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GENERAL ABSTRACT 

 

CANO, P. L. G. (2022). MAPPING OF PERMEABLE AREAS USING MACHINE 

LEARNING TECHNIQUES AND REMOTE SENSING DATA. 2022. 66 páginas. 

Dissertação - Programa de Pós Graduação em Recursos Naturais. Universidade Federal 

de Mato Grosso do Sul, Brasil. 

 

 

This work proposes mapping permeable areas of an urban catchment in Campo Grande, 

Mato Grosso do Sul, Brazil, using machine learning techniques and remote sensing data. 

The dissertation is organized into three chapters. The first presents the mapping of urban 

forests and permeable areas, based on a supervised object-based method, the Random 

Forest machine learning algorithm using Google Earth (GE) Pro imagery. The second 

chapter presents a scientometric analysis of deep learning data for remote sensing, 

through 1.429 documents extracted from the Scopus and Web of Science databases, up 

to the year 2020. And the third chapter consists of the evaluation and validation of the 

performance of the deep learning algorithms like U-Net, PSPNet, and Deeplabv3, using 

Google Earth (GE) Pro imagery of the year 2020, allowing, after verification, the mapping 

of urban forests and permeable areas in the catchment of Prosa. The results obtained in 

chapters 1 and 3 indicated high accuracy, with F1-Score higher than 90% for mapping 

permeable areas using traditional machine learning and deep learning methods, indicating 

a excellent tool for mapping green areas in highly complex environments. It was possible 

to observe, with the case of the study, a considerable improvement in the mapping results 

of permeable areas using deep learning models. The contribution of this work is given by 

the development of automated approaches for mapping permeable areas, as they represent 

an important component of the urban ecosystem, serving as a tool for planning, 

monitoring and adequate urban management. 

 

Keywords: deep learning, scientometric analysis, urban catchment, sustainable cities, 

environmental monitoring 

 

RESUMO GERAL 

 

Este trabalho propõe o mapeamento de áreas permeáveis de uma bacia hidrográfica em 

Campo Grande, Mato Grosso do Sul, Brasil, utilizando técnicas de aprendizado de 

máquina e dados de sensoriamento remoto. A dissertação está organizada em três 

capítulos. O primeiro apresenta o mapeamento de florestas urbanas e áreas permeáveis, 

através do método supervisionado baseado em objetos com o algoritmo de aprendizado 

de máquina Random Forest usando imagens do Google Earth (GE) Pro. O segundo 

capítulo apresenta uma análise cienciométrica de deep learning para dados de 

sensoriamento remoto, por meio de 1.429 documentos extraídos das bases de dados 

Scopus e Web of Science, até o ano de 2020. E o terceiro capítulo consiste na avaliação 

e validação do desempenho de algoritmos de deep learning U-Net, PSPNet e Deeplabv3, 

utilizando imagens do Google Earth (GE) Pro do ano de 2020, permitindo, após 

verificação, o mapeamento de florestas urbanas e áreas permeáveis na bacia do Prosa. Os 

resultados obtidos nos capítulos 1 e 3 indicaram alta precisão, com F1-Score superior a 

90% para mapeamento de áreas permeáveis usando métodos tradicionais de aprendizado 
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de máquina e aprendizado profundo, indicando uma excelente ferramenta para 

mapeamento de áreas verdes em ambientes de alta complexidade. Foi possível perceber 

com o estudo uma melhora considerável no mapeamento de áreas permeáveis feito pelos 

modelos de deep learning. A contribuição deste trabalho se dá pelo desenvolvimento de 

abordagens automatizadas para mapeamento de áreas permeáveis, pois representam um 

importante componente do ecossistema urbano, servindo como ferramenta de 

planejamento, monitoramento e gestão urbana adequada. 

 

Palavras-chave: aprendizado profundo, análise cienciométrica, bacia urbana, cidades 

sustentáveis, monitoramento ambiental 
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GENERAL INTRODUCTION 

 

Urban environments are considered complex and heterogeneous systems, 

as they have ecological, physical, and socioeconomic components that interact and 

progress in multiple spatial and temporal scales (BLASCHKE et al., 2011). Therefore, 

the need for more information and understanding of how these systems work and progress 

are required for governments and decision-makers. This is especially due to they adopted 

the United Nations Sustainable Development Agenda for 2030, with the goal of making 

cities and human settlements inclusive, safe, resilient, and sustainable (ZHU et al., 2019). 

Urbanization has a direct relation with the environment, where disorderly 

urban expansion generates, in a concentrated way, degrading impacts on the environment 

and society, affecting the ecosystem's biodiversity, altering the natural hydrological cycle 

of the basin and the biogeochemical cycle (CUI et al., 2019, ARABAMERI et al., 2019, 

LUO et al., 2020, LI et al., 2017, PAN et al., 2020). According to Jacobson (2011), 

among environmental problems, the main effect of urbanization on urban hydrology is 

the decrease in the permeability of soils in hydrographic basins. Seeking to control these 

degradation processes and preserve the environment, permeable areas play an important 

role both in the mitigation of urban rainwater runoff and in flood control, as they represent 

an important component of the urban ecosystem (REN et al., 2020). 

Mapping and monitoring permeable areas are fundamental for the 

advancement and collection of information about the coverage and change of land use 

and control urbanization and support for the preservation of the environment (HUSSAIN 

et al., 2013). Studies related to remote sensing data used to detect, characterize and map 

urban land cover and changes have revolutionized the mapping task in recent decades. It 

consists of an effective tool for mapping vast geographic areas at various scales favoring 



 

 

6 

 

the understanding of the spatiotemporal dynamics of the environment (SETO et al., 2011, 

ZHU et al., 2019). According to Maxwell et al. (2018), machine learning approaches have 

become widely accepted and effective for classifying remote sensing images, particularly 

evidenced for land-cover mapping. 

Machine learning algorithms are capable of modeling complex class data 

to identify patterns and accept a variety of input datasets. Moreover, they have the 

advantage of being non-parametric and non-linear techniques, making decisions with 

little human intervention. Some examples of these algorithms are the support vector 

machine (SVM) and random forest (RF) (MAXWELL et al., 2018, LI; STEIN, 2020). 

In the literature, there are many uses of remote sensing and machine 

learning applied for the urban areas mapping, such as automatic extraction of 

impermeable surfaces (MISRA et al., 2020), heat islands (YOO et al., 2019), 

classification of green infrastructure (KRANJČIĆ et al., 2019) susceptibility to urban 

flooding (ZHAO et al., 2019), and susceptibility of land subsidence (MOHAMMADY et 

al., 2019). 

In recent years, deep learning methods have emerged in the area of 

machine learning to provide refined functionality for classifying remote sensing data 

(MAXWELL et al., 2018). These methods have been widely used in studies carried out 

in urban areas as well, such as classification tasks (XU et al., 2020), object detection and 

semantic segmentation (HUERTA et al., 2021), and instance segmentation (XI et al., 

2021). 

Therefore, our main purpose is to map permeable areas using machine learning techniques 

and remote sensing data. This work is divided into three chapters. In the first chapter, the 

mapping of permeable areas and urban forests of the Prosa catchment, located in Campo 

Grande, Mato Grosso do Sul, Brazil, is carried out based on remote sensing data and 
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Random Forest algorithm application. This chapter presents a product as input for 

decision-makers in terms of sustainable city planning and management, which can help 

and improve the ability to monitor and map urban land cover. Urban forests are a subclass 

of permeable areas, as they are composed of trees and blocks of trees. The choice to map 

urban forests separately from permeable areas is intended to fill a gap in studies and 

products related to their mapping around the city, since this information is important for 

biologists, architects and urban planners. 

