess the best resolution for resizing 

the images, which is necessary when adopting CNN methods, we built a subset consisting of 

3,407 images from March 30, 2017 to May 16, 2017 (first months). 

However, not all images were used for later assessment of accurate water stage retrieval 

due to several camera failures; cameras were changed or repaired and afterward installed again, 

leading to changing interior and exterior camera geometries, respectively. Therefore, keeping 

all images within a single time series analysis complicates the performance assessment of water 

stage detection because of potential errors due to camera geometry and image segmentation 

intertwine. Furthermore, sometimes images were solely available for a few subsequent days, 

also complicating the time series analysis. Therefore, to assess how good water stage changes 

are captured, we focus on four intervals. The image sequences in these intervals were captured 

continuously for several weeks with the same setup to enable suitable statistical analysis 

avoiding the impact of changing camera geometry or single-day measurements with potential 

outliers. In the end, we evaluated the water stage estimation performance for the periods April 

5–April 26, 2017 (spring), May 15–June 22, 2017 (early summer), June 23–July 7, 2017 

(summer), and August 29–September 19, 2017 (autumn). 

3.2.5. Experimental Setup to Train the CNNs 

In this study, each image is downsampled to a fixed resolution due to memory 

consumption during the CNN training. We evaluated the best image resolution with a subset of 

the image data set composed of 3,407 images from March 30, 2017 to May 16, 2017. During 

the experiments, we evaluated resolutions of 256 × 256 and 512 × 512 pixels. The image data 

set was randomly divided into training (60%), validation (20%), and test sets (20%). The 
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training set is used to train segmentation methods, while the validation set was used to tune 

hyperparameters (learning rate and the number of epochs). We refer to Goodfellow et al. (2016) 

for more information on CNN training. Finally, the test set is used to report the results of the 

proposed approach. After identifying the more suitable image resolution of 512 × 512 (Section 

3.3.1), the FD was used for training following the same workflow as performed for the subset. 

For each day, the images were randomly divided into training (60%), validation (20%), and test 

sets (20%). As the test set has images of different dates and seasons, this set is suitable for 

evaluating the methods with respect to their accuracy and generability. Finally, the classified 

water pixels are converted into a single water line by extracting the boundary of the water 

segment based on a traditional image processing technique proposed by Suzuki and Abe (1985). 

Before training, the weights of the encoder (i.e., VGG16 layers) of all methods were 

initialized with values pretrained at ImageNet, a procedure known as transfer learning. The 

stochastic gradient descent optimizer with a learning rate of 0.001, a momentum of 0.9, and a 

weight decay of 0.0005 were used for training all layers of both methods. Each method was 

trained through 30 epochs when the loss function stabilized in training and validation sets. 

The performance of the methods in image space was measured by two metrics: pixel 

accuracy and intersection over union (IoU) (Long et al., 2015). Both compare manually 

measured ground truth (GT) data, which is the manually annotated (with LabelMe) water area, 

to the predicted data (Figure 4a). The pixel accuracy indicates the percentage of correctly 

classified pixels, contrasting true positives and true negatives (i.e., correctly segmented class 

belonging and nonclass belonging pixels) to all classified pixels (resulting in true positives and 

true negatives as well as false positives and false negatives). A value of 1 indicates that all 

pixels were classified correctly, and with increasing error, the value will decrease. The IoU 

metric calculates the ratio between the number of intersecting pixels of ground truth and 

predicted mask and the number of unified pixels of both masks. If both masks match exactly, 

the value will be 1, and if there are deviations, the value will decrease. 

In addition to the annotated and automatic approach, single points were picked manually 

in the images at the right shore using the software ImageJ (Schneider et al., 2012). The image 

coordinates of the individual points indicate the border between water and shore. These single 

points are in contrast to the annotated water lines that stretch along the entire observed river 

reach. These observations were used to distinguish between the influence of the error of camera 

geometry estimation and errors of the automated measurements in the images on the accuracy 

of the water stage calculation. The well-controlled, single-point approach has the advantage 

that potential selection errors during the image labeling due to outliers along the shore-river 

border are minimized. 
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Figure 4. (a) Error metrics (IoU and pixel accuracy) and corresponding equations used 

to estimate the performance of image segmentation with CNNs. (b) Oriented camera in the 

same reference system (object space) as 3D point cloud displaying area of interest to transform 

image measurements (red water line) to water stage information. The water line, which can be 

considered as a collection of pixels, is projected through the camera projection center into object 

space and then intersected with the 3D model to eventually retrieve the water stage as median 

of all intersected points (i.e., pixels) of the water line. Blue dot indicates the manually measured 

single point that represents the border between water and shore. 

3.2.6. Image Measurements Referencing 

To transform the image measurements in pixels into metric values of water height, the 

information about the interior and exterior camera geometry and the topography and bathymetry 

of the observed river reach is needed. The latter two are combined in a single dense point cloud 

with minimal point distances of 0.5 cm. The interior geometry was calibrated for each new 

camera setup with the in-house calibration field. The exterior geometry (camera pose) was 

estimated via spatial resection considering the GCP information and the calibrated IOPs. 

Thereby, the 2D image coordinates and the corresponding 3D coordinates of the GCPs are used 

in a Levenberg-Marquardt optimization, as more GCP information is given than needed to 

estimate the camera pose (e.g., Kraus, 2007; Luhmann et al., 2014). Camera pose was calculated 

for each captured image to account for camera movement due to wind or sun insolation  

After retrieving all the necessary parameters, the image points of the water line are 

projected into object space to intersect these points with the 3D point cloud describing the river 

reach (Figure 4b). In the 3D point cloud, the nearest neighbor point to the projected image water 

line point is chosen as a valid point. The Z-coordinate of these water line points corresponds to 

the water height. The water lines are solely intersected at the location of the paved river reach 

and thus mostly vegetation-free areas. Vegetated areas are not valid for the intersection 

approach because plant growth changes the 3D appearance of the river reach. However, for the 

measurements, a stable 3D object is assumed. If this is not the case, the 3D model of the area 

of interest would need to be updated for each image-based water stage retrieval. We intersect 

the image information, i.e. the water contour, with the left and the right river shore. The results 
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are intersected water line points for the left and right shore, separately. The differentiation 

between both river sides is chosen to evaluate the potential influence of object to camera 

distance on the water stage calculation error. To estimate for each image a single water stage 

value from all intersected water line points, we calculate the median of all height values. 

Furthermore, a local robust weighted regression filter (Cleveland, 1979) is applied to each of 

the time series to smooth the temporal water stage change detection to mitigate the impact of 

strong outliers during the data comparison to the gauge measurement. 

To assess the performance of water stage retrieval, we use the two error metrics 

accuracy, that is, average (mean) difference between the reference gauge and the image-based 

water stages, and precision, that is, the standard deviation of water stage differences between 

reference and camera gauge. 

3.3. RESULTS 

First, we display the water segmentation results in the images considering both CNNs 

and different image resolutions. Afterward, the performance of water stage estimation was 

evaluated, comparing the image-based results to the reference gauge measurements  

 

 
Figure 5. (a) The loss function for two segmentation methods using resolutions of 256 

× 256 and 512 × 512 pixels training with the subset image dataset. 

3.3.1. Water Segmentation in the images 

To assess water segmentation, we varied the resolution of the input image from the 

subset of the image data set composed of 3,407 images. Figure 5 presents the loss function for 

both segmentation methods using resolutions of 256 × 256 and 512 × 512 pixels. As can be 
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seen, the loss functions of SegNet and FCN using the resolution of 256 × 256 pixels showed 

indications of overfitting because the loss during validation with unseen images remains higher 

than during training. In contrast, the loss functions of both methods for resolution of 512 × 512 

pixels indicate low overfitting (especially for FCN), as the loss values in training and validation 

were similar. In any case, the loss function for both methods stabilized with the chosen number 

of 30 epochs. 

Table 1 presents the results using pixel accuracy and IoU for different resolutions. We 

observed that increasing the resolution from 256 × 256 to 512 × 512 improved the results of 

both semantic segmentation methods. The higher the resolution up to a certain limit (not 

investigated in the current work due to memory limitations), the more important details can be 

learned. Furthermore, a slightly higher performance of the SegNet approach can be observed 

compared to the accuracy achieved with FCN. 

Given that 512 × 512 pixels achieved the best results for both methods, we trained them 

in the complete image data set (FD) with 20,309 images. This data set has several challenges, 

such as changing lighting and camera position. Although this data set has images with more 

variations, the results were similar to the subset (3,407 images), as shown in Table 1. Figure 6 

shows the segmentation of test images for different lighting and camera position to illustrate 

the learning generalization. We verified that the images differ visually, although both 

segmentation methods separated the river accurately. 

3.3.2. Water Stage Estimation 

 

The application of two different CNNs resulted in comparable performances for water 

segmentation, and consequently for the water stage estimation, as can be verified in Figure 7. 

Both reveal capabilities to measure water stage robustly, indicated by small quartiles of 

differences between the reference gauge and the image-based water stage (Figure 7a). 

Considering all four intervals of measurement, the average deviation for FCN amount at the left 

and right shore were −1.1 ± 3.1 and −3.6 ± 2.0 cm, respectively. For SegNet, deviations were 

−3.1 ± 2.8 and −3.2 ± 2.3 cm. At the left shore, the accuracy was higher when using FCN. 

However, the precision was lower, indicated by a larger spread of the quartiles compared to the 

measurements at the right shore. Therefore, FCN revealed lower repeatability or robustness of 

the measurement at the left shore. The SegNet results revealed smaller quartile ranges of 

deviations and similar accuracies at both shore sides, which was in contrast to FCN. However, 

it can be noted that the differences in performance between SegNet and FCN are nevertheless 

small. The GT depicted a similar average performance as the predicted data at the left and right 

shores (−2.2 ± 2.8 and −3.7 ± 3.2 cm, respectively). The deviation of the manual point-based 
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measurements at the left shore is also in the range of the automatic approaches (1.7 ± 2.3 cm; 

supplement B). 

