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Abstract

A growing interest in applying Natural Language Processing (NLP) models in computer vision
problems has recently emerged. This interest is motivated by the success of NLP models in tasks
such as translation and text summarization. In this work, a new method for applying NLP to
image classification problems is proposed. The aim is to represent the visual patterns of objects
using a sequence of alphabet symbols and then train some form of Gated Recurrent Unit (GRU),
Long Short-Term Memory (LSTM), or Transformer using these sequences to classify objects. The
visual pattern representation of objects in a syntactic way allows PLN models to be applied
to image classification problems in a natural way, i.e., in the same way as applied to natural
language problems. Two visual pattern representation approaches of objects in a syntactic way
were investigated: representation using keypoints and representation using component parts
of objects. In the approach that uses keypoints, the keypoints are identified in the images,
associated with alphabet symbols, and then related using a graph to derive strings from images.
Strings are the inputs for training an LSTM encoder. Experiments showed evidence that the
syntactic pattern representation can represent visual variations in superpixel images captured
by Unmanned Aerial Vehicles, even when there is a small set of images for training. In the
approach that uses component parts of objects, the component parts are provided by means of
bounding boxes in the images. The component parts are associated with alphabet symbols and
related with each other to derive a sequence of symbols from the object for representing its visual
pattern. Then, some form of GRU, LSTM, or Transformer are trained to learn the spatial relation
between component parts of the objects contained in the sequences. An extensive experimental
evaluation using a limited number of samples for training has been conducted to compare our
method with ResNet-50 deep learning architecture. The results achieved by the proposed method
overcome ResNet-50 in all test scenarios. In one test, the method presents an average accuracy
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of 95.3% against 89.9% of the ResNet-50. Both experiments showed evidence that from a finite
set of primitive structures is possible to obtain many variations in the visual pattern of the
object same when there are few samples for training. Besides, the experiments evidenced that
the NPL models can be applied in a natural way to image classification problems in computer
vision.
Keywords: Computer Vision, Natural Language Processing, Syntactic Pattern Representation,
Graph.
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Chapter

1
Introduction

The fundamental problem in computer vision since the 60s has been to recognize objects at
the class level (Andreopoulos and Tsotsos, 2013). This problem consists of identifying the type of
object that exists in a given image. To address this problem, for a long time, feature extraction
algorithms, such as Scale Invariant Feature Transform (SIFT) (Lowe, 2004) and Histogram of
Oriented Gradients (HOG) (Dalal and Triggs, 2005), have been combined with shallow learning
algorithms, such as Decision Trees (Hastie et al., 2001) or Support Vector Machines (SVM) (Luong
et al., 2014), for extracting features and learning object patterns in images. Later, the deep
Convolutional Neural Networks (CNN) appeared and represented a huge breakthrough in object
recognition problems, even surpassing human performance in some cases (He et al., 2016).

In parallel, Natural Language Processing (NLP) also has made significant progress. In partic-
ular, language modelling (Bengio et al., 2001), which consists of predicting the next word in a text
given the previous words, and sequence-to-sequence learning (Sutskever et al., 2014), which is a
model that converts an input sequence into another output sequence. This progress allowed us to
deal with the simplest tasks, such as spelling autocorrection and email response suggestions, to
more complex tasks, such as machine translation. The great advancement in this area occurred
with the introduction of Recurrent Neural Networks (Mikolov et al., 2010) and Long Short-Term
Memory Networks (Greff et al., 2017) for language modeling, and attention mechanisms as the
Transformer (Vaswani et al., 2017) for machine translation.

Although in different areas, computer vision and NPL have made significant progress after
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adopting neural networks to solve problems. This has motivated research to combine NLP and
CNN models for building hybrid architectures to solve computer vision tasks. Dosovitskiy et al.
(2021) proposed the Vision Transformer, a simple model that split an image into 16×16 patches
for providing a patch sequences and inputting it into a standard Transformer. Touvron et al.
(2021) improved the proposed model by Dosovitskiy et al. (2021) by adding Knowledge Distil-
lation (Hinton et al., 2015) and class tokens along with the Vision Transformer patches. Chen
et al. (2020b) proposed a model trained in an unsupervised way that pre-processes images to
reduce resolution and color space for reshaping it into a 1-dimensional pixel sequence for then
applying standard Transformer to pixel sequence. Wu et al. (2020) applied convolutional layers
to obtain image features and build tokens for inputting them into a standard Transformer. These
approaches try to find patterns at the pixel level, such as CNN-based models, and not at the
level of high-level representative information, such as decomposable parts of objects. Thus, like
the CNN-based models (Gu et al., 2018), these hybrid models need large amounts of data for
training to have a good generalization (Dosovitskiy et al., 2021).

Addressing object recognition problems requires dealing with differences between objects of
the same type. For example, cats can have different breeds, colors, and sizes. Besides, objects
in images can have poses and scales variation, poor illumination conditions, occlusions, among
other variations. Considering these variations in the visual of the object, the number of images
vision computer approaches have to deal with is almost infinite.

An alternative is to treat the object structure from a compositional viewpoint. The central
idea is that objects are composed of primitive structures that, when joined together, form a visual
pattern (Bienenstock et al., 1997). This suggests that from a finite set of primitive structures, it
is possible to obtain many variations in the visual pattern of the object, allowing to extrapolate
the visual variations of it beyond the samples offered for training. Thus, the sensitivity of the
object recognition method is not only limited to the training set.

The representation of the visual pattern of objects in a compositional way has been a problem
addressed since the 70s (Fu, 1974). It is a representation strategy in which the visual pattern of
an object is treated from a compositional perspective, where a pattern is composed of simpler
sub-patterns, and the most basic sub-patterns are known as primitives (de Souza Pio et al.,
2006). However, some issues must be considered when adopting this representation strategy.
The main one is how to define and represent primitives, as well as defining a set of rules for
representing the visual patterns formed by the interrelation between primitives. The represen-
tation of primitives is determined by basic features extraction from objects, while the rules are
defined by the visual pattern complexity that is intended to be represented.
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The strategy used in this work is to represent visual patterns of objects using a syntactic
approach. The syntactic approach naturally has the ability to represent visual patterns of objects
in a compositional way, considering logical or probabilistic rules of composition, addressing the
strategy of the simple to the complex (de Souza Pio et al., 2006).

The first issue to be addressed is to represent primitives syntactically. The first step is
to define what will be considered a primitive structure of an object. Jiang and Ma (2015), for
example, treat body parts (head, arm, legs, etc.) as primitives. Martinovic and Van Gool (2013)
consider geometric figures that compose building facades such as windows, doors, balconies as
primitives. In this work, the possibility of using two types of primitives is investigated: object
keypoints and component parts of objects. The keypoints are computed by feature extractors
such as SIFT. They are invariant to rotation and scale (Lowe, 2004). By having this property,
they can contribute positively to the visual variations of objects problem. On the other hand,
component parts of objects, which are high-level primitives, are the parts of a given object we
look at to identify it, i.e., object parts that attract attention. For example, the component parts
of an insect could be the head, body, paw, etc. Both types of primitives are represented by
associating alphabet symbols to them. With this strategy, object primitives can be represented
using a syntactic approach.

However, isolated primitives cannot represent visual patterns of objects or part of them.
Then, for representing the visual pattern of objects, primitives must be related respecting com-
position rules. Thus, a visual pattern of an object is represented by the interrelation between
primitives, forming small sequences of alphabet symbols.

In the same way, a single visual pattern cannot represent visual variations of objects. For rep-
resenting a visual variation of an object, visual patterns must also be related in a compositional
way. Thus, a visual variation of an object can be represented by a large sequence of symbols
composed of a sum of smaller sequences, i.e., a sum of visual patterns. Consequently, the visual
variations of the object, such as pose variations, deformations, occlusion, among others, can be
represented by few variations in the sequence of symbols that represent it. This representation
strategy might increase the generalization capacity and allows an unlimited number of visual
variations of an object to be obtained from a few combinations of small sequences of symbols.
This can allow the visual variations of an object to be extrapolated beyond the samples from
the training set, giving better conditions to deal with pose variations, deformation, and different
object perspectives.

This constructive strategy, in which primitives are represented by alphabet symbols, visual
patterns by small sequences of symbols, and visual variations of objects by combining these small
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sequences of symbols, becomes the pattern recognition problem in images, usually performed in
a discriminative way, a pattern recognition problem in symbol sequences guided by descriptive
and composition rules. This allows this work to raise the following hypothesis: Natural Language
Processing models generalize from a few samples in image classification tasks when trained with
visual patterns of objects represented in a syntactic way.

Unlike Dosovitskiy et al. (2021), Touvron et al. (2021), Chen et al. (2020b), and Wu et al.
(2020), which apply PLN directly to images to find patterns at the pixel level, this work applies
PLN to find patterns in sequences of symbols used for representing high-level visual patterns of
objects. Thus, PLN models are applied to image classification problems in the same way as they
are applied to sentences.

1.1 Objective

The objective of this work is to represent visual patterns of objects in a syntactic way for
applying natural language processing models to image classification problems.

For this, two strategies to represent visual patterns of objects in a syntactical way are
adopted. In the first, keypoints are identified in images and associated with alphabet symbols.
Then, the keypoints in each image are related to derive a sequence of symbols. In the second,
component parts of objects are provided by means of bounding boxes in the images. The compo-
nent parts of the objects in each image are associated with alphabet symbols and related to also
derive a sequence of symbols. In both strategies, the symbol sequences derived from the images
encapsulate the structural interrelation between the primitives that compose the visual pattern
of the object in the image. After representing the visual patterns of the objects in images using
a syntactic approach, natural language processing models can be applied to classify the images
within their object classes.

1.2 Motivation

The visual representation of an object in an image is analogous to the composition of a sen-
tence. An object is composed of visual patterns formed by the interrelation between primitives. A
sentence is composed of words formed by alphabet symbols. This similarity motivates this work
to try to replicate the success of natural language processing models in image classification
problems.
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1.3 Contributions

The main contributions of this thesis are as follows:

1. A survey of current studies in the area of syntactic pattern recognition in images and
videos by means of a systematic literature review.

2. New strategies to represent visual patterns of objects in a compositional way by means of
a syntactic approach.

3. A new approach for applying natural language processing to image classification problems.

1.4 Thesis Outline

The remainder of this thesis consists of five other chapters. Chapter 2 gives an overview of
some concepts used in Chapters 4 and 5. In Chapter 3 the paper "Syntactic Pattern Recognition
in Computer Vision: A Systematic Review" published in the ACM Computing Surveys journal
is presented. This paper surveys the most relevant studies that use syntactic approaches for
pattern recognition tasks in images and videos. Moreover, this survey has revealed gaps in the
syntactic pattern recognition in images exposed by this work.

In Chapter 4 the paper "Combining Syntactic Methods with LSTM to Classify Soybean Aerial
Images" published in the IEEE Geoscience and Remote Sensing Letters journal is presented. The
paper introduces an approach that extracts keypoints of images and treats them as primitives.
The keypoints are associated with alphabet symbols and connected into a graph to derive a se-
quence of symbols from each image. Then, a Long Short-Term Memory (LSTM) (Greff et al., 2017)
is used as a classifier to learn the relationship between the symbols in sequences. An extensive
experimental evaluation using aerial images from a soybean field captured by Unmanned Aerial
Vehicles has been conducted to evaluate the approach on small datasets. The approach showed
competitive results when there is only a limited number of samples for training.

In Chapter 5 the paper "A New Approach for Applying Natural Language Processing to Im-
age Classification Problems" recently submitted to IEEE Transactions on Pattern Analysis and
Machine Intelligence is presented. The paper introduces a hybrid approach that handles compo-
nent parts of objects as primitives. The objects are decomposed into component parts and share
common parts with each other. The component parts of the object are associated with alphabet
symbols and connected to derive a sequence of symbols from each image. Then, NLP models
are trained using the sequence of symbols. The aim is to classify objects from the composition

5



of their main parts encapsulate in the sequence of symbols. When using this strategy, we are
extrapolating object appearance (partial occlusion, different poses, etc.) beyond the samples that
were offered for training. This approach also showed competitive results when trained with a
limited number of samples.

Finally, Chapter 6 presents the final considerations and future works. Also attached to this
thesis is a list of technical and scientific production performed during the research period (see
Appendices A). The production is about topics related to object detection and classification whose
the achieved results supported the development of this thesis.
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Chapter

2
Background

In this Chapter, the major concepts used in this work are presented. Section 2.1 introduces
the syntactic pattern representation applied to computer vision. Section 2.2 introduces the SIFT,
a feature extractor used to extract primitives of objects in the paper presented in Chapter 4.
Section 2.3 introduces the Simple Linear Iterative Clustering (SLIC) Superpixels, a segmentation
algorithm used to limit the object scope contained in images. SLIC is used in the paper presented
in Chapter 4 to build the dataset. Sections 2.4 and 2.5 provide an overview of NLP models used
in the papers in Chapter 4 and Chapter 5.

2.1 Syntactic Pattern Representation

Patterns are detectable regularities that repeat predictably and can be understood as the
means by which the environment around us can be interpreted (Fu, 1982). Pattern recognition
for humans is a trivial task, but by and large, it becomes a complex problem when we try to
perform it artificially. The pattern recognition area focuses on discovering significant regularities
in data in order to use it to describe or classify data in different categories (Bishop, 2006).

The regularities in the data are represented as measurable features, which can be numeric
and/or non-numeric, and their relationships. The composition formed by these features defines
the pattern from the dataset (Fu and Rosenfeld, 1976). However, it is not enough to define a
representative standard for the data, a careful analysis of the pattern in order to represent it

7



Figure 2.1: An illustration of the visual patterns composition in an insect image. The yellow
rectangle illustrates the pattern/sub-pattern, and the red rectangles illustrate the primitives.

in a way interpretable to algorithms is necessary.
There are several approaches for representing patterns, such as constellations (Fergus et al.,

2003), quadre structures (Pedro, 2013), and And-Or graphs (Zhu L. Chen, 2009). However, the
representation generally used is feature vectors (Goodfellow et al., 2016), and the pattern recog-
nition is usually done by similarity comparison (Fu and Rosenfeld, 1976; Bishop, 2006).

The syntactic approach to pattern representation deals with patterns from a compositional
perspective. A complex pattern is composed of simpler sub-patterns, which are composed of
simpler ones. At the lowest level of this compositionality are the basic, non-divisible patterns,
which are called primitives (Fu and Rosenfeld, 1976). In Figure 2.1 , an example of visual pattern
composition is presented. The yellow rectangles illustrate the patterns/sub-patterns, and the red
rectangles illustrate the primitives. Primitives are usually used to represent corners, outlines,
lines, or textures. On the other hand, patterns/sub-patterns are used to represent structures
that shape perceivable visual patterns. This compositional model of pattern representation allows
repeating primitives and sub-patterns in different visual patterns, enabling many visual patterns
representation from a finite set of data. In addition, it describes how the visual pattern was
generated.

Similar to a language, primitives are like letters in an alphabet, basic sub-patterns are like
words, and complex patterns, which shape visual patterns, are like sentences. In this way, a letter
can be associated with an image primitive in order to represent it, as well as a set of letters can
be associated with basic sub-patterns and so on.

The syntactic approach to pattern representation allows the pattern recognition problem in
images, usually performed by the similarity between feature vectors, to be treated as a pattern
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recognition problem in character sequences. Thus, a visual pattern of an object can be recognized
as belonging to a category using natural language processing models.

2.2 Feature Descriptor SIFT

The central idea around the SIFT (Lowe, 2004) is based on detecting salient and stable points
in an image. These points are called keypoints and provide features that describe a small region
in the image. The region described by the keypoint is a small circular region with an orientation
and invariant to rotation and scale. The key point is described using four parameters: the x

and y coordinates of the keypoint center, the scale (the region radius), the orientation (an angle
defined over the radius), and a feature descriptor. In Figure 2.2, an example of SIFT operation
in a soybean disease image is shown. SIFT consists of two main parts: detector and feature
descriptor.

Figure 2.2: SIFT operation in a soybean disease image. (A) Soybean disease original image, (B)
keypoints obtained by the SIFT, and (C) keypoints representation no description.

The keypoint detector is based on the Difference of Gaussian (DoG) calculations, and the
descriptor uses gradient-oriented histograms to describe the neighborhood around the keypoint
(Lowe, 2004). To detect and describe a keypoint, SIFT applies the following basic steps:

1. First, a scale-space using DoG is estimated. The aim is to identify keypoints candidates
invariant to scale.

2. Second, each candidate keypoint is analyzed, and keypoints with low contrast are discarded
(Oyallon and Rabin, 2015).

3. Third, an orientation is assigned to the selected keypoints based on the directions of
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the image gradient at the keypoint location. This orientation is used later on to build
descriptors invariant to rotation.

4. Finally, a 128-dimension local descriptor is calculated for each keypoint based on the ori-
entation and gradient magnitude of the image in the keypoint region.

2.3 Simple Linear Iterative Clustering (SLIC) Superpixels

A superpixel is a region of an image formed by pixels that share similar color information
or grayscale (Achanta et al., 2010). Generally, a superpixel provides a primitive from the image
where local features can be obtained using feature extractors such as SIFT.

Superpixels are obtained by means of algorithms that aim to cluster similar pixels in atomic
regions in the image. One of these algorithms is the Simple Linear Iterative Clustering (SLIC)
Superpixels proposed by Achanta et al. (2010). SLIC clusters pixels based on the color similarities
and the spatial proximity in the image. The SLIC receives a k value as a parameter, which
corresponds to the amount of superpixel obtained from a given image with approximately equal
sizes. To obtain the superpixels, SLIC performs the following steps (Achanta et al., 2010):

1. Initially, the input image is converted to the CIELAB color space;

2. After, a total of k2 initial cluster centers Ci = [li ai bi xi yi]
T are arranged in a regular

mesh spaced at S =
√

N/k separate pixels. N is the pixel number of the image;

3. Each pixel is associated with the nearest cluster center according to a distance measure
D, considering only the centers whose region of 2S × 2S pixels overlaps its location;

4. After, an update step adjusts the cluster centers to a mean vector [l a b x y]T of all
pixels that belong to the cluster;

5. Steps 3 and 4 are repeated for a total of 10 iterations;

6. Finally, a post-processing step forces the connectivity between some disjoint pixels, which
do not belong to the same connected component, to merge with an adjacent superpixel
component.

The distance measurement D is performed as follow:

dlab =
√
(lk− li)2 +(ak−ai)2 +(bk−bi)2 (2.1)
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dxy =
√
(xk− xi)2 +(yk− yi)2 (2.2)

DS = dlab
2 +

(
dxy

S

)2

m2 (2.3)

where m gives the relative importance between dlab color dissimilarity and spatial distance dxy.
When m is a high value, the resulting superpixels are more compact. On the other hand, when
m has a low value, the superpixels are irregular in size and shape. Figure 2.3 shows an example
of applying the SLIC algorithm to a soybean disease image. In the left image, SLIC was executed
with k = 64 and in the right image with k = 256.

Figure 2.3: A soybean disease image segmented into 64 and 256 superpixels using the SLIC
Superpixels algorithm.

2.4 Transformer

The sequence-to-sequence architecture was introduced by Sutskever et al. (2014) aiming to
transform a data input sequence to a new one, respectively, source and target sequence. The
sequence-to-sequence architecture is composed of an encoder-decoder model. Both the encoder
and decoder are normally a Recurrent Neural Networks (RNN) (Chung et al., 2014) or a Trans-
former (Vaswani et al., 2017).

In Figure 2.4, an encoder-decoder model applied to a translation task is shown. The encoder
receives sequential data as input, known as word embedding, and compresses them into a fixed
length context vector. The decoder receives the context vector as input and emits as output the
modified sequential data.

The Transformer (Vaswani et al., 2017) is a deep learning model that employs the mechanism
of attention, whose objective is to give relevance to different parts of the sequential data input.
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Figure 2.4: The encoder-decoder model, transforming a data input sequence “he is eating a
banana” to a new one output sequence "ele está comendo uma banana".

Transformer architecture is based on the encoder-decoder model and is designed to deal with
sequential data (see Figure 2.5). The encoder is composed of encoding layers that process data
input through the layers iteratively. The decoder consists of decoding layers that receive the
encoder output as input and produce a modified sequential data as output.