In chapter 2, a scientometric analysis of Deep Learning for Remote 

Sensing data is presented. As it is a relatively new topic and has expanded significantly 

in recent years, this chapter aims to show, through a scientometric analysis, the growing 

advance of research on the subject and the relevance of this method for this work. The 

chapter presents the number of articles published over the years, journal productions, 

authors and countries, co-authorship networks, and co-occurrence of keywords. Finally, 

chapter 3 consists of the evaluation and validation of the performance of the deep learning 

algorithms like U-Net, PSPNet, and Deeplabv3, using Google Earth (GE) Pro imagery of 

the year 2020, allowing, after verification, the mapping of urban forests and permeable 

areas in the catchment of Prosa. 

Our main contribution is producing cartographic information that assists 

studies related to permeable areas, which are important for the planning and management 

of sustainable cities. This type of information is also important for monitoring and 

controlling the land occupation process, improving the environmental conditions of an 

urban catchment. 
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STUDY AREA 
 

The study area is located in Campo Grande, Mato Grosso do Sul, Brazil 

(Figure 1), which has 96.3% of urban households on public roads with afforestation 

(IBGE, 2010). Campo Grande has the title "Tree Cities of the World", which recognizes 

the cities most committed to preserving urban forests and sustainable development by the 

Food and Agriculture Organization of the United Nations and Arbor Day Foundation. 

 

 
Figure 1: Study area location. 

Source: Prepared by the Author 

 

Specifically, the Prosa catchment was studied. It is located in the eastern 

portion of the urban area of the city. This catchment has a heterogeneity of land cover and 

usage, including commercial and residential buildings and vegetation reserves for 

preserving samples of the Cerrado ecosystem, such as the Parque das Nações Indigenas 
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and the Parque Estadual do Prosa. The region where the catchment is located can also be 

characterized by an increase in the degree of impermeability of the soil due to the high 

urban development in recent years. Thus, contributing to intensifying surface runoff and, 

consequently, flooding and erosion processes (CAMPO GRANDE, 2015). 
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FIRST CHAPTER: MAPPING URBAN FORESTS AND 

PERMEABLE AREAS COMBINING REMOTE SENSING AND 

MACHINE LEARNING 

 

 

Abstract: Urban forests are one of the important indicators of a city's environmental 

quality, providing ecosystem services for human and ecological well-being. Permeable 

areas also play an important role in hydrological modeling. Mapping these urban features 

is necessary for supporting urban planning and management tasks. Therefore, our goal is 

to combine remote sensing data and machine learning algorithms to map the urban forests 

and permeable areas of the Prosa catchment, located in Campo Grande, Mato Grosso do 

Sul, Brazil. The study was carried out using high-resolution satellite imagery and an 

object-based classification supervised method with Random Forest machine learning 

algorithm. The experiments were conducted using Google Earth (GE) Pro imagery from 

May 14, 2020, and the ESRI ArcGIS Pro 2.9.0 software. We achieved an overall accuracy 

of 91.80% and an F1 Score of 91.88% for urban forests. Regarding permeable areas, an 

overall accuracy of 91.80% and an F1 score of 94.82% were obtained.  The results 

indicate that the adopted strategy is satisfactory when used to map urban forests and 

permeable areas, showing the potential of using GE Pro data, which historical imageries 

are, in general, available for all the cities around the globe. 

   

Keywords: urban vegetation, ArcGIS pro, supervised image classification, random 

forest. 

 

Resumo: As florestas urbanas são um dos importantes indicadores da qualidade 

ambiental de uma cidade, fornecendo serviços ecossistêmicos para o bem-estar humano 

e ecológico. As áreas permeáveis também desempenham um papel importante na 

modelagem hidrológica. O mapeamento dessas características urbanas é necessário para 

apoiar as tarefas de planejamento e gestão urbana. Portanto, nosso objetivo foi combinar 

dados de sensoriamento remoto e algoritmo de aprendizado de máquina para mapear as 

florestas urbanas e áreas permeáveis da bacia do Prosa, localizada em Campo Grande, 

Mato Grosso do Sul, Brasil. O estudo foi realizado usando imagens de satélite de alta 

resolução e um método supervisionado de classificação baseada em objeto com algoritmo 

de aprendizado de máquina Random Forest. Os experimentos foram conduzidos usando 

imagens do Google Earth (GE) Pro de 14 de maio de 2020 e o software ESRI ArcGIS Pro 

2.9.0. Alcançamos uma precisão geral de 91,80% e uma pontuação F1 de 91,88% para 

florestas urbanas. Em relação às áreas permeáveis, obteve-se uma acurácia geral de 

91,80% e uma pontuação F1 de 94,82%. Os resultados indicam que a estratégia adotada 

é satisfatória quando utilizada para mapear florestas urbanas e áreas permeáveis, 

mostrando o potencial de utilização de dados do GE Pro, cujas imagens históricas estão, 

em geral, disponíveis para todas as cidades do globo. 

 

Palavras-chave: vegetação urbana, arcgis pro, classificação de imagens supervisionadas, 

random forest. 
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1.1. INTRODUCTION 

 

Urban forests, which are a subclass of permeable areas, have become 

essential areas for city sustainability, providing ecosystem services for human and 

ecological well-being. Many studies highlight the importance of these areas to the 

improvement of the health and leisure of the population, microclimate mitigation, air 

purification, protection of hydrographic basins, and better drainage (GÓMEZ-

BAGGETHUN; BARTON, 2013, WEINBRENNER et al., 2021, NGHIEM et al., 2021, 

HIRABAYASHI, 2021). Urban forests are composed of scattered individual trees or 

blocks of trees located in parks, streets, lands, and gardens (JENSEN et al., 2009).  

Permeable areas composed of grass, arboreal vegetation, and exposed soil, 

also play an important role in hydrological modeling (LI et al., 2018). They are in highly 

altered and extremely complex ecosystems where humans are the main drivers of their 

types, amounts, and distribution (DOBBS et al., 2011). As it characterizes as important 

and potentially substantial areas, mapping and monitoring are necessary as an analysis 

tool aiming the adequate urban planning and management. 

In recent years, image classification based on remote sensing data and 

machine learning algorithms has provided good results to urban forest mapping 

(CANETTI et al., 2018, CHEŢAN et al., 2017, NOVACK et al., 2011) and permeable 

areas mapping (YANG et al., 2021, MAHATO et al., 2022). In the city of Campo Grande, 

some studies were carried out regarding urban vegetation. These studies used Deep 

learning segmentation-based methods for tree species identification (LOBO TORRES et 

al., 2020, ARCE et al., 2021), tree crown identification (MARTINS et al., 2020) and 

detection of individual trees (ZAMBONI et al., 2021); however, these methods require 

extensive labeling datasets, which, in general, are not available for cities around the globe. 
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Traditional machine learning methods, such as Random Forest, combined with image 

segmentation (PUISSANT et al., 2014) emerge as an alternative in this scenario. 

We intend to map urban forests and the permeable areas of the Prosa 

catchment in Campo Grande city (Mato Grosso do Sul - MS/Brazil), combining a 

supervised machine learning approach and high-resolution Google Earth (GE) Pro 

imageries. This information source can help and enhance the ability to monitor and map 

urban land cover around the globe due to their high availability. It is also essential to 

highlight the importance of our product as input for decision-makers in terms of 

sustainable city planning and management. Campo Grande has the title of “Tree Cities of 

the World", however, there is a gap of studies and products related to their mapping 

around the city, and the current work aims to fill this gap partially, as one of the 

hydrographic basins was totally mapped.  

 

 

1.2. MATERIAL AND METHODS 

 

The raster data used was a mosaic of satellite images from Google Earth 

Pro, from May 14, 2020, with a spatial resolution of 0.50 meters. The projection system 

adopted was the Universal Transverse Mercator (UTM), zone 21 South, Datum SIRGAS 

2000. The vector data related to the boundaries of the city and the basin were acquired 

through the website of the Brazilian Institute of Geography and Statistics (IBGE) and the 

municipality of Campo Grande, respectively. We used Terra Incognita software to 

acquire georeferenced Google Earth Pro satellite images. 

