UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL FACULDADE DE ENGENHARIAS, ARQUITETURA E URBANISMO E GEOGRAFIA

VICTOR AULER DE ALMEIDA PRADO

MEDIÇÕES DE POTÊNCIA SEGUNDO AS TEORIAS DE POTÊNCIA CONSERVATIVA (TPC) E IEEE 1459-2010 IMPLEMENTADAS COM REDUZIDA TAXA DE AMOSTRAGEM

CAMPO GRANDE – MS 2021 VICTOR AULER DE ALMEIDA PRADO

MEDIÇÕES DE POTÊNCIA SEGUNDO AS TEORIAS DE POTÊNCIA CONSERVATIVA (TPC) E IEEE 1459-2010 IMPLEMENTADAS COM REDUZIDA TAXA DE AMOSTRAGEM

Dissertação apresentada como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica pelo Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Mato Grosso do Sul – UFMS.

Área de concentração: Processamento Eletrônico de Energia

Orientador: Prof. Dr. Moacyr Aureliano Gomes de Brito

CAMPO GRANDE – MS 2021

VICTOR AULER DE ALMEIDA PRADO

MEDIÇÕES DE POTÊNCIA SEGUNDO AS TEORIAS DE POTÊNCIA CONSERVATIVA (TPC) E IEEE 1459-2010 IMPLEMENTADAS COM REDUZIDA TAXA DE AMOSTRAGEM

Dissertação apresentada como requisito parcial para obtenção do título de Mestre em Engenharia Elétrica pelo Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Mato Grosso do Sul – UFMS.

Área de concentração: Processamento Eletrônico de Energia

Banca examinadora

Prof. Dr. Moacyr Aureliano Gomes de Brito (orientador) UFMS

> Prof. Dr. Ruben Barros Godoy UFMS

Prof. Dr. Leandro Castilho Brolin UTFPR

> CAMPO GRANDE – MS 2021

Dedico este trabalho à minha querida e amada esposa Juliana, por todo apoio e compreensão durante seu desenvolvimento, à minha filha Susana, e aos meus queridos pais, Luiz e Maria de Lourdes, por sempre me apoiarem em meus projetos.

AGRADECIMENTOS

Gostaria de agradecer a Deus primeiramente, por me permitir realizar este trabalho, provendo todo o necessário para que pudesse ser concluído.

Agradeço imensamente ao meu orientador, professor Moacyr Aureliano Gomes de Brito, por todo suporte prestado, sempre com muita prontidão, e por sua paciência com minhas dificuldades.

Também gostaria de agradecer a todos os professores do Programa de Pós-Graduação em Engenharia Elétrica da UFMS, pelas boas aulas ministradas, com todo zelo pelo bom ensino e desenvolvimento dos alunos: professores Ruben Barros Godoy, Luigi Galotto Junior, Raymundo Cordero Garcia, João Onofre Pereira Pinto, Edson Antonio Batista e a todos com quem tive o prazer de ter aulas.

Além dos professores, contei com o auxílio de bons amigos no Mestrado: Leandro Takeshi, Thyago Estrabis, Felipe Monteiro, Júlio César Lescano, Larissa Rodrigues, Pedro Henrique, entre outros.

Um agradecimento especial ao pessoal da ENG por me dar oportunidade de realizar projeto de pesquisa: João Carlos Siqueira e Lucas Aguirre.

Para que o trabalho fosse realizado foi imprescindível o apoio e compreensão de minha querida esposa, Juliana Boldrine Abrita de Almeida Prado, a quem sou muito grato. Também muito importante para este trabalho, foram meus pais, Luiz e Maria de Lourdes, sempre me incentivando em meus projetos.

Neste período também tive a graça de contar com o apoio de Padre Bruno Capistrano e Padre Emilson José Bento, orientando-me nos momentos difíceis.

Gostaria de agradecer aos queridos amigos, Renato Ferreira, Paula Dallagnol, Raphael Medina e Daniela Vieira, por nossas reuniões, que foram bons momentos de descanso do trabalho.

Por fim, gostaria de agradecer à CAPES pelo suporte para a realização deste trabalho.

"Graças a sua mesa de trabalho, junto da qual exercitava o próprio ofício juntamente com Jesus, José aproximou o trabalho humano do mistério da Redenção."

RESUMO

O trabalho abordou duas teorias de potência modernas, a Teoria da Potência Conservativa (TPC) e a Teoria de Potência IEEE 1459-2010, tendo por objetivo realizar otimização nos cálculos de potência com uma taxa de amostragem dos sinais reduzida. Para que a amostragem incorresse em cálculos com exatidão e precisão aceitáveis, foi necessário realizar um projeto para encontrá-la. A partir de simulações computacionais com amostragem em 8 kHz foi observado que esta apresentava erros inferiores a 5%, logo, foram realizados cálculos para encontrar uma frequência inferior a 300 Hz, mas que utilizasse um número de amostras próximo ao de 8 kHz. Além das potências ativa e reativa, novas medidas de potência foram incluídas, considerando os desbalanceamentos da carga e distorções nas formas de onda, descrevendo-se, também, os métodos de cálculo. Foram realizadas simulações computacionais, no domínio discreto, com as referidas teorias abordando um circuito trifásico RL desbalanceado e um circuito trifásico não-linear desbalanceado. Feitas as simulações, foram realizados testes de hipóteses em cada uma das medidas de potência, que comprovaram exatidão e precisão aceitáveis utilizando a frequência de amostragem inferior a 300 Hz. De trinta e uma medições de potência realizadas, 70% tiveram erro percentual médio inferior a 5% e em 61,3%, o erro médio foi inferior a 2%. Assim, conseguiu-se redução do custo computacional para os cálculos de potência.

Palavras-chave: Amostragem reduzida. Harmônicos. IEEE 1459-2010. Teorias de potência moderna. Teoria de Potência Conservativa.

ABSTRACT

This paper presented two modern power theories: Conservative Power Theory (CPT) and IEEE 1459-2010 Power Theory, aiming for the improvement of the algorithms responsible for power calculations using reduced sample rate, lower than 300 Hz. In order to achieve such sample rate that incurred calculation with acceptable accuracy and precision, it was necessary to build a project. Within computer simulations made with 8 kHz sample rate, it was noticed errors lower than 5 percent, hence, calculation were made to discover a sample rate lower than 300 Hz, even though, with the same amount of samples of 8 kHz. Beyond active and reactive power, new power measurements were included, considering unbalanced loads and waveform distortions, and their mathematical methods were described as well. Computer simulations were performed using the theories in discrete time domain for an unbalanced RL three-phase circuit and for an unbalanced non-linear three-phase circuit. Afterwards, hypotheses testing were done for each power measurement, that assured acceptable accuracy and precision using a sample rate lower than 300 Hz. Among the thirty one power measurements, the mean percentage errors were smaller than 5% in 70% of the cases and smaller than 2% in 61,3% of them. Hence, a computational cost drop was fulfilled for power calculations.

Keywords: Conservative Power Theory. Harmonics. IEEE 1459-2010. Modern power theories. Reduced sample rate.

LISTA DE TABELAS

Tabela 1 – Circuito RL desbalanceado	58
Tabela 2 – Cargas trifásicas do circuito RL desbalanceado	59
Tabela 3 – Parâmetros do circuito não-linear desbalanceado	60
Tabela 4 – Cargas trifásicas do circuito não-linear	61
Tabela 5 – Potências de referência – TPC – carga RL	70
Tabela 6 – Potências em 297,766779 Hz – TPC – carga RL	71
Tabela 7 – Erros percentuais médios –TPC – carga RL	71
Tabela 8 – Potências de referência – IEEE – carga RL	72
Tabela 9 – Potências em 297,766779 Hz – IEEE – carga RL	72
Tabela 10 – Erros percentuais médios – IEEE – carga RL	73
Tabela 11 – Potências de referência –TPC – carga não-linear	74
Tabela 12 – Potências em 297,766779 Hz –TPC – carga não-linear	74
Tabela 13 – Erros médios –TPC – carga não-linear	75
Tabela 14 – Potências de referência – IEEE – carga não-linear	76
Tabela 15 – Potências em 297,766779 Hz – IEEE – carga não-linear	76
Tabela 16 – Erros médios – IEEE – carga não-linear	77
Tabela 17 – Componentes da face superior da placa	98
Tabela 18 – Componentes do verso da placa	99
Tabela 19 – Teste de Mann-Whitney – tratamento dos dados	102
Tabela 20 – Valores críticos para teste de Mann-Whitney; α=0,05 bicaudal.	104
Tabela 21 – Ordenação dos dados para teste de Levene	106
Tabela 22 – Distribuição F; α=0,05 ; Valores críticos	108

LISTA DE FIGURAS

Figura 1 – Amostragem em 300 Hz e amostragem defasada	53
Figura 2 - Amostragem na frequência reduzida	54
Figura 3 – Circuito RL desbalanceado	58
Figura 4 – Tensões e Correntes – Carga Z1- RL desbalanceada	59
Figura 5 – Circuito não-linear desbalanceado	60
Figura 6 – Tensões - Carga Z1 não-linear desbalanceada	61
Figura 7 – Correntes - Carga Z1 não-linear desbalanceada	62
Figura 8 – TPC: Medições de potência	63
Figura 9 – TPC: Potência ativa balanceada	64
Figura 10 – TPC: Potência desbalanceada	64
Figura 11 – TPC: Potência void	65
Figura 12 – IEEE: Medições de potência	65
Figura 13 – IEEE: Potência aparente efetiva	66
Figura 14 – IEEE: Potências de componentes simétricas	67
Figura 15 – IEEE: Pot. desbalanceada e pot. com distorção harmônica	68
Figura 16 – Erros percentuais – TPC Pot A – Circuito RL desbalanceado	79
Figura 17 – Erros percentuais – TPC Pot A – Circuito não-linear	79
Figura 18 – Erros percentuais – IEEE Pot Se – Circuito RL desbalanceado	80
Figura 19 – Erros percentuais – IEEE Pot Se – Circuito não-linear	80
Figura 20 – Teoria TPC - Potência Aparente (A)	81
Figura 21 – Teste de Mann-Whitney – Teoria IEEE	85
Figura 22 – Teste de Mann-Whitney –Teoria IEEE (cont.)	85
Figura 23 – Teste de Mann-Whitney – Teoria TPC	86
Figura 24 – Teste de Levene – Teoria IEEE	89
Figura 25 – Teste de Levene – Teoria TPC	89
Figura 26 – Transformador ZMPT101B	92
Figura 27 – Condicionamento do sinal de tensão: primeiro estágio	94
Figura 28 – Condicionamento do sinal de tensão: segundo estágio	96
Figura 29 – Circuito de alimentação da placa de tensão	97
Figura 30 – Face superior do condicionamento de tensão	99

SUMÁRIO

1 INTRODUÇÃO	13
2 FUNDAMENTAÇÃO TEÓRICA	15
2.1 Teoria da Potência Conservativa – TPC	15
2.1.1 Operadores Matemáticos	16
2.1.2 Potência instantânea	18
2.1.3 Energia reativa instantânea	18
2.1.4 Definições de potência e energia	19
2.1.5 Correntes ativa, reativa e void – redes monofásicas	20
2.1.6 Corrente ativa dispersa	21
2.1.7 Corrente reativa dispersa	22
2.1.8 Potências – redes monofásicas	23
2.1.9 Potência reativa	24
2.1.10 Potência void	25
2.1.11 Sistemas polifásicos	25
2.1.12 Correntes balanceadas e desbalanceadas	26
2.2 Teoria de Potência IEEE 1459-2010	30
2.2.1 Monofásico senoidal	30
2.2.1.1 Potência ativa	31
2.2.1.2 Potência reativa	31
2.2.1.3 Potência aparente	32
2.2.1.4 Fator de potência	32
2.2.2 Monofásico não-senoidal	33
2.2.2.1 Potência instantânea	34
2.2.2.2 Potência ativa	36
2.2.2.3 Potência reativa fundamental	36
2.2.2.4 Potência aparente	36
2.2.2.5 Potência não-ativa	38
2.2.3 Trifásico senoidal balanceado	38
2.2.3.1 Potência ativa	39
2.2.3.2 Potência reativa	40
2.2.3.3 Potência aparente	40

2.2.4 Trifásico senoidal desbalanceado	40
2.2.4.1 Potência ativa	40
2.2.4.2 Componentes simétricas para potência ativa	41
2.2.4.3 Potência reativa	41
2.2.4.4 Componentes simétricas para potência reativa	42
2.2.4.5 Componentes simétricas para potência aparente	42
2.2.4.6 Potência aparente efetiva	42
2.2.4.7 Potência desbalanceada	45
2.2.5 Sistema trifásico não-senoidal e desbalanceado	45
2.2.5.1 Potência aparente efetiva	45
2.3 Considerações do capítulo	49
3 SIMULAÇÕES COMPUTACIONAIS	51
3.1 Cálculos nas simulações	51
3.2 Cálculos de média e valor eficaz	51
3.3 Frequência de amostragem reduzida	52
3.4 Estratégia de comparação	56
3.5 Circuito trifásico RL desbalanceado	58
3.6 Circuito trifásico não-linear desbalanceado	60
3.7 Teoria de potência TPC: diagrama de blocos	62
3.8 Teoria de Potência IEEE 1459-2010: diagrama de blocos	65
3.9 Considerações do capítulo	69
4 RESULTADOS DE SIMULAÇÃO	70
4.1 Circuito RL desbalanceado	70
4.1.1 Teoria de Potência Conservativa (TPC): carga RL	70
4.1.2 Teoria de Potência IEEE 1459-2010: carga RL	72
4.2 Circuito não-linear desbalanceado	73
4.2.1 Teoria de Potência Conservativa (TPC): não-linear	73
4.2.2 Teoria de Potência IEEE 1459-2010: carga não-linear	75
4.3 Considerações do capítulo	77
5 ANÁLISE ESTATÍSTICA	78
5.1 Escolha dos testes de hipótese	78
5.2 Teste de Mann-Whitney - médias iguais	81
5.2.1 Descrição do teste de Mann-Whitney	83

5.2.2 Resultados do teste de Mann-Whitney	84
5.3 Teste de Levene - variâncias iguais	86
5.3.1 Descrição do teste de Levene	87
5.3.2 Resultados do teste de Levene	88
5.4 Considerações do capítulo	90
6 CONCLUSÃO	91
APÊNDICE A – Placa de Aquisição de Sinais	92
A.1 Condicionamento de Tensão	92
A.1.1 Aumento na tensão da rede	93
A.2 Primeiro estágio do condicionamento do sinal	94
A.1.2 Queda na tensão da rede	96
A.3 Segundo estágio do condicionamento do sinal	96
A.4 Circuito de alimentação	97
A.5 Confecção da placa de condicionamento de tensão	98
ANEXO A – Exemplo do teste de Mann-Whitney	101
ANEXO B – Exemplo do teste de Levene	105
REFERÊNCIAS	

1 INTRODUÇÃO

Enquanto a definição de potência e corrente ativa datam dos anos 1930, os conceitos de potência e corrente reativas com conteúdo harmônico ainda estão em discussão (TENTI, 2011a).

A potência ativa tem um significado físico, dissipando energia térmica ou gerando energia mecânica. Assim, não há controvérsias em relação à sua formulação, tanto para formas de onda senoidais como não-senoidais (SVENSSON, 1999).

Em sistemas não senoidais e desbalanceados, as tensões e correntes não são puramente senoidais, estas possuem componentes harmônicas de diversas ordens. Este fato deixa a definição de potência reativa controversa (CHEN, 2018).

A potência reativa não é baseada em um fenômeno físico bem definido como a potência ativa. Quando a potência reativa é proveniente de formas de onda senoidais, existe um consenso em sua definição; todavia para o caso não-senoidal, existem diversas propostas abordadas em diferentes teorias de potência (SVENSSON, 1999). Considerando somente as teorias que abordam o domínio do tempo, pode-se citar a proposta de Depenbrock (FBD ou Fryze-Buchholz-Depenbrock), a teoria pq, elaborada por Akagi *et al.* e a teoria de potência conservativa, idealizada por Tenti *et al.* (CHEN, 2018; XU, 2011; MARAFÃO, 2009; STAUDT, 2008; TENTI, 2010). Somando-se a estas, outra importante teoria é a IEEE 1459-2010 (IEEE, 2010).

O uso de cargas não lineares gera harmônicos que afetam a qualidade de energia elétrica da rede de distribuição. Uma grande quantidade de corrente harmônica, além de gerar aquecimento nos cabos, aumentam as perdas por correntes de Foucault nos transformadores e podem excitar ressonâncias no sistema. As correntes harmônicas também causam queda de tensão não linear na rede, deixando a tensão não-senoidal e afetando os demais equipamentos conectados à mesma rede (SALAM, 2019).

Ainda segundo Salam (2019), existem muitos equipamentos que exigem uma onda puramente senoidal, sendo sensíveis a distorções causadas por harmônicos, que podem prejudicar seu desempenho ou até mesmo inviabilizar seu uso.

De acordo com Emanuel (2012), a potência reativa na frequência fundamental e de sequência positiva é a única potência não ativa que tem relevância na transmissão de energia elétrica. As outras potências não ativas são potências de distorção, que além de não transferirem energia para a carga, geram perdas na linha. A maior parte das potências de distorção é gerada por correntes harmônicas e estas potências não devem ser confundidas com potência reativa.

A maioria dos medidores de potência reativa são baseados em conceitos e definições de meados de 1930, considerando sistemas trifásicos senoidais e balanceados. Para situações não-senoidais, os medidores de potência reativa divergem. Um estudo comparando diferentes medidores, resultou em diferenças de até 17% na medição (EMANUEL, 2012).

Por outro lado, a geração distribuída, que tem apresentado crescimento massivo, resulta em uma variedade de fontes alternativas que alimentam a rede de forma intermitente, podendo contribuir em assimetrias nas fases e alterações na frequência. Além disso, a proliferação de cargas não-lineares, causam assimetria nas fases e distorções nas formas de onda (TENTI, 2011b).

Além da necessidade de novas teorias de potência, outro fator relevante é a taxa de amostragem dos sinais de tensão e corrente, pois estes são utilizados para os cálculos de potência. O aumento da frequência de amostragem implica em uma maior vulnerabilidade a ruídos, como atesta Ding (2018). Assim, uma menor taxa de amostragem que mantenha a exatidão em uma faixa aceitável é relevante e reduz o custo computacional, contribuindo também para o uso de processadores digitais de sinais de menor custo.

Neste trabalho, foram abordadas duas teorias de potências modernas, a Teoria de Potência Conservativa, e a Teoria de Potência IEEE 1459-2010. Essas teorias foram implementadas em simulações computacionais, para cálculos das potências, com diferentes frequências de amostragem. Em uma das simulações, a frequência de amostragem foi projetada para que fosse inferior a 300 Hz mas que apresentasse erro reduzido ao comparar com a simulação de referência, a qual foi simulada em domínio contínuo. A exatidão e precisão da proposta foi ratificada aplicando-se testes de hipótese.

2 FUNDAMENTAÇÃO TEÓRICA

A Teoria da Potência Conservativa define as potências não ativas como reativa desbalanceada e *void*. A primeira, como o nome diz, está presente em circuitos desbalanceados. Já a potência *void* aparece quando há distorção na forma de onda de corrente, em outras palavras, quando existe componente harmônico na corrente.

As potências da teoria IEEE 1459-2010, de forma análoga, também conceituam potências desbalanceadas, e potências não fundamentais.

Este capítulo tem o intuito de apresentar os fundamentos e principais equacionamentos das teorias TPC e IEEE.

2.1 Teoria da Potência Conservativa – TPC

A Teoria de Potência Conservativa se fundamenta no Teorema de Tellegen. Este teorema define que se as tensões e correntes de um conjunto de ramos da rede obedecem as leis de Kirchhoff das tensões (LKT) e Kirchhoff das correntes (LKC), logo o produto escalar do vetor das tensões dos ramos pelo vetor das correntes dos ramos será zero (PAREDES, 2011).

Este produto é a própria potência, e como resulta em zero, pode-se dizer que a potência é conservativa. Como a potência ativa consiste na média do produto entre tensão instantânea e corrente instantânea, a potência ativa também é conservativa (PAREDES, 2011).