Figure 2.5: Transformer architecture by Vaswani et al. (2017). Left image is the encoder and right
image is the decoder.
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The encoder receives a data sequence as input processed by the Positional Encoding module.
This module is in charge of adding within the vector that represents each entry in the sequence
information about its position in the data sequence. Each encoder layer consists of two main
components: the self-attention module and the feed-forward neural network. The self-attention
module receives entries from the previous encoder layer. For each entry X , the self-attention
layer generates a weight vector Z that represents the relevance for X in relation to all others
entries in the data sequence. Z is generated by means of a scalar product of the vector that
represents the entry X with the vectors that represent all others entry in the data sequence.
The next step in the self-attention layer is to calculate the attention score corresponding to entry
X . The attention score has a size of n, where n is the number of entries in the data sequence,
and each element of this attention score is a value that tells how much a given entry in the
data sequence is important (in terms of co-relation) to the current entry X . The attention score
is calculated by multiplying the vector that represents each entry in the data sequence by the
attention score and summing up the weight vector Z, resulting in attention/context vector for
entry X . This process is made to all entries in the data sequence. The outputs of the self-attention
layer are sent to a feed-forward neural network. The feed-forward neural network generates an
output for each input attention/context vector, which is passed into the next self-attention layer
of the encoder and so on.

The decoder has the same layers as the encoder, with an attention layer between them. The
attention layer allows the decoder to focus on the relevant parts of the input sequence. The
decoder receives the encoder output as input, i.e., the processed vectors that represent each
entry from the data sequence. The last decoder layer is followed by a linear transformation and
a softmax layer to produce the probability output over the vocabulary to produce a modified
data sequence as output.

2.5 Recurrent Neural Networks

The Recurrent Neural Networks (RNN) (Chung et al., 2014) receive as input not only the
samples of current data but also information observed previously in time. Time here refers to a
logical time that denotes an order in a sequence (E.g.: word sequence). Thus, RNNs build their
pattern recognition model by combining two input sources, the present and the recent past. This
is possible because the RNNs have a feedback loop that connects to relevant information observed
in the past. The feedback loop causes the network to receive its own output as one of its inputs,
creating information feedback in order to build cycles. Each cycle stores relevant information
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over time in hidden states maintained by the network. In this way, at each time t , the network
not only stores information from the data observed at t in its hidden state, but it also retrieves
relevant information from the hidden state t− 1 that happened in the past. This enables the
network to create correlations between separate data over time, creating a dependency between
them.

The hidden state represents a context vector. In general, the hidden state is passed from one
stage to another in the network together with one new input from the sequence to produce one
output and update the context vector, representing a new hidden state. The process continues
until the last entry in the sequence is processed to produce a final hidden state, i.e., the final
context vector. Figure 2.6 shows a simple RNN. In Figure 2.6 (“rolled network”), the neural
network A receives Xt as input and processes the output ht . The feedback loop allows information
to pass from one cycle to the other in the network (see Figure 2.6, “unrolled network”). A standard
RNN is like a chain of repeated neural network modules. These modules have a simple neural
network layer structure, such as a single tanh layer. This chain architecture is intimately related
to sequence processing, as words in a sentence or chain of symbols.

Figure 2.6: Summarized RNN (left) and detailed schematic of the RNN (right). An RNN is like a
chain of repeated neural network modules. This simple RNN has a single tanh layer.

Although RNNs can create correlations between separate data over time, they have prob-
lems maintaining them over the long term. To solve this problem, the Long Short-Term Memory
(LSTMs) (Greff et al., 2017) were proposed, introducing more complexity in the network module
with four neural network layers (see Figure 2.7). LSTM is an RNN increased by a cell state at
each time t , in which it is possible to write and read the information outside the normal flow
created by the hidden states inherited from the RNN. This cell state is called short-term mem-
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ory. With this, the LSTM has two different states passed between the cells: the cell state and
the hidden state.

Access to writing and reading the cell state is controlled by units called gates, units composed
of a sigmoid neural network layer and a pointwise multiplication operation. The decision of the
gates to allow access to the cell state is made based on a set of weights computed by the network
learning process.

Figure 2.7: Summarized LSTM (left) and detailed schematic of the LSTM (right). An LSTM is like
a chain of repeated neural network modules. In each LSTM module have four neural network
layer.

The Gated Recurrent Unit (GRU) (Cho et al., 2014) is very similar to a LSTM. The difference is
that in a GRU, the cell state is not maintained at each time t . Instead, the GRU uses the hidden
state maintained by the network to transfer information from short-term memory through the
network (see Figure 2.8). While the LSTM has two different states passed through cells, the cell
state and the hidden state, which carry long and short term memory, respectively, GRUs have
only one hidden state transferred between the steps of time. This hidden state is capable of
maintaining long and short-term dependencies at the same time. This means that the GRU has
few parameters to be trained compared to LSTM.

In addition to the standard LSTM, in this work, two others LSTM variations are used: Bidi-
rectional Long Short-Term Memory (BLSTM) (Graves and Schmidhuber, 2005) and BLSTM with
attention mechanism (Zhou et al., 2016). The BLSTM is structurally like an LSTM. The differ-
ence is that the BLSTM is not only connected to relevant information observed in the past but
also in the future. The central idea of BLSTM is to process sequences forward and backward to
two separate LSTMs, both of which are connected to the same output layer. This means that
at each time t , the BLSTM stores information from past and future about the data observed
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Figure 2.8: Summarized GRU (left) and detailed schematic of the GRU (right). A GRU is like a
chain of repeated neural network modules. In each GRU module have three neural network layer.

in its hidden state and cell state to produce the final hidden state and represent the context
vector. This enables the network to maintain long and short-term dependencies in both input
directions. BLSTM with attention mechanism is a BLSTM increased by an attention block. In
a BLSTM with an attention block, the context vector is represented by the final hidden state
and by all hidden states produced at each time t . The attention block is in charge of calculating
attention weights for each hidden state produced at each time t , indicating how much focus the
data input at the time t should receive, i.e., how relevant it is in the input data sequence.
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Chapter

3
Syntactic Pattern Recognition in Computer

Vision: A Systematic Review

Authors1: Gilberto Astolfi, Fábio Prestes Rezende, João Vitor Porto, Edson Takashi Matsubara,
and Hemerson Pistori.

Abstract: Using techniques derived from the syntactic methods for visual pattern recognition is
not new and was much explored in the area called syntactical or structural pattern recognition.
Syntactic methods have been useful because they are intuitively simple to understand, and have
transparent, interpretable, and elegant representations. Their capacity to represent patterns in
a semantic, hierarchical, compositional, spatial, and temporal way, have made them very popular
in the research community. In this paper, we try to give an overview of how syntactic methods
have been employed for computer vision tasks. We conduct a systematic literature review to
survey the most relevant studies that use syntactic methods for pattern recognition tasks in
images and videos. Our search returned 597 papers, of which 71 papers were selected for analy-
sis. The results indicated that in most of the studies surveyed, the syntactic methods were used
as a high-level structure that makes the hierarchical or semantic relationship among objects or
actions to perform the most diverse tasks.

1Astolfi, G., Rezende, F. P. C., Porto, J. V. D. A., Matsubara, E. T., and Pistori, H. (2021). Syntactic pattern
recognition in computer vision: A systematic review. ACM Comput. Surv., 54(3). 13
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3.1 Introduction

Computer vision aims to reproduce the human capacity to identify, interpret, and establish
relationships between objects in images and scenes (Forsyth and Ponce, 2002). The interest in
computer vision is due to a variety of applications in the real-world, from precision agriculture
(Tetila et al., 2020) and environmental conservation (Jalal et al., 2020) to urban mapping (San-
tos et al., 2020) and surveillance (Tian et al., 2015). Its main tasks include image classification,
in which the aim is to predict whether an object is in an image, object detection, which con-
sists of predicting and locating objects in images, scene understanding, which elaborating an
interpretation for a scene, and object tracking, whose aim is to detect and track objects in video.

Over the last years, computer vision has been dominate by Convolutional Neural Networks
(CNNs) based approaches. Although these paradigms have achieved excellent results, some re-
search efforts focus on developing approaches that address issues that remain open in the CNN
paradigm, for instance, the hierarchical compositional representations of objects. Syntactic pat-
tern recognition is usually applied to computer vision to address these issues, as they naturally
are hierarchical and compositional approaches.

Syntactic pattern recognition have been widely used by the natural language processing com-
munity. However, from the 1960s, approaches that use syntactic methods to recognize patterns
in images began to emerge (Eden, 1961; Narasimhan, 1962). For example, Kirsch (1964) intro-
duced a formal descriptive mechanism, called Picture Description Language, to be an image
description language. Since then, many approaches have been using syntactic methods to deal
with pattern recognition in computer vision problems. Some approaches explore only syntactic
methods (Pistori et al., 2013), others use hybrid models to combine syntactic methods and deep
neural network architecture (Li et al., 2017) or combine syntactic methods with shallow learning
algorithms (Zarchi et al., 2016). Regardless of how syntactic methods are being used, they are
helpful in providing structural descriptions of objects in images, scenes, and videos. For this
reason, several studies have used syntactic methods in recent years with promising results in
computer vision and pattern recognition areas.

In this paper, we report the results of a comprehensive systematic literature review about
syntactic pattern recognition in computer vision. Our review adopts a set of well-planned steps,
defined by a previously established and documented protocol, taking into account the criteria
set out by a systematic literature review (Kitchenham and Charters, 2007). Some literature
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reviews on syntactic methods in the computer vision area have been carried out by other re-
searchers. Pedro et al. (2013) reported a systematic review of about 52 papers of which were
analyzed the methods employed in each one. This review, which extends to 2013, had a greater
emphasis on the use of grammars for pattern recognition in images. In a review that surveyed
published papers prior to 2010, Chanda and Dellaert (2004) tried to show the most important
grammatical methods applied to computer vision and pattern recognition, as well as their prac-
tical applications. Andreopoulos and Tsotsos (2013) dedicated part of her extensive literature
review to analyze papers that use syntactic methods and graph representations on passive and
active object recognition. Our systematic literature review surveyed 71 papers with publication
date higher than the year 2012. Unlike Pedro et al. (2013), Chanda and Dellaert (2004), and
Andreopoulos and Tsotsos (2013), we analyzed approaches that use syntactic methods on videos,
since the video analysis has received tremendous attention in the computer vision community
during the last years, mainly to represent spatio-temporal relation between current and previous
video frames.

The remainder of this paper is organized as follows. In Section 3.2, we give an overview of
the syntactic methods, and right after, in Section 3.3, we describe the methodology used in our
systematic review. In Section 3.4, we presented and analyzed the syntactic method used by each
surveyed paper. In Section 3.5, we discuss the results and point out possible future directions.
Finally, in Section 3.6, we present conclusions about our systematic review.

3.2 A Brief Introduction of Syntactic Methods

The main idea behind syntactic pattern recognition in computer vision is to represent visual
patterns in a structured way using, for example, strings, graphs, trees, or formal languages,
and also recognize them in a structured way using, for example, formal language or automata.
When the patterns are complex, they usually are composed of simpler subpatterns of which are
composed of even simpler subpatterns. At the lowest level of this compositionality are the basic,
non-divisible patterns that are called primitives, which usually are represented by an alphabet
symbol (Fu and Rosenfeld, 1976). By making an analogy between syntactic pattern recognition
and languages, we can say that the primitives are like the letters of an alphabet, the basic
subpatterns are like words, and complex patterns, which represent the visual patterns, are like
the sentences. Besides, grammar can be used to define the composition rules for a visual pattern
in the same way as a language grammar defines the rules for building a sentence. The grammar
can be designed manually when the structure of the pattern is well-defined or can be inferred
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from training data. In both cases, the grammar has the role of exclusively representing a class
of patterns or objects (Jain et al., 2000).

When patterns are better represented using elementary features of the data instead of fea-
ture vectors, syntactic approaches, categorized as generative pattern recognition models, take
precedence over discriminative models, especially when there are few examples available for
training (Ng and Jordan, 2001). Therefore, for structurally-oriented pattern recognition tasks,
whose generative models are the most appropriate, such as scene recognition, temporal video
analysis, object tracking, spatial and structural object recognition, the syntactic recognition ap-
proaches tend to be better. Besides, in these types of tasks, the syntactic approaches not only
classify patterns but also represent them in an interpretable and transparent way (Flasiński
and Jurek, 2014).

One of the most important issues in the syntactic pattern recognition is the representation
of primitives(Chanda and Dellaert, 2004). Some approaches, as we will see in the course of this
review, represent primitives using the classic representation form that is by means of symbols of
an alphabet, others use graph nodes, however, the choice of the representation is determined by
the features extracted from the data. Another important issue is the representation and analysis
of the patterns(Chanda and Dellaert, 2004). When the spatial relation between patterns is an
important factor, shape grammars and split grammars are most commonly used. On the other
hand, when the temporal relationship between the patterns is more important, hybrid models
having stochastic characteristics are the most appropriate because they can get a probabilis-
tic distribution over a set of valid compositions of the pattern over time. However, there is no
specific syntactic approach for each type of problem, this makes the choice of approach inde-
pendent. The key to syntactic pattern recognition is to follow a general set of steps (Flasiński
and Jurek, 2014): identifying and representing primitives; represent the pattern in a structural
and/or compositional way; infer a grammar or model an approach to pattern analysis. In this
our systematic literature review, we observed that most of the surveyed studies employ hybrid
models consisting of generative and discriminative approaches in any of these basic steps of
pattern recognition.

3.3 Methodology for the Systematic Literature Review

The systematic review process has performed into three steps: planning, conduction, and
data extraction (Kitchenham and Charters, 2007). In the planning step, we defined the research
guidelines based on a protocol. First, we defined the research questions: "What methods are
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used to represent and recognize patterns in images using syntactic approaches?" and "What
methods are used to infer grammars from identified patterns in images?". To compose the search
strings to answer both questions, we used the keywords image, grammar, computer vision, parsing,
syntactic, inference, syntax analysis, grammar learning, and grammar model. We defined the research
databases IEEEXplore, ACM Digital Library, Web of Science, and Science Direct to carry out the
searches. After this step, we defined the criterion for the inclusion and exclusion of papers. For a
paper to be included in the review, it must use some syntactic method to represent or recognize
patterns in images or videos. The papers returned by the search which do not meet this criterion
are excluded from the review. We analyzed the title, abstract, and conclusion of each paper to
verify if it meets the established inclusion criterion. Finally, as the last step in planning, we
established that the papers that would be analyzed must have the publication date higher than
the year 2012.

The first search by papers was carried out in August 2017. In December 2018 and January
2020, we carried out two other searches. In three searches, we used the same planning. From
August 2017 to January 2020, we analyzed the papers surveyed to bring to light the main
features of each study. Based on this analysis, we suggest possible future works that can be
made using syntactic methods applied to computer vision.

3.4 Results and Analyses

3.4.1 Global Analysis

The searches returned 597 papers, of which 147 were outside the scope of the systematic
review. In other words, they did not use syntactic methods in their approaches. These papers
were returned in the searches because they cite other works that use syntactic methods or,
in some ways, they mention syntactic methods in their text. Also, 383 papers published before
the year 2013 were discarded. In this group, some papers used syntactic methods. However,
they were not included in the review due to the protocol established in the planning phase. After
applying the inclusion and exclusion criteria, we selected 67 of 597 papers for analysis. Moreover,
four other papers were found and added to the review after the two initial searches, totaling 71
surveyed papers. In the systematic review performed by Pedro et al. (2013), which is similar to
that presented by this paper, were selected 50 papers published over a period of twenty-seven
years. It is evident from this that the syntactic methods are still explored by computer vision,
even with the increasing use of techniques such as deep learning. In Figure 3.1, the number of
publications per year can be observed among the surveyed and analyzed papers.
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Figure 3.1: Number of papers published per year surveyed by our systematic review.

In the Figure 3.2 the syntactic methods used by the analyzed papers are showed. Each
paper is categorized into only one syntactic method. However, in some cases, more than one
syntactic method is addressed by the paper, such as Liu et al. (2018a) that combines Attribute
grammar and Stochastic Context-free Grammar to track people in videos. In this case, the paper
is categorized into the syntactic method that the authors put more emphasis on. It is observed in
Figure 3.2 that the most explored syntactic method among all others was Stochastic Context-Free
Grammar (28.2%). Context-free Grammar came in second (14.1%), followed by Shape Grammar
(9.9%), Attribute Grammar (9.9%), and Markov Models (9.9%). In the appendix 3.7 is shown the
summary of the 71 papers analyzed.

3.4.2 Methods for Syntactic Pattern Recognition

Syntactic pattern recognition applied to computer vision is used to decompose the appear-
ances of objects or actions in videos into decomposable components. For example, a face can be
decomposed into parts like eyes, nose, and mouth; and a video with human actions into sub-
actions like standing, walking, and running. Usually, these components tend to occur in objects
or videos more often and not in a random way, providing a basis for encoding formal models
based on hierarchy and compositionality rules.

The syntactic pattern recognition is commonly performed by a grammar, which usually con-
sists of four-tuple G = (VN ,VT ,S0,P), where VN and VT are terminal and non-terminal symbols
respectively, and P are the production rules: A→α where, A∈VN and α ∈ (VN∪VT )

+ (Wu, 2013).
A language from the grammar G denotes the set of all strings that can be generated by produc-

22



Figure 3.2: Syntactic methods used by the surveyed papers: Context-free Grammar (CFG),
Stochastic Context-free Grammar (SCFG), Two-dimensional Stochastic Context-free Grammar
(2D-SCFG), Coordinate Grammar (CG), Attribute grammar (AG), Shape Grammar (SG), Context-
sensitive Grammar (CSG), Stochastic Context-sensitive Grammar (SCSG), Markov Models (MM),
Relational String Graph (RSG), and Others.

tion rules from this grammar. Similarly, within the context of the computer vision, this grammar
could generate all possible visual representations for an object or all possible actions for a video
category, and finally, all the possible configurations for a scene. This makes the syntactic pattern
recognition methods to be characterized by providing models based on parts, hierarchical and
semantical decomposition, and that exhibit large amounts of structural variations. We list below
some common computer vision problems that can be approached by syntactic methods, and in
Figure 3.3, we illustrate three of these problems.

• Pose estimation: the model is trained with the object or person parts using the grammar
to relate those parts. In this way, an unlimited number of poses can be generated by
the grammar production rules from a finite set of training data. Another application of
syntactic methods on the pose estimation is to infer occluded object parts from a given
known sequence of object parts. Besides, a poses sequence obtained from a video can be
used to predict, for example, falls or human actions.

• Object tracking: the model is built to estimate the state of the target object or person in a
video from the previous state of the target. The person or object trajectory can be modeled
by a graph controlled by production rules or a Markov chain (here as a syntactic method).
On the object tracking, the syntactic methods can be applied in traffic surveillance, tracking
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of players actions, interaction between people, human actions, etc.

• Scene understanding: it is the process of analyzing and elaborating an interpretation for
a scene. The model can be built using a graph to relate objects and persons in the context
of a scene. The relationship between scene components can be controlled by probabilistic
rules and spatial locations that define valid scenes. The scene understanding is relevant
for applications that operate in the real world.

• Object detection: this task deals with the detection of object instances of a certain category
in an image or video. Usually, the built model relates object parts in a compositional and
hierarchical way guided by grammatical rules. This model is useful to infer occluded object
parts from a given known sequence of object parts.

• Facade parsing: the facade parsing is a similar problem to scene understanding. However,
the main applications are mainly aimed at urbanism and 3D building model generation
tasks. The syntactic model for facade parsing is based on a segmenting image process of
facades into semantic categories corresponding to architectural components such as roof,
windows, and walls. The built model relates those components in a spatial and composi-
tional way guided by grammatical rules. This model is useful to infer occluded architectural
components by trees, cars, or buses from a given known sequence of other components.

In this section, the 71 surveyed papers will have their methods analyzed. Although all the
works analyzed use syntactic methods, most of them combined syntactic methods with other
approaches. Generally, the syntactic method plays a hierarchical representation of objects or
scenes, when applied in static images. In papers that focus on the tracking of objects in videos,
the syntactic methods are used to represent a probabilistic model of possible sequences of ac-
tions and possible positioning of objects in space and time. Most of the time, the papers use
deep learning techniques, shallow algorithms, or appearance descriptors to recognize and de-
tect objects or detect actions. In these papers, the syntactic methods were used as a high-level
structure to relate objects or actions into a hierarchical or semantic way.

The studies set out to perform the most diverse tasks. Some papers have focused on detecting
objects in scenes. Others have focused on tracking objects in videos and predicting sequences of
actions; many described scenes or analyzed facades of buildings. We analyze each paper focusing
on identifying the purpose of the study, the method adopted to perform the task and presenting
the results achieved.

The papers were grouped into sections, representing each syntactic method (see Figure 3.2).
At the beginning of each section, we briefly describe the specific characteristics of each syntactic
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Figure 3.3: A: On the left, a facade. On the middle: segmented facade into semantic categories.
On the right: Hierarchy of patterns corresponding to the segments (components). The circle with
letters correspond to classes (window, door, etc.). Note that the hierarchical model infers some
occluded components (j, l, n, q, r, and s). Black circles are production rules. B: On the left: a
detected object based on part-level. On the right, the graph represents the part (letters) config-
urations guided by production rules represented by black circles. C: On the left, a human pose
is represented by a skeleton graph format. On the right, the graph represents the dependencies
between body parts, whose configurations are controlled by grammar production rules.

method to contribute to the understanding of the analyzed papers.