The study was divided into two parts, one for mapping the permeable areas 

and the second for urban forests. For that, a six-step workflow was defined, as shown in 

Figure 1.1, which was repeated for both tasks. All steps were performed in ArcGIS Pro. 
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Figure 1.1: Work flowchart. 

 

The steps 1, 2 and 3 consisted of training the classifier, steps 4 and 5 were 

defined to test the classifier, and the final step was carried out to map the total area of the 

catchment. It should be noted that the areas defined for training and testing are in different 

regions of the catchment, with 70% for training and 30% for testing. 

In the first step, the image segmentation is performed through the Mean 

Shift approach. The segmentation grouping adjacent pixels with similar spectral 

characteristics and shapes into image objects. The processing units are converted from 

conventional pixels into image objects (HAN et al., 2015).  

After tests, we considered the value of 18 (eighteen) for the spectral and 

spatial details to segment the image. The minimum size adopted for the segment was 700 

pixels, with the purpose of easily mapping the samples. A patch from the original image 

and the corresponding segmented image can be seen in Figure 1.2. 

https://pro.arcgis.com/en/pro-app/2.9/tool-reference/spatial-analyst/segment-mean-shift.htm
https://pro.arcgis.com/en/pro-app/2.9/tool-reference/spatial-analyst/segment-mean-shift.htm
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Figure 1.2: Segmented image detail 

 

We selected the training samples for the classification scheme in the 

second step. For the classification of permeable areas, two training samples were defined: 

permeable areas and impermeable. The permeable class contained 900 samples, and the 

impermeable class consisted of 900 samples. For urban forests, it was possible to 

vectorize two classes to compose the training samples called: trees and others 

(background). The trees class contained 800 samples with individual trees, blocks of 

trees, and forests of different shades of green, while the other class was composed of 800 

samples that included buildings, exposed soil, grasses, lakes, swimming pools, and 

asphalts, that is, everything not characterized as a tree. 

Classes were defined through visual interpretation to identify the main 

characteristics and targets mapped in the scene. Figures 1.3 and 1.4 show the types of 

samples selected from each class used for training. 
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Figure 1.3: Types of samples selected for permeable areas. 

 

 

Figure 1.4: Types of samples selected for urban forests. 

 

With the training samples defined, the classification scheme, and the 

segmented image, we proceed to the third step, which consists of the supervised machine 

learning-based classification in the training area. The chosen classifier was Random 

Forest. The Random Forest machine learning algorithm has become popular in the remote 

sensing community and appears in several studies proving to be an excellent classifier for 

urban areas (GUO et al., 2011, PUISSANT et al., 2014, JOMBO et al., 2021). According 
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to Puissant et al. (2014) the Random Forest does not require the adjustment of many 

parameters; therefore, it presents easier and more efficient ways to identify vegetation in 

the urban context. For the training of the classifier, the value of 50 was adopted for the 

maximum number of trees, for depth, the maximum value of 30 was adopted, and 1000 

samples per class were selected. 

After training, we proceeded to test the model. To do so, the classification 

in the test area was carried out with the trained algorithm and subsequently verified the 

accuracy of the classified image. We created automatically 500 points randomly 

distributed for the two classes. The input data was the classified image, and the chosen 

sampling scheme was the stratified random, where each class has a number of points 

proportional to its area. After manual verification, it was possible to generate a confusion 

matrix using the Compute Confusion Matrix tool. 

The confusion matrix (SAMMUT; WEBB, 2011) contains information 

about the number of correctly and incorrectly sorted samples compared to the actual 

results. Through this matrix, we estimate some metrics: sensitivity, specificity, Precision, 

accuracy, and F1 Score. Sensitivity is a metric that indicates how well the model correctly 

ranked patterns that were positive, while specificity indicates correct ranking relative to 

negatives. Precision is about evaluating the number of true positives (TP) out of all 

positive values, accuracy indicates the accuracy of the model and how well it is detected 

correctly across all classifications, and the F1 Score is a harmonic average of Precision 

and sensitivity. Below are the equations for the reported metrics (LEVER et al., 2016): 

 

Sensitivity =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 Accuracy =

(𝑇𝑃 + 𝑇𝑁)

(𝑃 + 𝑁)
 

Specificity =
𝑇𝑁

(𝐹𝑃 + 𝑇𝑁)
 F1 Score =

(2 𝑥 𝑇𝑃)

[(2 𝑥 𝑇𝑃) + 𝐹𝑃 + 𝐹𝑁]
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Precision =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
  

 

In which, TP (True Negative) is the correct prediction of a label; FP (False 

Positive) is the false prediction of a label; TN (True Negative) is the correct prediction of 

another label; and the FN (False Negative) refers to the label that was not predicted, but 

that exists. 

 

 

1.3. RESULTS AND DISCUSSION 

 

1.3.1 Permeable area mapping 

 

The classification was performed in the test areas with the model trained 

for mapping permeable areas and generated the evaluation metrics presented in Table 1.1 

and the classification details presented in Figure 1.5. 

 

CONFUSION MATRIX 

    TRUE VALUE 
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375 (TP) 24 (FP) 
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17 (FN) 84 (TN) 

      VALUE OBTAINED (%) 

M
E

A
S

U
R

E
 Sensitivity 95.66 

Specificity 77.78 

Precision 93.98 

Accuracy 91.80 

F1 Score 94.82 

Table 1.1: Classification Confusion Matrix for Permeable Areas 
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The number of permeable areas was correctly detected, indicating the 

sensitivity of the model was 95.66% (375 true positives of 399 points for permeable of 

the class). For the areas that the classifier detected as impermeable and correct, it obtained 

a percentage of 77.78%. From the confusion matrix, an overall accuracy of 91.80% and 

an F1 score of 94.82% were obtained.  

 

 
Figure 1.5: Supervised mapping details of permeable areas 

 

Figures 1.5a and 1.5b present a correct response for the classification, as it 

filled in all the areas that correspond to the permeable class. However, in Fig. 1.5c, it was 

verified that the algorithm did not obtain a satisfactory response, failing to classify the 

objects that characterize exposed soil. The spectral characteristic of the exposed soil is 

similar to that of roof surfaces, and it can be easily confused by the algorithm, thus 
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defining false negatives. In Fig. 1.5d, there is a false positive. The lake has an excess of 

algae with spectral characteristics similar to the trees. 

In the study by Feng et al. (2015), who used Random Forest for 

classification, the same confusion of features was obtained, and the authors reported that 

these errors occur mainly due to low spectral quality of images or the lack of a near-

infrared band that reduces the separability of each type of ground cover. 

The supervised classification of permeable areas in the Prosa catchment 

found an area of 13.9592 km² and resulted in a classification map shown in Figure 1.6. 

The permeable area occupies a total of 43.66% of the basin. 

 

 

Figure 1.6: Map of the permeable areas in the Prosa catchment 

Source: Prepared by the Author 
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1.3.2 Urban Forests mapping 

 

The validation of the classification of urban forests is reported in Table 

1.2, where the number of trees correctly detected, indicating that the sensitivity of the 

model was 94.69% (232 true positives out of 260 points for class trees). For the areas that 

the classifier detected as not arboreal and got it right, it obtained a percentage of 89.02%. 

An overall accuracy of 91.80% and an F1 score of 91.88% were obtained from the 

confusion matrix. In Figure 1.7 presents a qualitative analysis for some test areas. 

 

CONFUSION MATRIX 

    TRUE VALUE 

    Positive Negative 
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232 (TP) 28 (FP) 
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13 (FN) 227 (TN) 

      VALUE OBTAINED (%) 

M
E

A
S

U
R

E
 Sensitivity 94.69 

Specificity 89.02 

Precision 89.23 

Accuracy 91.80 

F1 Score 91.88 

Table 1.2: Classification Confusion Matrix for Urban Forests. 