Ainda de acordo com Paredes (2011), desenvolvendo o conceito da lei de Kirchhoff das tensões, se o somatório de tensões do conjunto de ramos de um circuito é zero, pode-se deduzir que o somatório de suas integrais imparciais também será zero.

Sendo assim, a energia reativa de determinado conjunto de ramos resultará em zero, uma vez que é o produto da integral imparcial da tensão pela corrente. Portanto, fica demostrado que a energia reativa é uma grandeza conservativa.

A partir das equações de potência ativa e energia reativa, são deduzidas as equações das correntes, que são compostas por corrente ativa, corrente reativa e corrente *void*. Com as parcelas da corrente é possível também deduzir outras potências, como a potência *void*. A dedução das potências propostas pela Teoria de Potência Conservativa, são descritas nos tópicos a seguir.

2.1.1 Operadores Matemáticos

Para o desenvolvimento desta teoria de potência, são importantes os conceitos sobre operadores matemáticos, que estão descritos como escalares nas equações (1) a (7) (TENTI, 2011b).

$$m\acute{e}dia: \bar{x} = \frac{1}{T} \int_0^T x(t) dt \tag{1}$$

$$derivada: \check{x} = \frac{dx}{dt}$$
(2)

integral:
$$x_{f} = \int_{0}^{t} x(\tau) d\tau$$
 (3)

integral imparcial:
$$\hat{x} = x_{f} - \bar{x}_{f}$$
 (4)

produto interno:
$$\langle x, y \rangle = \frac{1}{T} \int_0^T x \cdot y \cdot dt$$
 (5)

norma (valor eficaz/RMS):
$$X = ||x|| = \sqrt{\langle x, x \rangle}$$
 (6)

$$ortogonalidade: \langle x, y \rangle = 0 \tag{7}$$

Onde:

 \bar{x}_{f} : valor médio da integral de x

No caso em que as variáveis $\underline{x} \in \underline{y}$ sejam vetores de N elementos as equações (8) a (12) são aplicadas (TENTI, 2011b).

produto escalar:
$$\underline{x} \circ \underline{y} = \sum_{n=1}^{N} x_n \cdot y_n$$
 (8)

magnitude:
$$|\underline{x}| = \sqrt{\underline{x} \circ \underline{x}} = \sqrt{\sum_{n=1}^{N} x_n^2}$$
 (9)

produto interno:
$$\langle \underline{x}, \underline{y} \rangle = \sum_{n=1}^{N} \langle x_n, y_n \rangle$$
 (10)

norma (valor eficaz/RMS):
$$X = \left\|\underline{x}\right\| = \sqrt{\sum_{n=1}^{N} \langle x_n, x_n \rangle} = \sqrt{\sum_{n=1}^{N} X_n^2}$$
 (11)

ortogonalidade:
$$\langle \underline{x}, \underline{y} \rangle = 0$$
 (12)

Para o estudo da teoria de potência, estes vetores são utilizados em sistemas polifásicos, sendo um vetor de corrente e outro de tensão. Estes contêm os valores instantâneos de corrente e tensão de cada uma das fases.

Com esses vetores é possível calcular os valores coletivos eficazes (11) de tensão e corrente.

De acordo com Tenti (2002), as operações de (13) a (17) são válidas tanto para variáveis escalares como para variáveis vetoriais.

$$\langle x, \check{x} \rangle = 0 \tag{13}$$

$$\langle x, \hat{x} \rangle = 0 \tag{14}$$

$$\langle x, \check{y} \rangle = -\langle \check{x}, y \rangle \tag{15}$$

$$\langle x, \hat{y} \rangle = -\langle \hat{x}, y \rangle \tag{16}$$

$$\langle x, y \rangle = -\langle \check{x}, \hat{y} \rangle = -\langle \hat{x}, \check{y} \rangle$$
(17)

Por fim, as últimas três operações são válidas apenas para ondas senoidais, conforme (18) a (20) (TENTI, 2002).

$$X = \|x\| = \omega \cdot \|\hat{x}\| = \frac{\|\check{x}\|}{\omega}$$
(18)

$$\langle x, y \rangle = X \cdot Y \cdot \cos \theta \tag{19}$$

$$\langle \hat{x}, y \rangle = \frac{X \cdot Y \cdot \sin \theta}{\omega}$$
 (20)

Segundo Tenti (2007), para um sistema polifásico de N fases, a potência instantânea e a energia reativa são definidas conforme os itens 2.1.2 e 2.1.3 e, por consequência (21) e (22).

2.1.2 Potência instantânea

$$p = \sum_{n=1}^{N} u_n \cdot i_n = \sum_{n=1}^{N} p_n$$
 (21)

Onde:

 u_n : tensão instantânea da fase n i_n : corrente instantânea da fase n p_n : potência instantânea da fase n

2.1.3 Energia reativa instantânea

$$w = \sum_{n=1}^{N} \hat{u}_n \cdot i_n = \sum_{n=1}^{N} w_n$$
 (22)

Onde:

 \hat{u}_n : integral imparcial da tensão instantânea da fase n

wn: energia reativa instantânea da fase n

Tanto a potência ativa quanto a energia reativa não dependem de um potencial de referência, são grandezas conservativas para qualquer tipo de rede (TENTI, 2010).

De acordo com Tenti (2007), a corrente pode ser decomposta em parcelas, conforme (23).

$$i = i_a + i_r + i_v = i_a + i_r + i_{sa} + i_{sr} + i_g$$
(23)

Onde:

<i>i_a: corrente ativa instantânea</i>	i_v : corrente void instantânea
i_r : corrente reativa instantânea	isa: corrente ativa dispersa instantânea

i_{sr} : corrente reativa dispersa	i_g : corrente harmônica gerada
instantânea	instantânea

Como apresentado em (23) a corrente *void*, i_v , é composta pelas correntes ativa dispersa, i_{sa} , reativa dispersa, i_{sr} , e corrente harmônica gerada, i_g . Todas as parcelas de corrente são ortogonais entre si, como apresentado em (24) (TENTI, 2007).

$$\|i\|^{2} = \|i_{a}\|^{2} + \|i_{r}\|^{2} + \|i_{v}\|^{2} = \|i_{a}\|^{2} + \|i_{r}\|^{2} + \|i_{sa}\|^{2} + \|i_{sr}\|^{2} + \|i_{g}\|^{2}$$
(24)

2.1.4 Definições de potência e energia

A TPC define as potências ativa e aparente, conforme (25) e (27), e também a energia reativa conforme (26) (TENTI, 2010).

$$P = \bar{p} = \langle u, i \rangle \tag{25}$$

$$W = \overline{w} = \langle \hat{u}, i \rangle = -\langle u, \hat{i} \rangle \tag{26}$$

$$A = ||u|| \cdot ||i|| = U \cdot I$$
(27)

Onde:

<i>P</i> : potência ativa	W: energia reativa
$ar{p}$ potência média	\overline{w} energia reativa média
u: tensão instantânea	A: potência aparente
i: corrente instantânea	u : norma da tensão
\hat{u} : integral imparcial da tensão	i : norma da corrente
instantânea	

2.1.5 Correntes ativa, reativa e void – redes monofásicas

Conforme Tenti (2010), a corrente ativa é a mínima corrente necessária para transportar potência ativa em determinado ponto da rede elétrica (28). As potências ativa e energia reativa transportadas são descritas em (29) e (30), respectivamente.

$$i_a = \frac{\langle u, i \rangle}{\|u\|^2} \cdot u = \frac{P}{U^2} \cdot u = G_e \cdot u$$
(28)

$$P_a = \langle u, i_a \rangle = G_e \langle u, u \rangle = G_e \cdot U^2 = P$$
⁽²⁹⁾

$$W_a = \langle \hat{u}, i_a \rangle = G_e \langle \hat{u}, u \rangle = 0 \tag{30}$$

Onde:

 i_a : corrente ativa P_a : potência ativa transportada por ia G_e : condutância equivalente W_a : energia reativa transportada por ia

A equação (29) demonstra que a corrente ativa é responsável por transportar toda a potência ativa, *P*, porém não transporta nenhuma energia reativa (30) (PAREDES, 2011).

Ainda segundo Tenti (2010), a corrente reativa é a mínima necessária para transportar a energia reativa em um determinado ponto da rede elétrica (31).

$$i_r = \frac{\langle \hat{u}, i \rangle}{\|\hat{u}\|^2} \hat{u} = \frac{W}{\hat{U}^2} \hat{u} = B_e \cdot \hat{u}$$
(31)

$$P_r = \langle u, i_r \rangle = B_e \langle u, \hat{u} \rangle = 0$$
(32)

$$W_r = \langle \hat{u}, i_r \rangle = B_e \langle \hat{u}, \hat{u} \rangle = B_e \cdot \hat{U}^2 = W$$
(33)

$$\langle i_a, i_r \rangle = G_e \cdot B_e \langle u, \hat{u} \rangle = 0 \tag{34}$$

Onde:

i_r: corrente reativa instantânea

 W_r : energia reativa transportada por ir

Be: susceptância equivalente

Pr: potência ativa transportada por ir

A corrente reativa, i_r , não transporta potência ativa, como provado em (32), mas transporta toda a energia reativa, conforme (33). De (34), fica demonstrado que as correntes ativa e reativa são ortogonais, uma vez que o resultado do produto interno $\langle u, \hat{u} \rangle$ é zero.

Subtraindo da corrente total as correntes ativa e reativa (35), obtém-se a corrente *void*, que é ortogonal a estas duas correntes (SOUZA, 2018).

$$i_{\nu} = i - i_a - i_r \tag{35}$$

Segundo Tenti (2010), a corrente *void* reflete a presença de harmônicas, sendo: corrente ativa dispersa, i_{sa} , reativa dispersa, i_{sr} , e correntes geradas pela carga, i_g (36).

$$i_{\nu} = i_{sa} + i_{sr} + i_g \tag{36}$$

As correntes dispersas são aquelas que possuem um correspondente de tensão na mesma harmônica. Já a corrente gerada, i_g , não possui um correspondente de tensão (TENTI, 2007).

2.1.6 Corrente ativa dispersa

Conforme Paredes (2011), em um primeiro momento define-se a corrente ativa harmônica por (37), somente para aquelas que possuem uma tensão correspondente na mesma ordem harmônica, conforme:

$$i_{ahk} = \frac{\langle u_{hk}, i_{hk} \rangle}{\|u_{hk}\|^2} \cdot u_{hk} = \frac{P_{hk}}{U_{hk}^2} \cdot u_{hk} = \frac{I_{hk} \cdot \cos \theta_k}{U_{hk}} \cdot u_{hk} = G_{hk} \cdot u_{hk}$$
(37)

Onde:

i_{ahk}: corrente ativa harmônica de
 ordem k
 u_{hk}: tensão harmônica de ordem k

i_{hk}: corrente harmônica de ordem k *G_{hk}*: condutância equivalente para harmônico de ordem k

θ_k : defasamento entre corrente e tensão de harmônicos de ordem k

Já a corrente ativa harmônica total é dada por (38) (TENTI, 2012).

$$i_{ah} = \sum_{k=1}^{K} i_{ahk} \tag{38}$$

Por fim, com a corrente ativa harmônica total e a corrente ativa, encontra-se a corrente ativa dispersa (39) (TENTI, 2007).

$$i_{sa} = i_{ah} - i_a \tag{39}$$

Onde:

 i_{sa} : corrente ativa dispersa

i_{ah}: corrente harmônica total

 i_a : corrente ativa

2.1.7 Corrente reativa dispersa

De acordo com Paredes (2011), de forma similar ao cálculo da corrente ativa dispersa, para encontrar a corrente reativa dispersa, primeiro deve-se calcular a corrente reativa harmônica (40). Lembrando que essas correntes devem ter uma tensão correspondente na mesma ordem harmônica.

$$i_{rhk} = \frac{\langle \hat{u}_{hk}, i_{hk} \rangle}{\|\hat{u}_{hk}\|^2} \cdot \hat{u}_{hk} = \frac{W_{hk}}{\widehat{U}_{hk}} \cdot \hat{u}_{hk} = \frac{\omega_{hk} \cdot I_{hk} \cdot \sin \theta_k}{U_{hk}} \cdot \hat{u}_{hk} = B_{hk} \cdot \hat{u}_{hk}$$
(40)

Onde:

irhk: corrente reativa harmônica de ordem k

 \hat{u}_{hk} : integral imparcial da tensão harmônica de ordem k

i_{hk}: corrente harmônica de ordem k

 W_{hk} : energia reativa harmônica de ordem k

B_{hk}: susceptância equivalente para harmônico de ordem k

 θ_k : defasamento entre corrente e tensão de harmônicos de ordem k

A corrente reativa harmônica dispersa é definida por (41) (TENTI, 2007).

$$i_{sr} = i_{rh} - i_r \tag{41}$$

2.1.8 Potências – redes monofásicas

De acordo com Paredes (2011), as potências monofásicas da TPC são definidas conforme (42) a (48).

$$A = \|u\|\|i\| = U \cdot I = \sqrt{P^2 + Q^2 + V^2}$$
(42)

$$P = \|u\|\|i_a\| = U \cdot I_a$$
(43)

$$Q = \|u\| \|i_r\| = U \cdot I_r \tag{44}$$

$$V = ||u|| ||i_{v}|| = U \cdot I_{v} = \sqrt{S_{a}^{2} + S_{r}^{2} + V_{g}^{2}}$$
(45)

$$S_a = \|u\| \|i_{sa}\| = U \cdot I_{sa}$$
(46)

$$S_r = \|u\| \|i_{sr}\| = U \cdot I_{sr}$$
(47)

$$V_g = \|u\| \|i_g\| = U \cdot I_g \tag{48}$$

Onde:

A: potência aparente S_a : potência ativa dispersaP: potência ativa S_r : potência reativa dispersaQ: potência reativa V_g : potência harmônica gerada pelaV: potência voidcarga

2.1.9 Potência reativa

Para o equacionamento da potência reativa, em um primeiro momento deve-se realizar a decomposição de $U \in \hat{U}$ em componentes harmônico e fundamental, conforme (49) e (50) (PAREDES, 2011).

$$U = \sqrt{U_f^2 + U_h^2} = U_f \sqrt{1 + [\text{DHT}(u)]^2}$$
(49)

$$\widehat{U} = \sqrt{\widehat{U}_{f}^{2} + \widehat{U}_{h}^{2}} = \widehat{U}_{f}\sqrt{1 + [\text{DHT}(\widehat{u})]^{2}}$$
(50)

O termo DHT apresentado em (49) e (50) é a distorção harmônica total. Ainda segundo Tenti (2010), tendo em vista a relação (51), chega-se em (52).

$$\frac{U_f}{\widehat{U}_f} = \omega \tag{51}$$

$$Q = U \cdot I_r = \frac{U}{\hat{U}}W = \omega W \frac{\sqrt{1 + [DHT(u)]^2}}{\sqrt{1 + [DHT(\hat{u})]^2}}$$
(52)

Onde:

Q: potência reativa*W*: energia reativa*ω*: frequência

Por (52), fica provado que a potência reativa é não conservativa, pois depende da frequência, ω , e da distorção de tensão, *DHT* (TENTI, 2010).

2.1.10 Potência void

Segundo Paredes (2011), a potência *void* é definida por (53), e suas componentes, em (54) a (56).

$$V = U \cdot I_{\nu} = \sqrt{S_a^2 + S_r^2 + V_g^2}$$
(53)

$$S_{a} = U \cdot I_{sa} = \sqrt{U^{2} \sum_{n=1}^{k} \left(\frac{P_{k}}{U_{k}^{2}} - \frac{P}{U^{2}}\right)^{2} U_{k}^{2}}$$
(54)

$$S_{r} = U \cdot I_{sr} = \omega \frac{\sqrt{1 + [\text{DHT}(u)]^{2}}}{\sqrt{1 + [\text{DHT}(\hat{u})]^{2}}} \sqrt{\hat{U}^{2} \sum_{n=1}^{k} \left(\frac{W_{k}}{\hat{U}_{k}^{2}} - \frac{W}{\hat{U}^{2}}\right)^{2} \hat{U}_{k}^{2}}$$
(55)

$$V_g = U \cdot I_g \tag{56}$$

Onde:

S_a: Potência ativa dispersa

 S_r : Potência reativa dispersa

Vg: Potência harmônica gerada pela carga

2.1.11 Sistemas polifásicos

De acordo com Souza (2018), para sistemas polifásicos, as componentes de corrente: ativa, reativa e *void*, são definidas por fase, conforme (57) a (59).

$$i_{an} = \frac{\langle u_n, i_n \rangle}{\|u_n\|^2} \cdot u_n = \frac{P_n}{U_n^2} \cdot u_n = G_n \cdot u_n$$
(57)

$$i_{rn} = \frac{\langle \hat{u}_n, i_n \rangle}{\|\hat{u}_n\|^2} \hat{u}_n = \frac{W_n}{\hat{U}_n^2} \hat{u}_n = B_n \cdot \hat{u}_n$$
(58)

$$i_{\nu n} = i_n - i_{an} - i_{rn} \tag{59}$$

Onde:

 i_{an} : corrente ativa instantânea da fase

 P_n : potência ativa da fase n

n

 U_n : tensão eficaz da fase n

 u_n : tensão instantânea da fase n

 i_n : corrente instantânea da fase n

G_n: condutância equivalente da fase n

i_{rn} : corrente reativa instantânea da fase	\widehat{U}_n : valor eficaz da integral imparcial da
n	tensão da fase n
\hat{u}_n : integral imparcial da tensão	B_n : susceptância equivalente da fase n
instantânea da fase n	i_{vn} : corrente <i>void</i> instantânea da fase n
W_n : energia ativa da fase n	

Assim, para o cálculo da corrente ativa, haverá uma condutância específica por fase G_n , bem como para a corrente reativa, uma susceptância específica por fase B_n (SOUZA, 2018).

2.1.12 Correntes balanceadas e desbalanceadas

As correntes ativa e reativa, podem ser calculadas de forma coletiva, supondo uma carga balanceada hipotética que consuma a mesma potência ativa e energia reativa que a carga real. Assim, define-se (60) como corrente ativa balanceada e (61) como corrente reativa balanceada (SOUZA, 2018).

Para os cálculos são utilizados os valores coletivos de tensão, representado por $\|\underline{u}\|$ que é a norma do vetor de tensões, calculado conforme (11) (PAREDES, 2011).

$$\underline{i_a}^b = \frac{\langle \underline{u}, \underline{i} \rangle}{\|\underline{u}\|^2} \underline{u} = \frac{P}{U^2} \underline{u} = G^b \underline{u}$$
(60)

$$\frac{i_r{}^b}{\underline{\hat{u}}} = \frac{\langle \underline{\hat{u}}, \underline{i} \rangle}{\|\underline{\hat{u}}\|^2} \underline{\hat{u}} = \frac{W}{\widehat{U}^2} \underline{\hat{u}} = B^b \underline{\hat{u}}$$
(61)

Onde:

 $i_a^{\ b}$: corrente ativa instantânea

balanceada

 $\|\underline{u}\|$: tensão coletiva eficaz

i: corrente instantânea

P: potência ativa

U: tensão eficaz

G^b: condutância do circuito balanceado equivalente

 $i_r^{\ b}$: corrente reativa balanceada

 $\| \underline{\hat{u}} \|$: valor coletivo eficaz da integral imparcial da tensão

 \widehat{U} : valor eficaz da integral imparcial de tensão

W: energia reativa

Lembrando que as variáveis sublinhadas de (60) e (61) referem-se a grandezas vetoriais.