 

Table 1. Evaluation of the Image Resolution Using Pixel Accuracy and Intersection 

Over Union (IoU) in the Subset of Images and FD 

 

Method 

 

Resolution 

Pixel accuracy 
 

Background River 

 

Background 

IoU  

River 

SegNet 256 × 256 0.9880 (±0.006) 0.9890 (±0.004) 0.9750 (±0.005) 0.9795 (±0.005) 

 512 × 512 0.9920 (±0.005) 0.9916 (±0.004) 0.9821 (±0.005) 0.9852 (±0.005) 

 512 × 512 (FD) 0.9903 (±0.006) 0.9897 (±0.016) 0.9817 (±0.006) 0.9800 (±0.017) 

FCN 256 × 256 0.9956 (±0.003) 0.9825 (±0.004) 0.9745 (±0.004) 0.9790 (±0.004) 

 512 × 512 0.9952 (±0.004) 0.9900 (±0.003) 0.9830 (±0.004) 0.9861 (±0.003) 

 512 × 512 (FD) 0.9820 (±0.006) 0.9804 (±0.018) 0.9819 (±0.006) 0.9802 (±0.018) 

 

 
Figure 6. Examples of different illuminations and view in (a) test images segmented 

by (b) FCN and (c) SegNet. 
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Figure 7. (a) The error of image-based water stage estimation using FCN, SegNet, and 

GT considering all four time series; the water stage differences between the reference gauge 

and the camera gauge are displayed. (b) Spearman correlation coefficient rS and scatterplot for 

each image-based approach compared to gauge reference. Blueline corresponds to second 

degree polynomial fit to the scatter points. (c) Spearman correlation coefficients between water 

stage measured at the gauge and image-based approaches at both shore sides for each time 

series. 

 

 

Table 2. Differences of Water Stage Estimation Comparing Image-Based Approaches 

to the Gauge Reference (Mean Difference, i.e., Accuracy, in [cm] and Standard Deviation 

(Std) of Difference, i.e., Precision, in [cm]) 

   FCN        SegNet          GT                 Manual 
   

    Right      Left        Right         Left           Right            Left                  Left 

Spring 2017 Mean −3.01 −0.69 −3.74 −3.87 −3.73 −2.1 −1.88 

 Std 1.8 2.56 2.71 1.78 3.94 3.02 1.58 

Early summer 2017 Mean −4.58 0.98 −3.88 −1.99 −5.35 −0.44 −0.30 

 Std 0.87 0.85 1.12 0.88 1.72 1.27 1.21 

Summer 2017 Mean −4.56 −3.96 −3.88 −2.63 −3.27 −4.03 −4.30 

 Std 1.92 5.10 1.64 2.97 2.02 2.55 1.61 

Autumn 2017 Mean −2.2 −4.4 −0.62 −6.84 −2.29 −4.37 −4.59 

 Std 2.67 3.81 2.7 4.4 3.42 3.69 2.86 

 

Besides the absolute comparison of water stages between the reference gauge and the 

image-based approaches (i.e., camera gauge), we also considered how well water stage changes 

were captured by the camera gauge (Figure 7b). Therefore, the spearman correlation coefficient 

was calculated, revealing a very good performance of FCN and SegNet regarding the 

measurement of water stage variations. The lowest correlation value was 0.87 (left shore, FCN), 
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and the highest correlation coefficient amounts of 0.93 (right shore, FCN). Interestingly, the 

GT performs lower than both prediction methods. Assessing the absolute deviations and 

capturing of water stage change reveals that neither FCN nor SegNet can be considered as 

outperforming the other. The single point-based manual measurement of the water-shore-border 

depicts a correlation (0.89); in the range of CNN approaches. The similar performance of the 

point-based and CNN approaches indicates an overall strong impact of the accuracy of 

intersecting the image measurements with the scaled real-world point cloud at the error of water 

stage estimation regardless of the water delineation approach. 

3.3.3 Seasonal Performance 

In the next step, we took a closer look at different intervals (explained in Section 3.2.4) 

separately to check if different factors, such as lighting or vegetation growth, on the 

performance become obvious and to investigate if one CNN is preferable during different 

environmental conditions. During the first two seasons (spring and early summer), the water 

stage estimation showed, in most cases, lower accuracies if the right shore is used to intersect 

the image measurements (Table 2). In the third and fourth observation periods (summer and 

early autumn), measurements performed with the left shore reveal lower accuracies, probably 

due to strong vegetation growths between the cobblestone joints, which did not occur at the 

more strongly shaded right shore. 

Considering the correlations between the CNN-based water stage estimation and the 

reference gauge for each period separately (Figure 7c) revealed that the best results are achieved 

at the left shore during early summer and at the right shore during autumn, which partly 

confirms the descriptive statistical findings (Table 4). The lowest correlation coefficients were 

calculated for the summer period at both shores. Also, the manual measurements using single 

points show the lowest accordance to the reference gauge in that period. 
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Figure 8. Time series of water stage detection with FCN and SegNet at left and right 

shore compared to gauge. 

 

In general, considering the time series of each period, we observed an overestimation 

of the water stage at the right shore, especially during the summer, except for the last period in 

autumn, where the finding inverts (Figure 8). Nevertheless, the time series indicate that the 

temporal changes were sufficiently detected. Thus, the systematic offsets can be mitigated, 

considering a single independent reference measurement. 

Furthermore, short-term fluctuations were captured by the cameras, which were, 

however, averaged out by the reference gauge measurements. These fast but short term changes 

in the water stage were due to mill activities upstream, which regulate the flow frequently and 

strongly, leading to fast water stage changes within a few minutes that were not captured by the 

camera with 30 min resolution imagery. Therefore, correlations of 1 between the image-based 

and reference gauge can never be expected, even under perfect observation conditions. 

Having a detailed look at the time series of all seasons (Figure 8) and the corresponding 

image classification results enables the identification of problematic cases (supplement C). 

During the spring period, a high number of outliers were given at the right shore considering 

water stages estimated with both CNN approaches. Two strong outliers occur in the period from 

June 24 to June 26 (summer) at the left shore for the FCN approach. In the middle of October, 

strong overestimations of water stages were observed at the left shore for both CNN approaches, 

also confirmed by the lowest accuracies during the last observation period (Table 2). An 
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especially large overestimation of the water stage occurred on October 17 for the FCN 

approach. Higher errors were also observed during autumn for the manual measurement 

approach (Table 2, supplement D). 

3.4. DISCUSSION 

The evaluation of FCN and SegNet revealed that, in general, both methods presented 

similar results in terms of the range of deviations and correlations to the reference 

measurements. However, FCN experienced stronger outliers (Figure 8). Smoother upsampling 

from SegNet could be responsible for smaller outliers, as shown for general images in 

Badrinarayanan et al. (2017). The water stage accuracies generated using the manually labeled 

water areas were worse than the predictions with the CNNs. A potential reason for this outcome 

is that, although the water area was not as perfectly manually annotated at the shore, many more 

water pixels were correctly assigned in the significantly larger water area, making the training 

solution with the CNNs robust. 

The CNN-based image segmentation provided highly accurate results, minimizing the 

effect of the water line detection accuracy on the water stage estimation accuracy. Thus, 

deviations in water stages between reference and camera gauge were mainly due to errors of 

the camera pose and interior geometry estimation leading to noisy referencing of the image 

measurements. Errors of camera pose estimation were amongst others due to insufficient 

retrieval of the IOPs, which is indicated by changing pose accuracies with changing cameras 

(supplement E). But the standard deviation of the estimated camera pose can only be an in- 

dication of the accuracy due to correlations with the IOPs. Another potential error source 

impacting the pose estimation was the achievable accuracy of GCP measurements in the 

images, which varied during the seasons due to changing target appearances. However, 

quantifying the proportion of error of GCPs was not straightforward as it was not possible to 

quantify how accurately the GCPs were measured in the images because they were used as 

observation during the adjustment. In future applications, independent checkpoints would be 

preferable for more reliable statements in this regard. 

The distance between the camera and shores can influence the accuracy of  the water 

stage measurement, as well. At the right shore (more distant from the camera), lower accuracies 

are obvious for both CNN approaches until early summer. Errors in the camera pose estimation 

can lead to bias during the intersection of the image observation with the 3D point cloud, and 

the higher distance from the camera increased those errors. Furthermore, the GSD (i.e., 

resolution) decreases with increasing distance, also leading to less distinguishable GCPs in the 

images. Future works can investigate the distance limit to achieve acceptable results. 
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Environmental conditions influenced the image content, thereby complicating the image 

segmentation. Very unfavorable lighting conditions, such as extreme shadows and 

overexposure, affect the image segmentation, and consequently, the water stage estimation. 

Vegetation growth and illumination difficulties during summer lead to the lowest correlation 

between reference and camera gauge in that season at both shores considering the automatic 

and manual water stage measurement approaches. During autumn, lower water stage accuracies 

and precisions were achieved at the left shore because most challenging light conditions on wet 

leaves and grass lead to ambiguities. Therefore, the faulty classification of the image content 

occurred, which was not the case at the right shore that was mostly shadowed and depicted little 

vegetation. The difficulties of seeing the water line also hindered the manual measurement 

leading to higher errors for that approach (Table 2, supplement D). Errors of image 

classification also occurred in summer and autumn, caused by sunny and foggy days, 

respectively. During the winter season, further challenges are expected. Days are shorter, and 

thus fewer measurements are available if no additional artificial light source is used. 

Furthermore, the river and shore might be covered by ice and snow. Temperature conditions 

have to be considered. For instance, temperature changes can influence the interior camera 

geometry (Elias et al., 2020). 

Another influence on the accuracy of the water stage estimation is the quality of the 3D 

model. For instance, the high number of outliers of water stage values on the right shore during 

the spring season was potentially due to the circumstance that the camera was not sufficiently 

orientated during that period. Hence, only a small part of the paved river reach, to which the 

corresponding 3D model exists, was visible in the camera. Therefore, the averaging of the 

corresponding extracted water stages for each point along the water line in the image was more 

sensitive to outliers in the segmented water area because there were fewer points from which 

the water stage is estimated from. Furthermore, the resolution and precision of the 3D point 

cloud are important. The lower the point density, the lower will be the water stage precision. 

And the more erroneous points are present in the 3D model, the more outliers will be present 

in the estimated water stages. 

The entire contour, that is, water line made of single points, was intersected with the 

shore, which is complex in this study considering the large cobblestones that lead to height 

variations in ranges of several centimeters, resulting in noisy water stage values from 3D point 

cloud intersection. Calculating the median eventually mitigated the impact of the rough terrain. 

However, using less complicated surfaces, for instance, concrete walls, would lead to higher 

accuracies because a plane could be fitted into the intersection area, also avoiding the influence 

of point densities of the 3D model. 
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Changes of the interest area, for instance, after a flood or due to vegetation growth, 

entail updating the 3D model for correct water stage measurements. In the future, a solution to 

this challenge can be the application of at least two cameras (with a known base and interior 

geometry) to utilize stereo-photogrammetry. Points of the segmented water contour would be 

matched between both images to let them intersect directly in 3D space without the need for a 

3D model. However, as long as monoscopic (one camera) measurements are performed, 

locations should be preferred where there is no river reach change and minimal vegetation 

present. Also, approaches can be used that solely provide the river cross-section, for instance 

using ADCP, as long as the information is provided in the same coordinate system as the 

exterior camera geometry. 