Context-free Grammar

A Context-free Grammar (CFG) is a four-element tuple G = (VN ,VT ,S0,P), where VN are the
non-terminal symbols, VT are the terminal symbols, S0 is the initial non-terminal symbol, and
P are the production rules: A→ α where, A ∈ VN and α ∈ (VN ∪VT )

+ (Wu, 2013). It can prove
quite useful in decomposing videos into actions and object into parts both in a hierarchical and
compositional way (see example in Figure 3.4).

The methods CFG-based are able to recognize human actions and interactions as well as
relate them to formally represent complex activities. Feng et al. (2014) have proposed a method
that obtains human poses from video sequences and relates them to predict falls of elderly
people. The method uses a background subtraction technique to obtain human silhouettes from
videos and represent them using ellipse fitting. Each ellipse has a set of features that are used
to define the body’s pose in a given video frame. These poses are learned by a Support Vector
Machine (SVM) and afterwards converted into four rules of a CFG. The silhouette’s motion
through video is modeled using an Integrated Normalized Motion Energy (INME) image, whose
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Figure 3.4: On the left, we present a hierarchical parse of a video decomposed into sub-actions.
The action "bull is going to eat" is decomposed into sub-actions: standing at the door, entering
in the feed bunk, and eating. The no symbol is the "no bull". On the right, we show the object
appearance decomposed into parts-level. The decompositions are guided by the production rules
of specialized CFGs.

poses are concatenated to try and detect a possible fall. The method achieved high detection
accuracy and no false positives.

Pirsiavash and Ramanan (2014) have used a Latent Hierarchical model and a Segmental
CFG model, respectively, to decompose actions from video into a hierarchical way and capture
it’s temporal structure. The method computes a bag-of-features descriptor for each video seg-
ment (frame of action) and assigns for each one of them a visual word, for example, pull, raise,
pause, and background. The visual word sequences extracted from each video are used as the
basis for building a CFG, whose non-terminal symbols represent actions and terminal symbols
represent sub-action and background segments. The method achieved 62% accuracy at frame
labeling and 22% for segment detection. Kuehne et al. (2016) also have parsed videos to recog-
nize human activities. The method represents each video frame using a Fisher Vector (Jaakkola
and Haussler, 1999) obtained by means of Dense Trajectory Features (DTF) (Wang et al., 2013)
fitted by Gaussian mixture. The action units found in the video are modeled using an Hidden
Markov Model (HMM) (see HMM in section 3.4.2) and sequenced into a CFG. The recognition of a
probable sequence of actions is determined by combining HMMs and learned CFG. The authors
proposed a new method version in (Kuehne et al., 2017). In this work, they introduced a weakly
supervised learning approach from video transcripts to identify the sequence in which human
actions happen in the video. They used a speech recognition technique on the video transcripts
to identify each action and model them in the form of an HMM. The captured action units of the
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video are sequenced using a concatenation of HMMs. In the experiments, the method achieved an
accuracy of 62% in aligning transcripts with the video data. However, on the segment detection,
the method achieved an accuracy of 43%. Tian et al. (2015) have proposed a vehicle detection
method in traffic surveillance videos that handles partial occlusion. The vehicle is decomposed
into two-layer; the first layer contains the semantic parts and the second the decomposition of
them. The parameters and the production rules of the CFG are extracted using an SVM classi-
fier, which analyzes two or more semantic parts to indicates whether they belong to the same
vehicle, and the appearance information of the parts, which are obtained using Histogram Ori-
ented Gradients (HOG), Deformable Part Models (DPM) (Bourdev et al., 2010) and Latent SVM.
The authors referred to approach as pairwise SVM Grammars. In experiments performed on
real urban scenarios, the approach adapted to partial occlusion problems. Le et al. (2017) have
proposed a method for monitoring drivers. A CNN is trained using driver body parts (face, torso
and seat belt), and the probability map generated by it is inputted into a Semi-Supervised Nor-
malized Cuts segmentation algorithm to build driver representation. From this representation, it
is extracted the features of the driver region bounding box and foreground using an Region with
Convolutional Neural Networks (R-CNN) to precisely segment driver body parts. The segments
of each body parts are classified by an SVM and represented by a directed acyclic graph that
embodies CFG rules. The decomposed parts of the driver are modeled as Γ = {γk}K

k=1, where
γ = (xk,yk,ϑk,sk) denotes the position (xk,yk), orientation ϑk and scale sk of part k of the driver,
respectively. The head, body and seat belt are the main parts, however, the head is modeled
into the sub-parts mouth, eyes, and nose. The approach has achieved results better than to
state-of-art.

Two papers surveyed have used DPM, which is essentially a CFG, to deals with the object
appearances at object parts-level instead of the object as a whole. Jiang and Ma (2015) proposed
a model to person detection. The method detects the human body appearance using HOG III
that is defined by a combination of bar-shape features (HoB), color features (HoC) and HOG, and
decomposes it into six movable parts and, in some instances, combined with an occluder. The
human body parts combination is done by a grammar defined by hand, while the learning of the
HOG III template appearances, grammar deformation parameters and scores of productions is
through Latent SVM. The method achieved 57% in the experiment on PASCAL VOC dataset for
person-class. Gonfaus et al. (2015) also dealt with the object appearances at parts-level using a
DPM, however, the proposed method by them can be applied to any object class. The authors
illustrate the method by mean of a car composition. They use two different wheel styles for the
same car instead of using two identical cars with different wheel styles. The method uses an
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SVM to learn the objects parts appearance from a grid-like structure and relates the parts using
an And-Or graph (AOG). In the experiments, the method achieved results similar to state-of-art.

Usually, Shape Grammar (see section 3.4.2), which is a particular type of CFG, is an estab-
lished grammatical model to express hierarchical spatial relationships and therefore is very used
for building facade interpretation. However, Demir et al. (2015) proposed a method that uses a
CFG to represent urban structures. The proposed method aims to identify models matching
to detect repeated structures. The method receives as input the point clouds that represent
the urban structures and segments them to discover dominants planes through distance-based
grouping and detection of point repetitions. The extracted segments are converted into a tree
representation, whose nodes correspond to segments or the subset of segments. The approach
is limited to generate few rules to a CFG if the points clouds have few repetition patterns.

A Graph Grammar G is labeled graph with labels in its vertices and edges. It is denoted by
a pair (VG,EG), where VG represents the vertices of G and EG represents the edges of G. More-
over, G has labels in its vertices and edges. The labels are defined by a function f that assigns
symbol labels to vertices and relation labels to edges (Pfaltz and Rosenfeld, 1969). A Graph Gram-
mar is a CFG used to model two-dimensional (2D) data as labeled graphs (Pfaltz and Rosenfeld,
1969). Julca-Aguilar et al. (2017) have proposed a method for recognizing online mathematical
expression using Graph Grammar. They model a handwritten mathematical expression like a
labeled graph created from a graph grammar. Non-terminal nodes represent sub-components
of the mathematical expression, terminal nodes represent the symbols (for example, +), and the
edges represent the relation between symbols and sub-components. The recognition problem is
modeled as a graph parsing; given an input stroke set, the algorithm obtains a parse tree that
describes the best interpretation of the input. The method generates multiple interpretations of
the mathematical expression consistent with the CFG, and then it extracts an optimal interpre-
tation according to a cost function that takes into consideration the probability of symbols and
structures.

Stochastic Context-free Grammar

A Stochastic Context-free Grammar (SCFG) is a CFG in which each production is increased
with rules of probability. It is defined as a tuple G = (VN ,VT ,S0,R,P) (Wu, 2013), where VN are
the non-terminal symbols, VT are the terminal symbols, S0 is the initial non-terminal symbol,
R are the production rules, and P are the probabilities on production rules. So every rule is
associated with a probability: P(A→ α) ∈ [0,1] and Σ∀α P(A→ α) = 1 (Wu, 2013). The SCFG is
widely used in computer vision due to its stochastic process, whose model, usually represented
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by an And-Or graph (AOG) or its variants, defines a probabilistic distribution over a set of valid
compositions. This characteristic allows modeling temporal and causal events from video input
as well as modeling contextual relationships between objects and their parts in scenes. Figure
3.5 shows application examples of SCFG on the decomposition of video and object based on a
probability distribution.

Figure 3.5: On the left, we present a hierarchical parse of a video decomposed into sub-actions
based on a probability distribution. The action "bull is going to eat" is decomposed into sub-
actions: standing at the door, entering in the feed bunk, and eating. The no symbol is the "no bull".
On the right, we show the object appearance decomposed into parts-level. The decompositions
are guided by rules preceded by a probability that indicates the relative frequency with which it
occurs.

On the human activities modeling, Vo and Bobick (2014) have used an SCFG to classify body
poses in complex activities. The authors modeled an AOG to represent temporal structures
of complex human activities, whose or-nodes model the variation in the actions progress, and
and-nodes concatenate sub-actions of a complex activity. From action detection, it is created a
Bayesian Network to represent smaller actions sequence, whose observed nodes are primitive
actions, hidden nodes are action timings and the edges are dependencies between actions. The
approach aims to represent activities structure probabilistically, allowing to evaluate the proba-
bility of occurrence of any action at any time. The method achieved 58% segmentation accuracy
and an offline mode segmentation accuracy of 91.8%. Subsequently, Vo and Bobick (2016) evolved
the approach using a different action primitives detector and performed new experiments us-
ing a new dataset. The model proposed by Lee et al. (2015), beyond encapsulates the temporal
structure of activities, keeps a history of the observed actions. The authors used HOG to extract
visual features from video frames, a Random Forest classifier to recognize elementary human
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actions that result in a likelihood distribution of actions, and an SCFG to represent temporal
structures of human activities. The model receives as input a sequence of action for predicting
the next action or successive actions. The approach was tested on a dataset with concurrent
activities performed by multiple humans and achieved good results. Tayyub et al. (2018) anno-
tated in the videos each human activity using labels to build a hierarchical activities model. The
proposed method by authors infers a "part-of" hierarchical activity model occurring within each
video from the semantic similarity between the labels. Then, the method clusters the hierarchi-
cal activity models derived from each video to generate a unified hierarchical and probabilistic
model embodied in an SCFG, which captures the variation in activities through Or rules on a
generated AOG. In video inference and interpretation, first the primitive actions in the video
are automatically detected using a state-of-the-art action recognition approach. Then, based on
the SCFG, the method infers the most likely activity hierarchy to the set of primitive actions
detected in the video. Qi et al. (2017) have integrated objects and human actions to predict fu-
ture human activities from partially observed videos. The compositional structure of events is
modeled by an SCFG in a Spatial-Temporal And-Or graph (ST-AOG), whose and-nodes represents
a decomposition of an action (e.g., take to the oven) into its constituents (sub-actions such as
opening oven, putting in bread), the or-nodes represents the variation in actions (put a bread
or put a cake into the oven) and the terminal nodes represent observation (human and objects
in a video frame). The method uses an Earley parser (grammatical parser algorithm) to predict
sub-actions and all the learned cues (parsed graph and sub-actions) to predict human activity.
The authors reported that the method achieved excellent results. Fire and Zhu (2017) embodied
an SCFG in a Causal And-Or Graph (C-AOG) to infer the causal-effect relationship between ob-
ject and actions agent, for example, a person pushing the door. The C-AOG is used to connect
the actions in a sequential model. The model allows connecting triggering agents to actions and
actions to their effects, allowing long-term inference of actions and agents. The authors modeled
or-nodes like an alternative cause (e.g., a printer can start printing by someone using a com-
puter), and-nodes like connectors of sub-actions and conditions (e.g., the sub-actions performed
to detect the keyboard use), terminal nodes like complete actions or flow change in the video,
and horizontal relationships between nodes like temporal relationships (e.g., a person nears the
door before opening it). All rules were designed manually based on video sequences produced in
the laboratory.

On the detection and track moving objects in video, Xu et al. (2018) have proposed an ap-
proach that uses a C-AOG for tracking and modeling causal-effect relations on the interaction
between people and people with the environment. The method tracks people like a fluent vari-
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able that changing visibility status (visible, occluded, or contained) by interacting with the en-
vironment, for example, getting into a car, entering a house, etc. In generated C-AOG, or-nodes
represent the visibility status, the edges indicate how people transit among visibility status, the
terminal nodes represent actions or sub-event describe by concatenation of and-nodes. For mod-
eling the transitions of the people, indicating in the video his position and visibility status, the
method uses a model based on a Markov Chain (see section 3.4.2 about Markov Model), creating
a dependency between the states of the people. Moreover, the method uses an Integer Linear
Programming model to search the optimal states of the people over time. Thus, given a video,
the proposed method can predict the visibility status of the people and recover their complete
trajectories. The proposed approach by Li et al. (2015) aims to show the location of pedestri-
ans in complex traffic surveillance environments. The method captures expressive keypoints in
video frames using HOG features at multiple scales to obtain the parts of the human body (head,
arm, etc.) and relates these parts into an AOG. The related parts of each frame are clustered
and submitted to the HOG-SVM detector for training. To estimate the pedestrian localization
and the body parts configurations is employed convolution and a bottom-up inference on OAG.
The approach proposed by Lu et al. (2014) infers hidden states of objects in video frames. In
the first frame of the video, the method uses HOG, local binary pattern features (LBP) (Ojala
et al., 1994), and RGB color histograms (for color videos) to obtain the appearance features of
the objects. After, the objects are divided into a small cell-based grid (3 × 3) and organized
into an AOG, whose terminal nodes represent the parts of the objects, the nonterminal nodes
the part decomposition, and or-nodes the alternative parts decomposition. The method uses a
Latent SVM to learn the AOGs and a temporal dynamic programming algorithm based on HMM
(see section 3.4.2) to formulate the object tracking in the video. The method has outperformed
state-of-the-art tracking algorithms, including convolutional neural network-based deep learning
techniques.

SCFG also was used by some of the surveyed papers to detect objects in images. Song et al.
(2013) used an And-Or Tree (AOT) to relate into a compositional way primitives shapes of objects,
whose appearances were obtained using HOG. The AOT represents different subcategories and
perspectives of objects; for example, a front horse image, side horse image, and back horse
image. These subcategories are learned using a clustering algorithm in an unsupervised way
while the configuration of object parts are learned in a weakly-supervised way, and the generated
parameters of both learning process are learned together by an SVM. The method achieved better
performance than the baseline methods on a dataset of 20 object categories. Li et al. (2014) have
addressed the occluded object detection problem. The proposed method uses an And-Or Directed
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Acyclic Graph (AODAG) to model X-to-X occluded objects, for example, car-to-car or person-to-
person in a hierarchical relationship way. The appearance features of occluded objects pairs (X-
to-X) and the corresponding two separate objects (X and X) were obtained using HOG, and then
these appearance features were decomposed into an AODAG, whose or-nodes represent a mixture
of various types of occluding objects pairs, and-nodes both occluded objects pairs or occluded
objects single, and terminal nodes the appearance for each object pair. The final model embeds an
occluding object pair detection SCFG that is learned by the Latent Structural SVM (LSSVM). The
method was tested only on car-to-car or person-to-person, although according to authors, it can
be used to recognize other object types. Rothrock et al. (2013) have used an SCFG embodied in an
OAG to represent human pose variation. The method handles the appearance variation of people
by substituting their parts by variants. The obtained human parts by means of segmentation and
Dense HOG are related in an OAG, whose and-nodes represent the distinct part appearance, or-
nodes the appearance variations, and the edges determine the context relation between variant
parts of the human pose. In experiments, the authors demonstrated the effectiveness of the
model for human pose estimation.

In the context of scene understanding, the researchers use SCFG to represent objects in
a hierarchical and compositional way or to relate objects in scenes. Chua and Felzenszwalb
(2016), for example, have explored contextual evidence provided by the compositional rules of
an SCFG to identify objects and infer parts of them when they are missing in the scene. The
method uses implicit blocks for defining the scenes that represent a pair of type and pose,
respectively, an alphabet symbol and the type position in space. Factor graphs (bipartite graph
representing the factorization of a function of several variables (Forney, 2001)) and loopy belief
propagation are used to represent a probability distribution about possible scenes. The authors
have shown experimental results with two different applications. The first application involves
the reconstruction of binary contour maps, and another detects human faces in the image. In
both experiments, the method handles with robust inference algorithms that can effectively
combine local information to reason about a scene. Zhao and Zhu (2013) have analyzed indoor
scenes to infer the object functions. They assumed that an indoor environment is designed to
meet human needs like a bed to sleep on or sofa to sit on. To identify the objects and their
functionality, the method first groups detected line segments in 3D primitives to build shapes;
following it assigns labels to primitive shapes to represent its functionality, forming a parsing
tree that represents the appearance hierarchical and function of the objects. In the inference
process, the method, guided by an SCFG, uses the Metropolis-Hastings algorithm (Robert and
Casella, 1999) to accept or reject the parse tree. The proposed method by Walton et al. (2017)
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was applied in the Naval Tactical domain. The authors aim to represent semantic and physical
relationships, such as the spatial, temporal, and semantic context between objects and events in
a scene. The scenes are segmented and decomposed into an AOG, whose nodes represent entities,
the internal edges specify spatial and functional relations between objects, and the lateral edges
correspond to relations that allow the graph to encode contextual information between entities
at all hierarchy levels of a subgraph. Although the authors have considered that an SCFG is
suitable for analyzing tasks in scenes, they concluded that inferring the context of events and
objects in the Naval tactical command and control domain is a very critical task that must be
done by largely trained and experienced human operators.

There are works as Jiang et al. (2018) and Qi et al. (2018) that use SCFG to learn the layout of
the indoor scenes in order to automatically generate a large-scale 3D indoor scene dataset. These
approaches receive as input 2D images with pixel-wise ground-truth or set of image segments,
and by means of the rules learned from grammar, combine components of a given indoor scene
to generate new layouts to it. The generated scene datasets are very useful for serve as training
data for object detection and scene understanding tasks.

In order to introduce an explainable generative model, Xing et al. (2019) propose a method
that uses the first convolutional layers of a generator network (Goodfellow et al., 2014) as a
feature descriptor and an AOG to represent a learning model. The method applies sparse opera-
tion on the feature maps obtained from convolutional operations on image to identify primitives
such as edges, colors, and object parts. These primitives are connected using an AOG in order to
represent visual patterns in a hierarchical and compositional way. The experiments showed that
the method can learn visual patterns in different convolutional layers of a generator network.
Wang et al. (2018) also use CNN architecture for getting image features and relate them using
grammar with similar characteristics to a SCFG. The authors introduce Fashion Grammar to
classify fashion images. The grammar is composed of two other grammars: symmetry grammar
that models the bilateral symmetric properties of clothes, and kinematics grammar that is re-
sponsible for describing kinematic relations between clothing landmarks. The method starts by
producing clothing landmarks on the fashion items, such as the corners of the neckline, hemline,
and cuff, using a heatmap obtained by means of the conv4-3 layer of the VGG-16 Architecture
(Simonyan and Zisserman, 2015). These landmarks are related according to specific rules of kine-
matics and symmetry grammars to build global constraints in fashion grammar. The approach
uses Bidirectional Convolutional Recurrent Neural Networks (BCRNNs) units to message pass-
ing over the fashion grammar for iteratively update and refine landmarks. The final classifying
clothes process is performed by two types of attention mechanisms, the first concentrating on
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the functional clothing regions and the second on the categories. The method was tested on two
datasets and achieved the state-of-the-art at classifying fashion images. Xing et al. (2020) pro-
posed an approach that produces an AOG model by sparsifying generator network (Goodfellow
et al., 2014) for generating image synthesis with explicit hierarchical and compositional represen-
tations. The proposed model converts dense connections between layers in a generator network
to a sparsely activated and connected AOG model. The AOG is generated from sparsity-inducing
constraints introduction in training. The aim is to learn a hierarchical compositional of scene-
objects-parts-subparts primitives for AOG-guided image synthesis generation from scratch. The
experiments performed on four benchmark datasets showed that the approach achieved good
results.

Two-dimensional Stochastic Context-free Grammar

The Two-dimensional Stochastic Context-free Grammar (2D-SCFG) is a extension of SCFG
and introduces mainly two differences. The terminal and non-terminal symbols characterize
two-dimensional regions and are associated with 2D coordinates, and production rules have a
parameter ( spr ) that relates terminal and non-terminal symbols spatially. The rules in 2D-SCFG
are defined as A

spr−→ α , where A∈VN and α ∈ (VN∪VT )
∗ and spr defines the spatial relationship

between nodes, whose possible labels can be: up, bottom, left, right, superscript, subscript and
inside (Wu, 2013). Figure 3.6 shows an example of 2D-SCFG on the decomposition of an object.
Note that, besides the probability distribution, non-terminal symbols are related by a parameter
(spr ), and terminal symbols are associated with 2D coordinates.