Segundo Tedeschi (2009), as correntes desbalanceadas são encontradas por meio de (62) e (63).

$$\underline{i_a}^d = \underline{i_a} - \underline{i_a}^b \tag{62}$$

$$\underline{i_r}^d = \underline{i_r} - \underline{i_r}^b \tag{63}$$

Onde:

$\underline{i_a}^d$: corrente ativa desbalanceada	$\underline{i_r}^d$: corrente reativa desbalanceada
<u>i_a</u> ∶corrente ativa	<u><i>i_r</i>: corrente reativa</u>
$\underline{i_a}^b$: corrente ativa balanceada	$\underline{i_r}^b$: corrente reativa balanceada

Ainda conforme Tenti (2011a), as correntes desbalanceadas por fase, são encontradas através de (64) e (65).

$$i_{an}^d = (G_n - G^b)u_n \tag{64}$$

$$i_{rn}^d = (B_n - B^b)\hat{u}_n \tag{65}$$

Onde:

i^d_{an} : corrente ativa desbalanceada da	B_n : susceptância da fase n
fase n	B ^b : susceptância do circuito
G_n : condutância da fase n	balanceado equivalente
G ^b : condutância do circuito balanceado	\hat{u}_n : integral imparcial da tensão
equivalente	instantânea da fase n
u_n : tensão instantânea da fase n	

Com o acréscimo das correntes desbalanceadas, a corrente total para sistemas polifásicos resulta em (66). Ressaltando-se que qualquer parcela continua ortogonal às demais (TEDESCHI, 2009).

$$\underline{i} = \underline{i_a} + \underline{i_r} + \underline{i_v} = \underline{i_a}^b + \underline{i_a}^d + \underline{i_r}^b + \underline{i_r}^d + \underline{i_a}^s + \underline{i_r}^s + \underline{i_g}$$
(66)

Onde:

$\underline{i_a}^b$: corrente ativa balanceada	$\underline{i_a}^s$: corrente ativa dispersa
$\underline{i_a}^d$: corrente ativa desbalanceada	$\underline{i_r}^s$: corrente reativa dispersa
$\underline{i_r}^b$: corrente reativa balanceada	<u>ig</u> : corrente harmônica gerada pela
i_r^d : corrente reativa desbalanceada	carga

O cálculo da potência aparente para o sistema polifásico, segundo Tenti (2010), tem a parcela desbalanceada como adicional, sendo definido por (67).

$$A = U \cdot I = \left\| \underline{u} \right\| \cdot \left\| \underline{i} \right\| = \sqrt{P^2 + Q^2 + N^2 + V^2}$$
(67)

Onde:

A: potência aparente	N: potência desbalanceada
<i>Q</i> : potência reativa	<i>V</i> : potência v <i>oid</i>

De acordo com Paredes (2012), a potência ativa para sistemas polifásicos é definida por (68).

$$P = U \cdot I_a{}^b = \left\|\underline{u}\right\| \cdot \left\|\underline{i}_a{}^b\right\|$$
(68)

Já a potência reativa é expressa em (69) (PAREDES, 2012).

$$Q = U \cdot I_r^{\ b} = \left\| \underline{u} \right\| \cdot \left\| \underline{i_r^{\ b}} \right\|$$
(69)

A variável N é a potência desbalanceada, que é descrita por (70) (TENTI, 2014).

$$N = U \cdot I^{d} = \|\underline{u}\| \cdot \|\underline{i}^{d}\| = \sqrt{N_{a}^{2} + N_{r}^{2}}$$
(70)

Onde:

 I^d : corrente eficaz desbalanceada N_a : potência ativa desbalanceada \underline{i}^d : corrente instantânea N_r : potência reativa desbalanceadadesbalanceada N_r : potência reativa desbalanceada

Ainda segundo Paredes (2011), as potências ativa desbalanceada, N_a , e reativa desbalanceada, N_r , são descritas em (71) e (72).

$$N_{a} = U \cdot I_{a}^{\ d} = ||u|| \cdot ||i_{a}^{\ d}|| = U_{\sqrt{\sum_{n=1}^{N} \frac{P_{n}^{\ 2}}{U_{n}^{\ 2}} - \frac{P^{\ 2}}{U^{2}}}$$
(71)
$$N_{r} = U \cdot I_{r}^{\ d} = U_{\sqrt{\sum_{n=1}^{N} \frac{W_{n}^{\ 2}}{\widehat{U}_{n}^{\ 2}} - \frac{W^{\ 2}}{\widehat{U}^{2}}}$$
(72)

Por fim, a potência void é definida nos termos de (73).

$$V = U \cdot I_{\nu} = \|\underline{u}\| \cdot \|\underline{i}_{\nu}\| = \sqrt{S_a^2 + S_r^2 + V_g^2}$$
(73)

2.2 Teoria de Potência IEEE 1459-2010

A Teoria de Potência IEEE 1459-2010 define diferentes potências com o intuito de quantificar o fluxo de energia elétrica em redes monofásicas e trifásicas em condições senoidais, não-senoidais, balanceadas e desbalanceadas (CATALIOTTI, 2010).

Para os cálculos das potências desbalanceadas, as potências são decompostas em componentes simétricas. Já para calcular as potências nãosenoidais, as componentes fundamentais de tensão e corrente são separadas das componentes harmônicas (CATALIOTTI, 2010).

2.2.1 Monofásico senoidal

A tensão e a corrente senoidais são dadas por (74) e (75).

$$v = \sqrt{2} \cdot V \sin(\omega t)$$
(74)
$$i = \sqrt{2} \cdot I \sin(\omega t - \theta)$$
(75)

Onde:

 θ : ângulo de defasamento entre corrente e tensão

V: valor RMS da tensão

I: valor RMS da corrente

Segundo a norma IEEE 1459-2010, a potência instantânea é dada por (76) e também pode ser desmembrada em parcelas ativa e reativa, conforme (77) (IEEE, 2010).

$$\mathbf{p} = \mathbf{v} \cdot \mathbf{i} \tag{76}$$

$$p = p_a + p_q \tag{77}$$

Onde:

v: tensão instantânea

i: corrente instantânea

Cada parcela, $p_a e p_q$ são descritas por (78) e (79).

$$p_a = VI \cos \theta \cdot [1 - \cos(2\omega t)] = P \cdot [1 - \cos(2\omega t)]$$
(78)

$$p_q = -VI\sin\theta\sin(2\omega t) = -Q\sin(2\omega t)$$
(79)

Onde:

$$P = VI\cos\theta \tag{80}$$

$$Q = VI \sin \theta \tag{81}$$

Da equação (78) pode-se notar que a potência ativa instantânea possui dois termos: *P*, que é a potência ativa ou real, e a potência intrínseca, representada por $-P\cos(2\omega t)$. Esta potência intrínseca sempre está presente quando há transferência de energia da rede para a carga; todavia, é uma componente oscilante que não causa perdas na linha (IEEE, 2010), já que seu valor médio é nulo.

A parcela de potência reativa instantânea, descrita em (79), corresponde a energia transferida entre as fontes e os elementos armazenadores de energia, como capacitâncias e indutâncias. A energia transferida da rede à carga é nula, todavia essa oscilação de potência causa perdas nos condutores devido ao efeito Joule e às correntes de Foucault (IEEE, 2010).

2.2.1.1 Potência ativa

A potência ativa é o valor médio da potência instantânea, conforme (82).

$$P = \frac{1}{kT} \int_{\tau}^{\tau+kT} p \cdot dt = \frac{1}{kT} \int_{\tau}^{\tau+kT} p_a \cdot dt$$
(82)

Onde:

T: período

k: número inteiro positivo (ciclos)

 τ : instante inicial

2.2.1.2 Potência reativa

A potência reativa é definida pelas equações (83) a (85) (IEEE, 2010).

$$Q = VI \sin \Theta \tag{83}$$

$$Q = \frac{1}{2\pi} \oint v di = \frac{1}{kT\omega} \int_{\tau}^{\tau+kT} v \cdot \frac{di}{dt} \cdot dt$$
(84)

$$Q = \frac{\omega}{kT} \int_{\tau}^{\tau+kT} i \left[\int v \cdot dt \right] dt$$
(85)

2.2.1.3 Potência aparente

A potência aparente pode ser calculada pela equação (86) ou (87) (IEEE, 2010).

$$S = V \cdot I \tag{86}$$

$$S = \sqrt{P^2 + Q^2} \tag{87}$$

2.2.1.4 Fator de potência

O fator de potência é a relação entre a potência ativa e a potência aparente e representa uma fração da máxima potência ativa que poderia ser transmitida. Assim, o fator de potência pode ser um indicador do grau de utilização da linha de transmissão. É representado em (88) (IEEE, 2010).

$$fp = \frac{P}{S} \tag{88}$$

2.2.2 Monofásico não-senoidal

A tensão e corrente monofásicas não senoidais possuem uma parcela fundamental e outra harmônica, conforme (89) e (90).

$$v = v_1 + v_h \tag{89}$$

$$i = i_1 + i_h \tag{90}$$

Onde:

 v_h : parcela de tensão harmônica

 v_1 : parcela de tensão fundamental

i_h : parcela de corrente harmônica

 i_1 : parcela de corrente fundamental

As parcelas $v_1 e v_h$ são descritas por (91) e (92) (IEEE, 2010).

$$v_1 = \sqrt{2} \cdot V_1 \cdot \sin(\omega t - \alpha_1) \tag{91}$$

$$v_h = V_0 + \sqrt{2} \sum_{h \neq 1} V_h \cdot \sin(h\omega t - \alpha_h)$$
(92)

Onde:

 α_1 : fase da tensão fundamental

 α_h : fase da tensão harmônica

Já as parcelas de $i_1 e i_h$ estão demonstradas em (93) e (94) (IEEE, 2010).

$$i_1 = \sqrt{2} \cdot I_1 \cdot \sin(\omega t - \beta_1) \tag{93}$$

$$i_h = I_0 + \sqrt{2} \sum_{h \neq 1} I_h \cdot \sin(h\omega t - \beta_h)$$
(94)

Onde:

 β_1 : fase da corrente fundamental

 β_h : fase da corrente harmônica

De (92) e (94), V_0 e I_0 correspondem a componentes CC.

A tensão e corrente eficazes (RMS) são descritas, na definição, em (95) e (97), e também correspondem à raiz quadrada da soma do quadrado da componente fundamental com o quadrado da componente harmônica, conforme (96) e (98) (IEEE, 2010).

$$V = \sqrt{\frac{1}{kT}} \int_{\tau}^{\tau+kT} v^2 \cdot dt \tag{95}$$

$$V = \sqrt{{V_1}^2 + {V_H}^2}$$
(96)

$$I = \sqrt{\frac{1}{kT} \int_{\tau}^{\tau+kT} i^2 \cdot dt}$$
(97)

$$I = \sqrt{{I_1}^2 + {I_H}^2}$$
(98)

A tensão V_H (eficaz) é representada por (99) e a corrente I_H (eficaz) por (100).

$$V_{H} = \sqrt{{V_{0}}^{2} + \sum_{h \neq 1} {V_{h}}^{2}}$$
(99)

$$I_{H} = \sqrt{{I_{0}}^{2} + \sum_{h \neq 1} {I_{h}}^{2}}$$
(100)

2.2.2.1 Potência instantânea

Igualmente à forma de onda senoidal, a potência instantânea é o produto entre tensão e corrente instantâneas, ou, a soma de potência ativa, p_a , e p_q . A potência p_q corresponde à parcela que não transfere energia para a carga enquanto que na situação puramente senoidal, p_q correspondia à potência reativa.

A potência p_a também não é definida da mesma forma que na situação senoidal, assim, $p_a e p_q$ para formas de onda não senoidais são definidas conforme (101) e (102).

$$p_a = V_0 \cdot I_0 + \sum_h V_h \cdot I_h \cdot \cos \theta_h \left[1 - \cos(2h\omega t - 2\alpha_h) \right]$$
(101)

$$p_q = -\sum_h V_h \cdot I_h \cdot \sin \theta_h \sin(2h\omega t - 2\alpha_h)$$
(102)

$$+2\sum_{n}\sum_{\substack{m \ m \neq n}} V_m \cdot I_n \cdot \sin(m\omega t - \alpha_m) \sin(n\omega t - \beta_n)$$
$$+\sqrt{2}V_0 \sum_{h} I_h \cdot \sin(h\omega t - \beta_h) + \sqrt{2}I_0 \sum_{h} V_h \cdot \sin(h\omega t - \alpha_h)$$

Onde:

 $\theta_h = \alpha_h - \beta_h$, é o ângulo de defasamento entre V_h e I_h
2.2.2.2 Potência ativa

A fórmula para cálculo da potência ativa em condição não senoidal é a mesma que para a senoidal, como demonstrado em (103) (IEEE, 2010).

$$P = \frac{1}{kT} \int_{\tau}^{\tau+kT} p \cdot dt = \frac{1}{kT} \int_{\tau}^{\tau+kT} p_a \cdot dt$$
(103)

A potência ativa, também é descrita pela soma da potência fundamental, P_1 , com a potência dos harmônicos, P_H . Essas parcelas, são descritas por (104) e (105) (IEEE, 2010).

$$P_{1} = \frac{1}{kT} \int_{\tau}^{\tau + kT} v_{1} \cdot i_{1} \cdot dt = V_{1} \cdot I_{1} \cdot \cos \theta_{1}$$
(104)

$$P_H = V_0 \cdot I_0 + \sum_{h \neq 1} V_h \cdot I_h \cdot \cos \theta_h$$
(105)

Vale ressaltar que, para o caso em que a carga é um motor de corrente alternada, a potência ativa harmônica não contribui para a sequência positiva do torque, logo não é uma potência útil. Assim, mostra-se uma utilidade em se dividir a potência ativa entre fundamental e harmônica (IEEE, 2010).

2.2.2.3 Potência reativa fundamental

A potência reativa fundamental é descrita por (106) (IEEE, 2010).

$$Q_1 = \frac{\omega}{kT} \int_{\tau}^{\tau+kT} i_1 \left[\int v_1 \cdot dt \right] dt = V_1 \cdot I_1 \cdot \sin \theta_1$$
(106)

2.2.2.4 Potência aparente

Para a forma de onda não senoidal, a equação da potência aparente não se modifica, permanecendo (107) (IEEE, 2010).

$$S = V \cdot I \tag{107}$$

Da potência aparente pode-se extrair uma parcela de potência aparente fundamental, em função de componentes fundamentais, como indica (108) (IEEE, 2010).

$$S_1 = V_1 \cdot I_1 = \sqrt{P_1^2 + Q_1^2} \tag{108}$$

Em contrapartida à representação da potência fundamental, existe também a potência aparente não-fundamental, S_N (109) (IEEE, 2010).

$$S_N = \sqrt{S^2 - {S_1}^2}$$
(109)

A potência aparente *S* pode ser descrita por termos fundamentais e harmônicos, como (110) e (111) demonstram (IEEE, 2010).

$$S = \sqrt{(V \cdot I)^2} = \sqrt{(V_1^2 + V_H^2) \cdot (I_1^2 + I_H^2)}$$
(110)

 $S = \sqrt{(V_1 \cdot I_1)^2 + (V_1 \cdot I_H)^2 + (V_H \cdot I_1)^2 + (V_H \cdot I_H)^2}$ (111)

A potência aparente não fundamental, S_N , também pode ser descrita como (112) (IEEE, 2010).

$$S_N = \sqrt{D_I^2 + D_V^2 + S_H^2}$$
(112)

De (112) D_I é a potência de distorção de corrente e D_V é a potência de distorção de tensão, sendo descritos por (113) e (114) (IEEE, 2010).

$$D_I = V_1 \cdot I_H = S_1 \cdot DHT_I \tag{113}$$

$$D_V = I_1 \cdot V_H = S_1 \cdot DHT_V \tag{114}$$

Já a potência aparente harmônica, S_H , nada mais é que o produto entre tensão e corrente harmônicos, de acordo com (115) (IEEE, 2010).

$$S_H = V_H \cdot I_H = S_1 \cdot \text{DHT}_{\text{I}} \cdot \text{DHT}_{\text{V}}$$
(115)

Lembrando que DHT_I é a distorção harmônica total de corrente e DHT_V a distorção harmônica total de tensão, que indicam a razão entre a componente harmônica e a fundamental, conforme (116) e (117) (IEEE, 2010).

DHT_V =
$$\frac{V_H}{V_1} = \sqrt{\left(\frac{V}{V_1}\right)^2 - 1}$$
 (116)

DHT_I =
$$\frac{I_H}{I_1} = \sqrt{\left(\frac{I}{I_1}\right)^2 - 1}$$
 (117)

Com os valores da potência aparente harmônica, S_H , e a potência ativa harmônica, P_H , encontra-se a potência de distorção harmônica, D_H (118) (IEEE, 2010).

$$D_H = \sqrt{{S_H}^2 - {P_H}^2}$$
(118)

2.2.2.5 Potência não-ativa

A potência não-ativa, *N*, engloba toda a parcela que não é ativa, tanto de componentes fundamentais como harmônicos, e não deve ser confundida com a potência reativa, Q. Essas potências só seriam iguais se a forma de onda fosse perfeitamente senoidal. A potência não ativa está descrita em (119) (IEEE, 2010).

$$N = \sqrt{S^2 - P^2} \tag{119}$$

2.2.3 Trifásico senoidal balanceado

Para um sistema trifásico senoidal balanceado, as tensões são definidas por (120) a (122) (IEEE, 2010).

$$v_a = \sqrt{2} \cdot V \cdot \sin(\omega t) \tag{120}$$

$$v_b = \sqrt{2} \cdot V \cdot \sin(\omega t - 120^o) \tag{121}$$

$$v_c = \sqrt{2} \cdot V \cdot \sin(\omega t + 120^o) \tag{122}$$

As correntes são definidas por (123) a (125) (IEEE, 2010).

$$i_a = \sqrt{2} \cdot I \cdot \sin(\omega t - \theta) \tag{123}$$

$$i_b = \sqrt{2} \cdot I \cdot \sin(\omega t - 120^o - \theta) \tag{124}$$

$$i_c = \sqrt{2} \cdot I \cdot \sin(\omega t + 120^o - \theta) \tag{125}$$

Para um sistema trifásico senoidal balanceado a três fios, a potência instantânea é definida por (126), que também é igual à potência ativa (IEEE, 2010).

$$p = v_{ab} \cdot i_a + v_{bc} \cdot i_b = v_{ab} \cdot i_a + v_{ca} \cdot i_c = v_{bc} \cdot i_b + v_{ca} \cdot i_c$$
(126)

2.2.3.1 Potência ativa

A potência ativa trifásica balanceada é definida por (127) (IEEE, 2010).

$$P = \frac{1}{kT} \int_{\tau}^{\tau+kT} p \cdot dt = 3VI \cos \theta = \sqrt{3} \cdot V_l \cdot I_l \cdot \cos \theta$$
(127)

Onde:

 V_l : tensão de linha I_l : corrente de linha

2.2.3.2 Potência reativa

A potência reativa é definida por (128) (IEEE, 2010).

$$Q = 3VI\sin\theta = \sqrt{3} \cdot V_l \cdot I_l \cdot \sin\theta = \sqrt{S^2 - P^2}$$
(128)

2.2.3.3 Potência aparente

Por fim, a potência aparente é definida em (129) (IEEE, 2010).

$$S = 3VI = \sqrt{3} \cdot V_l \cdot I_l \tag{129}$$

2.2.4 Trifásico senoidal desbalanceado

Para o caso de um sistema trifásico senoidal desbalanceado, as magnitudes de corrente I_a , I_b e I_c diferem entre si, bem como suas defasagens. Em algumas situações, mesmo com carga balanceada, ocorre um desbalanceamento de corrente devido ao fato de a tensão trifásica ser assimétrica (IEEE, 2010).

