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Abstract

The hydrodynamics of dead waters (DZ) were investigated for two different types
of structures: lateral cavities and groyne fields. A literature review of the main methods
of investigation of this kind of flow was conducted in which knowledge gaps were identi-
fied. The structure of this dissertation starts with a numerical model of groyne fields that
identified different phases in the mass exchange between the DZ and the main channel.
Following, a numerical model was developed to describe the hydrodynamics of a lateral
cavity using a hybrid method to account for the turbulence fields (Detached Eddy Simu-
lation) under a commercial package. This model was further developed in a Large Eddy
Simulation (LES) under an open-source package to make the data accessible. Lastly, the
main topic of this dissertation was described in which the investigation of a vegetated
lateral cavity was investigated. In this paper, we found the presence of a secondary cir-
culation that was not expected for this geometry in a non-vegetated scenario. Still, an
analysis of the flow and its variation in different vegetation densities was conducted where

we found a threshold that divides the way the flow occurs.



Resumo

A hidrodindmica de zonas mortas foi investigada em dois diferentes tipos de estru-
turas: cavidades laterais e campos de espigao. Uma revisao de literatura dos principais
métodos de investigagdo deste tipo de escoamento foi conduzida na qual identificamos
lacunas a serem preenchidas. A estrutura desta dissertacdo comeca com um modelo
numérico de campos de espigao que identificou diferentes fases na qual a troca de massa
entre o canal inalterado e a zona morta ocorre. Em seguida, um modelo numérico foi
desenvolvido para descrever a hidrodinamica de uma cavidade lateral usando um método
hibrido para calcular os campos turbulentos (Detached Eddy Simulation) sob um pa-
cote comercial. Este modelo foi melhorado no seguinte capitulo em uma simulagao que
considera os campos instantaneos do escoamento (modelo de turbuléncia Large Eddy Sim-
ulation) na qual um pacote de cddigo aberto foi utilizado para uma ampliagdo do acesso
do modelo. Finalmente, o principal topico da dissertagao foi descrito e consiste na inves-
tigacao de uma cavidade lateral vegetada. Neste artigo, descobrimos a presenca de uma
circulagao secundaria que nao era esperada para essa geometria, caso nao houvesse vege-
tacdo. Além disso, o artigo trata da andlise do escoamento e sua variacdo em diferentes
niveis de densidade de vegetacao a qual nos levou a encontrar um valor limite que divide

0 escoamento.
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Chapter 1

Introduction

In this chapter, the topic of this dissertation is first positioned in the research area
and its objectives are developed. Following, a more specific definition of the topic will be

given. Subsequently, the research objective and hypothesis will be presented.

1.1 Background and Motivation

Accidental pollutant spills in rivers can influence the water quality and the hy-
drodynamics of the flow over large portions of the channel. Therefore, the calculation
of mass transport on rivers is an important aspect to determine the extension of the
damage. The parameters that dictate the solute transport in streams and rivers are
strongly related to geometric and hydrodynamic characteristics of the river (e.g., velocity
distribution, channel width, flow depth, vortex shedding). Over large distances, the mass
transport is mainly restricted to the length and thus it takes a 1-dimensional approach
(WEITBRECHT, 2004). Although, the complexity of this solute transport must take
into account different aspects of the river over its length, as rivers do not have a constant
geometry over all its length. The accountability of the cross-section of the river leads to
a 2-dimensional model. Despite the model now offer a variability range, there are aspects
in natural and regulated rivers that introduce the third dimension due to rapid changes
in the depth direction. Still, regions such as dead zones (DZ), that are regions separated
from the main channel and have a net flux close to zero in the main stream direction
which configures these structures as transient storage volumes. The formation of DZ can
occur from any structure that creates an irregularity within the water body morphology,
examples of structures are: groyne fields, lateral cavities, vanes, harbours and sidearms.
The shared characteristic of these zones is its closeness, except for a single interface, the

volume is completely dissociated from the main channel. This implies that the study of



this interface is essential to understand all the exchange processes between the DZ and

the main channel.

Normally placed in shallow waters, the transport inside the DZ is regarded as a
two-dimensional motion, except for the interface between the unaltered channel (main
channel) and the DZ where complex three-dimensional motion occurs (XIANG; YANG;
WU et al., 2020). The typical path in the interface follows the order where the fluid
penetrates the DZ near the bottom of the channel and exits primarily in the top layer
of the flow, also it enters approximately via the downstream portion and exits in the
upstream of the DZ (WEITBRECHT, 2004; XIANG; YANG; WU et al., 2020). This

structure can be considered as a transient storage volume.

The transient storage of mass inside the DZ has been known to provide refuge to
aquatic communities as they seek shelter in slower-moving flows in the surface stream
or the hyporheic zone (JACKSON; HAGGERTY; APTE, 2013). According to the same
author, the benefits of this storage extends to water quality improvement as the solutes
residence times increases further increasing the interaction of nutrient-rich surface waters
with biogeochemically-reactive sediments. For instance, Schwartz e Kozerski (2003) de-
tected in their sample larger amounts of element contents with sedimentary origin than
from geogenic sources, the increase in mass settled to the riverbed. These settled matter
can favour vegetation growth (Figure 1.1). The drag created by the presence of vege-
tation changes the flow and consequently the mass exchange rates, which increases the

uncertainty of volumes captured within the seasons.

(a) 2000 (b) 2018

Figure 1.1: Groyne Fields 53°23’54.32" N, 10°11'51.08" E, elevation 1.90 km. Terrain
layer, viewed 29 August 2019. <http://www.google.com/earth/index.html>

1.2 Hydrodynamics and Mass Exchange

The DZ is created by transversal structures placed on the riverbank, these struc-

tures diverge the flow creating a rotational field. The importance of DZ is due (1) the

2



enhancement in biodiversity (RIBI et al., 2014; HARVEY, 2016), (2) the function as a
macro-roughness at the river banks, mitigating erosion (JUEZ, C. et al., 2018) and (3)
act as a transient storage zone (JACKSON; HAGGERTY; APTE, 2013; DROST et al.,
2014; JACKSON; APTE et al., 2015). The principal characteristic of the flow, in an
emergent scenario, is the presence of gyres. These vortexes origin from the dissipation of
moment that occurs in the interface layer between the DZ and the main channel. The
shearing and flow separation at the leading edge form a mixing layer that extends until
the downstream portion of the lateral cavity (UIJTTEWAAL, 2005; JACKSON; HAG-
GERTY; APTE, 2013). The shape and quantity of circulations inside the cavity are
determined by a geometric aspect between the width (normal to the flow, W) and length
(parallel to the flow, L) of the cavity. The aspect ratio W/L divides the flow in three
configurations: (a) W/L < 0.5 results in multiple circulations parallel to the main stream;
(b) 0.5 < W/L < 1.5 results in a single circulation; and (c¢) W/L > 1.5 results in mul-
tiple gyres transversal to the main stream (WEITBRECHT; JIRKA, 2001; JACKSON;
HAGGERTY; APTE, 2013; SUKHODOLOV, 2014)(Figure 1.2).

The number of circulations in the system impacts on the mass exchange between
the DZ and the main channel. As the mass decay inside the DZ follows a quick exponential
decay in the early stages the rates get slower as the primary gyre transfers its mass out,
in multiple gyres systems (JACKSON; HAGGERTY; APTE; COLEMAN et al., 2012;
OLIVEIRA; JANZEN, 2020). After the main gyre transfers its mass, a slower exchange
takes place between the second circulation into the primary one, since the velocity mag-
nitudes in the secondary gyre are slower than the primary one. Henceforth, the mean
residence time inside the DZ depends on the primary gyre residence time (early decay)
and the secondary gyre volume (late decay) (JACKSON; HAGGERTY; APTE, 2013;
OLIVEIRA; JANZEN, 2020).

From all the different structures that can create a DZ this study will focus on
lateral cavities and groynes. A lateral cavity is a volume, normally, adjacent to the
riverbank as an external structure (Figure 1.2). Groynes consist of a series of lateral
cavities, normally, inside the channel course (Figure 1.1). The characteristics of the flow
in both structures are similar. Although an important difference is in the stabilisation of
the mixing layer, this region grows until the fourth-sixth rank until it reaches a developed
state for groynes (Figure 1.3), in other words, once it stabilises the width of the interface
the flow becomes permanent (WEITBRECHT, 2004; MCCOY; CONSTANTINESCU;
WEBER, 2008; XIANG; YANG; WU et al., 2020). This behaviour is a key aspect
for modellers as this is a way to save computational resources and still maintain the

comprehensiveness of the model.

The mass exchange between DZs and the main channel was vastly studied in field,



A) W/L< 0.5 B) 0.5<W/L<15 C) W/L>1.5
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Cross-Sectional View:

Main Channel Lateral 5TS

Figure 1.2: Schema on the flow patterns of emergent lateral cavities (JACKSON; HAG-
GERTY; APTE, 2013)

-0.15 016 047 0.79 1.10

Figure 1.3: Time averaged quantities at z/h = 0.95: a) streamwise velocity and b) TKE
(MCCOY; CONSTANTINESCU; WEBER, 2008)

experimental and numerical studies. Two different methods to estimate the velocity in
which this exchange occurs are predominant: interface velocity measurements and tracer

experiments.

As the effects of the exchange occur in a confined volume, Weitbrecht e Jirka (2001)
proposed a model to account the exchanges in the interface between the zones. This

method only requires geometrical parameters and the mean transversal velocity in the



interface surface. Despite this planar method give a good approximation on the exchange
velocity the effect of mass diffusivity and depth variation is neglected, this further implies
that systems slower circulations will have a larger impact of the estimated k, as the
interface between the main channel and the cavity may remain with faster velocities. One
can assume that this methodology works for conventional DZ, although it must be taken

carefully for vegetated systems as the mixing layer alone may influence the result of k.

Another approach on the mass exchange is through tracer experiments, that can
be divided into washout and pulse procedures, that consists in the ejection of mass from
the interior of the DZ and a pulse at the inlet of the channel, respectively. Tracer methods
treat the mass exchange tri-dimensionally as all the flow variables are considered. This
approach gives a better understanding of the exchange in all conditions as it provides
more information, for instance, the tracer methodology allows one to study the behaviour
of mass in local regions of the volume or as a global volume. Furthermore, the coherent
structures of the interface play a significant role in the transport of the tracer, given that
the turbulence motion is transient, this method can capture the mass exchange rates over

time and provide a better insight of the effect of those flow structures.

The advantage of the tracer method is the data richness that it provides, especially
in numerical experiments. Some additional studies can be done to analyse other phenom-
ena associated to mass, for instance, one can use a decay to estimate the amount of mass
that is treated by plants or a settling velocity to preview sedimentation in the DZ. The
only side effect of this method is the increased complexity to perform these experiments,
be the difficulty in controlling the volume of water in the field or the calibration of the

turbulent Schmidt number (S,) in numerical studies.

1.3 Ecology and Vegetation

The presence of vegetation in river can also influence the hydrodynamics of the
DZ and ,thus, the dispersion of solutes. Since the vegetation cover in rivers is dynamic,
changing with seasonality and global climatic change, the dispersion of solutes in rivers
is also dynamic. (SUKHODOLOVA et al., 2006), for example, studied the influence of
the seasonality upon the longitudinal dispersion in a lowland river with vegetation. They
observed that when vegetation is absent, the dead zones are represented predominantly by
recirculation zones formed by flow separation on bank irregularities; in vegetative period,
the dead zones are formed by blocking effect of vegetation occupying part of the river
cross-section. These dead zones cause an increase of longitudinal dispersion, which means

stronger lengthening of a solute cloud in the mainstream direction (WEITBRECHT,



2004).

The influence of vegetation in the mass exchange in lateral cavities was first studied
in Xiang, Yang, Huai et al. (2019), that will be discussed in this paragraph. In this paper,
a single lateral cavity was studied with a varied vegetation density. The vegetation was
represented as solid cylinders inside the cavity volume. The cavity was emergent with a
single circulation, due to its W/L = 0.6. The vegetation density (a) ranged from 0 to
6.27%0 and as it increased more drag was introduced into the flow resulting in a slower
circulation inside the volume. The turbulent kinetic energy in the DZ gradually due to
the blockage that impeded high energy vortexes from entering the volume. The effect
on mass exchange occurred in two phases: first, there was a decay in the mean residence
time due to the plant induced Karman vortex street and the plant blockage since the
mixing rate from the vortex is greater than the blockage; in a second phase a > 3.96%

the blockage was higher than the mixing what increases of mean residence time (Figure
1.4).

37.5
E 34.0
E:]
=
22.0 : T T T T | T T T T | T T T T | T T T T | T T T T | T T T T ! T T T T '
0 ] 2 3 4 5 6 7

a (%o)

Figure 1.4: The variation of mean residence time (Tpw z) with the increase of vegetation
density (a) (XIANG; YANG; HUAT et al., 2019).

Although researchers have been studying the effect of groynes and vegetation on
dispersion of solutes in rivers over the last decades (e.g. Sukhodolov, Sukhodolova e Krick
(2017), Xiang, Yang, Huai et al. (2019) e Xiang, Yang, Wu et al. (2020), there are still
issues to that were not examined. For instance, in a vegetated groyne the vegetation
levels were up to 15.7%0 (SUKHODOLOV; SUKHODOLOVA; KRICK, 2017), a larger
vegetation density range may contain other phenomena that could not appear in the
previous studies. This hypothesis indicates that studying the variation of density until

the vegetation resistance blocks the flow would cover all the possible ranges and thereby



phenomena associated with this flow. Second, up to now the effects of the vegetation on
the instantaneous fields were not investigated on lateral cavities. Third, the mass transfer
at the main channel/dead zone was mainly studied using only the velocity at the interface,
this leads to the opportunity of further describe the behaviour of mass inside the dead

zone volume and how it affects the total exchange.

Furthermore, the study with vegetated cavities still could not identify a threshold
for vegetation to be considered "dense" or "sparse" in cavities, and its understanding will
allow researchers to identify flow modifications in the cavity (e.g., the suppression of
recirculation gyres, the complete suppression of flow, the exchange coefficient asymptote,
etc.). For emergent vegetation patches in an open channel, Chen et al. (2012) characterised
them as being “dense” or “sparse” according to flow blockage thresholds, in which the
flow properties near the patch (e.g., flow adjustment length and the velocity exiting the
patch) were distinct above and below the threshold. A similar approach can be done for

vegetated cavities.

1.4 Objective and Research Questions

In order to address this issues, the objective of this study is:

To describe the hydrodynamics and the mass exchange between vegetated dead wa-

ters and the undisturbed section of the flow for different vegetation densities.

The main hypothesis is that there is a threshold between dense and sparse vegeta-
tion in dead water. We also hypothesised that there is a threshold where the flow ceases

inside the lateral cavity.
Specific methodological objectives:

. The choice of the modelling technique;
. The choice of the modelling package (open and commercial software);

. The method to represent the vegetation drag.

1.5 Dissertation Structure

The dissertation was divided into six chapters. Following the Introduction, the
first paper is presented where the methodology of the study of groyne fields is firstly
introduced. Thirdly, the presented paper discussed the first approach to the study of



lateral cavities. Fourthly, further development of the numerical model is presented, this
implementation focused on the accessibility of the model by making use of open-source
tools. Fifth, the main topic of this dissertation is introduced in the paper that describes
the influence of the vegetation density in lateral cavities. Finally, the conclusive remarks

about the flow in DZ and its mass exchange were presented.



Chapter 2

Mass Exchange in Dead Water

Zones: A Numerical Approach

In this chapter, the first topic of the dissertation is presented as a published con-
ference paper. The objective of this paper was to develop a simple numerical method
capable of estimating the flow and the mass exchange between consecutive groyne fields

and the main channel.

The original paper was published in the book "Water, Energy and Food Nexus in
the Context of Strategies for Climate Change Mitigation’, under Spring publishing and
can be found in https://www.springer.com/gp/book/9783030572341.

Authors
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Abstract

Dead water zones (DWZs) in natural open channels, formed by consecutive groynes,
are regions separated from the main channel, characterized by recirculating flows. These
regions present smaller velocities compared to the main channel, increasing the deposition

of sediment and the temporary storage of polluted materials. Exchange processes between

'Federal University of Mato Grosso do Sul


https://www.springer.com/gp/book/9783030572341

DWZs and the main channel influence the transport of pollutants in channels. This study
adopts the k-omega shear stress transport (SST) turbulence model to examine the mass
exchange between the main channel and the DWZ created by an infinite series of groynes.
The computational results were compared to data collected in literature. A good agree-

ment was achieved in mass exchange coefficient, with a relative error of approximately

2%.

Keywords: Dead water zones (DWZ); Groyne Fields; Mass Exchange; Open Channel;
Computational Fluid Dynamics (CFD).

2.1 Introduction

In fluvial engineering, channels are generally shaped by complicated boundaries
that can be composed by dead water zones (DWZ), which can be formed by consecu-
tive groynes (XIANG; YANG; HUAI et al., 2019). Groynes are transversal dykes placed
in sequence along riverbanks keeping the flow away from the banks. The effects of this
structure in rivers are an increase in mean velocity and water depth in the main chan-
nel, improved navigability; increased efficiency of sediment transport; protection against
flooding and the mitigation of bank erosion (MCCOY; CONSTANTINESCU; WEBER,
2008). Its placement also provides lateral heterogeneity that can favour the presence
of aquatic organisms, improving the biodiversity of river ecosystems (MCCOY; CON-
STANTINESCU; WEBER, 2008; SZLAUER-LUKASZEWSKA, 2015; BUCZYNSKI et
al., 2017; MIGNOT et al., 2017; BUCZYNSKA et al., 2018; XIANG; YANG; HUAI et al.,
2019).

Since the magnitude of mean flow velocities inside the DWZ is approximately
25% of the flow velocities in the main channel, not only the deposition of sediment is
enhanced, but also nutrients and contaminants which are readily attached to fine particles
(SUKHODOLOV, 2014). For instance, the attachment of contaminants to particles was
observed in the Middle Elbe River, in Germany, leading to a low standard classification
from an ecological view (SCHWARTZ; KOZERSKI, 2003). The authors found, in the
groyne fields, the deposition of fresh organic mud with high nutrient and pollution content
(e.g. nitrogen). The deposition of pollution content attached to sediments creates a
problem for river management (ULJTTEWAAL, 2005), especially in flood seasons, when

the groyne field becomes submersed, being a source of contaminants to the main channel.

Therefore, in order to estimate the transport of pollutants in a channel, it is im-

portant to be able to understand and predict the exchange processes between the main
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channel and the DWZ formed between groynes (WEITBRECHT; JIRKA, 2001). These
exchange processes were studied in detail in a series of laboratorial experiments carried
out by Weitbrecht (2004). Hinterberger, Frohlich e Rodi (2007) used large eddy simu-
lation (LES) to model Weitbrecht’ experimental results. Although being a very precise
model, LES is also more time consuming when compared to simpler models. Therefore,
this study aims to investigate the mass exchange between the main channel and the groyne
field using a simpler two-equations turbulence model, k-omega SST. The computational

results are compared to Weibrecht results and a good agreement was obtained.

2.2 Methods

The geometry was chosen to match the groynes from the second series of exper-
iments described in Weitbrecht (2004). The flow depth (h) was kept constant at 0.046
m and the experimental channel width (B) at 1.80m. The emergent groynes were 0.50m
long (W) and spaced 1.25m apart (L), producing an aspect ratio of W/L = 0.40. The
groyne heads were in a semi-circle format with diameter of 0.05m. The Reynolds number
was 7360, and thereby turbulent.

The flow past the most downstream-located groyne in the series had a periodic
behaviour (HINTERBERGER; FROHLICH; RODI, 2007). Consequently, only one com-
plete groyne field and two halves (located upstream and downstream from the complete
one) was computed and a translational periodic boundary condition was imposed (Fig-
ure 2.1). The mean streamwise velocity in the computational domain was approximately
U = 1lem/s, which corresponds to a mass flux of 6.56 kg/m? of water in the periodic

zones.

As the effects of the obstacles in the main channel extends up to one obstacle length
in the transversal direction (y-axis) (BREVIS; GARCIA-VILLALBA; NINO, 2014) the
domain was two-thirds of the experimental flume width (B), reducing the computational
effort. A free-slip symmetry boundary condition was imposed on the surface (Figure 2.1).
This boundary condition was also used on the free surface plane as it is an acceptable
simplification for flows with Froude numbers smaller than 0.5 (our Froude number was
0.24) (ALFRINK; RIJN, 1983). All walls, bed, lower side wall and groyne walls were

considered hydraulically smooth.

The domain was calculated in a three-dimensional grid (Figure 2.2 a). The spa-
tial discretization had a higher refinement in regions close to walls and at high velocity

gradients regions. The meshing of the groyne’s heads considered its curvature and the
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Figure 2.1: Upper view of the computational domain, from the free surface, and its

boundary conditions.

proximity to the wall. This region used an O-grid with increasing element size (Figure
2.2 b). The mesh had 20 divisions in the z-axis, increasing gradually from the bottom
of the channel to its free surface (Figure 2.2 ¢). In the y-axis, the groyne field had 70
divisions that gradually increased in size as it gets closer to the middle of the field. The
strip that contains the groyne’s heads had finer elements due to the momentum transfer

in the shear layer. The total grid presented approximately one million elements.

The commercial software called Ansys® FLUENT (version 14) was used to solve
the grid, using the finite volume method to discretize the governing mass and momentum
equations. The turbulent model chosen is based at Reynolds-averaged Navier-Stokes
equations (RANS) approach, that consists of time averaged equations for fluid flow. The
turbulent calculations were solved using the k-omega SST model proposed by Menter et al.
(2005), due to its capability of solving fluid flow in low Reynolds numbers. The pressure-
velocity coupling method was SIMPLE and the gradient spatial discretization was Least
Squares Cell Based. The momentum was discretized in a third order MUSCL scheme.
The turbulent kinect energy (tke) and specific dissipation rate (w) were discretized in a

second order upwind scheme.

In addition to the velocity field, tracer concentration fields were also calculated by

solving the following transport equation

9 _ Ht
5PV + V(pTY:) = V(pDy + EIVY, (2.1)

Se, = 1 (2.2)

where p is the fluid mass density, Y; is the local mass fraction of each species, D, ,, is the

mass diffusion coefficient for species in the mixture, ¢’ is the velocity vector, Sc¢; is the
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turbulent Schmidt number (Equation 2.2), p; turbulent viscosity and D; the turbulent
diffusivity. In other terms, the transport equation means that the rate of change and the

net rate of flow (convection) equals the rate of change due to diffusion.

Equation (2.1) does not consider any chemical reactions or addition of phases
during the solution and was discretized in a second order upwind scheme. The tracer was

conservative, pursuing the same properties than water.

0.00 50.00 100.00 (cm)
I =5 e [ 5w

<)

75.00

0.000 2500 5.000 (cm) 0000 2.000 4.000 (cm)

F I
1250 3.750 1.000 3.000

Figure 2.2: Computational mesh: a) mesh in the free-surface plane; b) curvilinear grid

around groyne tip; ¢) mesh in a vertical plane near the middle of the groyne field.

The time step in the simulation was 0.024h/U. The simulation was run for nearly
180h/U until the fully developed state was achieved. Once the flow reached the fully
developed state, the tracer mass fraction was set to 1 within the groyne field and 0 in the
other parts of the channel. Then, statistics of the mean flow and tracer transport were
calculated using the instantaneous flow fields and mean tracer concentration inside the
groyne field over the next 548h/U.
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2.3 Results and Discussion

Two gyres could be observed in the groyne field. A large primary gyre (right
vortex in the central groyne field) and a small secondary gyre in the upstream groyne
(Figure 2.3). The formation of this system occurred by the momentum transferred by the
main channel through a mixing layer. As the main flow went downstream, the shear in
between zones excited an anticlockwise gyre (primary gyre) that further excited a smaller
clockwise circulation (secondary gyre) that had no contact with the main channel. The
secondary gyre was smaller in size (approximately 21% of the groyne field area) and

velocity magnitudes, when compared to the mean circulation (Figure 2.3).

i
@

0.000365 0.0513 0.102 0.153 0.212

L

Figure 2.3: Mean velocity contour.

Figure 2.4 shows the mean streamwise velocity distributions for x/L = 0.25, 0.50
and 0.75 (x has origin in the right face of the first groyne and points to the right).
Overall, the model had a good accordance in the main channel and in the central part of
the groyne field. The computational model was able to capture the circulation pattern
inside the groyne field. However, near the groyne heads (interface between the main
channel and the groyne fields) the concordance was not so good. This is due to the high
dissipation of momentum that occurred in the mixing layer. Despite the fine resolution of
the grid, the model could not describe the flow inside this region. For the same reason the
secondary gyre did not have contact with the mixing layer, since this vortex was formed by
the dissipation of momentum from the primary gyre. The mean error was approximately
102%, 21 % and 47 % for Figure 2.4 a), b) and c¢), respectively. However, the flow was

in the same order of magnitude than the experimental, which indicates that (Figure 2.3)
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represents qualitatively, at least, the flow within the region.

The ejection of tracer from a groyne field to the mixing layer (region between the
DWZ and the main channel) occurs in the upstream portion of the field (up to 40%),
while the following 60% is a region where mass can re-enter the system (WEITBRECHT,
2004). The tracer concentration stayed higher in the secondary gyre, while the primary
gyre oscillated due to the injection of tracer from the mixing layer and its natural ejection

(Figure 2.5). This movement was captured by the model and can be seen completely in
https://youtu.be/9b-4JZJdeA0.

(a) (b)

T T T T
whH Experimental 18-} * Experimental
m—Simulated = Simulated

I
ulug ufu

] L I I
0.4 0.2 0 0.2 0.4 06 0.8 1 12
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Figure 2.4: Mean streamwise velocity distributions. a) x/L = 0.25 b) x/L = 0.50 and c)
x/L = 0.75. The dashed line represents the groyne head position (y/h = 10.87).

The tracer concentration inside the field was fitted in a first order decay model

(Equation 2.3) following the same procedure from the experimental study (Figure 2.6).
C = CoeTrT (2.3)

Where MRT is the mean retention time. Based on the MRT, the mass coefficient k

(Equation 2.4) was calculated in order to estimate the intensity of mass exchange (WEIT-

BRECHT; JIRKA, 2001).
W

k=
MRTU
The fitted curve presented an M RT = 117.7s that related to an exchange coefficient of

(2.4)

k = 0.026. The relative error between the mean value of Weitbrecht’ experiments and our
model was 1.99% for the exchange coefficient and 1.69 % for MRT (Table 2.1).

15



SSSERIRIRLEELERREE | N

0 0.500 1.000 (m)
0.250 0.750

Tracer.Mass Fraction

TIME =229(s]

Figure 2.5: Tracer mass fraction in the free-surface plane in time 229s.

Although we could observe a good fitting between our computational model and
the experimental results, it can be observed that the system presented two slopes, with
a breakpoint near C'/C0 = 0.2 (Figure 2.6). The first slope was influenced by the tracer
concentration present in the primary gyre, that oscillates between ejecting mass and re-
absorbing via the shear layer. The second one ejects mass slower, as the concentration
in the field was mainly disposed in the secondary gyre. Figure 2.7 shows the tracer
concentration fitted in two curves, the first curve presented an M RT = 113.27s and a
k = 0.0274 while the second M RT = 121.43s and k = 0.0256. The summary of the model

and comparisons with previous studies can be seen in Table 2.1.

Our results are consistent with field observations. Sukhodolov (2014), for example,
observed that the mass concentrated in the secondary gyre, since it presented the slowest

velocities in the groyne field.
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Table 2.1: Comparison of mean residence time inside groyne field and exchange coefficient

in between experimental and numerical studies.

Experiment/Model MRT [s] k
Experiment 1 97 0.029
Experiment 2 114 0.028
Experiment 3 125 0.022
Mean value of experiments 118 0.027
3D LES \cite{Hinterberger2007} 137 0.023
2D LES \cite{

75 0.042
Hinterberger2007}
3D k-omega SST (global fitted curve) 117.7 0.026
3D k-omega SST (first slope) 113.3 0.0274
3D k-omega SST (second slope) 121.62  0.0256
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2.4 Conclusion

A 3D k-omega SST simulation was presented for a periodic shallow water flow in
a groyne field. Out model was able to reproduce a similar structure and magnitude flow
compared to experimental data. Furthermore, our model could predict the mass exchange
coefficient between the main channel and the DWZ and the mean retention time of the
DWYZ, being in good concordance with experimental results. In agreement to experimental
and field observations, the decay of mass inside the field is described in two phases, first
when the primary gyre dominates the ejection and second when the mass in concentrated
in the second gyre prolonging the MRT. Hence, a simpler model than LES can predict

the main parameters related to the mass exchange process in groyne structures.
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Chapter 3

Hydrodynamics of Vegetated Lateral

Cavities

In this chapter, the second topic of the dissertation is presented as a published
conference paper. This paper was originally written in Portuguese and was translated for
this dissertation. The objective of this paper was to develop a simple numerical method
capable of estimating the flow and the mass exchange between a lateral cavity and the

main channel.

The original paper was published in the '17° Congresso Nacional do Meio Ambi-
ente’, on September 24th 2020, Pocos de Caldas, Brazil.
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Abstract

In rivers and channels, dead zones are regions of low velocity with the presence of
recirculation motion, that have important ecological functions (eg. sediment retention)
and also can be formed from human-made structures (eg. transversal dikes). The presence
of vegetation in dead zones is a new topic of this discussion opening its way in the vegetated
flow area of study, as the vegetation has the potential of changing the flow and altering
mass exchange processes with the main channel. This study aimed to develop a numerical
model of a single vegetated lateral cavity using Computational Fluid Dynamics (CFD).
The vegetation drag was represented by a porous media which coefficients were calculated
from experimental data. The results of the model shown that the cavity had a single vortex
system in its interior and the flow velocity varied from —0.11 to 0.24e¢m/s. The simulation
adapted well to the experimental data, which proved that the porous media is a suitable

method of representing the vegetation drag in CFD.

Keywords: Lateral Cavities; Vegetation; Computational Fluid Dynamics (CFD).

3.1 Introduction

Rivers are formed by complex morphological boundaries, that create a variety
of regions of high or low flows. One of these regions is named dead zone, in which
slow velocities occur when compared to the main channel. The dead zones can occur
naturally through lateral cavities (JACKSON; HAGGERTY; APTE, 2013) or in man-
made structures, groyne fields (SUKHODOLOV; SUKHODOLOVA; KRICK, 2017) and
transversal dikes (PANDEY; AHMAD; SHARMA, 2018). From the environmental point
of view, dead zones function a 'foam’ that absorbs part of the energy from the flow, which
causes it to favour the retention of sediments, the protection of the margins and creates a
habitat for biota that depends on slow waters (WEITBRECHT; SOCOLOFSKY; JIRKA,
2008).

In the field of vegetated flows, in which the main objective is to study the hydro-
dynamics between the flow and the vegetation, the research of vegetated dead zones is
still recent. The presence of vegetation in the dead zone offers an additional drag to the
flow, further impacting the velocity patterns in the region. Henceforth, the mass exchange
processes between the main channel and the dead zone are also altered (XIANG; YANG;
HUAT et al., 2019). This enlightens the importance of understanding the relationships, so
it could be better used aiming to benefit the surrounding ecosystem. This study aims to

simulate through Computational Fluid Dynamics (CFD) a vegetated lateral cavity using
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a porous media to represent the vegetation.

3.2 Methods

The chosen geometry consisted of a part of a channel and a lateral cavity (Figure
3.1) based in (XIANG; YANG; HUAI et al., 2019). The depth of the flow and the
channel (H) was defined in 0.10m and the channel width (B) in 0.30m. The cavity
was L = 0.25m long and W = 0.15m wide. The mean velocity was kept constant as
U = 0.101 m/s, which corresponded to a Reynolds number of Re = 9000 (turbulent flow).

The water was kept at a constant temperature of T' = 293 K.

0.25 0.25

Figure 3.1: Computational domain. The flow direction is indicated by the grey arrow
(’Entrada’). The dimensions are in metres and the coordinate origin (x,y,z = 0) at the

lower right portion of the channel.

The used boundary conditions were a longitudinal plane that cuts the domain at
y = 0 and at the top of the domain (z = 0.10 m) that were defined as slip surfaces.
The planes that cut the left portion of the channel and the cavity walls were considered
hydraulic smooth walls of zero velocity. The channel entrance (z = 0m) imported a
velocity profile previously simulated in a periodic channel. The outlet surface (z = 1.00m)

was calculated with a zero gradient function.