 

The examples in Figures 1.7a and 1.7b present a correct classification, 

filling in all the areas that correspond to the tree class. However, in Fig. 1.7d, it was 

verified that the algorithm did not obtain a satisfactory response, failing to classify the 

objects with smaller-sized objects. These objects are small trees and with lighter colored 

foliage, easily confused with grass, characterizing false negatives.  In Fig. 1.7c, the same 

occurs as in the classification of permeable areas presenting a false positive. The area of 

a tank with fish with excess algae was selected for having a similar spectral characteristic. 



 

 

21 

 

 
Figure 1.7: Supervised mapping of urban forests details. 

 

The map resulting from the supervised classification of urban trees in the 

Prosa catchment can be seen in Figure 1.8. The Prosa catchment has an area of 31,9704 

km², while the classified arboreal area corresponds to 7,8133 km². Therefore, urban 

afforestation occupies a total of 24.44% of the basin. 

Compared to other Brazilian cities, for example, Mossoró-RN with 6.90% 

(EDUARDO et al., 2013) and Rondonópolis-MT with 8% (PESSI et al., 2019), the 

percentage found is higher and favorable to others, providing residents of the region with 

a better quality of life, serving as a barrier to pollutants and improving the thermal 

sensation of cities. 
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Figure 1.8: Map of the Urban Trees in the Prosa catchement. 

Source: Prepared by the Author 

 

The accuracy of supervised classification is related to the quality and 

quantitative balance of samples from different classes, where human misunderstandings 

can occur, as well as due to the complexity of land cover and variability between classes 

(EGOROV et al., 2015, PELLETIER et al., 2017).  

Another issue that can interfere with the classification quality is the 

adopted image segmentation process, with a negative correlation between the ideal 

segmentation scale and the spatial resolution of the images. Since different types of land 

cover can be classified better on different scales, so if only one segmentation scale is used 

for classification, even if it is the optimal scale for the image as a whole, the coverage 

features are likely to be super or sub-segmented (MA et al., 2017, JOHNSON, 2013). 

According to Ma et al. (2017), regarding the type of land cover of the areas 

in several studies, the object-based supervised classification proves to be more 
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advantageous for mapping the land cover of the agricultural study areas. However, 

analyzing the two classifications carried out in urban areas, we noticed that both obtained 

satisfactory results. 

The study carried out by Guan et al. (2013), who used the Random Forest 

algorithm in urban areas, obtained an overall accuracy of 86.01% for land cover, while 

Yang et al. (2021) who performed the classification of green spaces with Random Forest 

in an urban environment, obtained an accuracy of 87%. Regarding the mapping of large 

areas, the study carried out by Maxwell et al. (2019) obtained an overall accuracy of 

96.7% using the Random Forest algorithm. 

As a result of errors found, it is recommended: a) increase the amount of 

the number of samples for both classes; and b) for segmentation improvements, studies 

tend to adopt the multi-scale object-based approach segmentation technique (JOHNSON; 

XIE, 2013, MAXWELL et al., 2019).  

 

 

1.4. CONCLUSION 

 

The images available and used from Google Earth Pro, in addition to 

having a high spatial resolution, tend to be more advantageous as they allow for a large-

scale application, involve an easy acquisition and zero investment and have updated 

images in the urban context, thus favoring the mapping and monitoring of urban forests 

across the globe. 

The use of Google Earth Pro images submitted to classification with the 

Random Forest algorithm presents a good performance for mapping trees and permeable 

areas in an urban environment. Some errors occurred, which are related to the spectral 
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similarity response of targets, but even with these confusions, an F1 score higher than 

90% was achieved for both tasks.  

Finally, this work indicated that the tool discussed helps in monitoring and 

sustainable planning, making it possible to classify, map and monitor urban forests and 

permeable areas simultaneously, and the data obtained can determine the carbon capture 

potential of these areas, as well as serve as information for other studies. 

As a guide for future work, we anticipate applying the methodology to 

other areas, since the algorithm can be easily adapted for other studies using training data 

representing the study site under consideration. Besides, we also intend to use deep 

learning methods. However, it is important to highlight that these methods require large 

labeled datasets. 
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SECOND CHAPTER: SCIENTIOMETRIC ANALYSIS – DEEP 

LEARNING FOR REMOTE SENSING DATA  

 

 

Abstract: This study intends to carry out a scientometric analysis on Deep Learning for 

Remote Sensing data. We chose only articles and review articles that contained the terms 

"deep learning" and "remote sensing" in the title, abstract or keywords between 2010 and 

2020, resulting in a total of 2,248, extracted from the Scopus and Web of Science, a 

previous analysis was performed by excluding duplicate documents and aligning titles 

and abstracts, generating a final study sample with 1,429 documents. Through 

scientometric analysis, it was possible to find the number of articles published over the 

years, journal productions, authors and countries, co-authorship networks and co-

occurrence of keywords. The results indicated that (a) publications on the topic had a 

significant increase over the years, indicating a greater interest in researchers; (b) the most 

productive authors are linked to Chinese research institutions, and most of the journals 

are the Remote Sensing; (c) China is the country with the largest participation in 

productions and presents 63% of publications worldwide. Finally, it is expected that the 

study presents the current research access points on the subject and can guide other 

researchers in their work, contributing to the advancement of scientific knowledge. 

 

Keywords: Quantitative Analysis. Endnote. Research Progress. Network Analysis. 

VOSviewer. 

 

Resumo: Este estudo pretendeu realizar uma análise cienciométrica de dados de 

Aprendizagem Profunda para dados de Sensoriamento Remoto. Escolhemos apenas 

artigos e artigos de revisão que continham os termos "deep learning" e "remote sensing" 

no título, resumo ou palavras-chave entre 2010 e 2020, resultando em um total de 2.248, 

extraídos da Scopus e Web of Science, foi realizada uma análise prévia, através da 

exclusão de documentos duplicados e alinhamento dos títulos e resumos, gerando uma 

amostra final do estudo com 1.429 documentos. Por meio da análise cienciométrica, foi 

possível encontrar o número de artigos publicados ao longo dos anos, produções de 

periódicos, autores e países, redes de coautoria e coocorrência de palavras-chave. Os 

resultados indicaram que (a) as publicações sobre o tema tiveram um aumento 

significativo ao longo dos anos, indicando maior interesse dos pesquisadores; (b) os 

autores mais produtivos estão vinculados a instituições de pesquisa chinesas, sendo a 

maioria dos periódicos de Sensoriamento Remoto; (c) A China é o país com maior 

participação nas produções e apresenta 63% das publicações mundiais. Por fim, espera-

se que o estudo apresente os atuais pontos de acesso à pesquisa sobre o tema e possa 

orientar outros pesquisadores em seus trabalhos, contribuindo para o avanço do 

conhecimento científico. 

 

Palavras-chave: Análise Quantitativa. Endnote. Progresso da Pesquisa. Análise de Rede. 

VOSviewer. 
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2.1. INTRODUCTION 

 

The remote sensing scientific community is always committed to develop 

methods to improve performance aspects such as pre-processing, segmentation, and 

classification images. Over the past few years, there has been increased interest from 

researchers in deep learning methods in remote sensing community due to their ability to 

automatically: (a) extract feature information from the image dataset; (b) conduct high-

level semantic segmentation; (c) perform nonlinear problem modeling, and; (d) map 

complex environments, such as urban environments (MA et al., 2019, ZHANG et al., 

2016). Therefore, as it is a relatively new subject, starting the application in remote 

sensing in 2014, and with growing use, it is necessary to analyze the progress and 

behavior of the productions through the scientometrics approach. 

Scientometrics is related to bibliometrics and infometry, where over the 

years, they presented different definitions, thus occurring a mixture of meanings, but they 

may not be considered synonyms. Therefore, Scientometrics can be defined as the study 

of the quantification of the analysis of scientific and technological performance through 

the application of mathematical and statistical methods to assess scientific productivity, 

which through its techniques helps researchers to find various studies related to the 

literature, which could be overlooked in manual searches (HOOD; WILSON, 2021, 

MADDISETTY; BABU, 2020, SU; LEE, 2010). 

