

UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL - UFMS *Campus* de CAMPO GRANDE PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA VEGETAL MESTRADO

VANESSA DE OLIVEIRA TORRES

Variações morfológicas, químicas e genéticas de Stereocaulon alpinum Laurer (Stereocaulaceae) e seus fotobiontes da região sul da América do Sul e Antártica Marítima

> Campo Grande - MS AGOSTO - 2021

VANESSA DE OLIVEIRA TORRES

Variações morfológicas, químicas e genéticas de Stereocaulon alpinum Laurer (Stereocaulaceae) e seus fotobiontes da região sul da América do Sul e Antártica Marítima

Dissertação apresentada ao Programa de Pós-Graduação em Biologia Vegetal (PPGBV) da Universidade Federal de Mato Grosso do Sul, como requisito para a obtenção do grau de Mestre em Biologia Vegetal.

Orientadora: Dra. Aline Pedroso Lorenz

Campo Grande - MS AGOSTO - 2021

Ficha Catalográfica

Torres, Vanessa Oliveira

Variações morfológicas, químicas e genéticas de *Stereocaulon alpinum* Laurer (*Stereocaulaceae*) e seus fotobiontes da região sul da América do Sul e Antártica Marítima. 64p.

Dissertação - Instituto de Biociências da Universidade Federal de Mato

Grosso do Sul.

1. Fungos liquenizados, 2. Bipolar, 3. Abordagem integrativa 4. Fotobionte

Universidade Federal de Mato Grosso do Sul Instituto de Biociências

Comissão Julgadora

Prof.^a Dr.^a Gecele Matos Paggi

Dr.ª Priscila C. da Costa

Dr. Wellington S. Fava Prof. Dr. Marcos Kitaura

Prof.^a Dr.^a Aline Pedroso Lorenz Orientadora

14 15

Agradecimentos

Queria agradecer à CAPES primeiramente, pelo apoio financeiro e por ter me dado essa 16 oportunidade de fazer mestrado na área que eu gosto. Também ao MCTI e CNPq por terem 17 18 financiado a PROANTAR (Programa Antártico Brasileiro), sem eles eu não conseguiria as coletas da espécie estudada. À UFMS (Universidade Federal de Mato Grosso do Sul), pelo 19 20 suporte nos laboratórios para atender a todas as minhas experiências durante o mestrado. Ao meu laboratório de coração, o LEBio (Laboratório de Ecologia e Biologia Evolutiva), que 21 22 além de conter equipamentos de ótima funcionalização há pessoas incríveis que me fizeram 23 ter um mestrado mais leve, cheio de ensinamentos e risadas entre um experimento e outro. 24 Um agradecimento em especial para a minha orientadora Dra. Aline Pedroso Lorenz, que me acompanha desde a graduação, e anos e anos se passam e ela sempre tem algo novo a me 25 ensinar. Sem ela indiscutivelmente, eu não teria conseguido chegar aqui. Aos meus colegas 26 do LEBio, M.Sc. Mayara Zanella, a Biológa Paola Gomes, ao Dr. Marcos Kitaura (que 27 deixou saudade no LEBio), à Dra. Priscila Costa (bióloga feminista que admiro) e a nossa 28 querida técnica Josiane Theodoro. Tenho algumas palavras especiais para: M.Sc Jean Torres 29 30 pelo aprendizado no quesito taxonomia, no qual sempre me ajudou e se esteve presente ao longo do meu mestrado, retirando todas as dúvidas quando solicitadas, sendo um profissional 31 32 excelente e companheiro de liquens, à M.Sc Andressa Rodrigues que além de companheira de profissão e de laboratório se mostrou ser muito mais que isso. Uma amiga que me ajudou 33 muito a chegar onde estou e que a admiração por ela como cientista só aumenta! Obrigada 34 Andressa, pelas risadas e ensinamentos, foram fundamentais esse ano. E ao Dr. Wellington 35 Fava, que esteve do meu lado já em vários momentos, e além de amigo é um companheiro 36 essencial dentro da academia. Ele já vem me acompanhando há anos, e sempre está disposto 37 pra tudo que "der e vier". Agora, a minha família! Aos meus pais, Marcos Garcia Torres e 38 Claudia Helena de Oliveira, dedico este trabalho, pois nada faria sem a ajuda deles. Me 39 apoiam em tudo que faço e me ajudam em tudo que podem. Aliás, obrigada mãe! Por ter 40 41 criado filhas com o objetivo de estudarem e serem independentes... te devo o mundo. Às minhas irmãs, Rebecca de Oliveira Torres e Jéssica de Oliveira Torres, por terem morado 42 43 comigo por oito anos e sentido todas as fases de uma mulher na pós graduação. Vocês são minha base! E é claro, a minha sobrinha, Fernanda Torres, que me orgulho muito e sempre 44 45 irei incentivar em tudo que quiser ser. 46

48	SUMÁRIO	
49	Resumo Geral	6
50	Abstract	7
51	Introdução geral	8
52	Objetivos	10
53	Referências	11
54	Artigo	14
55	1. Introdução	16
56	2. Material e métodos	
57	3. Resultados	22
58	4. Discussão	
59	5. Conclusão	
60	Referências	
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		

81 Resumo Geral

Os liquens são resultantes da associação simbiótica entre fungos e fotobiontes (algas verdes 82 e/ou cianobactérias), ocorrendo em habitats diversos e presentes também em ambientes 83 extremos, estando entre os principais componentes da vegetação polares e alpinas. Dentre as 84 150 espécies bipolares conhecidas, Stereocaulon alpinum, é muito utilizada em estudos 85 importantes para biotecnologia, como por exemplo em estudos de bioprospecção de 86 compostos químicos por apresentar diversas propriedades bioativas, tais como antimicrobiano, 87 antimitótico, citotóxico, enzimas inibitórias, toxicológicas e imunomoduladoras. A espécie foi 88 inicialmente reportada como polifilética e não bipolar. Neste estudo utilizamos uma 89 abordagem integrativa, incluindo dados morfológicos, anatômicos, químicos e genéticos de 90 espécimes de S. alpinum coletados em ambos os hemisférios (norte e sul). Um total de 35 91 espécimes da espécie foram analisados e para as análises filogenéticas foram utilizadas 92 sequências de DNA do micobionte (ITS e β-tubulina) e dos fotobiontes, alga verde (gene da 93 actina) e cianobactérias (gene 16S), respectivamente. Dos espécimes analisados, geramos um 94 total de 67 sequências. Sua morfologia possui discreta variações dentro da espécie na altura e 95 disposição dos pseudopodécios, estágios-cor dos cefalódios, forma dos filocládios e espessura 96 97 do tomento, porém nenhuma que diversifique geneticamente, sendo assim uma espécie com alta plasticidade fenotípica. Neste estudo a química de S. alpinum, comprovou-se ser diversa 98 sem padrões filogenéticos e geográficos. Os fotobiontes (alga verde e cianobactéria) foram 99 Asterocholoris sp. e Nostoc sp. respectivamente, reforçando a associação desses gêneros para 100 101 a espécie S. alpinum. Diante disso, o estudo revelou que a espécie S. alpinum é uma espécie monofilética e bipolar. 102

104 Abstract

105 Lichens result from the symbiotic association between fungi and photobionts (green algae and/or cyanobacteria), occurring in diverse habitats, including extreme environments, 106 potentiated among the main components of polar and alpine vegetation. Stereocaulon alpinum 107 is widely used in biotechnological studies that bioprospect compounds, such as antimicrobial, 108 antimitotic, cytotoxic, inhibitory, toxicological and immunomodulatory enzymes. The species 109 was billed as polyphyletic and not bipolar. This study uses an integrative approach, including 110 morphological, anatomical, chemical, and genetic data of S. alpinum specimens collected in 111 both hemispheres (northern and southern). A total of 35 specimens of the species were 112 113 fulfilled, and for the phylogenetic analyses, the DNA sequences of the mycobiont (ITS and β tubulin) and photobionts, green algae (actin gene), and cyanobacteria (16S gene) were used, 114 respectively. From the completed copies, we generated a total of 67 sequences. Its 115 morphology has slight variations within the species in the height and disposition of 116 pseudopods, color stages of cephalodia, the shape of phyllocladia, and thickness of tomentum, 117 but none that genetically diversifies, making it a species with high phenotypic plasticity. In 118 this study, the chemistry of S. alpinum proved to be diverse without phylogenetic and 119 120 geographic patterns. The photobionts (green algae and cyanobacteria) were Asterocholoris sp. and Nostoc sp. respectively, reinforcing the association of these genera with S. alpinum. 121 122 Therefore, the study revealed that an S. *alpinum* type is a monophyletic and bipolar species. 123

124 Introdução Geral

125 Liquens

Um líquen é um ecossistema autossustentável formado pela interação de um fungo 126 127 juntamente com um arranjo extracelular de um ou mais parceiros fotossintéticos e ainda um número indeterminado de outros organismos microscópicos (Hawksworth e Grube 2020). 128 Nessa associação simbiótica, há os fotobiontes, nos quais são parceiros fotossintéticos, que 129 consistem em uma alga verde e/ou cianobactéria (Lutzoni, 2009). Aproximadamente 100 130 espécies dentro de 40 gêneros dos fotobiontes (algas verdes e cianobactérias) foram relatadas 131 para mais de 20.000 espécies de micobiontes (Kirk, Cannon, Minter, & Stalpers, 2008). Os 132 gêneros mais comuns de fotobiontes em liquens são Trebouxia e Trentepohlia para Algas 133 Verdes e *Nostoc* para cianobactéria (Lutzoni, 2009). Outro gênero de alga verde comum 134 encontrado em liquens é o Asterochloris, porém ele é restrito a certos gêneros de liquens, 135 sendo os melhores amostrados e estudados associados aos gêneros Cladonia, Lepraria e 136 Stereocaulon (Kosecka et al. 2021). Os fotobiontes ficam protegidos da exposição excessiva à 137 radiação solar, dessecação e alterações de temperatura, ao mesmo tempo que fornecem 138 carboidratos e outros nutrientes para o micobionte (Honegger, 2012). 139

140

141 Líquen Bipolar

Os liquens são altamente diversos em habitats tropicais, dominam também paisagens 142 em ambientes extremos, estando entre os principais componentes das vegetações polares e 143 alpinas (Sipman e Aptroot 2001). Dentro dos que compõem as vegetações alpinas, temos os 144 liquens bipolares, podendo ser conhecido por outros termos como anfitropical e antitropical, 145 nome dado para as espécies distribuídas de forma disjunta em ambos os hemisférios e 146 ocorrendo principalmente nos polos. As famílias Lecanoraceae, Verrucariaceae, e 147 Cladoniaceae são as famílias com o maior número de espécies bipolares (Garrido-Benavent et 148 149 al. 2017). Cerca de 150 espécies bipolares são conhecidas e estudadas além de Stereocaulon alpinum, como Cetraria aculeata (Mendoza et al, 2013), Xanthoria elegans (Murtagh et al. 150 2002). 151

152

154 Stereocaulaceae

Stereocaulaceae apresenta cerca de cinco gêneros e 250 espécies. A família já foi
proposta como sinônimo de *Cladoniaceae*, a partir da abordagem filogenética temporal
(Kraichak et al. 2018). Essa abordagem, consiste em encontrar objetivamente o ponto de corte
temporal para classificações de mesmas categorias, preservando o status taxonômico da
maioria dos taxa (Kraichak et al., 2017). Porém em 2019, Lücking descartou a proposta pois
há conflitos nomenclaturais entre as mesmas, além de ter ficado fora da banda temporal
delimitada na separação e ainda ter diferenças morfológicas (Lücking, 2019).

Stereocaulon Hoffm é o gênero mais diverso da família, representado por cerca de 140
spp (Lücking et al. 2017). É considerado um gênero cosmopolita (Park et al. 2018), no qual
inclui um grande número de espécies morfologicamente variáveis o que podem explica
antecipadamente os problemas de monofilia . Além disso, há variações mínimas entre as
espécies tendo formas intermediárias existentes causando dificuldades com limites de espécies
em muitos casos (Hognnaba ,2006).

168 Marcadores moleculares do micobionte e fotobionte

169 Duas regiões foram utilizadas para as análises do organismo micobionte, a técnica de 170 *DNA Barcoding*, tendo como marcador universal de fungos, incluindo os liquenizados, a 171 região dos espaçadores intergênicos ITS1 e ITS2, denominados de Espaçadores Internos 172 Transcritos do DNA Ribossomal Nuclear (ITS) (Hebert et al. 2003; Schoch et al. 2012) e o 173 loci β -tubulina. O DNA barcoding, consiste em uma sequência curta padronizada de DNA 174 entre 400 e 800 bp de comprimento que, em teoria, pode ser facilmente isolada e caracterizada 175 para todas as espécies em o planeta (Kress et al. 2012).

176 A região do espacador transcrito interno (ITS) inclui duas regiões não codificantes variáveis que estão aninhados na repetição de rDNA entre a subunidade pequena altamente 177 178 conservada (5.8S), e os genes de rRNA de subunidade grande. Há várias características que o tornam uma região-alvo conveniente para a identificação molecular de fungos, como por 179 exemplo, nos fungos toda a região ITS está frequentemente entre 600 e 800 pb e pode ser 180 facilmente amplificada com "primers universais" que são complementares as sequencias 181 182 dentro dos genes de rRNA, o que o faz um bom DNA barcoding dos fungos (Gardes e Bruns 1993). 183

A *B-tubulina* utilizada também para o micobionte, é uma proteína que desde (1999)
vem sendo estudada para resolver relações de ordem superior entre os fungos. A proteína *B-tubulina*, é uma proteína altamente conservada (Keeling e Doolittle 1996), porém as posições
do terceiro códon e íntrons são variáveis e o gene também se mostrou útil no interespecífico e
até mesmo no nível infraespecífico na taxonomia de fungos (Hognabba 2006, 2014).

Para algas verdes utilizamos o loci Actina tipo I para a análise dos dados. Esta região
foi amplificada utilizando os primers ActinF2 Astero-5' e ActinR2 Astero-3' (Skaloud e Peksa
2010). A região 16S do DNA ribossomal foi amplificada para as cianobactérias, utilizando os
primes fD1 e revAL (Weber e Kabsch 1994).

193 Por fim, liquens representa uma importância ecológica com o biomonitoramento da qualidade do ar devido a sua alta sensibilidade e rápida respostas a alterações ou mudanças 194 climáticas (Nash 2008; Ellis 2019; Koch et al. 2016), além de ter diversas propriedades 195 bioativas, tais como antimicrobiano, antimitótico, citotóxico, enzimas inibitórias, 196 toxicológicas e imunomoduladoras (Kim et al. 2018), como o caso da espécie Stereocaulon 197 alpinum. Estudos sugerem que a espécie não seja bipolar, de acordo com um artigo publicado 198 em 2006 por Högnabba, no qual espécies do hemisfério sul e norte se encontraram em clados 199 separados (Högnabba 2006). 200

Com isso, utilizaremos a abordagem integrativa, incluindo dados morfológicos,
anatômicos, químicos e genéticos de espécimes de *Stereocaulon alpinum*, coletados na
América do Sul e Antártica. Incluímos também no conjunto de dados um espécime coletado
no hemisfério norte (Finlândia) para que as comparações da bipolaridade sejam confirmadas.
Além disso, também geramos dados genéticos dos dois tipos de fotobiontes (algas verdes e
cianobactérias) encontrados na espécie para verificar a identidade e variabilidade genética
desses fotobiontes presentes nos espécimes estudados.