The vegetation was represented with a porous media that filled all the lateral
cavity. This is a simple way to represent the vegetation drag, and yet being an effective
method of capturing the hydrodynamic effects (YAMASAKI et al., 2019). The adopted
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porous media was calculated by the Darcy-Forchheimer model (DF), that divides the drag
into viscous and inertial resistances. The coefficients were calculated using the Ergun
formulation and Sonnenwald, Guymer e Stovin (2017), the vegetation parameters used
to calculate the coefficients for the DF were taken from the second case of Xiang, Yang,
Huai et al. (2019). The details of the used methods can be found in the user’s guide of

Fluent®.

The numerical model was simulated under the commercial software Fluent® (ver-
sion 14), using the method of finite volumes to discretise the governing equations of mass
conservation and momentum. The turbulence model applied was the Detached Eddy
Simulation, with the contour model using the k-omega Shear Stress Transport. The sim-
ulation ran under a transient configuration for 350 seconds, that was enough time to
stabilise the flow.

3.3 Results and Discussion

As expected, the flow inside the cavity became slower when compared to the main
channel, the x component of the velocity varied between 0.11 and 0.25U (Figure 3.2a).
The high-velocity gradient in the cavity entrance (y = 0.30m) formed a shear layer
that originated the vortexes. These vortexes were carried inside the cavity where a single
circulation system, concentrated to the right portion, occurred as the streamlines in Figure
3.2a indicates. The adjusted drag coefficients were: 83.37m? for the viscous resistance

and 3.79m ™! for the inertial resistance.

(y-ygH

(a) Contour and streamlines of the mean x-

. (b) Mean velocity profile considering only the
velocity.

region inside the cavity.

Figure 3.2: Velocity distributions along the plane z = 0.60H.

The y-velocity data was extracted along the plane z = 0.6H and condensed in
a line using an ensemble averaging procedure along the y-axis similar to the procedure

adopted in Sukhodolov (2014). The velocity profile is shown and compared with numerical
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and experimental data extracted from the literature in the Figure 3.2b. At the entrance
of the cavity ((y — yo)/H = 0), the velocity u was 0.25U and it kept getting slower as it
moved towards the interior of the cavity. In (y — yo)/H = 1.4, the flow got a negative
value of u = —0.1U, indicating the presence of vortexes. The presented model, in orange,
was well adjusted to the experimental data (black dots). This means that the porous
media coefficients were well calculated and the model was capable of reproducing the flow

in a accordance to the laboratory experiments.

3.4 Conclusion

The porous media model was capable of representing the vegetation in the numer-
ical simulation. The cavity presented a single circulation system with a slower velocity
than the main channel. The velocity profile obtained from the simulation was well ad-
justed to the experimental data, which further demonstrates that the model was capable

of capturing the effects of vegetation inside the cavity.
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Chapter 4

Velocity Estimates in Vegetated

Lateral Cavities

In this chapter, the second topic of the dissertation is further developed in a pub-
lished conference paper. The objective of this paper was to develop a simple numerical
method capable of estimating the flow and the mass exchange between a lateral cavity
and the main channel. Differently of the previous chapter, this paper introduces an open
source approach to the problem, making the model further accessible to the general public.
Also, the numerical model was further developed to account the mass transfer between

the regions.

The original paper was published in the "XIII Encontro Nacional de Aguas Ur-
banas’, on October 2020, Porto Alegre, Brazil.
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Abstract

Lateral cavities are a type of transient storage zones that occur in riverine sys-
tems. They play an important role in mass transport processes, especially due to a higher
residence time. In this study, a numerical simulation of flow past a lateral cavity with
vegetation was performed to assess the impact of the vegetation on the cavity hydrody-
namics. The vegetation drag was introduced in a simplified method, as it was modelled
as an anisotropic porous medium. The model could reproduce the experimental results at

a reduced computational cost and can be considered a study platform for future studies.

Keywords: Lateral Cavities; Vegetation; Computational Fluid Dynamics (CFD).

4.1 Introduction

In rivers, lateral cavities are regions laterally attached to the channel, where the
dynamics of the flow are characterised by slow velocities, increased mass residence time
and the presence of re-circulations (CHANG; CONSTANTINESCU; PARK, 2006). The
exchange processes between the unaltered channel (main channel) and the cavity occur
solely by an interface in which the mass and momentum relationships occur. Since there
is an increased residence time within the cavity volume due to the lower velocity magni-
tudes, this region favours sedimentation processes and vegetation growth. The presence of
vegetation in the cavity alters the hydrodynamics and the interface exchanges (XIANG;
YANG; HUAI et al., 2019).

The importance of lateral cavities in ecosystems is significative. For instance, the
reduced velocities and the recirculation promote higher rates of sediments deposition and
organic matter (JUEZ, C. et al., 2018) and also creates a favourable lentic environment
to fish populations (LANDWUST, 2006). Furthermore, lateral cavities promote the tem-
porary storage of nutrients and contaminants, eg. heavy metals (ARGERICH et al.,
2011; XIANG; YANG; HUALI et al., 2019), what make this structure a viable place for

absorption and treatment of these substances.

Since the vegetation occurs naturally in lateral cavities and that its presence alters
the dynamics of the flow. In this study, we aimed to simulate numerically the flow in a
single rectangular lateral cavity with the presence of emergent vegetation, to comprehend

the effects of vegetation inside the lateral cavity.
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4.2 Methods

The modelled geometry consists in a channel reach with a lateral cavity 4.1. The
main channel had a length of L., = 1.25m (x-axis), a width of W, = 0.30m (y-axis) and
depth of H., = 0.10m (z-axis). The lateral cavity had a lengh of L., = 0.25m, width of
W, = 0.15m and depth of H., = 0.10m. These dimensions were based on the laboratory
experiments of Xiang, Yang, Huai et al. (2019). The mean velocity at the main channel

was U = 0.101m/s, which corresponds to a Reynolds number of 9000 (turbulent flow).

Canal Principal

Cavidade

Ww &

Figure 4.1: Numerical domain. The coordinate origins (x,y,z = 0) is at the lower left
corner of the picture. The inlet surface is at x = Om, outlet at x = 0.75m and the cavity

is between 0.25 < x(m) < 0.50, connected to the channel.

The computational domain was calculated with the finite volume method and thus
requires the discretisation of the geometry into a mesh. The geometry was divided into
four blocks: cavity, upstream channel, downstream channel and middle channel. The
mesh was made exclusively of orthogonal hexahedrons. The block within the cavity was
divided into 80 divisions in both x and y directions, the elements close to the wall were
refined to increase the accuracy of the model, the total growth rate was kept at a constant
of 2. The entire domain was divided 40 times in the z-axis with a total growth rate, from

the bottom, of 41. The mesh totalised in 1,408,000 elements.

At the free surface (z = 0.10m) and at the cut surface (y = Om) the slip wall
boundary condition was applied. The inlet surface (x = Om) was modelled through a

pre-developed profile of velocities and reynolds stresses that were previously calculated
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in a periodic flow separated from this main simulation. This data was mapped to feed
the synthetic vortex boundary condition applied (turbulentDFSEMInlet). The outlet
(x = 1.25m) was treated as a zero gradient and all the other surfaces of the domain
were treated as no-slip smooth walls. The wall function nutUSpallding WallFunction was
implemented in all walls to compute the variation of turbulence viscosity in the domain.
Lastly, the model large eddy simulation (LES) was implemented, with a sub-grid filter
wall-adapting local eddy-viscosity (WALE) to account the effects of turbulence in the

channel.

The emergent vegetation inside the cavity was based in the second case of (XIANG;
YANG; HUAI et al., 2019) study. The model used to describe the resistance caused
by the vegetation was through a porous media calculated using the Darcy-Forchheimer
equation, in which the inertial (f) and viscous (d) drag coefficients were calculated using
the Ergun formulation in the x and y directions. The anisotropy caused by vegetation

was considered in the z direction, where the drag coefficients were calculated using the
method of (OLDHAM; STURMAN, 2001).

The open-source package OpenFOAM (version 1912) was used to calculate the
computational model. The chosen calculation module of the pressure-velocity coupling
was the PIMPLE, which uses both the transient formulation of the PISO with the per-
manent of SIMPLE. The numerical schemes chosen were of second-order to provide the
necessary precision of LES. The time-steps were defined in an variable way assuring that

the maximum Courant number was 0.90.

4.3 Results and Discussion

The mean velocities (time averaged) calculated from the model, had lower mag-
nitudes than the main channel (4.2). A single circulation system was observed in the
lateral cavity (4.3), as it was expected for aspect ratios between 0.5 < W/L < 1.5 (UI-
JTTEWAAL; LEHMANN; MAZIJK, 2001). The origin of this circulation occurs in the
momentum transfer from the main channel to the lateral cavity, as the flow occurs to the
right, the circulation was in an anti-clockwise direction. At the upper left corner of the
cavity an even higher reduction was observed, this occurs because of the path that the
jet passes that starts at the inferior right region and follows it way deducting energy to

the vegetation drag.

In energy exchange terms, the model was able to capture the interface between a

cavity and the main channel (4.2), this could be visualised through the steady velocity
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gradient that forms from the lower left corner of the cavity. From this point, the vortexes
are dissipated and may enter the cavity or be ejected out to the main channel (4.4), similar
to the process of multiple cavities inside the main channel (groynes) (UILJTTEWAAL,
2005). Still in this figure, we could observe the difference in magnitude of the vectors,
what reinforces the idea that the vegetated lateral cavities favour mass deposition due to

its low velocities.

Figure 4.2: Mean velocity contour in the XY plane, in 2 = 0.6 H

The proposed model presented similar results when compared to numerical and
experimental data. The ensemble average procedure was implemented to condense the
values from the 0.6 H plane to a single line capable to describe the internal behaviour of the
cavity (4.5), where yo represents the beginning of the cavity. Notice that the model well
predicts the flow except for the region close to (y—yo)/H = 1.5, this occurs due to the size
of the computational cells in the region, a further refinement in this region could decrease
the difference to experimental values. Although, it is important to highlight that the
model obtained a high precision taking in account the much lower number of elements in
the grid ((XIANG; YANG; HUAI et al., 2019) model: 1.5x 107 elements; presented model:
1.4 x 10° elements), what represents a faster execution and a less intensive computational
usage. The anti-clockwise circulation tendency is confirmed by the velocity profile in the
farthest region from the main channel that presented negative velocities and the close
to the interface (0 < (y — yo)/H < 0.6), positive velocities. The circulation centre,
region in which the velocity is zero were dislocated when compared to a lateral cavity
without vegetation such as found in Gualtieri, Lépez-Jiménez e Mora-Rodriguez (2010),

in which the centre occurs at the cavity centroid. Although, in the vegetated case there
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Figure 4.3: Mean velocity contour in the XY plane, in z = 0.6 H with additional stream-

lines associated to the flow.
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Figure 4.4: Mean velocity vectors in the XY plane, in z = 0.6

was a displacement to the right, that accords to the higher velocity magnitudes inside the
cavity. Albeit there was a displacement to the right in the x-axis, there was none in the
y-axis, that can be verified with the contours from 4.3 and with position of the velocities
close to zero (0.6 < (y — yo)/H < 0.82).
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Figure 4.5: Comparison of the ensembled averaged mean velocity v in the XY plane, in
z=0.6H

4.4 Conclusion

The numerical model of a vegetated lateral cavity presented a good accuracy when
compared to experimental data from literature. The method of anisotropic porous media
can be considered an effective approach to reproduce the qualitative and quantitative
aspects of the model at a lower computational cost when compared to conventional tech-
niques. This validated mode, can represent a new way to study cavities and be the basis

of more detailed investigations.
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Chapter 5

The Effects of Vegetation Density
Upon Flow and Mass Transport in

Lateral Cavities

In this chapter, the main topic of this dissertation is developed. The effects of
vegetation on the hydrodynamics and the mass exchange between the main channel /dead
zone are investigated. The objective of this paper was to describe and possibly find a

threshold on the behaviour of the dead zone given a certain density level.
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Abstract

Lateral cavities are regions attached to rivers affect the flow by creating a dead
water zone. These regions reduce the flow velocity increasing the deposition of sediment
and the temporary storage of polluted materials, which favours the growth of aquatic
vegetation. The effect of this vegetation growth was studied using different vegetation
densities in a Large Eddy Simulation (LES). The vegetation drag was represented by
a porous media calculated with the Darcy-Forchheimer model. This numerical model
showed that the hydrodynamics of the flow can present different patterns and phases for
a vegetation density 0 < a(%) < 10.656. Furthermore, the occurrence of a secondary

circulation was found where it normally would not occur for a non-vegetated scenario.

Keywords:: Lateral Cavity; Aquatic Vegetation; Mass Exchange; Computational Fluid
Dynamics (CFD).

5.1 Introduction

Lateral cavities are an important component of riverine (HARVEY; GOOSEFF,
2015) and estuarine (WARD; MICHAEL KEMP; BOYNTON, 1984) systems, because
they (1) function as a macro-roughness at the river banks (JUEZ, Carmelo et al., 2017),
(2) drive mass exchange processes with the open channel (OURO; JUEZ; FRANCA,
2020; MIGNOT et al., 2017; JACKSON; APTE et al., 2015), (3) act as transient storage
zones (JACKSON; APTE et al., 2015; DROST et al., 2014; JACKSON; HAGGERTY;
APTE; O’CONNOR, 2013), and (4) enhance biodiversity in the system (HARVEY, 2016;
RIBI et al., 2014; WATTS; JOHNSON, 2004). These functions are linked to morphology-
induced flow heterogeneity (JACKSON; HAGGERTY; APTE; O’CONNOR, 2013; SAN-
JOU; AKIMOTO; OKAMOTO, 2012; MEILE; BOILLAT; SCHLEISS, 2011). Drawing
on studies that demonstrated the relevance of transient storage zones on nutrient reten-
tion and cycling (ENSIGN; DOYLE, 2005; MULHOLLAND et al., 1994), lateral cavities
can play a role in these processes because of increased timescales of solutes, especially due
to the formation of recirculation gyres (JACKSON; HAGGERTY; APTE; COLEMAN
et al., 2012; GOOSEFF et al., 2005). In face of flushing events, mobilized sediment can
be carried out of the cavities, which may pose a risk of releasing pollutants in the stream
(FORREST et al., 2007).

In aquatic systems, the retention of fine sediments and nutrients constitutes a
favourable substrate for vegetation establishment and growth (NEPF, 2012; VANDEN-
BRUWAENE et al., 2011; ASAEDA et al., 2009; COTTON et al., 2006; BARKO; GUN-
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NISON; CARPENTER, 1991), which occurs in lateral cavities and embayments (JONES,
2020; ELY; EVANS, 2010; OLESEN, 1996; WARD; MICHAEL KEMP; BOYNTON,
1984). Except to the case of invasive species (MACEINA; SLIPKE; GRIZZLE, 1999), veg-
etation serves to refuge and sustain fish communities (KRAUS; JONES, 2012; AREND;
BAIN, 2008), trap suspended material (WARD; MICHAEL KEMP; BOYNTON, 1984)
and protect from bank erosion (DURO et al., 2020), these two last features being asso-
ciated with the ability of vegetation to dissipate flow energy. Consequently, vegetation
canopies increase the retention time and are considered by some authors as transient

storage zones by themselves (KURZ et al., 2017).

The hydrodynamics of vegetated cavities are mainly dependent on the incoming
flow properties, cavity geometry and vegetation characteristics (XIANG; YANG; WU
et al., 2020; XTANG; YANG; HUAI et al., 2019; LU; DAI, 2016; SUKHODOLOV;
SUKHODOLOVA; KRICK, 2017). Xiang, Yang, Huai et al. (2019) showed that the de-
gree of vegetation effects on the initial bare-bed cavity depends on the vegetation density.
The authors tested five vegetation densities in a rectangular cavity, using Computational
Fluid Dynamics (CFD). The immediate effect of increasing the density was a reduction
in velocity magnitude and turbulence inside the cavity, which was caused by the flow
resistance exerted by the vegetation. The interface connecting the cavity to the channel
presented a mixing layer with higher turbulence and vorticity than the rest of the domain,
as a consequence of von Karman vortex streets generated by the vegetation, combined
with shedding vortices created at the entrance corner of the cavity. Further, secondary

recirculation gyres in the cavity were suppressed by denser vegetation values.

Field-scale experiments performed by Sukhodolov, Sukhodolova e Krick (2017) at
a vegetated groyne (a type of cavity that is built inside the open channel, according to
Jackson, Haggerty e Apte (2013)), indicated that denser vegetation diffused more momen-
tum from the jet coming at the groyne entrance, which modified the circulation patterns
in the groyne. The experiments showed that vegetation imposed a single circulation in
the groyne, similar to Xiang, Yang, Huai et al. (2019), but that vegetation had little
effect on the mixing layer formed at the groyne-channel interface. Another difference be-
tween the two studies was that Sukhodolov, Sukhodolova e Krick (2017) found that the
emergent vegetation induced uniform flow patterns along with the depth, whereas Xiang,
Yang, Huai et al. (2019) indicated that the flow pattern specifically at the cavity inter-
face changes with depth in the presence of vegetation. Moreover, Xiang, Yang, Wu et al.
(2020) showed that vegetation blocked the development of the mixing layer spreading
inside the groyne, which affects the exchange between the open channel and the cavity
(denser vegetation blocks more flow) and increases the mean retention time of the flow in
the cavity, for denser vegetation (XIANG; YANG; HUAI et al., 2019).
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The studies with vegetated cavities, as described above, varied the vegetation den-
sity between 0 and 0.627% (XIANG; YANG; HUAI et al., 2019), 0 and 0.969% (XIANG;
YANG; WU et al., 2020), and 1.57% (SUKHODOLOV; SUKHODOLOVA; KRICK,
2017). Experimentally, Xiang, Yang, Wu et al. (2020) mentioned the difficulty to test
denser vegetation arrays in cavities because the array would block the laser light and,
thus, compromise flow measurements. The authors expanded the density values using
numerical simulations. However, a reference threshold for vegetation to be considered
“dense” or “sparse” in cavities has not been defined to date, and it points to the need
of understanding which density thresholds will cause key flow modifications in the cavity
(e.g., the suppression of recirculation gyres, the complete suppression of flow, the ex-
change coefficient asymptote, etc.). For emergent vegetation patches in an open channel,
Chen et al. (2012) characterized them as being “dense” or “sparse” according to flow
blockage thresholds, in which the flow properties near the patch (e.g., flow adjustment
length and the velocity exiting the patch) were distinct above and below the threshold.
A similar approach can be done for vegetated cavities. Furthermore, in previous field and
laboratory experiments (MIGNOT et al., 2017; CONSTANTINESCU; SUKHODOLOV;,
MCCOQOY, 2009; WEITBRECHT, 2004; WEITBRECHT; JIRKA, 2001; UILJTTEWAAL;
LEHMANN; MAZIJK, 2001), the mass exchange between the main channel and a dead
water zone, lateral cavity or groyne, was studied with the ejection of tracer fields. This
method of analysing the transport of the passive scalar provides a different perspective
of the physics of this exchange and should be further explored (XIANG; YANG; HUAI
et al., 2019). Hence, a dynamic model that considers passive scalar motion can be an

effective way to help river managers to predict pollutant transport in accidental spills.

The objective of the present study was to expand the vegetation density range and
identify the thresholds that can differentiate dense to sparse vegetation in a lateral cavity.

The study was performed with CFD simulations.

This paper is divided into five main sections. Following the Introduction, the
details of the numerical model were described, along with the grid independence test
and solution quality. Third, the hydrodynamic characteristics of the flow were presented.
Fourth, the impact on the mixing layer is presented and discussed. Fifth, the impact of
the vegetation in the mass exchange is discussed. Finally, the conclusive remarks about

the influence of vegetation in a single circulation lateral cavity were presented.
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5.2 Numerical Model

5.2.1 Model Equations

The simulations were performed with the Large Eddy Simulation (LES) model,
which uses the spatial filtering of the incompressible Navier-Stokes equations to solve
the fluid motion and turbulence. For an incompressible fluid, the equations of mass and

momentum conservation are depicted as follow, respectively:

on,
=0u=12 1
aﬂji O{Z ) 73} (5 )
ou; o 18}5 9 B )
;T T, = [(2Si;) — 7 . 2
ot + 8.Tj (uzu]) paxz + axj |:N( S’L]) sz:| + SM,@ (5 )

in which the overbar indicates resolved quantities; u; (m/s) is the velocity compo-
nent in the i direction (i = 1,2, 3 correspond to x, y, z-axis, respectively), p (kg/m?) is
the fluid density, p (N/m?) is the dynamic pressure, p (m?/s) is the kinematic viscosity,
Sy (1/s) is the strain-rate tensor, 7;; (m?2/s2) is the subgrid-scale stress, and Sy, is the

sink term related to vegetation drag (m/s?). S;; and 7;; are given by:

a 1 8uz auj

Tij = ﬂlﬂ] — ujuz- (54)

Specifically, 7;; represents the effect of unresolved small-scale motion on the resolved flow,

and is based on the eddy-viscosity assumption:

1 ..
Tij — ngk@j = 14(29)ij) (5.5)

where v, (m?/s) is the eddy viscosity. In this study, the Wall-Adapting Local
Eddy-viscosity (WALE) model, proposed by Nicoud e Ducros (1999), was chosen as the

subgrid-scale model to calculate v,.

Even for CFD, adding more rigid cylinders in the cavity in order to increase the
density (XIANG; YANG; HUAI et al., 2019; XIANG; YANG; WU et al., 2020) results in
a heavier mesh that requires greater computational processing to run the model. The veg-
etation is considered uniform as flows like in lateral cavities are subject to riparian plants
and vegetation cover that can develop almost uniformly of the area (SUKHODOLOV;
SUKHODOLOVA; KRICK, 2017). For these reasons, the present study proposed to use
the Darcy-Forchheimer porous media approach to represent the vegetation, adjusting the

resistance in the horizontal and vertical directions. The vegetation inside the cavity was
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represented by a porous media, in which the momentum loss caused by the vegetation

drag was computed through the Darcy-Forchheimer (DF) model (Equation 5.6).

Sui = (—,ud + '0|12L”|f> u; (5.6)

in which d (1/m2) is the viscosity drag coefficient and f (1/m) is the inertial coeffi-
cient. First, the porous model was configured and validated with laboratory experiments
performed by Xiang, Yang, Huai et al. (2019), who created a surrogate for rigid vegetation
by displaying different arrays of copper wires for different vegetation density values in the
cavity. Then, to expand the density range, simulations with higher density values were
performed, assuming the same stem diameter of Xiang, Yang, Huai et al. (2019). The

wire diameter was d,, = 0.15cm. The vegetation density, a, was calculated as follows:

TLSV
SCCL’U

a= (5.7)
in which n is the number of vegetation stems, Sy (m?) is the horizontal cross-
section area of the stems, and Sy, (m?) is the cavity area. The coefficients d and f were

calculated using the Ergun equation:

150 (1 —€)?
d—D%( €3> (5.8)
f:?zi“;@ (5.9)

in which D,, (cm) is the mean particle diameter, and € (= 1—a) is the void fraction.
In the horizontal direction (flow perpendicular to the stems, which corresponds to the z-
and y-axis), D, was assumed as the wire diameter (D, = d,,). To account for non-isotropic
resistance, the approach of Oldham e Sturman (2001) was used to calculate d and f in
the z-axis, where the flow is parallel to the stems. In this case, D, was calculated as the

hydraulic diameter dj, (cm):

QUlw

dy, = 1) 1 (5.10)

3

In which s/d is the spacing: diameter ratio between the wires.
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5.2.2 Simulation Setup

The numerical model was developed based on the physical experiments of Xiang,
Yang, Huai et al. (2019). The 3D geometry consisted of a single lateral cavity that was
adjacent to a rectangular open channel Figure (5.1). The lateral cavity was W = 0.15 m
wide and L = 0.25 m long, resulting in the aspect ratio W/L = 0.60, which falls in the
range of 0.5 < W/L < 0.15 and thus corresponds to a one-gyre circulation system to be
formed inside the cavity Uijttewaal, Lehmann e Mazijk (2001). The depth of the channel

and cavity was H = 0.10 m. The flow in the main channel was turbulent (Re = 9000) and
subcritical (Fr = 0.102), with bulk velocity U = 0.101 m/s at the channel inlet (x = 0

m). The temperature was constant at 7' = 293K.

O‘.\Q\(\
Figure 5.1: Computational domain with coordinates and dimensions.

The boundary conditions set to the model were the following. The rigid-lid ap-
proximation was applied at the free surface of the domain (z = 0.10 m), which is valid
for flows with F'r < 0.5 (ALFRINK; RIJN, 1983). The longitudinal XZ plane, located at
y = 0 m, where the main channel was restricted in the domain, was defined as a free-slip
surface. Knowing that flow effects caused by obstacles to the main channel do not exceed
one obstacle length (BREVIS; GARCIA-VILLALBA; NINO, 2014), and knowing that
the cavity had L = 0.15 m, we defined the width of the main channel to be B = 0.30
m, which was sufficient to capture any flow effect in the main channel. The inlet portion
of the domain (x = 0 m) received precalculated velocity fields that were fully developed
in a periodic channel, under the same flow conditions and the main channel geometry.

The implementation of this boundary condition applied the turbulence Divergence-Free
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Synthetic Eddy Method (DF-SEM) to synthesise eddies based on the turbulence devel-
oped of the imported flow (POLETTO; CRAFT; REVELL, 2013). A convective outflow
boundary condition was adopted at the outlet (z = 1.25 m), in which the zero-gradient
condition allows the flow to exit the domain without having any backflow. The bottom
of the domain (z = 0 m) and the walls of the main channel (y = 0.30 m) and the cavity

were considered as no-slip surfaces.

The mass exchange between the main channel and the vegetated cavity was sim-
ulated with tracer fields, in which the washout procedure was implemented. After all
the solution transients were eliminated, the lateral cavity was filled with an inert tracer.
The flow was calculated until either all tracer left the cavity, or a time of 200 s passed.
The associated turbulent Schmidt number was S, = 0.9 , as used in other similar flows
(GUALTIERI; ANGELOUDIS et al., 2017). In this period, the average flow was, also,
calculated and condensed into an ensemble averaging (SUKHODOLOV, 2014). The com-
putational time increment was held variable, with a Courant number kept under 0.90 and

a maximum time step of 0.05 s.

The simulations were performed with the open-source package OpenFOAM (ver-
sion 1912). To discretize the governing equations and numerical schemes, the module
pimpleFoam, which employs the finite volume method (FVM), was used. For the pressure-
velocity coupling, the PIMPLE method scheme was adopted. To solve the convection-
diffusion equations, the implicit second-order backward time-stepping scheme and addi-
tional second-order schemes were used. The residual tolerance was set to 1 x 10 and
the number of our loops was set to 3, the same count was set for the pressure correction

loops.

5.2.3 Numerical Programme

The study of the vegetated cavity was proposed by varying the vegetation density
values using different DF coefficients to emulate the increasing drag, which is summarised
in Table 5.1. The density was varied between a = 0 (no vegetation) and a = 10.656%,
distributed in ten scenarios for simulation. The vegetation density found in natural con-
ditions varies from 0.001 < a < 0.45, and the effects of the turbulence dissipation remains
predominant until « < 0.1 (NEPF, 2012), given that these values were based on a free
open channel, we chose a smaller value of a that could comprehend all the turbulence
dissipation spectrum as this is a key component of the hydrodynamics of dead waters.
It was assumed that the vegetation was uniformly distributed in the cavity and that it

spanned the cavity depth, similarly to emergent vegetation.
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Horizontal direction (x and y-axis) Vertical direction (z-axis)

Case a (%)

d (1/m2)  f(1/m) dh (m) d(1/m2) f (1/m)
0 0 0.00 0.00 0.00 0.00 0.00
1 0.1332 116.53 3.09 0.7624 0.000451  0.00608
2 0.1665  182.25 3.87 0.8265 0.0006 0.00702
3 0.3330  753.83 7.89 0.3902 0.0111 0.0303
4 0.6660  3002.72 15.82 0.1846 0.198 0.19
5 1.3320  12344.01 32.40 0.0836  3.98 0.58
6 2.6640  51244.51 67.36 0.0360 88.96 2.81
7 3.9960 120314.00 105.38 0.0210 613.12 7.52
8 5.3280  223190.20  146.57 0.0139 2602.53 15.83
9 7.9920  546724.99  239.43 0.0072 23702.83  49.85
10 10.6560 1061150.94 348.58 0.0041 140829.09 126.99

Table 5.1: Vegetation levels and the calculated Darcy-Forchheimer coefficients, where a
(%) is the vegetation density, d (1/m2) is the viscosity drag coefficient, f (1/m) is the

inertial coefficient and dh (m) is the hydraulic diameter.
5.2.4 LES Quality and Grid Independence

The quality of the numerical solution was evaluated using a procedure based on
three different grids (DUTTA; XING, 2018). The refinement rate between the grids was
1.80, although with the same configurations (numerical model and boundary conditions).
The numerical and modelling errors were estimated and compared to the experimental
data from Xiang, Yang, Huai et al. (2019). Figure 5.2 shows the ensemble-averaged
streamwise velocity with the total error (numerical and modelled) expressed by error
bars. Overall, the numerical solution presented low error magnitudes, with a mean total
error of —0.0024 m/s. The errors could be mitigated by a further refinement, although

the errors were small enough to continue the experiments.

5.2.5 Validation

Figure 5.2 compares the results of the time-averaged streamwise velocity u at
z/H = 0.6 obtained from the second case (a = 0.1332%) of Xiang, Yang, Huai et al.
(2019), using both experimental and his numerical model. The numerical results, from the
present paper, showed good consistency with the experimental data. A difference between
the wall resolved LES (WRLES) and the wall modelled LES (WMLES) is highlighted in
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Figure 5.2: Grid and Numerical Errors of the ensemble-averaged streamwise velocity in
the cavity at z = 0.6 H, where U is the bulk velocity in the main channel, y, = 0.30m
represents the beginning of the cavity and H is the height of the flow.

the region (y —yo)/H > 1.20, where the continuous line deviated from the dashed result.
Although, in all other regions the results followed closely both experimental and the
WRLES.

5.3 Flow Characteristics

Figure 5.3 show the mean 2D streamlines for all the cases at z/H = 0.6 inside the
cavity volume as the principal phenomena occurs in this region. Under the cases 0 to 5 a
main anti-clockwise motion takes place (Figure 5.3 a-f). The increase in vegetation density
translates the centre of the gyre towards the main channel and downstream in the x-
direction as the blockage effects increase and the flow loses energy faster. For a = 1.3320%
(case 5) the main circulation starts to lose its shape and this process continues up to
a = 3.9960% when the flow stabilised (Figure 5.3 f and Figure 5.3 g-h). The case 8
showed the formation of a secondary gyre system at the right portion of the cavity,
0.45 < z/L <1and 0 < y/W <1 (Figure 5.3 i). This behaviour was shifted to the left
as the vegetation increased to a = 7.9920% (Case 9), 0.30 < /L < 1 and 0 < y/WW < 1

46



(Figure 5.3 i). The presence of secondary circulations normally occurs at different aspect
ratios: W/L < 0.5 and W/L > 1.5 (SUKHODOLOV; ULJTTEWAAL; ENGELHARDT,
2002), this circulation naturally does not have any contact with the main channel as they
are derived from the primary circulation. Figure 5.3 i-k show the primary circulation at
the bottom left of the cavity and the secondary gyre occupying approximately 50% of the
area in a = 5.3280%, the area comprehending the secondary gyre further increased with

the vegetation drag increase.

Figure 5.4 show the flow at the horizontal plane XY at z/H = 0.6 along the
y-axis, (y — yo)/H being yo = 0.30m the beginning of the cavity, where the velocity
decreases as the vegetation density increases. Another important aspect of this figure is
the positioning of the circulation centre that slowly shifts towards the region close to the
interface ( (y — yo)/H = 0) that is associated with the flow resistance imposed by the

vegetation.
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Figure 5.3: Mean 2D streamlines of different vegetation densities at the horizontal plane
z/H = 0.6 inside the cavity volume: a) Case 0, b) Case 1, c¢) Case 2, d) Case 3, e) Case
4, f) Case 5, g) Case 6, h) Case 7, i) Case 8, j) Case 9 and k) Case 10.
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Figure 5.4: The variation of the streamwise velocity at the horizontal plane z/H = 0.6

inside the cavity volume.

The flow through the interface was initially directed toward the cavity (z/H < 0.1);
positive velocity; then it was outwards (0.1 < z/H < 0.9); negative velocity; and lastly
entering the domain (z/H > 0.9) (Figure 5.5). Through the variation in density, this
behaviour did not change as the location of the phases did not change through all the
cases, as seen in Figure 5.5, although the peak velocities at each phase gradually decreased
as the vegetation density increased, which is attributable to the energy dissipation caused
by vegetation. As the velocity values decreased the second phase (0.1 < z/H < 0.9)
tended to flat as the vegetation was tending to a solid block behaviour similar to the
behaviour of vegetation in (CHEN et al., 2012). Furthermore, the initial peak in velocity
disappeared for a > 5.32% (Case 8) and was substituted by the increase of the third
phase.