The accuracies achieved by the camera gauge were in the range of the demands of the 

German gauge manual (LAWA, 2018) in most scenarios, which states that the gauge has to 

measure the water stage with errors lower than 2.5 cm for 15 min intervals. However, a 

comparison to the full extent is not possible because the camera captures the water stage at a 

distinct point in time with a temporal resolution of 30 min. Therefore, the contrast to the 

reference gauge with 15-min averages of quasicontinuous measurements was limited. The 

observed bias in water stage measurements for the camera gauge, which is assumed to be due 

to errors of the camera pose, can be corrected by a single reference measurement if it remains 

a constant offset. 

Previous camera gauge research (Eltner et al., 2018) at this location achieved a 

correlation of 0.87 for the summer period, revealing that our novel approach allows for similar 

or even better water stage accordance. Eltner et al. (2018) used an image-based classification 

attempt relying on the spatiotemporal water texture, and also required image sequences with 

further processing steps. The previous approach relied on carefully preselected areas for the 

water line intersection in object space and failed during very challenging environmental 

conditions. In contrast, the CNN-based methods do not require such preselection, making them 

more transferrable and more robust on different lighting conditions, facilitating their 

operationalization. However, if the water is not visually distinguishable in the images, also the 

CNN methods will fail as they still rely on the image content. Furthermore, our approach has 

been developed for images captured during the day. To allow for a continuous river observation 

the image-based technique needs to be extended to night time photos. 

Although the training of the initial CNN has high demands regarding knowledge and 

hardware, when the CNN has been trained, its application is simple, low-level, and can be used 

for inference in nonpowerful processors. The aim of this study was to demonstrate the potential 

of CNNs for robust water segmentation, and we anticipate that future application, and thus an 
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extension of training data, will increase the transferability to many more river reaches to 

measure water stages. For future work, it is suggested to investigate unsupervised domain 

adaption and few-shot learning techniques to increase the generalization capacity of the models 

considering less or even no additional labeled data set from other rivers. 

3.5. CONCLUSIONS 

In this study, we proposed an image-based approach combining CNN and 

photogrammetric techniques for water stage retrieval. It was verified that it is possible to 

measure the water stage with high robustness, achieving error ranges from 1.1 to 3.6 cm. CNNs 

trained with a sufficiently large labeled data set can be used to segment water and nonwater 

classes in images. Transfer learning was applied by initializing the first layers of the methods 

(FCN and SegNet) through a pretrained network. The (with ImageNet) pretrained networks 

were used to have a good initialization of the weights and then all layers were trained again. 

This study indicated that regarding the CNN performance, the choice of the network structure 

(FCN or SegNet) is secondary, whereas the choice of the degree of downsampling of the 

captured images is important. Higher image resolution requires larger computing capacity but 

increases the accuracy of segmentation. Correlations between independent gauge 

measurements and the image-based methods were higher than 0.87 and reach up to 0.93. 

However, a perfect fit is not possible between reference and our introduced approach due to 

limits in camera geometry estimation, 3D model accuracies, reference gauge errors, and 

different temporal resolutions. In the future, the application could be extended to other river 

observations, including citizen science data, to increase the complexity of the training data set 

to eventually make the approach transferable to other rivers. 
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APPENDIX A 

Supplemental material for article: 

Using deep learning for automatic water stage measurements 

 
Table of contents: 

Supplement A: Used terminology in this study and used software in this study. 

Supplement B: Error estimates of the manual point-based measurements at the left shore. 

Supplement C: Problematic cases of image-based measurement. 

Supplement D: Time series of GT and point-based manual image-based water stage 

measurement. 

Supplement E: Accuracies of camera pose estimation. 

 

Supplement A: 

Used terminology in this study: 

Activation function: Function determining the activation of neurons in a neural network, which 

includes nonlinearity. 

Activation map: Feature map obtained after a layer of the neural network. 

Camera calibration: Approach to estimate the interior camera parameters, for instance 

considering a specific image acquisition scheme (different perspectives and rotations of the 

camera) and calibration field (coded targets with approximated known coordinates to enable 

automatic measurement/identification of these targets in the image). 

Camera pose: Exterior camera geometry comprising camera position and orientation. 

Convolutional neural network (CNN): A class of neural network composed of convolutional 

layers. 

Encoder: First part of CNN responsible for extracting relevant features from the image. 

Decoder: Second part of CNN responsible for up-sampling to predict pixel-wise class labels. 

Epoch: A training cycle through the complete training data set. 

Exterior camera geometry: Extrinsic camera parameters describing the position (three 

translations) and orientation (three angles) of the projection centre of the camera in a superior 

or arbitrary coordinate system. 

Fully connected layer: Connects all neurons in one layer with neurons in the next layer. 

Fully convolutional network: CNN composed only of convolutional layers. 

Ground control point (GCP): Well-visible and distinguishable point in the image to which the 

3D coordinates are known to georeference the image(s) and/or 3D model. 

Ground Truth (GT): Manually labelled area to enable accuracy assessment of the segmentation 

in the images. 
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Image segmentation: Process of partitioning an image into multiple regions. 

Interior camera geometry: Intrinsic parameters enabling the mathematically description of the 

deviation of the camera geometry from the central perspective. Parameters comprise principal 

distance, which is the distance between the image sensor and the projection centre (usually 

equal focal length), principal point, which is the perpendicular of the projection centre onto the 

image plane, and camera distortion parameters such as radial distortion, which describe the 

deviation of straight rays of light passing through the projection centre and intersecting the 

image plane. 

Interior orientation parameters (IOR): Intrinsic parameters to describe the interior camera 

geometry. 

Learning rate: Hyperparameter in the learning algorithm determining the rate of change in CNN 

in response to the estimated error. 

Loss function: Function estimating the loss by comparing the prediction of CNN and target 

value. 

Point cloud: 3D points, mostly with very high density, that describe the surface of an object or 

area of interest. 

Pooling layer: Layers that reduce the spatial size of the activation map. 

Softmax: Function used to obtain a probability distribution of the classes. 

Spatial resection: Estimation of the exterior (and if required also interior) camera parameters 

by relating 2D image coordinates with their corresponding 3D coordinates (usually GCPs). 

Stochastic gradient descent (SGD): Optimization algorithm used in learning to find the best 

CNN parameters. 

Test: Set of images used to evaluate the results after training. 

Training: Set of images used to train CNN. 

Validation: Set of images used to find hyperparameters (e.g., learning rate) during training. 

Used software in this study: 

Agisoft Photoscan (now Metashape): SfM photogrammetry software that allows for fully 

automatic, scaled 3D reconstruction based on overlapping 2D imagery and some 

georeferencing information. 

Aicon 3D Studio: Software to enable highly accurate 3D measurements with cameras. 

LabelMe: Software that facilitates the generation of ground truth and training data for large 

image series. 

Keras-Tensorflow: Python library enabling easy and user-friendly setup of models for machine 

learning. 
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Supplement B: 

(a) The error of image-based water stage estimation (considering all four time series) using the 

water level measured manually in the images at one point along the left shore; the water stage 

differences between the reference gauge and the image-based gauge are displayed. (b) 

Spearman correlation coefficient rS and scatterplot of the image-based approach compared to 

the gauge reference. 
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Supplement C: 

Examples for different challenging environmental conditions leading to difficulties in water 

segmentation using the trained CNN FCN and SegNet. (a) favourable lighting conditions, (b) 

foggy conditions, (c) overexposure, (d and e) strong shadows and overexposed areas in the same 

scenario. 
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Supplement D: 

Time series of water stage detection with ground truth (GT) data measured at left and right 

shore and considering point-based (manual) measurements measured at left shore only 

compared to reference gauge values. 
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Supplement E: 

Accuracies of camera pose estimation for each image-based water stage measurement. 
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4. EVALUATING DIFFERENT DEEP LEARNING MODELS FOR 

AUTOMATIC WATER SEGMENTATION 

The third paper was published in the journal “IEEE International Geoscience and 

Remote Sensing Symposium IGARSS”. It is named “Evaluating different deep learning models 

for automatic water segmentation”. It is referenced as “Akiyama, T. S., Junior, J. M., 

Gonçalves, W. N., de Araújo Carvalho, M., & Eltner, A. (2021, July). Evaluating different deep 

learning models for automatic water segmentation. In 2021 IEEE International Geoscience and 

Remote Sensing Symposium IGARSS (pp. 4716-4719). IEEE”. 

 

ABSTRACT 

Deep learning (DL) methods, integrated with imagery obtained by remote sensors, are 

considered a novel source of information in the field of hydrometry. Their results can be a 

support for standard gauging systems. In this research, three different model definitions based 

on the SegNet architecture were developed: training a new model, using a pre-trained model, 

and performing transfer learning. The main goal of this approach is the performance assessment 

of convolutional neural network (CNN) generalization to segment images containing different 

water bodies automatically. Diverse sensors were used to obtain RGB images from different 

areas of the world. The effectiveness of the CNN was estimated using pixel accuracy and IoU 

metrics. Training a new model and using transfer learning revealed similar high accuracies that 

were at least twice as accurate compared to the pre-trained model. However, the transfer learned 

model is preferred due to significantly lower training expenses.  

4.1. INTRODUCTION 

Flood effects are considered one of the most expressive natural disasters in the world. 

When floods impact urban areas, significant consequences are faced, such as socio-economic 

and infrastructure losses, damaged properties, environmental impacts, affecting people's 

lifestyle, and, in the worst case, causing the death of living beings [1][2]. 

Since flood risks cannot be avoided entirely, measures need to be implemented to 

minimize catastrophes caused by this event, aiming at the best measures to manage it. Besides 

methods to prevent flood risks, such as urban planning, effective engineering projects for water 

harvesting, land-use policies, and environmental education, there are numerous models for 

flood simulation and forecasting, which are being developed and implemented. For instance, Li 

et al. [3] integrated the Urban Flood Simulation Model (UFSM) and Urban Flood Damage 

Assessment Model (UFDAM) to propose a structure for risk analysis and the benefits of flood 

control measures in urban areas. Chen et al. [4] developed and tested the GIS-based Urban 
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Flood Inundation Model (GUF-IM) to simulate urban flooding. Flood risk management, as well 

as simulation and forecasting, relies on water resource monitoring. A novel approach in that 

regard is the usage of deep learning (DL), although the number of studies related to this method 

is scarce. It further entails the potential for real-time flood assessment, which few cities utilize 

yet. This is especially relevant in regions where flash floods, caused by high-intensity 

precipitation in a short period, occur and affect the population suddenly. 