We surveyed four papers that use 2D-SCFG and mainly explore the spatial relationship pro-
vided by it. Álvaro et al. (2014) have proposed a model to recognize handwritten mathematical
expressions using 2D-SCFG and HMM. The HMM recognizes mathematical symbols and the
2D-SCFG models the relationship between them. The rules to grammar 2D-SCFG were defined
manually in order to map the horizontal (AB), superscript (AB), subscript (AB), vertical (A

B),
and inside

√
A relation between symbols. The complete mathematical expressions are learned

by an SVM from samples of spatial relation types between mathematical symbols. This model
is improved in Álvaro et al. (2016), in which the authors propose modeling the structural rela-
tionships between symbols of a mathematical expression by means of a statistical grammatical
model analogous to a 2D-SCFG. The mathematical expression is divided into a sequence of
strokes and represented by a parse tree, whose mathematical symbols are classified by means
of a Bidirectional Long Short-Term Memory RNNs (BLSTM-RNN) (Schuster and Paliwal, 1997).
The mathematical expression recognition is carried out by comparing parse trees. The method
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Figure 3.6: The object appearance is decomposed into parts-level. The decomposition is guided by
rules preceded by a probability that indicates the relative frequency with which it occurs. Besides,
non-terminal symbols are related by a parameter (spr ), and terminal symbols are associated with
2D coordinates. Non-terminal symbols could also be associated with 2D coordinates.

achieved 82.2% of precision on the task of symbols classification and segmentation, which is a
significantly superior result to state-of-the-art methods.

Martinovic and Van Gool (2013) used a 2D-SCFG version that includes attributes (see sec-
tion 3.4.2 about attribute grammar) to represent building facades. The grammar called Two-
Dimensional Attributed Stochastic Context-Free Grammar (2D-ASCFG) is defined as a tuple
G = (VN ,VT ,S0,R,P,A), where VN are the non-terminal symbols, VT are the terminal symbols,
S0 is the starting symbol, R are the production rules, {P(r), r ∈ R} are the probability rules and
{A(r), r ∈ R} are the attribute rules (Martinovic and Gool, 2013). A facade image is semantically
segmented into classes such as roof, windows, and walls to generate rules for a Split grammar.
As a result, it is obtained grammar rules for each facade image. Then, all rules are merged, fol-
lowing a Bayesian model-merging technique, to build a single 2D-ASCFG. The method achieved
an accuracy of 74.82% in the facade analysis on a dataset of 30 images. The authors only used
a limit of 30 images due to the cost of processing the method pipeline.

Fang et al. (2018) proposed a pose grammar model that uses three kinds of grammar, which
together are analogous to a 2D-SCFG. The model maps a human pose from 2D to 3D, relating the
dependencies between body parts, in order to 3D human pose estimation. The model has a deep
neural network constituted by two basic blocks used for extracting pose-aligned feature, and a
pose grammar network composed by kinematic, symmetry, and motor coordination grammars
that encode human body parts dependencies and relations which are learned by an Long Short
Term Memory (LSTM) (Greff et al., 2017). The model basically extends three types of human
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pose grammar into deep neural networks to model high-level knowledge of 3D human pose. The
approach was evaluated on three popular 3D pose estimation datasets and compared with 16
state-of-the-art methods in a way quantitative and qualitative. According to the authors, the
model obtained superior performance over the 16 state-of-the-art methods.

Coordinate Grammar

A Coordinate Grammar (CG) is a CFG whose symbols are located at given coordinates which
are computed by functions associated with the production rules (Ferber, 1986). A CG is an eight-
element tuple: G=(VT ,VM,VN ,L, f ,n,Φ,P), whereVT are terminal symbols,VM are intermediate
non-terminal symbols, VN are non-terminal symbol, L are the coordinates, f a special symbol,
such that f /∈ {VT ,VM,VN ,L}, n a natural number, the order of the grammar, Φ are functions
associated with the production rules, and P are production rules (Ferber, 1986).

Our search returned only the work of Ayeb et al. (2015) that use CG. The proposed method
aims to recognize Arabic mathematical formulas extracted from scanned images. The symbols of
the formulas are recognized singly using a combination of the features descriptors Zernike mo-
ments, Hu moments, run-length, white pixel portion, and bilevel co-occurrence and the classifiers
Multilayer Perceptron, K-Nearest Neighbors, Naive Bayes, K* and Decision Tree. The symbols of
the formula are related using a CG and the recognizing of the complete formula is performed
by a top-down and bottom-up parsing scheme based on operator dominance. The method was
tested on a dataset with 5000 mathematical symbols, and the best recognition rate, 91%, was
achieved by K*.

Attribute Grammar

An Attribute Grammar (AG) is a CFG increased with attributes, semantic rules, and condi-
tions. The attributes have values that are used by semantic rules associated with the production
rules (Slonneger and Kurtz, 1995). These characteristics entitle AG to be used in scene un-
derstanding tasks and analyze objects trajectories in videos, whose models usually require a
semantic and structural relationship between primitive patterns. Figure 3.7 shows application
examples of AG on the decomposition of video and object based on attributes and semantic rules.

Our research returned four papers that used GA at some step in their pipelines to interpret
scenes. The proposed method by de las Heras et al. (2015) interprets a scene from the structure
of floor plans. The authors used annotated floor plans (i.e., walls, doors, and rooms) as input to
the method to model the structure of a floor plan in a hierarchical composition of contextually
constrained parts. A first step is to detect primitives, such as lines, wall or doors. The walls are
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Figure 3.7: On the left, we present a hierarchical parse of a video decomposed into sub-actions.
On the right, we show the object appearance decomposed into parts-level. The decompositions
are guided by attribute evaluation rules called semantic functions.

detected using watershed transformation and the doors are discovered by finding arcs employ-
ing the Hough transform. After, the image is segmented into different domains for constructing
the floor plan graph representation using the AG rules. They performed experiments using four
datasets and show that the method is better than most recent floor plan interpretation tech-
niques. In the same way, Boulch et al. (2013) have used AG to interpret semantic information on
CAD building models. The method transforms the CAD model in graph nodes, whose terminals
nodes are the 3D primitives, i.e., geometric forms. The objects in the scene are decomposed in a
hierarchical way, and object parts are related by the AG. The structure of the scene is reflected
in an analysis tree where the 3D primitives have semantic labels and relations. The authors
consider that the method obtained excellent results. Despite this, they say new tests must be
performed in real environments to deal with noise and occlusion. Liu et al. (2018b) and Liu et al.
(2018b) have proposed methods for parsing outdoor scenes. The authors assume the scenes are
composed of parallel lines that may form one cartesian coordinate system. In both methods, the
buildings parts are decomposed in a hierarchical way and related semantically in a graph by an
AG. The proposed method by Liu et al. (2018b) decomposes the scene into superpixels that are
represented by graph nodes. Each node has attributes to represent the scene-level superpixel
global geometry as well as local geometry. These attributes impose constraints between the graph
nodes employing five grammar rules that are used to decompose the scene. To infer the optimal
parse graph for a scene, the method employs recursively the five grammar rules. The proposed
method by Liu et al. (2018b) differs from Liu et al. (2018b) only in the step of inference from the
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optimal parse graph for a given scene, Liu et al. (2018b) employ the five grammar rules using
a probabilistic framework based on Markov Chain Monte Carlo (MCMC) (Brooks et al., 2011).
In this new method version, the results are comparable to state-of-the-art 2D semantic region
segmentation and single-view 3D scene reconstruction.

Usually, as shown in section 3.4.2, CFG is employed for video parsing, however, due to GA
inherits basic features from CFG, we surveyed two papers that use GA to analyze objects tra-
jectories in video. The proposed method by Choe et al. (2013) aims to retrieve videos from a
large video dataset having similar activities to a given query video. The method divides the video
into frames and each frame is segmented into superpixels which are clustered by a model based
on Markov Random Field (MRF)(see section 3.4.2). The clustered superpixels are examined by
analyzing the Spatio-temporal trajectory to detect the target (human, vehicle, etc) and basic ac-
tions of the target (appear, disappear, move, stationary, stop, etc), including context information.
This information is reflected in an AOG, whose semantic rules are provided by productions of
the AG, to model the activity in the video. In one of the experiments, the method achieved an
accuracy rate of 80% on videos correctly retrieved. The method proposed by Liu et al. (2018a)
tracks humans in the video. The person and its movement trajectory are described using a
graph, whose nodes nonterminal represent sequences of person bounding boxes over a period
of time. These nodes nonterminal are decomposed into children terminal nodes that represent
only a person bounding box detected in a certain video frame. The terminal nodes, which are
detected using deep learning architecture CaffeNet (Jia et al., 2014), have attributes like geome-
try (moving speed, direction), activities (walking, running), and/or accessories (bags). The method
parses a given video employing both top-down and bottom-up parsing to infer for it an optimal
parse graph together with its attributes. The graph construction is guided by semantic rules
provided by an AG. The method outperformed state-of-the-art tracking methods using public
video datasets.

We surveyed one paper that uses AG for the pose-estimation task. The method proposed
by Park and Zhu (2015), aside from estimating poses, finds parts jointly and recognizes part
attributes (i.e., long hair, glasses, hat, etc). The human body is decomposed into its constituent
parts which are related in a hierarchical way by an AOG. The parts appearance is described
using approaches based on CNN, HOG and color features, and the geometry state of them is
represented by (x,y,s), i.e., position and scale. The AG rules define the relations of adjacency
and semantic between the parts to infer an optimal parse tree for a given image. The method
achieved better results against state-of-the-art methods on pose-estimation, part localization
and attribute recognition tasks.
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Shape Grammar

Shape Grammar (SG) is a type of CFG whose rules generate geometric shapes. The SG has
two main rules which define how a shape can be transformed in others (parts of shapes). A rule
deals with the recognition of a particular shape. The other deals with its possible replacement by
a different shape (Stiny and Gips, 1971). Figure 3.8 shows an example of AG on the decomposition
of an object. Note that complex shapes are generated from primitive geometric shapes.

Figure 3.8: Example of a decomposed object by a Shape Grammar. The object appearance de-
composition is guided by rules that generate complex shapes from primitive geometric shapes.

SG is an established method to represent hierarchical spatial relationships and is therefore
suited to represent and interpret the semantic relationship between components of building
facades. Our search returned five papers that use SG in your approaches to facade analyzes.
The method proposed by Weissenberg et al. (2013) receives as input facade segments like door,
window or piece of wall and provides as output the production rules and the parameters learned
through the facade, in which both are combined to construct a parse tree representing the given
facade. After, the method merges all parse trees obtained from each facade to generate a single
grammar for the facade style. The method contribution is to eliminate the need for manual expert
work to describe a facade model. Koziński et al. (2015a) have analyzed facades based on semantic
people-defined rules in which stipulate the relationships vertically or horizontally between class
pairs (windows and wall, roof and sky, etc.). The class pairs are obtained using a hierarchical
partitioning of the facade into grids, and the semantic rules are modeled by an SG. The model
is trained with class pairs to discover the structure of the occluded facade when is performed
the facade parsing. In experiments, on several facade datasets, the method demonstrated state-
of-the-art results. In previous work (Koziński et al., 2015b) to this, the authors decomposed the
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facades into rectangular regions reflected in a tree, whose terminal nodes correspond to segments
as such windows, roof, etc. Another paper (Koziński and Marlet, 2014) by these authors, which will
be shown in section 3.4.2, employs MRF to analyze facades. Teboul et al. (2013) also decomposed
facade images in rectangles into predefined semantic classes such as a wall, window, balcony,
roof, etc. However, the method employs a reinforcement learning-based approach to train an
SG model. The authors adopted reinforcement learning due to the computational complexity of
the problem. The results demonstrated that the method achieved state-of-the-art results in less
time than similar approaches. Gadde et al. (2016) analyzed facades with regular architectural
features like Haussmannian and Art deco to generate rules for a Split Grammars, which is a
particular kind of SG where basic shapes are split into spatial regions. The method parses the
training dataset facades using a generic grammar to generate various parse trees. These trees
are merged to defines the rules of an observed architectural typology.

Zieliński et al. (2015) defined an SG to detect erosions and osteophytes in bone contours.
The SG language contains an alphabet with two types of letters: arcs and angles. The arcs are
primitives with information about the length, start and end of the angle. When concatenated,
the arcs define a contour which is represented by a word. The hand radiographs are segmented
to detect metacarpal bones and obtain information about outlines and joints of finger bones,
aside from locations and borders of joint surfaces. The hand radiographs outlines are described
employing a word built from the SG language alphabet (arcs and angles). The locations of erosions
and osteophytes on hand radiographs are detected by parsing the words that represent them.
The method located joints in 98.3% of cases. The sensitivity and specificity of detecting lesions
were 70%.

An SG was used by Ikehata et al. (2015) to represent the environment structure and re-
construct an indoor scene like a structured model. The SG has eight rules for representing and
constructing an environment as a whole. The rules represent the structure of the environment
as the relationship between the rooms and the relationship between objects within the room.
The environment structure is reflected in a graph, whose nodes correspond to elements such as
rooms and walls. The node of a given room connects to a subgraph that represents the inner
objects of it. Both the environment structure segmentation and the rooms internal segmentation
were performed by algorithms proposed by the authors.

Context-sensitive Grammar

A Context-sensitive grammar (CSG) is a four-element tuple G = (VN ,VT ,S0,P), where VN are
non-terminal symbols, VT are terminal symbols, S0 the starting non-terminal symbol, and P are
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the production rules αAβ → αγβ where γ 6=∈ (Özkural, 2014). During derivation non-terminal
A will be changed to γ only when it is present in context of α and β (Özkural, 2014). Figure 3.9
presents a simple CSG instantiated on the decomposition of an object. Note that the properties
and constraints are used to impose the context in object decomposition.

Figure 3.9: The CSG decomposes the object into part level by the terminal and non-terminal
nodes. The horizontal links (red) in the graph, based on properties, impose the context and
constraints between the nodes and guide the object decomposition in a probabilistic way.

Our search returned only three papers that used CSG. Park et al. (2018) used a CSG to repre-
sent human poses and attributes in a compositional way. The authors combined the grammatical
models Phrase Structure Grammar, Dependency Grammar and Attribute Grammar to define the
called Attribute And-Or Grammar (A-AOG) model which is essentially a CSG. Phrase Structure
Grammar is used to represent the body parts such as head, trunk, arm, etc, and the part at-
tributes such as the hairstyle (short, long, etc) are modeled by an Attribute Grammar. These
parts, whose appearance is obtained by a CNN under different points of view and poses, are ter-
minal nodes and are associated with their spatial locations (x,y). The Dependency Grammar is
used to model body pose by a kinematic graph. The probability model of the A-AOG is formulated
by a bayesian network that calculates the part of the body as a product of an earlier probability.
The learning is divided into two stages. In the first, the model learns parts and poses. In the
second, it learns the relationship between parts and attributes. The method achieved state-of-
the-art in precision and performance. Li et al. (2019) also combined the grammatical models
Phrase Structure Grammar and Dependency Grammar to build an AND-OR Grammar (AOG)
which has CSG characteristics. The AOG is integrated into deep learning architectures and is
called of AND-OR Grammar networks (AOGNets). An AOGNet consists of AOG blocks that unify
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the best practices developed by various deep learning architectures, i.e. the AOG guides deep
learning architectures generators. The method achieved state-of-the-art performance on three
benchmarks on tasks of objects classification and recognition. Zarchi et al. (2016) used a CSG to
point out high-level contextual relationships between objects in a scene in order to understand
it. The authors introduced the concept of Visual Term, which is a term used to refer to the co-
occurrence of objects in scenes. For example, if a person riding a horse occurs in multiple scenes,
the co-occurrence of these two objects is considered a Visual Term. The scene is decomposed
into parts that are represented by an AOG, whose concatenated and-nodes represent the Visual
Terms and or-nodes indicate the variations on them. The scene parts (objects) appearance is
obtained by HOG, DPM and Latent SVM, at different perspectives (front, side, etc.). When there
is the occlusion problem, the objects that co-occur are first determined and then the occluded
objects are trained separately. The method outperforms other methods on Visual Term detection
and, in most cases, on object detection.

Stochastic Context-sensitive Grammar

A Stochastic Context-sensitive Grammar (SCSG) is a CSG increased with Pr(pi), in which
Pr(pi) assigns a probability to each production rule pi (Özkural, 2014).

Pei et al. (2013) used an SCFG to model interactions between agents and objects in videos, like
the interaction of a person with a laptop. The method models the interactions using a Temporal
And-Or Graph (T-AOG), whose relations are defined base on positions of A and B in the form of
r(A,B), for example, touch(people, laptop). These relations are grouped to build atomic actions,
which are observed in the video when all its relations are identified with a high probability, and
atomic actions are concatented to denote a completed action. The concatenated and-nodes of the
T-AOG represent completed actions and or-nodes their alternative ways. To distinguish different
actions with similar structures, the child nodes of a given and-node have their temporal relations
modeled. When parsing the T-OAG, the method infers the goal of a given person and predicts
their intents. The method achieved an accuracy of 90% in predicting of the goal of the person
and 87% in predicting intention.

Markov Models

The Markov chain and its variations are stochastic models widely used in syntactic pattern
recognition in computer vision. Basically, these models emit a sequence of states that satisfying
a property called Markov property from which can be derived a string or a sequence of events.
A process satisfies the Markov property if its state at the time step t1 depends only on the state
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at time step t and not on the states previous (Ghahramani, 2001). In other words, the movement
to the next state depends exclusively on the current state. In this review, we surveyed seven
papers that use variations of Markov chains, four of which track objects in videos and two analyze
images. Figure 3.10 presents generic Markov models, one for tracking objects and another for
interpreting.

Figure 3.10: On the left, the model tracks the bull and identify their actions based on a chain
guided by a probability distribution. The words (standing, entering, eating) represent states. On
the right, the object is built by a chain also guided by a probability distribution. The circles
represent parts of the object and words (left, right, below) represent model constraints.

Krüger and Herzog (2013) tracked people in the video to recognize their actions using Para-
metric Hidden Markov Models (PHMM), which is a type of Markov chain that represents a proba-
bility distribution on a sequence of states increased with parameters (Wilson and Bobick, 1999).
Action recognition and body tracking are done from an object-driven perspective, e.g., instead
of the method considers body poses, it considers the actions practiced to objects. The primi-
tive actions are captured by a 3D tracking device like the Kinect and modeled by a PHMM to
represent parametric movements. The complex actions are modeled by concatenating primitive
actions, whose control is done by a grammar. Finally, body tracking is performed using particle
filtering based on the parameters of the primitive actions. Windridge et al. (2015) used another
variation of Markov chain called Markov Logic Network (MLN) to track tennis ball and annotate
tennis game videos. According to (Mihalkova et al., 2007), a MLN consists of first-order formulas
with weights. A formula represents a relational rule, and its weight represents the importance
of that rule. The state of the network are formulas and connections between states are logical
connections. The formulas are associated with functions that use the weight to perform a calcu-
lation and build the Markov chain. The method learns game-rule from video frames employing a
second-order meta-grammar for MLN construction. However, to be able to learn the game-rules
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it is necessary to identify its state in each frame. This is done based on the ball position and
the players’ state. Information from these two objects is obtained by identifying the tennis court
lines using Hough transformation, by tracking player using background subtraction and particle
filter, by recognizing player actions using K-Nearest Neighbors and HOG 3D, and by tracking
ball using background subtraction and SVM. The method achieved event prediction accuracy
of 68% on a simulated tennis game dataset. Liu et al. (2016) used MLN to track people and
identify their daily tasks. The method obtains tasks information using sensors and categorizes
them into three types: locomotion, left-hand and right-hand action. Classifiers based on C4.5,
SVM, Decision Tree, and K-Nearest Neighbors are used to recognize atomic actions within these
three categories and annotate them using labels, for example, action "Alice cleans table using a
right hand" can be labeled as follows [clean, table, Alice, right_hand, atomic]. Then, intervals that
represent sets of atomic activities, are created and related to each other by means of temporal
and hierarchical relations to construct atomic activity sequences. The patterns are extracted
from these sequences for generating rules set. Each rule in the set is converted to clauses to
form an MLN for inferring daily tasks. Kong and Ranganath (2014) used the semi-Markov chain
model, which is a variation of a Markov chain where each state persists for a certain time before
transitioning to another state (Sarawagi and Cohen, 2004), to recognize continuous gestures of
American Sign Language (ASL). The method uses Cyberglove and magnetic trackers to obtain the
gestures sequence. The sequences are segmented and each segment is labeled using SIGN or ME
(movement epenthesis) and then they are connected to build a Bayesian network. The segments
labeled like ME are removed from the network and the labeled like SIGN are recognized by a
classifier based on Conditional Random Field (CRF) and SVM. Finally, the recognized signs are
modeled like a full sentence, whose translation is done by an approach based on semi-Markov
chain model. The method was able to interpret 89% of the sentences used in the tests.