208 Objetivo Geral

209 Compreender a distribuição do fungo liquenizado *Stereocaulon alpinum* por meio de
 210 análises genéticas, morfológicas e químicas.

211 **Objetivos específicos**

212 - Confirmar, por meio de análises morfológicas e genéticas, quais são os principais

213 fotobiontes associados a *S. alpinum*;

- Avaliar a distribuição da variabilidade genética das populações de *S. alpinum* no extremo sul

da América do Sul e na Antártica marítima, contribuindo para o conhecimento das conexões
florísticas entre estas duas áreas.

217

218 **Referências**

Ellis CJ (2019) Climate change, bioclimatic models and the risk to lichen diversity. Diversity
11(4): 1–23.

Fernández-Mendoza, Fernando, Christian P (2013) Pleistocene expansion of the bipolar lichen
 C etraria aculeata into the S outhern hemisphere. Molecular Ecology (22): 1961–1983.

- Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetesapplication to the identification of mycorrhizae and rusts. Molecular Ecology (2): 113–118.
- Garrido-Benavent I, Pérez-Ortega S, De los Ríos A (2017) From Alaska to Antarctica: species
 boundaries and genetic diversity of *Prasiola* (Trebouxiophyceae), a foliose chlorophyte
 associated with the bipolar lichen-forming fungus *Mastodia tessellata*. Molecular
 Phylogenetics and Evolution (107): 117–131.
- Hawksworth DL, Grube M (2020) Lichens redefined as complex ecosystems. The New
 Phytologist 227(5): 1–3.
- Hebert PD, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA
 barcodes. Proceedings of the Royal Society of London 270(1512): 313–321.
- Högnabba F (2006) Molecular phylogeny of the genus *Stereocaulon* (Stereocaulaceae,
 lichenized ascomycetes). Mycological Research 110(9): 1080–1092.
- Högnabba F, Pino-Bodas R, Nordin A, Myllys L, Stenroos S (2014) Phylogenetic position of
 the crustose Stereocaulon species. The Lichenologist 46(1): 103–114.
- 237 Kim TK, Kim JE, Youn UJ, Han SJ, Kim IC, Cho CG, Yim JH (2018) Total Syntheses of
- Lobaric Acid and Its Derivatives from the Antarctic Lichen *Stereocaulon alpinum*. Journal
 of natural products 81(6): 1460–1467.

- Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby's dictionary of the
 fungi. 10th Edition, Wallingford, UK: CABI.
- 242 Koch NM, Branquinho C, Matos P, Pinho P, Lucheta F, Martins SM, Vargas VM (2016) The

application of lichens as ecological surrogates of air pollution in the subtropics: a case study

- in South Brazil. Environmental Science and Pollution Research 23(20): 20819–20834.
- 245 Kosecka M, Guzow-Krzemińska B, Černajová I. et al. (2021) New lineages of photobionts in
- Bolivian lichens expand our knowledge on habitat preferences and distribution of *Asterochloris* algae. *Sci Rep* (11): 8701.
- Kraichak E, Huang JP, Nelsen M, Leavitt SD, Lumbsch HT (2018) A revised classification of
 orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on
- a temporal approach. Botanical Journal of the Linnean Society 188(3): 233–249.
- Kress WJ, Erickson DL (eds) (2012) DNA barcodes: methods and proto-cols. Methods in
 Molecular Biology, 858, Springer, Berlin, Germany.
- Lücking R (2019) Stop the abuse of time! Strict temporal banding is not the future of rankbased classifications in fungi (including lichens) and other organisms. Critical Reviews in
 Plant Sciences 38(3): 199–253.
- Lücking R, Hodkinson BP, Leavitt SD (2017) The 2016 classification of lichenized fungi in the
 Ascomycota and Basidiomycota–Approaching one thousand genera. The Bryologist 119(4):
 361–416.
- Lutzoni F, Miadlikowska J (2009) Lichens. Current Biology 19(13): R502–R503.
- Nash T (2008). Introduction. In: Nash T. Lichen Biology. 2. Ed. New York: Cambridge
 University Press. cap.01, p.01.
- 262 Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and
- the evolution of the tubulin family. Molecular Biology and Evolution 10(13): 297–1305.
- Park JS, Park CH, Park SY, Jayalal U, Hur JS (2018) Revision of the lichen genus *Stereocaulon*
- 265 (Stereocaulaceae, Ascomycota) in South Korea. Mycobiology (46): 101–113.
- 266 Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA et al (2012) Nuclear
- 267 ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for
- Fungi. Proceedings of the National Academy of Sciences 109(16): 6241–6246.

269 270	Sipman HJ, Aptroot A (2001) Where are the missing lichens? Mycological Research 105(12): 1433–1439.
271	Skaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences
272	reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae,
273	Chlorophyta). Molecular Phylogenetics and Evolution 54(1): 36–46.
274	Urtagh G, Dyer P, Furneaux P, Crittenden P (2002). Molecular and physiological diversity in
275	the bipolar lichen-forming fungus Xanthoria elegans. Mycological Research, 106(11):
276	1277–1286.
277	Weber K, Kabsch W (1994) Intron positions in actin genes seem unrelated to the secondary
278	structure of the protein. The EMBO Journal 13(6): 1280-1286
279	
280	
281	
282	
283	
284	
285	
286	
287	
288	
289	
290	
291	

292 293 294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	
305	
306	Artigo a ser submetido na revista Polar Biology – Springer
307	Diretrizes de submissao: https://www.springer.com/journal/300/submission-
308	guidelines#Instructions%20for%20Authors_Specific%20remarks%20Text%20Formatt
309	ing
310	ISSN: 0722-4060
311	Fator de impacto: 1.728 (2019)
312	Qualis (CAPES): A2
313	
314 315	
316	
317	
318	
319	
320 321	
320 321 322	
320 321 322 323	
320 321 322 323 324	
320 321 322 323 324 325	
320 321 322 323 324 325 326 327	

329 330

331

Variações morfológicas, químicas e genéticas de *Stereocaulon alpinum* Laurer (*Stereocaulaceae*) e seus fotobiontes da região sul da América do Sul e Antártica Marítima

Vanessa de Oliveira Torres¹, Jean Marc Torres², Aline Gianini³, Neli Kika Honda³, Adriano
 Afonso Spielmann⁴ & Aline Pedroso Lorenz^{5*}

¹Estudante de Mestrado no curso de Biologia Vegetal, Instituto de Biociências, Universidade
Federal de Mato Grosso do Sul, Campo Grande, Brasil; ²Estudante de Doutorado no curso de
Biotecnologia e Biodiversidade, Faculdade de Ciências Farmacêuticas, Alimento e Nutrição,
Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil, ; ³Instituto de Química,
Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil; ⁴Instituto de
Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil; ⁶Instituto de
Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brasil e ⁵Instituto

341

*Autor correspondente: aline.lorenz@ufms.br

Resumo: Os liquens são um talo resultante da associação simbiótica entre fungos e 342 fotobiontes (algas verdes e/ou cianobactérias), ocorrendo em habitats diversos e presentes 343 344 também em ambientes extremos, estando entre os principais componentes da vegetação polares e alpinas. Cerca de 150 espécies bipolares conhecidas, Stereocaulon alpinum, é muito 345 346 utilizada em estudos importantes para biotecnologia e foi inicialmente reportada como uma espécie polifilética e não bipolar. Neste estudo utilizamos uma abordagem integrativa, 347 incluindo dados morfológicos, anatômicos, químicos e genéticos de espécimes de S. alpinum 348 coletados em ambos os hemisférios (norte e sul). Um total de 35 espécimes da espécie foram 349 350 analisados e para as análises filogenéticas foram utilizadas sequências de DNA do micobionte (ITS e β -tubulina) e dos fotobiontes, alga verde (gene da actina) e cianobactérias (gene 16S), 351 352 respectivamente. Dos espécimes analisados, geramos um total de 67 sequências. Sua morfologia possui variações dentro da espécie na altura e disposição dos pseudopodécios, 353 354 estágios-cor dos cefalódios, forma dos filocládios e espessura do tomento, porém nenhuma que diversifique geneticamente, sendo assim uma espécie com alta plasticidade fenotípica. 355 356 Neste estudo a química de S. alpinum, comprovou-se ser diversa sem padrões filogenéticos e geográficos. Os fotobiontes (alga verde e cianobactéria) foram Asterocholoris sp. e Nostoc sp. 357 respectivamente, reforçando a associação desses gêneros para a espécie S. alpinum. Diante 358 disso, o estudo revelou que a espécie S. alpinum é uma espécie monofilética e bipolar. 359 Palavras chaves: Bipolar, Filogenia, Fungos liquenizados, Simbiose e Taxonomia 360

361 **1. Introdução**

A associação simbiótica entre fungos e fotobiontes (algas verdes e/ou cianobactérias), 362 363 além de outros microrganismos, formam estruturas conhecidas como liquens (Hawksworth e Grube 2020). E são utilizados em amplos estudos de biomonitoramento da qualidade do ar 364 devido a sua alta sensibilidade e rápida respostas a alterações ou mudanças climáticas (Nash 365 2008; Ellis 2019; Koch et al. 2016). Os liquens são altamente diversos em habitats tropicais, 366 dominam também paisagens em ambientes extremos, estando entre os principais componentes 367 das vegetações polares e alpinas (Sipman e Aptroot 2001). Espécies que prosperam nestas 368 regiões são submetidas a condições extremas de dessecação, temperatura e irradiação (Lutzoni 369 e Miadliknowska 2009). Um grupo especialmente reconhecido dentro das espécies que vivem 370 371 em regiões polares são os liquens bipolares. Estes são representados como espécies tendo distribuição geográfica em ambos os hemisférios de forma disjunta (Garrido-Benavent et al. 372 2017). A explicação nesse padrão de distribuição engloba três principais modelos para a 373 evolução da bipolaridade dessas espécies: por vicariância, "stepping stone" ou "mountain 374 hopping" e dispersão direta (Garrido-Benavent et al. 2017). 375

Entre ca. 150 espécies bipolares conhecidas, Stereocaulon alpinum Laurer é uma 376 espécie muito utilizada em estudos de bioprospecção de compostos químicos por apresentar 377 diversas propriedades bioativas, tais como antimicrobiano, antimitótico, citotóxico, enzimas 378 inibitórias, toxicológicas e imunomoduladoras (Kim et al. 2018). A espécie tem distribuição nas 379 regiões árticas e alpinas do Hemisfério Norte, além da Antártica (Coxson e Marsh 2001, 380 Øvstedal e Smith 2001). Dados filogenéticos têm apontado a existência de duas linhagens 381 distintas em S. alpinum, sendo um clado formado por sequências do hemisfério norte e outro 382 do hemisfério sul, levantando a hipótese de que na verdade S. alpinum não seria uma espécie 383 384 bipolar (Högnabba 2006).

Entre os fungos liquenizados, Stereocaulaceae não é considerada uma família com alta 385 386 diversidade e é constituída de cinco gêneros e cerca de 250 espécies. Stereocaulon Hoffm. é o gênero mais diverso, com ca. 140 spp. (Lücking et al. 2017). A partir da abordagem filogenética 387 temporal, Stereocaulaceae foi proposta como sinônimo de Cladoniaceae (Kraichak et al. 2018). 388 Todavia, mesmo havendo a existência de características morfológica e ecológica 389 390 compartilhadas entre as duas famílias, também existem conflitos nomenclaturais entre as mesmas, já que Stereocaulaceae foi proposta anteriormente a Cladoniaceae, além disso, pela 391 392 separação dessas famílias ter ficado fora da banda temporal delimitada, a sugestão de manter *Stereocaulaceae* e *Cladoniaceae* como famílias distintas foi proposta a ser mantida (Lücking
2019).

Os representantes de Stereocaulaceae são na grande maioria dos casos, caracterizados 395 pela presença de talo dimórfico, cujo talo primário corresponde ao hábito de crescimento 396 crostoso e o talo secundário, fruticoso (Högnabba 2006). Enquanto os demais hábitos 397 encontrados na família são esquamuloso, crostoso e leprarioide (Lücking 2019). Em 398 399 Stereocaulon com talos dimórficos são constituídos de grânulos basais ou espículas (filocládios) 400 presentes no talo primário, sendo estes ligados ao substrato (Lamb 1951). Na maioria das 401 espécies, o talo primário desaparece logo no início do desenvolvimento, originando a partir dele o talo secundário através do alongamento do tecido talino, formando o pseudopodécio, estrutura 402 que sustenta filocládios, apotécios e na maioria das espécies cefalódios, cujas estruturas 403 apresentam grande valor taxonômico para a distinção de espécies (Lamb 1951). 404

Em Stereocaulon dois tipos de fotobiontes são encontrados, sendo eles algas verdes 405 (geralmente dos gêneros Asterochloris Tschermak-Woess e Chloroidium Nadson) e 406 cianobactérias (normalmente Nostoc Vaucher ex Bornet & Flahault ou Stigonema C.Agardh ex 407 Bornet & Flahault), os últimos sendo encontrados em estruturas do talo denominadas cefalódios 408 409 (Huss-Danell 1979; Vančurová et al. 2018). Estudos recentes baseados na filogenia de 410 cianobactérias associadas ao gênero Stereocaulon apontam que Stigonema apresenta baixa 411 diversidade genética mesmo entre populações distantes geograficamente, sugerindo assim que exista uma alta dispersão do micobionte juntamente com a cianobactéria (Lavoie et al. 2020). 412 413 Além dos cefalódios, Stereocaulon alpinum também apresenta pseudopodécios que geralmente contém um ramo principal distinto cinza, com tomento grosso cinza pálido (Øvstedal e Smith 414 415 2001). Curiosamente, nos espécimes de Stereocaulon alpinum que ocorrem na Antártica não há relato de desenvolvimento de apotécios. Porém fora da Antártica, na América do Norte, foi 416 reportado apotécios desde 1858 (Fries 1858; Johnson 1938; Thomson 1984). Entre os diversos 417 418 compostos químicos encontrados em Stereocaulon, para a espécie S. alpinum são descritos a presença de atranorina e ácido lobárico (Lindsay 1974) podendo, em alguns espécimes haver 419 ausência de ácido lobárico (Øvstedal e Smith 2001). Devido à sua ampla distribuição 420 geográfica, considera-se que esta espécie possua extensa amplitude ecológica (Colesie et al. 421 2018). Sendo essa distribuição do gênero explicada principalmente por condições climáticas, 422 variáveis de habitat ou substrato e parceiros simbióticos (Vančurová et al. 2018). 423

A identificação de espécies de *Stereocaulon* não é uma tarefa fácil, pois a alta
plasticidade fenotípica e adaptabilidade encontrada em algumas espécies do gênero causam
frequentemente confusões taxonômicas, gerando por muitas vezes identificações errôneas

quando essas são feitas baseadas apenas em caracteres morfológicos (Ismed et al. 2018). Diante 427 da dificuldade em identificar espécies com variações morfológicas e químicas intraespecíficas, 428 técnicas de delimitações de espécies são fundamentais para estudos ecológicos e de 429 conservação, avaliações de diversidade e identificação de fatores que impulsionam a 430 diversificação (Lumbsch e Leavitt 2011). Nesse sentido, a abordagem integrativa, técnica 431 amplamente utilizada em estudos com liquens para a identificação de espécies, utiliza diferentes 432 433 conjuntos de dados, tais como morfológicos, químicos e genéticos para encontrar resultados 434 mais robustos, e que reflitam de forma mais aproximada possível a história evolutiva dos organismos (Fujia et al. 2012; Alors et al. 2016). Baseado nessa abordagem integrativa, estudos 435 para a identificação molecular das espécies de fungos liquenizados utilizam a técnica de DNA 436 Barcoding, tendo como marcador universal de fungos, incluindo os liquenizados, a região dos 437 espaçadores intergênicos ITS1 e ITS2, denominados de Espaçadores Internos Transcritos do 438 DNA Ribossomal Nuclear (ITS) (Hebert et al. 2003; Schoch et al. 2012). 439