In the literature, scientific studies were found on deep learning (GUPTA; 

DHAWAN, 2019, TOLCHEEV, 2019) and remote sensing (MURUGAN; 

SARAVANAN, 2017, MADDISETTY; BABU, 2020). These articles provide a 

quantitative and qualitative description of research on a global scale, using scientometric 

methods, visualizing trends in existing literature as well as helping in future research.  
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Recently, the study developed by Bai et al. (2021) carried out a 

bibliometric and visualized analysis of deep learning in remote sensing, with the 

documents extracted from the Web of Science database, it used a method called 

Visualized Analysis (BVA) through the CitySpace software and later used a traditional 

method combing the literature (TLC), resulting in a systematic review of the subject. 

Although the field of remote sensing and deep learning have been 

approached separately in scientometric or bibliometric studies, and even if together in a 

bibliometric study, it is important to emphasize the different ways of extracting data and 

performing quantitative and quantitative analyses.  

Therefore, the goal of this work is to carry out a Scientometric Analysis of 

Deep Learning for Remote Sensing data, using the Scopus and Web of Science databases, 

between 2010 and 2020. 

 

 

2.2. MATERIAL AND METHODS 

 

To carry out the scientometric analysis, we sought to acquire the data 

through the Scopus and Web of Science databases, which are considered relevant 

knowledge bases and present a significant number of publications with works and 

scientific journals of impact. After choosing the databases, the study keywords are 

defined to build a search string, shown in Figure 2.1. 

 

 
Figure 2.1 – Keywords and search string 

 

Deep 
Learning

Remote 
Sensing

"deep 
learning" 

AND 
"remote 
sensing"
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The search performed in the databases used the same string, filtering the 

type of document and year of publication, so we chose only articles and review articles 

that contained the terms "deep learning" and "remote sensing" in the title, abstract or 

keywords between 2010 and 2020, resulting in a total of 2,248 documents (Figure 2.2). 

 

 

 

 

 

 

Figure 2.2 – Data collect 

 

As they are two distinct databases, it was necessary to process the data, 

enabling the alignment of titles and abstracts of documents, and exclusion of those 

documents that are part of the research topic (Figure 2.3), resulting in the final sample of 

1,429 documents related to the use of Deep Learning for Remote Sensing data during the 

period 2010-2020. 

This method involving EndNote© software (BRAMER et al., 2016) is 

very efficient for studies that have documents from several databases and needed to merge 

and delete documents in duplicate, thus creating a single database (MAYRHUBER et al., 

2018, BOSSHARD et al., 2018) 

881

1367

SEARCH BASES
Scopus Web of Science
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Figure 2.3 - Data Processing in Endnote 

 

From the final sample of 1.429 documents, trends in the number of 

academic publications per year were evaluated; the periodicals, authors and countries 

with the largest publications on the subject, as well as the works with the greatest impact. 

To carry out this first step, we collected the information and quantitative data through the 

EndNote© software, confirming the information in the databases, later graphs were 

developed. 

The second step was the creation of scientific maps of networks through 

the VOSviewer software (VAN ECK; WALTMAN, 2013), enabling the visualization of the 

co-occurrence of keywords and co-authorship of countries. In this step, only the data from 

the Scopus database were selected, as it has complete information in its extension file 

(.csv). 

In the network map of keywords, the type of analysis "co-occurrence" was 

used, the unit of analysis was "all keywords" and the method of counting was "fractional 

count" and performed a filter of "minimum number of occurrences of the keyword” where 

it was set to 200. For the analysis of countries, "co-authorship" was used, the unit of 

analysis was "countries" and the method of counting was "fractional counting", in 

filtering the "minimum number of documents of a country" was defined as 15. 

 

 

Entering the data 
into the software

•2,248 documents

Deleting Duplicate 
Documents

•1,482 documents

Alignment of Titles 
and Abstracts

•Final research 
sample

•1,429 documents
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2.3. RESULTS AND DISCUSSION 

 

2.3.1. Annual Publication Analysis 

 

In total, 1,429 articles were obtained on the use of Deep Learning for Remote 

Sensing data between the years 2010 and 2020. Figure 4 below shows the relation 

between the number of articles published over the years. 

 
Figure 2.4 – Publications per year 

 

The publications on the subject started in 2014 with two documents, and over 

the years there has been a significant increase in scientific publications, reaching a 

milestone of 721 publications in 2020. Of the first documents published, the paper by 

Chen et al. (2014) stands out, which had the highest citation rate until the year 2020 with 

1,300 citations “Deep learning-based classification of hyperspectral data”, published pela 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (vol. 

7, no. 6, pp. 2094-2107). The work of Chen et al. (2014) discusses, for the first time, 

hyperspectral data classification methods using Deep Learning resources and manages to 

demonstrate the enormous potential of these resources for image classification, opening 

a new perspective for future research. 

Analyzing the numbers found in the annual publications, the general trend 

towards the development of publications related to the topic is shown, where there has 
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been a growing interest in the last three years due to the immense availability of data and 

advances in image processing.  

 

2.3.2. Review of Journal, Authors and Countries 

 

The production of Deep Learning research for Remote Sensing data is 

disseminated through several journals. Figure 5 shows the performance of the five most 

relevant journals in the analyzed period. The first article on the subject was published in 

2014 by the IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, while the Remote Sensing Journal presented the highest number of articles 

published, with 333 articles, in the period from 2014 to 2020.  

 

 
Figure 2.5 – Number of Publications in Journal 

 

 

The author with the highest number of publications was Zhang, L., a professor 

at the University of Wuhan in China, with 28 articles published on the topic (Figure 6). 
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Followed by Jiao, L., professor at Xidian University and China's Minister of Education, 

with 21 articles; Ghamisi, P., a researcher at HZDR – Dresden in Germany, with 19 

articles; Zhu, X.X., professor at the Technical University of Munich; and Sun, X., a 

professor at the Institute of Electronics of the Chinese Academy of Sciences in China, 

with 13 articles published on the topic.  

 

 
Figure 2.6 - Authors with the highest number of publications on the topic 

 

It is noteworthy that the search for publications by authors in the Scopus and 

Web of Science databases was performed using a search string, refining the data to only 

the words that make up the string. The results found in this session are for the search 

string "deep learning" and "remote sensing". Among these, Zhang, L. stands out, who 

developed, together with Lefei Zhang and Bo Du, the second most cited article until the 

year 2020 with 1,293 citations: Deep learning for remote sensing data: A technical tutorial 

on state-of-the-art, published in 2016 by the journal IEEE Geoscience and Remote 

Sensing (vol. 4, n. 2, pp. 22-40). The article presents the first technical tutorial in the study 

of the art. It provides a general structure of Deep Learning data for Remote Sensing, as 
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well as methods that can guide future research on the use of Deep Learning for Remote 

Sensing data. 

At the institutional level, it is noted that the three authors are from Chinese 

institutions, while the others are from Germany. This is confirmed in Figure 7, where 

China has a total of 63% of world publications, followed by the United States of America 

and Germany. 

 
Figure 2.7 – Percentage of publications from countries 

 

Brazil makes up 2% of publications worldwide, and the first Brazilian article 

on Deep Learning for Remote Sensing data was published in 2017 by the authors 

Nogueira, K.; Penatti, O.; Dos Santos, J., with title: Towards better exploiting 

convolutional neural networks for remote sensing scene classification, by Pattern 

Recognition magazine (v. 61, p. 539-556, 2017). 

Regarding the journals with the highest production, Remote Sensing 

magazine stands out, with 333 publications, that is, it is the magazine with the largest 

volume of productions with an impact on the subject. As for the authors with the highest 

number of publications, Zhang, L., a professor at the University of Wuhan in China, 

stands out, with 28 articles published on the subject, therefore, China leads the 
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productions with 63% of the world publication. This type of analysis informs which 

places and means are being used to advance the studies. 