Concerning analyzing images, Liu et al. (2015) proposed a method that aims at understand-
ing image structure. The method detects the edge segments of the object and the scale from the
image to build a Hierarchical Edge Tree in a top-down way. In parallel, an Appearance Tree also
is built from segments extracted from the image. Then, both trees are merged, using a structural
appearance pooling operation based on a Hidden Markov Model (HMM) process (Ghahramani,
2001), to build a single shape graph that represents the image. Koziński and Marlet (2014) used
Markov Random Field (MRF) and Factor Graph to analyze the facade of buildings. According to
Blake et al. (2011), MRF is a set of random variables described by a probabilistic model over undi-
rected graphs that having Markov chain properties. The authors derived a Factor Graph from
facade image using a ready grammar for Haussmannian buildings (Teboul et al., 2011), whose
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variable-nodes correspond to geometric primitives and their position in space, and factor-nodes
correspond to constraints on the composition of the objects, for example, the composition of a
window or wall. The Factor Graph that represents the facade image is reflected in an MRF to
infer the position of the parts. The method achieved state-of-the-art performance on tasks of
inferring the architectural position of components. The framework proposed by Kortylewski et al.
(2019) for learning hierarchical compositional models decomposes objects into strokes, obtained
by Gabor filters, which together form the object sketches. The model extends an Active Basis
Model (ABM) (Wu et al., 2009), whose aim is to decompose an object into a set of Gabor elements
at certain locations and orientations. These Gabor elements are linearly connected to create the
observed object sketch. The ABM generalization for an object class is provided by a Composi-
tional Active Basis Model (CABM) (Wu et al., 2009) in a probabilistic way, which has as base an
MRF. The framework formulates the object sketch learning task as a compositional clustering
process guided by a tree-like MRF that allows learning object small parts first, before moving
to compose the object on the whole. The experiments showed that the framework outperforms
other generative object models at object classification task.

Relational String Graph

Relational String Graph (RSG) is a fully connected graph G=(V,R), whereV = {v1,v2, . . . ,vn}
are the nodes, and R = {(vi,v j) : vi,v j ∈ V, i 6= j} are directed edges. Each node vi denotes an
edge line, which is formed from line segments vi = (l1, l2, . . . , l|vi|). The line segments l j has the
geometric properties: mean coordinate mid(l j), angleθ(l j), and length len(l j), which are read
from the LEM (Line Edge Map) data (Dahm et al., 2013). LEM data are lines of information that
can be extracted by standard border detector like Canny (Dahm et al., 2013).

RSG is used by Dahm et al. (2013) for face alignment and recognition. They define an RSG
matching algorithm that makes face alignment and recognition tasks simultaneously. Basically,
the method generates an RSG from face images, whose nodes represent primitives, and analyzes
possible relation correspondence between two graphs calculating the translation, rotation and
scale parameters needed to convert a relationship into its equivalent. The experiments were
performed using 50 face images at different rotations and scales, 25 being male and 25 female.
The algorithm was able to achieve 84% accuracy. When the rotation and scale of the images
were replaced it reached 64%. Zhu et al. (2013) were based on RSG to introduce the String of
Feature Graphs (SFG) model to represent and infer human activities. The method models a video
V of duration T like a set of feature points V = { f t

x,y|t ∈ [1,T ]|} where f t
x,y represent a feature

point at spatial location x,y and time index t . The video V is divided into N intervals in time
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t0, t1 . . . , tN and the features included in each time interval, which are extracted using Spatio-
Temporal Interest Point (STIP)(Sethi and Roy-Chowdhury, 2010), are represented as F . Thus, the
video is represented as V = {F1,F2, . . . ,FN} where F1 = { f t

x,y|t ∈ [t0, t1]}, F2 = { f t
x,y|t ∈ [t1, t2]},

etc. The representation of the video is done by concatenating its features F like an SFG. The
matching between two videos V (1) divided into N1 intervals and V (2) divided into N2 intervals
is performed by matching their single feature sets {F(1)

i |i = 1 . . .N1} and {F
(2)
i |i = 2 . . .N2} in a

spatial and temporal order. The method recognizes and localizes complex activities, even when
various people are interacting.

Others

In this section, we present papers not categorized in any of the syntactic methods presented
earlier, but which employ approaches to represent or recognize patterns in a syntactic way.

Lemus et al. (2015) proposed a method for representing three-dimensional (3D) objects sur-
faces using symbol chains. The authors digitalize voxelized surfaces and assign each face a symbol
of an alphabet that has nine symbols. From this, the method obtains a graph of the image sur-
face, whose nodes represent a face, consequently, each graph node is associated with face symbol.
Each alphabet symbol represents a direction. Thus, a chain that represents a given surface is
obtained by traversing the graph changing of direction when the nodes are visited to form one
Hamiltonian circuit over the surface. Pistori et al. (2013) also obtained character chain from
images. The proposed method detects keypoints in the images using the Speeded-Up Robust
Features (SURF) algorithm (Bay et al., 2008) and clusters them using the K-means algorithm for
building an alphabet, whose symbols represent each resulting cluster centers. Each keypoint is
mapped to the alphabet symbol that represents the cluster center closest to it. The keypoints
from the image are traversed and a character chain is derived by concatenating the symbols as-
signed to each point. The character chains of each training image are used to infer a grammar,
employing the K-Testable algorithm, to each object class. A given image is associated with a class
when the grammar of the class produces the smallest error counter by parsing its character
chain. Astolfi et al. (2020) extended the model proposed by Pistori et al. (2013), but rather than
infer a grammar using the character chains derived from the images, the authors used an LSTM
to learn the relationship between the symbols in character chains. The model maintained stable
results even when trained with few examples. Abid et al. (2018) also adopt an approach based
on sequences to represent visual patterns. The method proposed aims to identify the named
entity on a non-standardized postal address. The textual address is obtained from the input im-
ages and divided into parts as words and characters. The parts are submitted to a tokenization
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process based on a given pattern and afterward, they are embedded and inserted into a BLSTM
classifier to learn the sequential pattern. The method achieved 90.44% of accuracy, a similar
result to state-of-art.

Kembhavi et al. (2016) proposed a method to interpret scientific diagrams. The diagram
components are detected using a Random Forest classifier from features generated by non-
parametric kernel density estimates in RGB, texture and entropy spaces. The diagram compo-
nents are related using a graph called Diagram Parse Graphs (DPG) to parse the diagram in a
syntactic and semantic way. The syntactic analyze learns to infer the DPG which best explains
a given diagram. The semantic analysis tries to respond to questions on a given diagram. For
example, "From the diagram, what will lead to an increase in the population of deer? a) increase
in lion b); decrease in plants; c) decrease in lion; d) increase in plants". The method uses a LSTM
to learn the relationship sequence between diagram components to answer the questions. The
method achieved an accuracy of 51.45% in syntactic parsing and 38.47% question answering.
Deufemia et al. (2014) also proposed a method for analyzing diagrams, but in the electric circuit
diagrams domain. The method detects feature points like strokes, curvature, a corner point, an
end point or an overlapping point, and represents them as oi. The feature points have informa-
tion as orientation, distance to another point, direction, etc. A stroke segment which connects
oi−1 and oi is represented with Soi . A Soi is represented like a feature points sequence [oi, . . . ,om]

in which each Soi is assigned a symbol label wi (W = Wire, C = Capacitor, V = Voltage, and I =
Inductor), and the whole sequence is defined like an Latent-Dynamic Conditional Random Field
(LDCRF) (Morency et al., 2007). The labels from the LDCRF are clustered taking into account the
geometric relationships between strokes, to obtain a symbols sequence. The method achieved an
accuracy of 91.0% on an electric circuit diagrams dataset.

Isola and Liu (2013) proposed a method to parse scenes. The method receives as input an
image and uses it to retrieve object segments from a similars image dictionary for use in collages.
The segments are selected using the K-Nearest-Neighbors classifier and the descriptors Spatial
Pyramid Matching (SPM) (Lazebnik et al., 2006) and Bag-of-Visual-Words (BoVW) (Hentschel and
Sack, 2014) with HOG. The selected segments are compared with the segments of the input
image to identify those that best fit semantically and explain the appearance of the input image.
After, they are organized using a scene graph, which is controlled by grammar with defined rules
to valid scenes. Finally, is done a random search over productions from the grammar to find for
collages that cover the input image.

Rodríguez et al. (2017) proposed a conceptual analysis of three major language grammar
properties: meaning, synonym, and polysemy; and how they can be adapted to the computer
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vision and image understanding domain. Initially, relevant topics are identified using the BoVW
approach. The topic is modeled based on the meaning of the visual word within the set, in which
a weight is assigned to define the importance of the visual word. This approach is similar to the
importance of nouns and adjectives in a sentence. Topics are formed with a higher level of gener-
alization, modeling partially shared meanings among words. The relationships among the topics
are analyzed based on the concepts of synonymy and polysemy. Visual words are synonymous
when they share similar characteristics. The synonyms are modeled according to a set of criteria
that allows defining relations of characteristics among the visual words. The relationships of
the synonyms are expressed using a graph, which forms a group of visual words with the same
meaning. In addition to grouping similar visual words, the synonymy relations provide additional
information to each visual word. Visual words are polysemous when they belong to at least two
different topics. By linking visual words to topics and in terms of synonyms and polysemy, the
authors conceptually derive BoVW for a model called Visual Grammar, bringing visual words
closer to language concepts that are easily understood by humans (meaning, synonymy, and pol-
ysemy). Finally, they used the cosine similarity measure as the way of measuring the similarity
of two bags of words vectors obtained from two images.

Recently, the hierarchical feature learning using the CNNs learning structure has emerged
in the design of models. Tabernik et al. (2016) introduces the notion of hierarchical composition-
ality, provide usually by compositional models, into the CNNs learning structure. The authors
inserted basic units into the CNN in order to regularize the convolution filters to be sparse and,
consequently, to expose an explicit structure of compositions provided by spatial clustering of the
feature activations in the network layers. The model has similar performance to standard CNNs
on classification tasks but has the advantage of reducing the number of features and improve
training times.

3.5 Discussion

CFGs can represent a large number of structural visual patterns using compositional rules
of high-level. They can build dependencies between primitive patterns in nested structures that
allow future predictions on sequence data. Such features allow that CFG to be a natural choice
to predict actions in video sequences (Tian et al., 2015; Le et al., 2017; Feng et al., 2014; Kuehne
et al., 2016; Pirsiavash and Ramanan, 2014; Kuehne et al., 2017). However, the CFG has a limited
semantic as its formalism expresses syntax, i.e., it is composed of a set of rules that govern a
linear structure of dependence between primitive patterns. On the other hand, an AG, which is a
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CFG increased with attributes and attribute evaluation rules, allows easily to describe primitive
patterns and the relationships between them, promoting more semantic in the composition
rules of the model (Slonneger and Kurtz, 1995); for this reason, GAs are suitable for scene
understanding tasks (de las Heras et al., 2015; Boulch et al., 2013; Liu et al., 2018b,b). The
disadvantage is that the AG models are computationally more demanding than CFG models
because it can require one or more passes to evaluate the attributes.

Some studies used SCFGs motivated by the fact that the stochastic approaches provide a way
to assign a probability to a particular sequence of data. This non-deterministic process allows
deriving a much longer and elaborate sequence of primitive data for compact representation of
well-understood data. This probabilistic compositional model allows predicting action sequences
(Vo and Bobick, 2014, 2016; Lee et al., 2015; Tayyub et al., 2018; Qi et al., 2017; Fire and Zhu, 2017),
tracking objects (Xu et al., 2018; Li et al., 2015; Lu et al., 2014), scene understanding (Chua and
Felzenszwalb, 2016; Zhao and Zhu, 2013; Walton et al., 2017), and dealing with partial occlusion
of objects (Li et al., 2014), besides being able to be totally incorporated into an And-Or graph. The
SCFGs can be extended to 2D-SCFG by adding in each production rule the spatial relationship
between the primitive data, which makes them more accurate in tasks whose spatial relationship
between the primitive data is a determining factor, such as mathematical expression analysis
(Álvaro et al., 2014, 2016). The disadvantage is that the SCFG models are computationally more
demanding than CFG models (Moore and Essa, 2002). However, in most cases, they are superior
because the probability assigned to each production rule offers a quantitative basis for ranking
and pruning parses (Moore and Essa, 2002).

SGs have properties suitable to operate on facade analyzes (Weissenberg et al., 2013; Koziński
et al., 2015a,b; Teboul et al., 2013; Gadde et al., 2016). The rule components are shapes like
points, lines, circles, squares, or triangles, whose hierarchical composition naturally build facade
parts like windows, walls, roofs, or doors. Besides, the production rules deal with the shapes as
nonatomic components, i.e., they aren’t predefined in grammar, which allows shapes to be freely
decomposed and recomposed to form new shapes (Stiny and Gips, 1971).

Another method well explored from a syntactic perspective were those based on Markov
Models, mainly to map spatial and temporal relationships, respectively, on images (Liu et al.,
2015; Koziński and Marlet, 2014) and videos (Krüger and Herzog, 2013; Windridge et al., 2015; Liu
et al., 2016; Kong and Ranganath, 2014). In most studies, Markov Models were used to represent
probabilities distribution about sequences of objects parts or videos. Typically, the approaches
detect primitives using shallow algorithms and relationships them spatially or temporally using
symbols chain. The relationship among primitives is performed using probability distribution
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or heuristic rules. They are related to inferring something, such as the next action in a video
or part of an object. However, Markov Models are susceptible to some limitations compared to
CFGs and SCFGs. Markov Models, which are essentially finite state machines, are suitable for
modeling a single hypothesis or a set of them in parallel, but as the variations increase in the
model, it becomes more complex to manage additional hypotheses using only a finite state model
(Moore and Essa, 2002).

3.5.1 Advantages and Disadvantages of Using Syntactic Methods in Computer
Vision

The main advantage of syntactic methods applied to computer vision is their high degree
of modularity. Syntactic methods are natively hierarchical and compositional, i.e., primitives as
parts of objects and atomic actions of videos can serve as reusable basic units to build mod-
els based on hierarchical and semantic decomposition that exhibit large amounts of structural
variations. Such characteristics impose an efficient representation of the learning model that
allows faster inference, feature sharing, and spatial and contextual reasoning. These models
demonstrate high generalization capabilities for a wide range of applications, such as pose es-
timation, object tracking, scene understanding, object parsing, actions recognizing, and image
classification.

Concerning the disadvantages, the most important is the need to segment the target object
from the background. Besides, the syntactic methods are dependent upon image preprocessing
techniques, such as local feature extractors, segmenters, edge detectors, corners, or lines, re-
quired to extract reusable primitives from the image. Any failure to obtain information from
the image can affect the representation and pattern recognition. Another disadvantage is that
usually hierarchical and compositional models can only be learned if their hierarchical structure
is provided previously, i.e., they are very domain dependent.

Models that adopt syntactic pattern recognition can be classified as generative models. The
inference in these models is via inverted indexing, whose aim is to compute a parsing for a given
sample as its interpretation or one of its closer interpretations, which allows a faster inference
(Tabernik et al., 2016). These models also offer decoupled data representations providing in-
terpretability and straightforward reconstruction from observations of features (Kingma et al.,
2014). Also, in these models, the learning is performed by co-occurrence needing fewer data for
training (Ng and Jordan, 2001). On the other hand, CNNs, which are discriminative models, need
more data for training to be more accurate than generative models (Ng and Jordan, 2001). The
CNNs also fail to expose spatial relationships between high-level parts (Hinton et al., 2011) that
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hinder it from dealing with partial occlusion and object missing parts (Tabernik et al., 2015).
Although these approaches are the computer vision state-of-the-art, they are seen as black-
boxes that only receive inputs and produce learning models hard to interpret because of their
complexity.

3.5.2 Directions for Future Research

Although the CNNs have become dominant in many computer vision tasks, they still present
some issues that need to be addressed. For instance, they have limited capacity to represent
orientational and relative spatial relationships between parts at the object level (Hinton et al.,
2011), have difficulty learning semantic relationships between objects at the scene level, can not
adequately deal with partial occlusion of objects (Tabernik et al., 2015). These issues can be
addressed by taking into account hierarchical compositional representations of features, which
remains an open issue for models based on CNNs. There are some attempts to model hierar-
chical compositional relationships inside of the internal knowledge representation of the CNNs
(Hinton et al., 2018; Sabour et al., 2017). However, they do not explicitly represent hierarchical
relationships between features as well as their relative spatial relationships in a syntactic way.
On the order hand, some studies propose to regularize the convolution filters of the CNNs and
connect them sparsely to model hierarchical relationships between features, embedding syntac-
tic approaches into its structure(Xing et al., 2020, 2019; Tabernik et al., 2016). To incorporate
syntactic approaches into the learning structure of the CNNs is one of the main directions for
future research, as this can pave ways for building models that learn visual features from a
hierarchical and compositional perspective. These models could allow feature sharing between
objects as well as spatial and contextual reasoning between subparts, parts, and the whole.

3.6 Conclusions

The papers surveyed by our systematic review provided a comprehensive overview about
the use of syntactic pattern recognition in computer vision. Even with the increasing use of
techniques such as deep learning, syntactic methods are still widely explored in computer vision.
Most studies use syntactic methods to represent a high-level structure that relates object parts in
images, objects in scenes, and actions in videos. In these studies, objects or parts of them, as well
as actions or sub-actions in videos were identified using deep learning or shallow algorithms and
related by syntactic methods. On the other hand, few studies have used only syntactic methods
to represent and recognize patterns, which can be viewed like a gap in this research area. We
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note that syntactic methods naturally to represent object appearances in a hierarchical and
compositional way, considering logical or probabilistic rules of composition. This suggests that
from a finite set of primitive structures, multiple appearances can be achieved for a given object
through few configurations, what gives the possibility to extrapolate the object appearances
beyond the examples that were offered by the training set. Consequently, it may allow the object
recognition method sensitivity not to be limited to the training set.

3.7 Paper appendix: Summary of the Papers Analyzed

In the list below is shown a summary of the 71 analyzed papers grouped by syntactic methods.
We highlight the objective and the result achieved for each study.

• Context-free Grammar (CFG)

– Feng et al. (2014): Fall detection, monitoring elderly people in a house care environ-
ment. It achieved high detection accuracy and no false positives.

– Pirsiavash and Ramanan (2014): Models the video’s temporal structure for detecting
human activities. Accuracy of 62% at labeling frames and segment detection 22%.

– Tian et al. (2015): Detecting vehicles for complex traffic surveillance. The method
adapts to partial occlusion.

– Jiang and Ma (2015): Combine models based on deformable parts for human detec-
tion.Accuracy of 57% in the experiment on PASCAL VOC dataset.

– Gonfaus et al. (2015): Extending the DPM for pose estimation to general object class
detection. Outperforms the state-of-the-art results for several object categories.

– Demir et al. (2015): Procedural modeling of the 3D point cloud of urban structures.
It didn’t show results.

– Kuehne et al. (2016): Recognizing human activities in video based on the sequence of
actions. Outperforms the state-of-the-art approaches for larger datasets.

– Kuehne et al. (2017): Recognizing human activities from video transcripts, derived
from Kuehne et al. (2016). Accuracy of 62% at labeling frames and segment detection
43%.

– Le et al. (2017): Framework applied to the driver monitoring tasks. Have better per-
formance than other state-of-the-art detection and segmentation methods.
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– Julca-Aguilar et al. (2017): Method for the recognition of online mathematical expres-
sion. Obtain state-of-the-art accuracy in recognition of mathematical expressions and
flowcharts.

• Stochastic Context-free Grammar (SCFG)

– Song et al. (2013): Presenting a method of learning from weakly annotated data for ob-
ject detection. Tested on detection benchmarks of 20 object classes and outperformed
state-of-the-art.

– Rothrock et al. (2013): Model to represent the appearance and geometry variation
of human pose into modular parts. Better performance than state-of-the-art, the
accuracy of 79%.

– Zhao and Zhu (2013): Model to hierarchical decompositions of objects for analyzing
indoor functional objects in scenes. The approach obtained good performance for the
functional object recognition task.

– Vo and Bobick (2014): Body pose classification in complex activity. Segmentation ac-
curacy of 58% and in segmentation in offline mode, the accuracy is 91.8%.

– Lu et al. (2014): The model simultaneously tracks, learn and parse objects in video se-
quences. It outperforms the state-of-the-art tracking algorithms including two track-
ers based on CNN.

– Li et al. (2014): Approach to learn a hierarchical model for X-to-X occluded objects
detection (e.g., car-to-car and person-to-person). The method obtains comparable or
better detection performance to state-of-the-art deformable part-based methods.

– Lee et al. (2015): Representing the temporal structure of activities and encode the
history of the observed actions. The method achieved a good activity detection per-
formance on a structured activity dataset of concurrent multiple human objects of
high-resolution video.