Portanto, tendo em vista que os liquens são componentes predominantes e importantes 440 da flora no ecossistema terrestre da Antártica, nosso objetivo foi verificar se a espécie de 441 Stereocaulon alpinum apresenta distribuição geográfica bipolar, buscando assim esclarecer os 442 443 levantamentos apontados por Högnabba (2006) da existência de duas linhagens distintas da 444 espécie. Assim, para o desenvolvimento das análises utilizaremos a abordagem integrativa, 445 incluindo dados morfológicos, anatômicos, químicos e genéticos de espécimes de Stereocaulon alpinum coletados na região sul da América do Sul e Antártica. Incluímos também no conjunto 446 447 de dados um espécime coletado no hemisfério norte (Finlândia) para que as comparações da bipolaridade sejam confirmadas. Além disso, também geramos dados genéticos dos dois tipos 448 449 de fotobiontes (algas verdes e cianobactérias) encontrados na espécie para verificar a identidade e variabilidade genética desses fotobiontes presentes nos espécimes estudados. 450

451

2. Materiais e Métodos

452 Coleta das amostras

453 Os espécimes de *Stereocaulon alpinum* analisados no estudo foram coletados durante 454 três expedições brasileiras (verões Antárticos entre 2014 e 2017) na Argentina (Parque Nacional 455 Tierra del Fuego, projeto número 105-CPA-2016), Ilhas Shetland do Sul e Costa Danco na 456 península Antártica. Todos os espécimes foram depositados no herbário CGMS da 457 Universidade Federal de Mato Grosso do Sul. Também analisamos o espécime coletado por 458 Sparrius 9266 proveniente da Finlândia, no hemisfério norte. Mapas de distribuição foram 459 produzidos usando ArcGIS Software 10.1, detalhes das informações são fornecidos na Tabela460 1.

461

Morfologia, anatomia e química

Um total de 35 espécimes de *Stereocaulon alpinum* foram analisados. Para a identificação em nível específico das amostras analisamos características morfológicas, de acordo com o protocolo de Lamb (1977), tais como: tipos de cefalódios, tipo de pseudopodécios e coloração dos mesmos, tipo de substrato (rocha, musgos e solo), forma de desenvolvimento (ereto, prostrado), coloração do tomento, presença ou ausência de sorédios e tipos/tamanhos dos esporos, utilizando para isso estereomicroscópio Olympus SZX7 e microscópio Olympus CX22LED, baseados nas bibliografias especializadas sobre o gênero (Lamb 1951, 1977, 1978).

Além disso, para o processo de identificação específica também realizamos Spot tests, 469 470 utilizando hidróxido de potássio (teste K), hipoclorito de sódio (teste C) e parafenilenodiamina (teste P), seguindo as recomendações de Orange et al. (2010). O protocolo para a descrição da 471 472 espécie foi baseado nas características morfológicas e químicas descritas por Lamb (1977). Já diferenças observadas entre os talos foram incluídas nas descrições, e as imagens foram 473 474 capturadas com uma Canon EOS Rebel T3i acoplada a um estereomicroscópio Olympus SZX7 e um microscópio Olympus CX22LED. Os componentes químicos dos espécimes foram 475 476 identificados através de Cromatografia em Camada Delgada (CCD) seguindo a metodologia de Orange et al. (2010), de microcristalização seguindo Honda & Vilegas (1998). 477

478

Extração de DNA, PCR e Sequenciamento

479 As extrações de DNA foram feitas a partir de 0.015–0.025 g do talo de cada espécime, utilizando o Wizard® Genomic DNA Purification Kit (Promega, Madison, USA), seguindo as 480 481 recomendações do fabricante. As regiões gênicas e espaçadoras foram obtidas pelo processo de amplificação por reação em cadeia da polimerase (PCR). Utilizamos duas regiões para as 482 análises do organismo micobionte: os espaçadores internos transcritos do DNA ribossomal 483 nuclear (ITS) e o loci β-tubulina. A região ITS foi obtida utilizando os primers ITS1F (Gardes 484 e Bruns 1993) e ITS4 (White et al. 1990); enquanto para o *loci* β-tubulina utilizamos os primers 485 Bt3-LM e Bt10-LM (Myllys et al. 2001). Para algas verdes utilizamos o loci Actina tipo I para 486 a análise dos dados. Esta região foi amplificada utilizando os primers ActinF2 Astero-5' e 487 ActinR2 Astero-3' (Skaloud e Peksa 2010). A região 16S do DNA ribossomal foi amplificada 488 489 para as cianobactérias, utilizando os primes fD1 e revAL (Weber e Kabsch 1994).

As reações para PCR da região ITS foram de 25 µL contendo: 5.0 µL de Buffer 490 (Promega 5x), 0.5 µL de cada primer (2mM), 5.0 µL de dNTPs (2mM); 3.0 µL de MgCl2 491 (25mM), 0.2 µL de Taq DNA polimerase (Promega 5U/ µL) e 2.0 µL de DNA gênomico. As 492 condições de amplificação foram: desnaturação inicial a 94°C por 5 min; 30 ciclos de 493 desnaturação a 95°C por 30 s, anelamento a 54,8°C por 30 s, extensão a 72°C por 1 min e 494 extensão final a 72°C por 5 min. Já a reação de PCR para β-tubulina conteve 25 μL, utilizando 495 para isso 10µL de GoTaq® Flexi DNA Polymerase (Promega), 2.0 µL de cada primer; 9.0 µL 496 de H2O ultrapura e 2 µL de DNA gênomico. As condições de amplificação foram: desnaturação 497 inicial a 94°C por 5 min, seguidos de 30 ciclos de desnaturação a 94°C por 30 s, anelamento a 498 52°C por 30 s, extensão a 72°C por 1 min e extensão final a 72°C por 5 min. 499

Para a obtenção das regiões Actina tipo I de algas verdes e 16S rDNA de cianobactérias 500 as reações de PCR contiveram 26 µL com: 0.8 µL H₂O ultrapura; 5.0 µL de Buffer (Promega 501 5X), 5.0 µL de cada primer (2mM), 5.0 µL de dNTPs (2 mM), 0.2 µL de Taq DNA polimerase 502 (Promega 5 U/µL), 3.0 µL de MgCl₂ (25 mM) e 2 µL de DNA genômico. As condições de PCR 503 para amplificação do loci Actina tipo I seguiram: desnaturação inicial a 94°C por 5 min, 504 posteriormente 35 ciclos de desnaturação a 94°C por 1 min, anelamento a 50°C por 1 min, 505 extensão a 72°C por 2 min e extensão final a 72°C por 10 min. Para a obtenção da região 16S 506 as condições foram: desnaturação inicial a 95°C por 5 min, seguidos de 30 ciclos de 507 desnaturação a 94°C por 30 s, anelamento a 58°C por 30 s, extensão a 72°C por 1 min e extensão 508 final a 72°C por 10 min. Todos os processos de amplificações foram realizados no 509 510 termociclador Veriti (Applied Biosystems).

511 Os produtos de PCR foram visualizados em gel de agarose 1% corados com GelRed®. 512 A purificação dos produtos de PCR foi realizada com o Kit de purificação de produtos de PCR 513 em coluna (Ludwig Biotecnologia), seguindo as recomendações do fabricante. O 514 sequenciamento das amostras foi realizado pelo método de Sanger pela empresa Macrogen 515 (Coréia do Sul).

517 Análises Filogenéticas

518 Para verificar a posição filogenética dos micobiontes e fotobiontes presentes nos 519 espécimes morfologicamente identificados como S. alpinum, as sequências produzidas foram 520 comparadas com sequências obtidas no GenBank (Material Suplementar S1). Do micobionte, foram utilizadas 96 sequências de 44 espécies de Stereocaulon, representando os principais 521 clados encontrados no gênero (Högnabba 2006, 2014; Park et al 2018). As análises foram feitas 522 separadamente (ITS e β -tubulina) e com os marcadores concatenados. Sequências de *Cladonia* 523 rangiformis e C. ahtii foram utilizadas como grupos externos. Para as análises das algas e 524 cianobactérias foram utilizadas sequências geradas por estudos de fotobiontes de fungos 525 liquenizados, incluindo de espécies de Stereocaulon, além de sequências que se mostraram 526 527 geneticamente similares nas análises exploratórias com a ferramenta BLAST (Johnson et al. 2008). Informações sobre a fonte (líquen ou vida livre), voucher, origem geográfica e 528 referências das sequências de algas e cianobactérias estão descritas na Tabela Suplementar S2 529 e S3. 530

A leitura das sequências obtidas e a construção dos alinhamentos foram feitas no 531 programa Geneious v9.1.2 (Kearse et al. 2012). Para os alinhamentos, foi usado o plugin 532 MAFFT v7.308 (Katoh et al. 2002) ajustado com o algoritmo G-INS-i, scoring matrix 533 534 1PAM/k=2, e os demais parâmetros ajustados como padrão. Devido ao grande número de indels (eventos de inserção/deleção) encontrados na região ITS, o programa Gblocks 0.97b 535 536 (http://molevol.cmima.csic.es/castresana/Gblocks server.html) foi utilizado para remover os sítios alinhados de maneira ambígua, ajustando-se os parâmentos menos restritivos (Talavera e 537 538 Castresana 2007). Os modelos de substituição nucleotídica foram selecionados usando o Bayesian Information Criterion (BIC) com auxílio do programa jModelTest 2 (Darriba et al. 539 2012). Para a reconstrução das árvores filogenéticas, duas abordagens foram escolhidas: 540 inferência bayesiana e máxima verossimilhança, ambas usando o portal CIPRES 541 (Cyberinfrastructure for Phylogenetic Research; Miller et al. 2010). A análise bayesiana foi 542 feita programa MrBayes 3.1.2 (Huelsenbeck e Ronquist 2001) usando o modelo GTR+I+G. A 543 análise foi feita com duas corridas simultâneas independentes com quatro cadeias de Markov 544 Monte Carlo (MCMC) que convergiram sobre dez milhões de gerações. Uma árvore foi 545 amostrada a cada 10.000 gerações. A convergência foi confirmada através da inspeção da 546 probabilidade log depois da corrida com auxílio do programa Tracer 1.7 (Rambaut et al. 2018). 547 Como burn-in, foram descartadas 25% das primeiras árvores obtidas. As análises de máxima 548 549 verossimilhança foram implementadas com o programa RAxML 8.2.12 (Stamatakis 2014),

assumindo o modelo GTRGAMMA e os demais parâmetros ajustados como padrão. Os valores 550 de suporte foram estimados com 1000 pseudoreplicações de bootstrap. A visualização e a edição 551 foram feitas das árvores resultantes no programa FigTree v1.4.4 552 (http://tree.bio.ed.ac.uk/software/figtree/). Foram considerados fortemente suportados os ramos 553 com probabilidade posterior ≥ 0.95 na inferência bayesiana e bootstrap ≥ 75 na máxima 554 verossimilhança. 555

Adicionalmente, para avaliar os padrões de variação intraespecífica, um alinhamento contendo apenas sequências de ITS dos espécimes morfologicamente identificados como *S. alpinum* foi utilizado para definir haplótipos com o programa DNASP 5.10.1 (Librado e Rozas 2009). Uma rede de haplótipos foi inferida com o programa Network 4.2.0.1 (www.fluxusengineering.com), pelo método de *median-joining* (Bandelt et al. 1999).

561

562 **3. Resultados**

Nos locais de estudos foram coletados 150 espécimes de Stereocaulon, sendo estes 563 identificados previamente (em campo) como Stereocaulon alpinum. Posteriormente, em 564 laboratório, esses espécimes foram triados e identificados baseados em características 565 morfológicas e químicas, seguindo bibliografias especializadas (Lamb 1951, 1977, 1978). Após 566 esta triagem, dos 150 espécimes identificados como S. alpinum, apenas 34 espécimes (ca. 22%) 567 realmente corresponderam a espécie. Os demais 116 espécimes foram identificados como outras 568 espécies do gênero, tais como Stereocaulon glabrum (Müll. Arg.) Vain. e Stereocaulon 569 tomentosum Fr. Além disso, obtivemos um espécime fresco identificado como S. alpinum 570 571 coletado na Finlândia (Sparrius 9266). Este espécime foi importante para a interpretação dos nossos resultados, uma vez que pode ser analisado tanto fenotipicamente como 572 573 morfologicamente, sendo utilizado, portanto, como nossa referência para o hemisfério norte.

Dos 35 espécimes analisados morfologicamente, geramos um total de 67 sequências.
Destas 52 sequencias correspondem ao micobionte, sendo 34 sequencias da região ITS e 17 do *loci* β-tubulina. Entre os fotobiontes, geramos cinco sequências do gene da actina tipo I de algas
verdes e 10 sequências da região 16S de cianobactérias. Estas informações também estão
detalhadas na Tabela 1.

579

581 Inferências filogenéticas

Geramos matrizes de sequências para a construção de árvores filogenéticas do 582 micobionte e dos fotobiontes utilizando as abordagens de Máxima Verossimilhança (ML) e de 583 Inferência Bayesiana (IB). As filogenias dos micobiontes foram construídas a partir de 584 alinhamento de 115 sequências da região ITS (528 pb), do gene β-tubulina (697 pb), e com 585 586 esses marcadores concatenados. As filogenias com os marcadores separados e concatenados, assim as construídas por diferentes métodos de análise (ML e IB) não apresentaram 587 588 incongruências nos ramos fortemente suportados, portanto apenas a IB com as sequências concatenadas é apresentada na Figura 2. Os resultados mostraram que espécimes identificados 589 590 com S. alpinum pertencem a duas linhagens distintas.

591 A análise das sequências do gene da actina I das algas verdes encontradas nos 592 espécimes de S. alpinum indicaram que elas pertencem ao gênero Asterochloris. O alinhamento de 104 sequências, pertencentes a diferentes espécies e linhagens de Asterochloris, resultou em 593 uma matriz de 706 nucleotídeos. As cinco sequências obtidas de espécimes de S. alpinum foram 594 idênticas e agruparam com sequências de Asterochloris sp. de Stereocaulon paschale (L.) 595 Hoffm. e S. vesuvianum Pers. (Figura 4). Esse grupo mostrou ser proximamente relacionado 596 (grupo irmão) de A. irregularis (Hildreth & Ahmadjian) Skaloud & Peksa, presentes em 597 598 espécimes de Stereocaulon alpinum, S. botryosum Ach., S. pileatum Ach., S. vesuvianum, além de Cladonia mitis Sandst. (Figura 4). As cinco sequências geradas de algas verdes foram obtidas 599 de espécimes de S. alpinum coletados nas Ilhas Shetland do Sul (Ilha Elefante e Ilha Rei George) 600 e Terra do Fogo (Argentina e Chile). 601

Para cianobactérias, 92 sequências da região 16S foram comparadas em uma matriz de
dados com 738 pares de bases alinhados. Nossos dados mostraram que as cianobactérias
associadas a *S. alpinum* pertencem ao gênero *Nostoc* (clado "*Nostoc* II" *sensu* O'Brien, J.
Miadlikowska e F. Lutzoni. 2005) (Figura 3). Neste Clado "*Nostoc* II" há duas espécies do
Gênero, sendo elas: *Nostoc commune* Vaucher ex Bornet & Flahault e *Nostoc punctiforme*Hariot. A amostra do hemisfério norte estudada não foi utilizada nessa análise.