 

2.3.3. Scientific Network Maps 

 

Discovering the collaboration network of keywords, co-authored by authors 

and countries is extremely important, as it identifies the growth trend of a given topic, in 

addition to helping new scientific research. For the keywords network, of the 8,727 found, 

19 reached the minimum limits of 200 occurrences and were included in the map, 

according to Figure 8. 

 

 
Figure 2.8 - Co-occurrence of Keywords 

 

The size of the nodes represents the frequency of co-occurrence of the 

keywords and the connecting lines between the nodes demonstrate the degree of 

interaction between the keywords. The colors of nodes and lines are defined by "clusters", 

it is understood that they are sets of keywords that have relation in publications.  
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The keyword network reveals the main results: a) “remote sensing” was the 

largest node with a record of 1,440 occurrences, followed by “deep learning” with 1,401. 

These are the two most popular keywords and consequently have the highest degree of 

interaction; b) “convolution” (465) and “neural network” (397 occurrences) that are 

inserted in the green cluster, indicate that part of the articles is bringing information and 

development of types of networks for the processing and analysis of digital images. 

As for the network of countries, after filtering, 17 countries reached the 

minimum limits of 15 published documents, according to Figure 9. The size of the nodes 

and the font are proportional to the volume of publication, the colors of the nodes are 

equivalent to the "clusters" created by the publication relationship between the countries 

and the thickness of the connection lines between the countries demonstrate the intensity 

of the cooperation. 

 

 
Figure 2.9 - Co-authorship of countries 

 

The network of countries presents the following results: a) China is the most 

influential country with the highest production in the sample period. It plays an important 

role in the cooperation network, as it is interconnected with practically all countries, but 

demonstrates a greater intensity of cooperation in documents with the United States, 
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United Kingdom and Germany; b) On the map we find countries in Europe, Asia, 

Oceania, North and South America. Highlighting Brazil, the only represented country in 

South America that has collaboration with China, United States, United Kingdom, 

Germany, Canada, France, Japan, Italy and the Netherlands (Figure 10); c) Hong Kong 

has interaction only with China, so its location on the map is isolated from other countries, 

being inserted in the same yellow “cluster”. 

 
Figure 2.10 - Co-authorship of countries with Brazil 

 

The network maps illustrate keyword collaborations and country co-

authorship. The keywords with the highest occurrences are “Deep Learning” and 

“Remote Sensing”, as they are words chosen in the string search, and are inserted in all 

selected articles. This type of analysis is important to select which keywords have the 

highest occurrences over the years. On the map of the network of countries, he identified 

China as the most influential country, which leads research on the subject, presenting, 
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consequently, a larger network of document cooperation with the United States, the 

United Kingdom and Germany. 

 

 

2.4. CONCLUSION 

 

This study sought to present a scientometric analysis on Deep Learning for 

Remote Sensing, through research and data collection in the Scopus and Web of Science 

databases, between 2010 and 2020. The results showed the advancement of publications 

over the years and the growing interest of the scientific community through the 

development of studies for the use of Deep Learning. 

With the results released, the production on the subject will continue to grow 

as it is a relatively new subject with great evolution. The adopted methodology can be 

used in the coming years to monitor new publications, carrying out continuous analysis 

in addition to serving for research on any other topic. 
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THIRD CHAPTER: ANALYSIS OF DEEP LEARNING MODELS 

FOR MAPPING PERMEABLE AREAS IN HYDROGRAPHIC BASIN 

 

 

Abstract: Permeable areas are important components for the urban ecosystem, serving 

as a solution in the mitigation of rainwater runoff and in flood control, being indispensable 

for the planning of sustainable cities. Therefore, our objective was to assess the 

performance of deep learning models for the classification of permeable areas and urban 

forests. The study was conducted using Google Earth (GE) Pro imagery from May 14, 

2020 and the deep learning algorithms U-Net, PSPNet and DeepLabV3, available in 

ArcGIS Pro. We achieved an F1-score of 92.56% in the U-net model, which was chosen 

to perform the classification of urban forests. The PSPNet model with F1-score 94.69% 

was selected for mapping permeable areas. The results indicate that the selected models 

are efficient for the mapping of urban forests and permeable areas, presenting a good 

behavior to classify environments of high heterogeneity and complexity, and serving as 

an aid tool for the monitoring of urban changes and sustainable planning of cities. 

 

Keywords: green spaces, arboreal vegetation, sustainable cities, environmental 

monitoring. 

 

Resumo: As áreas permeáveis são componentes importantes para o ecossistema urbano, 

servindo como solução na mitigação do escoamento de águas pluviais e no controle de 

enchentes, sendo indispensáveis para o planejamento de cidades sustentáveis. Portanto, 

nosso objetivo foi avaliar o desempenho de modelos de aprendizado profundo para a 

classificação de áreas permeáveis e florestas urbanas. O estudo foi realizado usando 

imagens do Google Earth (GE) Pro de 14 de maio de 2020 e os algoritmos de aprendizado 

profundo U-Net, PSPNet e DeepLabV3, disponíveis no ArcGIS Pro. Atingimos um F1-

score de 92,56% no modelo U-net, o qual foi escolhido para realizar a classificação das 

florestas urbanas. O modelo PSPNet com F1-score de 94,69% foi selecionado para 

mapeamento de áreas permeáveis. Os resultados indicam que os modelos selecionados 

são eficientes para o mapeamento de florestas urbanas e áreas permeáveis, apresentando 

um bom comportamento para classificar ambientes de alta heterogeneidade e 

complexidade, e servindo como ferramenta de auxílio para o monitoramento das 

mudanças urbanas e planejamento sustentável das cidades. 

 

Palavras-chave: espaços verdes, vegetação arbórea, cidades sustentáveis, 

monitoramento ambiental 
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3.1. INTRODUCTION 

 

Urban catchments are heterogeneous in terms of land use and feature 

natural and artificial drainage systems (BOUIZROU, 2021). The effects of rain in urban 

basins and the response of the runoff in these areas are sensitive (SEGOND et al., 2007), 

once impermeable surfaces such as buildings, roads, and other paved areas reduce the 

infiltration, increasing rainwater runoff (JACOBSON, 2011). The permeable areas play 

an important role both in mitigating the flow of urban stormwater runoff and flood 

control, and are indispensable components of the urban ecosystem (REN et al. 2020). 

According to De Araújo et al. (2000), there is a trend in the urban drainage 

area, which is the search for the maintenance of pre-development conditions of runoff in 

urban basins, acting as the source of its generation. Green areas and green infrastructures, 

which are strategies to increase permeable surfaces, serve as a solution to these problems, 

for example, the green roof (CIPOLLA et al., 2016), and green concrete (SUHENDRO, 

2014). Permeable areas are fundamental for the project and planning of sustainable cities, 

and vegetation cover is necessary to avoid supersaturation in the processes of runoff, 

infiltration, and evapotranspiration that occur within a hydrological system (BAUTISTA; 

PEÑA-GUZMÁN, 2019). 

The combination of remote sensing and machine learning techniques 

proved its efficiency in many mapping studies, including the mapping of permeable and 

impermeable areas (MISRA et al., 2020, OKUJENI et al., 2015, WELLMANN et al., 

2020, FENG et al., 2015). However, the remote sensing community is always committed 

to developing methods to improve the performance of aspects such as pre-processing, 

segmentation, and classification (MA et al, 2019). Deep learning studies in remote 

sensing started to grow in 2014. The attention is increasing from remote sensing 

researchers because of its ability to automatically extract resources from the image 
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dataset, high semantic segmentation level, non-linear problem modeling, and mapping in 

complex environments (ZHANG et al, 2016).  