Figure 5.6 shows the behaviour of the interface along the z-axis. Analogous to the
z-axis, the increase in vegetation density altered the velocity zones. When the vegetation
was not present, Case 0, the profile initially was set to the main channel up to 50 % of
the interface length similar to the behaviour of the series of groynes in Weitbrecht (2004).
Although, with the increase of vegetation this first negative zone became positive and the
only region where water exited the DZ volume was tending to (z — z0)/L > 0.8, due to

the shock of the vortices to the downstream wall of the cavity.
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Figure 5.5: The variation of the transversal velocity in the interface between the cavity
and the main channel along the z-axis: a) Cases from 0 to 5; b) Cases from 5 to 10.

Positive values of v/U indicate the flow entering the cavity volume.
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5.4 Hydrodynamics of the Mixing Layer

5.4.1 Thickness of the Mixing Layer

The mixing layer is a region that is developed along the interface due to a velocity
gap between the lateral cavity and the main channel. The adoption of a thickness o
(m) of the mixing layer is commonly used to describe the spreading angle of the mixing
layer and the range of velocity gradients between the zones (XIANG; YANG; WU et al.,
2020; MIGNOT et al., 2017; YOSSEF; VRIEND, 2011). Xiang, Yang, Wu et al. (2020)
suggested that the thickness could be divided into an inner section d;, (m) (in the cavity)

and an outer section d,,; (m) (in the main channel). The total thickness is defined as:

(9U4/0Y) (0U/0Y) g

§ = Gin + ot = (5.11)

where, U;, U, and U, (m/s) are the time-averaged streamwise velocities at the
interface, in the cavity and the main channel. These velocities were extracted where the
velocity gradient is negligibly small, i.e., lower than 0.5 s! in reference to Xiang, Yang,
Wu et al. (2020) e Mignot et al. (2017). (Ju/0y)

gradient at each x position along the interface.

mae TEDPresents the maximum velocity

Figure 5.7 show the evolution of the thickness layer in the streamwise direction for
all the cases. Overall, the mixing layer increased when (x — xy)/L < 0.80 and decreased
when (x — z)/L > 0.80 as the velocity gradient increased in the contact with the wall.
Similar to Xiang, Yang, Wu et al. (2020), the vegetation density increase affected the
width of the mixing layer, for both inner and outer sections. The increasing blockage
limited the entrance of flow in the cavity (Figures 5.3 and 5.4), thus it limits the growth
of the mixing layer. The wall behaviour of the cavity started to take place in case 8 and

9, although the presence of the secondary gyre in case 10 increased the thickness.
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Figure 5.7: Evolution of the mixing layer thickness averaged at the z-axis: a) inner mixing

layer; b) outer mixing layer and c¢) total mixing layer.

5.4.2 Vorticity

Figures 5.8 and 5.9 show the time-averaged vorticity magnitude (normalised by
U/H) at . The vorticity magnitude Q (s7!) is defined as:

0=V x7 (5.12)

where, ¢ (m/s) is the velocity vector.

For all cases, the vorticity remained high through all the interface between the
cavity and the main channel. The maximum vorticity occurred at the upstream of the
interface (/L < 0.3) and decreases in the downstream direction (z/L > 0.3). Similar
to groynes, this effect occurs to the shredding of vortex from the beginning of the cavity
Xiang, Yang, Wu et al. (2020). As the eddies shred, the high vorticity region increases in
width (y-axis) to its maximum value at the downstream wall. This width reduces as the

vegetation density increases due to higher drag.

The increase of vegetation density gradually decreased the levels of vorticity inside

the cavity volume up to a < 7.9920, when there was no more vorticity in the volume.
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Although, it seems that vegetation increased the vorticity at the inner part of the mixing

layer despite the blockage effect.

QU/H
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Figure 5.8: Time averaged vorticity at z/H = 0.6: a) Case 0, b) Case 1, ¢) Case 2, d)
Case 3, e) Case 4 and f) Case 5.
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5.4.3 Turbulent Kinetic Energy (TKE)

The turbulent kinetic energy (TKE) in a LES simulation is defined as:

TKE = 0.5tr(R) + 0.5tr(u") (5.13)

where, R (m2/s2) is the Reynolds stress tensor and ' (m/s) is the instantaneous

fluctuation tensor.
A time-averaged TKE distribution, normalised by U2, is presented in Figures 5.10
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and 5.11. Through all interface, the values of TKE remained above TKE/U? > 0.05,
at the downstream of the interface the maximum value occurred. At this same region,
the vortex encounters the cavity lateral wall, the portion that enters the cavity reduces
in magnitude as it moves through the vegetation. In an unvegetated scenario Figure
5.10 a) the TKE followed all the main circulation, behaviour that did not occur with the
presence of vegetation. Hence the increase in vegetation density reduced the values of

TKE, analogously to the vorticity.

As the vegetation density increased, the turbulent kinetic energy inside the cavity
decreased, similarly to Xiang, Yang, Huai et al. (2019), although in a much faster rate
than the vorticity. The blockage effect due to the vegetation density increase slowly
reduces the TKE values inside the cavity. The last region in which TKE > 0 is the
downstream wall of the cavity, region where the first jet enters the volume. Similar to
Xiang, Yang, Huai et al. (2019), the first levels of vegetation registered an increase of TKE
at the interface. Although with the increase of vegetation beyond a > 0.33% (Figure 5.10
d), the turbulence intensity was lower than the non vegetated scenario which can be
attributed to the shrink of the inner part of the mixing layer (Figure 5.7 a) caused by the
flow turbulence inhibition caused by high-density vegetation (NEPF, 2012). Furthermore,
the shape of the TKE distribution on the outer part of the mixing layer changed with
the increase of vegetation, on a = 0% the region that the distribution width increases is
up to approximately (z —z0)/L < 0.8, when the jet entrance to the volume decreases its
width. For the vegetated cases, specially Case 3, the vegetation blocks part of the jet that
normally enters the downstream portion of the volume, this causes the TKE distribution
to take a triangular shape which indicates an increased turbulence intensity in the main

channel up to a < 5.328 %.
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Figure 5.10: Time-averaged total kinetic energy (TKE) at z/h = 0.6: a) Case 0, b) Case
1, ¢) Case 2, d) Case 3, e) Case 4 and f) Case 5.

5

6



TKE/U?2
-0.00 0.02 0.05 0.07

h |

e)

Figure 5.11: Time-averaged total kinetic energy (TKE) at z/h = 0.6: a) Case 6, b) Case
7, ¢) Case 8, d) Case 9 and e) Case 10.



5.5 Mass Exchange

The mass exchange coefficient k is an important parameter of the cavity, as one
of its main characteristics is the transient storage of mass. This coefficient indicates the
mass exchange rate between the cavity and the main channel. The evaluation of this
parameter through tracer experiments was done using a first-order exponential decay in
which the initial concentration was set to 1. Analogously, the mean retention time (7¢4,)
is the time needed to completely replace the water volume in the cavity. This parameter
was adjusted using a non-linear least square method to best approximate the value of
Teav to the volumetric-average tracer concentration through time (WEITBRECHT, 2004)
(Figure 5.12).

C = Cye t/Tear (5.14)
114
b= (5.15)

where, Cy = 1 is the initial concentration, ¢ (s) is the time and Ti, (s) is the mean

retention time and k is the mass exchange coefficient.
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Figure 5.12: Volumetric-averaged tracer concentration decay inside the lateral cavity over
time: a) Case 1 b) Case 8.

Figure 5.13 shows the variation of the mass exchange coefficient and the mean
retention time with the increase of vegetation density a. Analogous to Xiang, Yang,
Huai et al. (2019), the tracer fields indicated a deviation in the curve near a ~ 0.33
which is related first to the plant-induced Karman vortex street and Kelvin-Helmholtz
eddies (NEPF, 2012) which decreased the k decay rate and second the vegetation blockage
that becomes the main effect further that point. Further that point, the mass exchange

coefficient decreases with the increase of vegetation density in two different phases divided
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at a ~ 4%. It is possible to assume that this vegetation density acted as a wall as the
flow cannot penetrate the cavity enough for the flow to occur, the remaining exchange
occurred in a thin layer that further reduced its width as the density increased. The
presence of the secondary circulation for a > 5.3280% (Case 8) implied that a further
increase in vegetation density could divide the secondary phase into a two slope section
of the curve, where the first circulation ejects mass faster than the secondary with slower
velocities and no contact with the main channel (OLIVEIRA; JANZEN, 2020) (Figure
5.12 a and b).
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Figure 5.13: The variation of the mass exchange coefficient and the mean retention time

with the increase of vegetation density.

For low-vegetation density (a < 4%), k drops off quickly with increasing vegetation
density a. For high-vegetation density (a > 4%), k is small, but not zero, and decreases
slowly with increasing a. As the vegetation drag becomes the dominant effect, the velocity
within the cavity becomes negligibly small, and it behaves as if the cavity is fully blocked
(¢ = 1). The mass exchange, then, occurs mainly near the interface volume, this could
be an influence of the increase of TKE in the outer part of the mixing layer. The effect
of higher TKE levels in the outer mixing layer provides clear water volumes to scratch
the vegetation at the interface. As the width of the TKE distribution decreases after
a maximum at a = 5.3380 %, the diminishing rate that clear water is available at the
interface further slows down the exchange between the zones. Furthermore, the presence
of vorticity for a < 7.9920 indicates that the small vortices could be moving tracer and

promoting its diffusion particularly at the inner mixing layer. This behaviour contributed
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to the mass exchange and the lack of this phenomenon can be seen past a > 7.9920 when

the mass exchange seems to change the asymptote of k decay.

5.6 Discussion

From a hydrodynamic perspective, the flow the vegetation drag slowly reduces the
energy of the flow, be it inside the cavity or at the mixing layer. As the first jet-like flow
collides with the downstream wall, the motion inside the cavity assumes a swirly pattern
in which the vegetation slowly damps the energy impacting the magnitude of velocities
inside the volume (SUKHODOLOV; SUKHODOLOVA; KRICK, 2017). From our results,
it is clear to assume that this behaviour occurs as the velocity field did not only loss in
magnitude but also shape as the density increased what demonstrates the correlation
of vegetation density and the flow field in a lateral cavity. Furthermore, this process
of reduction of velocity could promote sediment deposition, enhanced by the results of
the turbulence fields that showed how the mixing inside the cavity slowly ceases. From
a biological standpoint, the increase of vegetation could influence the spread of biota in
streams promoting restoration along its path (e.g. fish breeding or crustacea habitat). The
slow circulation allied with the deposition of sediments on its zone could further increase
lateral heterogeneity which creates different environments and could be associated with
a diversification of species in the implanted region. These deposed sediments can also
represent a biological problem, as the cavity volume can become a source of pollutants
once the system goes submerged (WEITBRECHT, 2004). Although, the presence of
vegetation could improve water quality as the increased residence time could be long

enough for plants to absorb these nutrients.

It is important, then, to assume levels in which the vegetation can favour different
processes (e.g. vegetation growth or sediment catch). It seems that a = 0.6660 % (Case
4) is an import point as it represents a change in the format of the mixing layer length and
also on the vorticity and TKE inside the cavity. As this after this value these variables or
get smaller or cease to exist inside the volume it could be argued that this point represents
a limit for the sparse vegetation. Another important metric for a threshold is the changes
in mass exchange, from Figure 13, as this value of a represents the beginning of a faster
decay in the mass exchange rate leading to a curve similar to the velocity in Chen et al.
(2012).

Following the same logic, the point a = 3.9960 % (Case 7) can also be considered a
milestone as this represents another inflexion in the mass exchange curve. From another

perspective, this density represents the end of TKE inside the volume further reducing the
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mixing and thus the mass exchange. Furthermore, the mischaracterisation of the velocity
fields beyond this density allowed the flow to assume another circulation pattern that

would not be expected in a non-vegetated case.

Thus, we suggest a classification of the flow and its related mass exchange in a
vegetated lateral cavity in three phases: 1) sparse (a < 0.6660 %), medium (0.6660 <
a(%) < 3.996) and dense (a > 3.9960 %). In the sparse region, it is expected that the
increased rate of mass exchange, compared to a non-vegetated case, might promote the
settlement of particles evenly as it can be seen in Figure 5.3 a-d. This spread of particles
could potentially promote uniform growth of vegetation while preserving the exchange
with the main channel. Thus, making it an appropriate class for reducing the impact of
pollutant spread in a reduced time (e.g. oil spill or first flush rain). The medium density
class seems to be the best benefit for mass storage and mitigation of riverbank erosion.
Although, one must have in mind that the reduced mass exchange rate might impact the
catchment of a sporadic pollutant release, that being said we recommend this class for
long term catchments (e.g. illegal sewage release). Lastly, the high-density class seems
to be the most effective in mitigating the riverbank erosion, especially at the lower right
corner of the lateral cavity (z/L =1 and (y —y0)/H = 0) as the blockage effect does not
allow the impact of a jet at the wall of the cavity.

5.7 Conclusion

The hydrodynamics of a single lateral cavity with different vegetation densities
was investigated numerically through LES. The results reveal that the single circulation
system (non vegetated case) can be transformed into a two-gyre system with the increase
of vegetation density. The influence of this secondary gyre decreased the rate in which

the mass exchange coefficient diminished.

The dynamic of the flow was examined with both the vorticity and the turbulent
kinetic energy (TKE) that both decreased in the downstream direction for all vegetation
densities. For a < 2.6640 %, the downstream section of the mixing layer has higher values
of both TKE and vorticity due to reduced inflow of the shed vortices in the cavity. For
a > 2.6640 %, these higher values did not appear as the vegetation drag further increased,
which is attributable to high blockage effect. The effect of these variables seems to play
the dominant effect of the mass exchange in high-density vegetation, as the mass exchange
mostly occurs at the inner mixing layer, region where these variables remain not null up
to a = 5.3380 % for TKE and a = 7.9920% for vorticity.
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This study enriched the knowledge of interactions between aquatic vegetation and
the flow inside a lateral cavity. It shows that vegetation can drastically alter the flow by
reducing the velocity, TKE and vorticity, this influence could promote the deposition of
fine sediments and organic matter. Furthermore, it shows that the vegetation can cause a
threshold in the mass exchange between the main channel and the lateral cavity, in which
the rate is drastically reduced due to high blockage effects. This knowledge could help
river managers to set limits and adjust the vegetation density inside the cavity in order

to keep the desirable ecological function of the cavity.
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Chapter 6

Conclusion and Recommendations

The objective of this study was the description of the hydrodynamics and mass
exchange in dead waters. In the present study, numerical experiments were performed to

describe the flow in groynes and lateral cavities.

First, a literature review of the flow conditions and methods used to describe the
flow was performed which showed gaps in knowledge to be fulfilled. Second, the first
description of the groyne flow was presented along with the study of tracer fields, which
showed that the mass exchange between the DZ and the main channel is not unique and
occurs at two different rates depending on the elapsed time. Third, the first description of
lateral cavities was presented, in this paper, we described the flow using a model developed
in commercial software. Forth, the description of lateral cavities was further developed
using another approach to the turbulence fields and an open-source package. Finally, the

effects of vegetation in lateral cavities were described.

The differences in modelling groynes and lateral cavities are significant. The study
of groynes implies a periodicity that must be fulfilled by two means: a) a series of groyne
fields or b) a pair of cyclic/periodic surfaces. The difficulties inhered by both methods
rely on the high computational cost, as in the option a) the domain is extensive and the
meshing process is harder and usually means in a loss of detail as a refined mesh becomes
prohibitive. On another hand, the second option provides a more accurate description
of the flow as the meshing can be concentrated only on one groyne field, although the
implementation of a periodic surface in a zone of high mixture implies in a requirement
for a small cell size especially in the groyne head, a region of intense vortex shredding. In
contrast to groynes, cavities do not require repetition and can be represented in a simple

inlet /outlet scheme, this implies reduced computational costs.

For both studies, as turbulence is the main phenomena in DZ the selection of the

69



turbulence model is primordial to the model. Through the investigation process, it was
noticed that the Reynolds Averaging Navier-Stokes can only give an approximation of
the flow, we analysed multiple models that rely on this spectra and only the k-w SST
model was suitable for this kind of flow. Another hybrid model such as the Detached
Eddy Simulation was a further improvement to the description of turbulence. Although,
some structures were clearer when the Large Eddy Simulation was introduced, as the

instantaneous flow was considered.

For vegetated flows, the approximation using porous media to represent the veg-
etation drag was used. The results of this model proved that this approach is viable for
DZ. The effects of the vegetation density in the hydrodynamics and mass exchange proved
to follow different phases. The lateral cavity can present a structure that was not antic-
ipated for the given W/L region as a secondary circulation appears when a > 5.3280%.
This secondary circulation changes how mass is exchanged, similar to the first paper of
this dissertation, the exchange values are changed due to the concentration of mass in the

secondary gyre that has no contact with the main channel.

This dissertation enriched the knowledge of dead zones vegetated /non-vegetated.
It showed different modelling techniques for two types of DZ: lateral cavity and groyne
fields. Furthermore, it shows that vegetation can drastically alter the flow by reducing the
velocity, TKE and vorticity, this influence could promote the deposition of fine sediments
and organic matter. Additionally, it shows that the vegetation can cause a threshold in
the mass exchange between the main channel and the lateral cavity, in which the rate is
drastically reduced due to high blockage effects. This knowledge could help river managers
to set limits and adjust the vegetation density inside the cavity to keep the desirable eco-
logical function of the cavity. All codes generated within this dissertation can be found in:
https://github.com/Worth-Option/massExchangeInDead Waters-ANumerical Approach.
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1

As the default function to write the TKE values does not account for the instantaneous
values generated from the LES model, a new function was written to account both the
instantaneous and averaged values. The code of the function total TKE calculates the TKE
based on the Resolved Reynolds Stress Tensor took from the instantaneous fluctuation of

the velocity (v') and the Subgrid Reynolds Stress Tensor (R).

totalTKE = 0.5tr(R) + 0.5tr(u’) (A1)
totalTKE
{
type coded;
libs ("libutilityFunctionObjects.so0");
name totalTKE;

executeControl timeStep;
writeControl writeTime;
timeStart 155;

enabled true;

Total Turbulent Kinect Energy Evaluation
** Requires fieldAverage Function to Obtain UPrime2Meanx*x*
** Resolved Reynolds Stress Tensor
** Requires turbulenceFields Function to Obtain Rx*x*

** Subgrid Reynolds Stress Tensor

codeExecute
#{
static autoPtr<volScalarField> totalTKE;

if
(
mesh() . foundObject<volSymmTensorField>("UPrime2Mean")
&&
mesh() .foundObject<volSymmTensorField>("turbulenceProperties:R")
&&
mesh () .foundObject<volScalarField>("totalTKE") == 0

Info << "Turbulent Kinect Energy:" << endl;
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Info << " Imnitialising" << endl;

Info << " Calculating" << nl << endl;

totalTKE. set

(
new volScalarField
(
I0object
(
"totalTKE",
mesh() .time() .timeName (),
mesh(),
I0object: :NO_READ,
I0object: :AUTO_WRITE
),
mesh(),
dimensionedScalar
(
"totalTKE",
dimensionSet(0,2,-2,0,0,0,0),
0
)
)
)3

const volSymmTensorField& R =

mesh() .lookupObjectRef<volSymmTensorField>("turbulenceProperties:R");
const volSymmTensorField& UPrime2Mean

mesh() .lookupObjectRef<volSymmTensorField>("UPrime2Mean") ;

volScalarField& totalTKE =

mesh() . lookupObjectRef<volScalarField>("totalTKE") ;
totalTKE = (0.5 * tr(R)) + (0.5 * tr(UPrime2Mean)) ;

else if

(

mesh() .foundObject<volSymmTensorField>("UPrime2Mean")

&&

mesh() .foundObject<volSymmTensorField>("turbulenceProperties:R")

&&
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mesh() .foundObject<volScalarField>("totalTKE")
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#3};

)
{
Info << "Turbulent Kinect Energy:" << endl;
Info << " Calculating" << nl << endl;
const volSymmTensorField& R =
mesh() .lookupObjectRef<volSymmTensorField>("turbulenceProperties:R");
const volSymmTensorField& UPrime2Mean =
mesh() .lookupObjectRef<volSymmTensorField>("UPrime2Mean") ;
volScalarField& totalTKE =
mesh() .lookupObjectRef<volScalarField>("totalTKE");
totalTKE = (0.5 * tr(R)) + (0.5 * tr(UPrime2Mean)) ;
3
else
{
Info << "Turbulent Kinect Energy:" << endl;
Warning << endl
<< " Unable to Calculate Turbulent Kinect Energy" << endl
<< " UPrime2Mean and/or R Unavailable" << endl
<< " Enable fieldAverage and turbulenceFields Functions"
<< nl << endl;
3
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Data Processing
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In this appendix the script used to process simulation data is presented. This code uses
python to calculate the ensemble averaging properties in a 2D plane. Note, the only
process that is not fully automated is the calculation of the mixing length that requires
the user to manually fill the maximum value of the absolute velocity gradient in the y

direction (0u/0Y)maz-

B.1 File Structure

The file structure of the script is shown bellow:

/

| _bin
dataProcess .py . ..vvvviiiiiiiiiiinnnn. Data Analysing and Exporting script
ImPOrtCSV. Py .ot CSV import script
MASS . PY « vt ettt ittt Mass analysis script
PLot DYt Plotting script
multipleSimulationImport.py........oovvvuiviiiinnnnn. CSV import script
multipleSimulationProcess.py............oouvunn. Velocity Analysis script
multipleSimulationPlot.py......cccvvvvviunnnnn. Plotting and export script
thickness ................... Calculation of the thickness of the mixing layer

L dataset vt e Directory with literature data

| treatment...............oiiiiiia... Directory for multiple simulations treatment

| results ..ot Software Created Directory

| preTreatment................cco.... Directory for a single simulation treatment
TESULLS oottt Software Created Directory

| _preProcessing.py

| _dataAnalysis.py

The requirements of the script are:

e Python 3.x
e Scipy

o Numpy

« Pandas

e Matplotlib
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B.2 preProcessing.py

The execution of the preProcessing.py script depends on the preTreatment direc-
tory that contains the .csv files to be analysed and the dataset directory that contains

the csv extracted from literature.

#!/usr/bin/env python3

—*- coding: utf-8 —*-
preProcessing.py
Copyright 2020 Luiz Oliveira

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

#
#
#
#
#
#
#
#
#
#
#
# This program is distributed in the hope that it will be useful,
#
#
#
#
#
#
#
# MA 02110-1301, USA.
#
#

Main module

This script analyses the output of simulations ran on OpenFoam

The analysis steps are performed by the modules in the bin folder

import sys
import os
import shutil

import time
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start_time = time.time()

# Check for necessary directories

if not os.path.exists(’preTreatment’):

os.makedirs(’preTreatment’)

print("The directory preTreatment/ was created, please populate with the "

"desired csv files to be analysed.")

sys.exit(’The directory preTreatment/ did not exist.’)

elif not os.listdir(’preTreatment’):

sys.exit(’The directory preTreatment/ is empty.’)

# Clear the previous results directories

if os.path.exists(’preTreatment/results’):

oS

os

oS

shutil.rmtree(’preTreatment/results’)

.makedirs(’preTreatment/results’)

.makedirs (’preTreatment/results/Excel’)

.makedirs(’preTreatment/results/CSV’)

.makedirs (’preTreatment/results/Plot’)

# Define Global Variables
H=10.10

U =0.101

W =20.15

L =0.25

YO = 0.30

X0 = 0.25

RHO = 1e-6

# Import CSV

exec (open("bin/importCSV.py") .read())

print ("""Importing Done...

Elapsed Time %.3f s\n""" %(time.time() - start_time))

# Data Processing

try:

exec(open("bin/dataProcess.py") .read())

print("""Processing Done. ..

Elapsed Time %.3f s\n""" % (time.time() - start_time))

except:

print("""No data was processed.

The script jumped into the next section: Mass Fitting""")
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print ("Elapsed Time %.3f s\n" %(time.time() - start_time))

# Mass Fitting
try:
exec(open("bin/mass.py") .read())
print("""Mass Fitting Done...
Elapsed Time %.3f s\n""" %(time.time() - start_time))
except:
print("""No mass data was processed.
The script jumped into the next section: Mixing Layer Thickness""")

print("Elapsed Time %.3f s\n" %(time.time() - start_time))

# Mixing Layer Thickness
try:
exec(open("bin/thickness.py") .read())
print("""Mixing Layer Thickness Calculated...
Elapsed Time %.3f s\n""" %(time.time() - start_time))
except:
print("""No mixing layer thickness data was processed.
The script jumped into the next section: Plotting""")
print ("Elapsed Time %.3f s\n" %(time.time() - start_time))

# Plot Data

try:
exec (open("bin/plot.py") .read())
print("""Plotting Done. ..

Elapsed Time %.3f s\n""" %(time.time() - start_time))

except:print("No plotting was done.\n")

print("""All Done. ..
Execution Time %.3f seconds""" %(time.time() - start_time))

del start_time

B.3 dataAnalysis.py

The execution of the dataAnalysis.py script depends on the treatment directory that
contains the .csv files to be analysed. These files must be pre processed using the previous

script.
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#!/usr/bin/env python3
# —-*- coding: utf-8 -*-
#

dataAnalysis.py

Copyright 2020 Luiz 0Oliveira <luiz@luizLinux>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA.

Main module

This script analyses the output of preProcessing.py

The analysis steps are performed by the modules in the bin folder

import sys
import os
import shutil
import time

start_time = time.time()

# Check for necessary directories
if not os.path.exists(’treatment’):

os.makedirs(’treatment’)

print ("The directory treatment/ was created, please populate with the "

"desired csv files to be analysed.")

#
#
#
#
#
#
#
#
#
# This program is distributed in the hope that it will be useful,
#
#
#
#
#
#
#
#
#
#
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sys.exit(’The directory treatment/ did not exist.’)
elif not os.listdir(’treatment’):

sys.exit(’The directory treatment/ is empty.’)

# Clear the previous results directories

if os.path.exists(’treatment/results’):
shutil.rmtree(’treatment/results’)

os.makedirs(’treatment/results’)

os.makedirs(’treatment/results/Plots’)

os.makedirs(’treatment/results/SelectPlots’)

os.makedirs(’treatment/results/CSV’)

Define Global Variables
0.10

0.101

0.15

0.25

0.30

0.25

RHO = 1le-6

K= o m #
] ]

> <
o O
] I

# Import CSV
exec(open("bin/multipleSimulationImport.py").read())
print ("""Importing Done. ..

Elapsed Time %.3f s\n""" %(time.time() - start_time))

# Process Data
exec(open("bin/multipleSimulationProcess.py") .read())
print("""Processing Done. ..

Elapsed Time %.3f s\n""" %(time.time() - start_time))

# Data plot
exec(open("bin/multipleSimulationPlot.py") .read())
print("""Plotting Done. ..

Elapsed Time %.3f s\n""" %(time.time() - start_time))

print("""All Done. ..
Execution Time %.3f seconds""" %(time.time() - start_time))

del start_time
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B.4 preProcessing Scripts

B.4.1 importCSV.py

#!/usr/bin/env python3

—-*- coding: utf-8 -*-
importCSV.py
Copyright 2020 Luiz Oliveira

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

#
#
#
#
#
#
#
#
#
#
#
# This program is distributed in the hope that it will be useful,
#
#
#
#
#
#
#
# MA 02110-1301, USA.
#
#

Data is imported from text files to be later processed and ploted

# Libraries
import os
import re

import pandas as pd

# Import Literature

literatureExp = pd.read_csv(’dataset/fig4/figla.csv’, header = 1,
usecols=(0,1))

literatureExp.columns = [’ (y-y0)/H’,’u/U’]
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literatureExp = literatureExp.dropna()

literaturelLES = pd.read_csv(’dataset/fig4/figda.csv’, header = 1,
usecols=(2,3))

literaturelES.columns = [’ (y-y0)/H’,’u/U’]

massLiterature = pd.read_csv(’dataset/mass/mass.csv’, header = 1)

massLiterature.columns = [’Vegetation Density’, ’Td’]

massLiterature.Td = massLiterature.Td * U / H

# Tracer data

try:
tracerData = pd.read_csv(’preTreatment/tracerVolAve.dat’,

delimiter=’>\t’, header = 3)

tracerData.columns = [’time’, ’tracerVol’]
tracerData.tracerVol[0] = 1
massTimeZero = tracerData.time[0]
tracerData.time = tracerData.time - massTimeZero

except:pass

# Partial Tracer at Interface
try:
interfaceTracer = dict()
regions = [’Bottom’, ’Middle’, ’Top’]
for reg in regions:
interfaceTracer([reg] = pd.read_csv(’preTreatment/tracer’+reg+’.dat’,\
delimiter=’\t’, header = 4)
interfaceTracer[reg].columns = [’time’, ’tracer’]
interfaceTracer[reg] .time = interfaceTracer[reg] .time - massTimeZero
Eraw = pd.read_csv(’preTreatment/velocityInterface.dat’, delimiter=’\t’,\
header = 4)
Eraw.columns = [’time’, ’absVelInt’]
Eraw.time = Eraw.time - massTimeZero
Eraw.absVelInt = Eraw.absVellInt/(2*H*L)

except:pass

# Generic Planes

files = os.listdir(’preTreatment’)

# Check for csv files

rawFiles = 1list()
csvFiles = 1list()
datFiles = 1list()
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uniqueRaw = list()

list()

7s uniqueVar
79
so # Removes ’:’ from file name

51 for item in files:

82 if ’:’ in item:
83 newname = item.split(’:’)[1]
84 os.rename(’preTreatment/’+item, ’preTreatment/’+newname)

s6 files = os.listdir(’preTreatment’)

ss for item in files:

89 if re.search(’.\.raw’, item):
90 rawFiles.append (item)

91

92 for item in files:

03 if re.search(’.\.csv’, item):

94 csvFiles.append(item)

o6 for item in files:

97 if re.search(’.\.dat’, item):
98 datFiles.append (item)

99

00 csvFiles.sort()

101 datFiles.sort()

102 rawFiles.sort()

103

104 for item in rawFiles:

105 try:

106 plane = re.findall("_([\d\D]..)", item) [0]
107 variableName = re.split("_", item) [0]

108 if plane not in uniqueRaw:

109 uniqueRaw.append(plane)

110 if variableName not in uniqueVar:
111 uniqueVar.append(variableName)

112 except:continue

112 def cleanHeader (name):
115 fh = open(’preTreatment/’+name, "rt")
116 data = fh.read()

117 # data = re.sub(xr’:\S+ ’, r’’, data)
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118 data = data.replace(’# ’, ’’)

119 data = data.replace(’ ’, ’ ’) #removes double spacing
120

121 fh.close()

122 fh = open(’preTreatment/’+name, "wt")
123 fh.write(data)
124 fh.close()

126 # Import generated data

107 for item in rawFiles:

128 for item2 in uniqueRaw:

129 try:

130 plane = re.findall("_([\d\D]..)", item) [0]

131 if plane == item2:

132 cleanHeader (item)

133 variableName = re.split("_", item) [0]

134 aux = pd.read_csv(’preTreatment/’+item, sep=" ", header=1,

135 float_precision="high",skipinitialspace=True)

136 #if aux.isnull().values.any():continue

137 try:
138 if variableName not in locals():vars() [variableName] = aux
139 else:
140 vars() [variableName] =

pd.concat ([vars() [variableName] ,aux],
141 ignore_index=True, axis=1)
142 vars() [variableName] =

vars () [variableName] .dropna(axis=0, how=’all’)
143 vars() [variableName] =

vars () [variableName] .dropna(axis=1, how=’all’)
144 except:continue
145 except:continue

147 thickness = dict()

11s for item in csvFiles:

149 try:

150 thickness[’raw’] = pd.read_csv(’preTreatment/’+item, header=0,\

151 float_precision=’high’)

152 if len(thickness[’raw’].columns) ==

153 thickness[’raw’] .drop([’Gradients_0’,’Gradients_1’,’Gradients_2°],\
154 axis=1, inplace=True)

155 colNames = [’x’, ’y’, ’z’, ’UMean_X’, ’absGradient’]
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thickness[’raw’].columns = colNames

del colNames

except:continue
try:
del aux, variableName, item2, plane

except:pass

del files, item, rawFiles, csvFiles, reg

B.4.2 dataProcess.py

#!/usr/bin/env python3

-*- coding: utf-8 —*-
dataProcess.py
Copyright 2020 Luiz Oliveira

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software

# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

# MA 02110-1301, USA.

#

#

This code processes the data imported from importcsv.py

The data is ensembled averaged and then exported to plot.py script
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import re

import pandas as pd

import openpyxl

from scipy.interpolate import interpld

def dfRename(var, dtf):

names = [’x’,

7y) ,

names.extend (var)

dt

f.columns =

’Z’]

names

def clearLimits(df,x0,x1,y0,y1,z0,z1):

#

#
#
#

Clear extra values inside variables.