608 Considerando apenas 26 espécimes da linhagem bipolar de *S. alpinum*, detectamos oito 609 haplótipos de ITS (micobionte) distribuídos entre as populações da Terra do Fogo e da Antártica 610 marítima (Figura 1). O haplótipo H1 foi o mais amplamente distribuído e abundante, estando 611 presente em oito populações. Os haplótipos menos frequentes foram H3, H4, H5 e H6, ocorrendo apenas em um espécime cada. Os haplótipos H3 e H4 mostraram ser exclusivos da
região da Terra do Fogo na Argentina, enquanto H5, H6, H7 e H9 foram encontrados apenas na

Antártica. Sendo H5 encontrado na Ilha Rei George, H6 na Ilha Greenwich, H7 nas Ilhas

615 Greenwich, Ilha Nelson e Costa Danco. Já o H9 é exclusivo da Península Antártica, ocorrendo

616 em Costa Danco (Figura 1).

617 Análises químicas

618 Identificamos através de Cromatografia em Camada Delgada (CCD) os compostos químicos de 15 espécimes de Stereocaulon alpinum coletados no hemisfério sul. Todos os 619 620 espécimes apresentam atranorina e ácido lobárico como principais componentes químicos. Entretanto, alguns compostos (traços ou não) estão presentes em determinados espécimes e 621 ausentes em outros. Dentro do conjunto de dados analisado separamos os espécimes em três 622 principais grupos químicos (G1, G2 e G3), como detalhado na Tabela 2. Muitos desses 623 compostos encontrados ainda estão em fase de estudo, pois não foram encontrados na 624 bibliografia ou seu perfil químico é muito semelhante a outros compostos. 625

Já através dos Spot tests, obtivemos para a espécie: filocládio K+ amarelo, C-, KC-,
PD+ amarelo enxofre, UV+ branco. Atranorina e ácido lobárico (maior), com três isômeros não
identificados (depsidona) com estrutura muito próxima ao ácido lobárico (-H2). Três
substâncias com FR menor que o ácido lobárico, provavelmente lobarina, oxisifulina, ácido
colensóico ou ácido picroliquênico. Às vezes, também ácido bourgeânico.

Tabela 2. Descrição dos compostos químicos encontrados nos espécimes de *Stereocaulon alpinum*.

Grupo	Composição química
G1	Atranorina e ácido lobárico. Três Isômeros (depsidonas) 68 m estruturas muito próxima ao ácido lobárico (-H2). Três substâncias
01	de Rf menor que o ácido lobárico (provavelmente lobardina, oxisifulina, ácido colensóico ou picroliquênico).
G2	Atranorina e ácido lobárico. Três Isômeros (depsidonas) 666 n estruturas muito próxima ao ácido lobárico (-H2). Bis- antraquinona de estrutura não definida. Três substâncias de R f menor que o ácido lobárico (provavelmente lobarina, oxisifulina, ácido colensóico ou picroliquênico) e uma substância 668 o identificada.
G3	Atranorina e ácido lobárico. Três Isômeros (depsidonas) 63% estruturas muito próxima ao ácido lobárico (-H2). Ac. bourgeânico, oxisifulina, lobarina ou traços das mesmas. 640

643 Taxonomia

Stereocaulon alpinum Laurer in Funck, Cryptogamische Gewachse des Fichtelgebirg's. Heft
 33: 6 (1827). FIGS. 5a-l

Type: Austria. Alps of Tirol and Karnten, "besonders schon am Pasterzen Gletscher, 1827, *s.coll*. (holótipo desconhecido; isotipos LE, FH - Funck, Crypt. Gew. Bes. Fichtelgeb. Ed. II, n.
684, fide Lamb 1977).

Synonym: = Stereocaulon tomentosum var. alpinum (Laurer) Th. Fr., De Stereoc. et Pilophor.
Comment.: 30 (1857). = Stereocaulon tomentosum subsp. alpinum (Laurer) Th. Fr., Monogr.
Stereoc. et Pilophor.: 357 (1858). = Stereocaulon paschale f. alpinum (Laurer) Mudd, Manual
Brit. Lich.: 66 (1861). = Stereocaulon paschale var. alpinum (Laurer) Du Rietz, Svensk Bot.
Tidskr. 20: 96 (1926).

654 Talo saxícola, terrícola ou muscícola. Talo primário evanescente. Talo secundário formado por pseudopodécios decumbentes a eretos ou eretos, levemente dorsiventrais, firmemente aderidos 655 656 ao substrato quando saxícolas ou frouxamente aderidos ao substrato quando muscícolas, ramos teretes a levemente achatados, dicotomicamente anisotômicos a irregularmente ramificados, 657 658 decorticados, creme ao longo e nos ápices, marrom pálido na base, sem ou com poucos ramos, 1,5–5,0 cm de altura, 0,5–1,0 (–1,2) mm de diâmetro. *Tomento* frequente a abundante ao longo 659 660 do pseudopodécio e na parte inferior dos filocládios, esbranquiçado a rosado, às vezes marrom claro na parte basal do pseudopodécio. Filocládios verruciformes a ligeiramente 661 esquamuliformes ou distintamente esquamuliformes e ramificados, crenados, esbranquiçados a 662 creme, 0,5-1,0 mm de diâmetro, confluentes ou sobrepostos, frequentes a abundantes nos 663 ápices, principalmente aglomerados no topo do pseudopodécio, poucos ao longo e na base dos 664 pseudopodécios. Sorais ausentes. Apotécios biatorinos, raros, terminais, planos e com margens 665 finas quando imaturos, sem margem, ondulados e convexos quando maduros, disco marrom a 666 marrom escuro, 1,5-3,5 mm de diâmetro, anfitécio creme esbranquiçado, tomentoso. 667 Cefalódios esféricos, comumente esverdeados e cobertos por tomento, às vezes amarronzados 668 e fissurados, 0,1-0,4 mm de diâmetro, frequentes a abundantes, localizados principalmente na 669 parte inferior dos filocládios, às vezes sobre os ramos, frequentes a abundantes, contendo 670 Nostoc em filamentos. Picnídio ausente. 671

Anatomia: *Pseudopodécio* formado por hifas paquidermatosas, incolores no centro, 3-4 µm de
diâmetro, amareladas nas camadas mais externas, 4–7 µm de diâmetro. *Tomento* formado por
hifas ramificadas dicotomicamente anisotômicas a irregularmente de 4–7 µm de espessura. *Filocládios* com córtex prosoplectenquimatico, 20–25 µm de altura, camada de algas 50–60 µm
de altura, camada medular 170–200 µm de altura, hifas 5–7 µm de espessura. *Apotécios* com
hipotécio e excípulo próprio indiferenciados, incolor, 40–50 µm de altura, himênio incolor a

amarelado, 45–55 µm de altura, paráfises com ápices capitados e amarronzados, *ascos* clavados,

679 $25-45 \times 5-10 \,\mu\text{m}$, com 8 ascósporos, *ascósporos* com 3 septos transversais, $20-27 \times 3 \,\mu\text{m}$,

incolores. *Cefalódios* com parede indiferenciada de 10–20 µm de altura, formados por hifas
amarronzadas de 4–5 µm de espessura. Filamentos de *Nostoc* embutidos em cápsulas rodeadas
por hifas entrelaçadas. *Conídio* não visto.

Observações: Os espécimes analisados neste estudo mostram que *S. alpinum* é consistente em suas características morfológicas diagnósticas. Esta espécie é caracterizada pelo pseudopodécio coberto por tomento rosado (Fig. 5j), filocládios verruciformes a esquamuliformes, esbranquiçados a creme, crenados, geralmente aglomerado no topo do pseudopodécio, a presença de atranorina e ácido lobárico, e pelo cefalódio esférico contendo *Nostoc* em filamentos (Fig. 5i).

Porém, em outras características morfológicas como altura e disposição dos pseudopodécios, estágios-cor dos cefalódios, forma dos filocládios e espessura do tomento, esta espécie apresenta algumas variações. Os pseudopodécios diferem entre 1,5 e 5,0 cm de altura, podem crescer decumbentes (Fig. 5a) nas partes proximais do talo e eretos nas partes centrais, ou eretos (Fig. 5b) em todas as partes do talo.

Tradicionalmente, talos com pseudopodécios eretos e maiores que 5.0 cm altura correspondem a *S. alpinum* var. *erecta* Frey, enquanto talos com pseudopodécios decumbentes nas partes proximais e menores que 5,0 cm de altura, correspondem a *S. alpinum* var. *alpinum* Laurer (Lamb 1977, 1978; Oset 2014), neste estudo encontramos e analisamos essas duas variedades morfológicas.

No espécime L.B. Sparrius 9266 da Finlândia, os filocládios são distintamente
granulares coralóides, ramificados e sobrepostos (Fig. 5e), e o tomento é denso ao longo do talo
e nos cefalódios (Fig. 5k), enquanto nos espécimes do Parque Nacional Tierra del Fuego e da
Antártica os filocládios são verruciformes (Fig. 5c) a ligeiramente esquamuliformes,
confluentes e não ramificados (Fig. 5d), e o tomento é mais fino ao longo do talo e nos
cefalódios (Fig. 5f).

Os cefalódios geralmente encontrados são esverdeados e cobertos por tomento esbranquiçado a rosado (Fig. 5f), mas às vezes também são encontrados cefalódios amarronzados, fissurados e sem tomento (Fig. 5g), os cefalódios esverdeados correspondem a estágios jovens de desenvolvimento em que muitas colônias de cianobactérias estão presentes (Fig. 5h) e dão a aparência de cor esverdeada, enquanto que os cefalódios amarronzados correspondem a estágios mais antigos de desenvolvimento em que as colônias de cianobactérias
estão se deteriorando e morrendo, gerando a perda da cor esverdeada. Como essa variação está
relacionada aos estágios de desenvolvimento, é possível encontrar talos apenas com cefalódios
esverdeados, talos apenas com cefalódios amarronzados ou talos com ambos os estágios de
desenvolvimento.

715 **4. Discussão**

716 Em estudo anterior da filogenia do gênero Stereocaulon, com os marcadores moleculares ITS e β-tubulina, Högnabba (2006) relevou através de dados filogenéticos a 717 718 existência de duas linhagens distintas em S. alpinum, sendo um clado formado por sequências do hemisfério norte e outro do hemisfério sul, levantando a hipótese de que na verdade S. 719 alpinum não seria uma espécie bipolar. Entretanto, os resultados do presente estudo mostraram 720 721 que os espécimes de S. alpinum coletados na Argentina, Chile, Antártica, e Finlândia, bem como outras sequências do GenBank (Argentina), foram recuperadas como monofiléticas (Clado II) 722 e distintas das sequências provenientes da Áustria e da Itália (Clado I) (Figura 2). A partir disso, 723 foi possível reconhecer que os espécimes de S. alpinum do Clado II pertencem a mesma espécie, 724 725 confirmando assim que S. alpinum é uma espécie bipolar, com distribuição nos Hemisférios Norte e Sul. 726

Embora as sequências do GenBank oriundas da Áustria e da Itália estejam identificadas como *S. alpinum*, é provável que pertençam a outra espécie do gênero, geneticamente distinta, mas semelhante morfologicamente. Isso porque as comparações morfológicas e químicas com o tipo da espécie indicaram que são a mesma. Porém, a localização geográfica do tipo e da descrição é muito reduzida e permite pouca comparação.

732 A partir do padrão de compartilhamento de haplótipos verificamos que espécimes de Stereocaulon alpinum entre os dois continentes, há o compartilhamento de dois haplótipos (H1 733 e H8), sendo o H1 possivelmente o haplótipo ancestral que ocorre em quase todas as populações 734 735 com exceção de duas áreas da Antártica (Figura 1). Uma possível explicação para esse padrão 736 de distribuição geográfica dentro e entre as populações de Stereocaulon alpinum é que possivelmente houve um evento de dispersão seguido de diversificação. Uma hipótese para a 737 origem de S. alpinum que parece provável é a distribuição geográfica que pelo estudo pode não 738 ser tão ampla assim. Três hipóteses seriam prováveis para isso: pelo fato do gênero apresentar 739 muita variação morfológica intraespecífica; pela descrição ser muito incompleta, sendo fácil de 740 enquadrar espécies em S. alpinum; ou também por ter várias espécies realmente crípticas que 741 não foram descobertas ainda. 742

A identificação de espécies de Stereocaulon não é uma tarefa fácil, devido à alta 743 plasticidade fenotípica encontrada em algumas espécies do gênero, causando assim frequente 744 confusões taxonômicas (Ismed et al. 2018). Diante dos espécimes analisados nesse estudo 745 (Tabela 1), S. alpinum é consistente em suas características morfológicas diagnósticas. Esta 746 espécie é caracterizada pelo pseudopodécio coberto por tomento rosado, os filocládios 747 verruciformes esquamuliformes, esbranquiçados a creme, crenados, geralmente aglomerados 748 749 no topo do pseupodécio e pelo cefalódio esférico contendo Nostoc em filamentos. Contudo, 750 outras características morfológicas como altura, disposição do pseudopodécio, estágios e cor dos cefalódios e forma dos filocládios, S. alpinum apresenta algumas variações. Os 751 pseudopodécios diferem até 4,5 cm de altura, podendo crescer decumbentes e eretos 752 dependendo de sua localização. Os talos de S. alpinum var. erecta e S. alpinum var. alpinum, se 753 754 diferenciam tradicionalmente pelo pseudopodécio. Se os pseudopodécios crescerem eretos e forem maiores que 5 cm correspondem a S. alpinum var. erecta, se crescerem decumbentes a 755 756 eretos e forem menores que 5 cm de altura, correspondem a S. alpinum var. alpinum (Lamb 1977, 1978; Oset 2014). Os cefalódios geralmente encontrados são esverdeados e 757 amarronzados, sendo os esverdeados correspondendo a estágios jovens de desenvolvimento, 758 759 enquanto que os cefalódios amarronzados correspondem a estágios mais antigos de 760 desenvolvimento. Como essa variação está relacionada aos estados de desenvolvimento, é 761 possível encontrar talos com cefalódios em todos os estados de desenvolvimento. Além dessas variações morfológicas da espécie, foram encontradas no espécime Sparrius 9266 procedente 762 763 da Finlândia, discretas variações morfológicas em relação aos espécimes do Hemisfério Sul. Em Sparrius 9266, os filocládios são distintamente esquamiformes, ramificados e sobrepostos, 764 765 e o tomento é denso sobre os cefalódios; enquanto que nos espécimes da Tierra del Fuego e Antarctica, os filocládios variam de verruciformes a levemente esquamiformes, não se 766 ramificam, são confluentes, e o tomento é menos denso sobre os cefalódios. Além da 767 768 morfologia, identificamos os principais compostos químicos dos espécimes de S. alpinum, 769 encontrando principalmente a presença de ácido lobárico e atranorina como já descritos para a 770 espécie (Lindsay 1974). Estudos posteriores com o gênero apontaram a existência de diversos 771 compostos químicos, corroborando que S. alpinum possui atranorina e ácido lobárico como química principal, mas acrescentando que em alguns espécimes pode haver a ausência do ácido 772 lobárico (Øvstedal e Smith 2001). 773