DL is a sub-branch of artificial intelligence that allows computational models composed 

of several processing layers to learn data representations with various levels of abstraction. It 

is a type of machine learning that enables computers to learn from experience and recognize 

the world in terms of hierarchical order [5][6]. Recently, DL has been introduced into remote 

sensing (RS) and the field of geoscience to evaluate data obtained by remote sensors. It is 

increasingly applied to develop machine learning methods aiming to analyze environmental 

changes from imagery. For instance, Santos et al. [7] detected specific tree species using object 

detection methods in RGB imagery obtained by unmanned aerial vehicle (UAV). Using DL in 

combination with RS can offer a range of benefits to monitoring water resources and urban 

flood events. 

The convolutional neural network (CNN) is a particular kind of multi-layer neural 

network primarily used in the field of recognizing visual patterns within images [8][9]. Its main 

tasks are object detection, classification, and segmentation, among others. One state-of-the-art 

CNN is SegNet, a segmentation method, which is designed to be efficient for pixel-wise 

semantic segmentation to enhance the process of understanding images [10][11]. Weng et al. 

[12] used a residual SegNet network to segment water areas using RS images, whereas Du et 

al. [13] applied a SegNet technique to classify and extract cropland in high-resolution RS 

images. Our previous work [14][15] showed the potential of SegNet to segment water in 

terrestrial imagery; however, only images from one geographical area were considered. 

The purpose of this paper is to develop three models based on the SegNet architecture. 

The main goal of these models is to assess the efficiency of CNN generalization and the ability 

to automatically segment different water bodies from RGB images acquired from different 

sensors and platforms (aerial and terrestrial). It is expected that the obtained results can be a 

promising source to complement standard gauging devices as well as to improve the 

development of real-time flood warning systems. 



 
 

62 
 

4.2. METHODOLOGY 

4.2.1 Dataset 

For the evaluation of this study, two image datasets were considered. A requirement of 

the datasets was that any water body needed to appear in the collected images. In addition, 

different image acquirement conditions were considered so that it was possible to implement 

various perspectives at the water bodies.  

Dataset 1 is the same used by [14][15]. It consists of 3,407 images collected by a low-

cost Raspberry Pi camera sensor, which was deployed above the ground to monitor a medium-

scale river in the East of Germany. The Pi camera stayed at the same position and registered 

images during different periods of the day to allow for an analysis of the river in different 

situations. 

Dataset 2 is composed of 5,169 images from different locations around the world and 

consists of diverse photos of rivers, lakes, and ponds. Smartphones, fixed cameras, and UAVs 

were used to collect Dataset 2. Unlike Dataset 1, it contains images of water bodies with 

different shapes, sizes and captured from various perspectives. Considering both datasets, a 

total of 8,576 images have been labeled using LabelMe Software. Fig. 1 shows examples of 

original and labeled images. 

 

 

 
 

 
 

 
 

   

Figure 1. Examples of original and labeled images. 

4.2.2 SegNet Architecture for Image Segmentation 

Badrinarayanan et al. [11] developed SegNet, which consists of an encoder-decoder 

network followed by a pixel-wise classifier layer. In this work, SegNet was applied to segment 

the pixels into the water area and background. The encoder network is based on the VGG16 

network. The encoder layers apply a series of convolutional and max-pooling layers to extract 

a low-resolution feature map that describes the characteristics in the image. 
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The decoder network upsamples its input feature map applying the memorized max-

pooling indices from the corresponding encoder feature map(s). Since the upsampled maps are 

sparse, convolution layers are applied, producing dense feature maps. The detail preservation 

can be valuable to delineate the border between the water area and background with good 

accuracy. Finally, the decoder output has the same resolution as the input image, and a 

multiclass softmax classifier is applied [16]. 

4.2.3. Experimental Setup 

In order to evaluate the performance of the SegNet architecture in different situations, 

three approaches were defined with the main objective to assess the power of generalization 

and the ability to segment images containing different water bodies. The first approach consists 

of training a SegNet from scratch with a robust set of images capturing water bodies in different 

situations (Dataset 2). The second and third approaches aim to assess whether the use of prior 

information (images of a single river - Dataset 1) can improve the results of the first approach. 

Thus, the second approach consists of evaluating how SegNet, trained only with Dataset 1, is 

able to segment images containing different water bodies (test set - Dataset 2). As Dataset 1 is 

composed of images of only one river, the objective is to evaluate the generalizability. Finally, 

the third approach is to load SegNet with pre-trained weights from Dataset 1 and retrain it with 

Dataset 2 to assess whether transfer learning and fine-tuning help to improve learning. 

4.2.3.1. Training a New Model 

To train SegNet from scratch, Dataset 2 is applied and using encoder weights obtained 

from VGG16. An image resolution of 512 x 512 pixels was considered for all images. Dataset 

2 was randomly divided into training (60%), validation (10%), and test datasets (30%). The 

number of epochs was 50, and the applied optimizer was stochastic gradient descent (SGD) 

with a learning rate of 0.001. The new model developed in this study is named “model 1”. We 

use the training set to update the parameters of SegNet. The validation set was needed to 

determine hyperparameters such as the learning rate and the number of epochs during training 

to reduce the risk of overfitting. The test set is used to report how well CNN was trained.  

4.2.3.2. Testing a pre-trained Model 

A pre-trained model is a CNN that has been previously trained using a large dataset. 

This model can be used for similar segmentation tasks. The pre-trained model used in this study 

was the CNN developed by Akiyama et al. [14] and Eltner et al. [15]. It was trained using 

Dataset 1 with images of one river only but with a large number of images. It is referred to as 
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“model 2”. The aim is to assess the ability to generalize in images of different scenarios (Dataset 

2). 

4.2.3.3. Transfer Learning and Fine-Tuning 

In the third approach, we again use the (with Dataset 1) pre-trained SegNet. However, 

this time fine-tuning is performed [17]. Therefore, we retrain the parameters of the pre-trained 

SegNet on Dataset 2 with a low learning rate. The parameters are adjusted at the same time that 

Dataset 2 is being validated. Therefore, improvements can be achieved by adapting the features 

of a pre-trained model to the new data instead of training from scratch. The resulting model is 

referred to as “model 3”. 

4.2.4. Assessment of the model performance 

The metrics to assess the segmentation success by the generated model were pixel 

accuracy and Intersection over Union (IoU). The former presents the number of pixels 

accurately classified (by percentage). The latter estimates the intersection rate of pixels 

considered as ground truth and the respective predicted mask. This metric is calculated as 

unified pixels (by area). 

4.3. RESULTS AND DISCUSSION 

The following figures and tables show the training and test results. The training of the 

models was adequate with the number of epochs because the loss curve stabilized (Fig. 2). We 

can also see that the loss of the training and validation set is close, indicating low overfitting. 

 

 
(a) 
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(b) 

Figure 2. Loss-Function for SegNet using models 1.(a) and 3 (b). 

 

The results of pixel accuracy and IoU metrics indicate that using the pre-trained model 

(model 2) on new images (Dataset 2 test set) to segment water areas leads to insufficient results 

(Table 1).  The main reason is that the pre-trained model was trained using only images obtained 

from the same river and the same camera perspective. In contrast, developing a new model from 

scratch (model 1) revealed good results in pixel accuracies and IoU. However, for that 

approach, during training, all parameters had to be trained from the ground up. 

 

Table 1. Results using pixel accuracy and IoU. 

 
Pixel Accuracy IoU 

Background Water Background Water 

Model 1 0.991 ± 0.031 0.944 ± 0.091 0.977 ± 0.046 0.916 ± 0.011 

Model 2 0.765 ± 0.199 0.525 ± 0.269 0.688 ± 0.179 0.283 ± 0.198 

Model 3 0.989 ± 0.036 0.946 ± 0.089 0.975 ± 0.050 0.914 ± 0.124 

 

The results for model 3, which applied transfer learning and fine-tuning, are as good as 

the results of model 1. Compared to model 1, model 3 converged faster using pre-trained 

weights. This can be observed in epoch 10, where the loss value is less than 0.05 for model 3 

and higher for model 1, presenting better results using fewer data. Thus, this approach of 

adjusting the parameters to the new dataset can be considered the most useful because it does 

not require as much effort during training as model 1 does and achieves similar accuracies. 
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Figure 3. Segmentation of the test images applying the developed models: ground truth 

(a), model 1 (b), model 2 (c), and model 3 (d). 

 

 

Model 2 failed to distinguish between the two trained classes because it was only trained 

using images from the same river and same camera perspective, thus presenting the worst 

segmentation for the generalization attempt (Fig. 3). Evaluating the results in Table 1 for models 

1 and 3, both models show similar results. However, when analyzing their segmentations in 

Fig. 3, model 3 presents the best results distinguishing what is water and background compared 

to model 1.  

4.4. CONCLUSIONS 

Three models based on SegNet architecture were introduced to segment water bodies in 

images obtained with different sensors and from various perspectives. Generalization does not 

perform well when utilizing a model that was pre-trained using images only from one river and 

perspective. However, using the same pre-trained model but applying transfer learning and fine-

tuning with additional diverse imagery, better segmentation results could be achieved. 

Furthermore, the new model converges faster with the pre-trained weights. Therefore, the next 

step is to improve the model further to increase the generalization capacity in different images 

to be integrated into camera-based water resource monitoring devices. 
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5. EVALUATING THE INFLUENCE OF THE NUMBER OF IMAGES 

ON MODEL PERFORMANCE 

This section aims to analyze how the number of images on the training dataset 

influences the developed models. The manuscript is under development and will be submitted 

in the future.  

  

ABSTRACT 

Convolutional neural networks require a large dataset to train the models efficiently. 

This limitation is considered important because there are several challenges in building a 

suitable database, such as obtaining many images, high-quality label annotations, and 

computational resources. These requirements take a lot of time-consuming and are often 

considered costly. Due to this problem, this chapter investigates how variation in the target 

dataset impacts the effectiveness of semantic water segmentation. The number of images in the 

training dataset was varied randomly into partitions of 80% (2,480), 60% (1,860), 40% (1,239), 

20% (619), 5% (154), and 1% (30), and for better validation, these variations were performed 

three times. Two types of developed models were tested in our study, and the metrics pixel 

accuracy and IoU were used to validate the accuracy of the segmentation. The results show that 

for variations between 80% and 20%, the segmentation does not deteriorate and presents good 

accuracy (above 80% for both metrics). Thus, it is possible to define that for our study, it would 

be sufficient to use up to 20% of the images for training. When the variation is between 5% and 

1%, both the delimitation of the water bodies and the accuracy (around 70% for both metrics) 

present a worsening. These achieved results are not suitable for the task at hand, which requires 

well-defined study water bodies boundaries. 