This script

uses user values of the bound coordinates

df.
df.

df

df.
df.
df.

return df

drop(df [df.
drop (df [df.
.drop (df [df.
drop (df [df.
drop(df [df.
drop(df [df .

N < < X
\Y \

N
A\

x0]
x1]
y0]
y1]
z0]
z1]

.index,
.index,
.index,
.index,
.index,

.index,

def excelExport(var, name):

inplace=True)
inplace=True)
inplace=True)
inplace=True)
inplace=True)

inplace=True)

Creates and appends planes

into an spreadsheet

if not os.path.isfile(’preTreatment/results/Excel/’+name+’ .x1lsx’):

with pd.ExcelWriter(’preTreatment/results/Excel/’+name+’ .x1sx’,

wb = openpyxl.Workbook()

wb.save(’preTreatment/results/Excel/’+name+’ .x1lsx’)

engine="openpyxl", mode=’a’) as writer:

for df name, df in var.items():

df .to_excel (writer, sheet_name=df name, index=False)

def csvExport(df, name):

#
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Creates and appends planes into separated csv files

df .to_csv(’preTreatment/results/CSV/’+name+’.csv’)

def varTreatment(planes, physicalVar, colNames, nColumns, direction,

#
#
#

varName, roundPar, first, last):

Treats data in an ensemble averaging proceedure in the provided direction

# Local Variable Declaration
varDict = dict()

kk = first * nColumns
startPos = first

stopPos = last * nColumns

11 =0

# Reads all the files and ensemble in a dict in that each ii is a plane
for ii in planes:
key = ii
key = int(re.sub(’\D’, ’’,key))
if key < startPos:
continue
if kk > stopPos:
break
for jj in range(nColumns):
11 = kk + jj

if 11%nColumns == 0: # number of columns

varDict[ii] = physicalVar.iloc[:,11]

else:

\
pd.concat([varDict[ii], physicalVar.iloc[:,11]], axis=1)

varDict [ii]

kk = kk + nColumns

dfRename (colNames, varDict[ii])

clearLimits(varDict[ii], 0.25, 0.50, 0.30, 0.45, 0, 0.1)
varDict[ii] = varDict[ii].dropna(axis=0, how=’all’)

varDict[ii] = varDict[ii] .dropna(axis=1, how=’all’)

# Get vector magnitude
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if nColumns > 4:
df = pd.DataFrame()
for i in colNames:
df [i] = varDict[ii] [i]#**2
df [’mag’] = (df.sum(axis=1))**(1/2)
varDict[ii] [’mag’] = df.mag
expColNames = colNames + [’mag’]

else:

expColNames = colNames

if direction == "x":

varDict[ii] = varDict[ii] .drop(columns=[’y’, ’z’])

varDict[ii] varDict [1i].\
groupby (varDict [ii] .x.round(roundPar) ,as_index=False) .mean()
varDict [ii] [direction] = (varDict[ii] [direction] - 0.25)/L
varDict[ii].columns = [’ (’+direction+’-x0)’+’/L’] + expColNames
elif direction == ’y’:
varDict[ii] = varDict[ii].drop(columns=[’x’, ’z’])
varDict[ii] = varDict[ii].\
groupby(varDict[ii] .y.round(roundPar) ,as_index=False) .mean()
varDict[ii] [direction] = (varDict[ii] [direction] - 0.30)/H
varDict[ii].columns = [’ (’+direction+’-y0)’+’/H’] + expColNames

elif direction == ’z’:

varDict[ii] = varDict[ii].drop(columns=["x’, ’y’]1)

varDict [ii].\

varDict [ii]
groupby(varDict[ii].z.round(roundPar) ,as_index=False) .mean()
varDict[ii] [direction] = varDict[ii] [direction]/H

varDict[ii].columns = [direction+’/H’] + expColNames

excelExport (varDict, varName+"Dir_"+direction)
csvName = varName.split("_") [0]
csvExport (varDict[ii], csvName+"_"+ii+" Dir_"+direction)

return varDict

#

# Planes 0 -> 4
# Vertical Planes Varying the Y axis from Y = 0.30 to Y = 0.45

#

## RMean

colNames = [’xx’, ’yy’, ’zz’, ’xy’, ’yz’, ’xz’]
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168

169

170

186

187

188

189

190

RMean_00_04 Dirx

RMean_00_04_Dirz

## UMean
colNames = [’u’, ’v’, ’w’]

UMean_00_04_Dirx

UMean_00_04_Dirz

## lambVectorMean

varTreatment (uniqueRaw, RMean, colNames, 9,’x’,

’RMean_00_4_’,2, 0, 4)

varTreatment (uniqueRaw, RMean, colNames, 9,’z’,

’RMean_00_4 ’,2, 0, 4)

varTreatment (uniqueRaw, UMean, colNames, 6,’x’,

’UMean_00_4 ’,2, 0, 4)

varTreatment (uniqueRaw, UMean, colNames, 6,’z’,

’UMean_00_4 ’,2, 0, 4)

colNames = [’lambVectorMean_x’, ’lambVectorMean_y’, ’lambVectorMean_z’]

lambVectorMean_00_04_Dirx
6,

lambVectorMean_00_04_Dirz

## pMean

colNames = [’pMean’]

pMean_00_04_Dirx

varTreatment (uniqueRaw, lambVectorMean, colNames,

’x?,’lambVectorMean 00 4 ’,3, 0, 4)
varTreatment (uniqueRaw, lambVectorMean, colNames,

6,’z’,’lambVectorMean 00 4 ’,2, 0, 4)

varTreatment (uniqueRaw, pMean, colNames, 4,’x’,

’pMean_00_4_°,3, 0, 4)

pMean_00_04_Dirz = varTreatment (uniqueRaw, pMean, colNames, 4,’z’,

## vorticityMean

'pMean_00_4_’,2, 0, 4)

colNames = [’vorticityMean_x’, ’vorticityMean_y’, ’vorticityMean_z’]

vorticityMean_00_04_Dirx

vorticityMean_00_04_Dirz

# —_————

varTreatment (uniqueRaw, vorticityMean, colNames, 6,
’x’,’vorticityMean_00_4_’,3, 0, 4)
varTreatment (uniqueRaw, vorticityMean, colNames, 6,

>z’ ,’vorticityMean_00_4_’,2, 0, 4)

# Planes 5 -> 11

# Vertical Planes Varying the X axis from X = 0.25 to X = 0.50

#

## RMean

colNames = [’xx’, ’yy’, ’zz’, ’xy’, ’yz’, ’xz’]

RMean_05_11_Diry = varTreatment (uniqueRaw, RMean, colNames, 9,’y’,
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199

200

201
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207
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209

210

RMean_05_11_Dirz

## UMean
colNames = [’u’,

UMean_05_11_Diry

UMean_05_11 Dirz

## lambVectorMean

colNames = [’lamb

lambVectorMean_05

6,

lambVectorMean_05

## pMean

’RMean_05_11 ’,2, 5, 11)
= varTreatment (uniqueRaw, RMean, colNames, 9,’z’,

'RMean 05 11 _’,2, 5, 11)

;VJ s ’W’]
= varTreatment(uniqueRaw, UMean, colNames, 6,’y’,

'UMean 05 11 7,2, 5, 11)

= varTreatment (uniqueRaw, UMean, colNames, 6,’z’,

'UMean 05 11 7,2, 5, 11)

VectorMean_x’, ’lambVectorMean_y’, ’lambVectorMean_z’]

_11 Diry = varTreatment (uniqueRaw, lambVectorMean, colNames,

’y?,’lambVectorMean_05_11_’,3, 5, 11)
_11 Dirz = varTreatment (uniqueRaw, lambVectorMean, colNames,

6,’z’,’lambVectorMean_05_11_’,2, 5, 11)

colNames = [’pMean’]

pMean_05_11_Diry

pMean_05_11_Dirz

## vorticityMean

colNames = [’vort

vorticityMean_05_

vorticityMean_05_

= varTreatment (uniqueRaw, pMean, colNames, 4,’y’,

’pMean_05_11_’,3, 5, 11)

= varTreatment (uniqueRaw, pMean, colNames, 4,’z’,

'pMean_05_11_°,2, 5, 11)

icityMean_x’, ’vorticityMean_y’, ’vorticityMean_z’]

11 _Diry = varTreatment(uniqueRaw, vorticityMean, colNames, 6,

’y’,’vorticityMean_05_11_’,3, 5, 11)

11_Dirz = varTreatment(uniqueRaw, vorticityMean, colNames, 6,

>z’ ,’vorticityMean_05_11_’,2, 5, 11)

i
# Planes 12 -> 21

# Horizontal Planes Varying the Z axis from Z = 0 to Z = 0.10

#

## RMean
colNames = [’xx’,

RMean_12_21 Dirx

:yy7’ JZZ7, )Xy:’ zyz;, ’XZ’]
= varTreatment (uniqueRaw, RMean, colNames, 9,’x’,

‘RMean_12 21 ’,2, 12, 21)
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RMean_12_21 Diry = varTreatment (uniqueRaw, RMean, colNames, 9,’y’,

’RMean’,2, 12, 21)

## UMean

colNames = [’u’, ’v’, ’w’]

UMean_12_21 Dirx = varTreatment (uniqueRaw, UMean, colNames, 6,’x’,
’UMean_12_21_’,2, 12, 21)

UMean_12_21 _Diry = varTreatment (uniqueRaw, UMean, colNames, 6,’y’,

'UMean_12 21 ’,2, 12, 21)

## lambVectorMean
colNames = [’lambVectorMean_x’, ’lambVectorMean_y’, ’lambVectorMean_z’]
lambVectorMean_12_21 Dirx = varTreatment (uniqueRaw, lambVectorMean, colNames,
6,
’x’,’lambVectorMean_12_21_’,3, 12, 21)
lambVectorMean_12_21 Diry = varTreatment(uniqueRaw, lambVectorMean, colNames,

6,’y’,’ lambVectorMean_12_21_’,2, 12, 21)

## pMean

colNames = [’pMean’]

pMean_12_21 Dirx = varTreatment (uniqueRaw, pMean, colNames, 4,’x’,

’pMean_12_21_7,3, 12, 21)

varTreatment (uniqueRaw, pMean, colNames, 4,’y’,

’pMean_12_21_7,2, 12, 21)

pMean_12_21 Diry

## vorticityMean

colNames = [’vorticityMean_x’, ’vorticityMean_y’, ’vorticityMean_z’]

varTreatment (uniqueRaw, vorticityMean, colNames, 6,

’x’,’vorticityMean_12_21_’,3, 12, 21)

vorticityMean_12_21 Dirx

vorticityMean_12_21 Diry = varTreatment (uniqueRaw, vorticityMean, colNames, 6,

’y?,’vorticityMean_5_11_7,2, 12, 21)

#
# Validation Data
# [ —

## Data Treatment

colNames = [’u’, ’v’, ’w’]

varTreatment ([’p17°], UMean, colNames, 6, "y",’UMean_pl7_’,
3, 17, 17)
figdaOur[’pl7°’]

fig4alur

figd4aOur
figdaOur.u = figdaOur.u/U
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# Errors from experimental
error = dict()
error[’X’] = literatureExp.iloc[:,0]
error [’Numerical u’] =
interpld(fig4alur.iloc[:,0],fig4a0ur.u) (literatureExp.iloc[:,0])

error [’Experimental_u’] = literatureExp.iloc[:,1]

error = pd.DataFrame(data=error)

error.eval (’Error = Experimental_u - Numerical_u’, inplace=True)

error.eval (’Abs_Error = abs(Experimental_u - Numerical_u)’, inplace=True)

error.eval (’Rel Error (Experimental_u - Numerical_u)/Experimental_u’,
inplace=True)
error.eval (’Abs_Rel_Error = abs((Experimental_u -

Numerical_u)/Experimental_u)’, inplace=True)

description = error.describe()

if not os.path.isfile(’preTreatment/results/Excel/validationData.xlsx’):
wb = openpyxl.Workbook()

wb.save(’preTreatment/results/Excel/validationData.xlsx’)

with pd.ExcelWriter(’preTreatment/results/Excel/validationData.xlsx’,
engine="openpyxl", mode=’a’) as writer:
error.to_excel(writer, sheet_name=’Errors’, index=False)

description.to_excel(writer, sheet_name=’Statistical Description’)

del lambVectorMean, pMean, RMean, vorticityMean, colNames

B.4.3 mass.py

#!/usr/bin/env python3

# —*- coding: utf-8 -*-

#

# mass.py

#

# Copyright 2020 Luiz Oliveira

#

# This program is free software; you can redistribute it and/or modify
#

it under the terms of the GNU General Public License as published by
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49

50

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA.

H OH OH OHF O HF OHF OH OH OH OH O HF H OH OH

Mass quantities are analysed in two ways: by tracer volume and y-velocity

# Libraries

from datetime import datetime
import numpy as np

import pandas as pd

import openpyxl

from scipy.optimize import curve_fit

# Extracting date for report
now = datetime.now()

today = now.strftime("%d/%m/%Y %H:%M:%S")

# Define Fitting Function

def model(x, td):

First Order Mass Decay Equation

return np.exp(-x/td)

td, pcov = curve_fit(model, tracerData.time, tracerData.tracerVol, p0=(40),

maxfev=5000)
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51k =W/ (td *x U)

53 modelmass = model(tracerData.time, td)

55 tdExp = massLiterature.iloc[1,1]

57 tdRelError = ((td - tdExp)/tdExp)*100

ss  tdAbsError tdExp - td

6o kexp = W / (tdExp * U) # Non-dimensional experimental value
o1 kRelError = ((k - kexp)/kexp)*100
62 kAbsError

kexp - k

64+ # Mass as function of velocity

65 E = Eraw.absVelInt.mean()

¢ tdvel = W/E
s kvel = W / (tdvel * U)

70 # Mass Summary

71 file

open("preTreatment/results/massExchange.txt","w")

72 file.write("Mass Exchange Values (Simulated - Tracer)\n")

73 file.write("ktracer = %.4f\n" %k)

71 file.write("Mean Residence Time = %.2f\n---\n" %td)

75 file.write("Mass Exchange Values (Simulated - Interface Velocity)\n")
76 file.write("kvelocity = %.4f\n" %kvel)

77 file.write("Mean Residence Time = 7%.2f\n---\n" %tdvel)

7s file.write("Mass Exchange Values (Xiang)\n")

79 file.write("kexp = %.4f\n" %kexp)

so file.write("Mean Residence Time = 7%.2f\n---\n" %tdExp)

s1 file.write("Error analysis\n")

s2 file.write("Relative error\n")

s3 file.write("\tError = (Simulated.our - Xiang)/(Xiang)\n")

sa file.write("MRT = 7%.2f %%\n" %tdRelError)

s5 file.write("k = %.2f %%\n" %kRelError)

s6 file.write("Absolute error\n")

s7 file.write("MRT = %.2f\n" J%tdAbsError)

ss file.write("k = %.2f\n" %kAbsError)

so file.write("---\nData analysed in {} (GMT-4)".format(today))
90 file.close()

91
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# Construct mass dataFrame

tracerDataExport = tracerData

tracerDataExport[’modelled’] = modelmass

colNames = [’Time’,’Numerical’,’Modelled’]

tracerDataExport.columns = colNames

tracerDataExport.to_csv(’preTreatment/results/CSV/tracerData.csv’)

with pd.ExcelWriter(’preTreatment/results/Excel/tracerData.xlsx’,

engine="openpyxl", mode=’w’) as writer:
for df_name, df in tracerDataExport.items():

df .to_excel(writer, sheet _name=df name, index=False)

del file, now, today

B.4.4 plot.py

#!/usr/bin/env python3

# —*- coding: utf-8 -*-

plot.py

Copyright 2020 Luiz Oliveira

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA.
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65

Data is imported from dataProcess.py and ploted into png figures

# Libraries

import re

import matplotlib.pyplot as plt

from matplotlib import ticker

from matplotlib.offsetbox import AnchoredText

def plotVar(varName, axis, title, name, col, admensional, first, last):

# —_——
# Runs through all plots from a variable and plots it

#
fig, ax = plt.subplots(figsize=(9,6), dpi=300)

for key, df in varName.items():
nKey = key
int(re.sub(’\D’, ’’,nKey))

nKey
if nKey >= first and nKey <= last:
if ’z’ not in varName[key].iloc[:,0].name:
ax.plot(varName[key] .iloc[:,0],
varName [key] .iloc[:,col] /admensional, label=key)
else:
ax.plot(varName [key] .iloc[:,col] /admensional,

varName [key] .iloc[:,0], label=key)

ax.legend(loc="best’,fontsize=’x-large’)
if title != "None":

ax.set_title(title,fontsize=’xx-large’)

plt.grid()

plt.autoscale(enable=True, tight=True)

plt.xlabel(axis[0] ,,fontsize=’x-large’)

plt.ylabel(axis[1],fontsize=’x-large’)

plt.savefig(’preTreatment/results/Plot/’+name+’.png’, bbox_inches=’tight’
format=’png’)

plt.close()

# ——— e

# Planes 0 -> 4
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# Vertical Planes Varying the Y axis from Y = 0.30 to Y = 0.45

noTitle = "None"

## RMean Dir_x_00_04
[’ (x-x0)/L’,’Rmag/U2’]

axisNames

plotTitle = ’Time Averaged Reynolds Stresses Magnitude at vertical XZ planes’

figureName = ’RMean_mag_Dir_x_00_04"

plotVar(RMean_00_04_Dirx, axisNames, noTitle, figureName, 7, U*x*2, 0, 4)

## RMean Dir_x_00_04
axisNames = [’Rmag/U2’, ’z/H’]

plotTitle = ’Time Averaged Reynolds Stresses Magnitude at vertical XZ planes’

figureName = ’RMean_mag_Dir_x_00_04’

plotVar(RMean_00_04_Dirz, axisNames, noTitle, figureName, 7, U*x*2, 0, 4)

## UMean Dir_x_00_04
axisNames = [’ (x-x0)/L’,’u/U’]
plotTitle

’Time Averaged x-velocity at vertical XZ planes’
figureName = ’UMean_U_Dir_x_00_04"
plotVar(UMean_00_04_Dirx, axisNames, noTitle, figureName, 1, U, 0, 4)

axisNames = [’(x-x0)/L’,’v/U’]

plotTitle = ’Time Averaged y-velocity at vertical XZ planes’
figureName = ’UMean_V_Dir_x_00_04"

plotVar(UMean_00_04_Dirx, axisNames, noTitle, figureName, 2, U, 0, 4)

[’ (x-x0)/L’,’w/U’]

axisNames
plotTitle = ’Time Averaged z-velocity at vertical XZ planes’
figureName = ’UMean_W_Dir_x_00_04"

plotVar(UMean_00_04_Dirx, axisNames, noTitle, figureName, 3, U, 0, 4)

axisNames = [’ (x-x0)/L’,’uMag/U’]
plotTitle = ’Time Averaged velocity magnitude at vertical XZ planes’
figureName = ’UMean_mag_Dir_x_00_04’

plotVar(UMean_00_04_Dirx, axisNames, noTitle, figureName, 4, U, 0, 4)

## UMean Dir_z_00_04
axisNames = [’u/U’, ’z/H’]

plotTitle

’Time Averaged x-velocity at vertical XZ planes’
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107 figureName = ’UMean_U_Dir_z_00_04’
s plotVar(UMean_00_04_Dirz, axisNames, noTitle, figureName, 1, U, 0, 4)

109

110 axisNames [’v/U’, ’z/H’]

111 plotTitle ’Time Averaged y-velocity at vertical XZ planes’
112 figureName = ’UMean_V_Dir_z_00_04’
115 plotVar(UMean_00_04_Dirz, axisNames, noTitle, figureName, 2, U, 0, 4)

114

115 axisNames [’w/U’, ’z/H’]
116 plotTitle = ’Time Averaged z-velocity at vertical XZ planes’
117 figureName = ’UMean_W_Dir_z_00_04’

115 plotVar(UMean_00_04_Dirz, axisNames, noTitle, figureName, 3, U, 0, 4)

120 axisNames = [’uMag/U’, ’z/H’]
121 plotTitle = ’Time Averaged velocity magnitude at vertical XZ planes’
122 figureName = ’UMean_mag Dir_z_00_04’

123 plotVar(UMean_00_04_Dirz, axisNames, noTitle, figureName, 4, U, 0, 4)

125 ## lambVectorMean Dir_x_00_04
[’ (x-x0)/L’,’lambVectorMean [m/s2]’]

126 axisNames
127 plotTitle = ’Time Averaged Lamb Vector magnitude at vertical XZ planes’
128 figureName = ’lambVectorMean_mag Dir_x_00_04’

120 plotVar(lambVectorMean_00_04_Dirx, axisNames, noTitle, figureName, 4, 1, 0, 4)

131 ## lambVectorMean Dir_z_00_04

132 axisNames = [’lambVectorMean [m/s2]’, ’z/H’]
133 plotTitle = ’Time Averaged Lamb Vector magnitude at vertical XZ planes’
134 figureName = ’lambVectorMean_mag Dir_z_00_04’

155 plotVar(lambVectorMean_00_04_Dirz, axisNames, noTitle, figureName, 4, 1, 0, 4)

137 ## pMean Dir_x_00_04
133 axisNames = [’ (x-x0)/L’,r’ (pL)/($\rho$ U)’]
130 plotTitle

’Time Averaged Pressure at vertical XZ planes’
110 figureName = ’pMean_Dir_x_00_04"

111 plotVar(pMean_00_04_Dirx, axisNames, noTitle, figureName, 1, L/(RHO*U), 0, 4)

143 ## pMean Dir_z_00_04
111 axisNames = [r’ (pL)/($\rho$ U)’, ’z/H’]
145 plotTitle

’Time Averaged Pressure at vertical XZ planes’
116 figureName = ’pMean_Dir_z_00_04’

117 plotVar(pMean_00_04_Dirz, axisNames, noTitle, figureName, 1, L/(RHO*U), O, 4)
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149

150

159

160

161

162

164

165

166

167

168

169

170

182

183

184

185

186

188

## vorticity Dir_x_00_04

axisNames = [’ (x-x0)/L’,’vorticity[1/s]’]

plotTitle = ’Time Averaged vorticity magnitude at vertical XZ planes’
figureName = ’vorticity_Dir_x_00_04"

plotVar(vorticityMean_00_04_Dirx, axisNames, noTitle, figureName, 4, 1, 0, 4)

## vorticity Dir_z_00_04

axisNames = [’vorticity [1/s]’, ’z/H’]

plotTitle = ’Time Averaged vorticity magnitude at vertical XZ planes’
figureName = ’vorticity_Dir_z_00_04"

plotVar(vorticityMean_00_04_Dirz, axisNames, noTitle, figureName, 4, 1, 0, 4)

#
# Planes 5 -> 11

# Vertical Planes Varying the X axis from X = 0.25 to X = 0.50
# —_——

## RMean Dir_y_05_11
axisNames = [’Rmag/U2’, ’(y-y0)/H’]
plotTitle

’Time Averaged Reynolds Stresses Magnitude at vertical YZ planes’
figureName = ’RMean_mag_ Dirx_05_11"

plotVar(RMean_05_11 Diry, axisNames, noTitle, figureName, 7, U*x*2, 5, 11)

## RMean Dir_z_05_11

axisNames = [’Rmag/U2°, ’z/H’]

plotTitle = ’Time Averaged Reynolds Stresses Magnitude at vertical YZ planes’
figureName = ’RMean_mag Dir_z_05_11"

plotVar(RMean_05_11_Dirz, axisNames, noTitle, figureName, 7, U*x*2, 5, 11)

## UMean Dir_y_05_11
[’ (y-yO)/H’,’u/U’]

’Time Averaged x-velocity at vertical YZ planes’

axisNames

plotTitle
figureName = ’UMeanYZPlanes_U_Diry’
plotVar(UMean_05_11_Diry, axisNames, noTitle, figureName, 1, U, 5, 11)

axisNames = [’ (y-y0)/H’,’v/U’]

’Time Averaged y-velocity at vertical YZ planes’

plotTitle
figureName = ’UMeanYZPlanes_V_Diry’
plotVar(UMean_05_11_Diry, axisNames, noTitle, figureName, 2, U, 5, 11)

axisNames = [’ (y-y0)/H’,’w/U’]
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180 plotTitle = ’Time Averaged z-velocity at vertical YZ planes’
100 figureName = ’UMeanYZPlanes_W_Diry’
191 plotVar(UMean_05_11_Diry, axisNames, noTitle, figureName, 3, U, 5, 11)

192

103 axisNames [’ (y-y0O)/H’,’uMag/U’]

’Time Averaged velocity magnitude at vertical YZ planes’

194 plotTitle
105 figureName = ’UMeanYZPlanes_mag_ Diry’

196 plotVar(UMean_05_11_Diry, axisNames, noTitle, figureName, 4, U, 5, 11)
197

198 ## UMean Dir_z_05_11

[’u/U’, ’z/H’]

199 axisNames
200 plotTitle = ’Time Averaged x-velocity at vertical YZ planes’

200 figureName = ’UMeanYZPlanes_U_Dirz’

202 plotVar(UMean_05_11_Dirz, axisNames, noTitle, figureName, 1, U, 5, 11)

203

204 axisNames = [’v/U’, ’z/H’]
205 plotTitle = ’Time Averaged y-velocity at vertical YZ planes’
206 figureName = ’UMeanYZPlanes_V_Dirz’

207 plotVar(UMean_05_11_Dirz, axisNames, noTitle, figureName, 2, U, 5, 11)

200 axisNames [’w/U’, ’z/H’]

210 plotTitle ’Time Averaged z-velocity at vertical YZ planes’
211 figureName = ’UMeanYZPlanes_W_Dirz’

212 plotVar(UMean_05_11_Dirz, axisNames, noTitle, figureName, 3, U, 5, 11)

214 axisNames = [’uMag/U’, ’z/H’]
215 plotTitle = ’Time Averaged velocity magnitude at vertical YZ planes’
216 figureName = ’UMeanYZPlanes_mag Dirz’

217 plotVar(UMean_05_11_Dirz, axisNames, noTitle, figureName, 4, U, 5, 11)

219 ## lambVectorMean Dir_y_05_11

220 axisNames = [’ (x-x0)/L’,’lambVectorMean [m/s2]’]

221 plotTitle ’Time Averaged Lamb Vector magnitude at vertical YZ planes’
2220 figureName = ’lambVectorMean_mag Dir_y_05_11’

223 plotVar(lambVectorMean 05_11 Diry, axisNames, noTitle, figureName, 4, 1, 5, 11)

225 ## lambVectorMean Dir_z_ 05_11

206 axisNames = [’lambVectorMean [m/s2]’, ’z/H’]

227 plotTitle ’Time Averaged Lamb Vector magnitude at vertical YZ planes’
228 figureName = ’lambVectorMean_mag Dir_z_05_11’

220 plotVar(lambVectorMean_05_11_Dirz, axisNames, noTitle, figureName, 4, 1, 5, 11)
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239

240

259

260

261

262

## pMean Dir_y_05_11

axisNames = [’ (x-x0)/L’,r’ (pL)/($\rho$ U)’]

plotTitle = ’Time Averaged Pressure at vertical YZ planes’

figureName = ’pMean_Dir_y_05_11"

plotVar(pMean_05_11_Diry, axisNames, noTitle, figureName, 1, L/(RHO*U), 5, 11)

## pMean Dir_z_05_11
[r’(pL)/($\rho$ U)’, ’z/H’]

plotTitle = ’Time Averaged Pressure at vertical YZ planes’

axisNames

figureName = ’pMean_Dir_z_05_11"

plotVar(pMean_05_11 Dirz, axisNames, noTitle, figureName, 1, L/(RHO*U), 5, 11)

## vorticity Dir_y_05_11

axisNames = [’(x-x0)/L’,’vorticity[1/s]’]

plotTitle ’Time Averaged vorticity magnitude at vertical YZ planes’
figureName = ’vorticity_Dir_y_05_11"

plotVar(vorticityMean_05_11_Diry, axisNames, noTitle, figureName, 4, 1, 5, 11)

## vorticity Dir_z_05_11

axisNames = [’vorticity [1/s]’, ’z/H’]

plotTitle = ’Time Averaged vorticity magnitude at vertical YZ planes’
figureName = ’vorticity_Dir_z_05_11"

plotVar(vorticityMean_05_11 Dirz, axisNames, noTitle, figureName, 4, 1, 5, 11)

# Planes 12 -> 21

# Horizontal Planes Varying the Z axis from Z = 0 to Z = 0.10
# ====

## RMean Dir_x_12_21

axisNames = [’ (x-x0)/L’, ’Rmag/U2’]

plotTitle ’Time Averaged Reynolds Stresses Magnitude at horizontal XY planes’
figureName = ’RMean_mag Dir_x_12_21’

plotVar(RMean_12_21 Dirx, axisNames, noTitle, figureName, 7, U*x*2, 12, 21)

## RMean Dir_y_12_21
axisNames = [’ (y-y0)/H’, ’Rmag/U2’]

plotTitle ’Time Averaged Reynolds Stresses Magnitude at horizontal XY planes’
figureName = ’RMean_mag Dir_y_12_21°

plotVar(RMean_12_21_Diry, axisNames, noTitle, figureName, 7, Ux*2, 12, 21)
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303
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310

311

## UMean Dir_x_12 21

axisNames = [’ (x-x0)/L’,’u/U’]

plotTitle = ’Time Averaged x-velocity at horizontal XY planes’
figureName = ’UMean_U_Dir_x_12_21’

plotVar(UMean_12_21 Dirx, axisNames, noTitle, figureName, 1, U, 12, 21)

[’ (x-x0)/L’,’v/U’]

’Time Averaged y-velocity at horizontal XY planes’

axisNames

plotTitle
figureName = ’UMean_V_Dir_x_12_21’
plotVar(UMean_12_21 Dirx, axisNames, noTitle, figureName, 2, U, 12, 21)

[’ (x-x0)/L’,’w/U’]
plotTitle = ’Time Averaged z-velocity at horizontal XY planes’

axisNames

figureName = ’UMean_W_Dir_x_12_21°
plotVar(UMean_12_21 Dirx, axisNames, noTitle, figureName, 3, U, 12, 21)

axisNames [’ (x-x0)/L’,’uMag/U’]

plotTitle ’Time Averaged velocity magnitude at horizontal XY planes’
figureName = ’UMean_mag Dir_x_12_21°

plotVar(UMean_12_21 Dirx, axisNames, noTitle, figureName, 4, U, 12, 21)

## UMean Dir_y_12_21

axisNames = [’ (y-y0)/H’,’u/U’]

plotTitle = ’Time Averaged x-velocity at horizontal XY planes’
figureName = ’UMean_U_Dir_y_12_21’

plotVar(UMean_12_21 Diry, axisNames, noTitle, figureName, 1, U, 12, 21)

axisNames = [’ (y-y0)/H’,’v/U’]
plotTitle = ’Time Averaged y-velocity at horizontal XY planes’
figureName = ’UMean_V_Dir_y_12_21°

plotVar(UMean_12_21 Diry, axisNames, noTitle, figureName, 2, U, 12, 21)

axisNames = [’ (y-y0)/H’,’w/U’]

plotTitle = ’Time Averaged z-velocity at horizontal XY planes’
figureName = ’UMean_W_Dir_y_12_21’

plotVar(UMean_12_21 Diry, axisNames, noTitle, figureName, 3, U, 12, 21)

axisNames = [’ (y-y0)/H’,’uMag/U’]
plotTitle = ’Time Averaged velocity magnitude at horizontal XY planes’

figureName = ’UMean_mag Dir_y_12_21°

112



316

317

318

319

320

321

339

340

348

349

350

plotVar(UMean_12_21 Diry, axisNames, noTitle, figureName, 4, U, 12, 21)

## lambVectorMean Dir_y_12_21

axisNames = [’ (x-x0)/L’,’lambVectorMean [m/s2]’]

plotTitle = ’Time Averaged Lamb Vector magnitude at horizontal XY planes’

figureName = ’lambVectorMean_mag Dir_y_12_21"

plotVar(lambVectorMean_12_21 Diry, axisNames, noTitle, figureName, 4, 1, 12,
21)

## lambVectorMean Dir_z_ 12_21
[’lambVectorMean [m/s2]’, ’z/H’]

axisNames

plotTitle = ’Time Averaged Lamb Vector magnitude at horizontal XY planes’

figureName = ’lambVectorMean_mag Dir_z_12_21’

plotVar(lambVectorMean_12_21 Diry, axisNames, noTitle, figureName, 4, 1, 12,
21)

## pMean Dir_y_12_21
[’ (x-x0) /L’ ,r’ (pL)/ ($\rho$ U)’]

’Time Averaged Pressure at horizontal XY planes’

axisNames

plotTitle
figureName = ’pMean Dir_y_12_21’
plotVar(pMean_12_21 Diry, axisNames, noTitle, figureName, 1, L/(RHO*U), 12, 21)

## pMean Dir_z_12_21

axisNames = [r’ (pL)/($\rho$ U)’, ’z/H’]

plotTitle = ’Time Averaged Pressure at horizontal XY planes’
figureName = ’pMean_Dir_z_12_21°

plotVar(pMean_12_21 Diry, axisNames, noTitle, figureName, 1, L/(RHO*U), 12, 21)

## vorticity Dir_y_12_21

axisNames = [’ (x-x0)/L’,’vorticityl[1/s]’]

plotTitle = ’Time Averaged vorticity magnitude at horizontal XY planes’
figureName = ’vorticity_Dir_y_12_21°

plotVar(vorticityMean_12_21_Diry, axisNames, noTitle, figureName, 4, 1, 12, 21)

## vorticity Dir_z_12_21

axisNames = [’vorticity [1/s]’, ’z/H’]

plotTitle = ’Time Averaged vorticity magnitude at horizontal XY planes’
figureName = ’vorticity_Dir_z_12_21°

plotVar(vorticityMean_12_21 Diry, axisNames, noTitle, figureName, 4, 1, 12, 21)
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# Validation Graph

# ————

## Figure 4

#figd, ax4 = plt.subplots(figsize=(9,6), dpi=300)
#ax4.plot(literatureExp.iloc[:,0], literatureExp.iloc[:,1],°k.’,

# label=’Experimental (Xiang et al., 2019)’)
#ax4.plot(literatureLES.iloc[:,0], literatureLES.iloc[:,1],’--’,

# label=’Numerical (Xiang et al., 2019)’)

#1, caps, ¢ = plt.errorbar(errorbarcsv.iloc[:,1], errorbarcsv.u/U,

errorbarcsv.iloc[:,9]/U,

1,
5,

elinewidth = 2, capsize = 5, capthick

marker = ’o0’, markevery=5, errorevery
uplims = True, lolims = True,

lw=1.5, aa = True, label=’Presented Model’)

H O OH OH OH O

#for cap in caps:

# cap.set_marker("_")

#

#ax4.legend(loc="best’,fontsize=’x-large’)

#

##ax4.set_title(’Time Averaged x-velocity at 0.6H’

#it ,fontsize=’"xx-large’)

#

#plt.grid()

#plt.autoscale(enable=True, tight=True)

#plt.xlabel(’ (y-y0)/H’ ,fontsize=’x-large’)

#plt.ylabel (’u/U’ ,fontsize=’x-large’)

#plt.savefig(’preTreatment/results/Plot/validationWithErrorbar. jpg’,
bbox_inches=’tight’)

# Figure 4
fig4, ax4 = plt.subplots(figsize=(9,6), dpi=300)
ax4.plot(literatureExp.iloc[:,0], literatureExp.iloc[:,1],°k.’,
label="Experimental (Xiang et al., 2019)’)
ax4.plot(literatureLES.iloc[:,0], literatureLES.iloc[:,1],’--’,
label=’Numerical (Xiang et al., 2019)°’)
ax4.plot(fig4aOur.iloc[:,0], figdaOur.u,
label=’Presented Model’)

ax4.legend(loc="best’,fontsize=’x-large’)
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390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

406

407

408

409

410

412

413

414

416

417

418

419

420

#ax4.set_title(’Time Averaged x-velocity at 0.6H’

#

plt.
plt.
plt.
plt.
plt.