2.2.4.1 Potência ativa

Para sistemas trifásicos desbalanceados, a potência ativa é definida por (130) (IEEE, 2010).

$$P = \frac{1}{kT} \int_{\tau}^{\tau+kT} p \cdot dt = P_a + P_b + P_c \tag{130}$$

Cada uma das potências P_a , P_b e P_c são definidas por (131) a (133).

$$P_a = \frac{1}{kT} \int_{\tau}^{\tau+kT} v_a \cdot i_a \cdot dt = V_a \cdot I_a \cdot \cos \theta_a$$
(131)

$$P_b = \frac{1}{kT} \int_{\tau}^{\tau + kT} v_b \cdot i_b \cdot dt = V_b \cdot I_b \cdot \cos \theta_b$$
(132)

$$P_c = \frac{1}{kT} \int_{\tau}^{\tau+kT} v_c \cdot i_c \cdot dt = V_c \cdot I_c \cdot \cos \theta_c$$
(133)

Onde:

 $\theta_n = fase \ da \ tensão \ n - fase \ da \ corrente \ n$

2.2.4.2 Componentes simétricas para potência ativa

Para sistemas a quatro fios é interessante decompor a potência ativa trifásica em potências de componentes simétricas. Decompondo as tensões e correntes em componentes de sequência positiva, negativa e zero, chega-se nas equações de potência ativa, conforme (134) a (136), respectivamente (IEEE, 2010).

$$P^{+} = 3 \cdot V_{f}^{+} \cdot I^{+} \cdot \cos \theta^{+} \tag{134}$$

$$P^{-} = 3 \cdot V_{f}^{-} \cdot I^{-} \cdot \cos \theta^{-} \tag{135}$$

$$P^0 = 3 \cdot V_f^{\ 0} \cdot I^0 \cdot \cos \theta^0 \tag{136}$$

2.2.4.3 Potência reativa

As potências reativas, para um sistema trifásico desbalanceado são definidas por (137) a (139) (IEEE, 2010).

$$Q_a = \frac{\omega}{kT} \int_{\tau}^{\tau+kT} i_a \cdot \left[\int v_a \cdot dt \right] dt = V_a \cdot I_a \cdot \sin \theta_a$$
(137)

$$Q_b = \frac{\omega}{kT} \int_{\tau}^{\tau+kT} i_b \cdot \left[\int v_b \cdot dt \right] dt = V_b \cdot I_b \cdot \sin \theta_b$$
(138)

$$Q_c = \frac{\omega}{kT} \int_{\tau}^{\tau+kT} i_c \cdot \left[\int v_c \cdot dt \right] dt = V_c \cdot I_c \cdot \sin \theta_c$$
(139)

A potência reativa total é a soma das potências reativas Q_a , Q_b e Q_c (IEEE, 2010).

2.2.4.4 Componentes simétricas para potência reativa

Da mesma forma que a potência ativa, a potência reativa também pode ser definida pelas componentes simétricas, conforme (140) a (142) (IEEE, 2010).

$$Q^+ = 3 \cdot V_f^+ \cdot I^+ \cdot \sin \theta^+ \tag{140}$$

$$Q^{-} = 3 \cdot V_{f}^{-} \cdot I^{-} \cdot \sin \theta^{-} \tag{141}$$

$$Q^0 = 3 \cdot V_f^{\ 0} \cdot I^0 \cdot \sin \theta^0 \tag{142}$$

2.2.4.5 Componentes simétricas para potência aparente

A potência aparente em componentes simétricas, corresponde à soma vetorial da potência ativa, no eixo real, com a potência reativa, no eixo imaginário, conforme (143) a (145) (IEEE, 2010).

$$S^+ = |S^+| = |P^+ + jQ^+| \tag{143}$$

$$S^{-} = |S^{-}| = |P^{-} + jQ^{-}| \tag{144}$$

$$S^{0} = |S^{0}| = |P^{0} + jQ^{0}|$$
(145)

2.2.4.6 Potência aparente efetiva

Para o cálculo da potência aparente efetiva, é considerado um circuito balanceado virtual, que possui a mesma perda de potência de linha que o circuito desbalanceado a ser analisado (IEEE, 2010).

Para um sistema trifásico a 4 fios, a potência de perda é expressa por (146) (IEEE, 2010).

$$r(I_a^2 + I_b^2 + I_c^2 + \rho \cdot I_n^2) = 3 \cdot r \cdot I_e^2$$
(146)

Onde:

 I_e : corrente efetiva de linha

r: resistência de linha

$$\rho:\frac{r_n}{r}$$

r_n: resistência do condutor neutro

A partir da equação (146), a corrente efetiva I_e é deduzida em (147) e (148) (IEEE, 2010).

$$I_e = \sqrt{\frac{{I_a}^2 + {I_b}^2 + {I_c}^2 + \rho \cdot {I_n}^2}{3}}$$
(147)

$$I_e = \sqrt{(I^+)^2 + (I^-)^2 + (1+3\rho)(I^0)^2}$$
(148)

O valor exato do parâmetro ' ρ ' é praticamente impossível de se conhecer, pois não é simples a obtenção da resistência exata do condutor neutro, que varia de acordo com o comprimento, a umidade do solo e a temperatura. O certo é que a resistência de sequência zero é muito superior à resistência de sequência positiva, então podese concluir que ' ρ ' é maior que 1. No entanto, para efeito de cálculos e simplificação, pode-se considerar ' ρ ' igual a 1 (IEEE, 2010).

A tensão efetiva do circuito equivalente é obtida considerando que os componentes ativos da carga real são compostos por duas parcelas. A primeira delas, considera uma ligação em estrela com três resistências iguais e alimentada a quatro fios, dissipando a potência P_Y . Já a segunda parcela considera uma ligação em triângulo, com três resistências iguais também, dissipando a potência P_{Δ} . Assim, a igualdade com a potência do circuito equivalente resulta em (149) (IEEE, 2010).

$$\frac{V_a^2 + V_b^2 + V_c^2}{R_Y} + \frac{V_{ab}^2 + V_{bc}^2 + V_{ca}^2}{R_\Delta} = \frac{3 \cdot V_e^2}{R_Y} + \frac{9 \cdot V_e^2}{R_\Delta}$$
(149)

Onde:

V_e: tensão efetiva de fase

A relação entre as potências $P_{\Delta} e P_{Y} \acute{e}$ descrito em (150) (IEEE, 2010).

$$\zeta = \frac{P_{\Delta}}{P_Y} = \frac{9 \cdot V_e^2 \cdot R_Y}{3 \cdot V_e^2 \cdot R_{\Delta}} = \frac{3 \cdot R_Y}{R_{\Delta}}$$
(150)

Deixando R_{Δ} em função de R_Y e ζ , chega-se em (151).

$$V_e = \sqrt{\frac{3(V_a^2 + V_b^2 + V_c^2) + \zeta(V_{ab}^2 + V_{bc}^2 + V_{ca}^2)}{9(1+\zeta)}}$$
(151)

A tensão efetiva também pode ser definida em termos das componentes simétricas, conforme (152) (IEEE, 2010).

$$V_e = \sqrt{(V^+)^2 + (V^-)^2 + \frac{(V^0)^2}{(1+\zeta)}}$$
(152)

Na maioria dos casos, a tensão V^0 corresponde a menos de 4% da tensão V^+ , assim, se o valor de ζ for desconhecido, pode-se simplificar (152) adotando ζ igual a 1, que não afetará de forma significativa o valor de V_e , resultando em (153) e (154) (IEEE, 2010).

$$V_{e} = \sqrt{\frac{3(V_{a}^{2} + V_{b}^{2} + V_{c}^{2}) + V_{ab}^{2} + V_{bc}^{2} + V_{ca}^{2}}{18}}$$
(153)
$$V_{e} = \sqrt{(V^{+})^{2} + (V^{-})^{2} + \frac{(V^{0})^{2}}{2}}$$
(154)

Caso o defasamento entre as tensões V_a , $V_b e V_c$ esteja entre 110° e 130° e seus módulos tenham diferença menor que 10%, pode ser realizada mais uma simplificação (que gera um erro menor que 0,2%), conforme (155) (IEEE, 2010).

$$V_e = \sqrt{\frac{V_{ab}^2 + V_{bc}^2 + V_{ca}^2}{9}} = \sqrt{(V^+)^2 + (V^-)^2}$$
(155)

Com os valores da tensão efetiva, V_e , e da corrente efetiva, I_e , pode-se, finalmente, calcular a potência aparente efetiva (156) (IEEE, 2010).

$$S_e = 3 \cdot V_e \cdot I_e \tag{156}$$

2.2.4.7 Potência desbalanceada

A potência desbalanceada tem como unidade o VA e é definida por (157). Ela computa a potência resultante do desbalanceamento do sistema que, por sua vez, ocorre quando há desbalanceamento na carga ou tensão assimétrica (IEEE, 2010).

$$S_U = \sqrt{S_e^2 - (S^+)^2} \tag{157}$$

Lembrando que S^+ é definido por (158) e (159) (IEEE, 2010).

$$S^+ = 3 \cdot V^+ \cdot I^+ \tag{158}$$

$$(S^+)^2 = (P^+)^2 + (Q^+)^2$$
(159)

2.2.5 Sistema trifásico não-senoidal e desbalanceado

2.2.5.1 Potência aparente efetiva

O cálculo da potência aparente efetiva para um sistema trifásico não-senoidal e desbalanceado também pode ser usado para um sistema monofásico não-senoidal ou sistema trifásico senoidal desbalanceado (IEEE, 2010).

Da mesma forma que no cálculo da potência aparente efetiva em um sistema trifásico senoidal balanceado, para o caso desbalanceado, também é considerado um circuito balanceado virtual, com a mesma perda de potência na linha que o circuito real (IEEE, 2010).

Em um sistema a quatro fios, a potência de perda que flui pela linha está equacionada em (160), sendo do lado esquerdo da igualdade os parâmetros do circuito equivalente e do lado direito os parâmetros do circuito real (IEEE, 2010).

$$3 \cdot r_e \cdot {I_e}^2 = r_{dc} \cdot \sum_h K_{sh} ({I_{ah}}^2 + {I_{bh}}^2 + {I_{ch}}^2) + r_{ndc} \cdot \sum_h K_{snh} \cdot {I_{nh}}^2$$
(160)

Onde:

 I_e : corrente efetiva de linha

 K_{sh} : coeficiente de efeitos pelicular e de proximidade do condutor fase no harmônico de ordem h

 K_{snh} : coeficiente de efeitos pelicular e de proximidade do condutor neutro no harmônico de ordem h

rndc: resistência em corrente contínua do condutor neutro

h: ordem do harmônico

re: resistência equivalente

A resistência equivalente, r_e , é igual ao produto entre o coeficiente de efeitos pelicular e proximidade na frequência fundamental, K_{s1} , por r_{dc} , que é a resistência em corrente contínua, conforme (161) (IEEE, 2010).

$$r_e = K_{s1} \cdot r_{dc} \tag{161}$$

Com (161), a equação (160) pode ser desenvolvida, resultando em (162) (IEEE, 2010).

$$I_{e} = \sqrt{\frac{1}{3} \left\{ \sum_{h} \left[\frac{K_{sh}}{K_{s1}} \left(I_{ah}^{2} + I_{bh}^{2} + I_{ch}^{2} \right) + \frac{K_{snh} \cdot r_{ndc}}{K_{s1} \cdot r_{dc}} \cdot I_{nh}^{2} \right] \right\}}$$
(162)

A corrente equivalente, I_e , ainda pode ser desmembrada nas parcelas fundamental, I_{e1} , e harmônica, I_{eH} (163) a (168) (IEEE, 2010).

$$I_e = \sqrt{{I_{e1}}^2 + {I_{eH}}^2}$$
(163)

$$I_{e1} = \sqrt{\frac{1}{3} \left[\left(I_{a1}^{2} + I_{b1}^{2} + I_{c1}^{2} \right) + \rho_{1} \cdot I_{n1}^{2} \right]}$$
(164)

$$\rho_1 = \frac{K_{sn1} \cdot r_{ndc}}{K_{s1} \cdot r_{dc}} \tag{165}$$

$$I_{eH} = \sqrt{\frac{1}{3} \left\{ \sum_{h \neq 1} \left[k_h \left(I_{ah}^2 + I_{bh}^2 + I_{ch}^2 \right) + \rho_h \cdot I_{nh}^2 \right] \right\}}$$
(166)

$$k_h = \frac{K_{sh}}{K_{s1}} \tag{167}$$

$$\rho_h = \frac{K_{snh} \cdot r_{ndc}}{K_{s1} \cdot r_{dc}} \tag{168}$$

Os parâmetros ρ_1 , ρ_h e k_h dependem da temperatura, da topologia da rede e da carga, sendo normalmente desconhecidos. Assim, pode-se considerá-los iguais a 1, resultando em (169) a (171) (IEEE, 2010).

$$I_e = \sqrt{\frac{I_a^2 + I_b^2 + I_c^2 + I_n^2}{3}}$$
(169)

$$I_{e1} = \sqrt{\frac{I_{a1}^{2} + I_{b1}^{2} + I_{c1}^{2} + I_{n1}^{2}}{3}}$$
(170)

$$I_{eH} = \sqrt{\frac{I_{aH}^{2} + I_{bH}^{2} + I_{cH}^{2} + I_{nH}^{2}}{3}} = \sqrt{I_{e}^{2} - I_{e1}^{2}}$$
(171)

A tensão efetiva, V_e , é calculada da mesma forma que para sistemas trifásicos senoidais desbalanceados, vide (153). A diferença, no sistema não-senoidal, é que as tensões têm não apenas a componente fundamental, mas também harmônicos, conforme (172) a (176) (IEEE, 2010).

$$V_e = \sqrt{{V_{e1}}^2 + {V_{eH}}^2} \tag{172}$$

$$V_e = \sqrt{\frac{3(V_a^2 + V_b^2 + V_c^2) + V_{ab}^2 + V_{bc}^2 + V_{ca}^2}{18}}$$
(173)

$$V_{e1} = \sqrt{\frac{3(V_{a1}^2 + V_{b1}^2 + V_{c1}^2) + V_{ab1}^2 + V_{bc1}^2 + V_{ca1}^2}{18}}$$
(174)

$$V_{eH} = \sqrt{\frac{3(V_{aH}^{2} + V_{bH}^{2} + V_{cH}^{2}) + V_{abH}^{2} + V_{bcH}^{2} + V_{caH}^{2}}{18}}$$
(175)

$$V_{eH} = \sqrt{V_e^2 - V_{e1}^2}$$
(176)

A potência aparente efetiva é definida por (177) e por (178) (IEEE, 2010).

$$S_e = 3 \cdot V_e \cdot I_e \tag{177}$$

$$S_e^{\ 2} = (3 \cdot V_e \cdot I_e)^2 = 9 \cdot (V_{e1} + V_{eH})^2 \cdot (I_{e1} + I_{eH})^2$$

= 9 \cdot V_{e1} \cdot I_{e1} + 9 \cdot V_{e1} \cdot I_{eH} + 9 \cdot V_{eH} \cdot I_{e1} + 9 \cdot V_{eH} \cdot I_{eH} (178)

As potências efetivas de distorção de corrente (D_{eI}) e tensão (D_{eV}) , presentes em (178), são definidas em (179) e (180) (IEEE, 2010).

$$D_{el} = 3 \cdot V_{e1} \cdot I_{eH} = S_{e1} \cdot \text{DHT}_{el} \tag{179}$$

$$D_{eV} = 3 \cdot V_{eH} \cdot I_{e1} = S_{e1} \cdot \text{DHT}_{eV}$$
(180)

As distorções harmônicas totais (DHT) de corrente e tensão, correspondem, respectivamente a (181) e (182) (IEEE, 2010).

$$DHT_{eI} = \frac{I_{eH}}{I_{e1}}$$
(181)
$$DHT_{eV} = \frac{V_{eH}}{V_{e1}}$$
(182)

Por fim, a potência aparente efetiva harmônica é descrita em (183). Deve-se ressaltar que S_{eH} contempla o produto entre tensões e correntes de diferentes ordens harmônicas, além do produto das tensões e correntes de mesma ordem harmônica (IEEE, 2010).

$$S_{eH} = 3 \cdot V_{eH} \cdot I_{eH} \tag{183}$$

A potência aparente efetiva não-fundamental é definida por (184) (IEEE, 2010).

$$S_{eN}^{2} = S_{e}^{2} - S_{e1}^{2} = D_{eI}^{2} + D_{eV}^{2} + S_{eH}^{2}$$
(184)

A potência efetiva de distorção harmônica D_{eH} , é descrita em (185) (IEEE, 2010).

$$D_{eH} = \sqrt{S_{eH}^2 - P_{eH}^2}$$
(185)

Para sistemas com $DHT_{eV} \le 5\%$ e $DHT_{eI} \ge 40\%$ pode-se usar a aproximação de (186) (IEEE, 2010).

$$S_{eN} = S_{e1} \cdot THD_{eI} = V_{e1} \cdot I_{eH} \tag{186}$$

A parcela S_{e1} é definida por (187).

$$S_{e1} = 3 \cdot V_{e1} \cdot I_{e1} \tag{187}$$

O desbalanceamento da carga pode ser avaliado pela potência desbalanceada fundamental em (188) (IEEE, 2010).

$$S_{U1} = \sqrt{S_{e1}^{2} - (S_{1}^{+})^{2}}$$
(188)

Onde S_1^+ é a potência aparente fundamental na sequência positiva, que é composta por (189) (IEEE, 2010).

$$S_1^{+} = \sqrt{(P_1^{+})^2 + (Q_1^{+})^2}$$
 (189)

As potências P_1^+ e Q_1^+ , por sua vez, são definidas em (190) e (191) (IEEE, 2010).

$$P_1^{+} = 3 \cdot V_1^{+} \cdot I_1^{+} \cdot \cos \theta_1^{+} \tag{189}$$

$$Q_1^{+} = 3 \cdot V_1^{+} \cdot I_1^{+} \cdot \sin \theta_1^{+}$$
(191)

2.3 Considerações do capítulo

Como demonstrado na fundamentação teórica, as teorias de potência TPC e IEEE sugerem medições de potência para situações em que as formas de onda são não-senoidais bem como para cargas desbalanceadas.

A teoria de potência IEEE considera um circuito balanceado virtual que dissipe na linha a mesma potência que o circuito real. Dessa forma encontra-se a tensão efetiva V_e e a corrente efetiva I_e , que são definidas em função das tensões e correntes eficazes do circuito, conforme (147) e (153).

Para circuitos com formas de onda não senoidais, $V_e \in I_e$ são decompostos em parcela fundamental e harmônica, V_{e1} , V_{eH} , I_e , I_{eH} e assim calculam-se as potências com componentes harmônicos. Para o cálculo das potências desbalanceadas, esta teoria faz uso das componentes simétricas de potência.

Em contrapartida, a teoria TPC fundamenta-se na constatação de que a potência ativa e a energia reativa são grandezas conservativas, e a partir destas são deduzidas as correntes ativa e reativa. Subtraindo as correntes ativa e reativa da corrente total, encontra-se a corrente *void* que é não-senoidal e é utilizada para o cálculo da potência *void*. Já para os cálculos das potências desbalanceadas, a corrente desbalanceada é encontrada subtraindo a corrente balanceada da corrente total.

3 SIMULAÇÕES COMPUTACIONAIS

Neste capítulo é apresentado como a frequência reduzida foi projetada, bem como as simulações computacionais realizadas para verificar a exatidão desta frequência em relação à frequência de referência em tempo contínuo. Foram feitas simulações com dez cargas RL desbalanceadas e dez cargas não lineares. Ademais foram feitas simulações com outras frequências discretizadas para comparação.

3.1 Cálculos nas simulações

As simulações computacionais foram realizadas de forma discreta, amostrando-se as formas de onda de tensão e corrente com diferentes frequências de amostragem, sendo: 15,36 kHz, 7,68 kHz, 1,92 kHz, 300 Hz e 297,766779 Hz. Esta última foi escolhida de forma apropriada almejando-se que fosse inferior a 300 Hz mas que tivesse uma exatidão aceitável, ao se comparar com uma simulação de referência, com amostragem em tempo contínuo.

Os cálculos realizados consistiram, além das operações matemáticas básicas: adição, subtração, multiplicação e divisão, em cálculos de valores eficazes e valores médios, criando-se algoritmos para realizar estas operações.

Os algoritmos utilizaram 'n' números de amostras para a correta medição da média e do valor eficaz em um período de 60 Hz. O 'n' foi obtido dividindo-se as frequências de amostragens pela frequência fundamental de 60 Hz. Assim, para a frequência de 15,36 kHz obteve-se 256 amostras, e para as frequências de 7,68 kHz, 1,92 kHz, 300 Hz, obteve-se 128, 32 e 5 amostras, respectivamente. Já a obtenção do número de amostras da frequência de amostragem em 297,766779 Hz está descrita em detalhes no tópico 3.3.

3.2 Cálculos de média e valor eficaz

Para o cálculo da média foi criado um algoritmo que acumula em uma variável os pontos da forma de onda e faz a divisão pelo número total de pontos ao final do período.

O algoritmo para cálculo do valor eficaz foi deduzido a partir dos operadores matemáticos de média, produto interno e valor eficaz, conforme equações (1), (5) e

(6). Analisando (1) e (5) percebe-se que o produto interno só difere da média pela multiplicação por y. E (6) demonstra que o valor eficaz corresponde à raiz quadrada do produto interno.