5.1. INTRODUCTION 

As seen in the previous chapters, deep learning is an area where artificial neural 

networks are developed and applied to solve different types of problems emerging with the 

advancement of technology. Since the algorithms developed for learning contain several 

possible architectures, complex computations and overloaded tasks influence the training 

process. For instance, Zhang et al. (2017) show the relationship between training dataset sizes, 

input data size, and depth of a network to fully memorize the training dataset parameters. Due 

to these arguments, the best architecture must be analyzed and developed to make the training 

process faster and more consistent.  

Çayir and Navruz (2021) mention that dataset size and quality are factors that most 

affect accuracy in deep learning studies. In addition, very large datasets take much longer to 



 
 

70 
 

train and validate the data, and it is often complicated to assemble a robust dataset (Linjordet 

and Balog, 2019). Thus, an alternative would be to evaluate the influence of dataset training 

variation on model accuracy performance in detail. 

A few studies aim to evaluate the impact of the size of the training dataset on model 

performance. Linjordet and Balog (2019) investigated how large the dataset should be to obtain 

good training performance from models on different neural architectures on the response 

selection task. A result considered surprising is that many models did not perform as well as 

desired even if the size of the training dataset was increased. Barbedo (2018) investigated the 

impact of dataset size on plant disease classification. Çayir and Navruz (2021) show the effects 

of dataset size in speech recognition. Soekhoe, Van der Putten and Plaat (2016) show the 

relation between transfer learning and dataset size. Based on the justifications mentioned, this 

chapter analyzes the impact of the dataset size (Dataset 2 - Chapter 4) on the performance of 

the Segnet model 1 (Section 4.2.3.1) and model 3 (Section 4.2.3.3). 

5.2. METHODOLOGY 

This work aims to complement some analyses in relation to the models presented in 

Chapter 4. Using Smartphones, fixed cameras and Unmanned Aerial Vehicles (UAVs), 5,169 

images containing diverse water bodies from diverse locations around the world were collected 

in order to build the dataset. This dataset was randomly divided into training (60%), validation 

(10%), and test datasets (30%). In this way, the training dataset consisted of 3,101 images. We 

varied the number of training images on the dataset to verify if this procedure would influence 

the performance of the Segnet developed models. So, three trials were performed varying the 

original dataset randomly by 80%, 60%, 40%, 20%, 5%, and 1%. Table 1 presents the number 

of images for each variation.  

 

Table 1. Number of images for each variation 

Dataset 2 Images 

100% 3,101 

80% 2,480 

60% 1,860 

40% 1,239 

20% 619 

5% 154 

1% 30 

 

Model 1 consists of a SegNet trained from scratch, which the dataset was used for this 

procedure, and the encoder weights obtained from VGG16 are used. The number of epochs was 

50, and the optimizer was stochastic gradient descent (SGD) based on a learning rate of 0.001. 
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Model 3 consists of the transfer learning and fine-tuning technique. From a pre-trained SegNet 

model, all parameters were retrained on the dataset with a low learning rate. While validating 

the dataset, the parameters are adjusted, thus achieving improvements by adapting the features 

of a pre-trained model to the new data instead of training from scratch.  

5.3. RESULTS 

First, the Loss Function of each model was analyzed for each variation in the training 

dataset. Figures 1 and 2 show the values according to each model. The graphics showing the 

variation of images from 80% to 20% indicate that the losses values before 10 epochs were 

below 0.5, while most values for the variation from 5% to 1% present higher values. This is due 

to the smaller number of training images, making it more difficult for the model to learn. The 

loss value stabilizes faster on the dataset with more images (80%) compared to the datasets with 

fewer images. 

1st Attempt  2nd Attempt  3rd Attempt  

   
(a) 

 

  
(b) 

 

 
 

 
(c) 
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Figure 1. Loss Value of Segnet Model 1. (a)1%, (b)5%, (c)20%, (d)40%, (e)60%, 

(f)80%. 

 
 

 
(d) 

 
 

 
 

 
(e) 

 
 

 
 

 
(f) 

 
 

1st Attempt  2nd Attempt  3rd Attempt  

   
(a) 

 

  
(b) 

 

 
 

 
(c) 

 



 
 

73 
 

Figure 2. Loss Value of Segnet Model 3. (a)1%, (b)5%, (c)20%, (d)40%, (e)60%, 

(f)80%. 

 

Tables 2 to 5 assess the performance of the segmentation classification using pixel 

accuracy and IoU metrics. Both presented good results, indicating that the SegNet Models 1 

and 3 are efficient in segmenting images from different sensors. Comparing these two metrics 

regarding the river segmentation, Pixel Accuracy presents better results than IoU. It is also 

possible to check that using 1%, the accuracy for rivers decreased compared to the other 

variations in the number of images. 

 

Table 2. Results using IoU on Model 1. 
                          IoU  

 

 

1st Attempt 2nd Attempt 3rd Attempt Average 

Background   River Background River Background River Background River 

1% 0.89 ± 0.15 0.68 ± 0.31 0.89 ± 0.15 0.65 ± 0.32 0.90 ± 0.14 0.72 ± 0.29 0.89 0.68 

5% 0.97 ± 0.07 0.91 ± 0.15 0.95 ± 0.08 0.82 ± 0.22 0.94 ± 0.09 0.82 ± 0.22 0.95 0.85 

20% 0.94 ± 0.10 0.82 ± 0.22 0.96 ± 0.08 0.88 ± 0.16 0.96 ± 0.08 0.88 ± 0.16 0.95 0.86 

40% 0.96 ± 0.08 0.88 ± 0.16 0.96 ± 0.07 0.88 ± 0.17 0.96 ± 0.07 0.88 ± 0.16 0.96 0.88 

60% 0.97 ± 0.07 0.89 ± 0.16 0.97 ± 0.07 0.89 ± 0.16 0.97 ± 0.07 0.89 ± 0.16 0.97 0.89 

80% 0.97 ± 0.06 0.91 ± 0.13 0.97 ± 0.05 0.91 ± 0.13 0.97 ± 0.06 0.91 ± 0.13 0.97 0.91 

 

 

 

 

 

 

 

 

 

 
 

 
(d) 

 
 

 
 

 
(e) 

 
 

 
 

 
(f) 
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Table 3. Results using pixel accuracy on Model 1. 
                          Pixel Accuracy  

 

 

1st Attempt 2nd Attempt 3rd Attempt Average 

Background   River Background River Background River Background River 

1% 0.95 ± 0.10 0.76 ± 0.27 0.97 ± 0.07 0.70 ± 0.31 0.95 ± 0.09 0.80 ± 0.25 0.96 0.75 

5% 0.97 ± 0.07 0.91 ± 0.15 0.97 ± 0.06 0.90 ± 0.16 0.98 ± 0.04 0.87 ± 0.18 0.97 0.89 

20% 0.99 ± 0.05 0.92 ± 0.12 0.98 ± 0.06 0.93 ± 0.10 0.98 ± 0.06 0.92 ± 0.13 0.98 0.92 

40% 0.99 ± 0.04 0.91 ± 0.14 0.99 ± 0.04 0.91 ± 0.14 0.98 ± 0.05 0.93 ± 0.12 0.99 0.92 

60% 0.99 ± 0.04 0.92 ± 0.14 0.99 ± 0.02 0.92 ± 0.14 0.98 ± 0.05 0.93 ± 0.12 0.99 0.92 

80% 0.99 ± 0.04 0.94 ± 0.10 0.99 ± 0.04 0.94 ± 0.10 0.99 ± 0.04 0.94 ± 0.10 0.99 0.94 

 

Table 4. Results using IoU on Model 3. 
                          IoU  

 

 

1st Attempt 2nd Attempt 3rd Attempt Average 

Background   River Background River Background River Background River 

1% 0.81 ± 0.14 0.70 ± 0.31 0.92 ± 0.13 0.74 ± 0.28 0.91 ± 0.15 0.75 ± 0.28 0.88 0.73 

5% 0.93 ± 0.12 0.82 ± 0.22 0.95 ± 0.09 0.83 ± 0.22 0.95 ± 0.10 0.82 ± 0.22 0.93 0.82 

20% 0.96 ± 0.07 0.89 ± 0.16 0.97 ± 0.07 0.89 ± 0.15 0.96 ± 0.08 0.89 ± 0.15 0.96 0.89 

40% 0.97 ± 0.07 0.89 ± 0.15 0.97 ± 0.07 0.88 ± 0.17 0.96 ± 0.07 0.88 ± 0.16 0.97 0.88 

60% 0.97 ± 0.06 0.90 ± 0.15 0.97 ± 0.06 0.89 ± 0.16 0.97 ± 0.08 0.90 ± 0.15 0.97 0.90 

80% 0.98 ± 0.06 0.92 ± 0.12 0.97 ± 0.06 0.91 ± 0.13 0.97 ± 0.05 0.91 ± 0.13 0.97 0.91 

 

Table 5. Results using pixel accuracy on Model 3. 
                          Pixel Accuracy  

 

 

1st Attempt 2nd Attempt 3rd Attempt Average 

Background   River Background River Background River Background River 

1% 0.97 ± 0.08 0.74 ± 0.30 0.98 ± 0.05 0.79 ± 0.26 0.94 ± 0.13 0.86 ± 0.23 0.96 0.80 

5% 0.96 ± 0.10 0.91 ± 0.14 0.97 ± 0.07 0.92 ± 0.15 0.98 ± 0.05 0.86 ± 0.19 0.97 0.90 

20% 0.98 ± 0.06 0.93 ± 0.11 0.98 ± 0.06 0.93 ± 0.11 0.98 ± 0.06 0.93 ± 0.11 0.98 0.93 

40% 0.99 ± 0.04 0.93 ± 0.11 0.99 ± 0.04 0.91 ± 0.15 0.98 ± 0.05 0.93 ± 0.11 0.99 0.92 

60% 0.98 ± 0.05 0.94 ± 0.11 0.99 ± 0.03 0.92 ± 0.13 0.98 ± 0.06 0.94 ± 0.10 0.98 0.93 

80% 0.99 ± 0.04 0.95 ± 0.08 0.99 ± 0.05 0.94 ± 0.10 0.99 ± 0.03 0.94 ± 0.10 0.99 0.94 

 

Figures 3 to 8 show the segmentation results for different images. The automated 

segmentation has worse results considering the variation in 1%. From 5% upwards already 

show that the performance of the method is valid in delimiting the edges of the water body. 

However, looking at Figure 8, we notice that the models sometimes have a little difficulty 

differentiating between water, shadows, and trees. This is because water has similar 

characteristics to these elements in RGB images, so it is a challenge for future works to 

eliminate these adversities. 



 
 

75 
 

 
Figure 3. Segmentation results on Model 2 and 3 varying the number of images. 

 
 

 
Figure 4. Segmentation results on Model 2 and 3 varying the number of images. 
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Figure 5. Segmentation results on Model 2 and 3 varying the number of images. 