Em nosso conjunto de dados, identificamos os compostos químicos de 15 espécimes de *Stereocaulon alpinum* coletados no Hemisfério Sul (Figura 2). A química da espécie demonstrou ser diversa, contendo nos espécimes compostos como: atranorina, ácido lobárico,

três isômeros (depsidonas) com estruturas muito próxima ao ácido lobárico (-H2), três 777 substâncias de Rf menor que o ácido lobárico (provavelmente lobarina, oxisifulina, ácido 778 colensóico ou picroliquênico), além de Bis-antraquinona de estrutura não definida e ácido 779 bourgeânico. Houve variação infra-específica, com alguns compostos (traços ou não) estão 780 presentes em determinados espécimes e ausentes em outros. Assim separamos os espécimes em 781 três grupos químicos principais (G1, G2 e G3), como detalhado na Tabela 2. A principal 782 783 diferença encontrada foi a presença de bis-antraquinona no espécime (APL765) coletado na Ilha 784 Nelson (Antártica), e a presença de ácido bourgeânico nos espécimes do Grupo 3 (MCScur206, MCScur750, MCScur193 e MCScur843) coletados na Antártica (Figura 2). A maioria dos 785 espécimes pertencem ao Grupo 1, o qual não apresenta esses componentes (bis-antraquinona 786 ou ácido bourgeânico). No entanto, essas diferenças químicas não apresentaram um padrão de 787 distribuição geográfica, nem tiveram suporte nas análises filogenéticas do micobionte (Figura 788 2). 789

No gênero *Stereocaulon* dois tipos de fotobiontes são encontrados, sendo eles algas
verdes (geralmente dos gêneros *Asterochloris* e *Chloroidium*) e cianobactérias (normalmente *Nostoc* ou *Stigonema*) (Huss-Danell 1979; Vančurová et al. 2018). Nos espécimes de *S. alpinum* analisados neste estudo, detectamos uma linhagem de *Asterocholoris* que já havia sido
encontrada em *S. paschale* e *S. vesuvianum* (Figura 4). Esta linhagem, identificada aqui como *Asterochloris sp.*, é proximamente relacionada a *A. irregularis*, uma espécie já relatada como
simbionte de diferentes espécies de *Stereocaulon* e *Cladonia*.

Entretanto, as cianobactérias de *S. alpinum* da Antártica revelaram ser do gênero *Nostoc* (Clado II sensu O'Brien, J. Miadlikowska e F. Lutzoni. 2005), diferindo de outras
cianobactérias associadas ao gênero *Stereocaulon*, como por exemplo, *Stigonema* (Lavoie et al.
2020). Uma única sequência, de um espécime coletado na Ilha Rei George (MCS193), não
agrupou com as outras sequencias geradas de *Nostoc* de *Stereocaulon alpinum*, ficando mais
próxima de sequencias de *Nostoc* de *Nephroma expallidum* (Nyl.) Nyl., *N. arcticum* (L.) Torss.
e *Protopannaria pezizoides* (Weber) P.M. Jørg. & S. Ekman.

Diante disso, a espécie *S. alpinum* é uma espécie monofilética e bipolar (ocorrendo no hemisfério sul e hemisfério norte). Sua morfologia possui variações entre os espécimes, especialmente em caracteres como altura e disposição dos pseudopodécios, estágios-cor dos cefalódios, forma dos filocládios e espessura do tomento, sendo assim uma espécie com alta plasticidade fenotípica. A química de *S. alpinum* é diversa e sem padrões filogenéticos e geográficos. Os fotobiontes (algas verdes e cianobactérias) dos espécimes do sul foram *Asterocholoris* e *Nostoc* respectivamente, ambos de linhagens simbióticas já conhecidas em outros fungos liquenizados. Sendo uma linhagem de alga verde e três linhagens de *Nostoc*.
Também sugerimos revisar sequencias oriundas do Genbank em geral do hemisfério norte, uma
vez que aparentemente tem duas espécies diferentes na Europa.

814

815 **5. Conclusão**

E por fim, com nossos dados, concluímos que *Stereocaulon alpinum* tem distribuição geográfica restrita para regiões polares ou áreas próximas. Divergindo de estudos anteriores no qual apontavam que *S. alpinum* era cosmopolita (Oset 2004; Lamb 1977; Thomson 1984). As sequencias do clado não bipolar (Figura 2) provenientes da Itália (AT1036) e da Áustria (AT1194) pertencem a uma espécie provavelmente restrita a essa região da Europa. Porém, para termos certeza sobre a distribuição geográfica precisaríamos ter dados moleculares dessas regiões.

823

824 Agradecimentos

825 Este estudo foi financiado por Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

826 (CAPES): Bolsa de mestrado da PG, Programa de Pós Graduação em Biologia Vegetal,

827 UFMS, Brasil.

828 Referências

Alors D, Lumbsch HT, Divakar PK, Leavitt SD, Crespo A (2016) An integrative approach for

understanding diversity in the *Punctelia rudecta* species complex (Parmeliaceae, Ascomycota).

- 831 PLoS One 11(2): e0146537
- Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific
 phylogenies. Molecular Biology and Evolution (1): 37-48

Brien OHE, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic

cyanobacteria associated with four closely related species of the lichen fungus *Peltigera*.

- European Journal of Phycology (40): 363–378.
- ⁸³⁷ Colesie C, Büdel B, Hurry V, Green TGA (2018) Can Antarctic lichens acclimatize to changes
- in temperature? Global change biology 24(3): 1123–1135

- 839 Coxson DS, Marsh J (2001) Lichen chronosequences (postfire and postharvest) in lodgepole
- 840 pine (*Pinus contorta*) forests of northern interior British Columbia. Canadian Journal of Botany

841 79(12): 1449–1464

- Barriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics
 and parallel computing. Nature Methods (9): 772
- Ellis CJ (2019) Climate change, bioclimatic models and the risk to lichen diversity. Diversity
 11(4): 1–23
- 846 Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C (2012) Coalescent-based species
- delimitation in an integrative taxonomy. Trends in ecology & evolution 27(9): 480–488
- Fries TM (1858) Monographia Stereocaulorum et Pilophororum. Acta Regiae Soc Sci Upsal
 Ser 3 2(1): 307–380.
- Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetesapplication to the identification of mycorrhizae and rusts. Molecular Ecology (2): 113–118
- Garrido-Benavent I, Pérez-Ortega S, De los Ríos A (2017) From Alaska to Antarctica: species boundaries and genetic diversity of *Prasiola* (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen-forming fungus *Mastodia tessellata*. Molecular Phylogenetics and Evolution (107): 117–131
- Hawksworth DL, Grube M (2020) Lichens redefined as complex ecosystems. The New
 Phytologist 227(5): 1–3
- Hebert PD, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA
- barcodes. Proceedings of the Royal Society of London 270(1512): 313–321
- Högnabba F (2006) Molecular phylogeny of the genus *Stereocaulon* (Stereocaulaceae,
 lichenized ascomycetes). Mycological Research 110(9): 1080–1092
- Högnabba F, Pino-Bodas R, Nordin A, Myllys L, Stenroos S (2014) Phylogenetic position of
- the crustose Stereocaulon species. The Lichenologist 46(1): 103–114
- Honda NK, Vilegas W (1998) A química dos liquens. Química Nova 22(1): 110–125
- Huelsenbeck JP, Ronquist F (2001). MRBAYES: Bayesian inference of phylogeny.
 Bioinformatics 17.8, 754–755.

- Huss-Danell K (1979) The cephalodia and their nitrogenase activity in the lichen *Stereocaulon paschale*. Zeitschrift für Pflanzenphysiologie 95(5): 431–440.
- 869 Ismed F, Lohézic-Le Dévéhat F, Guiller A, Corlay N, Bakhtiar A, Boustie J (2018)
- 870 Phytochemical review of the lichen genus *Stereocaulon* (Fam. Stereocaulaceae) and related
- pharmacological activities highlighted by a focus on nine species. Phytochemistry Reviews
- 872 17(5): 1165–1178.
- Johnson GT (1938) The taxonomic importance and phylogenetic significance of the cephalodia
 of Stereocaulon. Ann Mo Bot Gard (3): 729.
- Katoh K, et al. (2002) MAFFT: a novel method for rapid multiple sequence alignment based
 on fast Fourier transform. Nucleic Acids Research (30): 3059–3066.
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,
- Markowitz S, Duran C, Thierer T, Ashton B, Meintje P, Drummond A (2012). Geneious Basic:
- an integrated and extendable desktop software platform for the organization and analysis of
 sequence data. Bioinformatics, 28(12): 1647–1649.
- Kim TK, Kim JE, Youn UJ, Han SJ, Kim IC, Cho CG, Yim JH (2018) Total Syntheses of
- Lobaric Acid and Its Derivatives from the Antarctic Lichen *Stereocaulon alpinum*. Journal of
 natural products 81(6): 1460–1467.
- Koch NM, Branquinho C, Matos P, Pinho P, Lucheta F, Martins SM, Vargas VM (2016) The
- application of lichens as ecological surrogates of air pollution in the subtropics: a case study in
 South Brazil. Environmental Science and Pollution Research 23(20): 20819–20834.
- Kraichak E, Huang JP, Nelsen M, Leavitt SD, Lumbsch HT (2018) A revised classification of
- orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on a
 temporal approach. Botanical Journal of the Linnean Society 188(3): 233–249.
- Lamb IM (1951) On the morphology, phylogeny, and taxonomy of the lichen genus *Stereocaulon*. Canadian Journal of Botany 29(5): 522–584.
- Lamb IM (1977) A conspectus of the lichen genus Stereocaulon (Schreb.) Hoffm. Journal of
- the Hattori botanical laboratory (43): 191–355.
- Lamb IM (1978) Keys to the species of the lichen genus Stereocaulon (Schreb.) Hoffm. Journal
- of the Hattori Botanical Laboratory (44): 209–250.

Lavoie C, Renaudin M, McMullin RT, Gagnon J et al (2020) Extremely low genetic diversity
of *Stigonema* associated with *Stereocaulon* in eastern Canada. The Bryologist 123(2): 188–203.

Librado PJR, Rozas J (2009) DnaSP v5: A Software for Comprehensive Analysis of DNA
Polymorphism Data. Bioinformatics (11): 1451–1452.

- Lindsay DC (1974). The macrolichens of South Georgia. British Antarctic Survey (89)
- 201 Lücking R (2019) Stop the abuse of time! Strict temporal banding is not the future of rank-
- based classifications in fungi (including lichens) and other organisms. Critical Reviews in Plant
 Sciences 38(3): 199–253.
- ⁹⁰⁴ Lücking R, Hodkinson BP, Leavitt SD (2017) The 2016 classification of lichenized fungi in the
- Ascomycota and Basidiomycota–Approaching one thousand genera. The Bryologist 119(4):
 361–416.
- Lumbsch HT, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation
 of species in lichenized fungi. Fungal Diversity (50):59–72.
- ⁹⁰⁹ Lutzoni F, Miadlikowska J (2009) Lichens. Current Biology 19(13): R502–R503.
- 910 Miller MA, Schwartz T (2010) Creating the CIPRES Science Gateway for Inference of Large
- Phylogenetic Trees. Gateway Computing Environments Workshop (GCE), New Orleans, LA,
 2010, pp. 1-8.
- 913 Myllys L, Lohtander K, Tehler A (2001) β-tubulin, ITS and group I intron sequences challenge
- the species pair concept in *Physcia aipolia* and *P. caesia*. Mycologia 93(2): 335–343.
- Nash T (2008). Introduction. In: Nash T. Lichen Biology. 2. Ed. New York: Cambridge
 University Press. cap.01, p.01.
- Orange A, James PW, White FJ. 2010. Microchemical methods for the identification of lichens.
 British Lichen Society (2): 102.
- Oset M (2015). The lichen genus *Stereocaulon* (Schreb.) Hoffm. in Poland–a taxonomic and
 ecological study. Monographiae Botanicae (104): 1–81.
- 921 Øvstedal DO, Smith RI (2001) Lichens of Antarctica and South Georgia. A Guide to their
- 922 Identification and Ecology. Cambridge University Press, Cambridge, 411pp

- Pennisi E (2016) A lichen ménage à trois. Science 353 (6297): 337.
- 924 Rambaut A, Drummond AJ (2018) Posterior Summarization in Bayesian Phylogenetics Using
- 925 Tracer 1.7. Systematic Biology (67): 901–904.
- 926 Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA et al (2012) Nuclear
- ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for
 Fungi. Proceedings of the National Academy of Sciences 109(16): 6241–6246.
- Sipman HJ, Aptroot A (2001) Where are the missing lichens? Mycological Research 105(12):
 1433–1439.
- 931 Skaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences
- 932 reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae,
- 933 Chlorophyta). Molecular Phylogenetics and Evolution 54(1): 36–46.
- Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of
 large phylogenies. Bioinformatics (9):1312-1313.
- Tavalera G, Castresana J (2007) Improvement of Phylogenies after Removing Divergent and
 Ambiguously Aligned Blocks from Protein Sequence Alignments. Systematic Biology (56):
 564–577.
- Thomson JW (1984) American Arctic lichens. The Macrolichenes. New York, NY: ColumbiaUniversity Press.
- Vančurová L, Muggia L, Peksa O, Řídká T, Škaloud P (2018) The complexity of symbiotic
 interactions influences the ecological amplitude of the host: A case study in *Stereocaulon*(lichenized Ascomycota). Molecular ecology 27(14): 3016–3033
- Weber K, Kabsch W (1994) Intron positions in actin genes seem unrelated to the secondary
 structure of the protein. The EMBO Journal 13(6): 1280–1286
- White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal
 ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications
 (18): 315–322
- 949
- 950

951 Material suplementar

952 Informações adicionais podem ser encontradas online na guia de informações de suporte deste

953 artigo.

954

955 Legenda das figuras

956

Figura 1. Inferência filogenética bayesiana (*maximum clade credibility tree*) baseada na matriz de dados concatenados dos marcadores ITS e Beta-Tubulina. Ramos de cor vermelha tiveram altos valores de suporte, tanto na na inferência bayesiana (probabilidade posterior ≥ 0.9), como na análise de máxima verossimilhança (bootstrap ≥ 70). As sequências geradas pelo estudo estão incluídas no grupo *Stereocaulon alpinum* Clado Bipolar. Os círculos coloridos ao lado das sequências do Clado Bipolar representam os grupos químicos encontrados a partir das análises químicas realizadas.

Figura 2. A) Mapas dos pontos de coleta com a indicação dos haplótipos de ITS de cada lugar.
B) *Median-joining network* com sequências do marcador ITS de *Stereocaulon alpinum* e suas distribuições geográficas na região sul da América do Sul e Antártica baseado nas. No quadro 1 é ilustrado os tipos de haplótipos encontrados no sul da América do Sul e Península Antártica.
Enquanto no quadro 2 é apresentado a distribuição e variação dos haplótipos apenas para a Antártica. Já no quadro 3 é representado a rede de haplótipos encontrados na espécie *S. alpinum*, bem como sua frequência de acordo com o tamanho do círculo.