Observando (1), se a variável 'x' for elevada ao quadrado e ao final do cálculo da média, for extraída a raiz quadrada, chega-se no valor eficaz. Logo, o algoritmo que calcula o valor eficaz, simplesmente acumula a variável de entrada elevada ao quadrado, que depois é dividido pelo número de amostras, e ao final extrai-se a raiz quadrada.

3.3 Frequência de amostragem reduzida

A frequência de amostragem reduzida foi implementada com o intuito de que fosse próxima a 300 Hz visto que a redução de frequência diminui o custo computacional. No entanto, esta escolha precisa preservar uma exatidão aceitável.

Por meio de simulações computacionais, notou-se que a frequência de amostragem em 8 kHz, que adquire 133 amostras em um período de 60Hz, apresenta erro inferior a 5% na maior parte das medições de potência em comparação com uma simulação de referência (tempo contínuo). Então, foi determinado um número da ordem de 133 amostras para a frequência a ser utilizada neste projeto.

Todavia, uma frequência de amostragem baixa, como 300 Hz, só permite 5 amostras em um período de 60 Hz. Assim, deveriam ser amostrados diferentes pontos da forma de onda, pertencentes a sucessivos períodos, até que se alcançasse os 133 pontos. Além disso, a frequência de amostragem não poderia ser múltipla da frequência da rede, 60 Hz, uma vez que seriam amostrados os mesmos pontos dos sucessivos períodos.

Como a frequência de 300 Hz é múltipla da frequência da rede, esta não poderia ser utilizada, sendo necessário utilizar outra frequência que não fosse múltipla. No gráfico superior da Figura 1 está ilustrada uma senóide de 60 Hz sendo amostrada a uma taxa de 300 Hz e na parte inferior, a mesma senóide amostrada com frequência não-múltipla de 300Hz. Pode-se verificar que na primeira são sempre os mesmos pontos amostrados, enquanto na segunda, os pontos amostrados diferem. Isto pode ser percebido pela defasagem existente entre o tempo de amostragem do primeiro ponto do primeiro ciclo (t1) e o tempo de amostragem do primeiro ponto do segundo ciclo (t2).

Assim, foi definido que a frequência reduzida deveria ter um defasamento entre as amostras dos sucessivos ciclos (t2 diferente de t1) e que fosse igual ao período da frequência de 8 kHz, para que assim, fosse possível amostrar os mesmos 133 pontos que a frequência de 8 kHz consegue amostrar.

A frequência de amostragem reduzida que possibilitaria esta aquisição de pontos é obtida conforme (192) a (205).

$$n = i, d \tag{192}$$

Onde:

n: número de amostras em um período de 60 Hz

i: parte inteira do número

d: parte decimal do número

Uma vez que a frequência reduzida deveria ser menor que 300 Hz, a parte inteira 'i' foi definida como 4, visto que uma taxa de amostragem de 300 Hz adquire 5 amostras em um período de 60 Hz. A Figura 2 ilustra a amostragem na frequência reduzida.

Fonte: Elaboração própria

A parte decimal 'd', foi calculada conforme (193) a (196).

$$(1-d) \cdot T_s = a \tag{193}$$

$$(1-d) \cdot T_s = 1,25 \cdot 10^{-4} \tag{194}$$

$$(1-d) = \frac{1,25 \cdot 10^{-4}}{T_s} \tag{195}$$

$$d = 1 - \frac{1,25 \cdot 10^{-4}}{T_s} \tag{196}$$

Onde:

a: defasamento entre amostras de dois períodos consecutivos (período de uma frequência de 8 kHz)

T_s: período da frequência de amostragem reduzida

A partir de (192) definiu-se 'n' como (197)

$$n = i + d \tag{197}$$

$$n = 4 + d \tag{198}$$

Sabe-se que 'n' também corresponde a (202).

$$n = \frac{T_R}{T_S} \tag{199}$$

Onde:

 T_R : período de uma forma de onda de 60Hz

Logo, (200) é a igualdade entre (198) e (199), que após manipulação algébrica, resulta na frequência de amostragem reduzida (205).

$$\frac{T_R}{T_S} = 4 + d \tag{200}$$

$$\frac{T_R}{T_S} = 4 + 1 - \frac{1,25 \cdot 10^{-4}}{T_S}$$
(201)

$$\frac{1}{60} = 5 \cdot T_S - 1,25 \cdot 10^{-4} \tag{202}$$

$$T_{\rm S} = \frac{\frac{1}{60} + 1,25 \cdot 10^{-4}}{5} \tag{203}$$

$$T_S = 3,358333 \cdot 10^{-3} s \tag{204}$$

$$f_S = 297,766779 \,\mathrm{Hz}$$
 (205)

Onde:

 f_s : frequência de amostragem reduzida

Por fim (206) e (207) definem o 'n' para esta frequência.

$$n = \frac{f_S}{f_R} \tag{206}$$

$$n = \frac{297,766779}{60} = 4,96278 \tag{207}$$

Com o valor de 'n' (número de amostras em um período de 60 Hz), o número de períodos 'p' foi calculado pela divisão entre o número total de amostras por 'n'. O

número total de amostras foi definido com a condição de que fosse menor ou igual a 133 e que resultasse em um número de períodos 'p' mais próximo a um número inteiro.

Desta forma, chegou-se em número total de amostras de 129. Estas 129 amostras são adquiridas em aproximadamente 26 períodos de 60 Hz conforme (208).

$$p = \frac{129}{4,96278} = 25,993496 \tag{208}$$

Em medições de potência moderna, Alfonso-Gil (2013) utilizou uma taxa de 128 amostras por período, da mesma ordem que o número de amostras escolhida, de forma analítica, para a frequência reduzida.

Vale-se ressaltar que este método de amostragem não pode ser utilizado em filtros ativos de potência (PAREDES, 2009b). Esses filtros precisam dos valores instantâneos de corrente e tensão para fazer as compensações de potências não ativas, enquanto que neste método são necessários 26 períodos da rede elétrica para adquirir todos os pontos de um ciclo. Pelo mesmo motivo, este método de amostragem não reproduz transitórios, assim, só é aplicável em regime permanente.

Todavia, quando a aplicação é para medições de potências, o método de amostragem desenvolvido é eficiente, pois 26 ciclos de 60 Hz representam menos de 0,5 segundo, que poderia corresponder ao tempo de atualização do display de medição.

3.4 Estratégia de comparação

Para o desenvolvimento do trabalho foram realizadas simulações computacionais em ambiente discreto de dois circuitos trifásicos a quatro fios. O primeiro, composto por uma carga RL desbalanceada e o segundo, uma carga nãolinear também desbalanceada. Esses circuitos tiveram suas medições de potência feitas segundo a Teoria de Potência Conservativa (TPC) e a Teoria de Potência IEEE 1459-2010.

O desempenho da simulação com frequência de amostragem de 297,766779 Hz foi comparado com a simulação de referência em tempo contínuo. Outras frequências de amostragem também foram comparadas com a referência, mais especificamente as frequências de 15,36 kHz; 7,68 kHz; 1,92 kHz e também 300 Hz, que é próxima a 297,766779 Hz.

3.5 Circuito trifásico RL desbalanceado

O circuito trifásico RL desbalanceado foi composto por cargas RL em cada uma das fases, além de uma carga resistiva entre as fases A e B conforme ilustra a Figura 2. A alimentação do circuito e os dados da linha estão descritos na Tabela 1.

Fonte: Elaboração própria

Tabela 1 – Circuito RL desbalanceado				
Fase A	127 ∠0° Vrms			
Fase B	127 ∠-120° Vrms			
Fase C	127 ∠120° Vrms			
Linha A	15 mΩ 25 μH			
Linha B	15 mΩ 25 μH			
Linha C	15 mΩ 25 μH			

Fonte: Elaboração própria

Foram realizadas simulações computacionais com dez cargas trifásicas distintas conforme Tabela 2. A carga Z1 é a carga de referência e as demais cargas, suas submúltiplas. Assim, Z2 tem metade do valor da resistência e metade do valor da indutância de Z1. Já Z3 tem um terço dos valores de resistência e indutância de Z1 e assim sucessivamente, até Z10, que tem um décimo dos valores de resistência e indutância de Z1.

Z1	Z2	Z3	Z4	Z5
RA= 10 Ω	RA= 10/2 Ω	RA= 10/3 Ω	RA= 10/4 Ω	RA= 10/5 Ω
LA=13m H	LA=13m/2 H	LA=13m/3 H	LA=13m/4 H	LA=13m/5 H
RB= 15 Ω	RB= 15/2 Ω	RB= 15/3 Ω	RB= 15/4 Ω	RB= 15/5 Ω
LB=12m H	LB=12m/2 H	LB=12m/3 H	LB=12m/4 H	LB=12m/5 H
RC= 7 Ω	RC= 7/2 Ω	RC= 7/3 Ω	RC= 7/4 Ω	RC= 7/5 Ω
LC=18m H	LC=18m/2 H	LC=18m/3 H	LC=18m/4 H	LC=18m/5 H
RAB= 20 Ω	RAB= 20/2 Ω	RAB= 20/3 Ω	RAB= 20/4 Ω	RAB= 20/5 Ω
Z6	Z7	Z8	Z9	Z10
RA= 10/6 Ω	RA= 10/7 Ω	RA= 10/8 Ω	RA= 10/9 Ω	RA= 10/10 Ω
LA=13m/6 H	LA=13m/7 H	LA=13m/8 H	LA=13m/9 H	LA=13m/10 H
RB= 15/6 Ω	RB= 15/7 Ω	RB= 15/8 Ω	RB= 15/9 Ω	RB= 15/10 Ω
LB=12m/6 H	LB=12m/7 H	LB=12m/8 H	LB=12m/9 H	LB=12m/10 H
RC= 7/6 Ω	RC= 7/7 Ω	RC= 7/8 Ω	RC= 7/9 Ω	RC= 7/10 Ω
LC=18m/6 H	LC=18m/7 H	LC=18m/8 H	LC=18m/9 H	LC=18m/10 H

Tabela 2 - Cargas trifásicas do circuito RL desbalanceado

Fonte: Elaboração própria

A Figura 3 ilustra as formas de onda de corrente e tensão do circuito RL desbalanceado com a carga Z1.

Fonte: Elaboração própria

3.6 Circuito trifásico não-linear desbalanceado

O segundo circuito, não-linear desbalanceado, tem seus parâmetros descritos na Tabela 3 e, como ilustrado na Figura 4, é composto por retificadores não controlados.

	realte mae innear accoular
Fase A	127 ∠0° Vrms
Fase B	127 ∠-120° Vrms
Fase C	127 ∠120° Vrms
Linha A	6 mΩ 200 μH
Linha B	6 mΩ 200 μH
Linha C	6 mΩ 200 μH

Tabela 3 – Parâmetros do circuito não-linear desbalanceado

Fonte: Elaboração própria

Fonte: Elaboração própria

A Tabela 4 informa os parâmetros das dez cargas simuladas no circuito nãolinear, que de forma análoga às cargas do circuito RL, tem como referência a carga Z1, e as demais cargas tem resistências submúltiplas desta resistência.

Z1	Z2	Z3	Z4	
RA= 1,5 Ω	RA= 1,5/2 Ω	RA= 1,5/3 Ω	RA= 1,5/4 Ω	
CA=5,5m F	CA=5,5m F	CA=5,5m F	CA=5,5m F	
RB= 900m Ω	RB= 900m/2 Ω	RB= 900m/3 Ω	RB= 900m/4 Ω	
CB=2m F	CB=2m F	CB=2m F	CB=2m F	
RC= 400m Ω	RC= 400m/2 Ω	RC= 400m/3 Ω	RC= 400m/4 Ω	
CC=3,8m F	CC=3,8m F	CC=3,8m F	CC=3,8m F	
Z5	Z6	Z7	Z8	
RA= 1,5/5 Ω	RA= 1,5/6 Ω	RA= 1,5/7 Ω	RA= 1,5/8 Ω	
CA=5,5m F	CA=5,5m F	CA=5,5m F	CA=5,5m F	
RB= 900m/5 Ω	RB= 900m/6 Ω	RB= 900m/7 Ω	RB= 900m/8 Ω	
CB=2m F	CB=2m F	CB=2m F	CB=2m F	
RC= 400m/5 Ω	RC= 400m/6 Ω	RC= 400m/7 Ω	RC= 400m/8 Ω	
CC=3,8m F	CC=3,8m F	CC= 3,8m F	CC= 3,8m F	
Z9		Z10		
RA= 1,5/9 Ω		RA= 1,5/10 Ω		
CA=5,5m F		CA=5,5m F		
RB= 900m/9 Ω		RB= 900m/10 Ω		
CB=2m F		CB=2m F		
RC= 400m/9 Ω		RC= 400m/10 Ω		
CC= 3,8	8m F	CC=3,8m F		

Tabela 4 – Cargas trifásicas do circuito não-linear

Fonte: Elaboração própria

As Figuras 5 e 6 ilustram as tensões e correntes do circuito não-linear com a carga Z1.

3.7 Teoria de potência TPC: diagrama de blocos

Para as medições das potências pela teoria TPC foi construído um modelo com blocos no MATLAB/Simulink®. A Figura 7 ilustra os subsistemas utilizados para as medições de potências e de valores de tensão e corrente. Já as Figuras 8, 9 e 10 descrevem em detalhes os blocos utilizados em subsistemas das medições de potência ativa balanceada, potência desbalanceada e potência *void*.

Figura 8 – TPC: Medições de potência

Fonte: Elaboração própria

Da Figura 7, têm-se as seguintes siglas:

I: corrente

U: tensão

I_ativ: corrente ativa eficaz

i_ativ: corrente ativa instantânea

i_ativ_desbal: corrente ativa instantânea desbalanceada

P_ativ_bal: potência ativa balanceada

N: potência desbalanceada

Na: potência ativa desbalanceada

Nr: potência reativa desbalanceada

- V: potência void
- A: potência aparente
- P: potência ativa
- Q: potência reativa

Fonte: Elaboração própria

Fonte: Elaboração própria

Fonte: Elaboração própria

3.8 Teoria de Potência IEEE 1459-2010: diagrama de blocos

A Figura 11 apresenta o modelo em MATLAB/Simulink® para as medições de potência na teoria IEEE. Os detalhes dos subsistemas da Figura 11 estão expostos nas Figuras 12, 13 e 14. A Figura 12 ilustra a potência aparente efetiva, já a Figura 13 as potências de componentes simétricas e por fim a última figura, detalha os cálculos das potências aparente efetiva harmônica, aparente efetiva não-fundamental, desbalanceada fundamental e as potências de distorção.

Onde:

Se: potência aparente efetiva

S1+: potência aparente fundamental de sequência positiva

P1-0: potência ativa fundamental de sequência zero

Q1-0: potência reativa fundamental de sequência zero

Pfund: potência ativa fundamental

Qfund: potência reativa fundamental

P1neg: potência ativa fundamental de sequência negativa

Q1neg: potência reativa fundamental de sequência negativa

Del: potência efetiva de distorção de corrente

DeV: potência efetiva de distorção de tensão

SeH: potência aparente efetiva harmônica

SeN: potência aparente efetiva não-fundamental

Ve: tensão efetiva

le: corrente efetiva

Se1: potência aparente efetiva fundamental

Su1: potência desbalanceada fundamental

Figura 13 – IEEE: Potência aparente efetiva

Fonte: Elaboração própria

Figura 14 - IEEE: Potências de componentes simétricas

Fonte: Elaboração própria

Figura 15 – IEEE: Pot. desbalanceada e pot. com distorção harmônica

Fonte: Elaboração própria

3.9 Considerações do capítulo

Neste capítulo foi descrita a forma como se calculou a frequência reduzida de 297,766779 Hz para que tivesse uma exatidão e precisão aceitáveis, comparando a uma simulação de referência com amostragem em tempo contínuo. Para tanto, foram necessários aproximadamente 26 ciclos de 60 Hz, para adquirir 129 amostras, da mesma ordem do número de amostras já utilizados em medições de potência modernas, como atesta Alfonso-Gil (2013).

Ademais, foram descritos os algoritmos de cálculo das potências bem como as simulações computacionais. Estas consistiram em dez cargas RL desbalanceadas e dez cargas não-lineares desbalanceadas com taxas de amostragem de 15,36 kHz, 7,68 kHz, 1,92 kHz, 300 Hz e 297,766779 Hz.

4 RESULTADOS DE SIMULAÇÃO

As medições de potência nas diversas frequências de amostragem tiveram como referência as medições de uma simulação com amostragem em tempo contínuo. Como havia dez tipos de carga, foram realizadas médias dos erros percentuais das potências das dez simulações, que foram comparadas com os erros percentuais médios da simulação de referência.

4.1 Circuito RL desbalanceado

O primeiro circuito simulado foi o trifásico RL desbalanceado a quatro fios. Foram realizadas as medições de potência pela TPC bem como pela IEEE.

4.1.1 Teoria de Potência Conservativa (TPC): carga RL

As medições de referência para a teoria TPC estão descritas na Tabela 5, e na Tabela 6, constam as medições na frequência de 297,766779 Hz.

Já a Tabela 7 informa os erros percentuais médios das medições de potência em cada uma das frequências de amostragem, em relação às medições de referência.

	Р	Q	Α	Na	Nr	N
Z1	5883	2086	6658	1685	1608	2329
Z2	11740	4173	13280	3355	3200	4637
Z3	17560	6259	19870	5013	4777	6924
Z4	23350	8345	26430	6657	6338	9191
Z5	29590	10430	33100	8197	7884	11370
Z6	35530	12520	39450	9809	9415	13600
Z7	41340	14600	45910	11400	10930	15790
Z8	47130	16690	52340	12970	12430	17970
Z9	52880	18770	58730	14530	13920	20120
Z10	58600	20850	65100	16080	15390	22380

Tabela 5 – Potências de referência – TPC - carga RL

Fonte: Elaboração própria

	Р	Q	Α	Na	Nr	Ν
Z1	5855	1892	6621,00	1672	1661	2357
Z2	11680	3785	13210,00	3329	3306	4692
Z3	17480	5678	19760,00	4974	4936	7008
Z4	23240	7571	2680,00	6605	6551	9303
Z5	28980	9467	32770,00	8222	8149	11580
Z6	34690	11360	39230,00	9827	9733	13830
Z7	40360	13250	45640,00	11420	11300	16060
Z8	46010	15150	52030,00	12990	12850	18280
Z9	51630	17050	58400,00	14560	14390	20470
Z10	57230	18950	64720,00	16110	15910	22650
Easte Elskanse Samularia						

Tabela 6 - Potências em 297,766779 Hz - TPC - carga RL

Fonte: Elaboração própria

Tabela 7 - Erros percentuais médios - TPC - carga RL

15,36 kHz (n=256)	7,68 kHz (n=128)	1,92 kHz (n=32)	300 Hz (n=5)	297,766779 Hz (n=129)
Р	Р	Р	Р	Р
1,19%	1,19%	1,28%	1,19%	1,58%
Q	Q	Q	Q	Q
10,33%	6,88%	27,93%	17,15%	9,24%
Α	Α	Α	Α	Α
0,04%	0,05%	0,58%	0,05%	0,69%
Na	Na	Na	Na	Na
0,64%	0,63%	1,86%	0,64%	0,43%
Nr	Nr	Nr	Nr	Nr
2,93%	1,95%	8,75%	34,35%	3,36%
Ν	Ν	N	N	N
1,69%	1,22%	5,14%	17,89%	1,48%

Fonte: Elaboração própria

Analisando-se a Tabela 7 pode-se notar que apenas a medição de potência reativa (Q) teve erro superior a 3,4% na amostragem com frequência reduzida de 297,766779 Hz.
4.1.2 Teoria de Potência IEEE 1459-2010: carga RL

Para as medições de potência pela teoria IEEE, os valores de referência constam na Tabela 8, as medições na frequência projetada na Tabela 9 e os erros médios na Tabela 10.