 

 
Figure 6. Segmentation results on Model 2 and 3 varying the number of images. 
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Figure 7. Segmentation Results on Model 2 and 3 varying the number of images. 

 

 
Figure 8. Segmentation results on Model 2 and 3 varying the number of images. 

 

5.4. DISCUSSION 

It was analyzed that both models 1 and 3 presented good accuracy in delimiting the 

boundaries of water bodies. The variation in the training data set influenced the values of some 

results, mainly when 1% of the dataset was considered. Regarding how the model was 
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developed, regardless whether training occurred from the beginning (model 1) or transfer 

learning and fine-tuning techniques applied (model 3), the performance obtained was 

considered equal for the task at hand, which consisted in evaluating the segmentation of the 

water. If model 3 was tested before transfer learning and fine-tuning techniques, the results 

generated would not be the same. This is confirmed in Chapter 4, which shows the worst 

segmentation performed for the generalization attempt precisely because it only uses images 

from the same river and the same camera perspective.  

5.5. CONCLUSIONS 

In this study, we observed the influence of the number of training images on the 

performance of different semantic segmentation approaches. Both models presented good 

results in the task of segmenting different water bodies, where it is possible to observe in most 

figures the delineation was successful. The worst results and segmentations occur between 5% 

to 1% range. As many studies mention and it was also verified in this research, the more robust 

the dataset, the better the results obtained.   

The diversity of images containing water bodies, with different means of acquisitions, 

camera positions, and weather conditions helped in the robustness and creation of a dataset for 

training, validation, and testing. Furthermore, it was possible to notice that the larger the number 

of images used for training, the faster is the decrease of the Loss value. 

Finally, this study sought to analyze the efficiency of the models according to the 

number of images. Therefore, it was possible to determine approximately the amount of images 

needed for the task at hand, consisting of segment water. In future studies, we hope to improve 

the models so that fewer images are needed, thereby providing accurate models for the task of 

segmenting bodies of water and helping other studies related to water resources. 
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6. SEMANTIC SEGMENTATION OF WATER CONSIDERING VIDEO 

STRUCTURES 

This section presents a manuscript called “Semantic segmentation of water considering 

video structures”, which will be further submitted.  

 

ABSTRACT 

Novel automated monitoring techniques for mapping water resources based on deep 

learning have been growing in recent years, providing a greater facility for researchers and 

authorities due to optimized data acquisition schemes and measurements with increased 

accuracy and robustness. However, most of these techniques require large labeled datasets, 

which is time-consuming. This paper introduces a deep learning method for automated 

segmentation of rivers and water bodies using only the initial labeled frame. Space-Time 

Correspondence Network (STCN) is used to model water features in video sequences, which 

require only one labeled image per video. We obtained videos from different remote sensing 

platforms, such as UAVs (DJI Phantom 4, DEERC DE25), smartphones, surveillance cameras, 

from different countries (England, Germany and Brazil). In addition, different weather 

conditions were considered in order to analyze the performance of this method. A total of 25 

videos were applied. Also, we analyzed time-lapsed images (acquired at each 15 minutes) in a 

public dataset. The results indicated that the model was efficient to segment water bodies, even 

considering videos taken from different perspectives and weather conditions. It emerges as a 

new source for deep learning and photogrammetry techniques on providing information of a 

water body in an innovative way, enabling different methods to monitor water bodies based on 

camera systems. 

6.1. INTRODUCTION 

The monitoring of water resources is important and indispensable, providing different 

types of information, such as chemical components, precipitation rate, superficial runoff or 

discharge of catchments. These information influence decision-making processes to prevent 

catastrophes, for instance caused by flooding. Due to sudden high intensity precipitation, urban 

flooding has become a major concern for the population residing in cities. There are numerous 

factors that favor the occurrence of floods, such as the growth of cities and increased population 

density in high-risk areas; the drainage system expansion being slower than the development 

of cities; and the increase in impermeable areas [1]. 

Due to the growth and urbanization process in cities, public safety policies must be 

implemented to ensure the population's well-being and safety. The occurrence of floods is 
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associated with poor urban planning, thus causing harmful social impacts on the environment 

and the quality of life [2]. Urban flooding is considered a big issue, since it causes material, 

economic and environmental losses and, in the worst case, causes the death of humans and other 

living beings [3].  

Flood risks cannot be avoided completely, hence monitoring approaches and measures 

must be applied and advanced in order to deal with these events and to minimize their impact 

[4]. Water stage is an important hydrological observation, which helps to assess urban floods. 

There are different methods to measure it, e.g., based on floating and pressure gauges. However, 

besides the possibility of losing the instruments during extreme events, these measurements can 

be expensive amongst other due to maintenance requirements [5]. 

Another form of monitoring are remote observation techniques, which have the 

advantage that they do not require sensors in the water body or river. The development and 

application of image and video-based methods have been growing over the last decade. They 

can be less expensive and provide an innovative source of data. For instance, studies illustrated 

the suitability of short videos to track particles on the water surface from ground-based sensors 

and UAVs (Unmanned Aerial Vehicles) to measure water flow velocities [6], while others 

determined the water stages of rivers using either stationary Raspberry Pi cameras [7] or 

utilizing UAVs to improve existing hydraulic models as well as to aid strategies in case of 

flooding or inundation [8]. 

To apply cameras for water stage measurements automatic image processing techniques 

are required. Deep Learning (DL) as a sub-branch of artificial intelligence gained large attention 

recently in that regard. It allows to learn representations of data at multiple levels of analysis 

via computational models composed of multiple processing layers [9,10]. The interaction of 

remote sensing and DL is increasing due to the advancement of computational resources and 

the increased performance of data evaluation [11]. While DL seeks to obtain information with 

high degree of automation and speed, remote sensing is amongst other focusing on obtaining 

information about the Earth's surface. Thus, the application of DL based object detection 

methods for remote earth observation is a large field of research [12,13], analyzing data in a 

more robust and efficient way. 

There are several methods of interpretation in remote sensing using DL, such as 

classification, segmentation, and object detection. Regardless of which method is used, the best 

results from DL models for such tasks were those that required a large dataset for training [14].  

Developing a robust dataset for deep neural networks is considered a major problem. Tasks 

such as acquiring numerous images to build a proper dataset, number of manual annotations, 

all these requirements demand a lot of time and cost to train or retrain the parameters of a 
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collected dataset. [15]. Thus, new methodologies are emerging that do not require a large 

amount of data, such as few-shot, which uses a few labeled images and thus learns to classify 

images for classes never seen during training [16]. One-shot Learning [17] and Zero-shot 

Learning [18] are other cases that learn with few training samples, where the first uses only one 

labeled sample to train and the latter zero annotation. All these methods seek to learn 

transferable knowledge so that it can be generalized to new classes and thus recognize patterns 

in images with few annotation examples. This is a challenge for remote sensing imagery, as 

targets often vary in size and spatial resolution, making it even more difficult for tasks with few 

annotations. 

There are a few studies that have applied the few-shot method for remote sensing. One 

study used the few-shot learning-based method to detect objects in remote sensing images using 

the YOLOv3 model [15]. Another used the few-shot learning method for hyperspectral image 

classification with only a few labeled samples [19]. This method has also been used for remote 

sensing scene classification tasks [16]. Although few-shot techniques are already in use in 

remote sensing, there are almost no studies on the issue of segmentation tasks. Furthermore, 

there are few studies using one-shot and zero-shot on remote sense images. One of these studies 

based on a one-shot method consisted of using remotely sensed images to train the model in 

image classification and then testing it in geospatial object detection [20].  

Regarding the intuit of recognizing patterns in videos, Video Object Segmentation aims 

to identify and segment target instances in a video sequence [21]. Video-based approaches are 

also emerging as a new alternative in object segmentation tasks. It is common to see their 

application in segmenting humans, cars, houses, and objects seen from everyday routine [22, 

23]. These alternatives have also been applied to the semantic segmentation of UAV videos 

[24]. However, it is hard to find applications focusing on the segmentation of water bodies on 

video structures. 

Based on these reasons, we applied a DL approach based on Space-Time 

Correspondence Network (STCN), considered a state-of-the-art method in object segmentation 

from videos, for semantic segmentation of water on remote sensing videos obtained with 

different sensors (aerial and terrestrial). The videos were taken from different perspectives and 

weather conditions in order to analyze the performance of the proposed method. The video 

segmentation extracts waterline contours automatically, which only one label frame is used to 

segment videos (sequence of frames) in order to store the most relevant temporal information. 

This generated water segmentation can subsequently be used to calculate the water stage. This 

work can be beneficial for image-based water extraction at different locations around the world 

to complement traditional measurement systems and to eventually develop a real-time flood 
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warning system in regard to smart cities to assist the population in decision making. Our 

contribution is also in becoming the dataset available for further investigation. 

6.2. MATERIALS AND METHODS 

In this study, we investigate the performance of the STCN model [21] on water 

segmentation using videos. In addition, its results are compared with other types of deep 

learning models where the framework is based on a large number of images. 

6.2.1. Study Area 

Videos from various parts of the world were used in order to generate a robust dataset 

that contains different bodies of water, such as rivers, lakes, streams. Thus, several areas of 

study were observed in the article. However, two study areas were the focus of application and 

analysis to investigate the performance of our methodology. The first is the Wesenitz River, 

situated in a medium-scale watershed (227 km²) in the state of Saxony, Germany. Torrential 

precipitation events have increased over the past 25 years in this area, highlighting the need to 

intensify monitoring of this region [25]. 

 
Figure 1. Wesenitz River, Germany. (a) Position of the camera used to obtain the data; 

(b) Example of an image obtained. 

 

The second study area is the urban region of the Prosa basin (31.97 km²) located in 

Campo Grande, Brazil. Multi-temporal analysis showed that the population growth of this area 

led to an increase of the urban area by 96.63% and a decrease in vegetated areas, causing 

environmental degradation due to erosion and siltation and causing emerging floods and 

inundations [26]. The Prosa basin is one of the most vulnerable to flood risk among the various 

constituents in the municipality [27]. 
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Figure 2. Prosa Stream, Campo Grande – Brazil. 

6.2.2. Space-Time Correspondence Networks (STCN) 

STCN was proposed to segment videos (sequence of frames) in order to take advantage 

of temporal information. Thus, the smooth visual change that occurs from one frame to another 

does not drastically affect the segmentation, as occurs when, for example, a segmentation 

method is trained in one season of the year and tested in another. In STCN, given the first 

labeled frame, the other frames are processed sequentially and feed a memory with relevant 

features. In this way, the feature memory is constantly updated and the abundant use of spatio-

temporal information makes it possible to handle changes in appearance smoothly. The frames 

processed and stored in memory are called memory frames while the current frame to be 

segmented is called a query frame. 