971

972Figura 3. Inferência filogenética bayesiana (maximum clade credibility tree) de cianobactérias973associadas a Stereocaulon alpinum baseada na matriz de dados da região 16S. Ramos grifados974em negrito foram considerados altamente suportados tanto na inferência bayesiana975(probabilidade posterior ≥ 0.9) como na análise de máxima verossimilhança (bootstrap ≥ 70).976As sequências geradas pelo estudo estão incluídas no Clado Nostoc II.

Figura 4. Inferência filogenética bayesiana (*maximum clade credibility tree*) de algas verdes
associadas a *Stereocaulon alpinum* baseada na matriz de dados da região actina tipo I. Ramos

979 grifados em negrito foram considerados suportados tanto na inferência bayesiana
980 (probabilidade posterior ≥ 0.9) como na análise de máxima verossimilhança (bootstrap ≥ 70).
981 O ramo com (•) está presente o clado das sequências desse estudo.

Figura 5. a-l: *Stereocaulon alpinum*. a, Pseudopodécio decumbente; b, Pseudopodécio ereto; c, Filocládios verruciformes; d, Filocládios esquamuliformes, confluentes; e, Filocládios esquamuliformes, ramificados e sobrepostos; f, Cefalódios esverdeados cobertos por um tomento fino; g, Cefalódios amarronzados e fissurados; h, Seção transversal de um cefalódio; i, filamentos de *Nostoc* agrupados em capsulas rodeadas por hifas entrelaçadas. j, tomento rosado; k, Cefalódio coberto por um tomento espesso; l, Apotécio ondulado com disco marromenegrecido. Escalas: a-b, 1.0 cm; h, 20 tr; i, 50 µm; c-l = 1 µ.

- 989
- 990
- 991
- 992
- 993
- 994
- 995
- 996

-

997

998

999

Tabela S1. Sequências utilizadas nesse estudo oriundas do GenBank. Os campos indicados com (-) não foram encontrados nas bibliografias que
 os espécimes foram publicados e nem no GenBank.

Nomo	Cádigo	Nº de acesso GenBank		Looplidada	X 7 b	Hanhánia	Defenância
Iname	Coulgo	ITS	β-tubulina	Locandade	voucher	nerbario	Kelerencia
Cladonia ahtii		AF453275	AF458486	-	-	-	Högnabba (2006)
C. rangiformis		AF455172	AF458522	-	-	-	Högnabba (2006)
Stereocaulon alpestre	AT1031	DQ396893	DQ396976	Islândia	Baldursdóttir S. n.	Н	Högnabba (2006)
S. alpinum	AT1194	DQ396960	DQ397032	Áustria	Feuerer 60471a	HBG	Högnabba (2006)
S. alpinum	AT1036	DQ396898	DQ396978	Itália	Hyvönen 6877a	TUR	Högnabba (2006)
S. alpinum	AT1075	DQ396915	DQ396993	Argentina	Stenroos 5459	TUR	Högnabba (2006)
S. alpinum	AT1077	DQ396917	DQ396995	Argentina	Stenroos 5496	TUR	Högnabba (2006)
S. alpinum	AT1040	DQ396900	DQ396979	Argentina	Stenroos 5499	TUR	Högnabba (2006)
S. alpinum	AT1044	DQ396903	DQ396982	Argentina	Stenroos 5523	TUR	Högnabba (2006)
S. arcticum	AT1183	DQ396956	DQ397029	Svalbard	Inoue 28229	TUR	Högnabba (2006)

S. azoreum	FH56	DQ396966	DQ397036	Madeira	Krebs 5175	В	Högnabba (2006)
S. botryosum	AT1175	DQ396952	DQ397026	Svalbard	Inoue 28228	TUR	Högnabba (2006)
S. coniophyllum	AT1143	DQ396936	DQ397011	China	Obermayer 8634 sorediate	GZU	Högnabba (2006)
S. coniophyllum	AT1144	DQ396937	DQ397012	China	Obermayer 8635 sorediate	GZU	Högnabba (2006)
S. coniophyllum	AT1148	DQ396939	DQ397014	China	Obermayer 8354	GZU	Högnabba (2006)
S. coniophyllum	AT1153	DQ396941	DQ397016	China	Obermayer 8181	GZU	Högnabba (2006)
S. coniophyllum	AT1155	DQ396943	DQ397018	China	Obermayer 8643	GZU	Högnabba (2006)
S. corticatulum	AT1047	DQ396904	DQ396983	Argentina	Stenroos 5403	TUR	Högnabba (2006)
S. corticatulum	AT1048	DQ396905	DQ396984	Argentina	Stenroos 5545	TUR	Högnabba (2006)
S. cumulatum	FH7	KF682458	DQ099628	Noruega	Haugan SK00- 114	0	Högnabba (2014)
S. curtatum	AT1167	DQ396949	DQ397023	Japão	Inoue 28955	TUR	Högnabba (2006)
S. delisei	FH69	KF682457	DQ397046	Noruega	Hognabba 558	Н	Högnabba (2014)
S. dendroides	Hur 141476	KY660026	KY827015	Coreia	Hur 141476	KoLRI	Park et al (2018)
S. dendroides	Hur 141477	KP324743	KY827016	Coreia	Hur 141477	KoLRI	Park et al (2018)
S. depreaultii	AT1164	DQ396947	DQ397021	Japão	Inoue 28664	TUR	Högnabba (2006)

S. evolutum	AT1085	DQ396922	DQ396999	Finlândia	Stenroos 5595	TUR	Högnabba (2006)
S. exutum	AT1165	DQ396948	DQ397022	Japão	Inoue 28958	TUR	Högnabba (2006)
S. exutum	AT1170	DQ396950	DQ397024	Japão	Inoue 28953	TUR	Högnabba (2006)
S. exutum	Hur 130030	KF644361	KY827017	Coreia	Hur 130030	KoLRI	Park et al (2018)
S. exutum	Hur 130031	KF644362	KY827018	Coreia	Hur 130031	KoLRI	Park et al (2018)
S. farinaceum	FH74	DQ396973	DQ397049	Finlândia	Hognabba 382	Н	Högnabba (2006)
S. foliolosum	AT1138	DQ396933	DQ397008	China	Obermayer 8645	GZU	Högnabba (2006)
S. foliolosum	AT1140	DQ396934	DQ397009	China	Obermayer 8357	GZU	Högnabba (2006)
S. foliolosum	AT1154	DQ396942	DQ397017	China	Obermayer 8644	GZU	Högnabba (2006)
S. foliolosum	AT1172	DQ396951	DQ397025	China	Inoue 28949	TUR	Högnabba (2006)
S. fronduliferum	FH6	DQ396962	DQ397033	Nova Zelândia	Vezda Lich.rar. exS. 279	Н	Högnabba (2006)
S. glabrum	AT1041	DQ396901	DQ396980	Argentina	Stenroos 5508	TUR	Högnabba (2006)
S. glabrum	AT1042	DQ396902	DQ396981	Argentina	Stenroos 5509	TUR	Högnabba (2006)
S. glabrum	AT1054	DQ396906	DQ396985	Argentina	Stenroos 5460	TUR	Högnabba (2006)
S. glabrum	AT1069	DQ396909	DQ396987	Argentina	Stenroos 5356	TUR	Högnabba (2006)

S. glabrum	AT1070	DQ396910	DQ396910	Argentina	Stenroos 5288	TUR	Högnabba (2006)
S. glabrum	AT1071	DQ396911	DQ396989	Argentina	Stenroos 5287	TUR	Högnabba (2006)
S. glabrum	AT1072	DQ396912	DQ396990	Argentina	Stenroos 5406	TUR	Högnabba (2006)
S. glareosum	FH77	DQ396974	DQ397052	Finlândia	Hognabba 469	Н	Högnabba (2006)
S. intermedium	AT1142	DQ396935	DQ397010	China	Obermayer 8634 granulose	GZU	Högnabba (2006)
S. intermedium	AT1147	DQ396938	DQ397013	China	Obermayer 8637	GZU	Högnabba (2006)
S. intermedium	AT1150	DQ396940	DQ397015	China	Obermayer 8642	GZU	Högnabba (2006)
S. intermedium	AT1163	DQ396946	DQ397020	China	Inoue 28948	TUR	Högnabba (2006)
S. intermedium	Hur 130044	KF928151	KY827019	Coreia	Hur 130044	KoLRI	Park et al (2018)
S. intermedium	Hur 130055	KF928152	KY827020	Coreia	Hur 130055	KoLRI	Park et al (2018)
S. japonicum	AT1162	DQ396945	DQ397019	Coreia	Inoue 28951	TUR	Högnabba (2006)
S. japonicum	Hur 120706	KY660024	KY827021	Coreia	Hur 120706	KoLRI	Park et al (2018)
S. japonicum	Hur 130069	KF644365	KY827022	Coreia	Hur 130069	KoLRI	Park et al (2018)
S. myriocarpum	AT1133	DQ396931	DQ397006	China	Obermayer 8202	GZU	Högnabba (2006)
S. myriocarpum	AT1134	DQ396932	DQ397007	China	Obermayer 8158	GZU	Högnabba (2006)

S. myriocarpum	AT1177	DQ396954	DQ397028	China	Inoue 28950	TUR	Högnabba (2006)
S. nanodes	FH71	DQ396970	DQ397048	Noruega	Løfall bpl-L 9587	0	Högnabba (2006)
S. nigrum	Hur 060664	KF644367	KF644367	Coreia	Hur 060664	KoLRI	Park et al (2018)
S. nigrum	Hur 070924	KF644368	KF644368	Coreia	Hur 070924	KoLRI	Park et al (2018)
S. nivale	FH125	KF682456	KF682459	EUA: Washington	Glew 020928-1	WTU	Högnabba (2014)
S. nivale	FH126	KF682455	KF682460	EUA: Washington	glew 020928-3	Н	Högnabba (2014)
S. octomerellum	Hur 121094	KY660025	KY827025	Coreia	Hur 121094	KoLRI	Park et al (2018)
S. octomerellum	Hur 141479	KP324748	KY827026	Coreia	Hur 141479	KoLRI	Park et al (2018)
S. paschale	AT1035	DQ396897	DQ396977	Finlândia	Ahti 60905	Н	Högnabba (2006)
S. paschale	AT1087	DQ396924	DQ397001	Finlândia	Stenroos 5597	TUR	Högnabba (2006)
S. pendulum	FH64	DQ396969	DQ397041	Japão	Hognabba 247	Н	Högnabba (2006)
S. pileatum	Hur 121815	KP324749	KY827027	Coreia	Hur 121815	KoLRI	Park et al (2018)
S. pileatum	Hur 121822	KF928154	KY827028	Coreia	Hur 121822	KoLRI	Park et al (2018)
S. plicatile	FH238	KF682454	KF682461	Suécia	Nordin 6510	UPS	Högnabba (2014)
S. ramulosum	AT1160	DQ396944	DQ099629	Havaí	Inoue 27242	GZU	Högnabba (2006)

S. rivulorum	FH60	DQ396967	DQ397038	Noruega	Sipman 22112	В	Högnabba (2006)
S. sasakii	AT1186	DQ396957	DQ397030	Japão	Sasaki 13823	TUR	Högnabba (2006)
S. sasakii	AT1187	DQ396958	DQ397031	Japão	Sasaki 13825	TUR	Högnabba (2006)
S. saxatile	AT1078	DQ396918	DQ396996	Finlândia	Stenroos 5591	TUR	Högnabba (2006)
S. saxatile	AT1081	DQ396920	DQ396920	Finlândia	Stenroos 5594	TUR	Högnabba (2006)
S. saxatile	AT1086	DQ396923	DQ397000	Finlândia	Stenroos 5596	TUR	Högnabba (2006)
S. saxatile	AT1089	DQ396926	DQ397003	Finlândia	Stenroos 5600	TUR	Högnabba (2006)
S. saxatile	AT1090	DQ396927	DQ397004	Finlândia	Stenroos 5603	TUR	Högnabba (2006)
S. saxatile	AT1092	DQ396928	DQ397005	Finlândia	Stenroos 5606	TUR	Högnabba (2006)
S. sorediiferum	Hur 130032	KF928155	KY827029	Coreia	Hur 130032	KoLRI	Park et al (2018)
S. sorediiferum	Hur 130046	KF928156	KY827030	Coreia	Hur 130046	KoLRI	Park et al (2018)
S. taeniarum	AT1080	DQ396919	DQ397053	Finlândia	Stenroos 5593	TUR	Högnabba (2006)
S. tomentosum	AT1032	DQ396894	DQ396976	Islândia	Ahti 60910	Н	Högnabba (2006)
S. tomentosum	AT1061	DQ396908	DQ396986	Argentina	Stenroos 5414	TUR	Högnabba (2006)
S. tomentosum	AT1073	DQ396913	DQ396991	Argentina	Stenroos 5428	TUR	Högnabba (2006)

S. tomentosum	AT1074	DQ396914	DQ396992	Argentina	Stenroos 5445	TUR	Högnabbaı (2006)
S. tomentosum	AT1076	DQ396916	DQ396994	Argentina	Stenroos 6610	TUR	Högnabba (2006)
S. tomentosum	AT1084	DQ396921	DQ396998	Finlândia	Stenroos 5607	TUR	Högnabba (2006)
S. tornense	FH78	DQ396975	DQ099632	Noruega	Dahlkild S. n.	Н	Högnabba (2006)
S. urceolatum	AT1193	DQ396959	DQ099624	Suécia	Muhr S. n.	TUR	Högnabba (2006)
S. verruciferum	AT1037	DQ396899	DQ099633	Argentina	Stenroos 5289	TUR	Högnabba (2006)
S. verruculigerum	AT1128	DQ396930	DQ099634	Indonesia	Java, Surdiman S. n.	TUR	Högnabba (2006)
S. verruculigerum	Hur 130015	KP324750	KY827031	Coreia	Hur 130015	KoLRI	Park et al (2018)
S. verruculigerum	Hur 130016	KF644373	KY827032	Coreia	Hur 130016	KoLRI	Park et al (2018)
S. vesuvianum	AT1088	DQ396925	DQ397002	Finlândia	Stenroos 5599	TUR	Högnabba (2006)
S. vesuvianum var. nodulosum	Hur 090157	KF644374	KY827033	Coreia	Hur 090157	KoLRI	Park et al (2018)
S. vesuvianum var. nodulosum	Hur 130038	KF644375	KY827034	Coreia	Hur 130038	KoLRI	Park et al (2018)

1013 Tabela Suplementar

Tabela S2. Sequências utilizadas nesse estudo oriundas do GenBank. Os campos indicados com (-) não foram encontradas as informações
 correspondentes nas bibliografias dos espécimes, nem no GenBank.