– Li et al. (2015): Presenting a part-based pedestrian detection algorithm for com-
plex traffic surveillance environments. The method outperforms other successful ap-
proaches with high reliability and robustness in complex environments.

– Vo and Bobick (2016): Body pose classification, derived from segmentation. Accuracy
of 60.2% and in segmentation in offline mode, the accuracy is 91.8%.

53



– Chua and Felzenszwalb (2016): Method that represented objects in scenes using a hi-
erarchical structure defined by composition rules. The resulting algorithm is efficient,
robust, and broadly applicable.

– Qi et al. (2017): Method to predict future human activities. The effectiveness of the
model on both detection and anticipation human activity is respectively 77% and
56.5% of average precision.

– Fire and Zhu (2017): Infer the causal-effect relationship between status object. The
results demonstrate the effectiveness of the method to infer the causal-effect rela-
tionship between objects over time.

– Walton et al. (2017): A method to represent and learn contextual relationships with
applications to thes Naval Tactical Domain. Not showing results.

– Tayyub et al. (2018): Approach to represent complex long-term human activities. In
one of the datasets achieved 93% accuracy.

– Xu et al. (2018): Method to describe the transitions of the subject, indicating in the
video his the position and visibility status. Outperforms the alternative trackers and
can recover complete trajectories of humans in complicated scenarios with frequent
human interactions.

– Jiang et al. (2018): Method to learn the layout of the indoor scenes. Comparable to
state-of-the-art.

– Qi et al. (2018): Method to learn the layout of the indoor scenes. Similar to state-of-
the-art.

– Wang et al. (2018): Method to classify fashion images. It overcomes the state-of-the-
art.

– Xing et al. (2019): A method that uses the first convolutional layers of a CNN as a
feature descriptor and an AOG to represent a learning model.

– Xing et al. (2020): An approach that induces an AOG model by sparsifying generator
network for generating image synthesis. The approach achieved good results in image
synthesis and reconstruction.

• Two-dimensional Stochastic Context-free Grammar (2D-SCFG)

– Martinovic and Van Gool (2013): Representing building facades. The method achieved
an accuracy of 74.82% in the facade analysis.
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– Álvaro et al. (2014): A formal model for the recognition of on-line handwritten math-
ematical expressions.In a contest of mathematical expression recognition, and it ob-
tained the best results at different levels.

– Álvaro et al. (2016): Mathematical expression recognition. Performance of 82.2% of
precision, outperforming to the state-of-the-art.

– Fang et al. (2018): Approach to 3D human pose estimation. Superior performance
over the 16 state-of-the-art methods.

• Coordinate Grammar (CG)

– Ayeb et al. (2015): Arabic mathematical formula recognition. The method achieved
91% of accuracy.

• Attribute Grammar (AG)

– Boulch et al. (2013): A method to interpret the semantic information of a 3D model.
The authors consider that the method obtained excellent results.

– Choe et al. (2013): Retrieving videos containing similar complex activities with the
query video rather than finding visually similar videos. One of the experiments achieved
80% of videos correctly retrieved.

– Liu et al. (2014): Parsing outdoor scenes images into semantic surfaces, and recovering
its 3D model simultaneously. The best result archived was 79.53% precision.

– de las Heras et al. (2015): Representing the structure of a floor plan. In one of the
datasets achieved 96.37% accuracy.

– Park and Zhu (2015): Model to tackle the tasks of attribute recognition, pose esti-
mation and part localization jointly. The method achieved better results against the
state-of-the-art.

– Liu et al. (2018b): Scene understanding. The method achieved state-of-the-art.

– Liu et al. (2018a): Model to track humans in the video. Outperforming state-of-the-art
tracking methods.

• Shape Grammar (SG)

– Weissenberg et al. (2013): Facade structure understanding. Accuracy of 87%.

– Teboul et al. (2013): Facade structure understanding. The method achieved the state-
of-the-art results in a fraction of the time required by other methods.
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– Koziński et al. (2015a): Facade structure understanding. Outperforming state-of-the-
art on a number of facade segmentation datasets.

– Koziński et al. (2015b): Segmentation of Building Facades. It yields state-of-the-art
performance on standard datasets.

– Zieliński et al. (2015): Detecting erosions and osteophytes in bone contours. The sen-
sitivity and the specificity of detecting lesions are around 70%.

– Ikehata et al. (2015): Indoor scene representation. Outperforming state-of-the-art on
room segmentation algorithm.

– Gadde et al. (2016): Facade segmentation. Outperforming state-of-the-art on four
different datasets segmentation algorithm.

• Context-sensitive Grammar (CSG)

– Zarchi et al. (2016): Scene understanding. Outperforming the state-of-the-art in rec-
ognizing image concepts.

– Park et al. (2018): Model for explicitly representing human poses. The method achieved
state-of-the-art in precision and performance.

– Li et al. (2019): Objects classification and recognition. Obtaining better performance
than ResNet and its variants on three benchmarks.

• Stochastic Context-sensitive Grammar (SCSG)

– Pei et al. (2013): Model to learn the interactions between people and objects in the
scene. Goal inference accuracy was 90%, and the intent prediction accuracy was 87%.

• Markov Models (MM)

– Krüger and Herzog (2013): Tracking humans and recognizing human action. Effective
on synthetic and on real image sequences using human-upper body single arm actions
that involve objects.

– Kong and Ranganath (2014): Model for recognizing the continuous gestures of Ameri-
can Sign Language (ASL). The model achieved an average accuracy of 89% in decoding
continuously signed sentences.

– Koziński and Marlet (2014): Facade analyze. Results are comparable to the state-of-
the-art.

56



– Windridge et al. (2015): Model for tennis video annotation. Event prediction accuracy
of 68%.

– Liu et al. (2015): Hierarchical shape parsing for understanding image structure. Per-
formance compared to the state-of-the-art.

– Liu et al. (2016): Model to recognize complex activities. One of the tests achieved an
F1 score of 80%.

– Kortylewski et al. (2019): Generative object model to classify objects. The approach
outperforms other models at object classification task.

• Relational String Graph (RSG)

– Dahm et al. (2013): Face alignment and recognition. The method achieved 84% accu-
racy.

– Zhu et al. (2013): Representing human activity. The method is effective to recognize
and localize complex activities.

• Others

– Pistori et al. (2013): A strategy for applying grammatical inference to image classifi-
cation problems.

– Isola and Liu (2013): An approach to parsing scenes. Accuracy of 70%.

– Deufemia et al. (2014): Recognition of hand-drawn electric circuit. Accuracy varying
between 81.3% and 91.0%.

– Lemus et al. (2015): Method for representing three-dimensional (3D) simple objects
surfaces using chain code. Not showing results.

– Kembhavi et al. (2016): Method for interpreting and reasoning in the context of sci-
ence diagrams. On the syntactic parsing, the method achieved 51.45% and on question
answering 38.47% of accuracy.

– Rodríguez et al. (2017): Method for representing visual words as meaning, synonym,
and polysemy, and how they can be adapted to computer vision. The method achieved
similar accuracy to the state-of-the-art.

– Abid et al. (2018): Method to identify the named entity on a non-standardized postal
address. The method achieved 90.44% of accuracy.
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– Tabernik et al. (2016): A Hierarchical feature learning model based on CNN learning
structure. The model improved training times.

– Astolfi et al. (2020): The model derives character chains from the images and uses an
LSTM to learn the relationship between the symbols in chains. The model achieved
good results on small data sets.
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Chapter

4
Combining Syntactic Methods with LSTM to

Classify Soybean Aerial Images

Authors2: Gilberto Astolfi, Marcio Carneiro Brito Pache, Geazy Vilharva Menezes, Adair da Silva
Oliveira Junior, Gabriel Kirsten Menezes, Vanessa Aparecida de Moares Weber, Everton Castelão
Tetila, Nícolas Alessandro de Souza Belete, Edson Takashi Matsubara and Hemerson Pistori.

Abstract: Syntactic methods in computer vision represent visual patterns in a hierarchical and
compositional perspective, which is converted to strings. Long Short-Term Memory (LSTM) is able
to learn patterns in sequences. In this paper, we propose a syntactic approach to represent visual
patterns as sequences of symbols and we use an LSTM as a classifier to learn the relationship
between the symbols in sequences. An extensive experimental evaluation using aerial images
from a soybean field captured by Unmanned Aerial Vehicles has been conducted to compare our
method with two deep learning architectures, one syntactic method, and one shallow learning
algorithm. The results achieved by the proposed method maintain stability even when trained on
small data sets, suggesting that representing visual patterns in a compositional way, repeating
primitives, may be a viable alternative when there is only a limited number of samples for
training.

2Astolfi, G., Pache, M. C. B., Menezes, G. V., Junior, A. d. S. O., Menezes, G. K., de Weber, V. A. M., Tetila, E. C.,
de Souza Belete, N. A., Matsubara, E. T., and Pistori, H. (2020). Combining syntactic methods with lstm to classify
soybean aerial images. IEEE Geoscience and Remote Sensing Letters, pages 1–5.

59



4.1 Introduction

Unmanned Aerial Vehicles (UAVs) are important tools for precision agriculture, since they
can be helpful in various areas from planning up to harvest. One of the advantages of using
UAVs is the possibility of covering large areas quicker and cheaper, allowing early identification
of crop problems, such as pest attacks, diseases and weed infestation.

Some researchers have used UAVs and computer vision techniques to identify problems in
crops. Tetila et al. (2017) used six shallow learning algorithms to identify soybean leaf diseases
in images captured by a UAV in different heights, including 1, 2, 4, 8, and 16 m. Bah et al. (2018)
proposed a method for detecting weeds but they used Convolutional Neuronal Networks (CNNs)
and unsupervised training instead of shallow learning algorithms. Ferreira et al. (2017) also
adopted a supervised training approach to detect weed infestation. Amorim et al. (2019) combined
CNNs and a semi-supervised training approach for detecting and identifying herbivorous pests
on soybean leaves. Potena et al. (2017) exploited two different CNNs to process RGB and near-
infrared (NIR) images from winter wheat fields with heavy leaf occlusion.

The reported results achieved high accuracy but used a large number of training examples.
Dyrmann et al. (2017) also used large training sets; the authors had to annotate 17,000 images
from winter wheat fields to achieve an accuracy rate of 86.6% on weed detection. However,
these methods can produce poor results when few examples are available for training by hav-
ing discriminative characteristics (Ng and Jordan, 2001). In contrast, descriptive methods tend
to be better when fewer training examples are available (Ng and Jordan, 2001). The methods
that use simple primitives to represent patterns in a hierarchical and compositional manner,
giving us the possibility to represent various patterns from a small set of examples, have de-
scriptive characteristics. The syntactic approaches (Chanda and Dellaert, 2004) are included in
this method category since they can represent patterns from a compositional viewpoint, making
the pattern representation more transparent and interpretable. They often represent primitives
using alphabet symbols and complex patterns organizing these primitives through well-defined
composition rules.

In this paper, we propose a classification model, which we call Syntactic LSTM (SLSTM),
that uses a syntactic approach to represent visual patterns of objects as strings and an LSTM
(Greff et al., 2017) to classify them. The SLSTM identifies primitives related to object parts in the
image and represents them using alphabet symbols. These symbols are related in a compositional
way to form strings that are inputted into an LSTM classifier. The SLSTM has a descriptive
characteristic, since it discovers primitives in the structure of the objects and repeats them in
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different visual patterns, allowing us to deal with situations in which building large datasets
is a time-consuming and costly process. This situation is observed in soybean crops, since it is
necessary to cover large extensions of land to obtain a single example of disease outbreaks, due
to the intensive application of pesticides.

We evaluated the SLSTM on the classification task of problems that occur in soybean crops,
such as weed infestation and disease outbreaks, using aerial images captured by a UAV. We com-
pared the SLSTM with Support Vector Machines trained on a Bag-of-Visual-Words (BOVW+SVM)
(Hentschel and Sack, 2014), a syntactic method that combines keypoint detection and grammati-
cal inference (Pistori et al., 2013), ResNet-50 (He et al., 2016), and Xception (Chollet, 2017) using
small training sets. Our goal is to investigate whether the classification models maintain the
performance when trained with increasingly smaller datasets. The precision rate achieved by
SLSTM maintains stability even when the training set decreases significantly.

This paper makes the following contributions: a) provide a new approach for representing
visual patterns of objects as strings in a compositional way; b) show that the visual pattern
representation in a compositional way, repeating primitives, can be a viable alternative when
there is only a limited number of samples for training.

4.2 Proposed Method Overview

The SLSTM consists of some stages. First, we use Scale Invariant Feature Transform (SIFT)
(Lowe, 2004) to detect keypoints from each object (superpixel image) in the training set. We
consider these keypoints as primitives. Then, we use k-means to cluster similar primitives and
define an alphabet, whose symbols are used to represent each clustering of primitives. Now,
each primitive is associated with the alphabet symbol that represents the cluster to which it
belongs (see section 4.2.1). The second stage consists of connecting primitives contained in each
object to derive a string from each one (see section 4.2.2). Finally, the strings, whose composition
represents the visual pattern of the object, are inputted in the LSTM for training (see section
4.2.3) or classification (see section 4.2.4). We employ LSTM because it has special units called
memory cells that can keep information in memory for long periods of time, which makes it
efficient in processing very long sequences (Greff et al., 2017). Figure 4.1 shows the SLSTM
structure and training process.
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Figure 4.1: Overview of SLSTM structure and training process. In the first stage, the SLSTM
detects keypoints and represents them syntactically as primitives using alphabet symbols. After
this, the SLSTM semantically and structurally relates the primitives in a graph from which a
string is derived to represent the visual pattern of the object. Finally, the string with the visual
pattern of the object encapsulated is inserted into an LSTM classifier for training.

4.2.1 Identifying and Representing Primitives

This stage of the SLSTM aims to identify and represent primitives syntactically, i.e., to as-
sociate primitives of the objects to alphabet symbols. According to Fu and Rosenfeld (1976),
primitives are non-divisible basic patterns of objects. Based on this definition, we consider as
primitives the keypoints of the objects detected by SIFT. The SIFT detects keypoints from each
object (superpixel) of the training dataset and generates for each detected keypoint a feature
vector containing 128 values and an xy coordinate system.

All feature vectors extracted from objects of the training dataset are clustered using k-means,
and the resulting k cluster centers form an alphabet of size k. For example, when the feature
vectors of the keypoints are clustered using k = 10, the resulting alphabet is the set of symbols
Σ = {A,B,C,D,E,F,G,H, I,J}, where each cluster center is represented by an alphabet symbol.
Now, each keypoint can be represented by an alphabet symbol corresponding to its nearest
cluster center. Since we are treating keypoints as primitives, this strategy allows us to represent
object primitives in a syntactic way.

4.2.2 Mapping Objects to Strings

This stage of the SLSTM aims to represent the visual pattern of the object syntactically,
deriving a string from each object of the training dataset. The strategy is to connect the primitives
of a given object to build a graph and then traverse it to derive a string.

We define the Visual Weighted Graph (VWG) to encapsulate structural and semantic relations
among the object keypoints. A VWG is a two-element tuple G = (V (G),E(G)), where V (G) is a
four-element tuple V (G) = (λ ,~α,P,c) that represent objects keypoints, i.e., primitives. λ is the
label of the node represented by an alphabet symbol, ~α is a feature vector containing 128 values
correspondent to the keypoint, P is the keypoint center coordinates x and y, and c is the nearest
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cluster center to the keypoint. E(G) is the edges set, where each edge ei ∈ E(G) is defined by a
three-element tuple ei = (v j,vk,w), such that v j,vk ∈V (G) and w ∈ R denotes the weight of ei.

In VWG two nodes vi and v j ∈ V (G) are adjacent if vi is the node nearest to v j or v j is
the node nearest to vi, so a node only connects to its nearest neighbor. The distance between
any two nodes is calculated based on spatial and semantic distance between them. The distance
measurement DS ∈ R between vi and v j is carried out as follows:
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between nodes. Now, DS becomes the edge weight w between vi and v j. In order to get a graph
from an object, the algorithm selects a node v and calculates the distances DS from v to all
other nodes V (G)−{vi}, connecting v to the node with the shortest distance DS. A new node
of V (G)−{vi} is selected and the process is repeated until each node is linked to its nearest
neighbor. After this, the VWG is traversed from the node that is closest to the object center to
derive a string. The algorithm always chooses a lower weight edge to move from one node to
another. The purpose is to visit all VWG nodes and concatenate λ of each node to build a string.
With this strategy, we can represent visual patterns of objects syntactically, i.e., deriving a string
from an object through composition rules.

4.2.3 Learning Visual Patterns of Objects

At this stage, the SLSTM has already syntactically represented the visual pattern of each
object of the training set. The next step is to train an LSTM with the strings derived from each
object. To that end, the strings are inserted into the LSTM as a tuple (class,s), where class

represents a category and s, a string.

63



4.2.4 Objects Classification

In this section, we show how to recognize visual patterns of objects encapsulated in strings.
Given an object (superpixel) for classification, the first step is to detect its keypoints using SIFT.
The second step is to associate each keypoint extracted from the object with an alphabet symbol
built with the feature vectors of the keypoints collected during the training phase (see section
4.2.1). As the alphabet is represented by a k-means model and each cluster center is associated
with an alphabet symbol, the feature vectors are used to predict the alphabet symbols of their
respective keypoints. Then, the object keypoints are converted into a VWG from which a string is
derived, as shown in section 4.2.2. Finally, the string is inputted into the LSTM for classification.

4.3 Experimental Setup

In this section, we evaluate the SLSTM on the classification task of problems that occur
in soybean crops, such as weed infestation and disease outbreaks. Our goal is to compare the
performance of the SLSTM with a syntactic method that combines keypoint detection and gram-
matical inference proposed by Pistori et al. (2013) that we call GI, ResNet-50, Xception, and
BOVW+SVM using small training sets.

For capturing the images, we use a DJI Phantom 3 Professional model with integrated Sony
EXMOR 1/2.3" camera in manual mode at an average altitude of 4 meters above ground level. The
captured images were segmented using the Simple Linear Iterative Clustering algorithm (SLIC)
(Achanta et al., 2010) (see Figure 4.2) to build a dataset with 400 superpixel images, arranged
in a stratified way into four classes (see samples in Figure 4.3): healthy soybean, diseased soybean,
soil, and weeds. We conducted an experiment on the dataset in which we maintained 70% of the
images for testing and gradually reduced the training set size from 30% to a minimum of 5%,
totaling six tests for each method. For instance, in the first test, we randomly selected 70% of the
images for testing and 30% for training (30 images per class); in the second test, we randomly
selected 70% of the images for testing and 25% for training (25 images per class), and so on
until selecting 70% of the images for testing and 5% for training (5 images per class). Note that
we did not vary the number of images in the testing set, i.e., we always used 280 images for
testing (70 per class). Moreover, we carry out ten repetitions for each of the tests and produced
averages for accuracy, precision, recall, and F-measure.

For the ResNet-50 and Xception architectures, we used a fine-tuning strategy with all layers
initialized with Imagenet weights, as well as the Adagrad optimizer (Duchi et al., 2011) at their
default values, dropout rate set at 0.5 and early-stopping to prevent overfitting (Srivastava et al.,
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Figure 4.2: Image captured by the UAV DJI Phantom 3 Professional model, blue superpixels are
weeds class samples.

Figure 4.3: The image presents three superpixel samples from each class that compose the
soybean dataset.

2014), and the learning rate at 0.001. Additionally, we varied the batch size at 4, 8, 12 and 16
in both CNNs and trained them with 50 epochs. In each training set arrangement, i.e., after
reducing the training set by 5%, we performed the data augmentation. Augmentation includes
horizontal flipping, random rotation by +30/-30◦, rescaling factor set to 3.92 ·10−3, zoom between
70% and 130%, and percentage of the image size to width and height shift at 30%.

For the SLSTM, we varied the alphabet size from 32 to 64 with an increment of 4, totaling nine
experiments with different alphabet sizes (32, 36, 40, 44, 48, 52, 56, 60, and 64), i.e., nine different
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Table 4.1: Metrics according to the average of 10 repetitions for Xception (1), ResNet-50 (2),
BOVW+SVM (3), GI (4), and SLSTM (5). SLSTM, BOVW+SVM, and GI with alphabet size set at
44 and SIFT contrast at 0.04. ResNet-50 and Xception with batch size set at 16.