		Tabela 8 – Potências de referência – IEEE – carga RL								
	Se	Se1	S1+	P1+	Q1+	Su1	P fund			
Z1	6873	6877	6238	5878	2086	2896	5879			
Z2	13711	13719	12447	11727	4173	5768	11727			
Z3	20513	20525	18629	17546	6259	8615	17546			
Z4	27280	27319	24782	23335	8345	11497	23335			
Z5	34012	34030	30908	29095	10431	14239	29095			
Z6	40709	40731	37007	34825	12517	17015	34826			
Z7	47371	47397	43078	40527	14603	19769	40527			
Z8	53999	54029	49122	46200	16688	22499	46200			
Z9	60594	60627	55139	51845	18772	25207	51845			
Z10	67154	67192	61129	57461	20856	27892	57461			

Fonte: Elaboração própria

Tabela 9 - Potências em 297,766779 Hz - IEEE - carga RL

	Se	Se1	S1+	P1+	Q1+	Su1	P fund
Z1	6835	6823	6149	5791	2066	2957	5799
Z2	13635	13611	12270	11553	4133	5893	11569
Z3	20400	20365	18360	17282	6198	8810	17306
Z4	27128	27084	24428	22988	8263	11696	23020
Z5	33823	33768	30467	28663	10329	14561	28702
Z6	40482	40417	7 36480	34310	12393	17401	34357
Z7	47108	47208	42457	39921	14455	20223	39976
Z8	53699	53609	48416	45510	16522	23018	45573
Z9	60256	60157	54348	51072	18585	25789	51142
Z10	66780	66670	60250	56602	20647	28543	56680

Fonte: Elaboração própria

15,36kHz (n=256)	7,68kHz (n=128)	1,92kHz (n=32)	300Hz (n=5)	297,766779 Hz (n=129)				
Se	Se	Se	Se	Se				
3,97%	2,15%	0,93%	0,007%	0,56%				
Se1	Se1	Se1	Se1	Se1				
0,06 %	2,51%	0,38%	12,50%	0,75%				
S1+	S1+	S1+	S1+	S1+				
0,06%	2,49%	0,32%	12,49%	1,43%				
P1+	P1+	P1+	P1+	P1+				
0,05%	16,0%	0,32%	12,49%	1,48 %				
Q1+	Q1+	Q1+	Q1+	Q1+				
0,003%	2,52%	0,32%	12,49%	0,98%				
Su1	Su1	Su1	Su1	Su1				
0,332%	2,63%	0,66%	12,56%	2,21%				
P fund	P fund	P fund	P fund	P fund				
0,008%	2,49%	0,32%	12,49%	1,36%				

Tabela 10 – Erros percentuais médios – IEEE - carga RL

Os erros percentuais médios da frequência reduzida (projetada de acordo com o item 3.3), pela teoria IEEE, não foi superior a 2,3% em nenhuma das medições de potência. Além disso, em todas as medições desta frequência o erro foi inferior aos erros da frequência de 7,68 kHz como indica a Tabela 10.

4.2 Circuito não-linear desbalanceado

O segundo grupo de resultados se refere ao circuito não-linear desbalanceado, com medições nas duas teorias de potência abordadas neste trabalho.

4.2.1 Teoria de Potência Conservativa (TPC): não-linear

As medições de potência de referência para as simulações com cargas não lineares estão descritas na Tabela 11, e a Tabela 12 indica as medições de potência na frequência reduzida, de 297,766779 Hz.

A Tabela 13 informa os erros médios em cada uma das frequências de amostragem.

	Р	Q	Α	Na	Nr	Ν	v
Z1	83690	23540	103300	35670	18470	40170	36630
Z2	144600	28430	191100	66410	12890	67640	44430
Z3	190300	33430	249600	95650	12610	96480	43850
Z4	222400	35350	290900	118100	14340	118900	40870
Z5	244700	35150	317000	133300	15460	134200	36900
Z6	260100	33900	332900	143000	16050	143900	33020
Z7	270500	32430	342100	148800	16370	149700	29430
Z8	277500	31060	347000	152000	16570	152900	26030
Z9	281800	29910	348800	153300	16710	154200	22590
Z10	284200	28980	348500	153200	16820	154100	18720
			Fonte:	Elaboração	própria		

Tabela 11 – Potências de referência – TPC - carga não-linear

Tabela 12 – Potências em 297,766779 Hz – TPC - carga não-linear

	Р	Q	А	Na	Nr	Ν	V
Z1	83010	23760	103100	35290	18180	39700	39150
Z2	142300	35290	167500	66550	9979	67290	43540
Z3	189500	41820	220100	96060	9109	96490	39940
Z4	221600	43230	257100	117700	10330	118200	35600
Z5	244900	42150	282700	132300	9569	132700	30470
Z6	260000	41510	299500	141400	9129	141700	24920
Z7	270000	38480	310600	147300	8660	147500	24930
Z8	276500	39050	317600	150600	8224	150900	20010
Z9	281300	36950	321700	151800	7696	152000	14960
Z10	283500	36050	323500	152000	7661	152200	12250
				~	· ·		

15,36 kHz (n=256)	7,68 kHz (n=128)	1,92 kHz (n=32)	300 Hz (n=5)	297,766779 Hz (n=129)
Р	Р	Р	Р	Р
0,22%	0,27%	6,42%	0,94%	0,43%
Q	Q	Q	Q	Q
12,09%	20,6%	76,64%	382,7%	20,7%
Α	Α	Α	Α	Α
8,46%	8,42%	11,7%	8,87%	8,94%
Na	Na	Na	Na	Na
0,66%	0,68%	10,21%	3,44%	0,76%
Nr	Nr	Nr	Nr	Nr
36,17%	32,41%	42,0%	385,5%	36,7%
Ν	Ν	Ν	N	N
0,51%	0,49%	5,31%	16,3%	1,04%
V	V	V	V	V
5,50%	9,00%	86,57%	100%	17,9%

Tabela 13 - Erros médios - TPC - carga não-linear

A Tabela 13 indica erros inferiores a 1,1% em três das sete medições (P, Na e N) na frequência reduzida. Ademais, os erros percentuais médios desta frequência ficaram muito próximos aos erros da amostragem em 7,68 kHz, visto que em cinco das sete medições de potência a diferença entre os erros foi inferior a 0,6%.

4.2.2 Teoria de Potência IEEE 1459-2010: carga não-linear

As referências para as medições de potência de cargas não-lineares pela teoria IEEE, constam na Tabela 14. Na Tabela 15 constam as medições na frequência projetada, já os erros médios referentes às diferentes frequências de amostragem, estão na Tabela 16.

	Se	Se1	Del	DeV	S1+	P1+	Q1+	Su1	P fund	SeH	SeN
Z1	119698	100938	61426	16343	85108	82988	18877	54269	82793	9945	64336
Z2	189845	177407	60622	28275	146724	145335	20145	99726	144805	9662	67586
Z3	247679	238956	51821	38592	192518	191575	19023	141552	190546	8369	65152
Z4	288575	280942	45371	47229	224693	224229	14432	168646	222665	7627	65934
Z5	313887	308015	35329	48711	247130	246975	8772	183847	244965	5587	60433
Z6	329358	324573	26704	48988	262663	262640	3466	190672	260308	4030	55938
Z7	338245	334323	18091	47998	273273	273272	845	192598	270724	2597	51360
Z8	342818	339633	0	0	280320	280290	4072	191760	277611	0	46621
Z9	344475	341974	0	0	284743	284672	6332	189387	281925	0	41440
Z10	344096	342247	0	0	287204	287098	7793	186137	284328	0	35620
				-		~ /					

Tabela 14 – Potências de referência – IEEE – carga não-linear

Tabela 15 – Potências em 297,766779 Hz – IEEE – carga não-linear

	Se	Se1	Del	DeV	S1+	P1+	Q1+	Su1	P fund	SeH	SeN
Z1	120421	101259	63038	14056	84000	81103	21869	56545	81271	8751	65175
Z2	189789	177135	61115	28491	145130	142997	24788	101558	141649	9830	68142
Z3	247280	237657	52188	43053	190675	189255	23225	141858	186712	9454	68312
Z4	286664	278591	43920	50702	221434	220941	14771	169055	218677	7993	67554
Z5	312141	304789	35813	56647	242689	242574	7468	184388	240828	6656	67348
Z6	327718	321805	29205	54434	258763	258748	2829	191312	256482	4940	61971
Z7	336310	331502	24335	51041	268745	268737	2014	194087	266976	3747	56670
Z8	340818	336970	21092	0	275943	275886	5577	193401	274120	0	51072
Z9	342521	338651	18065	0	280463	280370	7242	189803	278635	0	51344
Z10	342521	339435	0	102936	283622	283518	7680	186481	281272	0	45875

Fonte: Elaboração própria

15,36kHz (n=256)	7,68kHz (n=128)	1,92kHz (n=32)	300Hz (n=5)	297,766779Hz (n=129)
Se	Se	Se	Se	Se
0,31%	11,2%	0,32%	0,97%	0,47%
Se1	Se1	Se1	Se1	Se1
9,00%	0,18%	0,55%	12,5%	0,72%
Del	Del	Del	Del	Del
12,0%	25,5%	24,1%	185%	6,6%
DeV	DeV	DeV	DeV	DeV
5,6%	6,7%	19,7%	138%	7,5%
S1+	S1+	S1+	S1+	S1+
0,31%	0,26%	36,5%	12,9%	1,40%
P1+	P1+	P1+	P1+	P1+
0,20%	0,14%	36,4%	12,9%	1,58%
Q1+	Q1+	Q1+	Q1+	Q1+
16,9%	19,0%	246%	123%	28,8%
Su1	Su1	Su1	Su1	Su1
0,57%	0,60%	35,0%	11,7%	0,92%
P fund	P fund	P fund	P fund	P fund
0,06%	0,08%	36,2%	12,7%	1,59%
SeH	SeH	SeH	SeH	SeH
14,5 %	24,1%	249%	696%	11,8%
SeN	SeN	SeN	SeN	SeN
8,64%	20,5%	44,2%	190%	10,4%

Tabela 16 – Erros médios – IEEE – carga não-linear

Da Tabela 16, pode-se notar que das onze medições de potência, apenas três tiveram erro médio superior a 10% (Q1+, SeH e SeN) na frequência projetada, e seis delas tiveram erro inferior a 1,6% (Se, Se1, S1+, P1+, Su1, Pfund). Complementado esses dados, os erros na frequência projetada foram inferiores a frequência 7,68 kHz em quatro medições (Se, Del, SeH e SeN).

4.3 Considerações do capítulo

Para as medições de potência do circuito RL desbalanceado com amostragem de 297,766779 Hz, apenas uma medição (Q - teoria TPC) teve erro médio superior a 3,4%. E de um total de treze medições, onze tiveram erro médio inferior a 2,3%.

Já para os circuitos não lineares, de um total de dezoito medições de potência, metade apresentou erro médio inferior a 1,6%.

Fonte: Elaboração própria

5 ANÁLISE ESTATÍSTICA

Este capítulo apresenta dois testes de hipótese realizados para validação da exatidão e precisão da frequência de amostragem projetada de 297,766779 Hz. O primeiro deles, o teste de Mann-Whitney, comparou a média das medições de potência na frequência projetada com a média das medições de potência amostradas em tempo contínuo. Como compara médias, esse teste avalia a exatidão. Complementando a análise estatística, foi realizado o teste de Levene que comparou as variâncias das medições de potência nas mesmas taxas de amostragem que o teste de Mann-Whitney. Este, ao comparar as variâncias, analisa a precisão.

5.1 Escolha dos testes de hipótese

Na inferência estatística, um intervalo de confiança sobre a média é válido se o tamanho das amostras for maior ou igual a 40, amparado pelo Teorema do Limite Central (independentemente se a distribuição da população for normal ou não) (MONTGOMERY, 2018; HINES 2011).

De acordo com Montgomery (2018), uma alternativa para um intervalo de confiança ser válido, é que a distribuição da amostra se aproxime de uma distribuição normal, mesmo que seja uma amostra pequena.

Neste trabalho tem-se dez amostras (dez simulações computacionais) para cada tipo de carga (RL desbalanceada e não-linear desbalanceada). Fazendo-se os histogramas dos erros percentuais das medições de potência em 297,766779 Hz, estes não se assemelharam a uma distribuição normal como exemplificam as Figuras 15 a 18.

Fonte: Elaboração própria

Fonte: Elaboração própria

Figura 19 - Erros percentuais - IEEE Pot Se - Circuito não-linear

Como as amostras não se assemelham a uma distribuição normal, não é possível construir um intervalo de confiança, logo foi necessário a adoção de um teste de hipóteses não-paramétrico (MONTGOMERY, 2018).

O teste de hipóteses escolhido foi o teste de Mann-Whitney, que será descrito no tópico seguinte.

5.2 Teste de Mann-Whitney - médias iguais

O teste de Mann-Whitney, também conhecido por teste de Wilcoxon Rank-Sum, é um teste de hipóteses não-paramétrico em que é possível comparar as médias de duas populações que não tenham uma distribuição normal. Apesar de não ser necessário que a distribuição seja normal, assume-se que as amostras tenham distribuições contínuas e tenham mesmo formato e dispersão, (podendo diferir apenas em suas localizações) para que este teste possa ser realizado (HINES, 2011; MONTGOMERY, 2018).

Analisando os gráficos das amostras das medições das potências em tempo contínuo e em 297,766779 Hz, pode-se constatar que atendem aos requisitos do teste de Mann-Whitney, como pode ser visto nas Figuras 19 a 22.

Fonte: Elaboração própria

Figura 20 – Teoria TPC - Potência Aparente (A) Circuito não-linear desbalanceado

Fonte: Elaboração própria

Fonte: Elaboração própria

Figura 22 – Teoria IEEE - Potência Aparente Efetiva (Se) Circuito não-linear desbalanceado

Fonte: Elaboração própria

Assim, foi realizado o teste de Mann-Whitney comparando as médias das medições de potência com amostragem em tempo contínuo e com amostragem em 297,766779 Hz.

5.2.1 Descrição do teste de Mann-Whitney

O teste de Mann-Whitney, faz a inferência estatística sobre as médias de duas populações; assim definem-se a hipótese nula, H_0 , e a hipótese alternativa, H_1 , conforme (209) e (210)

$$H_0: \mu_1 = \mu_2 \tag{209}$$

$$H_1: \mu_1 \neq \mu_2 \tag{210}$$

Para checar a veracidade das hipóteses, deve-se analisar os dados das amostras. Primeiramente, deve-se agrupar os elementos das duas amostras que serão comparadas em uma única lista em ordem crescente, mas identificando a qual amostra pertence cada elemento (FÁVERO, 2017).

Como esses elementos estão dispostos em ordem crescente, cada um tem um número ordinal correspondente. Assim, deve-se somar os números ordinais de cada amostra (GUPTA, 2016).

Caso haja empate entre dois ou mais elementos, deve-se substituir seus números ordinais pela média. Se dois elementos empatarem nas posições 4 e 5, por exemplo, deve-se atribuir a eles a média, que é 4,5 (MONTGOMERY, 2018).

A soma ordinal da amostra 1 é denominada como R_1 e a soma ordinal da amostra 2, R_2 . Em seguida, deve-se calcular os valores U_1 e U_2 , conforme (211) e (212) (FREUND, 2006).

$$U_1 = N_1 \cdot N_2 + \frac{N_1 \cdot (N_1 + 1)}{2} - R_1$$
(211)

$$U_2 = N_1 \cdot N_2 + \frac{N_2 \cdot (N_2 + 1)}{2} - R_2$$
(212)

Onde:

*N*₁: número de elementos da amostra 1*N*₂: número de elementos da amostra 2

Com os valores de U_1 e U_2 , pega-se o menor deles (U_{Cal}) e compara-se com o valor crítico da Tabela de Mann-Whitney, (U_C), que é encontrado em função dos tamanhos das amostras, N_1 , N_2 e da significância α . Se U_{Cal} for menor que U_C a hipótese nula é rejeitada, caso contrário não pode-se rejeitar a hipótese nula (MARTINS, 2017).

5.2.2 Resultados do teste de Mann-Whitney

Neste trabalho, foram realizados testes de hipótese para cada uma das medições de potência, das duas teorias abordadas no trabalho: TPC e IEEE.

Para este teste, definiu-se como hipótese nula que a média populacional das medições de potência em 297,766779 Hz (μ_2) seria igual a média das medições em tempo contínuo (μ_1). Já a hipótese alternativa definiu que essas médias são diferentes, conforme (213) e (214).

$$H_0: \mu_1 = \mu_2 \tag{213}$$

$$H_1: \mu_1 \neq \mu_2 \tag{214}$$

O teste de Mann-Whitney teve a significância definida em 0,05, assim a probabilidade de rejeitar a hipótese nula, sendo ela verdadeira, é de 5% (SPIEGEL, 2015).

Encontrado o valor de U_{Cal} comparou-se com o valor U_C da Tabela de Mann-Whitney.

As Figuras 20 e 21 mostram, na forma de gráficos, o valor de U_{Cal} e o valor crítico U_C de cada uma das medições de potências na teoria IEEE. E como pode-se notar, em nenhuma estatística, U_{Cal} foi menor que U_C .

Fonte: Elaboração própria

Fonte: Elaboração própria

As estatísticas com as medições de potência pela teoria TPC não foram diferentes, com valores de U_{Cal} sempre maiores que U_C , como atesta a Figura 22.

Fonte: Elaboração própria

Como demonstrado nos gráficos, nas medições de potência pelas teorias TPC e IEEE, todos os valores de U_{Cal} são maiores que U_C , logo não permitem que a hipótese nula H₀ seja rejeitada.

Com esses dados, não se pode negar que a média das medições de potência na taxa de amostragem de 297,766779 Hz e em tempo contínuo são iguais. Todavia, também é importante uma inferência estatística sobre as variâncias das populações, portanto, foi aplicado um teste de hipóteses sobre este parâmetro, conforme descrito no tópico 5.3.

5.3 Teste de Levene - variâncias iguais

Para realizar a inferência estatística comparando as variâncias das populações foi necessário aplicar um teste de hipótese não-paramétrico, pois como já citado anteriormente, os testes paramétricos só são aplicáveis a populações com distribuição normal (MONTGOMERY, 2018).

O Teste de Levene é um teste não-paramétrico, ideal para distribuições que não sejam normais. Ele utiliza os desvios dos elementos em relação à mediana da amostra, e assim realizam uma estimativa mais robusta quando comparado ao desvio em relação à média (LIM, 1996; PALLMANN, 2014). Além disso, o Teste de Levene possui elevado poder estatístico, ou seja, tem grande capacidade para rejeitar a hipótese nula H0 quando esta é falsa (LIM, 1996; HOSKEN, 2018).

Conforme atesta Hosken (2018), o Teste de Levene é recomendado para situações em que não pode-se afirmar que a distribuição é normal e um dos mais adequados para uso com populações de reduzida quantidade de amostras.

5.3.1 Descrição do teste de Levene

No Teste de Levene são comparadas as variâncias de duas ou mais amostras, porém, para este trabalho foram comparadas duas amostras, uma sendo as medições de potência em tempo contínuo e a outra, medições na frequência projetada de 297,766779 Hz.

O teste de hipóteses consiste em ter como hipótese nula a suposição que as variâncias das amostras sejam iguais, enquanto a hipótese alternativa supõe que sejam diferentes.

Para realizar o teste é necessário o cálculo do parâmetro W, conforme (215) (LIM, 1996).

$$W = \frac{\frac{\sum_{i=1}^{k} N_i (Z_{i.} - Z_{..})^2}{(K - 1)}}{\frac{\sum_{i=1}^{k} \sum_{i=1}^{N_i} (Z_{ij} - Z_{i.})^2}{(N - K)}}$$
(215)

Onde:

K: número de amostras

 N_i : número de elementos da i-ésima amostra

N : total de elementos de todas as amostras

 Y_{ij} : valor do j-ésimo elemento da i-ésima amostra

 $Z_{ij} = \left|Y_{ij} - \widetilde{Y}_{i}
ight|$, e \widetilde{Y}_{i} é a mediana da i-ésima amostra

$$Z_{i.} = \frac{1}{N_i} \cdot \sum_{j=1}^{N_i} Z_{ij} \quad (Z_{i.} \acute{e} \text{ a média dos } Z_{ij} \text{ da i-ésima amostra})$$
$$Z_{..} = \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{N_i} Z_{ij} \quad (Z_{..} \acute{e} \text{ a média de todos } Z_{ij})$$

Segundo Lim (1996), a hipótese nula é rejeitada quando o valor de W excede o valor crítico da distribuição F, de acordo com a significância escolhida e com (K - 1) e (N - K) graus de liberdade.