Deep learning is a subfield of machine learning that can extract features 

from images using convolutional neural networks (CNN), deep neural networks, among 

others. These features refer, for example, to spectral, texture, semantic and potential 

feature information. Using deep learning networks for classification can help to obtain 

tools and produce more accurate classification results (MOHSEN et al., 2018, CHEN et 

al., 2021). Thus, it has been applied in many studies, including automatic extraction of 

impervious surfaces (HUANG et al., 2019), mapping of impermeable areas (FU, et al., 

2019), analysis and mapping of green spaces (MORENO-ARMENDÁRIZ et al., 2019) 

and automatic extraction of urban green space (LIU et al., 2019). 

It is notable in the literature a greater concentration of research related to 

impermeable areas and that studies with specific mapping and classification of permeable 

areas are still little addressed. It also has a confusion of termologies for the definition of 

permeable areas, but checking the termology used in recent studies we highlight the term 

“urban green space” (UGS) (XU et al., 2020; CHEN et al., 2021; HUERTA et al., 2021) 

that are being used more for specific researches using deep learning, while the 

terminology “pervious surfaces” it is directly associated with research on impervious 

areas. 

In this chapter, we intend to analyze and evaluate deep learning models, 

and define the best model for performing the classification of permeable areas and urban 

forests. Deep learning algorithms work like human neurons, which through their 

classifications and automatic extractions, are very useful for mapping complex 

environments, facilitating the monitoring and control of these areas, as well as helping in 

decision making using other geotechnologies. 
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3.2. MATERIAL AND METHODS 

 

The raster data used was a mosaic of satellite images from Google Earth 

Pro, from May 14, 2020, with a spatial resolution of 0.50 meters. The projection system 

adopted was the Universal Transverse Mercator (UTM), zone 21 South, Datum SIRGAS 

2000. The vector data related to the boundaries of the city and the catchment were 

acquired through the website of the Brazilian Institute of Geography and Statistics (IBGE) 

and the municipality of Campo Grande, respectively. 

We used a notebook with a CPU Intel Core i5-10210 of 2.11GHz, 8GB of 

main memory and an GPU NVIDIA® GeForce MX250 with 2GB of dedicated memory. 

All procedures were performed using ArcGIS Pro version 2.9.0 software. 

The workflow was defined in six steps, as shown in Figure 3.1, which was 

repeated for mapping permeable areas and urban forests. 

 

 
Figure 3.1: Work flowchart. 
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For the study in question, training areas and test areas were defined without 

data overlap (Figure 3.2). 

 

 

Figure 3.2: Location of training and testing areas in the catchment 

 

In the first and second steps, we selected the training samples for the 

classification scheme and created the training dataset, where the samples were defined 

using visual interpretation with identification of the main features and targets mapped in 

the scene. For urban forests, 4,687 samples were selected composed of individual trees, 

blocks of trees, and forests of different shades of green. The training dataset was created 

with 2,048 TIFF images, which were exported with dimensions of 256x256 pixels, with 

a pixel size of 0.50 m. For the permeable areas, the class contained 3,301 samples 

composed of trees, grasses, and exposed soil. The training dataset has 2,060 TIFF images, 

were exported with dimensions of 256x256 pixels, with a pixel size of 0.50m. 
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The third step consisted of training the deep learning models using the 

Train Deep Learning Model tool in ArcGIS Pro. U-net, PSPNet, and DeepLabV3 were 

selected as they compose the state-of-the-art for semantic segmentation of remote sensing 

imagery. For all training, the Backbone ResNet-34 model was selected, the models were 

trained in 20 epochs, and validations were carried out from 10% of the total. These 

configurations were defined due to computational performance. 

After completing the model training part, we moved on to the fourth and 

fifth stages, where it was possible to verify the accuracy of the models through assessment 

metrics. In these stages, the classification was performed using each model trained in the 

test areas and subsequently generating the confusion matrix for each classification. Based 

on the confusion matrix, we estimated the metrics: sensitivity, specificity, accuracy, and 

F1 Score, so an analysis was performed to choose the best model. 

The last step was to map the urban forests and permeable areas through the 

model with the best performance found in the previous step, where each valid pixel has a 

class label assigned. This mapping was performed by the Classify Pixels using Deep 

Learning tool in ArcGIS Pro. 

 

 

3.3. RESULTS AND DISCUSSION 

 

3.3.1 Permeable areas mapping 

 

The trained models, through the dataset of permeable areas, obtained the 

following metrics (Table 3.1). These metrics showed that the U-net model with batchsize 

8 presented the best Precision with 95.29%, and there were similar F1 Scores were 

obtained by the U-net (batchsize 8) model and the model PSPNet, with 92.71% and 
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92.72%, respectively. The model with the worst Precision was U-net (batchsize 2) with 

65.26% and DeepLabV3 had the best Recall 97.10%.  

 

  MEASURE 

MODELS Precision Recall F1 Score 

U-net (batchsize 2) 65.26 74.79 69.70 

U-net (batchsize 4) 79.64 89.05 84.08 

U-net (batchsize 8) 95.29 90.26 92.71 

PSPNet 92.21 93.24 92.72 

DeepLabV3 80.88 97.10 88.26 

Table 3.1: Permeable areas training metrics 

 

After classifying the permeable areas in the test areas, we obtained the 

following details in Figure 3.3. The classification performed by the U-net model 

(batchsize 2) presents many omissions of permeable areas. In Quadrant B3 and C3, it is 

shown that the U-net (batchsize 4) and U-net (batchsize 8) models omit areas with 

exposed soil. The classification performed by the DeepLabV3 model includes 

impermeable areas that can be visualized in all details. In Quadrant A2, B2, C2, D2, and 

E2 there is an error of classification in relation to the tank with algae.    

The U-net (batchsize 8) and PSPNet models have only a few differences 

in classifications that can be observed in quadrants C1, D1, C3, and D3. The U-net 

(batchsize 8) omitted areas with exposed soil, while the PSPnet omitted areas with grass. 

Regarding small trees, all models omitted them equal to urban forest classification.  
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Figure 3.3: Details of classifications of permeable areas in the test area. 

 

The classification details serve as a basis for the confirmation presented in 

Table 3.2, where the confusion matrix metrics generated through the classifications of 

each model are presented. 

  MEASURE 

MODELS Sensitivity Specificity Accuracy F1 Score 

U-net (batchsize 2) 88.52 80.56 86.80 91.32 

U-net (batchsize 4) 88.78 75.00 85.80 90.74 

U-net (batchsize 8) 90.82 99.07 92.60 95.06 

PSPNet 91.07 95.37 92.00 94.69 

DeepLabV3 97.19 87.04 95.00 96.82 

Table 3.2: Metrics of classification of permeable areas in the test area 
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Analyzing the generated metrics, the model that presented the best F1 

Score was DeepLabV3; however, its specificity was much lower, indicating that the 

model did not correctly classify the negatives. We proceed to the U-net model (batchsize 

8) that obtained the second best metric with an F1Score of 95.06%, followed by the 

PSPNet model with 94.69%, analyzing the classification and metrics of these two models, 

it is remarkable that the classification generated by the PSPNet model obtained better 

identification of areas with exposed soil. 

Therefore, the PSPNet model obtained the best performance in the 

classification and better extraction of information about permeable areas, which was 

selected to carry out the mapping of permeable areas. The mapping found an area of 

13.4104 km², which occupies a total of 41.95% of the catchment (Figure 3.4).  

 

 
Figure 3.4: Map of the permeable areas in the Prosa catchement with Deep Learning model 

Source: Prepared by the Author 
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3.3.2 Urban Forests mapping 

 

Through the training metrics (Table 3.3), it is possible to verify that the 

PSPNet model obtained the best Precision with 95.47%, but presented the worst Recall 

and F1 Score. Then, we have the U-net model with batchsize 8, which has the second-

best Precision and the best F1Score with 87.87%. 