Image
per class Precision Recall F1-score Accuracy

train test 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
5 70 41.6 11.9 75.4 43.9 82.0 38.6 22.9 71.9 33.7 79.9 35.4 12.6 72.9 27.7 79.6 38.8 23.1 72.6 33.8 80.2
10 70 66.3 11.2 79.8 41.5 81.9 61.9 25.1 78.3 36.1 80.0 60.3 12.1 78.4 30.7 79.4 62.4 25.3 78.4 35.4 80.0
15 70 74.4 15.8 80.9 42.0 81.6 71.3 25.9 80.2 36.3 80.9 70.3 13.4 80.0 33.1 81.0 71.1 26.4 80.0 36.1 81.4
20 70 80.7 11.8 81.5 39.6 83.3 77.9 25.7 81.2 33.9 82.9 78.2 13.7 80.8 30.8 83.0 78.6 25.9 80.6 34.2 83.1
25 70 80.2 16.9 84.0 42.6 84.5 78.2 27.9 82.9 36.3 84.1 77.6 14.9 83.4 33.7 84.2 78.2 27.5 83.2 36.0 84.3
30 70 82.9 18.2 83.9 42.6 85.3 81.1 25.8 83.2 35.5 83.7 80.8 14.1 83.5 32.4 84.3 80.8 26.1 83.4 34.9 84.6

cluster sizes. Before defining this value range, we carried out preliminary tests by varying the
alphabet size from 8 to 256, doubling its size in each test (8, 16, 32, 64, 128, and 256), and the
range from 32 to 64 showed the best results. We also used the values 0.04 and 0.05 for the SIFT
contrast and the values 0.9 and 1 for the relative importance. The SIFT contrast determines the
keypoints number detected by SIFT, and the relative importance determines the importance of
spatial distance for connecting two nodes in the generated VWG from each superpixel image.
The architecture of the LSTM model consists of three layers, including: embedding layer that
receives sequences with a length that can vary from 40 to about 1200 (average length of 243) as
input and has 32 output dimensions; an LSTM layer with 100 units and dropout rate set to 0.5
and; a dense layer with four nodes with a softmax activation as the output. Moreover, we used
Adam optimizer (Kingma and Ba, 2015) at their default values, set the batch size at 64, trained
the model with a total of 50 epochs, used sparse categorical cross-entropy for the loss function,
and finally, we also used early-stopping to prevent overfitting. Like in SLSTM, we configured
BOVW+SVM and GI models with alphabet size from 32 to 64, with an increment of 4, and values
to SIFT contrast of 0.04 and 0.05.

4.4 Results and Discussion

Table 4.1 presents the best results obtained by the models on the different data arrangements.
The SLSTM, BOVW+SVM and GI achieved the best result with alphabet size set at 44 and the
SIFT contrast at 0.04, and the ResNet-50 and Xception architectures with batch size set at 16.
The models achieved the best results when trained with the largest training sets. The comparison
with the results of the other models shows that the SLSTM presents a better performance,
especially in precision, i.e., in the proportion of true positives concerning the total of predicted
positives.

Figure 4.4 shows the comparison of the results achieved by the models using the precision
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metric presented in Table 4.1. We performed an analysis of variance with Kruskal-Wallis on a 0.05
level of significance using the precision as metric to determine if the models maintain the average
performance between the different training sets. We adopted the Kruskal-Wallis test because,
in general, the average precisions didn’t present normality/homogeneity of variance. The test
for SLSTM (alphabet size = 44) resulted in a p-value of 0.156, therefore, we have no evidence
that there is a statistically significant difference in its average performance. On the other hand,
the test for BOW+SVM resulted in a p-value of 0.0001, which indicates a statistically significant
difference in its average performance. There is evidence that SLSTM has a small advantage over
BOW+SVM when compared to precision. This may be related to the way in which the models
process the features obtained from the images. BOW+SVM only counts the primitives (visual
words) that occur in the images, and SLSTM in addition to observing the occurrence of the
primitives in the images (an implicit count) also analyzes the relation between them.

Figure 4.4: Average precision and standard deviation of 10 repetitions on different training sets
for ResNet-50, GI, Xception, BOW+SVM, and SLSTM.

Figure 4.4 shows that Xception improves the precision when it is trained with larger image
sets. On the other hand, Resnet-50 maintained a constant, but poor precision compared to Xcep-
tion, BOW+SVM, and SLSTM. We believe that due to its higher number of trainable parameters,
around 10.6% more than Xception, the Resnet-50 may respond less favorably to a number of
limited data for training. The Kruskal-Wallis test for Xception resulted in a p-value < 0.0001,
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which indicates a statistically significant difference in its average performance on the different
training sets. Although GI presents a poor precision, the Kruskal-Wallis test resulted in a p-value
of 0.3591, i.e., we also have no evidence that there is a statistically significant difference in its
average performance.

We also performed the Kruskal-Wallis test to compare the models using the accuracy as met-
ric. The test on the data arrangement 5/70 resulted in a p-value < 0.05, indicating a statistically
significant difference between the models. The test on the other data arrangements indicated
no evidence of a statistically significant difference between SLSTM and BOW+SVM, as well as
between Xception and BOW+SVM on data arrangement 20/70. The SLSTM differed statistically
from Xception on all the data arrangements.

Table 4.2 shows a comparison of the precision metric achieved by SLSTM with different
alphabet sizes and SIFT contrast set at 0.04. We performed the Kruskal-Wallis test to analyze
the differences between the results achieved by SLSTM on the different alphabet sizes. The test
resulted in a p-value < 0.05 for all alphabet sizes, except when the alphabet size is 44 (p-value
of 0.156), which indicates a statistically significant difference in the average performance of the
SLSTM between the different alphabet sizes and training sets.

Table 4.2: Comparison of average precision of 10 repetitions for SLSTM.

Image
per class

Precision for different alphabet sizes

train test 32 36 40 44 48 52 56 60 64
5 70 71.5 73.6 79.4 82.0 76.8 73.3 72.1 73.2 71.8
10 70 76.1 77.2 77.5 81.9 79.9 78.4 79.1 77.4 78.7
15 70 78.8 78.7 81.0 81.6 78.9 79.7 79.3 79.1 80.1
20 70 82.2 82.0 82.4 83.3 80.6 82.1 82.5 83.1 82.6
25 70 83.1 82.5 83.2 84.5 83.8 82.4 82.8 82.7 83.6
30 70 84.2 83.5 83.9 85.3 85.0 83.7 84.5 83.9 83.8

4.5 Conclusion

We present a descriptive model that infers relations between decomposable components of
objects to represent their visual patterns. The method connects these components, represented
by alphabet symbols, to form strings that represent the visual patterns of the objects. These
strings are inserted in an LSTM classifier to find the relation between their symbols and decide
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which target class this relation belongs to. An extensive experimental evaluation using aerial
soybean crop images captured by a UAV was carried out to compare our method with other
approaches. The results suggest that representing visual patterns in a compositional way, re-
peating primitives, can be a viable alternative when there is only a limited number of samples
for training. As future work, we plan to explore Gated Recurring Units (GRU) in our model in
order to reduce time and the storage of parameters.
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Chapter

5
A New Approach for Applying Natural Language

Processing to Image Classification Problem

Authors3: Gilberto Astolfi, Diego André Sant’Ana, Jõao Vitor de Andrade Porto, Fábio Prestes
Cesar Rezende, Everton Castelão Tetila, Edson Takashi Matsubara, Hemerson Pistori.

Abstract: A growing interest in applying Natural Language Processing (NLP) models in com-
puter vision problems has recently emerged. This interest is motivated by the success of NLP
models in tasks such as translation and text summarization. In this paper, we propose a new
method for applying NLP to image classification problems. Our aim is to represent the visual
patterns of objects using a sequence of alphabet symbols and then train some form of Gated
Recurrent Unit (GRU), Long Short-Term Memory (LSTM), or Transformer using these sequences
to classify objects. An extensive experimental evaluation using a limited number of samples for
training has been conducted to compare our method with ResNet-50 deep learning architecture.
The results achieved by the proposed method overcome ResNet-50 in all test scenarios. In one
test, the method presents an average accuracy of 95.3% against 89.9% of the ResNet-50.

3Paper submitted in June 2021 to IEEE Transactions on Pattern Analysis and Machine Intelligence
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5.1 Introduction

Convolutional neural networks (CNNs) have been the standard paradigm for image classifica-
tion tasks in computer vision. One of the key elements for its success is the availability of large
images set for training, as ImageNet (Deng et al., 2009). In parallel, Natural Language Process-
ing (NLP) also has made significant progress, in particular Self-attention-based architectures
(Vaswani et al., 2017), which is currently the standard paradigm in NPL.

Motivated by the success of NLP models, some works try to combine NLP and CNN models
for building hybrid architectures to solve computer vision tasks (Carion et al., 2020; Chen et al.,
2020a; Touvron et al., 2021; Dosovitskiy et al., 2021). However, even presenting good results,
these hybrid models need large amounts of data for training for having a good generalization
(Dosovitskiy et al., 2021). The same is observed in CNN-based models since this type of model
has discriminative characteristics (Gu et al., 2018).

In this work, we present a new method that combines object detection models, syntactic
pattern representation, and NLP models to classify images when there is only a limited number
of samples for training. In the method, we assume that an object can be recognized from the
composition of its main parts and that a small set of object parts can be combined to describe
the visual pattern of different objects. These parts are regions in an object that attract our
attention to identify it and that, together, form its visual pattern. The method receives as input
an annotated image with bounding boxes around parts of the object classes. The bounding boxes
in the image are associated with alphabet symbols and related using a graph to derive a sequence.
The resulting sequence, which encapsulates the structural relationship between object parts, is
sent to an encoder (E.g .: some form of Gated Recurrent Units (GRU) (Cho et al., 2014), Long
Short-Term Memory (LSTM) (Greff et al., 2017), or Transformer (Vaswani et al., 2017)) to train a
sequence classifier. In parallel, we train a model to detect object parts using the same images
with bounding boxes. During the tests, we used the object parts detector model to identify the
parts in the image and then relate them using a graph to derive a sequence. Finally, the sequence
is sent to the sequence classifier to classify it and determine the object class. We experimented
as encoder the well-explored NPL models: Gated Recurrent Unit (GRU) (Cho et al., 2014), Long
Short-Term Memory (LSTM) (Greff et al., 2017), Bidirectional Long Short-Term Memory (BLSTM)
(Graves and Schmidhuber, 2005), BLSTM with attention mechanism (Zhou et al., 2016), and
Transformer (Vaswani et al., 2017), and used a Faster R-CNN model (Ren et al., 2017) with
ResNet-50 backbone (He et al., 2016) trained from scratch to build a model to detect object
parts.
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We evaluated the method on the insect classification task. The dataset has a small set of im-
ages annotated with bounding boxes around the insect parts (head, body, paw, etc.) and classified
based on the insect species (Nezara, Edessa meditabunda, etc.). We compared the method with
ResNet-50 (He et al., 2016). We aim to investigate whether our method and ResNet-50 have good
classification performance when trained on small datasets. The results achieved by the proposed
method overcome ResNet-50 in all test scenarios. In one test, the method presents an average
accuracy of 95.3% against 89.9% of the ResNet-50.

The contributions of this paper are:

• We propose a new method that combines object detection models, syntactic pattern rep-
resentation, and NLP models to classify objects from the composition of its main parts.

• We show a new way to train classification models, in which objects are decomposed into
main parts sharing common parts with each other. This allows us to extrapolate object
appearance (partial occlusion, different poses, etc.) beyond the samples that were offered
for training.

The rest of the paper is organized as follows. In Section 5.2, we show some works that apply
natural language processing concepts to computer vision problems. In Section 5.3, we introduce
our method. In Section 5.4 present the experimental setup, followed by the results and analysis
in Section 5.5. Finally, in Section 5.6 we present the conclusions.

5.2 Related Work

This is not the first attempt to investigate the possibility of applying natural language pro-
cessing to computer vision problems. Pistori et al. (2013) proposed a method to represent an
image as a string. The method infers a grammar for an object class from the set of strings de-
rived from images of this class. An image is associated with a class when the grammar for this
class produces fewer errors by parsing the string derived of it. Astolfi et al. (2020) extended the
model proposed by Pistori et al. (2013) by exchanging the grammatical inference by an LSTM
classifier. The proposed method maintains stable results even when trained with few samples.
Abid et al. (2018) also adopted an approach based on sequences to represent visual patterns.
In this work, the authors split postal address images into parts, as words and characters, and
then tokenize them to be embedded and inserted into a Bidirectional LSTM classifier. Álvaro
et al. (2016) used a Bidirectional LSTM to classify sequences derived from images that represent
handwritten mathematical expressions. For building the sequences, the authors used a tree to
connect the mathematical expression strokes.
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More recently, inspired by Self-attention-based architectures success in NLP, some convolution-
free models try to apply a standard Transformer (Vaswani et al., 2017) directly to images to
computer vision problems, positioning it as a possible alternative to the convolutional neural
network. Dosovitskiy et al. (2021) proposed the Vision Transformer, a simple model that split an
image into 16×16 patches for providing a sequence and inputting it into a standard transformer.
Touvron et al. (2021) improved the proposed model by Dosovitskiy et al. (2021) by adding Knowl-
edge Distillation (Hinton et al., 2015) and class tokens along with the Vision Transformer patches.
Chen et al. (2020b) proposed a model trained in an unsupervised way that pre-processes images
to reduce resolution and color space for reshaping it into a 1-dimensional pixel sequence for then
applies standard Transformer to pixel sequence. Wu et al. (2020) applied convolutional layers to
obtain image features and build tokens. However, before sending the tokens to standard Trans-
former, they are clustered into small visual tokens that express semantic concepts in the image
and then are related for embedding spatial relationship between them.

Our work is different from all mentioned since we propose a method that relates component
parts of a given object in an image using a graph from where we derive a sequence. The symbols
of the sequence, which encapsulate structural relations between component parts of the object,
are treated the same way as tokens in NLP problems.

5.3 Proposed Method Overview

Our idea here is that an image can be summarized by a sequence of alphabet symbols and can
be interpreted as a natural language processing problem. To instantiate this idea, we introduce
a method that derives a sequence of symbols from an image for classifying it as if it was some
sentence of a language. The symbols of the sequence are handled the same way as tokens (words)
in NLP problems.

Figure 5.1: Example of component parts of an object class. The head, body and paws are compo-
nent parts of the object class insect.
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Figure 5.2: Method overview: In the training stage, the method receives as input an annotated
image with bounding boxes. The bounding boxes in the image are associated with alphabet
symbols and related using a graph in Compositional Representation Module to derive a sequence.
The resulting sequence is sent to the Sequence Classification Module for training. In parallel,
the Object Parts Detection Module is trained using the same annotated image with bounding
boxes. In the inference stage, the Object Parts Detection Module detects the component parts
of the object and sends them to the Logic Model that transfers the filtred component parts for
Compositional Representation Module for deriving a sequence. The resulting sequence is sent to
the Sequence Classification Module to determine the image class.

Before introducing the proposed method, we need to define the component part of an object
class. In this paper, component part is used to refer to the parts of a given object we look at to
identify it, i.e., object parts that attract attention. In Figure 5.1 examples of component parts of
an object class are shown.

The proposed method has two main stages: training and inference, both employing a hybrid
architecture. Figure 5.2 shows an overview of the proposed method.

In the training stage, the method receives as input an annotated image with bounding boxes
around component parts of a given object class. Each component part is associated with an
alphabet symbol and the central coordinate of its bounding box (see section 5.3.1). The annotated
image is inputted into the Compositional Representation Module to derive a sequence from it.
To that end, a graph is built based on a distance measurement between the central coordinates
of each bounding box. Nodes in the resulting graph represent component parts of the object
class, whose labels are alphabet symbols. After, the graph is traversed using a predefined order,
and a sequence is derived by concatenating the labels of each node (see section 5.3.2). Finally,
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the sequence is inputted in a Sequence Classification Module for training (see section 5.3.4).
In parallel, an Object Parts Detection Module is trained using the same annotated image with
bounding boxes (see section 5.3.3).

In the inference stage, the method receives as input an image for classification. The image is
sent for the Object Parts Detection Module to detect the component parts (section 5.3.3). These
component parts are inputted into the Logic Module to perform filtering based on a provided prior
knowledge base (see section 5.3.5). The selected component parts are connected into a graph and
a sequence is derived as in training (section 5.3.2). Finally, the Sequence Classification Module
classifies the sequence and associates it with an object class (section 5.3.4).

In the following, we describe the modules of the proposed method in detail.

5.3.1 Defining Alphabet Symbols

The alphabet symbols definition consists of making direct association between a given symbol
(E.g.: ASCII character) with a component part of an object class. However, its definition depends
on the number of component parts of each class in the dataset. An object class can have 2 to n
component parts. Besides, two object classes can share common component parts between them.
For example, the insects in Figure 5.3 are two different object classes with distinct component
parts. However, they have the head and the paw as component parts in common. This is possible
because their heads and paws have a similar visual pattern since they are of the same species
at different life stages.

Figure 5.3: Two different object classes with component parts in common. Object classes can
share component parts when these parts have a similar visual pattern.

Based on the two object classes used as an example in Figure 5.3, we could make the following
direct association between alphabet symbols with the component parts of the object classes:
nezara_adult_body→ A, nezara_nymph_body→ B, nezara_head→C, paw→D. The Resulting
alphabet could be Σ = {A,B,C,D}.
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5.3.2 Compositional Representation Module

The Compositional Representation Module receives as input an image with bounding boxes
around component parts of an object. The first step consists of associating an alphabet symbol
with each bounding box. Next, the bounding boxes are processed to build a graph and derive a
sequence for representing the structural relations among the component parts of the object.

We define the Visual Weighted Graph (VWG) to encapsulate structural relations among the
component parts of an object. A VWG is a two-element tuple G = (V (G),E(G)), where V (G) is a
two-element tuple V (G) = (λ ,P) that represent the component parts of the object. λ is the label
of the node represented by an alphabet symbol and P is the bounding box center coordinates
x and y. E(G) is the edges set, where each edge ei ∈ E(G) is defined by a three-element tuple
ei = (v j,vk,w), such that v j,vk ∈V (G) and w ∈ R denotes the weight of ei.

The first step to build VWG is to transform each bounding box into a node in the graph.
This task consists in obtaining the central coordinates of each bounding box and associating
them with an alphabet symbol. Next, we identify which coordinate is closest to the center of the
image to start the graph build from it. This central coordinate becomes the graph center node
v1, connected to all other nodes. The edge weight between the central node v1 and a given node
vi is calculated based on the spatial distance between them. The distance measurement w1i ∈R
between central v1 and vi is carried out as follow:

w1 j =
∥∥vP

1 − vP
i
∥∥

2 (5.1)

The resulting VWG is a complete weighted bipartite graph K1,k, i.e., a tree with one internal
node and k leaves. Based on the bounding boxes of the two object classes presented in Figure
5.3, we could build the VWGs shown in Figure 5.4.

Figure 5.4: Generated VWGs from bounding boxes.

Finally, the VWG is traversed from the central node, visiting the nodes with the lower values
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first. The aim is to visit all VWG nodes and concatenate λ of each node to build a sequence. For
example, the graphs in Figure 5.3 generate the sequences BDCD and CDA. To traverse the VWG
from the central node guarantee that alphabet symbols keep their position in the sequence, even
when there is a rotation on the image.

5.3.3 Object Parts Detection Module

The Object Parts Detection Module is a Faster R-CNN model (Ren et al., 2017) with ResNet-
50 backbone (He et al., 2016) trained from scratch. The Faster R-CNN model receives as input
annotated images with bounding boxes around component parts of the object classes to build an
object parts detection model.

We choose the Faster R-CNN because it has good accuracy when dealing with small objects
(Nguyen et al., 2020) , and component parts of the object classes have this characteristic. In this
work, we adopt the definition of Zhu et al. (2016) for small objects. Zhu et al. (2016) define that
small objects are objects whose sizes fill up to 20% of an image.

5.3.4 Sequence Classification Module

Typically a standard Natural Language Processing (NLP) model maps a fixed-length input to
a fixed-length output, in which the length of both input and output may differ. In this model
type, commonly known as Sequence to Sequence (Sutskever et al., 2014), the encoder captures
the context of the input sequence as a hidden state vector and transfers it to the decoder, which
then provides the output sequence. Generally, both the encoder and decoder use LSTM (Greff
et al., 2017), GRU (Cho et al., 2014), or Transformers (Vaswani et al., 2017) to process sequences.

Our Sequence Classification Module uses only the encoder of a Sequence to Sequence model.
It captures structural relations among the component parts of an object class encapsulated in a
sequence and transfers it to an encoder. Then, it takes the produced output by an encoder and
uses a feedforward network on top to classify the sequence, i.e., the object class.

First, we truncate and pad the input sequences so that they are all in the same length. Next,
we convert alphabet symbols to numbers and transfers them to an embedded layer that uses
fixed length vectors to represent each word. The embedded layer sends the output to an encoder
layer (E.g.: some form of GRU, LSTM, or Transformer) for training. Finally, we use a Dense output
layer with a number of neurons equal to the number of object classes, and a softmax activation
function to make object class classification. In Figure 5.5, the Sequence Classification Module is
shown.
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Figure 5.5: A Sequence Classification Module with a generic encoder, whose input is a sequence,
and the output is an object class.