Espécie de micobionte/alga	Voucher	Origem Geográfica	Nº de acesso Actina	Referência
verde			GenBank	
Lepraria	Nelsen 3960	USA	EU008704	Nelsen and Gargas
lobificans/Asterochloris sp.				(2007)
Lepraria	Nelsen 3973	USA	EU008707	Nelsen and Gargas
lobificans/Asterochloris sp.				(2007)
Lepraria	Nelsen 3966	USA	EU008697	Nelsen and Gargas
caesioalba/Asterochloris sp.				(2007)
Lepraria sp./Asterochloris sp.	Nelsen 2453	China	EU008716	Nelsen and Gargas
				(2007)
Lepraria cf.	Peksa 234	Slovakia	AM906020	Skaloud and Peksa
caesioalba/Asterochloris friedlii				(2009)
Lepraria cf.	Peksa 235	Slovakia	AM906021	Skaloud and Peksa
caesioalba/Asterochloris friedlii				(2009)
Lepraria	Nelsen 3974	USA: Wisconsin	DQ229898	Nelsen and Gargas
lobificans/Asterochloris sp.				(2006)
Lepraria	Peksa 225	Romania	AM906022	Skaloud and Peksa
caesioalba/Asterochloris friedlii				(2009)
Cladonia	RidkaI6	India	MH382117	Vancurova et al. (2018)
rangiferina/Asterochloris sp.				
Cladonia	RidkaIH31	India	MH382119	Vancurova et al. (2018)
corymbescens/Asterochloris sp.				
Cladonia	Peksa 796	Slovakia	FM955674	Skaloud and Peksa
fimbriata/Asterochloris sp.				(2009)

Cladonia rei/Asterochloris sp.	Peksa 787	Slovakia	FM955675	Skaloud and Peksa (2009)
Stereocaulon sp./Asterochloris sp.	Nelsen 2181b	Costa Rica: San José	DQ229896	Nelsen and Gargas (2006)
Pilophorus cf. cereolus/Asterochloris sp.	Nelsen 2233f	Costa Rica: San José	DQ229895	Nelsen and Gargas (2006)
Cladonia scabriuscula/Asterochloris sp.	Ridka IH20	India: Maharashtra	KP318682	Skaloud et al. (2015)
Stereocaulon cf. obesum/Asterochloris sp.	VancurovaA504	Panama	MH382135	Vancurova et al. (2018)
Lepraria sp./Asterochloris sp.	Nelsen 2211a	Costa Rica	EU008711	Nelsen and Gargas (2007)
Stereocaulon /Asterochloris woessiae	VancurovaA359	Portugal: Madeira	MH382128	Vancurova et al. (2018)
Cladonia foliacea/Asterochloris woessiae	Peksa 1008	Czech Republic:Central Bohemia	AM906049	Skaloud and Peksa (2009)
Stereocaulon azoreum/Asterochloris woessiae	VancurovaA337	Portugal: Madeira	MH382127	Vancurova et al. (2018)
Stereocaulon sp./Asterochloris woessiae	VancurovaO110	Faroe Islands	MH382145	Vancurova et al. (2018)
Lepraria borealis/Asterochloris woessiae	Bayerová 3401	Bulgaria	AM906045	Skaloud and Peksa (2009)
Lepraria caesioalba/Asterochloris woessiae	Peksa 231	Czech Republic	AM906047	Skaloud and Peksa (2009)

Lepraria borealis/Asterochloris woessiae	Bayerová 3402	Bulgaria	AM90604	Skaloud and Peksa
			8	(2009)
Lepraria nylanderiana/Asterochloris woessiae	Peksa 542	Czech Republic:Central	AM90604	Skaloud and Peksa
		Bohemia	6	(2009)
Lepraria nigrocincta/Asterochloris sp.	Nelsen 3637b	Costa Rica	EU008710	Nelsen and Gargas (2007)
Lepraria sp./Asterochloris sp.	Nelsen 2166a	Costa Rica	EU008714	Nelsen and Gargas (2007)
Cladonia macrophylla/Asterochloris sp.	VancurovaO98	Faroe Islands	MH38215 0	Vancurova et al. (2018)
Stereocaulon saxatile/Asterochloris sp.	Talbot KIS 187	Alaska, USA	DQ229897	Nelsen and Gargas (2006)
Stereocaulon alpinum/Asterochloris sp.	VancurovaA37 8	Iceland: Southern Peninsula	MH38212 9	Vancurova et al. (2018)
Stereocaulon saxatile/Asterochloris sp.	VancurovaA39 2	Iceland	MH38213 1	Vancurova et al. (2018)
Lepraria sp./Asterochloris sp.	Nelsen 2585	China	EU008715	Nelsen and Gargas (2007)
Cladonia sp./Asterochloris mediterranea	not informed	Spain: Alicante, Villena	KP257351	Moya et al. (2015)
Lepraria caesioalba/Asterochloris lobophora	Peksa 194	Czech Republic	AM90603	Skaloud and Peksa
			8	(2009)
Lepraria caesioalba/Asterochloris lobophora	Peksa 166	Czech Republic	AM90603	Skaloud and Peksa
			7	(2009)
Lepraria cf. caesioalba/Asterochloris	Peksa 196	Czech Republic	AM90603	Skaloud and Peksa
lobophora			6	(2009)

Lepraria cf. caesioalba/Asterochloris lobophora	Peksa 233	Czech Republic	AM906035	Skaloud and Peksa (2009)
Lepraria borealis/Asterochloris lobophora	Peksa 866	Czech Republic	KP318679	Skaloud et al. (2015)
Diploschistes muscorum/Asterochloris lobophora	Peksa 182	Czech Republic	AM906040	Skaloud and Peksa (2009)
Stereocaulon sp./Asterochloris lobophora	VancurovaDS3.1	Russia: Eastern Siberia	MH382136	Vancurova et al. (2018)
Cladonia cf. bacillaris/Asterochloris sp.	Nelsen 3950	USA: Pennsylvania	DQ229892	Nelsen and Gargas (2006)
Stereocaulon alpinum/Asterochloris sp.	VancurovaL958	Austria: Tyrol	MH382141	Vancurova et al. (2018)
Stereocaulon cf. alpinum/Asterochloris sp.	VancurovaO50	Canada	MH382146	Vancurova et al. (2018)
Anzina carneonivea/Asterochloris phycobiontica	not informed	Italy:Trento	AM906042	Skaloud and Peksa (2009)
Lepraria neglecta/Asterochloris phycobiontica	Bayerová 3606	Ukraine:East Carpathians	AM906043	Skaloud and Peksa (2009)
Lepraria neglecta/Asterochloris phycobiontica	Bayerová 3600	Ukraine:East Carpathians	AM906044	Skaloud and Peksa (2009)
Stereocaulon tomentosum/Asterochloris sp.	Talbot 400	USA: Alaska	DQ229893	Nelsen and Gargas (2006)
Stereocaulon sp./Asterochloris sp.	VancurovaL1074	USA: Alaska	MH382137	Vancurova et al. (2018)

Stereocaulon	VancurovaL1642	Greenland: Disko Island	MH382138	Vancurova et al. (2018)
alpinum/Asterochloris sp.				
Lepraria	Peksa 551	Czech Republic	FM955671	Skaloud and Peksa (2009)
caesioalba/Asterochloris				
echinata				
Lepraria sp./Asterochloris	Peksa 186	Czech Republic	AM906017	Skaloud and Peksa (2009)
echinata				
Lepraria sp./Asterochloris	Peksa 185	Czech Republic	FM955670	Skaloud and Peksa (2009)
echinata				
Lepraria rigidula/Asterochloris	Peksa 855	Czech Republic	FN556047	Peksa and Skaloud (2011)
<i>sp</i> .				
Diploschistes	Peksa 495	Czech Republic	KP318681	Skaloud et al. (2015)
muscorum/Asterochloris sp.				
Xanthoria	not informed	Italy	AM906030	Skaloud and Peksa (2009)
parietina/Asterochloris italiana				
Stereocaulon	VancurovaA10	Argentina: Tierra del	MH382121	Vancurova et al. (2018)
alpinum/Asterochloris italiana		Fuego		
Trebouxia magna/Asterochloris	not informed	not informed	DQ229894	Nelsen and Gargas (2006)
<i>sp</i> .				
Stereocaulon	VancurovaO70	Portugal: Madeira	MH382147	Vancurova et al. (2018)
azoreum/Asterochloris sp.				
Stereocaulon sp./Asterochloris	VancurovaA14	Argentina: Neuquen	MH382124	Vancurova et al. (2018)
<i>sp</i> .				
Stereocaulon	Talbot 101	USA: Alaska	DQ229891	Nelsen and Gargas (2006)
paschale/Asterochloris sp.				
Stereocaulon sp./Asterochloris	VancurovaO10	Mexico: Oaxaca	MH382144	Vancurova et al. (2018)
<i>sp</i> .				
Cladonia fimbriata/Asterochloris	Peksa 815	Slovakia	FM955676	Skaloud and Peksa (2009)
<i>sp</i> .				

Cladonia rei/Asterochloris sp.	Peksa 921	Czech Republic:East Bohemia	FM955677	Skaloud and Peksa (2009)
Cladonia mitis/Asterochloris irregularis	Peksa 789	Slovakia:Gelnica	AM906029	Skaloud and Peksa (2009)
Stereocaulon alpinum or Stereocaulon	VancurovaL1645	Greenland: Ilulissat	MH382139	Vancurova et al. (2018)
paschale/Asterochloris irregularis				
Stereocaulon	VancurovaL1646	Greenland: Disko Island	MH382140	Vancurova et al. (2018)
alpinum/Asterochloris irregularis				
Stereocaulon	Talbot 167	USA: Alaska	DQ229890	Nelsen and Gargas (2006)
subcoralloides/Asterochloris sp.			-	
Stereocaulon	Peksa 999	Czech Republic:Bohemian	AM906028	Skaloud and Peksa (2009)
pileatum/Asterochloris irregularis		Switzerland		
Stereocaulon sp./Asterochloris	not informed	Iceland:Langa River	AM906027	Skaloud and Peksa (2009)
irregularis				
Stereocaulon	VancurovaL992	Austria: Styria	MH382143	Vancurova et al. (2018)
vesuvianum/Asterochloris				
irregularis				
Stereocaulon	Talbot 153	USA: Alaska	DQ229889	Nelsen and Gargas (2006)
botryosum/Asterochloris sp.				
Stereocaulon	VancurovaL988	USA: Alaska	MH382142	Vancurova et al. (2018)
paschale/Asterochloris sp.				
Stereocaulon	Talbot 281	USA: Alaska	DQ229888	Nelsen and Gargas (2006)
vesuvianum/Asterochloris sp.				
Stereocaulon	VancurovaO75	Portugal: Madeira	MH382148	Vancurova et al. (2018)
pileatum/Asterochloris glomerata				

Cladonia squamosa/Asterochloris glomerata	not informed	USA:Massachusetts, Leverett	AM906025	Skaloud and Peksa (2009)
Stereocaulon evolutoides/Asterochloris	not informed	USA:Massachusetts, Mt Wachusett, Princeton	AM906024	Skaloud and Peksa (2009)
glomerata Diploschistes muscorum/Asterochloris	Peksa 498	Czech Republic	AM906026	Skaloud and Peksa (2009)
Pilophorus acicularis/Asterochloris magna	not informed	USA:Washington, Olympic National Park	AM906041	Skaloud and Peksa (2009)
Cladonia cristatella/Asterochloris erici	not informed	USA:Massachusetts, Whitinsville	AM906018	Skaloud and Peksa (2009)
Cladonia furcata/Asterochloris	RidkaIH23	India	MH382118	Vancurova et al. (2018)
Stereocaulon vesuvianum/Asterochloris sp.	VancurovaO76	Faroe Islands	MH382149	Vancurova et al. (2018)
Lepraria rigidula/Asterochloris gaertneri	Peksa 236	Czech Republic	AM906023	Skaloud and Peksa (2009)
Lepraria rigidula/Asterochloris gaertneri	Peksa 877	Czech Republic	FM955672	Skaloud and Peksa (2009)
Lepraria rigidula/Asterochloris gaertneri	Peksa 900	Czech Republic	FM955673	Skaloud and Peksa (2009)
Lepraria caesioalba/Asterochloris sp.	Peksa 873	USA	FN556051	Peksa and Skaloud (2011)
Lepraria sp./Asterochloris sp.	Peksa 870	USA	FN556052	Peksa and Skaloud (2011)
Stereocaulon cf. alpinum/Asterochloris sp.	VancurovaA386	Iceland	MH382130	Vancurova et al. (2018)

Stereocaulon	Peksa 1011	Slovakia	MH382116	Vancurova et al. (2018)
nanodes/Asterochloris sp.				
Lapraria alpina/Asterochloris	Peksa 860	Spain	FN556048	Peksa and Skaloud
<i>sp</i> .				(2011)
Stereocaulon	VancurovaA11	Argentina: Tierra del	MH382122	Vancurova et al. (2018)
vesuvianum/Asterochloris sp.		Fuego		
Stereocaulon	VancurovaA3	Argentina: Santa Cruz	MH382125	Vancurova et al. (2018)
vesuvianum/Asterochloris sp.				
Stereocaulon cf.	VancurovaA1	Argentina: Santa Cruz	MH382120	Vancurova et al. (2018)
alpinum/Asterochloris sp.				
Stereocaulon	VancurovaA319	Costa Rica: PN Chirripo	MH382126	Vancurova et al. (2018)
_myriocarpum/Asterochloris sp.				
Stereocaulon	VancurovaA498	Venezuela: Pico Bolivar	MH382133	Vancurova et al. (2018)
_myriocarpum/Asterochloris sp.				
Stereocaulon	VancurovaA496	Venezuela: Pico Bolivar	MH382132	Vancurova et al. (2018)
myriocarpum/Asterochloris sp.				
Stereocaulon	VancurovaA502	Venezuela: Pico Bolivar	MH382134	Vancurova et al. (2018)
_myriocarpum/Asterochloris sp.				
Stereocaulon	VancurovaA13	Argentina: Tierra del	MH382123	Vancurova et al. (2018)
vesuvianumAsterochloris sp.		Fuego		
Lepraria neglecta/Asterochloris	Peksa 207	Czech Republic	AM906034	Skaloud and Peksa
leprarii				(2009)
Lepraria neglecta/Asterochloris	Peksa 183	Czech Republic	AM906031	Skaloud and Peksa
leprarii				(2009)
Lepraria	Peksa 173	Czech Republic	AM906032	Skaloud and Peksa
caesioalba/Asterochloris				(2009)
leprarii				

Lepraria	Peksa 204	Czech Republic	AM906033	Skaloud and Peksa
caesioalba/Asterochloris				(2009)
leprarii				
Stereocaulon dactylophyllum/	not informed	USA:Vermont, Stowe	AM906019	Skaloud and Peksa
Asterochloris excentrica				(2009)
	Lepraria caesioalba/Asterochloris leprarii Stereocaulon dactylophyllum/ Asterochloris excentrica	LeprariaPeksa 204caesioalba/AsterochlorisleprariiStereocaulon dactylophyllum/not informedAsterochloris excentrica	LeprariaPeksa 204Czech Republiccaesioalba/AsterochlorisIeprariiIeprariiStereocaulon dactylophyllum/not informedUSA:Vermont, StoweAsterochloris excentricaImage: Content of the second of the se	LeprariaPeksa 204Czech RepublicAM906033caesioalba/Asterochloris leprariiImage: Construct of the second

Tabela S3. Sequências utilizadas nesse estudo oriundas do GenBank de cianobactéria. Os campos indicados com (-) não foram encontradas as
 informações correspondentes nas bibliografias dos espécimes, nem no GenBank.