 

  MEASURE 

MODELS Precision Recall F1 Score 

U-net (batchsize 2) 88.67 84.22 86.39 

U-net (batchsize 4) 87.16 86.47 86.82 

U-net (batchsize 8) 89.70 86.10 87.87 

PSPNet 95.47 49.37 65.09 

DeepLabV3 94.29 72.32 81.77 

Table 3.3: Urban forest training metrics 

 

After classifying the urban forests in the test areas, we obtained the 

following details in Figure 3.5. Quadrants D1 and D3 show that the PSPNet model 

omitted the classification of pixels that characterize the tree class, and the same occurs in 

the classification performed by the DeepLabV3 model in quadrants E1, E2 and E3. In 

quadrant D2, there is an error similar to what occurred in the classification permeable 

areas in relation to the tank with algae. These observations characterize that these models 

did not present the expected performance for tree classification. However, the 

classifications performed by the U-net model with batchsize 2, 4 and 8 showed the best 

behavior with only a few differences that can be observed in quadrants A2, B2 and C2. 

The U-net (batchsize 2) showed misclassification in the area of a tank with algae and the 

U-net (batchsize 4) classified some areas of grass as trees. Another omission found in all 

models was in relation to smaller trees; however, the U-net (batchsize 4)  model was able 

to identify some smaller trees. 
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Figure 3.5: Details of classifications of urban forests in the test area 

 

Table 3.4 presents the metrics generated through the confusion matrix 

referring to the classifications performed in the test areas. 

 

  MEASURE 

MODELS Sensitivity Specificity Accuracy F1 Score 

U-net (batchsize 2) 89.80 94.90 92.40 92.05 

U-net (batchsize 4) 91.43 94.12 92.80 92.56 

U-net (batchsize 8) 88.57 94.51 91.60 91.18 

PSPNet 62.04 98.04 80.40 75.62 

DeepLabV3 78.78 97.25 88.20 86.74 

Table 3.4: Metrics of classification of the urban forest in the test area 
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The model that obtained the worst metrics was the PSPN that presented an 

F1 Score of 75.62%, while the U-net with batchsize 4 obtained the best F1 Score with 

92.56%. U-net with batchsize 8 obtained a similar classification in the details to batchsize 

4, but with lower accuracy and F1 Score. Therefore, the model that obtained the best 

behavior in all metrics was the U-net with batchsize 4, so this model was selected for the 

classification of the urban forest in the catchment (Figure 3.6).  

 

 

Figure 3.6: Map of the urban forests in the Prosa catchment with Deep Learning model. 

Source: Prepared by the Author 
 

The mapping found an area of 7.0572 km², which occupies a total of 

22.07% of the catchment.  According to the Campo Grande Urban Drainage Master Plan 

(CAMPO GRANDE, 2008) the Prosa catchment has 21% of vegetation cover, while in 

this study, it was found, for May 2020, a percentage of 22.07% of arboreal vegetation. 
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The two models selected for mapping urban forests and permeable areas 

were effective and provided good results. In the article by Martins et al. (2021), the 

authors compared several models for segmenting trees in the urban context in images with 

a pixel size of 10 centimeters and similar results were obtained with the FCN, SegNet, U-

net and DeepLabv3+ models. In our work, when considering images with a 50 cm pixel, 

U-net proved to be more consistent in arboreal mapping. 

U-net and its variants have been shown to be quite accurate in remote 

sensing applications (WANG et al., 2022, TORRES et al., 2021, MCGLINCHY et al., 

2019). And in the present work it was also more consistent when compared to the other 

networks to perform the two tasks (tree segmentation and permeable areas). 

In the study carried out by Martins et al. (2021), where five CNNs were 

evaluated for the semantic segmentation of urban forests using airborne high spatial 

resolution RGB images, similar errors to this study occurred. Most of the problems faced 

by deep networks were related to shadow areas, small trees and isolated, and areas of 

grass and shrubs within the images. Regarding the small isolated trees, all the CNNs 

tended to classify them wrongly and even ignore them, this is because they are in the 

same patch as large groups of trees. Concerning the grasses, the CNNs can interpret them 

as a continuation of the patches of trees and classify them as trees. This also happens for 

the tank with algae, creating false positives. 

However, to achieve better accuracy in any deep learning model, a large 

number of true, high-quality terrain samples are required for training data, and this 

generation is extremely labor-intensive for urban environments. As a solution, some 

studies included traditional methods to support DL methods, using it before training, as 

pre-processing or as a post-processing method (NEUPANE et al., 2021). In the study 

developed by Mutreja et al. (2020) a supervised classification is performed with the 
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Support Vector Machine (SVM), and the generated dataset, after manual cleaning, is used 

for training the model in Deep Learning. This process aimed to increase training and 

precision data. 

Another way to improve the samples is in relation to the images used for 

the classification of urban areas. The spatial resolution is considered more important than 

the spectral resolution because, with the increase of the spatial resolution, more urban 

objects are clearly visible. Another option is to use higher resolution RGB image datasets 

and use different types of datasets together, such as RGB and LiDAR (NEUPANE et al., 

2021, MARTINS et al., 2021). These are solutions designed to eliminate omissions from 

mapping small and isolated trees and errors with grasses, exposed soil, and the tank with 

algaes. 

 

 

3.4. CONCLUSION 

 

In this work, we evaluated the deep learning algorithms U-net, PSPNet and 

DeepLabV3 for mapping urban forests and permeable areas. The U-net model with 

batchsize 4 presented the best F1 Score with 92.56% and, therefore, was selected to 

perform the classification of urban forests. Meanwhile, the PSPNet model with F1 Score 

94.69% was selected for mapping permeable areas. 

The classification performed with the U-net model obtained a good result. 

Areas that characterized trees were correctly classified, except for small and isolated 

trees, which were omitted. However, there was no confusion of similar textures and colors 

between tree and grass or tree and tank with alges, as well as very few concreted areas 

were identified. 
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For the classification of permeable areas, the PSPNet model also 

performed well. It correctly classified the trees, grasses and exposed soil, and there was 

very little confusion between roofs and exposed soil. It obtained some wrong 

classifications in relation to tank areas that present texture and coloration similar to 

vegetation, as well as omitted small and isolated trees. 

The deep learning tools available in ArcGIS Pro software provide an 

enriching experience for users who do not master programming environments. However, 

like any system that generates Deep Learning models, it needs GPU-based computing and 

a large volume of storage. In this work, the training of the models took an average of 15 

hours, but the time to perform the tests was relatively faster. 

It is suggested for future works: a) to increase the efficiency in the creation 

of the training dataset, using in other ways not only manually; b) improve training 

parameters, with an increase in the number of epochs, test other backbones and models; 

c) evaluate the capacity of models trained in different regions, combining multitemporal 

and spatial training. 

The results indicate that the selected models are efficient for the mapping 

of urban forests and permeable areas, presenting a good performance to classify 

environments of high heterogeneity and complexity. Once trained and with satisfactory 

results, the models can be applied in mapping tasks in other urban areas using similar 

high-resolution data sets, facilitating the monitoring of urban changes and favoring 

sustainable planning. 
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FINAL CONSIDERATIONS 

 

 

The study carried out is valid, not only for meeting all the objectives initially 

proposed for each chapter, but also for opening several possibilities for new studies 

involving the mapping of permeable areas, generating important information for the 

planning and management of sustainable cities. 

The satellite images used, Google Earth Pro, favored this work, as they allow a 

large-scale application, involve easy acquisition and zero investment and have updated 

images in the urban context. 

The use of Google Earth Pro images submitted to classifications with the 

Random Forest algorithm and with the deep learning methods U-net and PSPNet obtained 

a high precision, with an F1-score greater than 90% for the mapping of permeable areas, 

indicating a excellent tool for mapping green areas in highly complex environments, 

which can be applied on a large scale and monitoring urban changes. 

The machine learning and deep learning tools available in ArcGIS Pro software 

provided an enriching experience for this work, as it does not require a high level of user 

knowledge in programming and presents a didactic and easy-to-use tool. However, as 

with any system that generates Deep Learning models, it needs GPU-based computing 

and a large amount of storage. 

This study confirms that deep learning models for remote sensing data will 

continue to grow, given that the results can always be improved, as well as the 

methodology can be applied to different regions. 
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