5.3.2 Resultados do teste de Levene

O Teste de Levene aplicado neste trabalho teve como hipótese nula, H_0 , que as variâncias das populações de medições de potência em 297,766779 Hz e em tempo contínuo fossem iguais, e como hipótese alternativa, H_1 , que as variâncias fossem diferentes, conforme (216) e (217).

$$H_0: \sigma_1^{\ 2} = \sigma_2^{\ 2} \tag{216}$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$
 (217)

A significância escolhida foi de 0,05, ou seja, a probabilidade de erro ao rejeitar a hipótese nula (erro do tipo I) foi de 5%. (SPIEGEL, 2015).

Os testes de hipóteses resultaram em valores dentro da faixa de aceitação em praticamente todas as medições de potência, conforme ilustram as Figuras 23 e 24.

A Figura 23 ilustra os valores das variáveis de teste para as medições de potência pela Teoria IEEE, tendo como região crítica os valores acima de 4,08. Pelo gráfico pode-se notar que os valores das variáveis ficaram entre 0 e 0,5, com exceção da potência SeN, que ficou entre 0,5 e 1,0.

Já nos testes para as medições de potência pela Teoria TPC houve apenas uma variável de teste que se situou na região crítica, que foi a potência reativa Q, como ilustra a Figura 24. Todas as outras tiveram valores inferiores a 1,5.

Com os resultados obtidos nos testes de hipótese não se pode rejeitar a hipótese nula que supõe que as variâncias das medições de potência em 297,766779 Hz e em tempo contínuo sejam iguais. A única exceção é para a potência Q, da teoria TPC.

5.4 Considerações do capítulo

O teste de Mann-Whitney não teve nenhum valor calculado que permitisse rejeitar a hipótese nula, que afirmava que as médias das medições de potência em tempo contínuo e na frequência projetada de 297,766779 Hz fossem iguais.

Outrossim, o teste de Levene comparou as variâncias das medições de potência em questão, que pela inferência estatística, não permitiu negar que as variâncias fossem iguais, salvo a medição da potência reativa Q, da teoria TPC.

Por conseguinte, os resultados dos testes de hipótese supracitados atestaram a exatidão e a precisão, respectivamente, e corroboram para afirmar a adequada taxa de amostragem projetada neste trabalho conforme metodologia da Seção 3.3.

6 CONCLUSÃO

A utilização da frequência de amostragem reduzida tinha como objetivo a redução do custo computacional, porém com exatidão e precisão aceitáveis. Nas medições de potência do circuito RL desbalanceado, em mais de 90% delas o erro médio foi inferior a 3,4%. Já para o circuito não-linear o erro médio foi inferior a 1,6% em 50% das medições.

Analisando as medições feitas pela teoria TPC, mais de 60% tiveram erro médio inferior a 3,4%. Em contrapartida, verificando apenas as medições pela teoria IEEE1459-2010, por volta de 72% tiveram erro médio inferior a 2,3%.

Outro aspecto que merece destaque é o fato de as medições em 297,766779 Hz (frequência reduzida) apresentarem erros médios muito próximos aos erros médios de 7,68 kHz, que adquire 128 amostras em um ciclo de 60 Hz. Em mais de 70% das medições, as diferenças dos erros médios foram inferiores a 2%. E, como atesta Alfonso-Gil (2013), 128 amostras por ciclo é uma taxa de amostragem que já vem sendo utilizado em medições de potência moderna.

Contudo, a consolidação dos resultados foi realizada pelos testes de hipótese, nas quais as médias e variâncias das medições em 297,766779 Hz foram confrontadas com as médias e variâncias das medições em tempo contínuo.

O teste de Mann-Whitney definiu como hipótese nula que as médias das medições fossem iguais, hipótese que não foi rejeitada para nenhuma medição de potência, certificando a exatidão da frequência de amostragem projetada. Em complemento, o teste de Levene que avaliou a precisão, supôs como hipótese nula as variâncias iguais, só havendo uma rejeição, a medição da potência reativa Q da teoria TPC.

Com a análise estatística realizada, consolidou-se a viabilidade de frequências reduzidas para medições de potência de teorias modernas. Assim pode-se vislumbrar com maior solidez medições satisfatórias em uma futura implementação prática, gerando redução no custo computacional e maior imunidade a ruídos.

Como sugestão de trabalho futuro tem-se a implementação em um processador digital de sinais.

APÊNDICE A – Placa de Aquisição de Sinais

Esta seção apresenta os passos realizados para a confecção de uma placa de condicionamento de sinais para aquisição de tensões e, pode servir como suporte em trabalhos futuros para a implementação das teorias de potência moderna. A implementação experimental consistiu no desenvolvimento do circuito para o condicionamento do sinal de tensão. O condicionamento dos sinais foi realizado com o intuito de implementar os cálculos de potência em um processador digital de sinais (*DSP*) em uma etapa posterior, mais especificamente do fabricante Texas - modelo TMS320F28379D. Este, possui entradas *ADC* (conversor analógico para digital) que operam de 0 a 3,3 V, assim, a tensão da rede elétrica, bem como a corrente, devem ser condicionadas para essa faixa de tensão.

A.1 Condicionamento de Tensão

O projeto do condicionamento do sinal de tensão consistiu, em um primeiro estágio, de um transformador de corrente modelo ZMPT101B, garantindo isolação galvânica entre a rede elétrica e o circuito eletrônico. Neste transformador, a relação de transformação entre a corrente do primário e do secundário é de 1:1, e sua região linear corresponde à faixa de 1 a 2 mA. A Figura 25 ilustra o funcionamento deste transformador.

Fonte: Elaboração própria

A relação entre entrada e saída, obedece a equação (218), com a corrente de entrada praticamente igual à corrente de saída.

$$\frac{V_1}{R_1} = I_1 = \frac{V_2}{R_2} = I_2$$
(218)

Onde:

I1: corrente de entrada

l₂: corrente de saída

Sendo a entrada uma tensão fase-neutro de 127 V, a resistência R_1 foi definida de modo que o transformador trabalhasse em sua região linear, de 1 a 2 mA conforme (219).

$$I_1 = \frac{V_1}{R_1} = \frac{127}{110k} = 1,15 \ mA \tag{219}$$

Calculada a corrente do primário, a resistência do secundário R₂ foi definida considerando que a tensão da rede pudesse sofrer queda ou aumento de 15% em seu valor eficaz, o que para uma tensão de rede de 127 V_{RMS} corresponde a uma tensão mínima de 107,95 V_{RMS} e tensão máxima de 146,05 V_{RMS}.

Outro aspecto considerado foi a tensão de pico do sinal condicionado, que não poderia ultrapassar o limite de 3,3 Vcc da entrada *ADC*. Assim, foi utilizada uma resistência R_2 de 680 Ω , que atende aos requisitos descritos, conforme comprovam os cálculos de (220) a (228).

A.1.1 Aumento na tensão da rede

Caso a tensão de rede aumente em 15% em relação à tensão nominal (127 V), a tensão de pico na entrada *ADC* é calculada conforme (220) a (228).

$$V_{ADC-pico-sup} = V_{2-pico-sup} + V_{OFFSET}$$
(220)

$$V_{ADC-pico-sup} = \frac{V_{1-pico-sup} \cdot R_2}{R_1} + V_{OFFSET}$$
(221)

$$V_{ADC-pico-sup} = \frac{127\sqrt{2} \cdot 1,15 \cdot 680}{110k} + 1,65$$
(222)

$$V_{ADC-pico-sup} = 1,27 + 1,65 \tag{223}$$

$$V_{ADC-pico-sup} = 2,93 V \tag{224}$$

Como demonstra (220), a tensão de pico na entrada ADC no caso de aumento na tensão nominal da rede elétrica é VADC-pico-sup e, é composta da tensão de pico do secundário do transformador, V2-pico-sup, somada a uma tensão de offset, necessária para deixar a forma de onda contínua, uma vez que a entrada ADC só aceita tensões de 0 a 3,3 V. A tensão de offset utilizada é de 1,65 V.

A.2 Primeiro estágio do condicionamento do sinal

O primeiro estágio do condicionamento, que recebe o sinal de tensão do transformador, está ilustrado na Figura 26.

Figura 27 - Condicionamento do sinal de tensão: primeiro estágio

Fonte: Elaboração própria

Onde:

 $R_1 = R_2 = R_3 = R_4 = R_6 = R_7 = 10 \text{ k}\Omega$ $R_5 = 10 \Omega$ $C_1 = 100 \text{ nF}$ V₁ e V₂ : entrada do sinal CA $V_3 = 3,3 V$

V₄ = 1,65 V V₅: tensão de saída

O amplificador operacional da parte inferior da Figura 26 gera um sinal de tensão de *offset* no valor de 1,65V, que será somado ao sinal do amplificador operacional da parte superior da Figura 26, que está configurado no modo subtrator. Sua saída opera conforme (225).

$$V_5 = \frac{-R_4}{R_1} \cdot V_1 + \left(1 + \frac{R_4}{R_1}\right) \cdot \left(\frac{V_2 \cdot R_3}{R_2 + R_3} + \frac{V_4 \cdot R_2}{R_2 + R_3}\right)$$
(225)

$$V_5 = \frac{-10k}{10k} \cdot V_1 + \left(1 + \frac{10k}{10k}\right) \cdot \left[\frac{10k \cdot (V_2 + V_4)}{10k + 10k}\right]$$
(226)

$$V_5 = -V_1 + 2 \cdot \left(\frac{V_2 + V_4}{2}\right) \tag{227}$$

$$V_5 = V_2 + V_4 - V_1 \tag{228}$$

As entradas V₂ e V₁ correspondem a amostra de tensão alternada e, como pode-se ver em (228), V₂ e V₁ tem os sinais opostos. A saída deste amplificador operacional elimina os ruídos de modo comum, uma vez que estes afetam ambas as entradas. Outra característica relevante é que os harmônicos são preservados, uma vez que só estão presentes em uma das entradas.

A.1.2 Queda na tensão da rede

Caso a tensão da rede sofra uma queda de 15%, (229) a (232) descrevem os cálculos para obter a tensão máxima na entrada ADC.

$$V_{ADC-pico-inf} = V_{2-pico-inf} + V_{OFFSET}$$
(229)

$$V_{ADC-pico-inf} = \frac{V_{1-pico-inf} \cdot R_2}{R_1} + V_{OFFSET}$$
(230)

$$V_{ADC-pico-inf} = \frac{127\sqrt{2} \cdot 0.85 \cdot 680}{110k} + 1.65$$
(231)

$$V_{ADC-pico-inf} = 2,59 V \tag{232}$$

Das equações (224) e (232) tem-se uma tensão de pico de 2,93 V caso a tensão seja 15% superior a nominal da rede (127 V) e 2,59 V para o caso de ser 15% inferior. Assim o projeto está na faixa aceitável pela entrada ADC.

A.3 Segundo estágio do condicionamento do sinal

O segundo estágio do condicionamento do sinal de tensão foi realizado por um amplificador operacional, conforme Figura 27.

Fonte: Elaboração própria

Onde: $R_8 = 10 \text{ k}\Omega$ $R_9 = 330 \Omega$ $C_2 = 10 \text{ nF}$ $C_3 = 1 \text{ nF}$ D_1 : diodo Zener 3,3 V V_5 : sinal de tensão do primeiro estágio V_{OUT} : tensão de saída para *A/D* do *DSP*

Na entrada positiva deste amplificador operacional há um filtro passa-baixa de primeira ordem RC, com o intuito de eliminar ruídos. Este amplificador operacional atua como *buffer*, com o objetivo de isolar a saída. Assim, qualquer alteração de corrente que for demandada não alterará a corrente drenada no início do circuito. Em sua saída também há um diodo Zener a fim de limitar a tensão em 3,3 V, que é a tensão máxima da entrada *A/D* do *DSP*.

A.4 Circuito de alimentação

A alimentação do circuito de condicionamento do sinal de tensão é feito por reguladores de tensão, conforme Figura 28.

Fonte: Elaboração própria

Onde: $V_6 = 24 \text{ VCC}$ $R_{10} = R_{11} = 1 \text{ K}\Omega$ $C_4 = C_5 = 100 \text{ nF}$ $C_6 = C_7 = 10 \ \mu F$

Como ilustrado na Figura 28, a entrada de energia é feita por V₆, que recebe 24 VCC. Os resistores R₁₀ e R₁₁, de mesmo valor, fazem a divisão de tensão, criando os potenciais +12 VCC, que é entrada do regulador de tensão 7805, -12 VCC, que é entrada para o regulador de tensão 7905 e um ponto de terra entre eles.

Os reguladores de tensão 7805 e 7905 geram respectivamente as tensões +5 VCC e -5 VCC, que suprirão energia para os amplificadores operacionais. Já o regulador 7833, irá fornecer 3,3 VCC, necessário para o circuito que gera a tensão de *offset* de 1,65 VCC.

A.5 Confecção da placa de condicionamento de tensão

A confecção da placa de condicionamento de tensão foi realizada com auxílio da impressora LPKF em placa de fenolite cobreada de dupla face. A face superior foi composta por componentes *PTH* (*pin through hole*), conforme Tabela 17 e ilustrada na Figura 29.

Quantidade	Descrição
4	Amplificador operacional simétrico duplo - LM358P
4	Soquete para CI estampado 8 pinos
3	Transformador de corrente - ZMPT101B
1	Regulador de tensão negativa 5V – LM7905
4	Borne 14,2mm 2 conexões – Metaltex BR202A
3	Barra 2 terminais – BCI002

Tabela 17 - Componentes da face superior da placa

Fonte: Elaboração própria

Fonte: Elaboração própria

Já no verso da placa, foram utilizados componentes *SMD* (surface-mount *device*), conforme Tabela 18 e Figura 30.

Quantidade	Descrição
3	Resistor 110 kΩ 1% SMD
3	Resistor 680 Ω 1% SMD
3	Resistor 330 Ω 5% SMD
2	Resistor 2,7 kΩ 5% SMD
18	Resistor 10 kΩ 5% SMD
3	Capacitor 1 nF 50 V SMD
11	Capacitor 100 nF 50 V SMD
6	Capacitor 1 µF 10 V SMD
10	Capacitor Eletrolítico 10 µF x 25 V SMD
1	Regulador de tensão positiva SMD AMS1117 – 3,3 V
1	Regulador de tensão positiva SMD AMS1117 – 5 V
3	Diodo Zener 3,3 V 0,25 W SMD

Tabela 18- Componentes do verso da placa

Fonte: Elaboração própria

Figura 30 - Verso da placa de condicionamento de tensão

Fonte: Elaboração própria

ANEXO A – Exemplo do teste de Mann-Whitney

Para exemplificar o teste de Mann-Whitney, foi utilizada a medida de potência aparente efetiva, (Se), da teoria de potência IEEE.

Como a intenção é comparar as médias, definiu-se a hipótese nula H_0 como as médias populacionais das medições da potência em tempo contínuo e das medições com amostragem de 297,766779 Hz sendo iguais. Em contrapartida, a hipótese alternativa H_1 supôs que as médias fossem diferentes, conforme (233) e (234). Posteriormente, foi escolhida a significância de 0,05 para os testes.

$$H_0: \mu_1 = \mu_2$$
 (233)
 $H_1: \mu_1 \neq \mu_2$ (234)

Com as hipóteses definidas, foram analisados os dados. As amostras das medições em tempo contínuo e na frequência projetada continham vinte elementos cada uma, e foram dispostas em uma única lista em ordem crescente, conforme Tabela 19.

tempo contínuo id=1	297,766779 Hz id=2	ordem crescente	ordinal	id=1	id=2
119698	120421	6835	1		1
189845	189789	6873	2	2	
247679	247280	13635	3		3
288575	286664	13711	4	4	
313887	312141	20400	5		5
329358	327718	20513	6	6	
338245	336310	27128	7		7
342818	340818	27280	8	8	
344475	342521	33823	9		9
344096	342521	34012	10	10	
6873	6835	40482	11		11
13711	13635	40709	12	12	
20513	20400	47108	13		13
27280	27128	47371	14	14	
34012	33823	53699	15		15
40709	40482	53999	16	16	
47371	47108	60256	17		17
53999	53699	60594	18	18	
60594	60256	66780	19		19
67154	66780	67154	20	20	
		119698	21	21	
		120421	22		22
		189789	23		23
		189845	24	24	
		247280	25		25
		247679	26	26	
		286664	27		27
		288575	28	28	
		312141	29		29
		313887	30	30	
		327718	31		31
		329358	32	32	
		336310	33		33
		338245	34	34	
		340818	35		35
		342521	36		36
		342521	37		37
		342818	38	38	
		344096	39	39	
		344475	40	40	

Tabela 19 – Teste de Mann-Whitney – tratamento dos dados

Como observado na Tabela 19, as medições foram identificadas em referência à amostra que pertencem (colunas id=1 e id=2). Em seguida, foram somados os números ordinais de cada amostra separadamente, sendo R1 o somatório dos números ordinais com id=1 e R2 o somatório dos números ordinais com id=2, com resultados indicados em (235) e (236).

$$R_1 = 422$$
 (235)

$$R_2 = 398$$
 (236)

Por fim, foram calculados U_1 e U_2 , conforme (237) a (240).

$$U_1 = 20 \cdot 20 + \frac{20 \cdot (20+1)}{2} - 422 \tag{237}$$

$$U_1 = 188$$
 (238)

$$U_2 = 20 \cdot 20 + \frac{20 \cdot (20+1)}{2} - 398$$
⁽²³⁹⁾

$$U_2 = 212$$
 (240)

Comparando-se U_1 e U_2 , tem-se que U_1 é o menor, então foi utilizado seu valor, que é 188, para comparar com o valor crítico U_c . Este foi encontrado na Tabela, tendose os tamanhos das amostras (N₁ e N₂) que eram de 20 elementos cada.

Observando a Tabela, constatou-se que U_c era de 127. Como o valor de U_1 ,188, é maior que U_c , não é possível rejeitar a hipótese nula H₀. Dessa forma, não pode-se afirmar que as médias das medições de potência com as taxas de amostragem em questão sejam diferentes.

N2 / N1	3	4	5	6	7	8	9	10	11
3	-	0	0	1	1	2	2	3	3
4	-	0	1	2	3	4	4	5	6
5	0	1	2	3	5	6	7	8	9
6	1	2	3	5	6	8	10	11	13
7	1	3	5	6	8	10	12	14	16
8	2	4	6	8	10	13	15	17	19
9	2	4	7	10	12	15	17	20	23
10	3	5	8	11	14	17	20	23	26
11	3	6	9	13	16	19	23	26	30
12	4	7	11	14	18	22	26	29	33
13	4	8	12	16	20	24	28	33	37
14	5	9	13	17	22	26	31	36	40
15	5	10	14	19	24	29	34	39	44
16	6	11	15	21	26	31	37	42	47
17	6	11	17	22	28	34	39	45	51
18	7	12	18	24	30	36	42	48	55
19	7	13	19	25	32	38	45	52	58
20	8	14	20	27	34	41	48	55	62

Tabela 20 – Valores críticos para teste de Mann-Whitney; α=0,05 bicaudal

Fonte: FÁVERO (2017)

Tabela 20 - Valores críticos para teste de Mann-Whitney; α=0,05 bicaudal (cont.)

N2 / N1	12	13	14	15	16	17	18	19	20
3	4	4	5	5	6	6	7	7	8
4	7	8	9	10	11	11	12	13	14
5	11	12	13	14	15	17	18	19	20
6	14	16	17	19	21	22	24	25	27
7	18	20	22	24	26	28	30	32	34
8	22	24	26	29	31	34	36	38	41
9	26	28	31	34	37	39	42	45	48
10	29	33	36	39	42	45	48	52	55
11	33	37	40	44	47	51	55	58	62
12	37	41	45	49	53	57	61	65	69
13	41	45	50	54	59	63	67	72	76
14	45	50	55	59	64	67	74	78	83
15	49	54	59	64	70	75	80	85	90
16	53	59	64	70	75	81	86	92	93
17	57	63	67	75	81	87	93	99	105
18	61	67	74	80	86	93	99	103	112
19	65	72	78	85	92	99	106	113	119
20	69	76	83	90	93	105	112	119	127

Fonte: FÁVERO (2017)

ANEXO B – Exemplo do teste de Levene

Este tópico apresenta os cálculos realizados para o teste de Levene da potência aparente efetiva (Se) da teoria IEEE.