1041	Espécie do	Voucher	Origem geográfica	Nº de acesso 16S	Referência
	micobionte/cianobactéria			GenBank	
	Nephroma arcticum/Nostoc sp.	not informed	Lapland, Jehkats	JQ007763	Kaasalainen et al. (2012)
	Nephroma arcticum/Nostoc sp.	JR08_B	Finland, Saarijärvi	KF359685	Kaasalainen et al. (2015)
	Nephroma arcticum/Nostoc sp.	UK10_564	Finland, Saarijärvi	KF359686	Kaasalainen et al. (2015)
	not informed/Nostoc sp.	not informed	not informed	LC103276	Segawa et al. (2017)
	Nephroma arcticum/Nostoc sp.	JR08_H18	Finland, Laukaa	KF359688	Kaasalainen et al. (2015)
	Peltigera evansiana/Nostoc sp.	UK08_159	USA, Oregon	KF359715	Kaasalainen et al. (2015)
	Stereocaulon	Stenroos 5428	Argentina: Tierra del	DQ265952	Hognabba (2006)
	tomentosum/Nostoc sp.		Fuego		
	Protopannaria	UK08_120	Finland, Kuhmo	KF359684	Kaasalainen et al. (2015)
	pezizoides/Nostoc sp.				
	cold-fumarole soil (elev. 5824	not informed	Socompa Volcano,	FJ592873	Costello et al. (2009)
	m)/Nostoc sp.		Andes		
	Nephroma arcticum/Nostoc sp.	not informed	Lapland, Jehkats	JQ007764	Kaasalainen et al. (2012)
	Nephroma expallidum/Nostoc	Hansen, 31 vii 1998	SW Greenland	AY333642	Lohtander et al. (2003)
	<i>sp</i> .				
	Protopannaria	JR08_A	Finland, Saarijärvi	KF359687	Kaasalainen et al. (2015)
	pezizoides/Nostoc sp.				
	Nephroma expallidum/Nostoc	not informed	not informed	AY328896	Oksanen et al. (2004)
	<i>sp</i> .				
	Peltigera lichen	not informed	Chile	KX255143	Zuniga et al. (2017)
	substrate/Nostoc sp.				
	Peltigera membranacea/Nostoc	D. Bastian & M. Dignard	Canada	DQ185248	O'Brien et al. (2005)
	sp.	575			
	Peltigera sp./Nostoc sp.	not informed	Chile	KX255147	Zuniga et al. (2017)

Permafrost darkness/Nostoc	not informed	Russia: Siberia, Kolyma	EU282432	Vishnivetskaya (2009)
sp.		Lowland		
Peltigera evansiana/Nostoc sp.	not informed	USA, OR, Marion Co.	JQ007784	Kaasalainen et al. (2012)
Peltigera praetextata/Nostoc sp.	Rikkinen V2a	NW U.S.A.	AY333639	Lohtander et al. (2003)
Peltigera lichen	not informed	Chile	KX255127	Zuniga et al. (2017)
substrate/Nostoc sp.				
<i>Peltigera</i> lichen	not informed	Chile	KX255130	Zuniga et al. (2017)
substrate/Nostoc sp.				
<i>Peltigera</i> lichen	not informed	Chile	KX255092	Zuniga et al. (2017)
substrate/Nostoc sp.				
<i>Peltigera</i> lichen	not informed	Chile	KX255084	Zuniga et al. (2017)
substrate/Nostoc sp.				
<i>Peltigera</i> lichen	not informed	Chile	KX255064	Zuniga et al. (2017)
substrate/Nostoc sp.				
Collema sp./Nostoc sp.	JR000734	China, Hunan	KF359712	Kaasalainen et al. (2015)
<i>Peltigera</i> lichen	not informed	Chile	KX255279	Zuniga et al. (2017)
substrate/Nostoc sp.				
<i>Peltigera</i> lichen	not informed	Chile	KX255172	Zuniga et al. (2017)
substrate/Nostoc sp.				
Peltigera rufescens/Nostoc sp.	F. Lutzoni 99.07.18-24	Poland	DQ185249	O'Brien et al. (2005)
not informed/Nostoc commune	not informed	China	EU178142	Unpublished
Soil/Nostoc punctiforme	M. Lefèvre SAG 71.79	France	DQ185258	O'Brien et al. (2005)
mature forest of Lenga Beech	not informed	Chile: Tierra del Fuego	KC514662	Unpublished
(Nothofagus pumilio)/Nostoc				
sp.				
free-living/Nostoc sp.	not informed	not informed Norway: Kvaloya		Unpublished

Pannaria obscura/Nostoc sp.	Tibell 14002 (1983)	14002 (1983) Australia		Elvebakk et al. (2008)
not informed/Nostoc sp.	not informed	Norway: Skibotn	EU022742	Unpublished
Nothofagus pumilio	not informed	Chile: Aysen Region,	KF718392	Zuniga et al. (2015)
forest/Nostoc sp.		Coyhaique National		-
		Reserve		
Peltigera lichen	era lichen not informed Chile		KX255239	Zuniga et al. (2017)
substrate/Nostoc sp.				
Peltigera lichen	not informed	Chile	KX255207	Zuniga et al. (2017)
substrate/Nostoc sp.				
mature forest of Lenga Beech	not informed	Chile: Tierra del Fuego,	KC514661	Zuniga et al. (2017)
(Nothofagus pumilio)/Nostoc sp.		Karukinka's Natural Park		
Peltigera lichen substrate,	not informed	Antarctica	KX255325	Zuniga et al. (2017)
volcanic hillside,				
Deception/Nostoc sp.				
Peltigera lichen substrate,	not informed	Chile	KX255274	Zuniga et al. (2017)
grassland, Navarino/Nostoc sp.				
Peltigera lichen substrate,	not informed	Antarctica	KX255334	Zuniga et al. (2017)
volcanic hillside,				
Deception/Nostoc sp.				
not informed/Nostoc	not informed	China	EU178144	Unpublished
sphaeroides				
not informed/Nostoc	not informed	China	EU178143	Unpublished
flagelliforme				
Pseudocyphellaria gilva/Nostoc	Elvebakk 06:202	Chile	EF536023	Elvebakk et al. (2008)
<i>sp</i> .				
Pannaria andina/Nostoc sp.	Elvebakk 06:307	Chile	EF536022	Elvebakk et al. (2008)
Soil/Nostoc sp.	A. Watanabe PCC 6720	Indonesia	DQ185240	O'Brien et al. (2005)
not informed/Nodularia sp.	not informed	not informed	AB075991	Tomitani et al. (2006)

not	not informed	Japan:Shiga, Otsu,	AB271212	Ishikawa et al. (2006)
spiroides		Lake Diwa		
Coccocarpia	Lücking et al. R17	Costa Rica	EU818951	Lucking et al. (2009)
stellata/Scytonema sp				
Dictyonema	Lücking et al. R06	Costa Rica	EU818954	Lucking et al. (2009)
glabratum/Scytonema sp				
Dictyonema	Lücking 16561	Costa Rica	EU818966	Lucking et al. (2009)
sericeum/Scytonema sp				
Dictyonema	Lücking et al. R16	Costa Rica	EU818948	Lucking et al. (2009)
glabratum/Scytonema sp				
Dictyonema	Lücking et al. R19	Costa Rica	EU818957	Lucking et al. (2009)
glabratum/Scytonema sp.				
Dictyonema	Lücking et al. R11	Costa Rica	EU818955	Lucking et al. (2009)
glabratum/Scytonema sp.				
Lichinodium	not informed	Canada	KT883991	Cornejo & Scheidegger (2016)
sp./Rhizonema sp.				
Dictyonema	Lücking et al. R18	Costa Rica	EU818956	Lucking et al. (2009)
glabratum/Scytonema sp.				
Parmeliella	not informed	Canada	KT883970	Cornejo & Scheidegger (2016)
parvula/Scytonema sp.				
Stereocaulon	Malcom & Vezda;	New Zealand	DQ265951	Stenroos et al. 2006
fronduliferum/Nostoc sp.	Vezda exs. 279			
Coccocarpia	Lücking et al. R13	Costa Rica	EU818950	Lucking et al. (2009)
palmicola/Scytonema sp.				
Dictyonema	Lücking et al. R20	Costa Rica	EU818958	Lucking et al. (2009)
glabratum/Scytonema sp.				

1051	Dictyonema	Nelsen 3754	Costa Rica	EU818952	Lucking et al. (2009)
	aeruginosulum/Scytonema sp.				
	Coccocarpia	Lücking et al. R03	Costa Rica	EU818949	Lucking et al. (2009)
	palmicola/Scytonema sp.				
	"soil"/Westiellopsis sp.	not informed	Papua New Guinea	AJ544222	Gugger et al. (2004)
	"cryptoendolithic in	not informed	South Africa	AJ544080	Gugger et al. (2004)
	sandstone in				
	freshwater''/Nostochopsis				
	lobatus				
	not informed/Hapalosiphon	not informed	not informed	AB093484	Unpublished
	delicatulus				
	not informed/Fischerella	PCC 7414	New Zealand	AF132788	Turner et al. (1999)
	muscicola				
	''Dinghu	not informed	China	KJ786940	Song et al (2015)
	mountain''/Stigonema				
	dinghuense				
	Stereocaulon	Inoue 28958	Japan	DQ265950	Stenroos et al. 2006
	exutum/Stigonema sp.				
	''Jureira-Itatins Ecological	not informed	Brazil	MK471332	Unpublished
	Station on rock''/Stigonema				
	<i>sp</i> .				
	Sphagnum bog/Stigonema	not informed	Germany	AJ544082	Gugger & Hoffmann
	ocellatum				(2004)
	not informed/Scytonema sp.	not informed	not informed	AB093483	Unpublished
	not informed/Scytonema sp.	not informed	not informed	AY069954	Unpublished
	"geothermal	not informed	New Zealand	DQ235801	Unpublished
	rock''/Scytonema sp.				-
	Crystal Cave,	PCC 7110	Bermuda	AF132781	Tomitani et al. (2006)
	limestone/Scytonema				
	hofmanni				

	Crystal Cave,	PCC 7110	Bermuda	AB075996	Tomitani et al. (2006)
	limestone/Scytonema hofmanni				
	Periphyton/Scytonema	not informed	Brazil	KC682101	Komarek et al. (2013)
	arcangeli				
	biological soil crust/Scytonema	not informed	USA	DQ531698	Yeager et al. (2007)
	sp. (No artigo aparece como S.				
	hyalinum)				
	Sphagnum bog/Gloeocapsa sp.	PCC 73106	Switzerland	AB039000	Ishida et al. (2001)
	kopara microbial	Not Informed	French	AJ621832	Unpublished
	mat/Chroococcus submarinus		Polynesia:Tuamotu		
			archipelago		
	"seagrasses"/Gloeothece sp.	Not Informed	Kenia	DQ072918	Uku et al. (2007)
	''quartz	Not Informed	China	DQ914863	Pointing et al. (2007)
	hypoliths''/Chroococcidiopsis				
54					
55					
6					
7					
-					
8					
9					
0					
1					

Figura 2. A) Mapas dos pontos de coleta com a indicação dos haplótipos de ITS de cada lugar. B) *Median-joining network* com sequências
do marcador ITS de *Stereocaulon alpinum* e suas distribuições geográficas na região sul da América do Sul e Antártica baseado nas. No quadro 1
é ilustrado os tipos de haplótipos encontrados no sul da América do Sul e Península Antártica. Enquanto no quadro 2 é apresentado a distribuição
e variação dos haplótipos apenas para a Antártica. Já no quadro 3 é representado a rede de haplótipos encontrados na espécie *S. alpinum*, bem como
sua frequência de acordo com o tamanho do círculo.

Figura 5. a-l: *Stereocaulon alpinum*. a, Pseudopodécio decumbente; b, Pseudopodécio ereto; c, Filocládios verruciformes; d, Filocládios esquamuliformes, confluentes; e, Filocládios esquamuliformes, ramificados e sobrepostos; f, Cefalódios esverdeados cobertos por um tomento fino; g, Cefalódios amarronzados e fissurados; h, Seção transversal de um cefalódio; i, filamentos de *Nostoc* agrupados em capsulas rodeadas por hifas entrelaçadas. j, tomento rosado; k, Cefalódio coberto por um tomento espesso; l, Apotécio ondulado com disco marromenegrecido. Escalas: a-b, 1.0 cm; h, 20 tr; i, 50 µm; c-l = 1 µ.

Stereocaulon nivale FH125
Stereocaulon nivale FH126
Stereocaulon tornense FH78
Stereocaulon plicatile FH238
Stereocaulon cumulatum FH7
Stereocaulon urceolatum AT1193
Stereocaulon delisei FH69
Stereocaulon corticatulum AT1047
Stereocaulon corticatulum AT1048
Stereocaulon ramulosum AT1160
Stereocaulon fronduliferum FH6
Stereocaulon alpestre AT1031
L Stereocaulon rivulorum FH60
Stereocaulon alpinum AT1036_Itália
Stereocaulon alpinum AT1194_Àustria
 Stereocaulon botryosum AT1175
Stereocaulon farinaceum FH74
Stereocaulon glareosum FH77
Stereocaulon intermedium Hur130044
Stereocaulon intermedium Hur130055
Stereocaulon sasakii AT1186
Stereocaulon sasakii AT1187
Stereocaulon tomentosum AT1032
Stereocaulon tomentosum AT1061
Stereocaulon tomentosum AT1073
Stereocaulon tomentosum AT1074
Stereocaulon tomentosum AT1076
Stereocaulon tomentosum AT1084
Stereocaulon nanodes FH71
Stereocaulon verruculigerum AT1128
— Stereocaulon depreaultii AT1164
Stereocaulon exutum AT1165
Stereocaulon exutum Hur130031
Stereocaulon octomerellum Hur121094
Stereocaulon octomerellum Hur141479
Stereocaulon pileatum Hur121822
Stereocaulon pileatum Hur121815
Stereocaulon japonicum AT1162
Stereocaulon japonicum Hur120706
Stereocaulon japonicum Hur130069
Stereocaulon verruculigerum Hur130015
Stereocaulon verruculigerum Hur130016
Stereocaulon exutum AT1170

0.04

Landing and the second Asterochioris friedili from Lepraria ct. caesioatha (AMA9060201) terochuoris friedill from Lennaria ct. caeesioatua (AM90692.11) Astronomic and a state of the s Asterochloris sp. from Lepraria Jobificans (ELU00870A) Asterochloris sp. from Cladonia rangiferina (MH382117) ⁴⁵ferochions woessige from Caronia fulgeed AM006491 ^{Asterochloris} ^{woessige from Ste^{reocaulon azoreun} (MH382128) *H*} Asterochloris sp. from Cladonia fimbriata (FM955674) Kasterochloris sp. from Leprania lobificans (EU008707) Asterochloris sp. from Cladonia rei (FM955675) L Asterochloris friedlii from Lepraria caesioalba (AM906022) ^{Aster}ochloris wo_{essiae} from Stereo_{caulon} azoreum (MH382127) terochion's sp. from Lepraria sp. (EU008716) Asterochloris sp. from Lepraria sp. (EU008711) — Asterochloris sp. from Lepraria caesioalba (EU008697) Asterothor's woossile front epiere creat Pare officies and a for land the second and the second sec Asterochloris sp. from Pilophorus cf. cereolus (DQ229895)_ Asterochloris sp. from Stereocaulon sp. (DQ229896)= Cladonia corymbescens (MH382119) Asterochloris sp. from Cladonia scabriuscula (KP318682)— Asterochloris sp. from Stereocaulon cf. obesum (MH382135)—