,fontsize=’xx-large’)

grid()

autoscale(enable=True, tight=True)

xlabel(’ (y-y0)/H’ ,fontsize=’x-large’)

ylabel(’u/U’ ,fontsize=’x-large’)
savefig(’preTreatment/results/Plot/validation. jpg’, bbox_inches=’tight’)

# Mass Decay

figm, axm = plt.subplots(figsize=(9,6), dpi=300)

axm.plot(tracerData.time,modelmass,label="Fitted Curve’,color=’r’)

axm.plot (tracerData.time,tracerData.tracerVol,label=’"Numerical’)

axm.legend(loc="best’ ,fontsize=’x-large’)

#axm.set_title(’Mass Ejection from Groyne Field Volume’

#

at =

,fontsize=’xx-large’)

AnchoredText (’C(t)=$C_{0}$$e " {-t/Td}$\n$k_{ajusted}$ = %.4f’ % k,
prop=dict(size=15), frameon=True,

loc=’lower left’)

axm.add_artist(at)

#axm.set_yscale(’log’)

plt.
plt.
plt.

plt
plt

autoscale(enable=True, tight=True)
grid()

xlabel(’t [s]’,fontsize=’x-large’)

.ylabel(’Concentration [non-dimensionall’,fontsize=’x-large’)

.savefig(’preTreatment/results/Plot/massDecay.jpg’, bbox_inches=’tight’)

# Mass Decay semilogy

figm, axm = plt.subplots(figsize=(9,6), dpi=300)

axm.semilogy(tracerData.time,modelmass,label="Fitted Curve’,color=’r’)

axm.semilogy(tracerData.time,tracerData.tracerVol,label=’Numerical’)

axm.legend(loc=’best’,fontsize=’x-large’)

#axm.set_title(’Mass Ejection from Groyne Field Volume’

#

,fontsize=’xx-large’)

115



132 at = AnchoredText (’C(t)=$C_{0}$$e~{-t/Td}$\n$k_{ajusted}$ = %.4f° % k,

133 prop=dict(size=15), frameon=True,

134 loc=’lower left’)

135 axm.add_artist(at)

136

137 axm.yaxis.set_major_formatter(ticker.FormatStrFormatter (’%.1£°))

35 axm.yaxis.set_minor_formatter(ticker.FormatStrFormatter(’%.1£’))

130 plt.autoscale(enable=True, tight=True)

1o plt.gridO

1 plt.xlabel(’t [s]’,fontsize=’x-large’)

112 plt.ylabel(’Concentration [non-dimensional]’,fontsize=’x-large’)

s plt.savefig(’preTreatment/results/Plot/massDecaySemilogY. jpg’,
bbox_inches=’tight’)

15 del figm, axm, at, fig4, ax4, axisNames, noTitle, figureName , plotTitle

17 # Mass Decay per Part
s figm, axm = plt.subplots(figsize=(9,6), dpi=300)
1190 for ii in regions:

150 axm.plot(interfaceTracer[ii] .time, interfaceTracer[ii] .tracer, label=ii)

152 axm.legend(loc=’best’,fontsize=’x-large’)

154 axm.yaxis.set_major_formatter(ticker.FormatStrFormatter(’%.1£°))

155 axm.yaxis.set_minor_formatter(ticker.FormatStrFormatter(’%.1£7))

156 plt.autoscale(enable=True, tight=True)

157 plt.gridO)

55 plt.xlabel(’t [s]’,fontsize=’x-large’)

159 plt.ylabel(’Concentration [non-dimensional]’,fontsize=’x-large’)

60 plt.savefig(’preTreatment/results/Plot/massDecayPerPart. jpg’,
bbox_inches=’tight’)

461

62 # Mass Decay per Part semilog y

163 figm, axm = plt.subplots(figsize=(9,6), dpi=300)

64 for ii in regions:

165 axm.semilogy(interfaceTracer[ii] .time,interfaceTracer[ii].tracer, label=ii)

466

w7 axm.legend(loc=’best’,fontsize=’x-large’)

168

o axm.yaxis.set_major_formatter (ticker.FormatStrFormatter(’%.3f’))
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18

19

20

21

22

axm.yaxis.set_minor_formatter (ticker.FormatStrFormatter(’%.3£f’))

plt.autoscale(enable=True, tight=True)

plt.grid(O

plt.xlabel(’t [s]’,fontsize=’x-large’)

plt.ylabel(’Concentration [non-dimensional]’,fontsize=’x-large’)

plt.savefig(’preTreatment/results/Plot/massDecayPerPartSemiLogY.jpg’,
bbox_inches=’tight’)

B.4.5 thickness.py

#!/usr/bin/env python3
# —-*x- coding: utf-8 -*-
#

# thickness.py

Copyright 2020 Luiz Oliveira

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA.

H OH OH OHF O HF O HF OH OH OH OHF O HF OH OH OH OH O H O H OH R

Data related to the mixing layer thickness is calculated in this module

import re

import numpy as np
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import pandas as pd

def clearLimits(df,x0,x1,y0,y1,20,z1):

#
#

Clear extra

This script

values inside variables.

uses user values of the bound coordinates

# —_————

df.

df

df.
df.
df.
df.

drop(df [df

.drop (df [df .
drop (df [df.
drop(df [df.
drop (df [df.
drop (df [df.

return df

.x < x0]

x1]
< yo0]
y1]
< z0]
z1]

N < < ™
A\ \Y%

N
A\

def dfRename(var, dtf):

names = [’x’,

.index,
.index,
.index,
.index,
.index,

.index,

7y), ’Z,]

names.extend (var)

dtf.columns =

names

def excelExport(var, name):

#
#

inplace=True)
inplace=True)
inplace=True)
inplace=True)
inplace=True)

inplace=True)

Creates and appends planes into an spreadsheet

# ————

def ui(planes, physicalVar, colNames, nColumns, first, last):

#
#
#

if not os.path.isfile(’preTreatment/results/Excel/’+name+’.x1lsx’):

with pd.ExcelWriter(’preTreatment/results/Excel/’+name+’.x1lsx’,

wb = openpyxl.Workbook()

wb.save(’preTreatment/results/Excel/’+name+’ .x1lsx’)

engine="openpyxl", mode=’a’) as writer:

for df _name, df in var.items(Q):

df .to_excel (writer, sheet name=df name, index=False)

Treats data in an ensemble averaging proceedure in the provided direction

# Local Variable Declaration
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80

81

82

88

89

90

91

92

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

varDict = dict()

kk = first * nColumns
startPos = first

stopPos = last * nColumns

11 =20

# Reads all the files and ensemble in a dict in that each ii is a plane
for ii in planes:

key = ii
int(re.sub(’\D’, ’’,key))

key
if key < startPos:
continue
if kk > stopPos:
break
for jj in range(nColumns):
11 = kk + jj
if 11%nColumns == 0: # number of columns
varDict[ii] = physicalVar.iloc[:,11]

else:

\
pd.concat([varDict[ii], physicalVar.iloc[:,11]], axis=1)

varDict [ii]

kk = kk + nColumns

dfRename (colNames, varDict[ii])
clearLimits(varDict[ii], 0.25, 0.50, 0, 0.45, 0, 0.1)

varDict[ii] = varDict[ii] .dropna(axis=0, how=’all’)

varDict[ii] = varDict[ii].dropna(axis=1, how=’all’)
varDict[ii] .drop(columns=[’y’,’v’, ’w’], inplace=True)

return varDict[’p007]

#
# Mixing Layer Thickness Calculation

# —_————

clearLimits(thickness[’raw’], 0.25, 0.50, 0, 0.45, 0, 0.1)

thickness[’raw’] .x = thickness[’raw’].x - 0.25

]
[y

numZPlanes

]
(00]

numXPlanes
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136

xMax

zMax

xtol

ztol

max (thickness[’raw’].x)

max (thickness[’raw’].z)

round (xMax/ ((numXPlanes + 1)*16), 6)
round (zMax/ ((numZPlanes + 1)*16), 6)

zz = zMax/(numZPlanes + 1)

aux =
for ii

XX

thickness[’raw’]
in range(numZPlanes) :

=0

nameZ = ’z’ + str(ii)

thickness[nameZ] = dict()

for jj in range(numXPlanes+2): #0Origin and Destination

-4

del ii

nameX = ’x’ + str(jj)
xlim = [xx-xtol, xx+xtol]
zlim = [zz-ztol, zz+ztoll
thickness[nameZ] [nameX] = dict()
aux2 = aux[np.logical_and(\
np.logical_and(aux[’z’] > z1im[0], aux[’z’] < zlim[1]),\
np.logical_and(aux[’x’] > x1im[0], aux[’x’] < x1im[1]))]
thickness[nameZ] [nameX] [’cav’] = aux2[aux2[’y’] > 0.3].mean()
thickness[nameZ] [nameX] [’channel’] = aux2[aux2[’y’] < 0.3].mean()

thickness[nameZ] [nameX] [’absGradient’] = max(aux2[’absGradient’])

xx = xx + xMax/(numXPlanes + 1)

= zz + zMax/(numZPlanes + 1)

, jj, aux, aux2, xx, zz, nameX, nameZ, xlim, zlim

# Organise data by planes

aux =

thickness

thickness = dict()

ZzZ = 2
for ii

XX

Max/ (numZPlanes + 1)
in range(numZPlanes) :

=0

nameZ = ’z’ + str(ii)

thickness[nameZ] = dict()

for jj in range(numXPlanes+2):

nameX = ’x’ + str(jj)

if ’Ue’ not in thickness[nameZ] .keys():
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153 thickness[nameZ] [’Ue’] =
aux [nameZ] [nameX] [’cav’] .to_frame() .transpose ()
154 thickness[nameZ] [’Um’] =
aux [nameZ] [nameX] [’ channel’] .to_frame() .transpose ()

155 thickness[nameZ] [’maxGrad’] = dict() #k: x coord v: maxGrad

156 else:

157 thickness[nameZ] [’Ue’] = thickness[nameZ] [’Ue’]\

158 .append (aux [nameZ] [nameX] [’ cav’].to_frame() .transpose(),\
159 ignore_index = True)

160 thickness[nameZ] [’Um’] = thickness[nameZ] [’Um’]\

161 .append (aux [nameZ] [nameX] [’ channel’] .to_frame() .transpose(),\
162 ignore_index = True)
163 thickness[nameZ] [’maxGrad’] [jj] = [aux[nameZ] [nameX] [’absGradient’]]

164 xx = xx + xMax/(numXPlanes + 1)

165 thickness[nameZ] [’Ue’] .drop(columns=[’y’,’absGradient’], inplace = True)
166 thickness[nameZ] [’Um’] .drop(columns=[’y’,’absGradient’], inplace = True)
167 ue = [’x’,’z’,’Ue’]
168 um = [’x’,’z’,’Um’]
169 thickness[nameZ] [’Ue’].columns = ue
170 thickness[nameZ] [’Um’] .columns = um
171 thickness[nameZ] [’U’] = thickness[nameZ] [’Ue’]
172 thickness[nameZ] [’U’] [’Um’] = thickness[nameZ] [’Um’] [’Um’]
173 thickness [nameZ] [’maxGrad’] =
pd.DataFrame (data=thickness[nameZ] [’maxGrad’])
174 thickness[nameZ] = thickness[nameZ] [’U’].join(thickness [nameZ] [’maxGrad’] .\

175 transpose())
176 colNames = [’x’,’z’,’Ue’,’Umn’, ’maxGrad’]
177 thickness[nameZ] .columns = colNames

178 zz = zz + zMax/(numZPlanes + 1)

is0 del ii, jj, ue, um, colNames

182 # Calculates and appends Ui

183 colNames = [’u’, ’v’, ’w’]

181 Uinterface = ui(uniqueRaw, UMean, colNames, 6, 0, 0)
155 Uinterface.x = Uinterface.x - 0.25

187 del colNames, UMean

180 zz = zMax/(numZPlanes + 1)

190 aux = Uinterface
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191

192

193

194

195

196

197

198

199

200

201

202

203

205

206

207

208

209

210

Uinterface = dict()
for ii in range(numZPlanes):
xx =0
nameZ = ’z’ + str(ii)
Uinterface[nameZ] = dict()
for jj in range(numXPlanes+2): #0Origin and Destination

nameX = ’x’ + str(jj)

x1lim [xx-xtol, xx+xtol]

zlim [zz-ztol, zz+ztol]

aux2 = aux[np.logical_and(\
np.logical_and(aux[’z’] > z1im[0], aux[’z’] < zlim[1]),\
np.logical_and(aux[’x’] > x1im[0], aux[’x’] < x1im[1]))]

Uinterface[nameZ] [nameX] = aux2.mean()

xx = xx + xMax/(numXPlanes + 1)

zz = zz + zMax/(numZPlanes + 1)

del ii, jj, aux, aux2, xx, zz, xtol, ztol, nameX, nameZ, xlim, zlim

# Organise data by planes
aux = Uinterface
Uinterface = dict()
zz = zMax/(numZPlanes + 1)
for ii in range(numZPlanes):
xx =0
nameZ = ’z’ + str(ii)
Uinterface[nameZ] = dict()
for jj in range(numXPlanes+2):
nameX = ’x’ + str(jj)
Uinterface[nameZ] [jj] = [aux[nameZ] [nameX] [’u’]]

xx = xx + xMax/(numXPlanes + 1)

Uinterface[nameZ] = pd.DataFrame(data=Uinterface[nameZ]) .transpose()
try:
thickness[nameZ] .insert(3,’Ui’ ,Uinterface[nameZ])
thickness[nameZ] .eval (’internalThickness = (Ui-Ue)/maxGrad’,
inplace=True)
thickness[nameZ] .eval (’externalThickness = (Um-Ui)/maxGrad’,
inplace=True)
thickness[nameZ] .eval(’totalThickness = internalThickness +

externalThickness’,\
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229

230

inplace=True)

thickness[nameZ] .eval(’deltalInPerW = internalThickness/QW’,
inplace=True)

thickness[nameZ] .eval (’deltaOutPerW = externalThickness/QW’,
inplace=True)

thickness[nameZ] .eval(’deltaTotalPerW = totalThickness/@W’,
inplace=True)

except:pass

zz = zz + zMax/(numZPlanes + 1)

del ii, jj, zz, aux, Uinterface, nameX, nameZ

# Save to Excel

excelExport (thickness, ’thickness’)

B.5 dataAnalysis Scripts

B.5.1 multipleSimulationImport.py

#!/usr/bin/env python3
# —*x- coding: utf-8 -*-

# Libraries

import os

import re

import pandas as pd

import openpyxl

files = os.listdir(’treatment’)

folder = os.path.abspath(’treatment’)

# Check for csv files
csvFiles = list(Q)
for item in files:
if re.search(’.\.csv’, item):

csvFiles.append(item)

# Check for xlsx files
xlsxFiles = list()
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60

61

for item in files:
if re.search(’.\.xlsx’, item):

x1lsxFiles.append(item)

# Check for txt files
txtFiles = 1list()
for item in files:
if re.search(’.\.txt’, item):

txtFiles.append(item)

# Import generated data

uniqueSim = list()
list O
xlsxVar = list()

uniqueVar
direction = list()
planes = list()

data = dict()

for item in csvFiles:

try:
sim = re.split("_", item) [0]
variableName = re.split("_", item) [1]
if variableName[-4:] == ’.csv’:

variableName = variableNamel[:-4]

if sim not in uniqueSim:
uniqueSim.append(sim)
if variableName not in uniqueVar:
uniqueVar.append(variableName)
try:
plane = re.split("_", item) [2]
axis = re.split("_", item) [4]
axis = axis[:-4] #Removes ’.csv’
if axis not in direction:
direction.append(axis)
if plane not in planes:
planes.append(plane)
del variableName, axis, plane
except:continue

except:continue

124



62 for item in xlsxFiles:

63 try:

64 sim = re.split("_", item) [0]

65 variableName = re.split("_", item) [1]
66 variableName = variableNamel[:-5]

67 if sim not in uniqueSim:

68 uniqueSim.append (sim)

69 if variableName not in xlsxVar:

70 x1lsxVar.append(variableName)

71 except:

72 continue

74 for item in txtFiles:

75 file = open(os.path.join(folder, item), "r")
6 for line in file:

77 if re.search(’ktracer.’, line):

78 words = line.split()

79 ktracer = float(words[2])

80 continue

81 elif re.search(’kvelocity.’, line):

82 words = line.split()

83 kvelocity = float(words[2])

84

85 d = {’Simulation’: [re.split("_", item)[0]], ’kTracer’: [ktracer],

’kVelocity’: [kvelocity]l}

86 df = pd.DataFrame(data=d)

88 if ’massExchange’ in locals() or ’massExchange’ in globals():
89 massExchange = massExchange.append(df, ignore_index=True)
90 else:

91 massExchange = df

92
93 del item, d, df, words, line

94 del ktracer, kvelocity

o6 tracerData = dict()

or for var in uniqueVar:

98 if var != ’tracerData.csv’:
99 data[var] = dict()

100 for sim in uniqueSim:

101 datal[var] [sim] = dict()
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102 if var == ’tracerData’:

103 file = sim+"_tracerData.csv"

104 pathToFile = os.path.join(folder, file)

105 if os.path.exists(pathToFile):

106 tracerDatalsim] = pd.read_csv(pathToFile, index_col=0,
107 float_precision="high")

108 else:

109 for plane in planes:

110 datalvar] [sim] [plane] = dict()

111 for axis in direction:

112 file = sim+"_"+var+"_"+plane+" _Dir_"+axis+".csv"

113 pathToFile = os.path.join(folder, file)

114 if os.path.exists(pathToFile):

115 datal[var] [sim] [plane] [axis] = pd.read_csv(pathToFile,\

116 index_col=0, float_precision="high")

115 thickness = dict()

119 for sim in uniqueSim:

120 file = sim+"_thickness.xlsx"
121 pathToFile = os.path.join(folder, file)
122 if os.path.exists(pathToFile):

123 thickness[sim] = pd.read_excel(pathToFile)

125 #del files, txtFiles, file, csvFiles, plane, var, sim, axis, pathToFile,

direction

B.5.2 multipleSimulationProcess.py

1 #!/usr/bin/env python3

N

# —*- coding: utf-8 -*-

i import os
5 1import openpyxl

¢ 1import pandas as pd

s # Append densities to mass exchange

9 try:

10 densities = pd.read_csv(os.path.join(folder,’densities.csv’),index_col=0)
11 except:

12 print ("Imported Simulations:\n",uniqueSim)
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print("Please enter the vegetation density of each simulation:")

density = dict()
for sim in uniqueSim:
density[sim] = float(input(sim+":"))
densities = pd.DataFrame.from_dict(density, orient = ’index’)
densities.reset_index(level=0, inplace=True)
colName = [’Simulation’,’Density’]
densities.columns = colName
densities.to_csv(os.path.join(folder, ’densities.csv’))

del sim, colName

try:
massExchange.insert(1l,’Veg. Density’,densities[’Density’])

except:pass

massExchange.style.format({’Veg. Density’: "{:.4%}"})

massExchange.sort_values(by=[’Veg. Density’], inplace=True)

massExchange[’Case’] = range(len(massExchange))

# Retrieve mean residence time
massExchange.eval (’mrtTracer = 1/kTracer’, inplace=True)

massExchange.eval (’mrtVelocity = 1/kVelocity’, inplace=True)

fileName = os.path.join(folder, ’results/CSV/massExchange.xlsx’)

massExchange.to_excel(fileName, index=False)

densities.sort_values(by=[’Density’], inplace=True)
densities.reset_index(drop=True, inplace=True)

del fileName

# Mixing Layer Thickness
try:
for sim in uniqueSim:

thickness[sim] .eval(’xL = x/0.25’, inplace=True)

thickness[sim] .rename (columns={’xL’:’ (x-x0)/L’}, inplace=True)

except:pass

B.5.3 multipleSimulationPlot.py
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10

11

12

13

15

16

17

18

26

27

28

29

30

#!/usr/bin/env python3

—*- coding: utf-8 —*-
multipleSimulationPlot.py
Copyright 2020 Luiz Oliveira

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
# MA 02110-1301, USA.
#

#

Data is imported from multipleSimulationProcess.py and ploted into jpg figures

# Libraries
import os

import matplotlib.pyplot as plt

#plt.rcParams.update ({

# "text.usetex": True,
# "font.family": "sans-serif",
# "font.sans-serif": ["Helvetica"]})

figFolder = os.path.abspath(’treatment/results/Plots’)
selFigFolder = os.path.abspath(’treatment/results/SelectPlots’)
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def plotVar(varName, axis, title, col, admensional):

# Runs through all plots from a variable and plots it

for plane in planes:
anySim = uniqueSim[0]
for direction in datal[varName] [anySim] [plane].keys():
fig, ax = plt.subplots(figsize=(9,6), dpi=300)
for sim in uniqueSim:
df = datal[varName] [sim] [plane] [direction]
1bl = densities.loc[densities[’Simulation’] == sim]
1bl = 1bl[’Density’].iloc[0]
ax.plot(df.iloc[:,0], df.iloc[:,col]/admensional,
label="{:.47%}’ .format(1bl))

ax.legend(loc=’best’,fontsize=’x-large’)
if title != "None":

ax.set_title(title,fontsize=’xx-large’)
if direction == ’x’:

axis[0] = ’ (x-x0)/L’

elif direction == ’y’:
axis[0] = ’(y-yo)/H’
elif direction == ’z’:

axis[0] = ’z/H’

plt.grid()

plt.autoscale(enable=True, tight=True)
plt.xlabel(axis[0] ,fontsize=’x-large’)
plt.ylabel(axis[1],fontsize=’x-large’)

# Save the image in memory in JPG format

figName = varName+’_’+plane+’ Dir_’+direction+’.jpg’
figName = os.path.join(figFolder, figName)
plt.savefig(figName, box_inches=’tight’)

plt.close()

#

# Variables

# ———
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s2 noTitle = "None"
83

s4a  ## RMean

s5  axisNames [’ (x-x0)/L’,’Rmag/U2°]

s¢ plotTitle ’Time Averaged Reynolds Stresses Magnitude’

s7 plotVar(’RMean’, axisNames, noTitle, 7, U*x2)

so  ## UMean

90 axisNames [’ (x-x0)/L’,’uMag/U’]
o1 plotTitle = ’Time Averaged velocity magnitude’

92 plotVar(’UMean’, axisNames, noTitle, 4, U)

[’ (x-x0)/L’,’u/U’]

95 plotTitle = ’Time Averaged velocity magnitude’

94 axisNames

o6 plotVar(’UMean’, axisNames, noTitle, 1, U)

97

9s axisNames [’ (x-x0)/L’,’v/U’]

90 plotTitle ’Time Averaged velocity magnitude’
o0 plotVar(’UMean’, axisNames, noTitle, 2, U)

101

102 axisNames [’ (x-x0)/L’,’w/U’]

’Time Averaged velocity magnitude’

103 plotTitle
10+ plotVar(’UMean’, axisNames, noTitle, 3, U)

105

16 ## lambVectorMean

07 axisNames = [’ (x-x0)/L’,’lambVectorMag’]

108 plotTitle = ’Time Averaged Reynolds Stresses Magnitude’
100 plotVar(’lambVectorMean’, axisNames, noTitle, 4, 1)

110

111 ## pMean

112 axisNames [’ (x-x0) /L’ ,r’ (pL) / ($\rho$ U)’]
113 plotTitle = ’Time Averaged Reynolds Stresses Magnitude’

112 plotVar(’pMean’, axisNames, noTitle, 1, L/(RHO*U))

116 ## vorticity
117 axisNames = [’z/H’, ’vorticity [1/s]’]
118 plotTitle = ’Time Averaged vorticity magnitude’

119 plotVar(’vorticityMean’, axisNames, noTitle, 4, 1)

121 # ====

122 # Mass Exchange
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128

129

130

131

132

133

134

135

137

138

139

140

141

142

143

144

146

147

148

149

150

159

160

#
fig, ax = plt.subplots(figsize=(9,6), dpi=500)

axl = ax.twinx()

#for sim in uniqueSim:
# case = massExchange.loc[massExchange[’Simulation’] == sim]

# vDensity = case[’Veg. Density’].iloc[0]*100

# caseName ’Case ’+str(densities.loc[densities[’Simulation’] ==

sim] .index [0])

1nl = ax.plot(massExchange[’Veg. Density’]*100, massExchange[’kTracer’], ’bo’,
label=r’$k_{DZ}$’, 1lw=2, ms=6)
1n2 = axl.plot(massExchange[’Veg. Density’]*100, massExchange[’mrtTracer’],

'ks?,

label=r’$T_{DZ}$’, 1lw=2, ms=5)

# Primary Axis
#ax.set_xlabel(’Vegetation Density [%]’,fontsize=’x-large’)
#ax.set_ylabel(’Mass Exchange Coefficient
[non-dimensional] ’,fontsize=’x-large’)
ax.set_xlabel(’a [%]’,fontsize=’x-large’)
ax.set_ylabel(’k [non-dimensional]’,fontsize=’x-large’)

ax.set_x1im(0, 11)

# Secondary Axis

axl.set_ylabel(r’$T_{DZ}$ [s]’,fontsize=’x-large’)

plt.autoscale(enable=True, tight=True)

# Legend

Ins = 1nl+1ln2

labs = [1l.get_label() for 1 in 1lmns]
ax.legend(lns, labs, loc=7)

#plt.legend(bbox_to_anchor=(1.15,1), loc="upper left")
#plt.tight_layout(rect=[0,0,0.75,1])

#ax.set_title(’Mass Exchange variation through all vegetation densities’,
# fontsize=’xx-large’)

#plt.subplots_adjust(right=0.7)

# Save the image in memory in JPG format
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161

162

163

164

165

166

167

168

169

183

184

185

186

188

189

190

191

192

193

194

195

196

197

198

199

200

201

figName = ’massExchange. jpg’

figName = os.path.join(selFigFolder, figName)
plt.savefig(figName, box_inches=’tight’)

plt.close()

del 1ns, 1nl, 1n2, ax, fig, labs

#

# Tracer decay

#

fig, ax = plt.subplots(figsize=(9,6), dpi=500)

1n0 = ax.plot(tracerDatal[’x068°][’Time’],
tracerData[’x068’] [’Numerical’],
’-> label=’Case 0’, lw=2, ms=6)
1nl = ax.plot(tracerData[’x062°][’Time’],
tracerData[’x062’] [’Numerical’],
’--> label=’Case 1’, 1lw=2, ms=6)
1n2 = ax.plot(tracerDatal[’x063’][’Time’],
tracerData[’x063’] [’Numerical’],
’-.?, label=’Case 2’, lw=2, ms=6)
1n3 = ax.plot(tracerDatal[’x064’][’Time’],
tracerDatal[’x064’] [’Numerical’],
’:7, label=’Case 3’, lw=2, ms=6)
1nd4 = ax.plot(tracerDatal[’x065’][’Time’],
tracerData[’x065°] [’Numerical’],
’— .7, label=’Case 4’, lw=2, ms=6)
1n5 = ax.plot(tracerDatal[’x066°][’Time’],
tracerDatal[’x066°] [’Numerical’],
’—->_ label=’Case 5’, lw=2, ms=6)
1n6 = ax.plot(tracerDatal[’x067°][’Time’],
tracerData[’x067’] [’Numerical’],
’—-> label=’Case 6’, lw=2, ms=6)
1n7 = ax.plot(tracerData[’x115°][’Time’],
tracerData[’x115’] [’Numerical’],
’—.7, label=’Case 7’, lw=2, ms=6)
1n8 = ax.plot(tracerDatal[’x116°][’Time’],
tracerDatal[’x116°] [’Numerical’],
’:7, label=’Case 8’, lw=2, ms=6)
1n9 = ax.plot(tracerDatal[’x117’][’Time’],

tracerDatal[’x117’] [’Numerical’],
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203

204

205

206

207

208

209

’-.?, label=’Case 9’, lw=2, ms=6)
1n10 = ax.plot(tracerDatal[’x115°][’Time’],
tracerDatal[’x115°] [’Numerical’],

’—-2  label=’Case 10’, lw=2, ms=6)

# Primary Axis
ax.set_xlabel(’Time [s]’,fontsize=’x-large’)

ax.set_ylabel(’Concentration’,fontsize=’x-large’)

plt.autoscale(enable=True, tight=True)
plt.grid(O

# Legend

Ins = 1n0+1n1+1n2+1n3+1n4+1n5+1n6+1n7+1n8+1n9+1ni0
labs = [1l.get_label() for 1 in lns]

ax.legend(lns, labs)

# Save the image in memory in JPG format

figName ’tracerDecay. jpg’

figName = os.path.join(selFigFolder, figName)
plt.savefig(figName, box_inches=’tight’)
plt.close()

del 1lns, ax, fig, labs

#

# Tracer decay (Semilog Y)

#

fig, ax = plt.subplots(figsize=(9,6), dpi=500)

1n0 = ax.semilogy(tracerDatal[’x068’][’Time’],
tracerData[’x068’] [’Numerical’],

’-> label=’Case 0’, lw=2, ms=6)

1nl = ax.semilogy(tracerData[’x062’] [’Time’],
tracerData[’x062’] [’Numerical’],

’--> label=’Case 1’, 1lw=2, ms=6)