Primeiramente, é definida a hipótese nula supondo que as variâncias das medições em tempo contínuo e em 297,766779 Hz sejam iguais, e a hipótese alternativa supondo que sejam diferentes, conforme (241 e 242)

$$H_0: \sigma_1^{\ 2} = \sigma_2^{\ 2} \tag{241}$$

$$H_1: \sigma_1^2 \neq \sigma_2^2 \tag{242}$$

Além da definição das hipóteses é estabelecida uma significância de 0,05.

Com os valores das medições em tempo contínuo e na frequência 297,766779 Hz, são calculadas suas medianas ($\tilde{Y}_1 \in \tilde{Y}_2$). Com as medianas são calculados os desvios em relação aos elementos das amostras, denominados Z_{ij} . Por fim, são extraídas as médias dos desvios em cada amostra e a média geral dos desvios, Z_{i} .e Z_{i} respectivamente.

A Tabela 21 informa os elementos das amostras, Y_1 e Y_2 , bem como os resultados dos cálculos, que inseridos em (215), geram o parâmetro W (LIM, 1996).

As equações (243) e (244) mostram o cálculo do parâmetro W.

Tabela 21 – Ordenação dos dados para teste de Levene

40	2 Z_	20 N2	124,3 ·10 ³	$\frac{1,36 \cdot 10^6}{\sum_{k=1}^{k} N(7, 7)^2}$	1,36 ·10 ⁶
	Ζ_	N_2		$\sum_{k=1}^{k} N(\pi, \pi)^2$	k Ni
	_	-	Z _{2.}	$\sum_{i=1}^{N_i(Z_{i,}-Z_{i,})^2}$	$\sum_{i=1}^{N} \sum_{j=1}^{N} (Z_{ij} - Z_{i.})^2$
124	,1 ·10 ³	20	123,8 ·10 ³	2,72 ·10 ⁶	2,97 ·10 ¹¹
tempo 297 contínuo	766779 HZ				
Y_{1i}	Y_{2j}	Z_{1j}	$(Z_{1j} - Z_{1.})^2$	Z_{2j}	$(Z_{2j} - Z_{2.})^2$
6873 6	835	86,6 ·10 ³	1426,6 ·10 ⁶	86,8 ·10 ³	1371,7 ·10 ⁶
13711 13	3635	79,7 ·10 ³	1989,9 ·10 ⁶	80,0 ·10 ³	1921,6 ·10 ⁶
20513 20	0400	72,9 ·10 ³	2643,0 ·10 ⁶	73,2 ·10 ³	2560,5 ·10 ⁶
27280 2	7128	66,1 ·10 ³	3384,6 ·10 ⁶	66,5 ·10 ³	3286,7 ·10 ⁶
Se Pl 34012 33	3823	59,4 ·10 ³	4213,2 ·10 ⁶	59,8 ·10 ³	4099,1 ·10 ⁶
Se - RL 40709 40	0482	52,7 ·10 ³	5127,4 ·10 ⁶	53,1 ·10 ³	4996,1 ·10 ⁶
47371 4	7108	46,1 ·10 ³	6125,9 ·10 ⁶	46,5 ·10 ³	5976,7 ·10 ⁶
53999 53	3699	39,4 ·10 ³	7207,3 ·10 ⁶	39,9 ·10 ³	7039,3 ·10 ⁶
60594 60	0256	32,8 ·10 ³	8370,6 ·10 ⁶	33,3 ·10 ³	8182,5 ·10 ⁶
67154 60	6780	26,3 ·10 ³	9614,0 ·10 ⁶	26,8 ·10 ³	9405,4 ·10 ⁶
119698 12	0421	26,3 ·10 ³	9614,0 ·10 ⁶	26,8 ·10 ³	9405,4 ·10 ⁶
189845 18	9789	96,4 ·10 ³	778,6 ·10 ⁶	96,2 ·10 ³	762,5 ·10 ⁶
247679 24	7280	154,3 ·10³	895,8 ·10 ⁶	153,7 ·10 ³	892,7 ·10 ⁶
288575 28	6664	195,1 ·10 ³	5016,3 ·10 ⁶	193,1 ·10 ³	4797,2 ·10 ⁶
So plin 313887 31	2141	220,5 ·10 ³	9242,5 ·10 ⁶	218,5 ·10 ³	8975,4 ·10 ⁶
329358 32	7718	235,9 ·10 ³	12456,6 ·10 ⁶	234,1 ·10 ³	12169,5 ·10 ⁶
338245 33	6310	244,8 ·10 ³	14519,3 ·10 ⁶	242,7 ·10 ³	14139,0 ·10 ⁶
342818 34	0818	249,4 ·10 ³	15642,3 ·10 ⁶	247,2 ·10 ³	15231,4 ·10 ⁶
344475 34	2521	251,0 ·10 ³	16059,5 ·10 ⁶	248,9 ·10 ³	15654,7 ·10 ⁶
344096 34	2521	250,7 ·10 ³	15963,6 ·10 ⁶	248,9 ·10 ³	15654,7 ·10 ⁶
			$\sum_{j=1}^{20} (Z_{1j} - Z_{1,j})^2$		$\sum_{j=1}^{20} (Z_{2j} - Z_{2.})^2$
93,4 $\cdot 10^3$ 93,	6 ·10 ³		1,50 ·10 ¹¹		1,47 ·10 ¹¹

Fonte: Elaboração própria

$\frac{2,72 \cdot 10^6}{(2-1)}$	
$W = \frac{(2-1)}{2,97 \cdot 10^{11}}$	
(40 - 2)	

(243)

(244)

 $W = 0,348 \cdot 10^{-3}$

Após o cálculo do parâmetro W, são calculados os graus de liberdade do numerador, v₁, e os graus de liberdade do denominador, v₂. Como pode ser verificado em (215), (K-1) corresponde a v₁, que são os graus de liberdade do numerador, e (N-K) corresponde a v₂, que são os graus de liberdade do denominador. Substituindo N e K pelos valores das amostras, tem-se os graus de liberdade indicados por (246) e (248).

$$v_1 = K - 1$$
 (245)

$$v_1 = 2 - 1 = 1 \tag{246}$$

$$v_2 = N - K \tag{247}$$

$$v_2 = 40 - 2 = 38 \tag{248}$$

Por fim, com os valores dos graus de liberdade, consulta-se a tabela da distribuição F para significância de 0,05 (Tabela 22), a fim de encontrar o valor crítico. A Tabela K não possui dados para $v_2 = 38$, logo faz-se uma aproximação para $v_2 = 40$, que tem 4,08 como valor crítico. Como este valor é superior ao parâmetro W, não pode-se rejeitar a hipótese nula.
	TABLE VI Percentage Points $f_{\alpha,\nu,\nu}$ of the F Distribution (continued)																			
1	ABL	E VI	Percent	tage Poi	Ints J_{α,ν_1}	, _{v2} or the	e F Dist	ributior	i (contin	f_{α,v_1}	, <i>v</i> 2									
v _i Degrees of freedom for the numerator (v ₁)																				
ν_2		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	00
	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
	4	6.61	6.94 5.70	6.59	6.39	5.05	0.10	0.09	6.04	6.00	5.90	5.91	5.80	5.80	5.77	5.75	5.72	5.69	5.60	5.63
	6	5.99	5.19	4.76	4 53	4 39	4.95	4.00	4.02	4.10	4.74	4.08	3.94	4,50	4.55	4.50	4.40	3.74	3.70	4.50
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
2	8	5.32	4.46	4.07	3.84	3.69	3.58	3,50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
r. (v	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
ato	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
nin	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
nor	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
de	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
the	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
or	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
B	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
edo	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
fre	18	4.41	3.35	3.10	2.93	2.77	2.60	2.58	2.51	2.40	2.41	2.54	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
of	20	4.30	3.52	3.15	2.90	2.74	2.65	2.54	2.46	2.42	2.30	2.51	2.23	2.10	2.11	2.07	1.00	1.98	1.95	1.86
see	20	4.33	3.47	3.07	2.87	2.68	2.00	2.01	2.40	2.35	2.33	2.20	2.20	2.12	2.06	2.04	1.99	1.95	1.90	1.64
egr	22	4 30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2 34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
9	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
	120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.55	1.43	1.35	1.25
	00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Tabela 22 – Distribuição F; α=0,05 ; Valores críticos

Fonte: Montgomery, 2018

REFERÊNCIAS

ALFONSO-GIL, J. C. S. et al .Measurement System for a Power Quality Improvement Structure Based on IEEE Std.1459. IEEE Transactions on Instrumentation and 3177-3188. dez. DOI: Measurement. 62. 12, 2013. ٧. n. p. 10.1109/TIM.2013.2270901. Disponível em: https://ieeexplore.ieee.org/document/6555928. Acesso em: 15 out. 2020.

CATALIOTTI, A.; COSENTINA, V. Harmonic sources detection in power systems via nonactive power measurements according to IEEE 1459-2010: Std. theoretical approach and experimental results. In: 2010 IEEE INTERNATIONAL WORKSHOP ON APPLIED MEASUREMENTS FOR POWER SYSTEMS, 22 a 24 set, 2010, Aachen, Alemanha, DOI: 10.1109/AMPS.2010.5609514. Disponível em: https://ieeexplore.ieee.org/document/5609514. Acesso em: 31 jul. 2021.

CHEN, X. *et al.* Accurate Measurement of Reactive Power Based on Fryze's Definition of Time Domain Reactive Power. *In:* 2018 14TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD). p. 1072-1075, 28 a 30 jul. 2018. Huangshan, China, 2018. DOI: 10.1109/FSKD.2018.8686983. Disponível em: https://ieeexplore.ieee.org/document/8686983. Acesso em: 10 nov. 2020.

DING, D. *et al.* Investigations on effects of the acquisition rate on the test accuracy of the data acquisition unit. *In:* 2018 IEEE 4TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE. p. 1059-1062, 14 a 16 dez 2018. Chongqing, China, 2018. DOI: 10.1109/ITOEC.2018.8740596. Disponível em: https://ieeexplore.ieee.org/document/8740596. Acesso em: 12 out. 2020.

EMANUEL, A. E. Non-Sinusoidal Reactive Power and its Impact on Smart Meter Infrastructure in the Era of Smart Grid. *In*: 2012 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING. p. 1-4, 22 a 26 jul. 2012. San Diego, Estados Unidos, 2012. DOI: 10.1109/PESGM.2012.6345138. Disponível em: https://ieeexplore.ieee.org/document/6345138. Acesso em: 28 jul. 2020.

FÁVERO, L. P. Manual de análise de dados: Estatística e modelagem multivariada com Excel, SPSS e Stata. 1^a ed. Rio de Janeiro: LTC, 2017.

FREUND, J. E. Estatística aplicada economicamente. 11^a ed. Porto Alegre: Bookman, 2006.

GUPTA, C. B. Estatística e probabilidade com aplicações para engenheiros e cientistas. 1^a ed. Rio de Janeiro: LTC, 2016.

HINES, W. W. *et al.* Probabilidade e Estatística na Engenharia. 4ª ed. Rio de Janeiro: LTC, 2011.

HOSKEN, D. J.; BUSS, D. L.; HODGSON, D. J.; Beware the F test (or, how to compare variances). **Animal behaviour**, v.136, p.119-126, 2018. DOI: 10.1016/j.anbehav.2017.12.014 Disponível em: https://www-sciencedirect.ez51.periodicos.capes.gov.br/science/article/pii/S0003347217304165? via%3Dihub. Acesso em 22 jul. 2021

IEEE. IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions – IEEE Power & Energy Society – IEEE Std 1459-2010(revision of IEEE Std 1459-2000), Nova lorque, Estados Unidos 2010. DOI: 10.1109/IEEESTD.2010.5953405. Disponível em: https://ieeexplore.ieee.org/servlet/opac?punumber=5953403. Acesso em: 28 jul. 2020.

LIM, T.; LOH, W. A comparison of tests of equality of variances. **Computational statistics & data analysis,** v. 22(3), p. 287-301, 1996. Disponível em: https://www-sciencedirect.ez51.periodicos.capes.gov.br/science/article/pii/0167947395000542?vi a%3Dihub . Acesso em: 20 jul. 2021.

MARAFÃO, F. P.; PAREDES, H. K. M.;SILVA, L. C. P. Critical evaluation of FBD, PQ and CPT current decompositions for four-wire circuits. *In*: 2009 BRAZILIAN POWER ELECTRONICS CONFERENCE. p. 49-57, 27 set. a 1 out. 2009. Bonito, Brasil, 2009. DOI: 10.1109/COBEP.2009.5347595. Disponível em: https://ieeexplore.ieee.org/document/5347595. Acesso em: 27 dez. 2019.

MARTINS, G. A. Estatística geral e aplicada. 6ª ed. Rio de Janeiro: Atlas, 2017.

MONTGOMERY, D. C. Applied Statistics and Probability for Engineers . 7^a ed. Nova Jersey, Estados Unidos: Willey, 2018.

PALLMANN, P.; HOTHORN, L.A.; DJIRA, G.D. A Levene-type test of homogeneity of variances against ordered alternatives. **Computational Statistics** v. 29(6), p. 1593–1608, 2014. DOI: https://doi.org/10.1007/s00180-014-0508-z . Disponível em: https://link-springer-com.ez51.periodicos.capes.gov.br/article/10.1007/s00180-014-0508-z. Acesso em: 21 jul. 2021.

PAREDES, H. K. M. et al. Conservative Power Theory Discussion and Evaluation by Means of Virtual Instrumentation. *In:* 2009 BRAZILIAN POWER ELECTRONICS CONFERENCE. p. 423-430, 27 set. a 01 out. 2009. Bonito, Mato Grosso do Sul, Brasil, 2009. DOI: 10.1109/COBEP.2009.5347670. Disponível em: https://ieeexplore.ieee.org/document/5347670. Acesso em: 19 out. 2020.

PAREDES, H. K. M. et al. Harmonic, reactive and unbalance compensation by means of CPT framework. *In:* 2009 BRAZILIAN POWER ELECTRONICS. 27 set. a 01 out. 2009. Bonito, Mato Grosso do Sul, Brasil, 2009. CONFERENCE DOI: 10.1109/COBEP.2009.5347610. Disponível em: https://ieeexplore.ieee.org/document/5347610. Acesso em: 25 jun. 2021. PAREDES, Η. K. Μ. Teoria de Potência Conservativa: Uma nova abordagem para controle cooperativo 0 condicionadores considerações de de energia е sobre atribuição de responsabilidades. Tese (Doutorado em Engenharia Elétrica). Campinas, Brasil: Universidade Estadual de Campinas (UNICAMP), 2011. Disponível em: http://repositorio.unicamp.br/ispui/handle/REPOSIP/260969. Acesso em: 11 nov. 2020.

PAREDES, H. K. M. et al. Application of Conservative Power Theory to load and line characterization and revenue metering. *In*: 2012 IEEE INTERNATIONAL WORKSHOP ON APPLIED MEASUREMENTS FOR POWER SYSTEMS (AMPS) PROCEEDINGS. p. 1-6, 26 a 28 set 2012. Aachen, Alemanha 2012. DOI: 10.1109/AMPS.2012.6343993. Disponível em: https://www.researchgate.net/publication/261449791_Application_of_Conservative_P ower_Theory_to_load_and_line_characterization_and_revenue_metering. Acesso em 21 out. 2020.

SALAM, S. M.; UDDIN, M. I.; MOINUDDIN, M. R. B.; Impact Analysis of Large Number of Non-Linear Lighting Loads on Power Quality in Distribution Network. 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL INFORMATION AND COMMUNICATION TECHNOLOGY (EICT). p. 1-5, 20 a 22 dez. 2019. Khulna, Bangladesh, 2019. DOI: 10.1109/EICT48899.2019.9068811. Disponível em: https://ieeexplore.ieee.org/document/9068811. Acesso em: 10 nov. 2020.

SOUZA, R. R. *et al.* Conservative power theory: application in a wind system with DFIG to compensate harmonic currents and unbalance electric current. *In*: INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY. p. 247-252, 21 a 23 mar. 2018. Salamanca, Espanha, 2018. DOI: https://doi.org/10.24084/repqj16.275. Disponível em: http://www.icrepq.com/icrepq18/275-18-souza.pdf. Acesso em: 10 nov. 2020.

SPIEGEL, M. R. Probabilidade e estatística. 3ª ed. Porto Alegre: Bookman, 2015.

STAUDT, V. Fryze - Buchholz - Depenbrock: A time-domain power theory. In: 2008 INTERNATIONAL SCHOOL ON NONSINUSOIDAL CURRENTS AND COMPENSATION 2008. DOI: 2008. р. 1-12. Lagow, Polônia. 10.1109/ISNCC.2008.4627481. Disponível em: https://ieeexplore.ieee.org/document/4627481. Acesso em: 25 jun. 2021

SVENSSON, S. Power measurement techniques for non-sinusoidal conditions: The significance of harmonics for the measurement of power and other AC quantities. Tese (Doutorado em Engenharia Elétrica). Göteborg, Suécia: Chalmers University of Technology, 1999. ISBN 91-7197-760-0. Disponível em: https://research.chalmers.se/en/publication/921. Acesso em: 27 jul. 2020. TEDESCHI, Ε. Cooperative Control of Distributed Compensation Systems in Electrical Networks Under Non-Sinusoidal Operations. Tese (Doutorado em Engenharia Industrial). Pádua, Itália: University of Padova, 2009. Disponível em: https://www.researchgate.net/publication/37677167 Cooperative control of distribut ed compensation_systems_in_electric_networks_under_non-sinusoidal_operations. Acesso em: 10 nov. 2020.

TENTI, P.; MATTAVELLI, P. Third-Order Passive Load Identification Under Non-Sinusoidal Conditions. **European Transactions on Electrical Power**, v. 12, n. 2, p. 93-100, mar. 2002. DOI:

https://doi.org/10.1002/etep.4450120203. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/etep.4450120203. Acesso em: 11 nov. 2020.

TENTI, P.; MATTAVELLI, P.; TEDESCHI E. Compensation Techniques based on Reactive Power Conservation. **Eletrical Power Quality and Utilisation, Journal**, v. 13, n. 1, 2007. Pádua, Itália, 2007. Disponível em: https://www.researchgate.net/publication/228631489_Compensation_Techniques_ba sed_on_Reactive_Power_Conservation. Acesso em: 20 out. 2020.

TENTI P. et al. Accountability and revenue metering in smart micro-grids. *In:* 2010 IEEE INTERNATIONAL WORKSHOP ON APPLIED MEASUREMENTS FOR POWER SYSTEMS. p. 74-79, 22 a 24 set. 2010. Aachen, Alemanha, 2010. DOI: 10.1109/AMPS.2010.5609516. Disponível em: https://ieeexplore.ieee.org/document/5609516. Acesso em: 06 mai. 2020.

TENTI, P.; PAREDES H. K. M.; MATTAVELLI P. Conservative Power Theory, a Framework to Approach Control and Accountability Issues in Smart Microgrids. **IEEE Transactions on Power Electronics,** v. 26, n. 3, p. 664-673, mar 2011. 2011a. DOI: 10.1109/TPEL.2010.2093153. Disponível em: https://ieeexplore.ieee.org/document/5638628. Acesso em: 27 jul. 2020.

TENTI P. *et al.* Accountability in Smart Microgrids Based on Conservative Power Theory. **IEEE Transactions on Instrumentation and Measurement**, v. 60, n. 9, p. 3058-3069, set. 2011. 2011b. DOI: 10.1109/TIM.2011.2162351. Disponível em: https://ieeexplore.ieee.org/document/5976448. Acesso em: 21 out. 2020.

TENTI Ρ. et al. Load Characterization and Revenue Metering Under Non-Sinusoidal and Asymmetrical Operation. IEEE Transactions on Instrumentation and Measurement, v. 63, n. 2, p. 422-431, fev. 2014. DOI: 10.1109/TIM.2013.2280480.2014. Disponível em: https://ieeexplore.ieee.org/document/6617732. Acesso em: 11 nov. 2020.

XU, F., L. M. ; TOLBERT, L. M. ; XU, Y. Critical evaluation of FBD, PQ and generalized non-active power theories In: PROCEEDINGS OF THE 2011 14TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, p. 1-10, Birmingham, Reino Unido, 2011. Disponível em: https://ieeexplore.ieee.org/document/6020243. Acesso em: 25 jun. 2021.