Initially, a frame is encoded in key and value features. In general, key features of the 

query frame are compared with those of the memory frames to determine when and where to 

extract relevant memory values. In this way, key features are used to search for relevant 

information and value features describe the visual characteristics of a region to produce the 

final segmentation. In STCN, key features are extracted through the RGB frame using 

ResNet50 while value features are extracted by ResNet18 using both the RGB frame and the 

mask. 

Reading and encoding from memory occurs as follows. Given T memory frames and a 

query frame to be segmented, memory key kM, memory value vM and query key kQ are extracted 

by ResNet50 or ResNet18. Then, the similarity Sij = c(ki
M , kj

Q) between each pair of keys ki
M 

and kj
Q is computed using the dot product and then softmax-normalized according to Equation 

1 to obtain a similarity matrix W. Given W, the query frame features vQ  are computed as the 

weighted sum of the memory features, vQ = vM.W. Thus, vQ have relevant information of the 

current frame extracted from the features stored in memory. Finally, vQ are passed to the 

decoder in order to obtain the segmentation. The decoder gradually processes and upsamples 
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vQ at a scale of 2 with a refinement module. The output of the last module is used to obtain the 

segmentation (mask) through a convolutional layer followed by the softmax function. 

An important step of STCN is memory management. For each memory frame, memory 

stores the items: memory key and memory value. As the visual change in 30fps videos is small, 

the two items are only stored in memory every S frames. STCN was initially proposed with 

S=5, however, we evaluated the influence of S on memory management. 

6.2.3. Dataset Structure 

Dataset - STCN is basically composed of video files that vary in length time from 

seconds to hours. These videos were captured by different types of sensors (aerial and 

terrestrial), showing the different situations that a surface covered by water can be found. These 

situations oscillate in the simplest and calmest, such as streams and rivers on normal days, as 

well as intense precipitation events in streams and channels, which can cause floods. This 

dataset was built with the focus on the analysis of the Prosa stream because flood prevention 

measures are being studied and developed to help the population who lives in Campo Grande 

to help on decision making. 

   

   

   

   

Figure 3. Examples of images from Dataset - STCN. 
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6.2.4. Experimental Setup 

The Dataset consists of the STCN model methodology for video object segmentation 

(VOS). All videos were converted into frames per second (fps), and then only the first frame of 

each video sequence was labeled. From these first frames, considered as references, the model 

was applied to the following sequence of frames in order to delimit the boundaries of the water 

bodies. The hyperparameter memory value was varied from 5 to 15 to verify if these changes 

would influence the model performance. 

Pixel accuracy and intersection over union (IoU) [28] were applied to check the 

performance of the methodologies. They compare the manually annotated measurements 

(Ground Truth) with those generated by the models (predicted). The pixel accuracy indicates 

the percentage of correctly classified pixels, contrasting true positives and true negatives [29]. 

The closer to value 1 is the pixels classified, the more correctly classified it is. The IoU metric 

calculates the ratio between the number of intersecting pixels of ground truth and predicted 

mask and the number of unified pixels of both masks. 

6.3. RESULTS 

The STCN dataset consists of 25 videos. To validate the STCN segmentation, the videos 

were divided according to the weather conditions and types of sensors used. In addition, the 

memory value hyperparameter S was varied to check if it would influence the model 

performance. 

6.3.1. Fixed camera and good weather conditions 

The videos used in this section were obtained from cell phones and fixed cameras 

monitoring water bodies such as rivers, springs, streams and lakes. This data was obtained in 

Germany, Brazil, and the United Kingdom, and to further validate the performance of this 

method, night time events were also analyzed to analyze the influence of luminosity on the 

segmentation. Table 1 and Table 2 show the segmentation results of the videos converted into 

frames, while Figure 4 shows the segmentation generated by the model on normal conditions. 

 

Table 1. Results using pixel accuracy. 
 

Pixel Accuracy 

 

Memory Value 

5/5 15/15 

Background   Water Background Water 

Video 1 0.989 ± 0.001 0.978 ± 0.002 0.991 ± 0.001 0.978 ± 0.002 

Video 2 0.929 ± 0.007 0.989 ± 0.002 0.929 ± 0.007 0.989 ± 0.003 

Video 3 0.978 ± 0.003 0.997 ± 0.002 0.978 ± 0.003 0.997 ± 0.002 

Video 4 0.994 ± 0.001 0.962 ± 0.013 0.994 ± 0.001 0.967 ± 0.013 

Video 5 0.994 ± 0.001 0.904 ± 0.007 0.995 ± 0.001 0.899 ± 0.007 

Video 6 0.990 ± 0.001 0.965 ± 0.004 0.991 ± 0.001 0.968 ± 0.003 

Video 7 0.977 ± 0.037 0.897 ± 0.019 0.978 ± 0.036 0.894 ± 0.020 

Video 8 0.984 ± 0.001 0.992 ± 0.001 0.985 ± 0.001 0.992 ± 0.001 

Video 9 0.974 ± 0.006 0.976 ± 0.002 0.978 ± 0.004 0.977 ± 0.002 
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Video 10 0.987 ± 0.003 0.985 ± 0.003 0.987 ± 0.003 0.986 ± 0.003 

Video 11 0.977 ± 0.008 0.982 ± 0.006 0.977 ± 0.008 0.982 ± 0.006 

Video 12 0.989 ± 0.006 0.998 ± 0.001 0.989 ± 0.006 0.998 ± 0.001 

Video 13 0.954 ± 0.010 0.985 ± 0.004 0.955 ± 0.010 0.984 ± 0.004 

 

Table 2. Results using IoU. 
 

IoU 

 

Memory Value 

5/5 15/15 

Background   Water Background Water 

Video 1 0.960 ± 0.003 0.970 ± 0.002 0.962 ± 0.003 0.971 ± 0.002 

Video 2 0.811 ± 0.020 0.984 ± 0.002 0.815 ± 0.022 0.984 ± 0.002 

Video 3 0.970 ± 0.003 0.988 ± 0.001 0.970 ± 0.003 0.988 ± 0.001 

Video 4 0.951 ± 0.015 0.957 ± 0.013 0.957 ± 0.015 0.962 ± 0.013 

Video 5 0.979 ± 0.001 0.873 ± 0.005 0.979 ± 0.001 0.870 ± 0.006 

Video 6 0.968 ± 0.003 0.951 ± 0.004 0.970 ± 0.002 0.954 ± 0.004 

Video 7 0.902 ± 0.034 0.874 ± 0.029 0.900 ± 0.032 0.871 ± 0.028 

Video 8 0.980 ± 0.002 0.967 ± 0.003 0.980 ± 0.002 0.967 ± 0.003 

Video 9 0.965 ± 0.007 0.921 ± 0.014 0.968 ± 0.004 0.928 ± 0.009 

Video 10 0.978 ± 0.004 0.965 ± 0.007 0.978 ± 0.004 0.966 ± 0.006 

Video 11 0.953 ± 0.011 0.967 ± 0.008 0.953 ± 0.012 0.967 ± 0.008 

Video 12 0.988 ± 0.006 0.979 ± 0.010 0.988 ± 0.006 0.979 ± 0.010 

Video 13 0.936 ± 0.013 0.950 ± 0.010 0.936 ± 0.006 0.951 ± 0.010 

 

 Original Image 5/5 15/15 

 

Video 1 

   

 

Video 2 

   

 

Video 3 

   

 

Video 4 

   

 

Video 5 
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Video 6 

   

 

Video 7 

   

 

Video 8 

   

 

Video 9 

   

 

Video 10 

   

 

Video 11 

   

 

Video 12 

   

 

Video 13 

   

Figure 4. Water segmentation on normal conditions. 

 



 
 

89 
 

Tables 1 and 2 showed that the accuracy for both IoU and pixel accuracy were close to 

90% for water and the standard deviation low, showing that the method was sufficient to 

delineate the water body. Analyzing Figure 4, it is possible to see that in all videos the 

segmentation was successful, indicating that for fixed cameras with conditions where not many 

climatic variations occur, the model can be applied successfully. 

6.3.2. Fixed camera and turbulent water 

The scenarios in this section are based on long-duration videos with the purpose of 

analyzing the change in water variation when precipitation occurs. Prosa stream in Campo 

Grande was the object of study, and thus high, and low-intensity precipitation was evaluated. 

Table 3 and Table 4 show the Pixel Accuracy and IoU validation metrics, respectively. Figure 

5 shows the segmentation generated by the model. 

Table 3. Results using pixel accuracy. 
 

Pixel Accuracy 

 

Memory Value 

5/5 15/15 

Background   Water Background Water 

Video 14 0.974 ± 0.001 0.964 ± 0.008 0.975 ± 0.002 0.972 ± 0.003 

Video 15 0.983 ± 0.003 0.996 ± 0.001 0.983 ± 0.003 0.996 ± 0.001 

Video 16 0.980 ± 0.005 0.940 ± 0.017 0.979 ± 0.005 0.954 ± 0.014 

Video 17 0.990 ± 0.005 0.894 ± 0.030 0.990 ± 0.005 0.912 ± 0.026 

Video 18 0.984 ± 0.008 0.956 ± 0.020 0.985 ± 0.008 0.964 ± 0.017 

 

Table 4. Results using IoU. 
 

IoU 

 

Memory Value 

5/5 15/15 

Background   Water Background Water 

Video 14 0.947 ± 0.006 0.934 ± 0.008 0.954 ± 0.002 0.944 ± 0.003 

Video 15 0.979 ± 0.003 0.979 ± 0.003 0.980 ± 0.003 0.979 ± 0.003 

Video 16 0.938 ± 0.010 0.914 ± 0.012 0.947 ± 0.008 0.928 ± 0.010 

Video 17 0.903 ± 0.025 0.884 ± 0.029 0.916 ± 0.022 0.902 ± 0.024 

Video 18 0.937 ± 0.024 0.943 ± 0.022 0.945 ± 0.021 0.951 ± 0.019 

 

 Original Image 5/5 15/15 

 

Video 14 

   

 

Video 15 
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Video 16 

   

 

Video 17 

   

 

Video 18 

   

Figure 5. Water segmentation on fixed cameras and turbulent water. 

 

If we analyze Tables 3 and 4, we notice that the hyperparameter of the memory value 

influenced the results of the metrics, where most of the values for water were better at S equals 

to 15/15 instead of 5/5. However, looking at Figure 5, it is possible to notice the difference in 

the contour boundary, especially in Videos 14, 16, 17 and 18, suggesting that the variation in 

the hyperparameter values can influence the model performance. Even with various adversities, 

such as variation in water level, precipitation, turbulent water, and other conditions, the model 

was able to delineate the water contours effectively. 