1n2 = ax.semilogy(tracerData[’x063’][’Time’],
tracerDatal[’x063°] [’Numerical’],

’—.?, label=’Case 2’, lw=2, ms=6)

1n3 = ax.semilogy(tracerDatal[’x064’][’Time’],

tracerDatal[’x064’] [’Numerical’],
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243 >:?, label=’Case 3’, lw=2, ms=6)
221 1lnd = ax.semilogy(tracerDatal[’x065’][’Time’],

245 tracerData[’x065°] [’Numerical’],
246 ’-.7, label=’Case 4’, lw=2, ms=6)
247 1nb = ax.semilogy(tracerDatal[’x066’] [’Time’],
248 tracerData[’x066°] [’Numerical’],
249 ’——2  label=’Case 5’, lw=2, ms=6)

250 1n6 = ax.semilogy(tracerDatal[’x067’][’Time’],
251 tracerData[’x067’] [’Numerical’],
252 ’--> label=’Case 6’, lw=2, ms=6)
255 1n7 = ax.semilogy(tracerData[’x115°] [’Time’],
254 tracerData[’x115’] [’Numerical’],
255 ’-.’, label=’Case 7’, lw=2, ms=6)
256 1n8 = ax.semilogy(tracerDatal[’x116°][’Time’],
257 tracerDatal[’x116°] [’Numerical’],
258 ’:7, label=’Case 8’, lw=2, ms=6)
250 1n9 = ax.semilogy(tracerDatal[’x117’][’Time’],
260 tracerDatal[’x117’] [’Numerical’],
261 ’—.7, label=’Case 9’, lw=2, ms=6)
262 1n10 = ax.semilogy(tracerDatal[’x115°][’Time’],
263 tracerData[’x115’] [’Numerical’],
264 ’—-2  label=’Case 10’, lw=2, ms=6)
265

266 # Primary Axis

267 ax.set_xlabel(’Time [s]’,fontsize=’x-large’)

26 ax.set_ylabel(’Concentration’,fontsize=’x-large’)

270 plt.autoscale(enable=True, tight=True)
271 plt.grid()

273 # Legend

274 1ns = 1n0+1nl1+1n2+1n3+1n4+1n5+1n6+1n7+1n8+1n9+1ni0
275 labs = [l.get_label() for 1 in 1lns]

276 ax.legend(lns, labs)

278 # Save the image in memory in JPG format

270 figName ’tracerDecaySemilLogY. jpg’

2s0 figName = os.path.join(selFigFolder, figName)

251 plt.savefig(figName, box_inches=’tight’)
252 plt.close()
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289

290

291

292

293

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

316

317

318

319

320

del 1lns, ax, fig, labs

#

# X-Velocity at XY PLANE versus (y-y0)/H Unique

#

fig, ax = plt.subplots(figsize=(9,6), dpi=500)

1n0 = ax.plot(data[’UMean’] [’x068°]1[’p17°]1[’y’]1[’ (y-y0)/H’],
data[’UMean’] [’x068°1 [’p17°]1[’y’1[’u’]1/U,
’-> label=’Case 0’, lw=2, ms=6)

1nl = ax.plot(data[’UMean’] [’x062°]1[’p17’]1[’y’1[’ (y-y0)/H’],
data[’UMean’] [’x062°] [’p17°]1 [’y’]1 [’u’]1/U,
’——7> label=’Case 1’, lw=2, ms=6)

1n4 = ax.plot(data[’UMean’] [’x065°]1[’p17’]1[’y’]1[’ (y-y0)/H’],
data[’UMean’] [’x065°] [’p17°]1 [’y’]1 [’u’1/U,
’— .7, label=’Case 4’, lw=2, ms=6)

1n7 = ax.plot(data[’UMean’] [’x115°]1[’p17’]1[’y’]1[’ (y-y0)/H’],
datal[’UMean’] [’x115°] [’p17°]1 [’y’]1[’u’]/U,
’— .7, label=’Case 7’, lw=2, ms=6)

1n10 = ax.plot(datal[’UMean’][’x115°][’p17’]1[’y’1[’ (y-y0)/H’],
datal[’UMean’] [’x115°]1 [’p17°]1 [’y’1[°uw’1/U,
’:7, label=’Case 10’, lw=2, ms=6)

# Primary Axis
ax.set_xlabel(r’ (y-$y_0$)/H’ ,fontsize=’x-large’)

ax.set_ylabel(’u/U’,fontsize=’x-large’)

plt.autoscale(enable=True, tight=True)
plt.grid(Q

# Legend

Ins = 1n0+1nl+1n4+1n7+1ni0

labs = [1l.get_label() for 1 in 1lnsl]
ax.legend(lns, labs, loc=7)

# Save the image in memory in JPG format

figName ’velXYPlane. jpg’

figName = os.path.join(selFigFolder, figName)
plt.savefig(figName, box_inches=’tight’)
plt.close()
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326

331

332

333

334

335

336

338

339

340

341

342

343

344

345

346

347

348

349

350

359

360

361

362

363

364

365

del 1

ns, ax, fig, labs

#

# Y-Velocity at Interface versus z/H Unique

#

fig, ax = plt.subplots(figsize=(9,6), dpi=500)

1n0 = ax.plot(data[’UMean’] [’x068°]1[’p00°]1[’z’1[’v’]/U,
data[’UMean’] [’x068°] [’p00°] [’z’] [’z/H’],
’-7 label=’Case 0’, lw=2, ms=6)

1Inl = ax.plot(data[’UMean’][’x062’][’p00’]1[’z’]1[’v’]/U,
data[’UMean’] [’x062°] [’p00°] [’z’] [’z/H’],
’——7> label=’Case 1’, lw=2, ms=6)

#1n2 = ax.plot(data[’UMean’] [’x063°’][’p00’]1[’z’]1[’v’]1/U,

# data[’UMean’] [’x063°] [’p00°][’z’][’z/H’],

# ’—.?, label=’Case 2’, lw=2, ms=6)

#1n3 = ax.plot(data[’UMean’] [’x064°][’p00°]1[’z’1[’v’]/U,

# data[’UMean’] [’x064°] [’p00°]1[’z’]1[’z/H’],

# >:>  label=’Case 3’, lw=2, ms=6)

1n4 = ax.plot(data[’UMean’] [’x065°][’p00°]1[’z’]1[’v’]/U,
data[’UMean’] [’x065°] [’p00°]1[’z’]1[’z/H’],
’-.?, label=’Case 4’, lw=2, ms=6)

#1nb = ax.plot(datal[’UMean’] [’x066°][’p00°]1[’z’]1[’v’]/U,

# data[’UMean’] [’x066°][’p00°]1[’z’]1[’z/H’],

# ’-—2 label=’Case 5’, lw=2, ms=6)

#1n6 = ax.plot(datal[’UMean’] [’x067°][’p00°]1[°z’]1[’v’]1/U,

# data[’UMean’] [’x067°]1[’p00°]1[’z’]1[’z/H’],

# ’-—2 label=’Case 6°’, lw=2, ms=6)

1n7 = ax.plot(data[’UMean’][’x115°]1[’p00°]1[’z’1[’v’]/U,
data[’UMean’] [’x115°]1 [’p00°] [’z’] [’z/H’],
’— .7, label=’Case 7’, lw=2, ms=6)

#1n8 = ax.plot(data[’UMean’][’x116°][’p00’]1[’z’]1[’v’]1/U,

# data[’UMean’] [’x116°]1[’p00°]1[’z’]1[’z/H’],

# >:7, label=’Case 8’, lw=2, ms=6)

#1n9 = ax.plot(data[’UMean’] [’x117’]1[’p00°]1[°z’]1[’v’]/U,

# datal[’UMean’] [’x117°]1 [’p00°]1 [’z’]1[’z/H’],

# ’— .7 label=’Case 9’, lw=2, ms=6)

1n10 = ax.plot(datal[’UMean’][’x115°][’p00°][°z’]1[’v’]1/U,

data[’UMean’] [’x115°][’p00°]1 [’2z’]1[’=z/H"],
’:?, label=’Case 10’, lw=2, ms=6)
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366 # Primary Axis

367 ax.set_xlabel(’v/U’,fontsize=’x-large’)
363 ax.set_ylabel(’z/H’,fontsize=’x-large’)
369

370 plt.autoscale(enable=True, tight=True)
sm1 plt.grid()

3713 # Legend

374 1lns = 1n0+1nl+1n4+1n7+1nl0

375 labs = [l.get_label() for 1 in 1ns]
376 ax.legend(lns, labs, loc=7)

378 # Save the image in memory in JPG format

sro figName = ’yVelatInterfaceZAxis.jpg’

ss0o figName = os.path.join(selFigFolder, figName)
ss1 plt.savefig(figName, box_inches=’tight’)

32 plt.close()

334 del 1lns, ax, fig, labs

ss7 # Y-Velocity at Interface versus z/H 1

388 #

sso fig, ax = plt.subplots(figsize=(9,6), dpi=500)

390

301 1n0 = ax.plot(datal[’UMean’] [’x068°][’p00°]1[’z’]1[’v’]/U,
392 data[’UMean’] [’x068°] [’p00°] [’z’] [’z/H’],

393 ’-> label=’Case 0’, 1lw=2, ms=6)
301 1nl = ax.plot(datal[’UMean’] [’x062°] [’p00°]1[’z’]1[’v’]/U,
305 data[’UMean’] [’x062°] [’p00°] [’z’] [’z/H’],

396 ’-—>  label=’Case 1’, 1lw=2, ms=6)

307 1n2 = ax.plot(datal[’UMean’][’x063°][’p00°]1[’z’]1[’v’]/U,
398 data[’UMean’] [’x063°] [’p00°] [’z’] [’z/H’],
399 ’-.?, label=’Case 2’, lw=2, ms=6)

100 1n3 = ax.plot(datal[’UMean’][’x064°][’p00°]1[’z’]1[’v’]/U,
401 data[’UMean’] [’x064°] [’p00°] [’2z°]1[’z/H"],
402 ’:7, label=’Case 3’, lw=2, ms=6)

103 1n4 = ax.plot(datal[’UMean’][’x065°][’p00°]1[°z’]1[’v’]/U,
104 data[’UMean’] [’x065°] [’p00’]1[’z’]1[’z/H’],
405 ’—.?, label=’Case 4’, lw=2, ms=6)

w06 1nb = ax.plot(datal[’UMean’][’x066°][’p00°]1[’z’]1[’v’]/U,
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407

408

109

410

411

412

413

414

439

440

441

442

# Primar
ax.set_x

ax.set_y

plt.auto
plt.grid

# Legend
Ilns = 1n
labs = [

ax.legen

# Title
plt.titl

# Save t
figName
figName
plt.save
plt.clos

del 1mns,

data[’UMean’] [’x066°] [’p00°] [’z’] [’z/H’],
’—->, label=’Case 5’, lw=2, ms=6)

y Axis

label(’v/U’ ,fontsize=’x-large’)
label(’z/H’ ,fontsize=’x-large’)
scale(enable=True, tight=True)

O

0+1nl1+1n2+1n3+1n4+1nb
l.get_label() for 1 in lns]
d(lns, labs, loc=7)

e(’a)’, loc=’left’, fontweight=’bold’)

he image in memory in JPG format

’yVelatInterfaceZAxisl. jpg’

= os.path. join(selFigFolder, figName)
fig(figName, box_inches=’tight’)
eQ

ax, fig, labs

#

# Y-Velocity at Interface versus z/H 2

#

fig, ax = plt.subplots(figsize=(9,6), dpi=500)

1n5 = ax.plot(data[’UMean’] [’x066°][’p00°1[’z’]1[’v’]/U,
datal[’UMean’] [’x066°] [’p00°] [’2z°]1[’z/H"],
’-7 label=’Case 5’, lw=2, ms=6)

1n6 = ax.plot(data[’UMean’] [’x067°]1[’p00°]1[°z’][’v’]/U,
data[’UMean’] [’x067°] [’p00°]1[’z’1[’=z/H’],
’——7, label=’Case 6°’, lw=2, ms=6)

1n7 = ax.plot(datal[’UMean’] [’x115°][’p00°]1[’z’]1[’v’]/U,
data[’UMean’] [’x115°1[’p00°]1[’z’1[’z/H"],
’-.?, label=’Case 7’, lw=2, ms=6)

1n8 = ax.plot(datal[’UMean’] [’x116°]1[’p00°]1[°z’]1[’v’]1/U,
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448 data[’UMean’] [’x116°][’p00°]1[’z’]1[’z/H"],
449 ’:?, label=’Case 8’, lw=2, ms=6)

50 1n9 = ax.plot(datal[’UMean’][’x117’][’p00°]1[’z’]1[’v’]/U,
451 data[’UMean’] [’x117°]1 [’p00°] [’z’] [’=z/H’],

452 ’-.7, label=’Case 9’, 1lw=2, ms=6)

155 1n10 = ax.plot(data[’UMean’] [’x115°]1[’p00°]1[’z’]1[’v’]/U,
454 data[’UMean’] [’x115°]1 [’p00°] [’z’] [’z/H’],
455 ’——>  label=’Case 10’, lw=2, ms=6)

457 # Primary Axis

155 ax.set_xlabel(’v/U’,fontsize=’x-large’)
159 ax.set_ylabel(’z/H’,fontsize=’x-large’)
160

161 plt.autoscale(enable=True, tight=True)
wo plt.grid()

163

164 # Legend

165 1lns = 1nb+1n6+1n7+1n8+1n9+1nl0

w6 labs = [l.get_label() for 1 in lns]

167 ax.legend(lns, labs, loc=7)

168

swo # Title

w70 plt.title(’b)’, loc=’left’, fontweight=’bold’)

a2 # Save the image in memory in JPG format

73 figName = ’yVelatInterfaceZAxis2.jpg’

172 figName = os.path.join(selFigFolder, figName)
475 plt.savefig(figName, box_inches=’tight’)

176 plt.close()

w7s del 1lns, ax, fig, labs

480 #

w51 # Y-Velocity at Interface versus (x-x0)/L Unique

482 # ====

155 fig, ax = plt.subplots(figsize=(9,6), dpi=500)

155 1n0 = ax.plot(datal[’UMean’] [’x068°][’p00°][’x’]1 [’ (x-x0)/L’],
486 data[’UMean’] [’x068°] [’p00°] [’x’]1[’v’]1/U,

487 ’-> label=’Case 0’, lw=2, ms=6)

1ss 1nl = ax.plot(datal[’UMean’][’x062°][’p00°][’x’]1[’ (x-x0)/L’],
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489

490

191

192

493

494

495

196

197

498

499

500

501

502

503

504

505

506

508

509

510

511

519

520

datal[’UMean’] [’x062°] [’p00°]1 [’x’]1[’v’]/U,
’——2  label=’Case 1’, lw=2, ms=6)

1n2 = ax.plot(data[’UMean’] [’x063°][’p00°] [’x’]1 [’ (x-x0)/L’],
data[’UMean’] [’x063°] [’p00°] [’x’] [’v’]1/U,
’-.7, label=’Case 2’, 1lw=2, ms=6)

1n3 = ax.plot(data[’UMean’] [’x064°]1[’p00°] [’x’]1 [’ (x-x0)/L’],
data[’UMean’] [’x064°] [’p00°] [’x’]1 [’v’]1/U,
’:7, label=’Case 3’, lw=2, ms=6)

1n4 = ax.plot(data[’UMean’][’x065°][’p00°][’x’] [’ (x-x0)/L’],
data[’UMean’] [’x065°] [’p00°] [’x’1[’v’]/U,
’-.?, label=’Case 4’, 1lw=2, ms=6)

1n5 = ax.plot(data[’UMean’][’x066°][’p00°][’x’] [’ (x-x0)/L’],
datal[’UMean’] [’x066°] [’p00°]1 [’x’1[’v’]1/U,
’——7 label=’Case 5’, lw=2, ms=6)

1n6 = ax.plot(datal[’UMean’] [’x067°][’p00°][’x’][’ (x-x0)/L’],
data[’UMean’] [’x067°] [’p00°] [’x’]1[’v’]1/U,
’——2  label=’Case 6’, lw=2, ms=6)

1n7 = ax.plot(data[’UMean’] [’x115°]1[’p00°] [’x’] [’ (x-x0) /L],
datal[’UMean’] [’x115°] [’p00°]1 [’x’]1[’v’]/U,
’-.?, label=’Case 7’, lw=2, ms=6)

1n8 = ax.plot(data[’UMean’][’x116°][’p00°]1[’x’][’ (x-x0)/L’],
data[’UMean’] [’x116°] [’p00°] [’x’] [’v’]1/U,
>:?, label=’Case 8’, lw=2, ms=6)

1n9 = ax.plot(data[’UMean’][’x117’]1[’p00°]1[’x’] [’ (x-x0)/L’],
data[’UMean’] [’x117°]1 [’p00°] [’x’]1 [’v’]1/U,
’— .7, label=’Case 9’, lw=2, ms=6)

1n10 = ax.plot(datal[’UMean’] [’x115°]1[’p00°][’x’] [’ (x-x0)/L’],
data[’UMean’] [’x115°][’p00°]1[’x’]1[’v’]1/U,
’——2  label=’Case 10’, lw=2, ms=6)

# Primary Axis
ax.set_xlabel(’ (x-x0) /L’ ,fontsize=’x-large’)

ax.set_ylabel(’v/U’ ,fontsize=’x-large’)

plt.autoscale(enable=True, tight=True)
plt.grid()

# Legend

Ins = 1n0+1ni1+1n2+1n3+1n4+1n5+1n6+1n7+1n8+1n9+1ni0
labs = [1l.get_label() for 1 in 1lns]

ax.legend(lns, labs)
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530

531 # Save the image in memory in JPG format

ss2  figName ’yVelatInterfaceXAxis. jpg’

533 figName = os.path.join(selFigFolder, figName)
531 plt.savefig(figName, box_inches=’tight’)

535 plt.close()

s37 del 1lns, ax, fig, labs

539 #

sa0 # Y-Velocity at Interface versus (x-x0)/L 1
541 # ====

522 fig, ax = plt.subplots(figsize=(9,6), dpi=500)

524 1n0 = ax.plot(datal[’UMean’] [’x068°][’p00°][’x’]1 [’ (x-x0)/L’],
545 data[’UMean’] [’x068°] [’p00°] [’x’]1[’v’]1/U,

546 ’-» label=’Case 0’, lw=2, ms=6)

517 1nl = ax.plot(datal[’UMean’] [’x062°]1[’p00°][’x’]1 [’ (x-x0)/L’],
548 data[’UMean’] [’x062°] [’p00°]1 [’x’]1[’v’]/U,

549 ’--> label=’Case 1’, 1lw=2, ms=6)

550 1n2 = ax.plot(datal[’UMean’] [’x063°][’p00°] [’x’] [’ (x-x0)/L’],
551 data[’UMean’] [’x063°] [’p00°] [’x’] [’v’]1/U,

552 ’-.7, label=’Case 2’, 1lw=2, ms=6)

555 1n3 = ax.plot(data[’UMean’] [’x064°][’p00°]1[’x’]1[’ (x-x0)/L’],
554 data[’UMean’] [’x064°] [’p00°] [’x’]1 [’v’]1/U,

555 ’:?, label=’Case 3’, lw=2, ms=6)

556 1nd = ax.plot(datal[’UMean’][’x065°]1[’p00°]1[’x’]1[’ (x-x0)/L’],
557 data[’UMean’] [’x065°] [’p00°] [’x’1[’v’]/U,

558 ’—.7, label=’Case 4’, lw=2, ms=6)

550 1nb = ax.plot(datal[’UMean’] [’x066°][’p00°][°x°]1 [’ (x-x0)/L’],
560 datal[’UMean’] [’x066°] [’p00°] [’x’]1[’v’]/U,

561 ’—-7, label=’Case 5’, lw=2, ms=6)

562

563 # Primary Axis

561 ax.set_xlabel(’ (x-x0)/L’ ,fontsize=’x-large’)

565 ax.set_ylabel(’v/U’,fontsize=’x-large’)

566

567 plt.autoscale(enable=True, tight=True)

s6s plt.grid()

569

s7o # Legend
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580

598

599

600

601

602

603

604

605

606

607

608

609

610

611

Ins = 1n0+1nl+1n2+1n3+1n4+1nb
labs = [1l.get_label() for 1 in 1ns]
ax.legend(lns, labs)

# Title
plt.title(’a)’, loc=’left’, fontweight=’bold’)

# Save the image in memory in JPG format

figName ’yVelatInterfaceXAxisl. jpg’

figName = os.path.join(selFigFolder, figName)
plt.savefig(figName, box_inches=’tight’)
plt.close()

del 1ns, ax, fig, labs

#
# Y-Velocity at Interface versus (x-x0)/L 2

#
fig, ax = plt.subplots(figsize=(9,6), dpi=500)

1n5 = ax.plot(data[’UMean’][’x066°] [’p00°]1[’x’][’ (x-x0)/L’],
data[’UMean’] [’x066°] [’p00°] [’x’] [’v’]1/U,
’-7 label=’Case 5’, lw=2, ms=6)

1n6 = ax.plot(data[’UMean’][’x067’][’p00°][’x’] [’ (x-x0)/L’],
data[’UMean’] [’x067°] [’p00°] [’x’]1 [’v’]1/U,
’——7, label=’Case 6°’, lw=2, ms=6)

1n7 = ax.plot(data[’UMean’][’x115°]1[’p00°][’x’] [’ (x-x0)/L’],
data[’UMean’] [’x115°] [’p00°] [’x’1[’v’]1/U,
’—.7, label=’Case 7’, lw=2, ms=6)

1n8 = ax.plot(datal[’UMean’][’x116°][’p00°]1[’x’] [’ (x-x0)/L’],
data[’UMean’] [’x116°]1[’p00°]1[’x’1[’v’]1/U,
’:7, label=’Case 8’, lw=2, ms=6)

1n9 = ax.plot(datal[’UMean’] [’x117°]1[’p00°] [’x’] [’ (x-x0)/L"],
data[’UMean’] [’x117°]1 [’p00°] [’x’]1[’v’]1/U,
’-.?, label=’Case 9’, lw=2, ms=6)

1n10 = ax.plot(datal[’UMean’] [’x115°][’p00°]1[’x’] [’ (x-x0)/L’],
data[’UMean’] [’x115°] [’p00°] [’x’][’v’]/U,
’—-> label=’Case 10’, lw=2, ms=6)

# Primary Axis

ax.set_xlabel(’ (x-x0)/L’ ,fontsize=’"x-large’)
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612 ax.set_ylabel(’v/U’,fontsize=’x-large’)
613

614 plt.autoscale(enable=True, tight=True)
615 plt.grid()

616

617 # Legend

618 1lns = 1nb+1n6+1n7+1n8+1n%+1nl0

610 labs = [1l.get_label() for 1 in 1lns]

620 ax.legend(lns, labs)

622 # Title
623 plt.title(’b)’, loc=’left’, fontweight=’bold’)

625 # Save the image in memory in JPG format

626 figName = ’yVelatInterfaceXAxis2.jpg’

627 figName = os.path.join(selFigFolder, figName)
625 plt.savefig(figName, box_inches=’tight’)

s20 plt.close()

631 del lns, ax, fig, labs

634 # Internal thickness versus (x-x0)/L

635 #
636 fig, ax = plt.subplots(figsize=(9,6), dpi=500)

637

¢35 1n0 = ax.plot(thickness[’x068°][’ (x-x0)/L’],

639 thickness[’x068’] [’ internalThickness’] /W,
640 ’-?>, label=’Case 0’, lw=2, ms=6)

621 1nl = ax.plot(thickness[’x062°] [’ (x-x0)/L’],

642 thickness[’x062’] [’internalThickness’]/W,
643 ’—-7, label=’Case 1’, lw=2, ms=6)

622 1n2 = ax.plot(thickness[’x063°] [’ (x-x0)/L’],

645 thickness[’x063’] [’internalThickness’]/W,
646 ’—.?, label=’Case 2’, lw=2, ms=6)

617 1n3 = ax.plot(thickness[’x064°] [’ (x-x0)/L’],

648 thickness[’x064’] [’internalThickness’]/W,
649 >:?, label=’Case 3’, lw=2, ms=6)

650 1nd = ax.plot(thickness[’x065°] [’ (x-x0)/L’],
651 thickness[’x065’] [’internalThickness’] /W,
652 ’-.7, label=’Case 4’, 1lw=2, ms=6)
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655 1nb = ax.plot(thickness[’x066°] [’ (x-x0)/L’],

654 thickness[’x066’] [’internalThickness’]/W,
655 ’-—>  label=’Case 5’, lw=2, ms=6)
656 1n6 = ax.plot(thickness[’x067°][’ (x-x0)/L’],

657 thickness[’x067°] [’internalThickness’] /W,
658 ’—--7, label=’Case 6°’, lw=2, ms=6)

650 1n7 = ax.plot(thickness[’x115°] [’ (x-x0)/L’],

660 thickness[’x115’] [’internalThickness’]/W,
661 ’—.7, label=’Case 7’, lw=2, ms=6)

662 1n8 = ax.plot(thickness[’x116°][’ (x-x0)/L’],

663 thickness[’x116°] [’internalThickness’]/W,
664 >:7, label=’Case 8’, lw=2, ms=6)

665 1n9 = ax.plot(thickness[’x117’][’ (x-x0)/L’],

666 thickness[’x117’] [’internalThickness’]/W,
667 ’-.?, label=’Case 9’, lw=2, ms=6)

ss 1nl10 = ax.plot(thickness[’x115°]1[’ (x-x0)/L’],

669 thickness[’x115°] [’internalThickness’]/W,
670 ’—-> label=’Case 10’, lw=2, ms=6)

672 # Primary Axis
673 ax.set_xlabel(’ (x-x0)/L’,fontsize=’x-large’)

671 ax.set_ylabel(r’$\delta_{in}$/W’,fontsize=’x-large’)

676 plt.autoscale(enable=True, tight=True)

o7 plt.grid()

678

6709 # Legend

6s0 1ns = 1n0+1nl+1n2+1n3+1n4+1n5+1n6+1n7+1n8+1n9+1nl0
os1 labs = [l.get_label() for 1 in 1lns]

6s2 ax.legend(lns, labs)

683

6s4 # Save the image in memory in JPG format

6ss figName = ’internalThickness. jpg’

6sc figName = os.path.join(selFigFolder, figName)
6s7 plt.savefig(figName, box_inches=’tight’)

oss plt.close()

689

coo del lns, ax, fig, labs

691

692 H ====

603 # External thickness versus (x-x0)/L
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694

695

696

697

698

699

700

703

704

705

706

707

708

709

710

#

fig, ax = plt.subplots(figsize=(9,6), dpi=500)

1nO

ax.plot(thickness[’x068°] [’ (x-x0)/L’],
thickness[’x068’] [’externalThickness’] /W,
’-7 label=’Case 0’, lw=2, ms=6)
1nl = ax.plot(thickness[’x062°] [’ (x-x0)/L’],
thickness[’x062’] [’externalThickness’]/W,
’——7, label=’Case 1’, lw=2, ms=6)
1n2 = ax.plot(thickness[’x063’] [’ (x-x0)/L’],
thickness[’x063’] [’externalThickness’]/W,
’-.?  label=’Case 2’, lw=2, ms=6)
1n3 = ax.plot(thickness[’x064°] [’ (x-x0)/L’],
thickness[’x064’] [’externalThickness’]/W,
>:?, label=’Case 3’, lw=2, ms=6)
1n4 = ax.plot(thickness[’x065°] [’ (x-x0)/L’],
thickness[’x065’] [’externalThickness’]/W,
’-.’, label=’Case 4’, lw=2, ms=6)
1n5 = ax.plot(thickness[’x066°] [’ (x-x0)/L’],
thickness[’x066’] [’externalThickness’]/W,
’-—>  label=’Case 5’, 1lw=2, ms=6)
1n6 = ax.plot(thickness[’x067’] [’ (x-x0)/L’],
thickness[’x067°] [’externalThickness’] /W,
’——7, label=’Case 6°’, lw=2, ms=6)
1n7 = ax.plot(thickness[’x115°][’ (x-x0)/L’],
thickness[’x115’] [’externalThickness’]/W,
’— .7, label=’Case 7’, lw=2, ms=6)
1n8 = ax.plot(thickness[’x116’] [’ (x-x0)/L’],
thickness[’x116°] [’externalThickness’]/W,
’:?, label=’Case 8’, lw=2, ms=6)
1n9 = ax.plot(thickness[’x117’]1[’ (x-x0)/L’],
thickness[’x117’] [’externalThickness’]/W,
’-.?, label=’Case 9’, lw=2, ms=6)
1n10 = ax.plot(thickness[’x115°]1[’ (x-x0)/L’],
thickness[’x115°] [’externalThickness’] /W,
’—-7, label=’Case 10’, lw=2, ms=6)

# Primary Axis

ax.set_xlabel(’ (x-x0)/L’,fontsize=’x-large’)

ax.set_ylabel(r’$\delta_{out}$/W’,fontsize=’x-large’)
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763

764

765

766

767

769

plt.autoscale(enable=True, tight=True)
plt.grid()

# Legend

Ins = 1n0+1nl+1n2+1n3+1n4+1n5+1n6+1n7+1n8+1n9+1nl0
labs = [l.get_label() for 1 in lns]

ax.legend(lns, labs)

# Save the image in memory in JPG format

figName = ’externalThickness.jpg’

figName = os.path.join(selFigFolder, figName)

plt.savefig(figName, box_inches=’tight’)
plt.close()

del 1lns, ax, fig, labs

# ———

# Total thickness versus (x-x0)/L

#

fig, ax = plt.subplots(figsize=(9,6), dpi=500)

1n0 = ax.plot(thickness[’x068’] [’ (x-x0)/L’],
thickness[’x068°] [’totalThickness’]/W,
’-7  label=’Case 0’, lw=2, ms=6)

1nl = ax.plot(thickness[’x062°] [’ (x-x0)/L’],
thickness[’x062’] [’totalThickness’]/W,
’——7, label=’Case 1’, lw=2, ms=6)

1n2 = ax.plot(thickness[’x063°] [’ (x-x0)/L’],
thickness[’x063’] [’totalThickness’]/W,
’—.7, label=’Case 2’, lw=2, ms=6)

1n3 = ax.plot(thickness[’x064°] [’ (x-x0)/L’],
thickness[’x064°’] [’totalThickness’] /W,
>:?, label=’Case 3’, lw=2, ms=6)

1n4 = ax.plot(thickness[’x065°] [’ (x-x0)/L’],
thickness[’x065’] [’totalThickness’] /W,
’—.7, label=’Case 4’, lw=2, ms=6)

1n5 = ax.plot(thickness[’x066°] [’ (x-x0)/L’],
thickness[’x066’] [’totalThickness’] /W,
’——7, label=’Case 5’, lw=2, ms=6)

1n6 = ax.plot(thickness[’x067’][’ (x-x0)/L’],
thickness[’x067°] [’totalThickness’]/W,
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789

790

791

792

793

794

796

797

798

799

800

801

802

803

804

805

806

807

808

’——7, label=’Case 6°’, lw=2, ms=6)

1n7 = ax.plot(thickness[’x115°][’ (x-x0)/L’],
thickness[’x115’] [’totalThickness’]/W,
’— .7, label=’Case 7’, lw=2, ms=6)

1n8 = ax.plot(thickness[’x116°] [’ (x-x0)/L’],
thickness[’x116°] [’totalThickness’]/W,
>:7, label=’Case 8’, lw=2, ms=6)

1n9 = ax.plot(thickness[’x117’]1[’ (x-x0)/L’],
thickness[’x117’] [’totalThickness’] /W,
’-.?, label=’Case 9’, lw=2, ms=6)

1n10 = ax.plot(thickness[’x115°1[’ (x-x0)/L’],
thickness[’x115’] [’totalThickness’]/W,
’—-7, label=’Case 10’, lw=2, ms=6)

# Primary Axis
ax.set_xlabel(’ (x-x0)/L’,fontsize=’x-large’)

ax.set_ylabel(r’$\delta$/W’,fontsize=’x-large’)

plt.autoscale(enable=True, tight=True)
plt.grid()

# Legend

Ins = 1n0+1nl+1n2+1n3+1n4+1n5+1n6+1n7+1n8+1n9+1ni0
labs = [l.get_label() for 1 in lns]

ax.legend(lns, labs)

# Save the image in memory in JPG format

figName ’totalThickness. jpg’

figName = os.path.join(selFigFolder, figName)
plt.savefig(figName, box_inches=’tight’)
plt.close()

del 1lns, ax, fig, labs
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Appendix C

Grid Convergence Index (GCI)
Python Script
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¥)

In this appendix the script used to determine the grid convergence index is presented.
This code is an automated script based on Celik et al. (2008) and Dutta e Xing (2018).