5.3.5 Logic Module

The Logic Module receives the output of the Object Parts Detection Model as input, i.e., a set
of component parts of object classes detected (bounding boxes) in a given image. Then, a search
is executed in a prior knowledge base to discard surplus component parts.

The prior knowledge base provides information about the composition of each object class in
the dataset, maintaining the number of component parts of each one. For instance, if the dataset
has only the two object classes shown in Figure 5.3, the prior knowledge base would be formed by
the following dictionary containing keys and values: {nezara_adult_body : 1, nezara_nymph_body :

1, nezara_head : 1, paw : 8}; where the key represents the component part and the value the
number of occurrences permitted for the component part in an object class. In this example, the
paw can occur only eight times in an object class, as it is a component part shared between the
two insects, and each of them has a maximum of eight paws. The nezara_head can occur once
because it also is a component part shared between the two insects. Finally, nezara_adult_body

and nezara_nymph_body can occur once in both object classes. Thus, an image inputted for clas-
sification can have a maximum of eight paws, one nezara_head, one nezara_adult_body, and
one nezara_nymph_body. The component parts selected are those with the highest confidence
score.

The Logic Module output is a set of component parts of object classes detected (bounding
boxes) and filtered by a prior knowledge base. This output is sent to the Compositional Repre-
sentation Module.
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5.4 Experimental Setup

5.4.1 Building the Dataset

Our dataset consists of 400 images 600x600 size from four insect classes, 100 images per
class. The images are annotated with bounding boxes around the component parts of the insects,
as well as classified based on the insect species.

To build the dataset, we first collected images of four insect classes from the iNat2017 dataset
(Horn et al., 2018) and then completed with images from our dataset (Tetila et al., 2020) to
obtain a set containing 100 images per class. The selected images were then manually cropped
and resized to 600x600. Once the images were captured in real-world conditions, the dataset
has insect images with partial occlusion and different poses. See Figure 5.6 for image examples
per class.

Figure 5.6: Sample images for each of the four insect classes. Row 1: Edessa meditabunda; row
2: Nezara adult; row 3: Nezara nymph; row 4: Euschistus heros.

After constructing the dataset in a balanced way, we use bounding boxes to annotate com-
ponent parts for each of the four insect classes. Thus, the full dataset has four classes based
on the insect names, whose images are annotated with bounding boxes around the component
parts of each of the insects. See Figure 5.7 for examples for each of the four insect classes with
bounding boxes around its component parts.
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Figure 5.7: Sample images for each of the four insect classes with bounding boxes around its com-
ponent parts. a) Component parts Nezara nymph: nezara_nymph_body, paw, and nezara_head;
b) Component parts Nezara adult: nezara_adult_body, paw, and nezara_head; c) Component
parts Euschistus heros: euschistus_body, euschistus_head, euschistus_angle, and paw; d) Com-
ponent parts Edessa meditabunda: edessa_body, edessa_head, and paw. Component parts were
annotated using LabelImg.

In Table 5.1, we present the component parts for each of the 4 insect classes. Note that, all
insect classes share the component part paw, and Nezara nymph and Nezara adult classes share
the component part nezara_head.

Table 5.1: Component parts for each of the four insect classes.

Nezara
nymph

Nezara
adult

Euschistus
heros

Edessa
meditabunda

nezara_nymph_body x
nezara_adult_body x
nezara_head x x
euschistus_body x
euschistus_head x
euschistus_angle x
edessa_body x
edessa_head x
paw x x x x
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5.4.2 Sequence Classification Module Configuration

We conduct experiments on the insect dataset using five different encoder layers: GRU, LSTM,
Bidirectional LSTM, Bidirectional LSTM with attention mechanism and Transformer.

In Figure 5.8, the architectures used in the experiment are shown. All layer stacking between
the embedding layer and softmax layer are called encoder layer. During the experiment, we trade
one encoder layer for another in order to compare them in the classification task. We set as
default 100 units to LSTM layers, a rate of 0.2 in Dropout layers to prevent overfitting, and used
the Adam optimizer (Kingma and Ba, 2015) with a learning rate set at 0.001 and a weight decay
of 0.0001. We also used early-stopping to prevent overfitting with patience set at 5. We use 500
epochs for training.

Before all encoder layers, we first embedded the input sequences into a 32, 64, or 128-
dimensional vector, then send them through the encoder. The vector dimension for embedding
the input sequences is treated in this work as a hyperparameter. We want to analyze the effects
of the variation of the input length in the embedding layer on encoder performance.

5.4.3 Object Parts Detection Module Configuration

In our Object Parts Detection module, we train the Faster R-CNN for the ResNet-50 as a
backbone from scratch on the public MMDetection platform (Chen et al., 2019) with the provided
training setup, except that we used Adam optimizer with a learning rate set at 0.001 and a
weight decay of 0.0001. Besides, we used 500 epochs in training.

5.4.4 Counting Component Parts for Comparison

We carry out an insect classification based only on the component parts detection provided
by Object Parts Detection Module. The classification consists of taking the output of the detector
for a given image and counting the detected parts for each insect class. The insect class that
produces the highest numbers of component parts detected is associated to the image. We carry
out this counting to investigate whether the results achieved by our method are not only mere
component parts count provided by the Object Parts Detection Module. This classifier is called
"Count".
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Figure 5.8: The five different encoder layers used in the experiment: 1) Bidirectional LSTM with
attention mechanism; 2) A typical Transformer block; 3) Bidirectional LSTM; 4) GRU, and; 5)
LSTM.

5.4.5 Configuring Resnet-50 for Comparison

We compare our method with the state-of-the-art Resnet-50. We choose the Resnet-50 be-
cause we use it as the backbone in our Object Parts Detection module.

We adopt three distinct training strategies to Resnet-50:

• A base model pre-trained with weights from ImageNet. In this model, we froze all layers in
the base model and created new layers on top of it. The layers on top consist of one Dense
layer with 1024 units, followed by a Dropout layer and two other Dense layers with 1024
and four (number of object class of our problem) units, respectively. We call this model
ResNet-50 Transfer learning.

• A fine-tuning technique that uses the ResNet-50 Transfer learning model, which we call
ResNet-50 Fine-tuning. Here, we freeze the layers from the previously trained model for
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training only the layers on top. Then, we unfroze the model and retrained it using a lower
learning rate (0.0001).

• The ResNet-50 Transfer learning model trained from scratch with the weights randomly
initialized. We call this strategy of ResNet-50 from scratch.

In all strategies, we set to 0.2 the dropout rate. We use the Adam optimizer with a learning
rate set at 0.001 and a weight decay of 0.0001. Besides, we use early-stopping with patience set
to 5 and train with 500 epochs.

5.4.6 Data Sampling

We conducted an experiment where used only a limited number of examples for the training.
The aim was to verify if our method learns to classify insect images from only a few samples
of each class. To this end, we carried out the experiment by gradually reducing the number of
training and validation images, always maintaining the same number of testing images. In the
first test, we randomly split the dataset into 70% for testing and 30% for training. In the second,
we split it into 70% for testing and 20% for training. Finally, we split the dataset into 70% for
testing and 10% for training. In all tests, we separated 10% of the training set for validation.
For each of the tests, we carried out ten repetitions.

We applied an oversampling technique to equal the number of component parts (bounding
boxes) in the training and validation sets in all repetitions. The oversampling technique consists
of randomly rotating the image and its bounding boxes between 0◦ to 90◦.

The repetitions, as well as the oversampling, were generated at the beginning of the exper-
iment to use the same images in the training, validation, and tests in our method and in the
Resnet-50.

5.4.7 Metrics and Result Analysis

We produced averages for accuracy to evaluate our method and the training strategies
adopted for Resnet-50. Besides, we used an analysis of variance to compare the performance of
each encoder layer by varying the input length in the embedding layer and compare our method
with Resnet-50.

In the analysis of variance, we adopted one-way ANOVA on a 0.05 level of significance using
the accuracy as metric. We adopted the one-way ANOVA test because, in general, the accuracies
present normality/homogeneity of variance.

83



5.5 Results and Discussion

We first show the result of each Encoder varying the input length in the embedding layer.
In Table 5.2, accuracy rates for Encoders with input length 32, 64, and 128, respectively, are
presented. When the input length in the embedding layer is 32, the Transformer encoder had
the highest average accuracy on data sampling arrangement with 10% and 20% of images for
training, accuracies of 85.9% and 92.0%, respectively. On data sampling arrangement with 30%
of images for training, the Bidirectional LSTM encoder achieved the highest average accuracy,
94.7%. When the input length is 64 and 128, Transformer and Bidirectional LSTM encoders
continued to present the highest average accuracies. However, the Transformer encoder had the
highest average accuracy only on data sampling arrangement with 10% of images for training.

Table 5.2: Accuracy averages of 10 repetitions for input length of 32, 64, and 128 in the embedding
layer on the different data sampling arrangements. The highest average accuracies in each data
sampling arrangement are highlighted.

images
per class GRU LSTM BLSTM

BLSTM
Attention

Transfor-
mer

train test
32-dimensional input

10% 70% 78.8 ±5.09 79.6 ±4.45 80.8 ±4.38 79.1 ±3.89 85.9 ±5.19
20% 70% 90.5 ±1.46 90.5 ±0.83 91.9 ±1.00 90.8 ±1.14 92.0 ±0.96
30% 70% 93.5 ±1.31 93.7 ±1.42 94.7 ±1.60 93.6 ±1.71 94.4 ±1.62

64-dimensional input
10% 70% 79.7 ±3.81 80.8 ±4.47 82.0 ±4.65 79.9 ±4.33 84.7 ±4.71
20% 70% 91.0 ±1.76 90.7 ±1.04 91.8 ±1.36 90.7 ±1.40 91.5 ±1.39
30% 70% 93.5 ±1.74 93.9 ±1.70 94.7 ±1.60 94.2 ±1.47 94.6 ±1.48

128-dimensional input
10% 70% 79.8 ±4.91 80.2 ±4.78 82.9 ±4.92 80.7 ±4.73 83.2 ±4.62
20% 70% 91.2 ±1.26 91.2 ±1.07 92.6 ±1.22 90.9 ±1.23 91.1 ±1.07
30% 70% 94.0 ±1.31 94.2 ±1.56 95.3±1.49 94.4 ±1.47 94.0 ±1.23

We applied analysis of variance to determine whether it makes a difference to use 32, 64,
or 128 input lengths in the embedding layer of the Encoders when are trained with one of the
data sampling arrangements (10/70, 20/70, or 30/70). For example, this analysis can determine
whether it makes some difference to use 32, 64, or 128 input lengths in the Transformer encoder
on data sampling arrangement with 10% of images for training. The test resulted in a p-value
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Table 5.3: Highest average accuracies according to the average of 10 repetitions for GRU, LSTM,
BLSTM, BLSTM Attention, Transformer, ResNet-50 with Transfer learning, ResNet-50 with Fine-
tuning, ResNet-50 trained from scratch, and Count. The highest average accuracies in each data
sampling arrangement are highlighted.

images
per class GRU LSTM BLSTM BLSTM

Attention Transformer ResNet-50
Transfer learning

ResNet-50
Fine-tuning

ResNet-50
from scratch Count

train test
10% 70% 79.8 ±4.91 80.8 ±4.47 82.9 ±4.92 80.8 ±4.47 85.9 ±4.62 78.1 ±6.03 81.0 ±5.21 30.7 ±6.42 62.5 ±5.84
20% 70% 91.2 ±1.26 91.2±1.07 92.6 ±1.22 90.9 ±1.23 92.0 ±0.96 87.6 ±2.50 86.8 ±4.13 29.2 ±10.53 79.6 ±2.44
30% 70% 94.0 ±1.31 94.2 ±1.56 95.3 ±1.49 94.4 ±1.47 94.6 ±1.48 89.9 ±2.83 88.8 ±2.06 36.0 ±16.17 85.3 ±2.89

> 0.05 for all Encoders, indicating no statistically significant difference in the average accuracy
when using different input lengths in the embedding layer on a given data sampling arrangement.

Since the average accuracy of the Encoders did not present a statistically significant differ-
ence when the input lengths in the embedding layers is varied, we picked up the highest average
accuracies of each Encoder on the different data sampling arrangements and showed them in
Table 5.3 in order to perform some comparison with the ResNet-50 and Count. The Table 5.3
shows that the Transformer encoder had the highest average accuracy on data sampling arrange-
ment with 10% of images for training, an accuracy of 85.9%. On data sampling arrangement
with 20% and 30% of images for training, the Bidirectional LSTM encoder achieved the highest
average accuracies, 92.6% and 95.3%, respectively.

We also performed the analysis of variance to compare the Encoders, the ResNet-50, and the
Count (classification based on the component parts detection provided by Object Parts Detection
Module, described in the Section 5.4.4 ) based on its highest average accuracies presented in Ta-
ble 5.3. On data sampling arrangement with 10% of images for training, the analysis of variance
showed a statistically significant difference between the Transformer encoder and the ResNet-50
strategies (transfer learning and fine-tuning), whose test resulted in a p-value < 0.05. Besides,
the analysis of variance determined a statistically significant difference between Encoders and
Count, and between the ResNet-50 strategies and Count. This analysis showed evidence that
the Transformer presented better performance when trained with 10% of the images from the
dataset, as it had the highest average accuracy (85.9%) between Encoders and differed statisti-
cally from the ResNet-50 strategies and Count. Using 20% and 30% of the images for training,
the Encoders didn’t differ statistically from each other, but they differed from the ResNet-50
strategies and Count, whose resulting p-value < 0.05. Besides, in both data sampling arrange-
ments, the ResNet-50 using the transfer learning and fine-tuning strategies did not show a
statistically significant difference from each other, but they differed from Count.

In Figure 5.9, we show three confusion matrices. They represent the Encoders that achieved
the best results in each data sampling arrangement shown in Table 3: Transformer, BLSTM, and
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Figure 5.9: Confusion matrices for the Encoders that achieved the best results in each data
sampling arrangement shown in Table 3. Left to right: Transformer, BLSTM, and BLSTM, data
sampling arrangement with 10%, 20%, and 30% of images for training, respectively. Object
classes: Nezara nymph (NN), Nezara adult (NA), Edessa meditabunda (EM), and Euschistus heros
(EH).

BLSTM, data sampling arrangement with 10%, 20%, and 30% of images for training, respectively.
Note that Nezara adult (NA) and Nezara nymph (NN) classes have low false-positive rates between
them. This observation is important, as the classes share two common component parts with
each other (head and paw). The low false-positive rate indicates that the Encoders learned the
relationships between the component parts of both classes, and most importantly, they learned to
differentiate them, even though they have only one distinct part. This is evidence that the visual
pattern representation strategy adopted in this work, in which objects share common component
parts with each other, can give a higher capacity for generalization, besides allowing an unlimited
number of visual variations for a given object from few variations in their sequence of symbols.
This can allow the visual variation of the object to be extrapolated beyond the samples in the
training set, giving conditions to deal with pose variation, deformation, and different perspectives
of objects.

Although ResNet-50 has gained immense popularity in classification problems on large datasets,
our experiment showed evidence that it may not generalize well from a few samples for training,
same when is used transfer learning and fine-tuning to deal with small datasets (Oquab et al.,
2014). On the other hand, even though evaluated with few object classes, our method showed
significantly better results on the classification addressed in our experiment.

The average accuracies presented by our method substantially outperform the average accu-
racies presented by Count (see Table 5.3). That shows that the results achieved by our method are
not only mere component parts count provided by Faster-RCNN used in Object Parts Detection
Module (section 5.3.3).
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5.6 Conclusion

In this work, we present a method for applying natural language processing to image clas-
sification problems. The method infers spatial relations between component parts of objects to
represent their visual patterns. The method connects these component parts, represented by
alphabet symbols, to build sequences. The resulting sequence, which encapsulates the spatial
relationship between object parts, is sent to an encoder (E.g .: some form of GRU, LSTM, or
Transformer) to train a sequence classifier. In parallel, a model to detect object parts is trained.
During the inference, the object parts detector model is used to identify the parts in the image
and then relate them to derive a sequence. Finally, the sequence is sent to the sequence clas-
sifier to classify it and determine the object class. In one test, the method achieved an average
accuracy of 95.3% overcoming the ResNet-50 that achieved 89.9%.

Our method presented better results compared with Resnet-50 because it learns the spatial
relationships between high-level component parts of the objects contained in the sequences.
Even though there are a limited number of samples for training, in most cases, the variations
in the visual pattern of the object are represented by the sequences, since the objects have
few combinations of high-level component parts that co-occur. On the other hand, the learning
paradigm of the Resnet-50 is based on feature learning which lacks precise spatial relationships
between high-level parts. That requires an enormous amount of samples to represent all possible
visual patterns of the objects.
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Chapter

6
Conclusions

6.1 Final Considerations

This work proposed an approach to represent visual patterns of objects in a syntactic way
for applying natural language processing models to image classification problems. In this regard,
a systematic literature review about syntactic pattern recognition in images was carried out to
find gaps of study for being explored by this work. The survey results showed that the natural
language processing models had not yet been applied to image classification problems in a natural
way, i.e., in the same way as they are applied to natural language problems, receiving the visual
patterns from the image in the form of text. Then, two visual pattern representation approaches
of objects in a syntactic way were investigated: the representation using keypoints and the
representation using component parts of objects.

In Chapter 4, the visual pattern composition of objects using keypoints of images is explored
in order to represent visual patterns in a compositional way. The central idea is to identify key
points in images, treated here as primitives, associate them with alphabet symbols, and then
relate them to derive strings from images. Strings are the inputs for training an LSTM encoder.
The experiment showed evidence that the syntactic pattern representation can represent visual
variations in superpixel images captured by Unmanned Aerial Vehicles, even when there is a
small set of images for training. The proposed method showed an accuracy of 80.5% and 84.6%
when trained with 5% and 30% of the images from the dataset, respectively. Moreover, the
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proposed method differed statistically from the Xception and Resnet-50 architectures on all the
data sampling arrangements.

Component parts of objects are explored in Chapter 5 as primitives to compose visual pat-
terns of objects. The component parts of the object are provided by means of bounding boxes
in the images. They are associated with alphabet symbols and related with each other to derive
a sequence of symbols from the object for representing its visual pattern. Then, some form of
GRU, LSTM, or Transformer are trained to learn the spatial relationships between component
parts of the objects contained in the sequences. During the inference, the models are assisted by
a domain knowledge base to classify the images within object classes. The experiment showed
evidence that the visual variations of objects, such as poses and scales variation, occlusions,
among others, can be represented by the sequence of symbols even when there are a limited
number of samples for training since the objects have few combinations of high-level component
parts that co-occur. In one test, the proposed method presented an average accuracy of 95.3%
against 89.9% of the ResNet-50. The limitation of the method is to represent visual patterns of
objects in an autonomous way.

Both forms of visual pattern composition of objects, using keypoints and component parts of
objects as primitives, showed evidence that from a finite set of primitive structures is possible
to obtain many variations in the visual pattern of the object when there are few samples for
training. Besides, the syntactic visual pattern representation allowed NLP models to be applied
to image classification problems in the same way as they are applied to sentences, i.e., receiving
a sequence of symbols as input.

6.2 Future Work

In this work, a supervised training approach was employed, using annotations with bounding
boxes, to obtain samples of component parts of high-level objects (e.g.: head, body, and paws of
insects). However, as the number of object classes increases, the task of annotating component
parts of objects on the image with labels becomes more costly. A suggestion for future research
includes the use of weakly supervised learning, focusing on extracting salient maps (Mundhenk
et al., 2019) from images to be used as component parts of objects.

Another issue that can be better explored is related to the domain knowledge provided to
the model to assist it in the classification task. Concepts such as object parts and relations can
be combined by means of compositional logic structures to provide some prior knowledge to the
model to directly guide it in the learning. As the object parts and relations are chosen by humans,
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this strategy becomes the model more interpretable.
Finally, another suggestion for future research includes directly applying NLP models on

graphs used to relate component parts of objects. When defining that the input data will be
represented as a graph, NLP models can learn neighborhood relations between object parts
beyond distance information between them.

6.3 Conclusion

In this work a method for applying natural language processing to image classification prob-
lems was presented. Experiments showed evidence that natural language processing models gen-
eralize from a few samples in image classification problems when trained with visual patterns of
objects represented syntactically. The two classification problems addressed are different, and
both showed evidence of good generalization of the NLP models. In the first, an aerial image
classification problem, all information in the image is relevant to determine the target class of a
given image. In the second, an object classification problem, the image background is an irrele-
vant factor to determine the object class, but it creates many difficulties for identifying objects.
Besides, it has been shown that NLP models can be applied to image classification problems in
the same way as they are used to natural language, i.e., treating an image as a sentence. It is
hoped that the results achieved by this work can motivate new research to explore new ways to
apply NLP models in computer vision problems.
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