6.3.3. UAV 

UAVs were used due to the rotation and translation movements that such devices 

undergo and because of this expected the object of interest vary on each scene, thus hindering 

the performance of the segmentation performed by the model. It was also analyzed whether the 

object of interest being partially hidden (videos 19, 20 and 21) or appearing fully (videos 19a, 

20a and 20a) would influence the results. All videos used are from rivers in Germany. The 

results are shown in Tables 5 and 6, and the results of the water body delineation in Figure 6. 

Table 5. Results using pixel accuracy. 
 

Pixel Accuracy 

 

Memory Value 

5/5 15/15 

Background   Water Background Water 

Video 19 0.917 ± 0.101 0.992 ± 0.005 0.968 ± 0.032 0.984 ± 0.014 

Video 19a 0.989 ± 0.003 0.987 ± 0.009 0.990 ± 0.003 0.987 ± 0.010 

Video 20 0.887 ± 0.097 0.999 ± 0.002 0.844 ± 0.133 0.998 ± 0.002 

Video 20a 0.976 ± 0.012 0.851 ± 0.115 0.976 ± 0.012 0.851 ± 0.115 

Video 21 0.719 ± 0.177 0.921 ± 0.099 0.721 ± 0.176 0.924 ± 0.094 

Video 21a 0.944 ± 0.035 0.995 ± 0.003 0.958 ± 0.009 0.990 ± 0.007 

Video 22 0.971 ± 0.041 0.942 ± 0.064 0.992 ± 0.003 0.943 ± 0.062 
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Table 6. Results using pixel accuracy. 
 

IoU 

 

Memory Value 

5/5 15/15 

Background   Water Background Water 

Video 19 0.911 ± 0.100 0.896 ± 0.107 0.957 ± 0.036 0.941 ± 0.043 

Video 19a 0.978 ± 0.009 0.968 ± 0.024 0.979 ± 0.009 0.970 ± 0.019 

Video 20 0.886 ± 0.097 0.893 ± 0.065 0.844 ± 0.133 0.863 ± 0.081 

Video 20a 0.878 ± 0.100 0.829 ± 0.111 0.878 ± 0.100 0.829 ± 0.111 

Video 21 0.647 ± 0.163 0.787 ± 0.101 0.651 ± 0.163 0.790 ± 0.100 

Video 21a 0.936 ± 0.034 0.966 ± 0.011 0.942 ± 0.013 0.966 ± 0.012 

Video 22 0.949 ± 0.040 0.894 ± 0.075 0.970 ± 0.017 0.925 ± 0.063 

 

 Original Image 5/5 15/15 

 

Video 

19 

   

 

Video 

19a 

   

 

Video 

20 

   

 

Video 

20a 

   

 

Video 

21 

   

 

Video 

21a 
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Video 

22 

   

Figure 6. Water segmentation on UAV videos. 

 

It is possible to analyze from the results that the accuracy decreases when using images 

obtained by UAVs. This is mainly due to the sensor not being totally stable at the time of data 

collection, being susceptible to rotational and translational movements, climatic factors, among 

other adversities. Furthermore, it is possible to note in Figure 6 that the initial frame used to 

train the model influenced the segmentation of rivers.  When using a frame where the river only 

partially appears (Videos without "a"), it is possible to notice that many times the model was 

not able to differentiate the water from the background. The segmentation improvement occurs 

when using the first frame without the river being partially occluded (Video with "a"). This is 

perceived in Video 20a, showing that it can differentiate the bridge from the river, and in Video 

21a, differentiating the water from the background. The unique experiment in which this did 

not occur was in Video 19a, showing that the model does not differentiate water from the 

background when the hyperparameter memory value was varied from 5 to 5, but the 

segmentation performed better on delineating the water contour when considered from 15 to 

15. 

6.3.4. Comparing STCN and a semantic segmentation model based on images 

In order to seek applications for the generated segmentations, this section compares the 

results between the segmentation applying the STCN model and the SegNet model [29] 

adjusted with images from the Wesenitz River used in the current analysis. The latter study is 

based on a semantic segmentation model using images, and from the segmentation of water 

contour lines obtained by the SegNet model, it was possible to obtain automated water stages 

with highly reliable results. Thus, by comparing the results, it is possible to analyze whether 

the segmentation of the STCN model could be applied in future works related to obtaining 

information from water bodies. The comparison between the models should be considered 

because the STCN model is based on videos and SegNet is based on images.  

Using a fixed position camera, images of the Wesenitz River were obtained over a one-

year period in order to analyze the segmentation performance under different weather 

conditions. A video sequence was created from the images so that they could be analyzed in the 

STCN model. It is a challenging scenario for the STCN model because only one labeled image 
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was considered, and significant modifications occurred during the year. The results are 

presented in Table 7. 

 

Table 7. Results based on different models. 

 
SegNet STCN 

Background   Water Background Water 

IoU 0.977 ± 0.008 0.971 ± 0.014 0.975 ± 0.011 0.969 ± 0.012 

Pixel Accuracy 0.986 ± 0.008 0.989 ± 0.003 0.992 ± 0.006 0.978 ± 0.013 

 

Original Image SegNet STCN 

   

   

   

   

   

   

Figure 7. Comparing segmentation between SegNet and STCN. 
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The results and figures presented showed that the application of the STCN model for 

this study area also proved to be as effective as SegNet. Thus, the results generated in this work 

emerge as new alternatives for measuring water stages in an automated way in future works. 

6.4. DISCUSSION 

Comparing the results in different scenarios, fixed cameras with good weather 

conditions presented the highest accuracies (around 95% for IoU and pixel accuracy). Due to 

the stability of the sensor and little adversity, it is normal to expect such accurate results for this 

evaluation. Analyzing the agitated water, the model performance dropped a bit, but the results 

still remained good. The accuracies for this method varied around 90%, thus indicating that the 

model was able to segment the water effectively automatically. The biggest variation in results 

was when used UAVs and images where the first frame started with the water body partially 

hidden, where the worst result was 64%. Videos whose water appeared completely in the first 

frame presented a considerable improvement, thus showing that it is important to consider the 

issue of the object interest being partially hidden in the first captured frame. 

The performance of the STCN model proved to be as accurate as the SegNet framework 

in segmenting the Wesenitz River even with time-lapsed images (not videos). Analyzing the 

validation metrics, both IoU and pixel accuracy indicated an accuracy higher than 96% thus, 

the obtained segmentation emerges as an alternative for automated water level measurement in 

future works. 

The results also showed that storing the features every S=15 frames is sufficient to 

describe temporal information, unlike the original STCN proposal that used S=5. This result is 

relevant because the memory, with S=15, can store features for a longer period of time until it 

fills up and older features are discarded. In this way, a current frame can use features from an 

older frame, which are relevant to its segmentation and results in greater accuracy and IoU. 

6.5. CONCLUSIONS 

In this study, we investigated a semantic segmentation of water considering video 

structures. Our study target was to delineate water bodies in an automated way from images 

obtained by different types of sensors using the STCN model, considered state of the art in 

video object segmentation. STCN showed high performance for water feature segmentation 

tasks. However, when the video was obtained by aerial sensors, it showed greater difficulty in 

providing good predictions due to the UAVs move during the data acquisition. This fact is of 

great interest for future studies, which will have the challenge of better delimiting the 

performance of water bodies in UAV images. 
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The segmentation generated by STCN showed as reliable results as SegNet model. The 

SegNet performance depends on a large and robust dataset, requiring more time to obtain data, 

build an appropriate dataset, and annotate the labels of the classes. STCN, on the other hand, 

shows that the features extracted by this methodology evolve over time because of the 

hyperparameter memory value using only the first frame. The first frame is used to extract the 

characteristics of the river. From the second frame onwards, the model segments the frame and 

updates the characteristics of this river. Therefore, the attributes referring to the river are 

adapted. This reason shows that it is possible to use the STCN model for new challenges, such 

as continuous observations of water stages or even temporal information. 

We hope to integrate the segmentation obtained with photogrammetry techniques for 

automated water stage estimation in future studies. In addition, it would be interesting to 

combine such information with sensors installed in streams, such as in this study in order to 

supervise the population in numerous types of sudden events, especially floods. As the 

advancement in technology occurs gradually, it is necessary that cities also follow in parallel 

this flow. In this way, we hope that in the future, we will be able to create innovative 

methodologies to become the cities smarter. 
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7. GENERAL CONCLUSIONS 

This research investigated and proposed deep learning-based methods for water 

monitoring. Initially, the study consisted of delimiting water bodies in RGB images using the 

SegNet semantic segmentation method. Thus, the first dataset was created, consisting of many 

images of the same river obtained from fixed cameras. The SegNet model was trained, validated 

and tested for this dataset, proving to be efficient for the task of segmenting the studied river. 

In order to seek applications for the generated segmentations, we proposed an image-

based approach combining river segmentation and photogrammetry techniques to estimate 

water stages. The results showed high correlations between traditional and image-based 

measurement systems (between 87% - 93%), showing that water resource monitoring is 

possible only with image-based systems, emerging as a new way to obtain data, and possibly 

being a new tool to support traditional water resource monitoring methodologies. 

Other methodologies were developed as the work progressed, such as fine-tuning, 

transfer learning and the influence of the number of images on the performance of the models, 

in order to not only segment the same river, but also images containing different types of water 

bodies for generalization tasks. A second dataset (Dataset 2) was built containing images of 

different water bodies, such as rivers, lakes, ponds, in order to improve the performance of the 

semantic segmentation models. All these studies were carried out searching for the best solution 

to identify water resources and facilitate other researches that pursue the same goal. 

Finally, we used a deep learning method based on video structures, which consists in 

using only one labeled frame to test the model. It differs from the structures developed in 

previous studies, which were based on a dataset of images. The model used was the STCN, 

considered the state-of-the-art in video object segmentation. A dataset consisted of videos 

containing diverse water bodiers to test the model was built. This model showed high 

performance in segmenting water in videos, regardless whether the camera system is fixed or 

moving. 

The major contribution that this study offers is the optimization of information 

concerning a body of water using techniques different from what traditional measurement 

systems are used to. In this way, we show that the development of science tends to offer new 

tracking options linked to water resources. The advancement of technologies linked to the 

Internet of Things (IoT), for instance, shows that more alternatives can be developed. A future 

solution would be to integrate everything that has been developed in this research into real-time 

surveillance systems, thus helping the population in numerous decisions, especially in 

hypothetical cases of flooding. This study also emerges as an alternative that different 

information from a body of water can be obtained from artificial intelligence, such as chemical 
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components, runoff and flow velocities prediction, among others. Therefore, we hope that in 

the future more studies related to our area can be developed in order to always contribute to the 

safety and welfare of society. 
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