C.1 File Structure

The file structure of the script is shown bellow:

/
| _bin
IMPOTE . Py oot CSV import script
BCL PV e et Data analysis script for RANS calculations
GCILES.PY «vvvi i Data analysis script for LES calculations
PLOL . DY Plotting and export script
| treatment ... ...t e User Created Directory
| results .o Software Created Directory
| _main.py

The requirements of the script are:

e Python 3.x
e Scipy

o Numpy

« Pandas

o Matplotlib

C.2 main.py

The user must provide a folder named treatment where three different csv files

must be placed. The execution of the code depends only on the main.py file that must

be run in a python terminal:

#!/usr/bin/env python3

# —*x- coding: utf-8 -*-

main.py

Copyright 2020 Luiz Oliveira
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19

20

21

22

23

24

26

27

28

29

30

31

40

41

42

43

45

46

47

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA.

H OH OH OH OH OH OH OH OH OH OH OH OH OH OH OH

Main module

This script analyses numerical and modeling errors in LES simulations and
Grid convergence analysis on RANS simulatiomns.

The analysis steps are performed by the modules in the bin folder

import sys
import os
import shutil
import time

start_time = time.time()

def cls(Q):

Clears the prompt

os.system(’cls’ if os.name==’nt’ else ’clear’)

# Check for necessary directories
if not os.path.exists(’treatment’):
os.makedirs(’treatment’)

print ("The directory treatment/ was created, please populate with the "
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49 "desired csv files to be analysed.")
50 sys.exit(°The directory treatment/ did not exist.’)
51 elif not os.listdir(’treatment’):

52 sys.exit(°The directory treatment/ is empty.’)

54 # Clear the previous results directories
55 if os.path.exists(’treatment/results’):
56 shutil.rmtree(’treatment/results’)

57 os.makedirs(’treatment/results’)

5o analysisType = input("Type of Analysis\n[1] RANS\n[2] LES\nChosen Option: ")
60

61 if analysisType == 1:

62 # Import CSV

63 exec (open("bin/import.py") .read());
64 # Grid Convergence Analysis (RANS)
65 exec(open("bin/gci.py") .read());

o else:

67 # Grid Convergence Analysis (LES)
68 exec(open("bin/gciLES.py") .read()) ;

C.3 import.py

The import process occurs in bin/import.py file:

1 #!/usr/bin/env python3
2 # —*- coding: utf-8 -*-

1+ # Libraries

5 1import os

¢ import re

7 1import pandas as pd

s from detect_delimiter import detect

10 def cls(Q):

12 Clears the prompt

14 os.system(’cls’ if os.name==’nt’ else ’clear’)
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# Input delimeter and file names
coarserFile = input("Name of coarser mesh file: ")
mediumFile = input("Name of medium mesh file: ")

finerFile = input("Name of finer mesh file: ")

coarserFile = "treatment/" + coarserFile
mediumFile = "treatment/" + mediumFile
finerFile = "treatment/" + finerFile

with open(coarserFile) as f:
for line in f:
if re.match(r""\d+.*$",line):
delim = detect(line)
break
if delim is Nonme:
delim = input("""Type of delimiter\n[1] (’\\t’)\n[2] (> ’)\n[3] (’;’)
(4] (’,’)\n [5] Custom delimiter\nChosen option: """)
delim = int(delim)
if delim ==
delim = ’\\t’
elif delim == 2:
delim = >
elif delim == 3:
delim = 73’
elif delim ==
delim = ’,’
elif delim ==

delim = input("Enter custom delimiter: ")
cls(O)
print ("Python columns start on zero, please pay attention to this detail.\n")
axis = int(input("Axis column number: "))
var = int(input("Variable column number: "))
headerlines = int(input("Number of header lines: "))
# Import generated data

coarser = pd.read_csv(coarserFile,delimiter=delim, skiprows=headerlines,

usecols=[axis,var], header=0,
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64

65

66

14

5

names=["Axis","Variable_coarser"])

medium = pd.read_csv(mediumFile,delimiter=delim, skiprows=headerlines,
usecols=[axis,var], header=0,
names=["Axis","Variable medium"])

finer = pd.read_csv(finerFile,delimiter=delim, skiprows=headerlines,
usecols=[axis,var], header=0,

names=["Axis","Variable finer"])

# Reindexing using axis
coarser = coarser.set_index(’Axis’)
medium = medium.set_index(’Axis’)

finer = finer.set_index(’Axis’)

# Sorting imported data
coarser = coarser.sort_values(’Axis’)
medium = medium.sort _values(’Axis’)

finer = finer.sort_values(’Axis’)

cls()

C.4 gci.py

The processing occurs in bin/gci.py file for RANS calculations:

#!/usr/bin/env python3
# —*x- coding: utf-8 —*-

import os
import pandas as pd

import numpy as np

def cls():

Clears the prompt

os.system(’cls’ if os.name==’nt’ else ’clear’)

cElements = int(input("Number of elements of the coarser mesh: "))

mElements = int(input("Number of elements of the medium mesh: "))
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48

19

50

fElements = int(input("Number of elements of the finer mesh: "))

analysisType = input("Type of Analysis\n[1] 2D\n[2] 3D\nChosen Option: ")

volume = float(input("Total cell volume [m3]: "))

if analysisType == ’1’:
h1l = (volume/fElements)**(0.5)
h2 = (volume/mElements)**(0.5)
h3 = (volume/cElements)**(0.5)
elif analysisType == ’2’:
h1l = (volume/fElements)**(1/3)
h2 = (volume/mElements)**(1/3)
h3 = (volume/cElements)**(1/3)
else:
cls()

print("Deleting all data...")
print ("Computer shutting down...")

# Refinement rate

r21
r32

h2/h1
h3/h2

# Variable absolute error

desiredVar = pd.concat([finer, medium, coarser], axis=1)
desiredVar = desiredVar.interpolate(’index’).reindex(medium.index)
e21 = desiredVar.Variable_medium - desiredVar.Variable_finer

e32 = desiredVar.Variable_coarser - desiredVar.Variable_medium
desiredVar[’e21’] = e21

desiredVar[’e32’] = 32

# Sign
sign = np.sign(desiredVar[’e32’]/desiredVar[’e21’])
desiredVar[’Sign’] = sign.astype(float)

# Order Error

initial = np.repeat(2.0, len(desiredVar.index))

def aparentOrder (order, df):
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57 order = np.abs(order)

58 q = np.log(((r21x*order)-desiredVar.Sign)/((r32**order)-desiredVar.Sign))

59 ap =
np.abs(np.log(np.abs(desiredVar[’e32’]/desiredVar[’e21’])+q))/np.log(r21)

60 error = np.abs(order - ap)

61 error = np.array(error.values.tolist()) #converts to array

62 return np.mean(error)

61 res = optimize.minimize(aparentOrder, args=(desiredVar),
65 x0=initial, method = ’Nelder-Mead’, to0l=0.01,

66 options={’maxiter’:1000})

6s order = res.x
6o q = np.log((r21**order-desiredVar.Sign)/(r32**order-desiredVar.Sign))
70 ap = np.abs(np.log(np.abs(desiredVar[’e32’]/desiredVar([’e21°])+q))/np.log(r21)

71 orderError = order - ap

73 desiredVar[’Aparent Order’] = ap
71 desiredVar[’Optimized Order’] = order

75 desiredVar[’Order Error’] = orderError

77 # Extrapolated values

s ext2l =
((r21**ap)*desiredVar.Variable_finer-desiredVar.Variable_medium)/((r21**ap)-1)

79 ext32 =

((r32**ap)*desiredVar.Variable_medium-desiredVar.Variable_coarser)/((r32+**ap)-1)

s1 desiredVar[’Extrapolated Value (Finer, Medium)’] = ext21

s> desiredVar[’Extrapolated Value (Medium, Coarser)’] = ext32

sa # Calculate and report the error estimatives

s5 apxRelErr =
np.abs((desiredVar.Variable_finer-desiredVar.Variable_medium)/desiredVar.Variable_fine

s6  extRelErr = np.abs((ext2l-desiredVar.Variable_finer)/ext21)

s7 gci = (1.25*apxRelErr)/((r21**ap)-1)

so desiredVar[’Aproximated Relative Error’] = apxRelErr
90 desiredVar[’Extrapolated Relative Error’] = extRelErr

o1 desiredVar[’Grid Convergence Index’] = gci

93 # Export generated table
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94

23

24

25

26

desiredVar.to_excel("treatment/results/gci.xlsx")

C.5 gciLES.py

The processing occurs in bin/gciLES.py file for LES calculations:

#!/usr/bin/env python3

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

—*- coding: utf-8 —-*-

gciLES.py

Copyright 2020 Luiz Oliveira

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA.

Main module

This script analyses numerical and modeling errors in LES simulations

import os

import re

import openpyxl

156



3¢ 1mport pandas as pd
35 import matplotlib.pyplot as plt
36 from detect_delimiter import detect

37 from scipy.optimize import fsolve

30 def cls():

41 Clears the prompt

a3 os.system(’cls’ if os.name==’nt’ else ’clear’)

15 def caselInfo(ncases):

a7 Reads the case information for an n number of simulations

19 d = {’Elements’ : [], ’DeltaT’ : [], ’Volume’ : []}

50 for ii in range(ncases):

51 elmt = int(input("Number of elements of the mesh {0}: ".format(ii)))
52 dt = float(input("Timestep size of the mesh {0}: ".format(ii)))

53 d[’Elements’] .append(elmt)

54 d[’DeltaT’] .append(dt)

55 d[’Volume’] .append(float (input("Total cell volume [m3]: ")))

56 df = pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in d.items() 1))

57 df .index.names = [’Mesh’]
58 df .to_csv(’treatment/caseInformation.csv’, index = False)
59 return df

60

61 def checkDelimiter(filename, directory):

62 nmnn

63 Checks the delimiter of a file or takes the input from the user
64 nnn

65 with open(os.path. join(directory,filename)) as f:

66 for line in f:

67 if re.match(r""\d+.*$",line):
68 delim = detect(line)
69 break

70 if delim is Nonme:

71 delim = input("""Type of delimiter\n[1] (C’\\t’)\n[2] (’ ’)\n[3] (’;’)
72 (4] (’,’)\n [5] Custom delimiter\nChosen option: """)

73 delim = int(delim)

74 if delim ==
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81

82

83

84

90

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

def

delim = ’\\t’
elif delim ==
delim = 7’
elif delim ==
delim = 73’
elif delim == 4:
delim = ’,°’
elif delim == 5:
delim = input("Enter custom delimiter: ")
clsQ)

return delim

caseImport(ncases):

Imports the data from an n number of simulations
directory = ’treatment’
# Get all files.
list = os.listdir(directory)
filetpl = []
for file in list:

# Use join to get full file path.

location = os.path.join(directory, file)

# Get size and add to list of tuples.

size = os.path.getsize(location)

filetpl.append((size, file))
# Sort list of tuples by the first element, size.
filetpl.sort(key=lambda s: s[0])
filetpl.reverse()
df = pd.DataFrame(data=filetpl, columns=["Size","Filename"])
df .drop(df.tail(len(list)-ncases).index, inplace = True)
df .index.names = [’Mesh’]
print ("Assuming this file order:")
print(df.to_string())
order = int(input("Is this corrrect?\n[1] Yes\n[2] No\nChoice: "))
if order ==

1st = []

print ("Write the mesh number succeeded by the file name:\n")

for ii in range(ncases):

file = [int(input()), input()]
1lst.append(file)

158



116

133

134

135

136

138

139

140

141

143

df = pd.DataFrame(data=1lst, columns=["Size","Filename"])
df .index.names = [’Mesh’]
clsO
print("Files to be imported:\n")
print(df.to_string())
importedFiles = dict()
delim = checkDelimiter(df.Filename[0],directory)
for ii in range(ncases):
temp = pd.read_csv(os.path.join(directory,df.Filename[ii]),
delimiter=delim)
importedFiles[’Mesh ’+str(ii)] = temp

return importedFiles

def refinementRate(df):

Defines the refinement rate between the meshes

r = 1ist()

for n in range(testVersion):

if n == testVersion - 1:
refRate = 1
else:
refRate = df .Elements[n+1]/df.Elements[n]

r.append (refRate)
df [’r’] = r

return df

# Import the case structure data (mesh and timestep)
testVersion = int(input("""Which test should be performed?
[1] Short Version (3 cases)
[2] Long Version (5 cases)
Choice: """))
if testVersion ==
testVersion = 3
else:

testVersion = 5

infoFile = ’treatment/caseInformation.csv’
if os.path.exists(infoFile):
infoDf = pd.read_csv(infoFile)

else:
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158

159

160

161

162

163

164

165

166

181

182

183

184

189

190

191

192

193

194

195

196

197

print ("Please state the meshes from the finer to the coarser")

infoDf = caseInfo(testVersion)

# Import simulation data
nVar = int(input("""[1] Single data point
[2] Multiple data point (line)
Choice: """))
cls(O)
var = input("Write the name of the desired variable: ")
axis = input("Write the name of the desired plot axis: ")
if nVar ==
cls()
print("Please insert the point value for the meshes")
simDf = dict()
for ii in range(testVersion):
jj = str(ii)
1st = [float(input("Mesh "+jj+" value: "))]
simDf [’Mesh ’+jj] = pd.DataFrame(data=1lst,columns=[var])
del ii,jj,lst
elif nVar ==
simDf = caseImport(testVersion)

del nVar

# Starts evaluating the GCI

infoDf.eval(’h = (@infoDf.Volume[0]/Elements)**(1/3)’, inplace=True)
infoDf.eval(’hstar = (h*DeltaT)#**(1/2)’, inplace=True)

infoDf = refinementRate(infoDf)

delta = max(infoDf.h)

r = infoDf.r.mean()

hstar = infoDf.hstar.mean()

## Simulated data

sl = simDf[’Mesh 0°’] [var]
s2 = simDf [’Mesh 1’] [var]
s3 = simDf [’Mesh 2°] [var]

if testVersion ==
s4 simDf [’Mesh 3’] [var]
sb simDf [’Mesh 4°’] [var]

if testVersion ==

# Simplified method
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198

199

200

201

203

204

205

206

207

208

209

210

pn = 1.7

pm = 1.5

cm = (r*x*(1.7)*(s1-82)-(s2-83))/((r**(1.7)—r**(1.5) -r**(3.2)+r**(3))\
*xdelta**(1.5))

sc = ((r**x(1.7)*s1-82)* (r*x(3.2)-r**(3))-(r**x(1.7)*s2-83) *(r**(1.7)\
-k (1.5))) / ((r*x (1.7)-1)* ((r**(3.2) -r**(3) ) - (r**(1.7)-r*x(1.5))))

cn = (sl-sc-cm*deltax*(1.5))/(hstar**(1.7))

Enum = dict()

Enum[0] = cn*(hstar**1.7)

Enum[1] = cn*(r**1.7)*(hstarx*1.7)

Enum[2] = cn*(r*x*3.4)*(hstar**1.7)

Emod = dict()

Emod[0] = cm*(deltax*1.5)

Emod[1] = cm*(r**1.5)*(deltax*1.5)

Emod[2] = cm*(r*+*3)*(delta*x*1.5)

33=0

for ii in simDf:

simDf [ii] [’Sc’] = sc

simDf [1i] [’Numerical Error’] = Enum[jj]

simDf [ii] [’Modelling Error’]

Emod[jj]

simDf [1i] [’Total Error’] = Enum[jj] + Emod[jj]

jg+=t

del ii,jj

elif testVersion ==

# Full method

def fullMethod(vars):

#

#

Sets the nonlinear system of 5 equations

# —_————

sc, cn, cm, pn, pm = vars

eql = cnxhstar**pn + cmkdelta**pm

eq2 = cnx(r*hstar)**pn + cm*(r*delta)**pm

eq3 = cnx((r**2)*hstar)**pn + cm*((r**2)*delta)**pm

eq4 = cnx((r**3)*hstar)**pn + cm* ((r**3)*delta)**pm

eqb = cnx((r*x*4)*hstar)**pn + cm* ((r**4)*delta)**pm
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return [eql, eq2, eq3, eq4, eq5]

sc, cn, cm, pn, pm = fsolve(fullMethod, (0.007, 1, 1, 1.7, 1.5))
Enum = dict()

for ii in range(testVersion):

if ii ==
val = cnxhstar**pn
else:
val = cnx((r*xii)*hstar)**pn

Enum[ii]=val

Emod = dict()
for ii in range(testVersion):
if ii ==
val = cm*delta**pm
else:
val = cm*((r**ii)*delta)**pm

Emod[ii]=val

jj=0
for ii in simDf:
simDf [ii] [’Sc’] = sc
simDf [1i] [’Numerical Error’] = Enum[jjl
simDf [ii] [’Modelling Error’] = Emodl[jj]
simDf [1i] [’Total Error’] = Enum[jj] + Emod[jj]

jg+=t

del ii, jj, val, var

# Export Results to Excel

d = {’0Order of Accuracy for the Numerical Error (Pn)’: pn,
’Order of Accuracy for the Modelled Error (Pm)’: pm,
’Mean Constant for Numerical Errors (Cn)’: cn.mean(),
’Mean Constant for Modelled Errors (Cm)’: cm.mean(),
’Delta’: delta,
’Hstar’: hstar,
’Mean Refinement Rate’: r

}
idx = [0]

summary = pd.DataFrame(data=d, index=idx)

xlsxFile = ’treatment/results/dataSummary.xlsx’
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250 if not os.path.isfile(xlsxFile):
281 wb = openpyxl.Workbook()

282 wb.save(xlsxFile)

251 with pd.ExcelWriter(xlsxFile, engine="openpyxl", mode=’a’) as writer:

285 summary.to_excel(writer, sheet_name=’Summary’, index=False)
286 for df _name, df in simDf.items():
287 df .to_excel(writer, sheet_name=df name, index=False)

280 del d, idx, xlsxFile

201 # Plot with error bars
200 fig, ax = plt.subplots(figsize=(9,6), dpi=300)
203 ax.plot(simDf [’Mesh 0°] [axis], simDf[’Mesh 0°] [var],

204 label= ’Mesh 0’, aa=True)
205 ax.plot(simDf [’Mesh 1°][axis], simDf[’Mesh 1°] [var],
296 label= ’Mesh 1’, aa=True)
207 ax.plot(simDf [’Mesh 2°] [axis], simDf[’Mesh 2°’] [var],
208 label= ’Mesh 2’, aa=True)

200 1f testVersion ==

300 ax.plot(simDf [’Mesh 3°] [axis], simDf[’Mesh 3’] [var],
301 label= ’Mesh 3 - Coarser’, aa=True)

302 ax.plot(simDf [’Mesh 4’] [axis], simDf[’Mesh 4°] [var],
303 label= ’Mesh 4 - Coarser’, aa=True)

304

305 ax.legend(loc=’best’,fontsize=’x-large’)

306

a7 plt.grid()

s0s plt.autoscale(enable=True, tight=True)

300 plt.xlabel(axis,fontsize=’x-large’)

310 plt.ylabel(var,fontsize=’x-large’)

s11 plt.savefig(’treatment/results/allMeshes.png’, bbox_inches=’tight’)

515 fig, ax = plt.subplots(figsize=(9,6), dpi=300)
s14 1, caps, ¢ = plt.errorbar(simDf[’Mesh 1°][axis], simDf[’Mesh 1°] [var],
315 simDf [’Mesh 1’][’Total Error’],

316 elinewidth = 1, capsize = 5, capthick = 1, marker = ’0’,
317 # errorevery = 5,
318 uplims = True, lolims = True,

319 lw=1.5, aa = True)

320
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for cap in caps:

cap.set_marker("_")

plt.grid()
plt.autoscale(enable=True, tight=True)
plt.xlabel(axis,fontsize=’x-large’)

plt.ylabel(var,fontsize=’x-large’)

plt.savefig(’treatment/results/Meshl.png’, bbox_inches=’tight’)

C.6 plot.py

And finally the ploting and the spreadsheet containing the results are output by

bin/plot.py file:

#!/usr/bin/env python3
# —*- coding: utf-8 —*-—

import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(9,6), dpi=300)
ax.plot(desiredVar.index, desiredVar.Variable_coarser,
label= ’Coarser’, aa=True)
ax.plot(desiredVar.index, desiredVar.Variable_medium,
label= ’Medium’, aa=True)
ax.plot(desiredVar.index, desiredVar.Variable_finer,

label= ’Finer’, aa=True)

ax.legend(loc=’best’ ,fontsize=’x-large’)

plt.grid()
plt.autoscale(enable=True, tight=True)
plt.savefig(’treatment/results/allMeshes.png’)

fig, ax = plt.subplots(figsize=(9,6), dpi=300)
ax.errorbar(desiredVar.index, desiredVar.Variable_medium,
gcixdesiredVar.Variable_medium,
errorevery = 5, elinewidth = 1,
uplims = True, lolims = True,

lw=1.5, aa = True)
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plt.grid()
plt.autoscale(enable=True, tight=True)

plt.savefig(’treatment/results/mediumWithErrorbars.png’)

fig, ax = plt.subplots(figsize=(9,6), dpi=300)
ax.errorbar(desiredVar.index, desiredVar.Variable_finer,
gcixdesiredVar.Variable_finer,
errorevery = 5, elinewidth = 1,
uplims = True, lolims = True,

lw=1.5, aa = True)

plt.grid(O
plt.autoscale(enable=True, tight=True)

plt.savefig(’treatment/results/finerWithErrorbars.png’)
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Appendix D

OpenFOAM Configuration of The
Effects of Vegetation Density Upon
Flow and Mass Transport in Lateral

Cavities model
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In this appendix, the code in the chapter: The Effects of Vegetation Density Upon Flow
and Mass Transport in Lateral Cavities. A copy of this configuration will also be available

at the Github repository linked in the conclusion.

D.1 File Structure

The file structure of the script is shown bellow:

/
| 0.0Tig . oo Initial Boundary Conditions Folder
DUE « ottt Boundary conditions of turbulent viscosity
P e Boundary conditions of pressure
BrACeT ottt Boundary conditions of the inert scalar
0 PP Boundary conditions of velocity
| _constant................... Mesh and General information about the simulation
fvOptions ... Configuration of the porous media
e Gravity
transportProperties .............. .. it Fluid characteristics
turbulenceProperties ... ..., Turbulence settings
LboundaryData ........................... Pre-calculated fields for the inlet
inlet
tpoints
0
k
L
nut
nuTilda
omega
p
R
U
L SYSEeIM Main configuration folder
blockMeshDict ...t Mesh configuration
CONETOLIDICE . vt vttt ettt ettt Simulation Control
decomposeParDict ............ Configuration of the parallelisation of the grid
fvSchemes...................... Configuration of the used numerical schemes
fvSolution. ...oooviiiii Configuration of the solver
setFieldsDict ...ttt Set of the initial tracer fields
LOPOSEtDICT « vt vttt Mesh manipulation
totalTKE
| allClear
| MeSh .t Bash script to aid the creation of the mesh
| ramCache.........covviiiiiiiiinnnnnnnnnn. Bash script to clear the memory cache
| _reconstructParParallel...... Union of the parallel cases into a single directory
| x##t# . foam.................. Header file for the visualisation software (Paraview)
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D.2 0.orig/nut

Fo
{

}

// % % %k %k % % %k % % %k % % %k % % %k % % 3 % k 3k % *k >k % X * %k X % % %k % *x x x //

dimensions

\\ / F ield

\\ / 0 peration

\\ / A nd

| OpenFOAM: The Open Source CFD Toolbox

| Version: v1912

| Website: www.openfoam.com

\\/ M anipulation |

amFile
version 2.0;
format ascii;
class volScalarField;
location "o";
object nut;

[02-10000];

internalField uniform O;

bo
{

undaryField

inlet

{
type
setAverage
perturb

}

outlet

{
type
value

}

bottom

{
type
value
maxIter

timeVaryingMappedFixedValue;

false;

0;

calculated;

uniform O;

nutUSpaldingWallFunction;

uniform O;

100;
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40

41

tolerance
3
lateralWall
{
type
value
maxIter
tolerance
}
freeSurface
{
type
+
farField
{
type
}

1le-07;

nutUSpaldingWallFunction;
uniform O;

100;

1e-07;

zeroGradient;

zeroGradient;

D.3 0.orig/p

I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
[ \\ / 0 peration | Version: v1912
l \\ / And | Website: www.openfoam.com
| \\/ M anipulation |
K m
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
object P;
}
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// % %k %k %k % % %k % % %k % % %k % % % % % %k % X % % *k * % X % %k X % % %k *x *x x x //

dimensions [02-20000];

internalField uniform O;

boundaryField
{
inlet
{
type zeroGradient;
X
outlet
{
type fixedValue;
value uniform O;
X
bottom
{
type zeroGradient;
b
lateralWall
{
type zeroGradient;
3
freeSurface
{
type zeroGradient;
}
farField
{
type zeroGradient;
b
}
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D.4 0.orig/tracer

FoamFile

{

}

version
format

class

location

object

F ield | OpenFOAM: The Open Source CFD Toolbox
0 peration | Version: v1912
A nd | Website: www.openfoam.com

M anipulation |

2.0;

ascii;
volScalarField;
IIOII;

tracer;

// % % %k %k % % %k % % %k % % %k % % %k % % 3 % k 3k % *k >k % X * %k X % % %k % *x x x //

dimensions

[000O0O0O0O0];

internalField uniform O;

boundaryField
{
inlet
{
type zeroGradient;
}
outlet
{
type zeroGradient;
b
bottom
{
type zeroGradient;
X
lateralWall
{
type zeroGradient;
b
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9

10

11

farField

{

type zeroGradient;
b
freeSurface
{

type zeroGradient;
b

// >k 3k 3k 3k >k >k 3k 3k 3k >k >k >k 3k 3k 3k >k %k >k 5k 3k >k >k 5k 3k 3k 5k >k >k 3k 3k 3k >k >k 5k 3k 3k >k >k %k >k 5k 5k >k >k 5k 3k 5k >k >k >k %k 3k >k >k >k >k %k 5k >k >k >k %k >k >k >k %k %k %k >k >k *k %k k //

D.5 0.orig/U

ke k= CHt+ —km— e *\
| ========= | |

[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: v1912

| \\ / And | Website: www.openfoam.com

| \\/ M anipulation | |

K *x/
FoamFile
{
version 2.0;
format ascii;
class volVectorField;
location "o,
object U;
}

// % % %k %k % % %k % % % % % %k % % % % % > % *k >k % *k * % X >k %k X % % %k % *x x x //

dimensions [01-1000 0];

internalField uniform (0.101 0 0);

boundaryField

{

inlet
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type turbulentDFSEMInlet;
delta 0.021;
interpolateU true;
interpolatel true;
interpolateR true;
value uniform (0.101 0 0);
b
outlet
{
type zeroGradient;
X
bottom
{
type noSlip;
}
lateralWall
{
type noSlip;
3
freeSurface
{
type slip;
}
farField
{
type slip;
b

D.6 constant/fvOptions

R k= Ctt ke *\
| ========= | |

[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox I

0 peration | Version: v1912 |
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\

\ / A nd | Website: www.openfoam.com I

\\/ M anipulation |

\ *

FoamFile

{
version 2.0;
format ascii;
class dictionary;
location "constant";
object fvOptions;

}

J/ % % %k %k % %k % % % % % % % % % % % % % % % % % % % % % * % % % % % % *x x x //

embayment
{
type explicitPorositySource;
active true;
selectionMode cellZone;
cellZone embayment;
explicitPorositySourceCoeffs
{
selectionMode cellZone;
cellZone embayment;
type DarcyForchheimer;
mu mu;
d (116.62 116.62 4.51E-04); //Original values d (116.62 116.62
4.51E-04) ;
f (3.09 3.09 6.08E-03); //0riginal values f (3.09 3.09 6.08E-03);
coordinateSystem
{
origin (0.25 0.30 0);
el (10 0);
e2 (01 0);
3
}
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S

~

//************************************************************************* /

/

D.7 constant/g

R k= CHt —k—m o *\
| ========= I I
[ A\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[ A\ / 0 peration | Version: v1912 |
[ \\ / A nd | Website: www.openfoam.com
| \\/ M anipulation | |
K */
FoamFile
{
version 2.0;
format ascii;
class uniformDimensionedVectorField;
location "constant";
object g;
}
J/ % k% % % k k % %k k k %k *k * %k % *k *x % * *k *k %k *k *x %k * * *x * * *x *x * *x *x *x *x //
dimensions [01-20000];
value (0 0 -9.81);
[/ R E Rk ok ok Kok ok ok ok Kok ok ok ok Kok Kok ok ok ok Kok ok ok Kk koK ok ok oK Kok ok ok K KK ok ok Kok Kok ok ok ok KKk kR kkokok ok / /
D.8 constant/transportProperties
[k k= Ctt —km—mmm e *\
| mmmmmmmas | |
[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox I
[ \\ / 0 peration | Version: v1912
l \\ / And | Website: www.openfoam.com
| \\/ M anipulation | |
K *x/



N

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location constant;

object transportProperties;
b

// % %k %k %k %k k %k % % %k % % %k % % %k % k %k %k X * %k *k * %k X % %k X * % %k *x *x *x x //

transportModel Newtonian;

nu [02-100001] 1E-6;
mu [1-1-100007] 1E-03
rho [1-30000071 1000;

D.9 constant/turbulenceProperties

[k k= CH+ —km—mm *\
| ========= | |

[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox I

[ \\ / 0 peration | Version: v1912

| \\ / A nd | Website: www.openfoam.com

| \\/ M anipulation | |

Ko */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "constant";
object turbulenceProperties;
}

// % % % k x k k k% *k * *k % *k k *k *k *k *k k¥ *k * *k * *k *k * *x *k *x * * ¥ * *x *x x *x //

simulationType LES;

LES
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turbulence on;

LESModel WALE;

printCoeffs on;

delta cubeRootVol; //since the WALE model does not require damping

close to the wall

D.10 system/blockMeshDict

| OpenFOAM: The Open Source CFD Toolbox
| Version: v1912

| Website: www.openfoam.com

Y e

| =========

I \\ / F ield

| \\ / 0 peration

' \\ / And

| \\/ M anipulation |
\kmmm e
FoamFile

{

version 2.0;

format ascii;

class dictionary;

location system;

object blockMeshDict;
X

// % % % %k % % %k % % * %

// Geometry Parameters

inletX 0.25;
channelY 0.30;
embX #calc
embY #calc
outletX #calc
depth 0.1;

// Mesh Parameters

"$inletX + 0.25";
"$channelY + 0.15";
"2x$embX + $inletX";
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z 40;
embx 80;
emby 80;
ioX 40;
outX 120;
ioY 120;
gradingX 1;
gradingXinv 1;
gradingY 2;
gradingYinv 0.5;
embGradingyY 2;

embGradingYinv 0.5;

gradingZ

scale 1;

vertices

(

41;

// Bottom Vertices

(0.00 0.00 0.000)
($inletX 0.00 0.000)
($embX 0.00 0.000)
($outletX 0.00 0.000)
($outletX $channelY 0.000)
($embX $channelY 0.000)
($inletX $channelY 0.000)
(0.00 $channelY 0.000)
($embX $embY 0.000)
($inletX $embY 0.000)

// Upper Vertices

(0.00 0.00 $depth)

($inletX 0.00 $depth)
($embX 0.00 $depth)
($outletX 0.00 $depth)
($outletX $channelY $depth)
($embX $channelY $depth)
($inletX $channelY $depth)

//0
//1
//2
//3
//4
//5
//6
/17
//8
//9

//10
//11
//12
//13
//14
//15
//16
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68 (0.00 $channelY $depth) /717

69 ($embX $embY $depth) //18
70 ($inletX $embY $depth) //19
71 )3

73 blocks

74 (

75 hex

76 (6589 16 15 18 19)

77 embayment

78 ( $embx $emby $z)

79 simpleGrading

80 (

81 (

82 (0.1 0.2 $embGradingY)

83 (0.8 0.6 1)

84 (0.1 0.2 $embGradingYinv)
85 )

86 (

87 (0.1 0.2 $embGradingY)

88 (0.8 0.6 1)

89 (0.1 0.2 $embGradingYinv)
90 )

91 $gradingZ

92 )

93

94 hex

95 (0167 10 11 16 17)

96 inlet_channel

97 ( $ioX $ioY $2)

98 simpleGrading

99 (

100 1

101 //(

102 // (0.25 0.3 $gradingX)

103 // (0.50 0.4 1)

104 // (0.25 0.3 $gradingXinv)
105 //)

106 (

107 (0.1 0.2 $gradingY)

108 (0.8 0.6 1)
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109

110

111

113

114

115

116

118

119

139

140

(0.1 0.2 $gradingYinv)
)
$gradingZ

hex
(125611 12 15 16)
middle_channel

( $embx $ioY $=z)

simpleGrading
(
(
(0.1 0.2 $embGradingY)
(0.8 0.6 1)
(0.1 0.2 $embGradingYinv)
)
(
(0.1 0.2 $gradingy)
(0.8 0.6 1)
(0.1 0.2 $gradingYinv)
)
$gradingZ
)
hex

(234512 13 14 15)
outlet_channel

( $outX $ioY $z)

simpleGrading
(

1

//(

// (0.25 0.3 $gradingX)
// (0.50 0.4 1)
// (0.25 0.3 $gradingXinv)
//)
(
(0.1 0.2 $gradingY)
(0.8 0.6 1)



159

160

161

162

163

164

165

166

167

168

169

170

188

189

190

(0.1 0.2 $gradingYinv)

)
$gradingZ
)
);
edges
(
)s
boundary
(
inlet
{
type patch;
faces
(
(07 17 10)
)3
}
outlet
{
type patch;
faces
(
(34 14 13)
)3
}
bottom
{
type wall;
faces
(
(0167
(125 6)
(23465)
(6589
);
}
lateralWall
{
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191 type wall;

192 faces

193 (

194 (7616 17)
195 (69 19 16)
196 (98 18 19)
197 ( 5 15 18 8)
198 (54 14 15)
199 )

200 }

201 farField

202 {

203 type wall;

204 faces

205 (

206 (010 11 1)
207 (11112 2)
208 (212 13 3)
209 )

210 }

211 freeSurface

212 {

213 type wall;

214 faces

215 (

216 ( 10 11 16 17)
217 ( 11 12 15 16)
218 ( 12 13 14 15)
219 ( 16 15 18 19)
220 )

221 }

222 )

223 mergePatchPairs

224 (

225 )s

227 // 3k 3K 3k 3k >k 3k 3k 3k 5k %k 3k >k 3k 5k 5k 5k >k 3k 5k 3k 3k 5k 3k >k 3k 5k 5k 5k 5k 3k >k 3k 5k 5k 5k 5k 3k >k 3k 5k >k 5k >k 3k >k 3k 5k 5k 5K >k 3k >k 3k 5k 5k 5K >k 3k >k 3k 5k %k 5k %k 3k >k %k 5k %k 5k k k k //
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D.11

system /controlDict

| OpenFOAM: The Open Source CFD Toolbox

| Version: v1912

| Website: www.openfoam.com

I \\ / F ield

|l \\ / 0 peration

I \\ / A nd

| \\/ M anipulation |
\*

FoamFile

{

}

version 2.0;
format ascii;
class dictionary;

location system;

object controlDict;

// % % %k %k % % %k % % %k % % %k % % %k % % 3 % k 3k % *k >k % X * %k X % % %k % *x x x //

application
startFrom
startTime

stopAt

endTime

deltaT
writeControl
writeInterval
purgeWrite
writeFormat
writePrecision
writeCompression
timeFormat
timePrecision
graphFormat
runTimeModifiable
adjustTimeStep
maxCo

maxDeltaT

functions

{

pimpleFoam;
latestTime;
0;

endTime;
1000;
1.0E-3;
adjustableRunTime;
10;

0;

ascii;

6;

yes;
general;

6;

raw;

yes;

true;

0.90;

0.05;
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40

41

turbulenceFields1

{

type

libs
writeControl
timeStart
fields

turbulenceFields;
("libfieldFunctionObjects
writeTime;

150;

(R nuTilda L k I);

.s0");

Q1 //second invariant of the velocity gradient tensor

{
type
libs
timeStart
writeControl
}
yPlusl
{
type
libs
timeStart
writeControl
}
Col
{
type
libs
timeStart
writeControl
}
vorticityl
{
type
libs
timeStart
writeControl
}

Q;
("libfieldFunctionObjects
150;

writeTime;

yPlus;
("libfieldFunctionObjects
150;

writeTime;

CourantNo;
("libfieldFunctionObjects
150;

writeTime;

vorticity;
("libfieldFunctionObjects
150;

writeTime;
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81 wallShearStressi

82 {

83 type wallShearStress;

84 libs ("libfieldFunctionObjects.so");
85 timeStart 150;

86 writeControl writeTime;

88 }

90 LambVectorl //cross product of a velocity vector [m/s] and vorticity

vector [1/s]

01 {

92 type lambVector;

93 libs ("libfieldFunctionObjects.so");
94 libs ("libfieldFunctionObjects.so");
95 timeStart 150;

96 writeControl writeTime;

o7 }

98
99 //#includeFunc absUy

100

101 UyExtract

102 {

103 type components;

104 libs (fieldFunctionObjects) ;
105 field U;

106 timeStart 150;

107 writeControl none;

108 }

109

110 absUy

11 {

112 type mag;

113 libs (fieldFunctionObjects);
114 field Uy;

115 result absUy;

116 timeStart 150;

117 writeControl none;

118 }

120 surfacelInterpolatel
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122 type surfaceInterpolate;

123 libs (fieldFunctionObjects);
124 fields ((absUy absUySurface));
125 timeStart 150;

126 writeControl none;

127 }

128

129 velocityInterface

130 {

131 type surfaceFieldValue;

132 libs (fieldFunctionObjects);
133 fields (absUySurface) ;

134 operation arealntegrate;

135 regionType faceZone;

136 name interface;

137 timeStart 150;

138 executeControl timeStep;

139 executelnterval 1;

140 writeControl timeStep;

141 writelnterval 1;

142 writeFields false;

143 }

144

145 tracer

146 {

147 type scalarTransport;

148 libs ("libsolverFunctionObjects.so");
149 enabled true;

150 timeStart 150;

151 writeControl writeTime;

152 log yes;

153

154 nCorr 1;

156 // Turbulent diffusivity;

157 alphaD 0.001; // Molecular diffusivity
158 alphaDt 1.111; // Turbulent diffusivity (alphaDt = 1
/ Sct)

159

160 // Bounds the transported scalar within O and 1
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161

162

163

164

165

166

167

168

169

170

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

boundedO1

//name of field

field

tracerVolAverage

{

surfaceInterpolateTracer

{

type
libs

log

timeStart
writeControl
writeInterval

writeFields

regionType
name

operation

fields
(

tracer

)

type

libs
fields
timeStart

writeControl

tracerBottom

{

type
libs
fields

true;

tracer;

volFieldValue;

("libfieldFunctionObjects

true;
150;
timeStep;
1

true;

cellZone;
porousZone;

volAverage;

surfaceInterpolate;
(fieldFunctionObjects);

((tracer tracerSurface));

150;

none;

surfaceFieldValue;
(fieldFunctionObjects);

(tracerSurface);
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206

207

208

209

210

operation
regionType

name

timeStart
executeControl
executelnterval
writeControl
writeInterval

writeFields

tracerMiddle

{
type
libs
fields
operation
regionType
name
timeStart
executeControl
executelnterval
writeControl
writeInterval

writeFields

tracerTop

{
type
libs
fields
operation
regionType
name
timeStart
executeControl
executeInterval
writeControl
writeInterval

writeFields

average;
faceZone;
interfaceBottom;
150;

timeStep;

1;

timeStep;

1;

false;

surfaceFieldValue;
(fieldFunctionObjects);
(tracerSurface) ;
average;
faceZone;
interfaceMiddle;
150;

timeStep;

1;

timeStep;

1;

false;

surfaceFieldValue;
(fieldFunctionObjects);
(tracerSurface);
average;
faceZone;
interfaceTop;
150;

timeStep;

1;

timeStep;

1;

false;
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264

265

266

generalVariablesAveraging

{
type
libs
enabled
writeControl
timeStart
restartOnRestart
resetOnOutput
fields
(
8)
{
mean
prime2Mean
base
}
p
{
mean
prime2Mean
base
}
Co
{
mean
prime2Mean
base
}
yPlus
{
mean
prime2Mean
base
}

fieldAverage;
("libfieldFunctionObjects
true;

writeTime;

150;

false;

false;

on;
on;

time;

on;
on;

time;

on;
on;

time;

on;
on;

time;
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289

290

291

296

298

299

300

301

302

303

304

305

306

307

308

309

310

311

turbulenceProperties:R

{
mean
prime2Mean
base

3

vorticity

{
mean
prime2Mean
base

3

lambVector

{
mean
prime2Mean
base

b

#includeFunc totalTKE

totalTKEAveraging

{

type

libs

enabled
writeControl
timeStart
restartOnRestart

resetOnOutput

fields

(
totalTKE

{

mean

on;
on;

time;

on;
on;

time;

on;
on;

time;

fieldAverage;
("libfieldFunctionObjects
true;

writeTime;

160;

false;

false;

on;
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325 prime2Mean on;

326 base time;
327 }

328 );

329 }

330

331 probes

332 {

333 type probes;

334 libs ("libsampling.so");
335 writeControl timeStep;
336 writelnterval 1;

337 setFormat CSV;

338

339 fields

340 (

341 pU

342 )

343

344 probelocations

345 (

346 (0.25 0.30 0.05) //0
347 (0.30 0.30 0.05) //1
348 (0.35 0.30 0.05) //2
349 (0.40 0.30 0.05) //3
350 (0.45 0.30 0.05) //4
351 (0.50 0.30 0.05) //5
352 );

353 }

354

355 meanProbes

356 {

357 type probes;

358 libs ("libsampling.so");
359 writeControl timeStep;
360 writelnterval 1;

361 setFormat CSV;

362 timeStart 150;

363

364 fields

365 (
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366 pMean UMean pPrime2Mean UPrime2Mean

367 )

368

369 probelocations

870 (

371 (0.25 0.30 0.05) //0

372 (0.30 0.30 0.05) //1

373 (0.35 0.30 0.05) //2

374 (0.40 0.30 0.05) //3

375 (0.45 0.30 0.05) //4

376 (0.50 0.30 0.05) //5

377 )

378 }

379

380 genericalPlanes

381 {

382 type surfaces;

383 libs ("libsampling.so");
384 writeControl onknd;

-

386 interpolationScheme cell;

387 surfaceFormat raw;

388

389 surfaces

390 (

391 pO0

392 {

393 type cuttingPlane;
394 planeType pointAndNormal;
395

396 pointAndNormalDict

397 {

308 point (0 0.30 0);
399 normal (01 0);

400 zone porousZone;
101 }

102 3

403 pO1

104 {

105 type cuttingPlane;
106 planeType pointAndNormal;
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408

109

110

111

pointAndNormalDict

{
point (0 0.33 0);
normal (010);
zone porousZone;
3
b
pO2
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0.36 0);
normal (01 0);
zone porousZone;
}
3
pO3
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0.39 0);
normal (0 10);
zone porousZone;
b
3
pO4
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0.42 0);
normal 0 10);
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159

160

161

462

164

165

166

467

zone porousZone;
3
b
pO5
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0.28 0 0);
normal (1 00);
zone porousZone;
X
3
po6
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0.32 0 0);
normal (100);
zone porousZone;
b
3
pO7
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0.35 0 0);
normal (1 00);
zone porousZone;
3
}
p08
{
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189

4190

191

192

193

194

195

196

197

198

199

500

501

502

503

504

505

506

507

508

509

510

511

type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0.38 0 0);
normal (10 0);
zone porousZone;
¥
b
po9
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0.42 0 0);
normal (1 00);
zone porousZone;
+
3
pl0
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0.45 0 0);
normal (1 00);
zone porousZone;
b
b
pll
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
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530

531

563

564

565

566

567

point (0.48 0 0);
normal (100);
zone porousZone;
3
b
pl2
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.01);
normal (00 1);
zone porousZone;
+
X
pl3
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.02);
normal (0 0 1);
zone porousZone;
b
}
pléd
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.03);
normal (0 0 1);
zone porousZone;
3
b
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595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

plb

{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.04);
normal (00 1);
zone porousZone;
+
3
plé
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.05);
normal (0 0 1);
zone porousZone;
b
}
pl7
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.06);
normal (0 0 1);
zone porousZone;
3
b
pl8
{
type cuttingPlane;
planeType pointAndNormal;
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612

614

615

616

618

619

620

621

631

632

634

635

636

637

639

649

650

651

652

pointAndNormalDict

{
point (0 0 0.07);
normal (00 1);
zone porousZone;
+
3
pl9
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.08);
normal (00 1);
zone porousZone;
b
}
p20
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.09);
normal (0 0 1);
zone porousZone;
3
b
p21
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
point (0 0 0.10);
normal (00 1);
zone porousZone;
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654 }

655 );

656

657 fields
658 (

659 UMean
660 pMean

661 turbulenceProperties:RMean

662 vorticityMean

663 lambVectorMean

664 );

665 }

666

667 runTimeControll

668 {

669 type runTimeControl;

670 libs ("libutilityFunctionObjects.so");
671 timeStart 350;

672 writeControl onEnd;

673 conditions

674 {

675 tracer

676 {

677 type minMax;

678 functionObject tracerVolAverage;
679 fields (volAverage (porousZone,tracer)) ;
680 value 0.05;

681 mode minimum;

682 }

683 }

684 }

685

686 #includeFunc residuals

687 }

688

689 // 3k 3K 3k 3k >k 3k 3k 3k 5k %k 3k >k 3k 5k 5k 5k >k 3k 5k 3k 3k 5k 3k >k 3k 5k 5k 5k 5k 3k >k 3k 5k 5k 5k 5k 3k >k 3k 5k >k 5k >k 3k >k 3k 5k 5k 5K >k 3k >k 3k 5k 5k 5K >k 3k >k 3k 5k %k 5k %k 3k >k %k 5k %k 5k k k k //
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D.12 system/decomposeParDict

R k= CHt —k—mm o *\
| ========= | |

[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

|l \\ / 0 peration | Version: v1912

| \\ / And | Website: www.openfoam.com

| \\/ M anipulation | |

K o */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object decomposeParDict;
}

J/ % % % x kx k k ok ok ok ok k k k Kk Kk Kk Kk k k k k k k k *k k k k * * *x *x *x *x *x *x //

number0fSubdomains 48;

method scotch;

scotchCoeffs
{
}

constraints
{
// Keep owner and neighbour on same processor for faces in zones
faces
{
type preserveFaceZones;
zones (interface interfaceBottom interfaceMiddle interfaceTop);

enabled true;
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D.13

system /fvSchemes

}

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration | Version: v1912
\\ / A nd | Website: www.openfoam.com

\\/ M anipulation |

version 2.0;
format ascii;
class dictionary;
location system;

object fvSchemes;

// % % %k %k % %k %k % % % % % %k % % % % k % %k X % % *k * % X % %k X * % %k *x *x *x x //

ddtSchemes

{
default backward;

}

gradSchemes

{
default Gauss linear;

}

divSchemes

{
default none;
div(phi,U) Gauss LUST grad(U);
div(phi,nuTilda) Gauss limitedLinear 0.1;
div((nuEff*dev2(T(grad(U))))) Gauss linear;
div(phi,tracer) Gauss limitedLinearO1l 1;

}

interpolationSchemes
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40

41

60

61

62

63

64

66

default linear;
}
laplacianSchemes
{
default
}
snGradSchemes
{
default orthogonal;
+
wallDist
{
method meshWave;
+
fluxRequired
{
default no;
p
Phi ;
}

Gauss linear orthogonal;

[/ kskokokkok ok sk ok ok ok s ok ok ok sk sk ok sk sk ok ook ok ook sk ok s ok ok s ok ok ok ok ook sk sk ok ok ok ok sk ok sk ok ok ok ok sk ok sk k ok kokkk ok / /

D.14 system/fvSolution

FoamFile

F ield | OpenFOAM: The Open Source CFD Toolbox

0 peration

A nd | Website: www.openfoam.com

M anipulation |

| Version: v1912
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10

11

version 2.0;

format ascii;

class dictionary;

location system;

object fvSolution;

}

// % % %k %k %k % %k % % %k % % %k % % % % % 3 % k %k % X >k % X k %k X % % %k % *x x x //

PIMPLE

{

nOuterCorrectors 3;
nCorrectors 3;
nNonOrthogonalCorrectors 0;
pRefPoint (0.15 0.15 0.1);
pRefValue O;

residualControl
{
"(plU)"
{
tolerance 1le-04;
relTol 0;
}
}
relaxationFactors
{
fields
{
p 0.4;
pFinal 1;
}
equations
{
U 0.7;
UFinal 1;
nuTilda 1;

nuTildaFinal 1;
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}
solvers
{
p
{
solver
smoother
tolerance
relTol
minlter
maxIter
}
pFinal
{
$p;
smoother
tolerance
relTol
}
y)
{
solver
tolerance
relTol
minlter
maxIter
}
UFinal
{
$U;
tolerance
relTol
}
tracer

GAMG;

GaussSeidel;

1le-04;
0.01;
1;
200;

GaussSeidel;

1le-04;
0.01;

PBiCGStab;

preconditioner diagonal;

le-04;
0.01;
1
100;

1e-04;
0.01;
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99

100

101

102

103

104

105

106

107

108

109

110

111

tolerance
relTol
minIter
}
Phi
{
solver
smoother
tolerance
relTol
maxIter
}
}
relaxationFactors
{
fields
{
p
pFinal
}
equations
{
8)
UFinal
nuTilda
nuTildaFinal
}
}
potentialFlow
{
}

solver

PBiCGStab;

preconditioner diagonal;

1le-04;
0.01;
1;

GAMG;

GaussSeidel;

1e-06;
0.01;
20;

nNonOrthogonalCorrectors 10;
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D.15 system/setFieldsDict

1 R k= Ctt —km—mm e *\
2 | ========= | |

s | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

a | A\ / 0 peration | Version: v1912 I

5 1 N\ / A nd | Website: www.openfoam.com

6 | \\/ M anipulation | |

L N e Tttt */
s FoamFile

o {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object setFieldsDict;

4}

15 [/ % % %k % % %k % % )k % % % % %k % % % % %k % % % % % % % % * % X * %k X *x *x *x x //

17 defaultFieldValues
g (
19 volScalarFieldValue tracer O

20 )3

22 regions

23 (

24 // Setting values inside a box

25 boxToCell

26 {

27 box (0.25 0.30 0) (0.50 0.45 0.10);
28 fieldValues

29 (

30 volScalarFieldValue tracer 1
31 )

32 }

w3
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36

D.16 system/topoSetDict

[k k= Ctt —km—mm e *\
| ========= | |

[ \\ / F ield | OpenFOAM: The Open Source CFD Toolbox I

[ \\ / 0 peration | Version: v1912

| \\ / A nd | Website: www.openfoam.com

| \\/ M anipulation | |

K *x/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object topoSetDict;
}

J/ % % x x kx k k ok ok ok ok k k k k Kk Kk Kk k k k k k *k *k *k k k * * * *x ¥ *x *x *x *x //

actions

(

name porousZone;
type cellZoneSet;
action new;

source boxToCell;

sourceInfo
{
box (0.25 0.30 0) (0.50 0.45 0.1);
}
}
{

name interfaceSelection;
type faceSet;
action new;

source boxToFace;
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sourcelnfo

{

box (0.25 0.2999 0) (0.50 0.3001 0.1);
}
name interfaceSelection;

type faceSet;
action subtract;
source normalToFace;
normal (0 1 0);

cos 0.01;

name interfaceSelection;

type faceSet;
action subtract;
source normalToFace;
normal (0 0 1);

cos 0.01;

name interface;
type faceZoneSet;

action new;

source setToFaceZone;

faceSet interfaceSelection;

name interfaceBottom;

type faceSet;
action new;
source boxToFace;
sourcelnfo
{

box (0.25 0.2999

0) (0.50 0.3001 0.033);
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98

99

100

101

102

103

104

105

106

108

name interfaceMiddle;
type faceSet;
action new;
source boxToFace;
sourceInfo
{

box (0.25 0.2999 0.033)
}
name interfaceTop;
type faceSet;
action new;
source boxToFace;
sourcelnfo
{

box (0.25 0.2999 0.066)
}
name interfaceBottom;
type faceSet;
action subtract;
source normalToFace;
normal (0 1 0);
cos 0.01;
name interfaceBottom;
type faceSet;
action subtract;
source normalToFace;
normal (0 O 1);
cos 0.01;

(0.50 0.3001 0.066);

(0.50 0.3001 0.1);

209



119

name
type
action
source
normal

(ofe}}

name
type

action
source
normal

Ccos

name
type
action
source
normal

Ccos

name
type

action
source
normal

Ccos

name

type

action

interfaceMiddle;

faceSet;
subtract;
normalToFace;
(01 0);
0.01;

interfaceMiddle;

faceSet;
subtract;
normalToFace;
(00 1);
0.01;

interfaceTop;
faceSet;
subtract;
normalToFace;
(010);
0.01;

interfaceTop;
faceSet;
subtract;
normalToFace;
(00 1);
0.01;

interfaceBottom;

faceZoneSet;

new;
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159 source setToFaceZone;

160 faceSet interfaceBottom;
161 }

162

163 {

164 name interfaceMiddle;
165 type faceZoneSet;

166 action new;

167 source setToFaceZone;

168 faceSet interfaceMiddle;
169 }

170

172 name interfaceTop;
173 type faceZoneSet;
174 action new;

175 source setToFaceZone;

176 faceSet interfaceTop;

D.17 system/totalTKE

I A e k= CHt koo *\
2 | ====s===== | |

s | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox I

a1 \\ / 0 peration | Version: v1912 I

5 | A\\ / A nd | Website: www.openfoam.com

6 | \\/ M anipulation | |

7 A\ m
s totalTKE

o {

10 type coded;

1 libs ("libutilityFunctionObjects.so");

12 name totalTKE;

13 executeControl timeStep;

14 writeControl writeTime;

15 timeStart 155;

16 // timeEnd 0;
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enabled true;

Total Turbulent Kinect Energy Evaluation
** Requires fieldAverage Function to Obtain UPrime2Mean**
** Resolved Reynolds Stress Tensor
** Requires turbulenceFields Function to Obtain Rx*x*

** Subgrid Reynolds Stress Tensor

codeExecute
#{
static autoPtr<volScalarField> totalTKE;

if

mesh() . foundObject<volSymmTensorField>("UPrime2Mean")

&&

mesh () .foundObject<volSymmTensorField>("turbulenceProperties:R")
&&

mesh() .foundObject<volScalarField>("totalTKE") == 0

Info << "Turbulent Kinect Energy:" << endl;
Info << " Initialising" << endl;

Info << " Calculating" << nl << endl;

totalTKE. set

(
new volScalarField
(
I0object
(
"totalTKE",

mesh() .time () . timeName (),
mesh(),

IOobject: :NO_READ,
I0object: :AUTO_WRITE

212



69

88

90

91

mesh(),

dimensionedScalar

(
"totalTKE",
dimensionSet(0,2,-2,0,0,0,0),
0

)

)

const volSymmTensorField& R =
mesh () .lookupObjectRef<volSymmTensorField>("turbulenceProperties:R");
const volSymmTensorField& UPrime2Mean =

mesh() . lookupObjectRef<volSymmTensorField>("UPrime2Mean");

volScalarField& totalTKE =
mesh() .lookupObjectRef<volScalarField>("totalTKE");
totalTKE = (0.5 * tr(R)) + (0.5 * tr(UPrime2Mean)) ;

}
else if
(
mesh() .foundObject<volSymmTensorField>("UPrime2Mean")
&&
mesh () .foundObject<volSymmTensorField>("turbulenceProperties:R")
&&
mesh () .foundObject<volScalarField>("totalTKE")
)
{
Info << "Turbulent Kinect Energy:" << endl;
Info << " Calculating" << nl << endl;
const volSymmTensorField& R =
mesh() . lookupObjectRef<volSymmTensorField>("turbulenceProperties:R");
const volSymmTensorField& UPrime2Mean =
mesh() .lookupObjectRef<volSymmTensorField>("UPrime2Mean") ;
volScalarField& totalTKE =
mesh() .lookupObjectRef<volScalarField>("totalTKE");
totalTKE = (0.5 * tr(R)) + (0.5 * tr(UPrime2Mean));
}
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93

94 else

95 {

96 Info << "Turbulent Kinect Energy:" << endl;

97 Warning << endl

98 << " Unable to Calculate Turbulent Kinect Energy" << endl

99 << " UPrime2Mean and/or R Unavailable" << endl

100 << " Enable fieldAverage and turbulenceFields Functions"
<< nl << endl;

101 }

102 #1;

103}

D.18 allClear

1 #!/bin/bash

N}

3 # Saves 0.orig from being deleted

. mv O.orig foo

¢ # Deletes Files

7 rm -r constant/polyMesh
s Trm -r processor*/

9 rm -r dynamicCode

o rm -r log

1 rm -r O0.%x [1-9]x*

13 # Restores 0.orig

1« mv foo O.orig

16 # Creates file for paraview
17 CASE=${PWD##x/}
15 touch $CASE.foam

D.19 mesh

1 #!/bin/sh
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case=${PWD#i#x*/}

rm -rf log p* O
mkdir log
cp -r O.orig O

{ # try
echo -e "Compiled variables:\n"

blockMesh > log/blockMesh.log &&

printf ’%xs’ "${COLUMNS:-$(tput cols)}" 7’

| tr ’

echo -e "blockMesh completed without errors"

#save your output

} Il { # catch

# save log for exceptio

echo -e "An error occured on blockMesh"

exit 1

topoSet >log/topoSet.log &&

echo -e "topoSet completed without errors"

LA

echo -e "An error occured on topoSet"

exit 1

checkMesh -allGeometry -allTopology -writeAllFields -writeSets vtk >

log/checkMesh.log &&

echo -e '"checkMesh completed without errors"

I A

echo -e "An error occured on checkMesh"

exit 1

rm -rf dynamicCode

{

setFields > log/setFields.log &&

echo -e "setFields completed without errors"
I A
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6

-~

10

11

12

16

18

19

echo -e "An error occured on setFields"

exit 1

echo -e "Mesh constructed and checked."

echo -e "Tracer fields set."

D.20 ramCache

#!/bin/bash

free &% sync && echo 3 > /proc/sys/vm/drop_caches && free

D.21 reconstructParParallel

#!/bin/bash
echo "
K. Wardle 6/22/09, modified by H. Stadler Dec. 2013, minor fix Will
Bateman Sep 2014.
bash script to run reconstructPar in pseudo-parallel mode

by breaking time directories into multiple ranges

USAGE="
USAGE: $0 -n <NP> -f fields -o <OUTPUTFILE>
-f (fields) is optional, fields given in the form T,U,p; option is
passed on to reconstructPar
-t (times) is optional, times given in the form tstart,tstop

-0 (output) is optional

#TODO: add flag to trigger deletion of original processorX directories after

successful reconstruction

# At first check whether any flag is set at all, if not exit with error message

if [ $# == 0 ]; then
echo "$USAGE"

exit 1

216



fi

#Use getopts to pass the flags to variables
while getopts "f:n:o:t:" opt; do
case $opt in
£f) if [ -n $0PTARG ]; then
FIELDS=$(echo $0PTARG | sed ’s/,/ /g’)
fi
n) if [ -n $0PTARG ]; then
NJOBS=$0PTARG
fi
o) if [ -n $0PTARG ]; then
OUTPUTFILE=$0PTARG
fi
t) if [ -n $0PTARG ]; then
TLOW=$ (echo $0PTARG | cut -d ’,’ -f1)
THIGH=$(echo $0PTARG | cut -d ’,’ -£2)
fi
\?)
echo "$USAGE" >&2
exit 1
)
echo "Option -$0PTARG requires an argument." >&2
exit 1
esac

done

# check whether the number of jobs has been passed over, if not exit with
error message
if [[ -z $NJOBS 1]
then
echo "
the flag -n <NP> is required!

echo "$USAGE"
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62

63

64

exit 1

fi

APPNAME="reconstructPar"

echo "running $APPNAME in pseudo-parallel mode on $NJOBS processors"

#count the number of time directories

NSTEPS=$(($(1s -d processor0/[0-9]*/ | wc -1)-1))

NINITAL=$(1ls -d [0-9]*/ | wc -1) ##count time directories in case root dir,
this will include O

P=p

#find min and max time

TMIN=$(1ls processorO -1v | sed ’/constant/d’ | sort -g | sed -n 2%P) #
modified to omit constant and first time directory

#TMIN=‘1ls processor0O | sort -nr | tail -1°¢

TMAX=$(1s processor0 -1v | sed ’/constant/d’ | sort -gr | head -1) # modified
to omit constant directory

#TMAX=‘1s processorO | sort -nr | head -1°¢

#Adjust min and max time according to the parameters passed over
if [ -n "$TLOW" ]
then
TMIN=$(1ls processorO -1v | sed ’/constant/d’ | sort -g | sed -n 1$P) # now
allow the first directory
NLOW=2
NHIGH=$NSTEPS
# At first check whether the times are given are within the times in the
directory
if [ $(echo "$TLOW > $TMAX" | bc) == 1 1; then
echo "
TSTART ($TLOW) > TMAX ($TMAX)
Adjust times to be reconstructed!
echo "$USAGE"
exit 1
fi
if [ $(echo "$THIGH < $TMIN" | bc) == 1 ]; then
echo "

TSTOP ($THIGH) < TMIN ($TMIN)
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96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

113

114

115

116

129

130

131

133

134

136

fi

ecC

Adjust times to be reconstructed!

echo "$USAGE"
exit 1

fi

# Then set Min-Time

until [ $(echo "$TMIN >= $TLOW" | bec) == 1 ]; do
TMIN=$(1s processor0 -1v | sed -n $NLOW$P)
NSTART=$ ( ($NLOW))
let NLOW=NLOW+1

done

# And then set Max-Time

until [ $(echo "$TMAX <= $THIGH" | bc) == 1 ]; do
TMAX=$(1s processor0 -1v | sed -n $NHIGH$P)
let NHIGH=NHIGH-1

done

# Finally adjust the number of directories to be reconstructed

NSTEPS=$ ( ($NHIGH-$NLOW+3))

else

NSTART=2

ho "reconstructing $NSTEPS time directories"

NCHUNK=$ ( ($NSTEPS/$NJOBS))
NREST=$ ( ($NSTEPSY,$NJOBS))
TSTART=$TMIN

ecC

ho "making temp dir"

TEMPDIR="temp.parReconstructPar"
mkdir $TEMPDIR

PI
fo
do

Dg=""
r i in $(seq $NJOBS)
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139

140

141

142

143

144

159

160

161

162

164

165

166

167

if [ $NREST -ge 1 ]
then
NSTOP=$ ( ($NSTART+$NCHUNK) )
let NREST=$NREST-1
else
NSTOP=$ (($NSTART+$NCHUNK-1) )
fi
TSTOP=$(1ls processor0 -1v | sed -n $NSTOP$P)

if [ $i == $NJOBS 1]
then

TSTOP=$TMAX

fi

if [ $NSTOP -ge $NSTART ]
then
echo "Starting Job $i - reconstructing time = $TSTART through $TSTOP"
if [ -n "$FIELDS" ]
then
$ (SAPPNAME -fields " ($FIELDS)" -time $TSTART:$TSTOP >
$TEMPDIR/output-$TSTOP &)
echo "Job started with PID $(pgrep -n -x $APPNAME)"
PIDS="$PIDS $(pgrep -n -x $APPNAME)" # get the PID of the latest (-n) job
exactly matching (-x) $APPNAME
else
$ ($APPNAME -time $TSTART:$TSTOP > $TEMPDIR/output-$TSTOP &)
echo "Job started with PID $(pgrep -n -x $APPNAME)"
PIDS="$PIDS $(pgrep -n -x $APPNAME)"
fi
fi

let NSTART=$NSTOP+1
TSTART=$(1s processor0O -1v | sed -n $NSTART$P)

done

#sleep until jobs finish

#if number of jobs > NJOBS, hold loop until job finishes

NMORE_OLD=$ (echo 0)

until [ $(ps -p $PIDS | wc -1) -eq 1 ]; # check for PIDS instead of $APPNAME

because other instances might also be running
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175 do

176 sleep 10

177 NNOW=$(1ls -d [0-9]*/ | wc -1) ##count time directories in case root dir,
this will include O

178 NMORE=$ (echo $NSTEPS-$NNOW+$NINITAL | bc) #i#calculate number left to
reconstruct and subtract O dir

179 if [ $NMORE '= $NMORE_OLD ]

180 then

181 echo "$NMORE directories remaining..."

182 fi

183 NMORE_OLD=$NMORE

184 done

1856 #combine and cleanup
187 if [ -n "$0UTPUTFILE" ]
188 then

180 #check if output file already exists

190 if [ -e "$OUTPUTFILE" ]

191 then

192 echo "output file $0UTPUTFILE exists, moving to $0UTPUTFILE.bak"
193 mv $0UTPUTFILE $OUTPUTFILE.bak

194 fi

195

196 echo "cleaning up temp files"

w7 for i in $(1s $TEMPDIR)

198 do

199 cat $TEMPDIR/$i >> $0OUTPUTFILE
200 done

200 fi

202

205 rm -rf $TEMPDIR

204

205 echo "finished"
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